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ABSTRACT 
 

Perceptual audio coding achieves a high compression ratio by exploiting perceptual 

irrelevance and data redundancy. By using advanced and sophisticated signal processing 

methods, perceptual audio coding has generated artifacts that are quite different from the 

traditional distortions. A new audio technology becomes mature through the successful 

modeling, measuring and control on the artifacts incurred from the technology. With the 

advance of new coding modules in the state-of-the-art coding methods such as Advanced 

Audio Coding (AAC), Spectral Band Replication (SBR), and parametric coding, the incurred 

artifacts are far more difficult to model, measure and control than those caused by previous 

encoding systems like pulse code modulation. In this dissertation, we take into consideration 

the MPEG audio, including MP3, AAC, SBR and PS (Parametric Stereo) coding, to explore 

the compression artifacts from the novel coding methods in terms of principle, generation 

sources, perception, and related relief methods. We model the audible artifacts through the 

time-frequency diagrams; consider the artifacts-susceptible music types; analyze the critical 

encoding technologies incurring these artifacts; and provide empirical verifications for the 

artifacts. Specifically, we propose an audio patch method for reducing the two 

zero-quantization artifacts and the fast odd-radix algorithm for computing the type-IV discrete 

cosine transform in the filterbank computation for breaking the tradeoff of parallelism and 

numerical distortion in the existing methods. We establish the compact forms for the 

Temporal Noise Shaping (TNS) in AAC and consider the known artifact named the 
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time-domain aliasing noise. New kinds of artifacts are explored for SBR and PS. We also 

demonstrate the predictive bias of the linear prediction used in SBR. 
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CHAPTER 1  
INTRODUCTION 

Digital audio coding is a major technology in the multimedia industry. Significant 

advances in audio compression have facilitated the development of numerous applications, 

including audio storage, digital audio broadcasting (DAB), mobile applications and Internet 

streaming video. In addition to the traditional audio coders, such as MPEG-1 Layer-III (MP3) 

[1], MPEG-2/4 Advanced Audio Coding (AAC) [2], [3] and Dolby Adaptive Transform Coder 

3 (AC-3), some state-of-the-art coding methods, such as Spectral Band Replication (SBR) 

[5]-[9] and spatial audio coding [10]-[17], have been developed to achieve near-transparent 

CD-quality at very low bit rates. 

Advances in recording technologies in the audio industry have led to distortions like 

wow&flutter, tape saturation, crosstalk, aliasing, quantization nonlinearity, underwater feeling, 

ringing, drop-outs and metal hissing [18]. Understanding these artifacts has motivated 

researches on audio restoration, audio enhancement, filter bank design, and objective quality 

evaluation. Likewise, perceptual audio coding [19] has incurred various annoying artifacts 

such as pre-echo, birdies, speech reverberation, binaural masking level difference (BLMD) 

effect and stereo image loosening [18]. The adoption of new coding technologies has led to 

more “complex” artifacts challenging audio modeling, measuring and listening. To achieve 

high audio quality, knowing these artifacts is of priority concern in encoder design, 

post-processing, and understanding the limitations of compression methods. In this 

dissertation, we aim to explore the audible artifacts from new coding methods. 

1.1. Technology Evolution of Perceptual Audio Coding 

In the technology evolution of perceptual audio coding, the early effort was made to 
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exploit the psychoacoustic knowledge for the rate-distortion control and to scale the 

time-frequency resolution of filterbank [19]-[22]. After the success of conventional 

frequency-domain audio coders such as AC-3, MP3 and AAC, many researches turned to the 

audio bandwidth extension. Several efficient coding methods for the high frequency (HF) 

components of audio were proposed, such as PlusV [25] and SBR. Based on the spectral 

harmonic redundancy, the essential concept of these bandwidth extension methods is to 

reconstruct the HF components by the replicated low frequency (LF) components or white 

noise with additional tonality control mechanisms. Since only a small amount of side 

information is required for the HF reconstruction, the combination of the bandwidth extension 

modules with the conventional coders can provide the transparent quality at very low bit rate. 

For example, MPEG-4 High-Efficiency AAC (HE-AAC), which combines SBR with AAC, 

can generally achieve the comparable quality at 48K bps (bit per second) when compared 

with AAC at 96K bps. Later, the channel reduction became another dimension for increasing 

coding efficiency further. The spatial audio coding, such as Binaural Cue Coding (BCC) and 

Parametric Stereo (PS) coding, can reconstruct a binaural signal from a down-mix monaural 

signal by means of spatial parameters for recovering stereo sound images. In particular, PS 

has been merged into HE-AAC as HE-AAC version 2 [10]. 

1.2. Compression Artifacts in MPEG Audio 

As a typical representation among the related coding methods, in this dissertation, the 

MPEG audio [23], [24], including MP3, AAC, SBR and PS, are taken into consideration to 

explore the compression artifacts from the traditional and novel coding methods. We model 

the audible artifacts from new coding methods through the time-frequency diagrams, consider 

the artifact-susceptible music types, analyze the critical encoder modules leading to the 

artifacts, and provide empirical verifications for the artifacts. We first consider the two 

common zero-quantization artifacts in frequency-domain audio coders, the “band-limited” 
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and “birdie” artifacts [18], [35]. Under bit rate constraint, most audio coders discard the HF 

part of audio to preserve the quality of the LF part but decrease the brightness of audio. 

Another artifact due to insufficient bits is the birdie artifact that comes from a zero band 

where all frequency lines are zero-quantized. We propose an audio patch method for reducing 

the two artifacts. On the other hand, we concern the numerical distortion of the type-IV DCT 

(DCT-IV) that is the fundamental module in the efficient computation of MDCT. Various 

composite lengths have been used in several audio applications such as the 12/36-point 

MDCT in MP3. In the literature, there exist four algorithms for computing DCT-IV of 

composite lengths based on the fast algorithms for DCT-II/DCT-III computation [26]. 

However, these methods involve either serial computations or reciprocal cosine coefficients 

which result in large dynamic ranges. In other words, such parallel implementations 

inherently introduce large numerical distortion due to finite precision. We present a fast 

radix-q algorithm for the DCT-IV computation with merits in parallelism, numerical stability 

and computational complexity. 

We next consider the Temporal Noise Shaping (TNS) module [27]-[30] in AAC. TNS, 

which is a linear predictive coding method in the frequency domain, is one of the effective 

methods for handling the pre-echo artifact [18], [19]. Although Herre and Johnston have 

explained the principle of the discrete cosine transform (DCT)-domain TNS through the 

duality between the squared temporal Hilbert envelope and the power spectrum for 

continuous-time signals, there is no exact formulation for the DCT-domain TNS for finite 

discrete sequences. Based on the autoregressive (AR) modeling formulation with discrete 

trigonometric transforms (DTTs), we establish the compact forms for the DTT-domain TNS in 

a unified way for DCTs and DSTs (discrete sine transforms). Then we concern the artifacts of 

TNS due to the time-domain aliasing property of MDCT (modified DCT) [74], [75] and 

propose an artifact reduction method. 

Subsequently, we consider the artifacts in the two major modules, SBR and PS, in 
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HE-AAC version 2. To approximate the original spectral harmonics and envelopes, SBR 

allows adaptive time-frequency resolutions and different envelop adjustment modes. For this 

new kind of audio coding, we explore six new artifacts that are quite different from the 

traditional coding distortions. On the other hand, in SBR, the second-order linear prediction is 

applied to LF subbands to clip the undesired tonal components and smooth the associated 

spectra for the replication to HF bands. Such a process is referred to as the whitening filtering. 

To avoid the alias artifact from spectral adjustment, SBR adopts a complex-valued filterbank 

instead of a real-valued filterbank. We demonstrate that the linear prediction defined in the 

SBR standard results in predictive bias. A new whitening filter is proposed to eliminate the 

predictive bias. Finally, for PS, we consider the crosstalk artifacts due to the down-mix 

processing. According to different down-mix approaches, we classify the loss of stereo image 

and concern the spectral modulation effect due to the varying down-mix coefficients. 

1.3. Organization 

This dissertation is organized as follows. Chapter 2 considers the two zero-quantization 

artifacts, “band-limited” and “birdie” artifacts, and develops a fast radix-q algorithm of 

DCT-IV for handling the tradeoff of parallelism and numerical distortion. Chapter 3 derives 

the theoretic fundamental of TNS, considers the artifacts of TNS, and proposes the related 

artifacts reduction method. In Chapter 4 and Chapter 5, the artifacts of SBR and PS are 

concerned, respectively. Chapter 6 concludes this dissertation. 
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CHAPTER 2  
COMMON ARTIFACTS BY 
ZERO-QUANTIZATION AND 
NUMERICAL DISTORTION 

In this chapter, we first concern two common zero-quantization artifacts which lead to the 

loss of high or middle frequency. On the other hand, to achieve the best system efficiency, the 

sequence lengths other than a power of two have been used in many audio applications. We 

develop a fast odd radix algorithm for computing DCT-IV of composite lengths with low 

numerical distortion artifacts and high parallelism. 

2.1. Band-Limited and Birdie Artifacts 

The two most common compression artifacts from audio coding are the “band-limited” 

and the “birdie” artifacts [18], [35]. The bit-rate constraint inflicts the artifacts on critical audio 

segments showing up in spectrum as the “spectral valley” or the “spectral clipping”. Spectral 

valley, as shown in Figure 2.1 (b), means a band in which all frequency lines are zero-quantized. 

Spectral valley phenomenon is mainly due to unsuitable bit-allocation policies or excessive 

masking energy measured from the psychoacoustic model in audio encoders. Spectral valleys 

may appear and disappear successively due to unsteady demand for bits between frames. This 

causes the changes in timbre and the energy variation in spectrum and results in the birdie 

effect to which the human hearing is very sensitive. 

Spectral clipping, as shown in Figure 2.2 (b), results from cutting the high frequency (HF) 

content during audio compression. The loss of HF may lead to “muffled” audio. Because of the 

limited bit rate, most audio coding approaches save the bits required for HF spectra and put all 

available bits to low frequency (LF) spectra, which are more relevant for the human hearing.  
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(a) 

 
(b) 

 
(c) 

Figure 2.1. Spectral valley phenomenon and its concealment: (a) original audio signal spectrum; 
(b) compressed spectrum with two zero bands in low and middle frequency parts; (c) 
compressed spectrum enhanced by ZBD. 

For instance, the bandwidth in MP3 is generally restricted to 16 kHz due to the protocol 

constraint, and the speech signal can even be limited to 7–8 kHz with good clarity. However, 

the HF loss significantly degrades the signal with rich HF components. Handling the two 

artifacts is a tradeoff for the encoder design owing to the limited available bits. A coding 

method that aggressively retains HF contents brings more risk to spectral valleys to which the 

human hearing is more sensitive among the two artifacts. Therefore, the HF content is 

generally cut to reduce the risk of spectral valleys. 

Many attempts [36]-[44] have been made to reduce the two artifacts. For instance, our 

work [36]-[38] presented an audio patch method comprising two schemes, Zero Band 

Dithering (ZBD) and High Frequency Reconstruction (HFR), to handle the artifacts in decoder. 
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Figure 2.1 (c) and Figure 2.2 (c) illustrate the enhanced spectra resulting from the patch method. 

The method can be included in frequency-domain decoders, such as MP3, AAC and HE-AAC, 

to conceal the artifacts without prior information. The ZBD module can be applied to frequency 

lines after dequantization and dithers zero lines with random noises. On the other hand, the 

HFR module can be applied to the transform coefficients before the inverse transform or the 

QMF subbands before the synthesis filterbank and regenerate the clipped HF spectrum by 

linear extrapolation. For instance, Figure 2.3 and Figure 2.4 illustrate the incorporation of the 

two models into AAC and HE-AAC decoders, respectively. Figure 2.5 illustrates the 

application of the audio patch method to a HE-AAC audio. As can be seen, the ZBD method 

patches the LF part of the HE-AAC audio spectrum is dupliated to middle HF part; moreover, 

the HFR method extends the bandwidth.  

 
(a) 

 

(b) 

 

(c) 
Figure 2.2. Spectral clipping phenomenon and its concealment: (a) original audio signal 
spectrum; (b) compressed spectrum with narrow bandwidth; (c) compressed spectrum with 
bandwidth extension by HFR. 
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Figure 2.3. The incorporation of ZBD and HFR into AAC decoder. 
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Figure 2.4. The incorporation of ZBD and HFR into HE-AAC decoder. 

 
(a) 

 
(b) 

Figure 2.5. Enhancement of HE-AAC audio by the audio patch method: (a) the HE-AAC audio 
spectrum; (b) the enhanced spectrum. 
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2.2. Fast Radix-q Algorithm for DCT-IV with Low 

Numerical Distortion Artifact and High Parallelism 

The DCT-IV as defined in (1) is the fundamental module in the efficient computation of 

the lapped orthogonal transforms and cosine modulated filter banks known as MDCT.  

�
−

=

++=
1

0
2
1

2
1 ]/))(cos[(

N

n
nk Nknxy ,  k = 0, 1, 2,…, N 1. (1) 

The sequence length of a power of two is most popular due to the computational efficiency and 

structure simplicity of the existing radix-2 algorithms. However, various sequence lengths 

other than a power of two have been used to achieve the best efficiency in audio coding and 

processing, such as the 12/36-point MDCT in MP3 audio coding. 

In the literature, there exist various fast radix-2 algorithms for computing DCT-II and 

DCT-III [45], [46]. The fast radix-q algorithms for the DCT-II/DCT-III computation have been 

also developed and extended to the fast mixed-radix algorithms for composite lengths [47], 

[48]. On the computation of DCT-IV, we can consider the four existing approaches, which 

convert DCT-IV into DCT-II or DCT-III [26]. The four fast algorithms are represented in 

matrix form as 

TII
N

TTTIII
N

TIII
N

II
N

IV
N )()( 1

1
11

1
1 −−−− ==== DCDLLCDLDCDDLCC , (2) 

where the DCT-II/ DCT-III/ DCT-IV matrices are respectively defined as 

]/)2/1cos[(][ , Nknnk
IV
II +=C , 

]/)2/1(cos[][ , Nknnk
IV
III +=C , 

]/)2/1)(2/1cos[(][ , Nknnk
IV
IV ++=C , 

for n, k = 0, 1, 2, …, N − 1; diagonal matrices D and D1 of order N are defined by 

diag{2cos(�(i+1/2)/2N) | i = 0, 1,…, N − 1} and diag{1/2, 1, 1,…, 1} respectively; lower 
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triangular matrix L is defined by the serial computation: [ 0y , 1y ,…, 1−Ny ]T = L[ 0x , 1x ,…, 1−Nx ]T 

= [ 0x /2, 1x − 0y , 2x − 1y ,..., 1−Nx − 2−Ny ]T. However, as depicted in Figure 2.6, the four 

methods indicated in (2) involve either serial computations or reciprocal cosine coefficients 

which result in large numerical distortion artifact due to large dynamic ranges. In other words, 

these DCT-II/DCT-III-based fast algorithms have a tradeoff between numerical distortion and 

parallelism. In this section, we propose a fast radix-q algorithm for the DCT-IV computation 

with merits in parallelism, numerical stability and computational complexity, where q is an odd 

positive integer. The proposed radix-q algorithm can be extended to the fast mixed-radix 

DCT-II/DCT-IV computation for composite lengths. 
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Figure 2.6. Signal flow graphs of the four DCT-IV algorithms indicated in (2). 
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2.2.1. Fast Radix-q Algorithm for DCT-IV Computation  

We begin with the scaled DCT-IV (SDCT-IV) defined as  

�
−
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0
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N
knnk xY , k = 0, 1, …, N 1, (3) 

where N
kn,Φ  denotes �(n + 1/2)(k + 1/2)/N. For the case of length 1, DCT-IV requires one 

multiplication, but SDCT-IV requires no multiplication. Let the sequence length N be a 

multiple of q that is an odd positive integer. Equation (3) can be partitioned into q 

superpositions by grouping the terms with the same indices under the module q as  
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Combining the second and the third terms of (4) and using the trigonometric identity cos(a+b) 

= cos(a)cos(b) sin(a)sin(b), we obtain 
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for m = 0, 1,…, (q − 3)/2, k = 0, 1,…, N − 1. 

(10) 

Equation (5) consists of q length-N/q SDCTs-IV defined by (7)-(10). Further, it can be shown 
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that for any integer p, 
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In order to save multiplications, by using properties (11)-(13), we form the two sequences p
kU  

and p
kV  that are 1/2 of the sum and difference of 

kq
pNY
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pNY
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for p = 1, 2,…, (q − 1)/2, k = 0, 1,…, N/q − 1. 

(15) 

Similar to the strategy utilized in [47], for each k and each p, (q − 1)/2 multiplications can be 

saved by moving the cosine coefficients outside the brackets in (14) and (15), respectively. 

However, the range of the angles N
km,Θ  is from 0 to �/2, and thus the dynamic range of tangent 

values is large. To control numerical stability, (14) and (15) are rewritten as 
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Figure 2.7. Signal flow graphs of length-27 SDCT-IV. 

In (18), the dynamic range of the tangent and cotangent values is controlled within the interval 

[0, 1]. The final SDCT-IV outputs are obtained from 

0
kk UY = ,  for k = 0, 1,…, N/q −1; (19) 

p
k

p
kk

VUY
q
pN +=

+2  and p
k

p
kk

VUY
q
pN −=

−−12 , 

for p = 1, 2,…, (q − 1)/2, k = 0, 1,…, N/q − 1. 
(20) 

Equation (19) is obtained from the symmetry around k = −1/2 of DCT-IV output. For a 

length-q� SDCT-IV, the decomposition must be repeated until the lengths of subsequences are 

one. To obtain the output of DCT-IV or IDCT-IV, N multiplications are required for the scaling 
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operations. Absorbing the scaling factors into (16) and (17) yields 

�
−

=

+⋅⋅Λ⋅+⋅−=′
2

3

0

)12(cos)1(
q

m
q

mpm
k

m
kk

pp
k TAU πδδ , 

for p = 0, 1,…, (q − 1)/2, k = 0, 1,…, N/q − 1; 

(21) 

�
−

=

+⋅⋅Λ⋅=′
2

3

0

)12(sin
q

m
q

mpm
k

m
k

p
k HV πδ , 

for p = 1, 2,…, (q − 1)/2, k = 0, 1,…, N/q − 1, 

(22) 

where � is 21  and N2  for DCT-IV and IDCT-IV, respectively. The number of scaling 

operations can be reduced from N to N/q. To summarize, the proposed algorithm comprises 

(7)-(10) and (16)-(22). Figure 2.7 shows the signal flow graph for a length-27 SDCT-IV after 

the first stage decomposition. 

2.2.1.1 Parallelism and Numerical Stability 

Each DCT-II-based algorithm for DCT-IV computation illustrated in (2) involves either 

serial computations or reciprocal cosine coefficients. However, the proposed radix-q algorithm 

avoids reciprocal cosine coefficients, especially due to the mechanism in (18), and thus has 

good numerical stability. On the other hand, if the latency of hardware implementation is 

considered, the length of the critical path of the DCT-II-based algorithm involving the serial 

computation is N because of the recursive computation for matrix L. The unit of the length is 

one multiplication or addition operation. For the proposed radix-q algorithm, the length of the 

critical path is ceiling{log2[(q − 3)/2]} because of the summation in (21). This result shows the 

critical path of the proposed radix-q algorithm is significantly shorter than that of the 

DCT-II-based algorithm involving the serial computation. 
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2.2.1.2 Computational Complexity 

 The recursive forms of the cost functions for the proposed algorithm are shown in 

Appendix A. Let N = q�, the non-recursive forms are given by 

MIV(N) = (q − 1)(q + 2)/(2q) �NlogqN + N/q, (23) 

AIV(N) = (q − 1)(q + 5)/(2q) �NlogqN . (24) 

In general, a lower computational cost than that induced from (23) and (24) can be achieved by 

rearranging the operation factors. Furthermore, the optimization of the initial case for small 

length-q SDCT-IV can reduce the overall complexity. In Appendix A.2-A.4, we derive and tune 

the fast algorithms for radix-3, radix-5, and radix-9 DCT-IV computation. 

The arithmetic complexity of the DCT-II-based algorithm indicated in (2) is given by 

MIV(N) = MII(N) + N , (25) 

AIV(N) = AII(N) + N – 1. (26) 

Table 2.1 compares the arithmetic complexity of the proposed DCT-IV algorithm and the 

DCT-II-based algorithm, where the fast algorithm [47] is adopted for computing DCT-II of 

length N = q�. The comparison shows that the proposed algorithm not only is free from the 

serial computation and numerical instability but also achieves a lower arithmetic complexity 

than the DCT-II-based algorithm for q = 3 and 9. 

Table 2.1. Arithmetic Complexity Comparison for DCT-IV of N = q� 

 The proposed algorithm DCT-II based algorithm 
q MIV(N),  N > q MIV (q) MIV(N),  N > q MIV (q) 
3 4/3�N log3 N − 7N/6 + 5/2 3 4/3�N log3 N − 17N/18 + 3/2 4 
5 11/5�N log5 N 11 11/5�N log5 N − 7N/10 + 3/2 9 
7 27/7�N log7 N + N/7 28 27/7�N log7 N − N/2 + 3/2 25 
9 20/9�N log9 N − 177N/216 + 11/8 16 23/9�N log9 N − 7N/8 + 15/8 17 
q AIV(N),  N > q AIV (q) AIV(N),  N > q AIV (q) 
3 8/3�N log3 N − N + 1 6 8/3�N log3 N − 7N/9 + 1 6 
5 21/5�N log5 N 21 21/5�N log5 N − N + 1 17 
7 36/7�N log7 N 36 36/7�N log7 N − N + 1 30 
9 53/9�N log9 N  − 103N/72 - 1/8 40 50/9�N log9 N − N + 1 42 
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2.2.2. Fast Mixed-Radix DCT-II /DCT-IV Algorithm 

For composite lengths, i.e., N = n
nqqq λλλλ ⋅⋅⋅⋅ ...2 210

21 , for odd integers 0 < q1 < q2  <…< qn 

and any non-negative integers 0λ , 1λ ,…, nλ , the proposed radix-q algorithm can be flexibly 

combined with the existing fast DCT-II/DCT-IV algorithms for composite lengths. The 

illustrated radix-2 DCT-II/DCT-IV algorithm consisting of Wang’s [49, eq. (50)] and Britanak’s 

[50, eq. (16)] algorithms is described in Appendix A.5. As depicted in Figure 2.8 and Figure 2.9, 

the radix-2 DCT-II/DCT-IV algorithm decomposes a length-N DCT-II into a length-N/2 DCT-II 

and a length-N/2 DCT-IV and decomposes a DCT-IV into two length-N/2 DCTs-II without 

involving serial computations and reciprocal cosine coefficients. The proposed radix-q DCT-IV 

algorithm can be combined with the radix-2 DCT-II/DCT-IV algorithm and the radix-q DCT-II 

algorithm [47] to constitute a mixed-radix algorithm for DCT-II/DCT-IV computation to 

achieve the demands in parallelism and numerical stability. Furthermore, as shown in Appendix 

A.6, the mixed-radix algorithm obtains the merit in computational complexity. 
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Figure 2.8. Signal flow graph of the length-N DCT-II decomposition. 
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Figure 2.9. Signal flow graph of the length-N DCT-IV decomposition. 

2.3. Concluding Remarks 

In this chapter, we have considered the two common zero-quantization artifacts, 

“band-limited” and “birdie” artifacts. An audio patch method comprising two schemes, ZBD 

and HFR, has been proposed to reduce the two artifacts. The patch method can be incorporated 

into transform or subband based audio decoders, such as MP3, AAC and HE-AAC. On the 

other hand, for the computation of the cosine modulated filterbank, we have proposed a fast 

radix-q DCT-IV algorithm to handle the conflict between parallelism and numerical distortion 

artifact in the existing algorithms. The radix-q algorithm can be extended into a mixed-radix 

algorithm for the DCT-IV computation of composition lengths with the merits in parallelism, 

numerical stability and computational complexity. 
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CHAPTER 3  
ARTIFACTS IN 
TEMPORAL NOISE SHAPING 

The TNS method [27]-[30] has been utilized in MPEG-2/4 AAC for attenuating the 

quantization noise preceding the attack signal known as the pre-echo artifact [18], [19]. As 

illustrated in Figure 3.1, the quantization noise spreads throughout the entire signal block in 

the time domain. The TNS module can shape and control the spread of quantization noise to 

improve audio quality.  

 Since the TNS in AAC is applied to the MDCT coefficients that are highly related to the 

even DCT-IV, based on the theory of the spectral AR modeling in the DTT domain, we 

establish the compact form of the TNS in the DTT domain and explain the “time-domain 

aliasing noise” [30], which has an unusual noise around the attack segment. We also concern 

the degradation of the artifact with the TNS filter orders. Finally, we compare the TNS by the 

Hilbert and power envelope methods. 

 

Figure 3.1. Pre-echo artifact (dashed line: original waveform; solid line: quantization noise). 
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3.1.TNS Formulation in DTT Domain 

TNS aims to shape the temporal envelope of the quantization noise by incorporating an 

open-loop predictive coding [31] across frequency lines in audio encoders/decoders. In terms 

of z-transform, the concept of TNS can be explained as follows. As depicted in Figure 3.2, x(k) 

and d(k) denote the input and the predictive residual signals in the frequency domain in the 

analysis part, whereas xr(k) and dr(k) denote the reconstructed signals related to x(k) and d(k) 

in the synthesis part. The relation between the reconstruction error r(k), i.e., x(k) − xr(k), and 

the quantization noise q(k), i.e., d(k) − dr(k), is expressed in z-transform as 

)(1
)(

)(
zH

zQ
zR

−
= , (27) 

where R(z) and Q(z) are the z-transforms of r(k) and q(k). If the magnitude response of the 

inverse or whitening filter 1/(1−H(z)) can approximate the temporal envelope of the 

frequency-domain input signal x(k), the quantization noise )( ωjeQ −  (in the time domain) can 

be amplified or attenuated with the temporal shape. Figure 3.3 illustrates the shaping effect of 

the TNS applied in the MDCT domain. 

In [27]-[30], Herre and Johnston have proposed the TNS predictive filter by exploiting 

the duality between the squared temporal Hilbert envelope and the power spectrum for 

continuous-time signals. Since, in the literature, there is no derivation for the finite discrete 

sequences in the DTT domain, this section derives the compact form for the TNS in the DTT 

domain through the theory of the AR modeling in the DTT domain. 
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Figure 3.2. Open-loop predictive coding scheme in TNS 

 
(a)                                  

         

 (b)                                     (c) 

Figure 3.3. TNS effect. (a) original signal in the time domain; (b) decoded signal without TNS; 
(c) decoded signal with TNS. 
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3.1.1.Autoregressive Modeling in DTT Domain  

The AR modeling [53], [64], also known as linear prediction (LP), has received more and 

more applications in audio coding. The theoretical fundamental for AR modeling of 

temporal/spectral envelopes with various DTTs has been established in Appendix B. Here, we 

summarize the critical results related to the TNS formulation. 

Through this chapter, we consider all transforms as matrices that left-multiply the input 

sequence represented as a column vector.  

3.1.1.1 Generalized Discrete Fourier Transform 

 The N × N generalized DFT (GDFT) [77] matrix is defined by 

��

�
	


� ++−=
N

bnakj
nka,b

))((2
exp][ ,

πG , for k, n= 0, 1, …, N − 1. (28) 

Four special forms of the GDFT arise when a and b take on the values 0 or 1/2. They are 

classified and named as follows [76]:  

(i) DFT (Discrete Fourier transform): a = 0 and b = 0. 

(ii) OTDFT (Odd-Time DFT): a = 0 and b = 1/2. 

(iii) OFDFT (Odd-Frequency DFT): a = 1/2 and b = 0. 

(iv) O2DFT (Odd-Time Odd-Frequency DFT): a = 1/2 and b = 1/2.  

The last three transforms can be regarded as the modified versions of the DFT with a 

1/2-sample delay in the time domain and/or a 1/2-sample advance in the frequency domain. 

The inverse GDFT (IGDFT) matrix is the scaled Hermitian transpose of the forward GDFT 

matrix: 
*
,

1
,

11
, abN

H
baNba GGG ==− , (29) 

where superscripts (H) and (*) denote the Hermitian transpose and conjugate operations, 

respectively. 
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3.1.1.2 Convolution-Multiplication Property of GDFT 

The circular and skew-circular convolutions of two vectors x and y of length N are 

defined as 

(x c  y)n ��
−

+=
+−

=
− +=

1

10

N

nk
Nknk

n

k
knk yxyx , for n = 0, 1,…, N − 1. (30) 

(x s  y)n ��
−

+=
+−

=
− −=

1

10

N

nk
Nknk

n

k
knk yxyx , for n = 0, 1,…, N − 1. (31) 

The DFT has the convolution-multiplication property that the inverse transformation after 

entry-wise multiplication gives the same result as the circular convolution of the original 

sequences. Vernet [78] and Martucci [76] derived such properties for other GDFTs. We 

summarize the results in matrix form as follows.  

Let u = x c  y and w = x s  y, then the following hold: 

)]()[( 0,00,0
1
0,0 yGxGGu �

−= . (32) 

)]()[( 0,0,0
1
,0 2

1
2
1 yGxGGu �

−= . (33) 

)]()[( 0,0,
1
0, 2

1
2
1

2
1 yGxGGw �
−= . (34) 

)]()[(
0,,

1
,

2
1

2
1

2
1

2
1

2
1 yGxGGw �
−= . (35) 

3.1.1.3 Discrete Trigonometric Transform 

The family of DTTs comprises eight versions of the discrete cosine transform (DCT) and 

eight versions of the discrete sine transform (DST). Martucci formulated the DTTs through 

the convolution forms as defined in [76, Appendix]. The orthogonal-like relations between the 

inverse and forward DTTs are 

IMI TT 11 =− , IIIMII TT 11 =− , IIMIII TT 11 =− , and IVMIV TT 11 =− , (36) 

where the DTTs in both sides of each equality must be the same in the categories of cosine or 

sine and even or odd; and M is 2N and 2N − 1 for the even and odd cases, respectively. 
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3.1.1.4 Analytic Transform based on GDFT and IGDFT 

Marple proposed a DFT-based method for computing the analytic signal corresponding 

to a real-valued finite sequence of an even length [79]. We extend the result to the GDFTs as 

described in the following. 

Via each GDFT, we can define the generic form for the analytic transform matrix:  

q
T

qqqqq FZWZFA )(1 +++−+ = , (37) 

where +
qA  is the M × M analytic transform matrix, Fq is the GDFT matrix, +

qZ  is the 

zero-padding matrix, and +
qW  is the weighting matrix. Figure 3.4 depicts pictorially the 

reconstruction of the analytic transforms. The specific matrices are tabulated in Table 3.1, 

where qpr ,,Z  is defined as T
qpprp ][ ×× 0 I 0 , where pI  is the identity matrix of order p, and 

qp×0  is the p × q zero matrix. For instance, the 2N × 2N O2DFT-based analytic transform 

matrix +e
IVA  is defined as 

[ ]
2
1

2
1

2
1

2
1 ,

1
,

2 G0II
0
I

GA ⋅⋅⋅�
�

�
	



�
⋅= ×

×

−+
NNNN

NN

Ne
IV . (38) 

As can be seen in (37), the analytic transformation can discard the negative GDFT 

frequencies. Especially, let x denote the real-valued column vector of length M and xAa q
+= , 

then the analytic vector a has two important properties. First, the real part of a exactly equals 

the original vector: 

nn xa =)Re( , for n = 0, 1, …, M − 1. (39) 

Second, the real and imaginary parts of a are orthogonal: 

0)Im()Re(
1

0

=⋅�
−

=

M

n
nn aa . (40) 
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For example, let x = [1, −2, −3, 7, 11]T, then 

Tjjjjj ]8385.311,1816.87,0867.43,8809.12,5489.61[ +−−−+−+=+     xAo
II , 

Tjjjjj ]1978.411,7628.87,9929.63,1534.02,1211.61[ +−−−−−−=+     xAo
III . 

Entry SelectionEntry Selection Entry ScalingEntry Scaling Zero PaddingZero Padding

IGDFTIGDFTGDFTGDFTReal vector Analytic vector
|||

Analytic TransformAnalytic TransformReal vector Analytic vector

Entry SelectionEntry Selection Entry ScalingEntry Scaling Zero PaddingZero Padding

IGDFTIGDFTGDFTGDFTReal vector Analytic vector
|||

Analytic TransformAnalytic TransformReal vector Analytic vector

 

Figure 3.4. Reconstruction of analytic transform based on GDFT. 

Table 3.1. Definitions of Related Matrices for Analytic Transforms 

 +
qA  qF  +

qZ  +
qW  

+e
IA  0,0G  }1,2,...,2,12{diag  of order N + 1 

+e
IIA  

2
1

,0
G  1,1,0 −+ NNZ  

}1,2,...,2,12{diag  of order N + 1 

+e
IIIA  0,

2
1G  

}2,...,2,2{diag  of order N M = 2N  

+e
IVA  

2
1

,
2
1G  NN   Z ,,0  

}2,...,2,2{diag  of order N 
+o

IA  0,0G  }2,...,2,2,1{diag  of order N 
+o

IIA  
2
1

,0
G  

}2,...,2,2,1{diag  of order N 

+o
IIIA  0,

2
1G  

}1,2,...,2,2{diag  of order N 
M = 2N − 1   

+o
IVA  

2
1

,
2
1G  

1,,0 −NN   Z  

}1,2,...,2,2{diag  of order N 
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3.1.1.5 DTT and Analytic Transform 

The DTT spectra can be interpreted as the GDFT spectra of analytic vectors in the 

following way. Given a temporal column vector x and the DTT vector y = Tq x. Then the 

IGDFT of the zero-padded scaled DTT equals the analytic transform of the symmetrized 

temporal vector, that is 

)()( 1 yWZFxEA +−+ ′= qqqqq , (41) 

where +
qA  is the analytic transform matrix, Eq is the symmetric extension operator, 1−

qF  is 

the IGDFT matrix, Zq is the zero-padding matrix, and +′qW  is the weighting matrix. The 

specific types and definitions of the related matrices are defined in Tables B.2 and B.4 in 

Appendix B. The relation illustrated in (41) is depicted pictorially in Figure 3.5. We take the 

even DCT-IV for instance. For a real-valued column vector x of length N, the specific 

expression of (41) is given by 

�
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,
2
1

2
1 , (42) 

where NJ  is the reversal matrix of order N.  
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Figure 3.5. A pictorial representation of (41). 
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3.1.1.6 Autocorrelation and Temporal Envelope  

The circular and skew-circular autocorrelations of a vector x of length N are defined as 

�


�
�
�

� ⋅+⋅= ��
−

−=
−+

∗
−−

=
+

∗
11

0

1
)(

N

nNk
Nknk

nN

k
knkn

C

N
xxxxrx , for n = 0, 1,…, N − 1. (43) 
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knkn

S
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xxxxrx , for n = 0, 1,…, N − 1. (44) 

Just like the time-frequency duality between circular autocorrelations and DFT power spectra, 

we can have dualities between the GDFT-domain circular or skew-circular autocorrelations 

and the temporal (IGDFT-domain) envelopes as follows. 

� Consider a column vector y of length N. 

(i) The relation between its skew-circular autocorrelation and IOTDFT/IO2DFT power 

spectra is given by 

])()[(])()[( *1
,

1
,,0

*1
,0

1
,0,0 2

1
2
1

2
1

2
1

2
1

2
1

2
1

2
1 yGyGGyGyGGry

−−−− == ��
S . (45) 

(ii) The relation between its circular autocorrelation and IDFT/IOFDFT power spectra is 

given by 

])()[(])()[( *1
0,

1
0,0,0

*1
0,0

1
0,00,0

2
1

2
1 yGyGGyGyGGry

−−−− == ��
C . (46) 

Here the notation ( ) denotes the Hadamard product (i.e., the entry-wise product of two 

vectors or matrices).                                                       � 

By substituting (41) to (45) and (46), we immediately obtain two dualities between the 

DTT-domain circular or skew-circular autocorrelation and the temporal envelopes. In the 

following, the two dualities are expressed in generic form, and the specific types of 

transforms and autocorrelations are defined in Table B.3 in Appendix B.1.6.4. 
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� Given a temporal vector x and its DTT vector y = Tq x. 

(i)  Let yWZy +′= qqˆ , then 

])()[( *
ˆ xEAxEAKry qqqqq

++= � . (47) 

(ii)  Let yEy q′=�� , then 

)]()[( xExEKry qqq ��� = . (48) 

Here yrˆ  and yr ��  are the circular or skew-circular autocorrelation of ŷ  and y��  depending 

on the type of Kq.                                                          � 

For example, given a real-valued column vector x of length N, the two dualities for even 

DCT-IV are expressed below. 
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To summarize, the dualities (47) and (48), corresponding to the Hilbert and power 

envelopes respectively, provide the fundament for AR modeling in the DTT domain. In 

Appendix B, we also confirm that the traditional Yule-Walker equations can be solved to yield 

the AR parameters in the GDFT AR modeling problem.   

3.1.2. Evaluation and Representation of Whitening Filter 

Let x denote the data vector and y = Tq x. According to (47) and (48), we can have the 

squared Hilbert envelope or power envelope for shaping the reconstruction noise. As defined 

in the two dualities, ŷr  and y��r  consist of the circular or skew-circular autocorrelation of 

ŷ and y��  respectively, where  
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yWZy +′=−= qq
TMyyy )]1(ˆ),...,1(ˆ),0(ˆ[ˆ  and .Myyy q

T yEy ′=−= )]1(),...,1(),0([ ��������  

Subsequently, the parameters of the whitening filter are obtained by solving the Yule-Walker 

equations. Since the relations in the two dualities are based on length M instead of N, we 

assume that the whitening filter is applied to ŷ  covering y in our derivation. 

 The whitening filter can be represented as a circulant or skew-circulant matrix [32] in the 

case of the circular or skew-circular convolution. By taking conjugate of both sides of 

(32)-(35) and assuming that the operands x and y are real-valued, we have the alternative 

relations: 

)]()[( 1
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2
1 yGxGGw −−⋅= �N . (49) 

Hence, the matrix representation H for the whitening filter can be diagonalized by GDFTs as 

1−⋅⋅= qq F�FH , (50) 

where }1,...,1,0|){( 1
,0 −=⋅= − MndiagN nb�G� , where b is 0 or 1/2 depending on the 

convolution type.  

In the MPEG standard [2], [3], the TNS predictive error filter is performed through the 

linear convolution (filtering) in the transform domain. In matrix form, the linear convolution 

L which is lower triangular is the same as the periodic convolution H except for the upper 

triangular entries. Thus, by padding the input data with suitable zeros, the periodic 

convolution equals the linear convolution. However, to reconstruct y, all M residuals are 

necessary to be transmitted to the decoder to perform the periodic deconvolution H−1. In 

contrast, only the residuals corresponding to y are required for the linear deconvolution L−1 for 
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it is still lower triangular. Interestingly, if L−1 u = v and vn = 0 for M − P � n � M − 1, then 

H−1u = H −1(Lv) = H −1(Hv) = v. Hence, H and H −1are equivalent to L and L−1 on ŷ  and the 

related residuals respectively, and thus we can develop the TNS formulation on ŷ  in the 

periodic convolution/deconvolution manner. 

3.1.3. Formulation of TNS 

We now establish the formulation of the shaping effect of TNS. First, the dequantized 

residual rd  is given by 

�yH�dd +=+= ˆr , (51) 

where d is the original residual, and �  is the additive quantization noise. After deconvolution, 

the reconstructed spectral sequence rŷ  is given by 

�Hy�yHHdHy r
111 ˆ)ˆ(ˆ −−− +=+==r . (52) 

In other words, the quantization noise �  can be shaped by the periodic deconvolution 1−H  

in the transform domain. Notice that only the part of d corresponding to y is quantized and 

transmitted from the encoder to the decoder. Let the zero-padded part be perfectly 

reconstructed, then the reconstructed noise exists only for non-zero-padded samples of ŷ . 

Thus we can confirm the equivalency of 1−H and 1−L on �  to have nZ�L�H q== −− 11 , 

where Zq is the zero-padding matrix corresponding to Tq, and n denotes the reconstruction 

noise related to yW +′q . This implies that some quantization noise should be “virtually” 

imposed on the P samples after y to correct the noise propagation in the open-loop prediction. 

To check the temporal shaping effect, 1−
qT  is applied to the part of rŷ  related to y, 

i.e., r
T
qq yZW ˆ)( 1−+′ , to yield the reconstructed temporal sequence rx , where 1)( −+′qW is 

multiplied for removing the scaling of +′qW  on ŷ . Before formulating rx , we consider 
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another relation between IDTT and IGDFT as follows. For an arbitrary vector z, (41) can be 

rewritten as 

zWZFzTEA +−−+ ′= qqqqqq
11 . (53) 

Thus, by the property that the real part of the analytic transform exactly equals the original 

sequence, for an arbitrary data vector z, we have 

}Re{ 11 zWZFzTE +−− ′= qqqqq . (54) 

Consequently, by setting z as r
T
qq yZW ˆ)( 1−+′  to (54), the reconstructed symmetrized temporal 

sequence is given by 

}ˆ)(Re{ˆ)( 1111
r

T
qqqqqr

T
qqqqrq yZWWZFyZWTExE −++−−+− ′′=′= . (55) 

Substituting (52) into (55) leads to 

}.Re{

}Re{}Re{
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)}ˆ(Re{

111
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�HFyTE          
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qqq
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qqqqqq

qq
T
qqq

T
qqqrq

 (56) 

In the last step in (56), the property (54) is used, and the product T
qq ZZ can be removed due 

to nZ�H q=−1 . Then substituting (50) to (56) yields 

},Re{}Re{ 111 ε−−− +=+= qqqqrq F��xE�F�xExE ��  (57) 

where column vectors �  and � are defined by iii )( 1−= ��  and 11)( −− ⋅= i��� iii  for i = 

0,1,…, M − 1. Hence, �  results in the temporal shaping effect. Furthermore, due to� , the 

imaginary part of �F 1−
q  is also involved in the reconstruction noise. 

Figure 3.6 illustrates a TNS analysis result based on order-12 AR modeling on the even 

DCT-IV coefficients of 64 audio samples at 8 kHz sampling rate. As shown in Figure 3.6 (c), 
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although only 64 quantization noise samples are applied to the 64 residual samples 

transmitted, the 12 “virtual” quantization noises indexed from 64 to 75 occur when analyzed 

with the skew-circular convolution. In Figure 3.6 (d), the original time-domain samples and 

the reconstructed noise are depicted to show the shaping effect. Also notice that the TNS 

processing is applied to a data segment of length 64 but is analyzed in the O2DFT domain of 

length 128. Because of symmetry, only one side is shown in this illustration. 

 

Figure 3.6. TNS analysis. (a) The even DCT-IV coefficients of an audio segment of 64 
samples at 8 kHz. (b) The predictive residuals by the order-12 whitening filter corresponding 
to temporal Hilbert envelope. (c) The quantization noise on the residuals indexed 0~63, and 
the virtual quantization noise indexed 64~75. (d) The original time-domain samples and the 
reconstruction time-domain noise. 
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3.2.Artifacts in TNS 

It has been known that the lapping operation of MDCT creates the time-domain aliasing 

and results in the undesired shaping of TNS at silence or weak-energy segments [27]. In this 

section, we explain the phenomenon through the relation between the MDCT and DCT-IV 

together with the fundamentals of AR modeling in DTTs. 

3.2.1. Time-Domain Aliasing Noise 

The N × 2N MDCT matrix M is defined as 

�


�
�
�

� +++=
N

Nnk
nk

)2/2/1)(2/1(
cos][ ,

πM  for 0 � k � N − 1 and 0 � n � 2 N − 1. (58) 

The MDCT matrix can be factorized into the product of the “time-domain aliasing” matrix 

and the even DCT-IV matrix: [26] 

ACM e
IV ⋅= , (59) 

where M is the N × 2N MDCT matrix, e
IVC  is the N × N even DCT-IV matrix, and A is the N 

× 2N time-domain aliasing matrix defined as 

�
�

�
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NNNN

NNNN

00JI
IJ00

A , (60) 

where IN/2 is the identity matrix and JN/2 is the reversal matrix. The factorization of the MDCT 

matrix is depicted pictorially in Figure 3.7. Consequently, the MDCT of a finite sequence of 

length 2N is equal to the even DCT-IV of the aliased sequence of length N. According to the 

time-domain aliasing cancellation (TDAC) principle [74], the aliasing effect can be perfectly 

removed by the overlap-and-add operation, which makes the MDCT especially attractive in 

audio coding for the blocking effect reduction. However, the time-domain aliasing operation 

of MDCT brings the “time-domain aliasing noise” artifact in TNS. 
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According to (47), when the linear predictive parameters are estimated in the DCT 

domain, the spectral magnitude response of the corresponding inverse filter should fit the 

temporal Hilbert envelope of the time-domain original signal. Equation (59) implies that the 

predictor evaluated from the MDCT of an audio segment is equal to that evaluated from the 

DCT-IV of the aliased one. More specifically, the duality formula (47) in this situation is 

given as follows.  
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where x̂  means a windowed input signal (e.g., when the sine window is applied, 

xx ⋅−=+= }12,...,2,1,0|)]2/()2/1({sin[ˆ NnNndiag π ). Thus, rather than the original 

temporal Hilbert envelope, the inverse filter evaluated in the MDCT domain shapes the 

time-domain quantization noise according to the temporal Hilbert envelope of the aliased 

time-domain signal. Consequently, as illustrated in Figure 3.8, the artificial pre/post-aliasing 

artifacts are introduced due to the time-domain aliasing operation of MDCT. The aliasing 

noise may occur at perceptually sensitive positions (e.g., silence segments) and degrade the 

audio quality. Figure 3.9 and Figure 3.10 illustrate the pre-aliasing and post-aliasing artifacts, 

respectively. 

=

M CIV A

=

M CIV A

 

Figure 3.7. MDCT factorization. Identity and reversal matrices are represented by diagonal 
and anti-diagonal lines and row vectors are represented by horizontal lines. 
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Figure 3.8. The time-domain aliasing of MDCT:(a) the input signal and the analysis sine 
window; (b) the post-aliasing signal corresponding to (a); (c) the input signal and the analysis 
sine window; (d) the pre-aliasing signal corresponding to (c). 

 
(a) 

 
(b) 

 
(c) 

Figure 3.9. TNS pre-aliasing artifact: (a) original signal in time domain; (b) decoded signal 
without TNS; (c) decoded signal with TNS. 
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(a) 

 
(b) 

 
(c) 

Figure 3.10. TNS post-aliasing artifact: (a) original signal in time domain; (b) decoded signal 
without TNS; (c) decoded signal with TNS. 

3.2.2. Aliasing Noise by High-Order TNS 

The accuracy of AR modeling generally rises with increasing predictive orders. This 

implies that the spectral magnitude response of the evaluated inverse filter should fit more and 

more accurately the temporal envelope of the original time-domain signal when the predictive 

order increases. For attack signals, the predictor shapes the abrupt changes of temporal attacks. 

Depending on the time-domain aliasing nature of MDCT mentioned above, the pre-aliasing or 

post-aliasing artifacts deteriorate with the TNS order due to the higher abrupt shaping. For 

instance, comparing Figure 3.11 (c) with (b) shows that the TNS of order 12 concentrates the 

quantization noise within the attack position but worsens the pre-aliasing artifact. Hence, the 

predictive order cannot be decided purely on complexity or coding gain. 
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(a) 

    

(b)                                      (c) 
Figure 3.11. Deterioration of TNS aliasing artifact with high TNS orders: (a) original 
time-domain signal; (b) reconstruction noise with order-3 TNS; (c) reconstruction noise with 
order-12 TNS. 

3.2.3. Artifacts Reducing Method  

By applying the property that the IMDCT (inverse MDCT) matrix is the scaled transpose 

of the MDCT matrix to (59), we have 
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where M~  is the 2N × N IMDCT matrix. The factorization of the IMDCT matrix is depicted 

pictorially in Figure 3.12. Equation (61) specifies the symmetric structure of the IMDCT 

output and implies that the shaped quantization noise by TNS must have the same symmetric 

structure after the IMDCT conversion. Unlike the aliased original signal, the shaped 

quantization noise cannot be perfectly cancelled by the overlap-and-add operation. 

Accordingly, the time-domain aliasing noise always accompanies symmetrically with the 

shaped noise centralized in an attack. This means that the aliasing artifact cannot be avoided 

through the TNS filter design. 

In audio coding, the window switch [1]-[3] is another mechanism for handling attack 

signals, where the start and stop windows are used in the transition between a long window 

and a short window. In [33], a method is proposed to detect attacks and to apply the start and 

stop windows in AAC to attenuate the aliasing noise (see Figure 3.13). Figure 3.14 illustrates 

the effect of the stop window. As shown in Figure 3.14 (d), the aliasing term of the original 

signal can be removed through the windowing operation, instead of the overlap-and-add 

operation. In the same way, the aliasing noise can be eliminated. Similar concept is adopted in 

MPEG-4 Low Delay AAC, where a window which exhibits only a small overlap between 

subsequent frames is provided to minimize the time-domain aliasing noise [34]. Figure 3.15 

provides an example to compare the waveforms and spectrograms of several signals including 

the original signal, the decoded signal without TNS, the decoded signals with the TNS of 

order 3 and 12, and the decoded signal with the TNS of order 12 and the artifacts reducing 

method. A comparison of Figure 3.15 (h) and (i) shows that the stronger noise centralized in 

the aliasing segment arises in the case of TNS order 12. On the other hand, in Figure 3.15 (j), 

the time-domain aliasing noise of the decoded signal with TNS order 12 is eliminated by the 

artifacts reducing method. 
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Figure 3.12. IMDCT factorization. Identity and reversal matrices are represented by diagonal 
and anti-diagonal lines and row vectors are represented by horizontal lines. 
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Figure 3.13. Artifact reducing method for TNS time-domain aliasing by the start and stop 
windows. 

 

Figure 3.14. The effect of the stop window: (a) the input signal and the analysis stop window; 
(b) the windowed output; (c) output of IMDCT; (d) final output behind the synthesis stop 
window. 
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Figure 3.15. TNS artifact Effect from the different TNS orders: (a) the original waveform; 

(b) the waveform without TNS; (c) the waveform with TNS order 3; (d) waveform with TNS 
order 12; (e) the waveform from the artifacts reducing method  for the TNS with order 12 
and; (f)-(j) the spectrograms corresponding to (a)-(e) respectively. 

3.2.4. TNS by Hilbert Envelope and Power Envelope 

Figure 3.16 illustrates the noise shaping effect of the Hilbert-envelope method and the 

power-envelope method, where the two order-12 AR modeling methods are applied to a 

transient audio segment of 2048 samples at 44.1 kHz. The inverted magnitude responses of 

the two skew-circular predictors corresponding to the Hilbert and power envelopes are 

aligned in energy and depicted in Figure 3.16 (c). The quantization noises on the residuals are 

simulated by a white random sequence shown in Figure 3.16 (d). The reconstructed temporal 

noises by the two predictors are shown in Figure 3.16 (e) and (f). As shown in Figure 3.16 (c), 
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the magnitude response of the predictor corresponding to the power envelope is sharper than 

that corresponding to the Hilbert envelope at the silence segment. Therefore, the pre-echo 

artifact in Figure 3.16 (f) has higher attenuation when compared with that in Figure 3.16 (e). 

The major difference of the two methods comes from the envelope estimation of the low 

frequency tones. The Hilbert envelope can avoid the smoothing effect by removing the low 

frequency lines in the calculation of the filter coefficients while applying the noise shaping to 

all the frequency lines to achieve similar effects as the power envelope method. 

 

 

Figure 3.16. Comparison of TNS effect by the order-12 predictors corresponding to the 
Hilbert and power envelopes. (a) A transient audio segment of 2048 samples at 44.1 kHz. (b) 
The even DCT-IV coefficients. (c) The energy-aligned inverted magnitude responses of the 
two skew-circular predictors corresponding to the Hilbert and power envelopes. (d) The 
simulated quantization noise. (e) The reconstruction temporal noises by the predictor 
corresponding to the Hilbert envelope. (f) The reconstruction temporal noises by the predictor 
corresponding to the power envelope. 



 

 42

3.3.Concluding Remarks 

In this chapter, the compact form of TNS has been established for 16 DTTs through the 

spectral AR modeling theory of finite discrete signals. According to the compact form, the 

well-known “time-domain aliasing noise” artifact associated with TNS in the MDCT domain 

has been explained analytically. The time-domain aliasing noise deteriorates with the TNS 

predictive order. A reduction method combining TNS and window switch has been proposed 

to reduce this artifact. We also compared the TNS effects by the Hilbert envelope and power 

envelope. 
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CHAPTER 4  
ARTIFACTS IN  
SPECTRAL BAND REPLICATION 

In contrast to the traditional transform or subband coding methods such as AAC and 

MP3, the SBR exploits the similarity between low frequency (LF) and high frequency (HF) 

spectra to reconstruct high bands by replicating low bands. The efficient coding method of HF 

brings several new types of artifact. 

4.1. SBR Overview 

SBR is a technique of bandwidth extension or high frequency reconstruction and can be 

combined with any audio core coders such as AAC and MP3. SBR reconstructs high bands by 

transposing and adjusting the replicated low bands thanks to the strong correlation of spectral 

harmonic characteristics. Only a small amount of side information, including spectral 

envelope data and control parameters for additional means such as inverse filtering and 

noise/sinusoidal addition, is transmitted from the encoder to the decoder for guiding the HF 

reconstruction. Since SBR requires significantly lower bit rate for high bands and reduces the 

underlying core coder bandwidth, the core encoder can compress the LF part with most of the 

available bits to achieve high coding efficiency. 

As depicted in Figure 4.1, in addition to the analysis/synthesis filterbank, the SBR 

decoding has three major procedures. In the HF generator, the low bands split from the 

decoded LF signal are first transposed to HF. Subsequently, to control tonality, the inverse 

filtering is applied to the regenerated high bands to clip the undesired sinusoidal components 

from low bands. The inverse filtering is performed by in-band filtering using an adaptive 

spectral whitening filter. The second-order covariance method is employed to evaluate the 
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whitening filters on low bands. Furthermore, a chirp factor given from the bitstream is used to 

control the amount of inverse filtering by moving the two zeros of the LP filter toward the 

origin. The regenerated high band xk(n) for QMF subband k and time slot n is defined as: 

)2()2()1()1()()( 2 −⋅⋅−−⋅⋅−= nxcanxcanxnx lkllkllk , (62) 

where al(1) and al(2) are the predictive coefficients estimated on the low band xl(n), and ck is 

the chirp factor whose range is between 0 and 0.98. In the envelope adjuster, the envelope of 

the regenerated high bands is scaled according to the transmitted envelope information that is 

represented by the average energies in time-frequency (T-F) grids (explained below). 

Subsequently, additional tones and random noise are compensated to adjust the tonality of the 

reconstructed high bands. Finally, all low and high bands are synthesized to generate a 

full-bandwidth decoded signal. 

Figure 4.2 illustrates the reconstruction procedures of SBR in HE-AAC decoder. In the 

HF generator, the low QMF bands analyzed from the decoded LF AAC signal are replicated 

to HF and further inversely filtered (see Figure 4.2 (c)). In Figure 4.2 (d), the envelope of the 

replicated bands is adjusted; moreover, the compensation of tone and noise is applied to 

adjust the tonality of the reconstructed signal. 

 

Figure 4.1. The block diagram of the SBR decoder. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.2. HF reconstruction process of SBR: (a) original spectrum; (b) decoded AAC LF 
spectrum; (c) HF generation by SBR; (d) HF adjustment by SBR. 

The T-F grid for recording energy data (see Figure 4.3) is formed through the “time 

borders” and the frequency band borders that are indicated in “high/low resolution frequency 

band tables” [5]. The T-F grid determines the resolutions of data record units in the time and 

frequency dimensions. In the same way, the “noise-floor frequency table” and “limiter 

frequency table” are used to define the frequency resolution for noise compensation and 
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scaling-gain limitation, respectively. All the tables are constructed from the “master frequency 

band table” that can vary with spectral contents. The decision of T-F grid is one of the most 

critical design issues of the SBR encoder [61]. More details about the SBR algorithm can be 

found in [5]-[9]. 

 

Figure 4.3. An instance of the T-F grid in SBR [7]. 

4.2. Tone Trembling Artifact 

SBR aims to reconstruct high bands by replicating low bands. The “patching algorithm” 

[5] defined in the SBR syntax determines the correspondent relation between replicated low 

bands and original high bands. The patching algorithm has three constituting factors, namely 

the master frequency band table and the start as well as the stop boundaries of the SBR range. 

SBR permits to vary frequency band tables to adapt the frequency resolution of encoding 

according to spectral envelopes. Furthermore, depending on the encoding difficulty of the LF 

part, the SBR range is variable to adapt different conditions. However, a flexible design of 

SBR through switching tables or adjusting the SBR range to control the overall quality 

generates time-varying LF replication sources and thus leads to spectral discontinuities in 
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regenerated subbans. As illustrated in Figure 4.4, at the present frame, the 8th low band is 

replicated to the high band according to the patching algorithm, while the replicated source 

can be changed to the 10th low band at the next successive frame. 

For noise-like signals, the resultant discontinuity level of reconstructed spectra is in 

general small, and the human hearing is insensitive to the artifact. But, for tonal signals, the 

human hearing is very sensitive to the artifact. To highlight this problem, Figure 4.5 provides 

an artificial example with frequently varying tables. The “billow-like” spectrogram originates 

from the replicated LF tones. This artifact sounds “trembling” and hence is named the “tone 

trembling” artifact. To analytically model the artifact, each specific replicated LF tone can be 

represented as  

( )( )θω +⋅= nninAns )(exp)()( , (63) 

where A(n) denotes the amplitude which will be scaled by energy adjustment; �(n) denotes 

the frequency; and � denotes the phase. When the patching relation alters, �(n) also changes 

with the frequency location. Hence, the replicated tone can be regarded as a frequency 

modulated signal, making the trembling artifact easy to visualize. 

 

Figure 4.4. Patching source change for low band replication. 
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(a)                                    (b) 

Figure 4.5. Tone trembling effect in spectrogram, where the vertical coordination is the 
frequency range from 0 to 22 kHz and the horizontal coordination is the time with frames: (a) 
normal spectrogram; (b) abnormal spectrogram. 

4.3. Tone Shift Artifact 

A tone-rich signal, e.g. flute sound, has a dense harmonic structure with regularly 

distributed tone series (see Figure 4.6 (a)). Tone-rich signals produce an apparent 

phenomenon in SBR called the “tone shift” artifact. As illustrated in Figure 4.6 (b), the direct 

replication of low bands leads to the obvious offsets between the recreated tones and the 

original ones. Exact matching of tones is almost impossible under direct replication. 

SBR provides two mechanisms to correct spectral structures of replicated low bands. The 

first is the inverse filtering for eliminating undesired tones in replicated low bands. After that, 

the second mechanism allows to add sinusoids at the centers of the “high resolution frequency 

bands”. Using the two mechanisms still cannot avoid the tone shift artifact owing to the 

limited locations of tone addition. Fortunately, it is not easy to perceive the slight offsets, 

which may be due to the lower perceptual resolution of the critical bands at the HF range. 
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(a) 

 

(b) 
Figure 4.6. Tone shift effect: (a) original signal spectrum; (b) comparison of the original (with 
complete noise floor) and decoded spectra. 

4.4. Noise Overflow and Tonal Spike 

SBR can be regarded as a synthesis method for HF bands based on LF bands. The 

synthesis brings some distortions between the original and the simulated HF bands. The 

“noise overflow” artifact is a common one in SBR due to the inaccuracy of tone number and 

tone energy in a T/F grid. The noise overflow artifact (see Figure 4.7) produces a rasping 

sound and significantly degrades the perceived quality. Tonal signals, such as the 

glockenspiel signal in Figure 4.7 (b), are very susceptible to this artifact. The accuracy of 

tonality measure is crucial to this artifact because underestimating tonal energy and/or 

overestimating noise energy directly leads to the noise overflow. However, since the SBR 

syntax restricts the frequency location and number of compensated tones, the noise overflow 

artifact is still unavoidable even with an accurate tonality measure. 

Another reason of the noise overflow artifact is on the choice of the two envelope 

adjustment modes, “interpolation” and “non-interpolation” [5]. Figure 4.8 illustrates the two 

adjustment modes, where the energies of the original HF bands and those of the 
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corresponding replicated LF bands in a T/F grid are shown in Figure 4.8 (a) and (b) 

respectively, and the dashed line means the average energy of the original HF bands in the 

grid. In the interpolation mode, the energy of each subband in a T-F grid is adjusted to fit the 

average energy of the original high bands as depicted in Figure 4.8 (c). In contrast, in the 

non-interpolation mode, not adjusted individually, all the replicated bands in a T/F grid are 

adjusted up or down to fit the average energy as depicted in Figure 4.8 (d). By comparing the 

resultant envelops in the two modes (see Figure 4.8 (c), (d)), we can observe that the 

interpolation mode generates a flat envelop in a grid, whereas the non-interpolation mode 

maintains the original envelop shape of the replicated low bands. 

 

(a) 

 

(b) 

Figure 4.7. Noise overflow due to tone loss: (a) noise overflow due to the tone losing; (b) the 
spectrogram of glockenspiel with noise overflow (top: the original, down: the compressed). 
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(a)                       (b) 

      

(c)                       (d) 
Figure 4.8. Envelope adjustment at interpolation and non-interpolation modes: (a) energies of 
the original HF bands in a grid; (b) energies of the replicated LF bands in a grid; (c) adjusted 
energies of the replicated LF bands at interpolation mode; (d) adjusted energies of the 
replicated LF bands at non-interpolation mode. 

In the interpolation mode, the inherent characteristic of flat envelop cannot fit well sharp 

envelopes of tonal bands. Hence, the interpolation mode needs to be considered carefully for 

tonal signals due to the noise overflow effect. In Figure 4.9, the original signal contains one 

tone in the indicated passband. Although a tone is replicated from LF, it is overwhelmed by 

the amplified noise in the interpolation mode. Compensating the last two tones avoids the 

artifact because the tonality is maintained by the tone addition mechanism. Figure 4.10 

provides a counterpart without tone compensation, which reveals the immunity of the 

mechanism to the noise overflow artifact in the interpolation mode. Figure 4.11 compares the 

adjusted spectra in the two modes, where a serious noise overflow artifact occurs in the 

interpolation mode, whereas the envelop structure of the replicated low bands is maintained in 

the non-interpolation mode.  
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Oppositely, compensating excessive tones or insufficient noises makes a noise floor 

underflow and leads to the “tonal spike” artifact (see Figure 4.12) which produces a 

“metallic” sound. 

 

Figure 4.9. Noise overflow with tone compensation in interpolation mode.  

 

Figure 4.10. Noise overflow without tone compensation in interpolation mode. 

 

Figure 4.11. Noise overflow in interpolation and non-interpolation modes. 

 

Figure 4.12. Tonal spike artifact. 
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4.5.Sawtooth Artifact 

SBR decoder provides the “limited gain” mechanism [5] for avoiding excessive noise 

substitution which leads to serious noise overflow artifacts. The “limited gain” value �g is 

evaluated as (64) for a limiter grid defined by the limiter frequency band table and time 

borders, 

κ⋅=Φ L
g

H
gg EE , (64) 

where H
gE  and L

gE  are the energies of the original HF and the replicated LF bands covered 

within the gth limiter grid; � can be chosen as 0.70795, 1, 1.41254 or 1010 (� = 1010 , i.e. the 

limited gain mechanism is turned off). The limited gain restricts adaptively the upper bound 

of the maximum gain value for envelope adjustment so as to limit the degree of revision on 

the replicated low bands. The noise overflow artifact generally arises from a relatively larger 

scaling gain compared to other gains in a limiter grid. Therefore, restricting the upper bound 

can restrain the noise overflow artifact. 

However, this protection mechanism brings about another artifact, named the “sawtooth” 

artifact (see Figure 4.13 (b)). In Figure 4.13 (a), the original spectrum has a steep slope in the 

LF part and a flat slope in the HF part. To flat the steep slop for the HF part, some scaling 

gains must be much larger than others. The limited gain restrains the larger scaling gains and 

hence destroys the slop adjustment in the reconstructed spectrum. 
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(a) 

 
(b) 

 
(c) 

Figure 4.13. Illustration of sawtooth artifact: (a) original audio signal spectrum; (b) decoded 
spectrum with sawtooth effect due to the limited gain mechanism; (c) decoded spectrum 
without sawtooth effect by turning off the limited gain mechanism. 

4.6. Beat Artifact 

When two tones are close to each other in frequency, their mutual interference generates 

amplitude fluctuation at a regular rate. The fluctuation in amplitude is known in the audio 

industry as the “beat” phenomenon [51]. For instance, when two equal-amplitude sine waves 

occur simultaneously, the resultant signal can be expressed as  

)sin()cos(2)sin()sin()( 2221
φφ ωωφωω ++⋅∆=++= tttttx , (65) 

where �� = (�2 �1) / 2, and ω = (�2 �1) / 2. Once the frequencies of the two sine waves 

are close, i.e. �� is small, a special period is generated because the very low frequency cosine 

curve shapes the sine wave of a higher frequency. SBR has risks to generate the beats artifact 
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because the tones patched from low bands or the compensated ones have inaccurate positions. 

For example, as shown in Figure 4.14 (c), after band replication (also see Figure 4.15), one 

replicated tone is closed to another tone in the low band. Figure 4.14 (d) shows that the cosine 

envelope is imposed on the signal waveform. In perception, the fluctuation can be perceived 

obviously. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
Figure 4.14. Beat artifact: (a) original spectrum containing two tones with large distance; (b) 
time-domain waveform for (a); (c) decoded spectrum containing two tones with small 
distance; (d) time-domain waveform for (c). 
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Figure 4.15. Explication of the beat artifact in Figure 4.14: (a) original spectrum; (b) decoded 
AAC LF spectrum; (c) HF generation by SBR; (d) HF adjustment by SBR. 

4.7. Linear Predictive Bias on CEMFB Subbands 

Rather than the cosine modulated filterbank (CMFB) commonly employed in audio 

coding, SBR utilizes the comparatively high-complexity complex-exponential modulated 

filterbank (CEMFB) [8] to eliminate main alias terms and thus avoid the alias artifact 

introduced from spectral adjustment or equalization. In this section, however, we demonstrate 

that when applied to the CEMFB subbands, the conventional LP method defined in the SBR 

standard has natively the predictive bias which affects the whitening effect and the 

noise-to-signal ratio (NSR) measure. We demonstrate the predictive bias through the 

first-order and second-order autoregressive (AR) modeling on analytic signals together with 

the empirical verification on the CEMFB subbands. Subsequently, the new filter, named the 

decimation-whitening filter, is proposed to remove the bias for the SBR algorithm. 

4.7.1. CEMFB Subbands and Analytic Signals 

The discrete-time analytic signal x+(n) corresponding to a real signal x(n) [52] is defined 

as ,)(ˆ)(  nxjnx + where )(ˆ nx denotes the discrete-time Hilbert transform of x(n): 

�
∞

≠−∞=

−⋅⋅=
0,

2

)(
)2/(sin2

)(ˆ
kk

knx
k

k
nx

π
π

. (66) 

In the frequency domain, the relation between the original and analytic signals is given by 
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Similarly, the analytic signal x−(n) containing merely the negative spectrum can be defined as 

)(ˆ)( nxjnx − . For convenience, we call x+(n) and x−(n) the positive and negative analytic 

signals, respectively. 

The analysis and synthesis filters of the 64-channel CEMFB system used in SBR are 

defined by 

�
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�

� −+⋅== )2/)(12(
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exp)()()( Nnk
M
j

npnfnh kk

π
, (68) 

for k = 0,…, M − 1, where M is the number of channels, and N is the order of the prototype 

filter p(n). Compared with the CMFB, the CEMFB adds an imaginary part that consists of 

sine modulated versions of the same prototype filter, which can be interpreted as the Hilbert 

transforms of the real part. Accordingly, the resultant subbands decimated by M can be 

approximately regarded as the analytic signals of the real output obtained from the CMFB [8]. 

Moreover, the CEMFB subbands alternately consist of positive and negative analysis signals. 

In the absence of either the positive or negative side band, the excitation noise for each 

CEMFB subband can be also regarded as the analytic signal that has flat power spectrum 

density (PSD) in the other side band; but it is no longer white. Nevertheless, the whiteness of 

the noise is a desirable property for confirming the asymptotically unbiased LP estimation of 

spectral peaks [53]. This property implies that the absence of one side band leads to the 

predictive bias that is demonstrated in Section 4.7.2. 

4.7.2. Linear Predictive Bias on Analytic Signals 

This subsection demonstrates and quantifies the predictive bias on analytic signals 

through the first-order and second-order LPs. We first analyze the bias through the theoretical 

derivation on ideal analytic signals. Next, we confirm through the empirical verification the 

bias on the CEMFB subbands which are generated by the modulated non-ideal prototype filter. 
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The affection of the bias in SBR will be discussed in Section 4.7.3. Our derivation and 

illustration are given according to the positive analytic signal model, and the same result can 

be extended to the negative analytic signal model. 

4.7.2.1 First-Order LP on Analytic Signals of First-Order AR Model 

  Consider the analytic signal modeled by the AR model with single pole 0
0

θjer  in the 

frequency domain: 

ωθ
ωω

jj eer
E

X −+ −
=

0
01

)(
)( , (69) 

where the PSD of the excitation signal E(�) is assumed to be 1 for 0 < � < � and 0 for � < � 

< 2�, and the pole locates inside the upper half of the unit circle. The mean-square error 

function of the first-order predictive filter rei�z−1 on the single-pole analytic signal is 

expressed as 
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The minimum mean-square error (MMSE) predictive filter can be obtained through solving 

the two equations: �F/�� = 0 and �F/�r = 0. Thus, in polar coordinates, the conditions of the 

zero position )
~

,~( θr  of the MMSE filter can be derived as  
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(72) 

As shown in Appendix C.1, the angle of the zero of the MMSE predictive filter is solved as 

�


�
�
�

�+=
C
S

arctan
~

0θθ , (73) 

and the radius of the zero of the MMSE predictive filter is derived as 
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where S,C, and K are defined as follows: 
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where              
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4.7.2.2 General case of r0 > 0 

Equation (73) shows an angle bias, arctan(S/C), between θ~  and �0, which is non-zero 

except the case of �0 = �/2. Moreover, it can be shown that A(�0)�A(�/2) < 0 except �0 = �/2. 

By Root Location Theorem, the root of (71) locates within the open interval between �0 and 

�/2. Therefore, in general, the angle of the zero of the MMSE filter is biased from �0 toward 

�/2 and cannot match the pole 0
0

θier of the AR model. Figure 4.16 illustrates that the angle bias 

with r0 = 1/2 increases as �0 is far away from �/2. By substituting �0 = �/2 into (75)-(77) and 

using the trigonometric property arctan(–�) = –arctan(�) and arctan(1/�) = �/2 – arctan(�) for 

� > 0, it can be derived that 
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Although � is fitted to �0 = �/2, there exists a bias between r and r0 in (79). Figure 4.17 

depicts the radius curve corresponding to �0 = �/2 together with those corresponding to �0 = 

�/4 and 0. The curves show that the radius bias increases as the pole of the predicted spectrum 

moves away the unit circle. This trend implies that the prediction on noise-like signals should 

have a larger radius bias than that on tonal signals. 

 

 

Figure 4.16. The angle biases for different �0 values with 0r = 1/2. 

 

Figure 4.17. The radius of the zero of the MMSE predictive filter on single-pole analytic 
signals with different �0. 



 

 61

4.7.2.3 Flat-spectral case of r0 = 0 

The analytic signal corresponding to a real white-spectral signal, such as impulse and 

white noise signals, can be modeled by (69) with r0 = 0. Substituting r0 = 0 into (71) yields 

cos(� − �) = cos(�); thus θ~  should be �/2 or 3�/2. Similarly, with r0 = 0, solving (72) leads 

to r~  = 2sin(�)/�. Since r~  is nonnegative, the zero of the MMSE filter on the analytic 

signal positions at )
~

,~( θr = (2/�, �/2), instead of the origin. Furthermore, the MMSE is F(2/�, 

�/2) = � − 4/�, and the estimated NSR is (� − 4/�)/� 	 0.594 which is much lower than the 

excepted value 1. Figure 4.18 illustrates the first-order whitening processing on the analytic 

signals. In the absence of negative bands, all the whitened analytic signals have additional 

spectral hollows in positive bands. 

 

Figure 4.18.Whitening processing on analytic signals of first-order AR model by first-order 
LP. (a) flat-spectral analytic signal, (b)-(d) single-pole analytic signals with (r, �) = (0.5, �/4), 
(0.7, �/2) and (0.9, �/2). The zero location (r, �) of first-order whitening filter in (a)-(d) are 
(0.6369, �/2), (0.7720, 0.3363�), (0.8594, �/2) and (0.9510, �/2), respectively. (Solid line: the 
original signals, dashed line: the whitened signals; these simulations are implemented via 
2048-point DFT.) For ensuring the orthogonality of the real and imaginary parts of the 
analytic signals simulated by DFT, the frequency response of the excitation signal at � = 0 
and � is 1/2, not 1. 
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4.7.2.4 Second-Order LP on Flat-Spectral Analytic Signals 

The mean-square error function F(r1 , r2, �1 , �2) of the second-order LP filter on the 

analytic signal corresponding to white-spectral signals is expressed as 

�
−− −−

π
ωθωθ ω

0

2

21 )1)(1( 21 deereer jjjj , (80) 

where the PSD of the analytic signal is assumed to be 1 for 0 < � < � and 0 for –� < � < 0 . 

As shown in Appendix C.2, the radiuses and angles of zeros of the MMSE filter are given by 
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Also, the MMSE is �(�2 − 8)/(�2 − 4) 	 0.3185�; the estimated NSR is about 0.317, which is 

lower than that evaluated by the first-order LP. Figure 4.19 shows the resultant spectral 

hollows on the flat-spectral analytic signal by the second-order LP.  

 
Figure 4.19. Whitening processing on the flat-spectral analytic signal by second-order LP. The 
estimated NSR value is 0.3181, and the two zeros position at (r, �) = (0.8257, 0.2247�) and 
(0.8257, 0.7753�). (Solid line: original signals, dashed line: whitened signals; the simulation 
is implemented via 2048-point DFT and covariance method.) 
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4.7.2.5 Empirical Verification for SBR 

 The empirical example is conducted in Figure 4.20 for first-order and second-order LP 

by the covariance method. In the example, the original signal is a 32-point CEMFB subband 

signal of an impulse. The power spectrum of the input signal approximates the PSD of the 

white-spectral subband signal filtered by one modulated prototype filter and decimated by M. 

As can be seen, the spectral hollows are shaped on the whitened signals in the frequency 

domain.  For the first-order case in Figure 4.20 (a), the radius and angle of the zero of the LP 

filter are 0.5676 and �/2, and the estimated NSR value is 0.6778.  For the zeros of 

second-order LP filter in Figure 4.20 (b), their common radius is 0.6891 and their angles are 

0.2078� and 0.7922�; the estimated NSR value is 0.5249. Hence, in SBR, the estimated NSR 

for the white-spectral or noise-like signals will be underestimated by about 30 and 50 percent 

for the first-order and second-order LP, respectively. Through the above analysis on the ideal 

analytic signal model, we can also expect that the predictive bias becomes significant as the 

NSR of the predicted spectrum increases. This result is different from the intuition that the 

inverse filter should keep or slightly shape the spectrum of noise-like signals. 

 

(a) 

 

(b) 
Figure 4.20. Whitening processing on a 32-point CEMFB subband signal of an impulse. (a) 
First-order LP (b) Second-order LP (Solid line depicts original signals; dashed line depicts 
whitened signals.) 
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4.7.3. Decimation-Whitening Filter  

As shown above, the non-whiteness of the excitation noise components in analytic 

signals leads to the predictive bias. To remove the non-whiteness, the decimation by two 

should be included before applying the LP to the CEMFB subbands in SBR. The new 

approach has benefits in terms of the frequency resolution, NSR measure, analytic signal 

property maintaining, and computational complexity. 

4.7.3.1 The Decimation-Whitening Filter for SBR 

 The relation between the original analytic signal and the signal decimated by two is 

expressed in the frequency domain as 

)()2( 2
1 ωω XX d = , (83) 

for either 0 < � < � or –� < � < 0, where X and Xd denote the Fourier transforms of the 

analytic and the decimated signals, respectively, and the range of � depends on the absent 

side band of the analytic signal. Applying the second-order LP to the decimated signal can 

obtain two LP coefficients a1 and a2, and then the estimated PSD of the analytic signal is 

given as 
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for either 0 < � < � or –� < � < 0, where 2
eσ  denotes the variance of the residuals. 

Consequently, for the analytic signal, the fourth-order LP filter derived from the second-order 

LP filter of the decimated signal can be given in the z-transform domain as  

4
2

2
11)( −− −−= zazazH . (85) 

The design of the decimation LP filter is not new in AR modeling or maximum-entropy 

spectral estimation. In the literature, there have been researches of the advantages of the 

complex decimation LP filter over the real LP filter on the improvement of the sinusoidal 
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phase issues or neighboring frequency resolution. Especially, the expanding of the frequency 

scale by two can reduce the interference at one spectral peak caused by other neighboring 

frequency components, and hence a higher resolution of LP estimation can be achieved [58]. 

The decimation filter has been suggested [54]-[58]. However, these alternative complex filters 

require computational overhead when compared with the real ones in these scenarios. In SBR, 

the decimation-whitening filter not only has the advantages but also saves half the 

computational complexity to evaluate LP coefficients thanks to the data reduction from 

decimation.  

4.7.3.2 Examples and Comparisons 

According to the standard [5], the LP in SBR should be implemented via the 

second-order covariance method covering 32 samples for each CEMFB subband per audio 

frame. Figure 4.21 compares the original whitening method in SBR with the proposed method. 

In each subfigure, the 32-point DFT magnitude spectrums of the original CEMFB subband 

and the whitened ones by the original and the proposed methods are depicted in the decibel 

(dB) domain. As can be seen in Figure 4.21 (a) where the subband is generated from a real 

white noise, the proposed method slightly alters the original spectrum, while the original 

method not only alters the positive spectrum but also amplifies the negative spectrum. The 

evaluated NSR values in this case are 0.38 and 0.93, respectively, by the original and the 

proposed methods; the original method gives the poor NSR estimation. For the second 

instance illustrated in Figure 4.21 (b) where the subband contains a very strong sinusoid 

component, both methods have good whitening effect, but the proposed method results in a 

flatter whitened spectrum. In Figure 4.21 (c) where the original subband has three sinusoid 

components located in the frequency interval between 0 and 3�/2, the original method slightly 

attenuates the largest one but amplifies the others. This phenomenon illustrates the 

interference among the components. In contrast, the proposed method destroys the largest one  
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(a) 

 
(b) 

 
(c) 

Figure 4.21. Whitening comparison for the original method and the proposed method. The 
magnitude spectra are evaluated through 32-point DFT; thin line depicts the original signals, 
thick line depicts the whitened signals by the proposed method, and dashed line depicts the 
whitened signals by the original method. 
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(a) 

 

(b) 

 
(c) 

Figure 4.22. Whitening comparison for the original method and the proposed method. (a) The 
original DFT magnitude spectrum. (b) The decoded DFT magnitude spectrum with the 
original whitening filter. (c) The decoded DFT magnitude spectrum with the decimation- 
whitening filter. The spectra are depicted in dB domain. For both the filters, the chirp factor 
takes 1. Also, no additional noise is added, and the audio sampling rate is 44.1 kHz.  

without amplifying the others thanks to the frequency scaling. Figure 4.22 illustrates another 

instance for the better whitening result of the proposed filter on the tonal-rich signal. In Figure 

4.22 (b) and (c), the LF decoded AAC signal is filtered by the original filter and the proposed 
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filter respectively. Both chirp factor values for the filters are equal to 1, and no additional 

noise is added. From the HF spectra, we can see that the original filter cannot “whiten” the 

tonal structure, while the decimation-whitening filter does better. 

Another noticeable feature is that the proposed method keeps better the energy than the 

original method. In the SBR encoder, the energy of HF is calculated and recorded based on 

the HF CEMFB subbands which have the good analytic-signal property. Subsequently, the 

SBR decoder adjusts the energy of the whitened LF subbands to fit the recorded HF energy. 

However, as noticed in the previous discussion, the original filter has more energy leakage 

due to the amplification in the negative side band. After filtered by the synthesis filterbank, 

these negative components will be filtered out and lead to an energy loss because these 

energies in the negative side bands have contributed to the energy estimation. The proposed 

filter has better control due to the less leakage from the negative frequency range. Figure 4.23 

illustrates the better envelope by comparing the spectra of the two methods, where the chirp 

factors take 0.98 for all replicated subbands and no additional noise is added for HF. The 

original signal consists of the white noise and a single tone in LF.  

 

Figure 4.23. The energy loss effect of the original whitening method. The depicted spectra are 
the decoded spectra with the original method (the upper) and the proposed method (the below) 
respectively. For both the filters, the chirp factor takes 0.98. Also, no additional noise is added, 
and the audio sampling rate is 44.1 kHz. The HF envelope of the decoded spectrum with the 
proposed method fits −36dB, while that with the original method is under −36dB. 



 

 69

4.8. Concluding Remarks 

In this chapter, we explored six new types of artifact in SBR which are very different 

from those in conventional frequency domain coders. The “tone trembling”, “tone shift” and 

“beat” artifacts are mainly due to the duplication of spectral bands. Tonality control and 

interpolation mode are the main keys of handling the “noise overflow” and “tone spike” 

artifacts. The limited gain mechanism in SBR decode causes the “sawtooth” artifact. On the 

other hand, we also demonstrated the predictive bias of the second-order linear prediction in 

SBR. The predictive bias is due to the analytic property of the CEMFB in SBR. A 

decimation-whitening filter has been proposed to remove the bias. 
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CHAPTER 5  
ARTIFACTS IN  
PARAMETRIC STEREO CODING 

The parametric stereo (PS) coding [10] has been unitized in the MPEG-4 audio 

parametric coding scheme for compressing high-quality stereo audio at the bit rates around 

24−32 kbps. PS attempts to reconstruct a binaural signal from a monaural down-mix signal 

according to the parameters extracted by capturing the stereo sound image of an original 

binaural signal. In the down-mixing procedure, the loss of stereo sound images and the 

variability of mixing coefficients bring two obvious artifacts referred to as the “tone leakage” 

and the “tone modulation” artifacts. 

5.1. Parametric Stereo Coding Overview 

The PS coding utilizes four critical spatial cues, including inter-channel intensity 

difference (IID), intensity coherence (ICC), intensity phase difference (IPD) and overall phase 

differences (OPD) [16], to characterize lateralization and width of audio objects. As 

illustrated in Figure 5.1, through the auxiliary of these spatial cues, referred to as the stereo 

parameters, PS can merely encode a monaural signal down-mixed from an original binaural 

signal and reconstruct the space perception through the up-mixing processing. Consequently, 

most bits are saved thanks to the channel reduction. Figure 5.2 depicts the block diagram of 

PS in MPEG-4 HE-AAC V.2 encoder. Both the stereo parameter extraction and the 

down-mixing process in PS are performed on the complex-valued QMF bands that are 

analyzed by the 64-band analysis CEMFB and are further split through a hybrid analysis 

filterbank to increase the frequency resolution in the LF part. The LF and HF parts of the 

down-mix monaural signal are encoded by AAC and SBR, respectively. 
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Figure 5.1. Illustration of the down-mixing monaural signal and the up-mixing binaural 
signal. 

 

Figure 5.2. Diagram of PS in MPEG-4 HE-AAC version 2 encoder. 

 
(a) 

 

(b) 
Figure 5.3. Signal vanishing effect of the average method: (a) original binaural signal; (b) 
extracted monaural signal by the average method. 
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(a) 

 

(b) 

 
(c) 

Figure 5.4. The advantage of energy conservation of the KLT method: (a) original binaural 
signal; (b) extracted monaural signal by the average method; (c) extracted monaural signal by 
the KLT method. 

In the literature, the average and the KLT (Karhunen-Loève Transform) based methods 

are the most common down-mixing methods. Among the existing methods, the average 

method is the simplest down-mixing approach by averaging a binaural signal (i.e. M = 

(L+R)/2, for a stereo signal L and R). As shown in Figure 5.3, the average method may result 

in serious signal vanishing due to phase cancellation. Even though the original left and right 

channels have similar temporal envelopes, their phase difference can cause waveform 

cancellation. Many recent researches have focused on other advanced methods, especially 

those based on the KLT, also known as the PCA (Principal Component Analysis) [17], 

[59]-[61]. In general, the down-mix kth subband signal mk(n) is expressed as 

)()()( 21 nrnlnm kkkkk ⋅+⋅= λλ , (86) 
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where 1
kλ  and 2

kλ  are the (complex-valued) combination coefficients; )(nlk  and )(nrk  

are the kth subbands of the left and right channels. The typical KLT-based method substitutes 

the combination coefficients by the orthonormal eigenvector corresponding to the largest 

eigenvalue of the cross-correlation matrix of the stereo subband [62]. Figure 5.4 compares the 

resultant envelopes of the down-mix signals by the two methods to the original envelopes and 

exhibits the advantage of energy conservation of the KLT-based method. 

5.2. Artifacts in PS coding 

The crosstalk of stereo images after the down-mixing process smears the space cues. 

Further, varying mixing coefficients leads to more artifacts. For instance, to achieve energy 

compactness, the KLT-based method bears more risks than the simple average method. 

Discarding weak signal components and varying combination coefficients are the major 

causes of artifacts under the KLT-based method. 

5.2.1. Tone Leakage Artifact 

The “tone leakage” artifact can be classified into two types. Type-I tone leakage artifact 

means that one tone in some channel leaks to another channel after the up-mixing process. 

Any down-mixing method has risks to suffer such a kind of artifact. Type-II tone leakage 

artifact means that some tone vanishes in a decoded signal. In PS, both the KLT-based and 

average down-mixing methods are susceptible to the two kinds of tone leakage artifact. 

However, the KLT-based method incurs type-II tone leakage artifact more easily than the 

average method due to discarding weak components.  

Figure 5.5 illustrates the tone leakage artifacts under the average and KLT-based 

methods. In Figure 5.5 (a), the stereo signal has two tones in individual channels, which have 

slightly different frequencies and the magnitude difference of 12 dB. The down-mix signal 
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obtained by the average method retains the two tones that come from the distinct channels. In 

Figure 5.5 (b), the type-I tone leakage artifact occurs on the two tones. Although each channel 

maintains its own tone component, the additional tone is leaked to the other channel after the 

up-mixing process. On the other hand, to keep energy compactness, the KLT-based method 

trends to save the energy dominant channel. This implies that when two channels have a 

significant difference in energy, the weaker channel will be ignored and lose the spectral 

structure in the down-mix signal. As illustrated in Figure 5.5 (c), the decoded binaural signal 

keeps the stronger tone and suppresses the weaker one. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.5. The illustration and the comparison of the tone leakage effect under the average 
method and the KLT method: (a) linear-scaled spectrum of the original stereo signal; (b) 
linear-scaled spectrum of the reconstructed stereo signal by the average method; (c) 
linear-scaled spectrum of the reconstructed stereo signal by the KLT method. 
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To summarize, both the average and KLT-based methods have risks to generate the 

type-I and type-II tone leakage artifacts. Due to the inherent property that the components in a 

down-mix signal are regenerated into the up-mix binaural signal, any down-mixing method 

suffers the type-I tone leakage artifact. On the other hand, although the KLT-based method 

can keep the dominant tones, the weaker channel is usually ignored due to the biased 

combination ratio. The tradeoff between the spectral component conservation and energy 

compactness is a major design issue for the down-mixing strategy. 

5.2.2. Binaural Beat Artifact 

Unlike the beat phenomenon where two tones with slightly different frequencies coexist 

in a channel, the “binaural beats” artifact [51] arises when two tones with slightly different 

frequencies occur in distinct channels. In this situation, listeners can hear a movement of 

sound image between their two ears, occurring at the rate that equals the frequency difference. 

In PS, the tone leakage artifact breaks down the binaural beats phenomenon. For instance, in 

Figure 5.6 (b), the type-I tone leakage artifact under the average down-mix method merges 

the tones in the distinct channels into the monaural signal, and hence the beat artifact is 

caused. This mergence makes the movement of sound image between ears disappear and 

generates an intensity fluctuation due to beats. The change from a binaural beat phenomenon 

to the beat artifact is called the “type-I binaural beat” artifact. In another case, as illustrated in 

Figure 5.6 (c), the type-II tone leakage artifact under the KLT-based method suppresses the 

weaker tone and makes the special space perception disappear. Such a phenomenon is called 

“type-II binaural beat” artifact. Figure 5.7 provides an example to show both type-I tone 

leakage and type-I binaural beat artifacts, where the original stereo signal has chirp sounds 

between 0 and 5 kHz increasingly and decreasingly in the left and right channels, respectively. 

In Figure 5.7 (b), the type-I tone leakage and the type-I binaural beat artifacts are introduced 

into the PS decoded signal; in Figure 5.7 (d), an obvious fluctuation occurs in the PS decoded 
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signal waveform due to the beat phenomenon. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.6. The degeneration of the binaural beat effect in PS coding: (a) original binaural 
signal with the binaural beat from the 200Hz and 201Hz tones; (b) binaural beat artifact in the 
decoded binaural signal by the average method; (c) elimination of the binaural beat in the 
decoded binaural signal by the KLT method. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.7. The type-I tone leakage and the type-I binaural beat artifacts in PS coding: (a) the 
original signal in spectrogram form; (b) the decoded signal with the two artifacts; (c) the 
waveform of (a); (d) the waveform of (b). In (a) and (b), the vertical coordination is the 
frequency range from 0 to 22 kHz and the horizontal coordination is the time with frames. 

5.2.3.Tone Modulation Artifact 

Although the KLT-based down-mixing method has the merit of optimal energy 

conservation, frame-by-frame varying coefficient vectors leads to connection discontinuities 

of down-mix spectra between adjacent frames and thus causes an artifact sounding like 

“click”. Figure 5.8 exhibits a series of reconstructed spectra under the KLT-based method. 

The phenomenon that the spectral shape of tone expands and contracts is called the “tone 
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modulation” artifact. To analytically explain the artifact, we consider the effect of combination 

coefficients through the linear combination form of a down-mix subband signal: 

( ) ( ) )()(exp)()()(exp)()( 2211 nrninnlninnd θλθλ +⋅= , (87) 

where 	k(n)exp(i�k(n)) for k = 1, 2 means the polar form of the combination coefficients, and 

l(n) and r(n) are the left and right subband signals. The multiplier 	k(n)exp(i�k(n)) in (87) is 

constant within a frame but may change abruptly at frame bounders. Let 

( )( )Θ+= niAns ωexp)(  be a sinusoid contained in the left channel and coupled into the 

down-mix subband signal. Then it is modulated in amplitude and phase as follows.   

( ) ( )( ))(exp)()(ˆ 11 nninAns θωλ +Θ+⋅= . (88) 

Therefore, a KLT-based down-mix signal can be regarded as a summation of two signals with 

mixed modulation in amplitude and phase and easily has the tone modulation artifact. 

Like the PSOLA (Pitch Synchronous Overlap Add) method [63] for waveform synthesis 

in speech processing, a reduction method for the tone modulation artifact is to smooth 

combination coefficients to avoid spectral discontinuities in a down-mix signal. Let 
i and 
i+1 

denote the combination coefficients of one subband in the ith and (i+1)th frames. To smoothly 

connect two constant values, the coefficients from time index 1 to k in the (i+1)th frame is 

interpolated as a cosine curve (see Figure 5.9):  

)()cos()( 12
1

12
1

++ ++⋅− iiii kn γγπγγ . (89) 

The reduction method can reduce the “click” noise caused by the tone modulation artifact 

[61].   
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(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)  

Figure 5.8. Example of tone modulation effect (the original spectrum has stable and fine 
tones). 
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Figure 5.9. Cosine smooth connection of coefficients between frames. 
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5.3.Concluding Remarks 

The cross-talk effect is an inherent artifact in the down-mix based audio coding. 

According to the average and KLT based approaches, we considered the “type-I tone leakage” 

and “type-II tone leakage” artifacts to indicate two different cross-talk phenomena. The two 

artifacts can break down the “binaural beat” effect into the “type-I binaural beat” and “type-II 

binaural beat” artifacts. We also concerned the spectral modulation effect due to varying 

down-mix coefficients and proposed a coefficient smooth scheme to reduce the “tone 

modulation” artifact. 
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CHAPTER 6  
CONCLUSION 

This dissertation has investigated the audible artifacts in the state-of-the-art perceptual 

audio codecs. We have modeled the audible artifacts through the time-frequency diagrams; 

considered the artifacts-susceptible music types; and analyzed the critical encoding 

technologies incurring these artifacts and summarized these artifacts in Table 6.1. We began 

from the two common artifacts in most perceptual audio codecs the “band-limited” and 

“birdie” artifacts. The characteristic of the two artifacts shown up in spectra are the spectral 

clipping and spectral valley which lead to the “muffled” audio and “fishy” sound, respectively. 

On the other hand, for handling the tradeoff between the parallelism and the numerical 

distortion of cosine modulated filterbanks, a fast algorithm for computing DCT-IV of 

composite lengths has been proposed. We next considered the TNS in AAC. The compact 

forms for the TNS fundamental were established through the AR modeling theory in DTTs. 

Based on the developed compact forms, we have revisited the well-known “time-domain 

aliasing” noise through the relationship between MDCT and DCT-IV. A reduction method 

combining TNS and window switch was proposed to reduce the time-domain aliasing noise in 

AAC. Furthermore, both the temporal Hilbert-envelope method used in the standard and the 

power-envelope method were compared. Subsequently, six new artifacts in SBR have been 

introduced. The “tone trembling” artifact originating from constant changes in replicated 

sources generates a “billow-like” spectrogram. The “tone shift” artifact that is a common 

artifact for tone-rich signal indicates the obvious offsets between the recreated and original 

tones. The “noise overflow” and the “tonal spike” phenomena, which originate from 

inaccurate tonality matching, generate annoying “rasping” and “metallic” sounds, respectively. 

The “sawtooth” artifact due to the limitation of the upper bound of scaling gain is brought 
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about by the protection mechanism “limiter gain” in SBR. Furthermore, because of the 

inaccurate position of the patched or compensated tone, the risk of the “beat” artifact needs to 

be concerned. On the other hand, we have demonstrated the predictive bias from the 

whitening filter in SBR. The bias increases the interference of the noise component to the 

sinusoid component in LP and leads to the spectral hollows in noise-like subbands. A novel 

filter, named the decimation-whitening filter, has been proposed for removal of the bias. The 

new filter provides advantages in terms of NSR measure, frequency resolution, energy 

leakage, and computational complexity for SBR. Finally, the loss of stereo image due to 

down-mixing has been considered for the PS coding. The “type-I tone leakage” artifact means 

that one tone in some channel leaks to another channel after up-mixing process. In contrast, 

the “type-II tone leakage” artifact means that the tone vanishes in the decoded signals. An 

example of the loss of space perception in PS is the degeneration of the “binaural beat” to the 

beat artifact, named “type-I binaural beat” artifact, or the disappearance of the “binaural beat”, 

named “type-II binaural beat” artifact. Table 6.1 lists these artifacts in terms of the perception, 

the generation source, the time/frequency feature, the music types, the typical tracks and the 

existing relief methods. 
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Table 6.1.  
Summary of Compression Artifacts 

 ARTIFACTS PERCEPTION GENERATION 
SOURCES 

TIME/ FREQ. 
FEATURES 

MUSIC TYPES TYPICAL 
TRACKS 

RELIEF 
METHODS 

Birdie  Fishy (1) Unsuitable bit 
allocation policies 

(2) Excessive masking 
energy estimation 

Zero bands Wideband signal with 
relative small spectral 
component  

velvet in Figure 
2.1 

Zero band dither 
[37][38]  
 

Band-Limited  Muffled (1) Sampling rate 
reduction 

(2) Bit rate constraint  

HF range HF-rich signal sc03 in  
Figure 2.2 

High frequency 
reconstruction 
[37][38] 

Pre-echo Annoying  (1) Transient signal 
(2) Inappropriate size of 

coding block 

Temporal 
precedence 
around attack 

Transient signal si02  (1) Window 
switch 

(2) TNS 
(3) Gain control 
(4) Bit reservoir 
(5) Pre-echo 

control  
Time-domain 
Aliasing  

Annoying (1) Time-domain aliasing 
of MDCT 

(2) Shaping of TNS filter 

Before or after 
the attack 

Transient signal si02 in Figure 
3.9 and Figure 
3.10 

A joint method by 
TNS and window 
switch [33] 

Aliasing Noise 
by High-Order 
TNS 

Annoying  High-order prediction 
filter in TNS 

Before or after  
the attack 

Transient signal si02 in Figure 
3.11 

 

Tone 
Trembling 

Trembling (1) Tone-rich signal in 
SBR 

(2) Adaptive frequency 
table and SBR range in 
SBR 

Discontinuous 
spectrogram 

Tonal signal si03 in Figure 
4.5 

Fixed table and 
Fixed SBR range 

Tone Shift Not Sensitive (1) Harmonic signal in 
SBR 

(2) Band replication in 
SBR 

Tones with 
frequency offset 
in SBR range 

Harmonic signal si03 in Figure 
4.6 

 

Noise Overflow Dull  (1) Tone losing in T/F grid 
in SBR 

(2) Envelope adjustment 
at interpolation mode 
in SBR 

Noise replacing 
for losing tones 

Tonal signal sm02 in Figure 
4.7 
and Figure 4.9 

Non-interpolation 
mode 

Tonal Spike Metallic (1) False alarm of tone 
detection in SBR 

(2) Overestimation of 
tonal component in 
SBR 

Tone replacing 
for noise 

Tonal signal sm02 in Figure 
4.12 

 

Sawtooth Depend on 
energy 

Limiter gain mechanism 
in SBR 

Sawtooth 
spectral 
envelope in 
SBR range 

Signal with slant 
spectral envelope 

sc01 in Figure 
4.13 

Limiter gain turns 
off 

Tone Leakage 
Type-1 

Blurred spatial 
position 

Down-mixing procedure 
in PS 

Any range Tonal binaural signal Artificial 
signal in Figure 
5.5 

 

Tone Leakage 
Type-2 

Blurred spatial 
position 

Down-mixing procedure 
by the KLT in PS  

Any range Tonal binaural signal Artificial 
signal in Figure 
5.5 

 

Tone 
Modulation 

Click Down-mixing procedure 
by the KLT in PS 

Any range Tonal binaural signal sc01 in Figure 
5.5 

Coefficient 
smooth 

Beat Intensity 
fluctuation 

Patch procedure in SBR LF range in 
SBR 

The two tones of slightly 
different frequencies in 
the same channel. 

Artificial 
signal in Figure 
4.14 

 

Binaural Beat 
Type-1 

Degeneration to 
beat effect 

(1) Binaural beat effect in 
original stereo signal 

(2) Tone Leakage Type-1 

LF range The two tones of slightly 
different frequencies in 
different channels.  

Artificial 
signal in Figure 
5.6(b) 

 

Binaural Beat  
Type-1I  

Space 
perception 
elimination 

(1) Binaural beat effect in 
original stereo signal 

(2) Tone Leakage Type-II 

LF range The two tones of slightly 
different frequencies in 
different channels. 

Artificial 
signal in Figure 
5.6 (c) 
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APPENDIX A  

COMPUTATIONAL COMPLEXITY AND FINE 

TURNING FOR FAST RADIX-Q AND 

MIXED-RADIX ALGORITHMS 

A.1. Computational Complexity of Fast Radix-q Algorithm   

For k = 0, 1,…, N/q − 1, the arithmetic costs for the radix-q SDCT-IV computation are 

listed as follows: 

(1) q(q − 1)/2 multiplications in (13) and (14). (2) q − 1 multiplications in (15). 

(3) (q − 1)2/2 additions in (13) and (14).   (4) q − 1 additions in (15). 

(5) q − 1 additions in (5) and (7). (6) q − 1 additions in (17). 

Totally, the numbers of multiplications and additions required by the radix-q algorithm 

for SDCT-IV computation of length N are  

MS-IV(N) = q � MS-IV(N/q) + (q − 1)(q + 2)/2�N/q, 
(A.1) 

AS-IV(N) = q � AS-IV(N/q) + (q − 1)(q + 5)/2�N/q. (A.2) 

For DCT-IV computation, additional N/q multiplications in (18) are required; hence, the 

numbers of multiplications and additions are respectively 

MIV(N) = MS-IV(N) + N/q, (A.3) 

AIV(N) = AS-IV(N). (A.4) 

A.2.  Radix-3 Algorithm 

As q = 3 and p = 1, one multiplication is saved for a trivial factor cos(�/3) = 0.5 in (13). 

Also, if N is odd and k* = (N/3-1)/2, it implies N
k,0Θ = �/6 and  
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( ) 0
2
30

2
1

**** kkkk
CSAY ++= , (A.5) 

( ) 0
2
30

2
1

****
3

2 kkkk
CSAY N ++−=

+
 , (A.6) 

***
3

2

0
1 kkk

ASY N −=
−−

. (A.7) 

Equations (A.5)-(A.7) require one multiplication and four additions; thus, three 

multiplications and two additions are saved. Hence, from (A.1) and (A.2), the nontrivial 

arithmetic costs required for SDCT-IV computation are 

MS-IV(N) = 3 � MS-IV(N/3) + 4N/3 3, N > 1, (A.8) 

AS-IV(N) = 3 � AS-IV(N/3) + 8N/3 2, N > 1, (A.9) 

where the initial values are MS-IV(1) = AS-IV(1) = 0. Hence, the corresponding DCT-IV 

multiplicative complexity is 

MIV(N) = MS-IV(N) + N/3+1, N > 1, (A.10) 

where the number of scaling multiplications is two for (A.5) and (A.7) instead of one. 

A.3.  Radix-5 Algorithm 

 As q=5, applying cos4�/5+1/2 = -cos2�/5 to (13) for p = 1 and 2 gives 

5
2100

2
11 cos)( π

kkkkk BBBAU −++−= , (A.11) 

5
2101

2
12 cos)( π

kkkkk BBBAU −+−= , (A.12) 

where ( )N
km

m
k

N
km

m
k

m
k SCB ,, sincos Θ+Θ=  for m = 0, 1. Equations (A.11) and (A.12) require 

one multiplication and five additions instead of four multiplications and four additions; thus, 

three multiplications are saved but one more addition is required. Hence, according to (A.1) 

and (A.2), the nontrivial arithmetic costs required for SDCT-IV are 

MS-IV(N) = 5 � MS-IV(N/5) + 11N/5, N > 1, (A.13) 

AS-IV(N) = 5 � AS-IV(N/5) + 21N/5, N > 1. (A.14) 

Thus, the corresponding DCT-IV multiplicative complexity is 
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MIV(N) = MS-IV(N) + N/5, N > 1, (A.15) 

where the scaling factor can be absorbed into m
kB as 

( )N
km

m
k

N
km

m
k

m
k SCB ,, sincos Θ⋅+Θ⋅=′ δδ . (A.16) 

For the initial case N = 5, using sin�/10 = cos2�/5 and cos�/10 = sin2�/5 in (14) gives 

5
221

05
21

05
2

5
0
0

0
0

1
0 sin)cot(sin)cot( ππππ SCSCV −−−= , (A.17) 

5
2

5
1
05

21
05

0
0

0
0

2
0 sinsin)]cot()cot[( ππππ SCSCV −−−= . (A.18) 

A.4.  Radix-9 Algorithm 

For q = 9, applying the relations cos�/9 = cos4�/9 + cos2�/9 and sin�/9 = sin4�/9 - 

sin2�/9 to (13) and (14) for each p gives 

)()( 32010
kkkkkk BBBBAU ++++= , (A.19) 

)()( 320
2
113

kkkkkk BBBBAU ++++−= , (A.20) 

9
430

9
201

2
12 cos)(cos)()( ππ

kkkkkkk BBBBBAU −−−+−= , (A.21) 

9
30

9
2201

2
14 cos)(cos)()( ππ

kkkkkkk BBBBBAU −+−−−= , (A.22) 

9
230

9
4201

2
11 cos)(cos)()( ππ

kkkkkkk BBBBBAU −+−++−= , (A.23) 

9
232

9
2011 sin)(sin)( ππ

kkkkkk EEEEEV ++++= , (A.24) 

9
432

9
22012 sin)(sin)( ππ

kkkkkk EEEEEV +−++= , (A.25) 

9
32

9
42014 sin)(sin)( ππ

kkkkkk EEEEEV +−++−= , (A.26) 

)( 320
2
33

kkkk EEEV +−= , (A.27) 

where we define  

N
km

m
k

N
km

m
k

m
k SCB ,, sincos Θ+Θ= , m = 0, 1, 2, 3, (A.28) 

N
km

m
k

N
km

m
k

m
k SCE ,, cossin Θ−Θ= , m = 0, 2, 3, (A.29) 

)sin( 3
111 π
kkk HE Λ⋅= , for k = 0, 1,…, N/9-1. (A.30) 
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Equations (A.19) -(A.27) can be computed efficiently as follows. The last terms in (A.23) and 

(A.26) can be obtained from the sum of the last term in (A.21) and (A.22), and in (A.24) and 

(A.25), respectively. Also, using algebraic identities ax+by = b(x+y) + (a-b)x and bx+cy = 

b(x+y) + (c-b)y, the pairs ax+by and bx+cy require three multiplications and three additions by 

sharing the common part b(x+y). Hence, equations (A.19)-(A.30) require only 20 

multiplications and 37 additions for each k. Furthermore, if N is odd, it implies that N
k,1Θ  = 

�/6 as k* = (N/9-1)/2 and m =1, and thus (A.28) and (A.30) can be computed by 

1
2
11

2
31

*** kkk
SCB += , (A.31) 

)2()( 11
4
11

2
3

2
11

**** kkkk
SSCE +−= , (A.32) 

which require only one multiplication and three additions. Hence, three multiplications are 

saved, but one addition is wasted. On the other hand, 16 additions used in (5), (7) and (17) 

should be counted. For the scaling operations of DCT-IV, it requires one more multiplication 

in the following way. 

1
2
11

2
31

*** kkk
SCB δδδ += , (A.33) 

)2()( 11
4
11

2
3

2
11

**** kkkk
SSCE δδδδ +−= . (A.34) 

In summary, the nontrivial arithmetic costs required for the SDCT-IV are  

MS-IV(N) = 9 � MS-IV(N/9) + 20N/9 , N > 9, (A.35) 

AS-IV(N) = 9 � AS-IV(N/9) + 53N/9 + 1, N > 9. (A.36) 

The initial cases are MS-IV(9) = 12 and  AS-IV(9) = 40 that are derived from the radix-3 

algorithm. Thus, the corresponding DCT-IV multiplicative complexity is 

MIV(N) = MS-IV(N) + N/9 , N > 9, (A.37) 

with MIV(9) = 16 that are derived from the radix-3 algorithm. 
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A.5. Radix-2 DCT-II/DCT-IV Algorithm 

Let the length N be even. The radix-2 DCT-II/DCT-IV algorithm is represented as 

�
�

�
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where matrices IN and JN  denote the identity and anti-identity matrices respectively, and 

diagonal matrix DN is defined by diag{(–1)n | n = 0, 1,…, N – 1}. The Givens rotation matrix 

GN  is defined by AN + BN, where diagonal matrix AN and anti-diagonal matrix BN are defined 

by an,n = cos(�(N – 1 – 2n)/4N) and bn,N – 1 – n = –sin(�(N – 1 – 2n)/4N), for n = 0, 1,…, N – 1. 

For a data vector x = [x0, x1,…, xN – 1]T, the two permutation matrices PN and RN are defined 

by PN x = [x0, xN – 1, x2, xN – 3, x4,…, xN – 4, x3, xN – 2, x1]T and RN x = [x0, x2, x4,…, xN – 2, –xN – 

1,…, –x5, –x3, –x1]T. The complexity functions for the radix-2 DCT-II/DCT-IV algorithm are 

given in the recursive form:  

MII(N) = MII(N/2) + MIV(N/2), (A.40) 

MIV(N) = 2�MII(N/2) + 3N/2, (A.41) 

AII(N) = AII(N/2) + AIV(N/2) + N, (A.42) 

AIV(N) = 2�AII(N/2) + 5N/2 – 2. (A.43) 

A.6. Computational Complexity Comparison for N = q × 2� 

Figure B.1 depicts the number of multiplications per input sample for the proposed 

mix-radix algorithm for computing DCT-IV of length N = q × 2	 and shows the efficiency of 

sequence lengths other than a power of two. On the other hand, the fast computation of 

DCT-II of length N = q × 2	 can be realized through the radix-2 [45] and radix-q [47] 
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algorithms. The associated arithmetical costs are  

MII(N) = 2�MII(N/2) + N/2,  N > q, (A.44) 

AII(N) = 2�AII(N/2) + 3N/2-1, N > q. (A.45) 

Table B.1 lists the arithmetic complexity reduction of DCT-II and DCT-IV when q = 3 and 9 

by comparing the proposed mixed-radix method and the DCT-II-based method. The result 

shows the introduction of the proposed radix-q algorithm for DCT-IV computation improves 

not only the computation of DCT-IV but also that of DCT-II for the two cases due to the more 

efficient computation of length-3 and length-9 DCTs-IV. 

 

Figure A. 1. Multiplicative cost of DCT-IV by the proposed method for N = q × 2� 

Table A. 1. Arithmetic Complexity Reduction 

q = 3 DCT-IV DCT-II q = 9 DCT-IV DCT-II 
N × + × + N × + × + 
12 2 0 1 0 18 0 0 1 2 
24 2 0 3 0 36 2 4 1 2 
48 6 0 5 0 72 2 4 3 6 
96 10 0 11 0 144 6 12 5 10 

192 22 0 21 0 288 10 20 11 22 
384 42 0 43 0 576 22 44 21 42 
768 86 0 85 0 1152 42 84 43 86 

1536 170 0 171 0 2304 86 172 85 170 
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APPENDIX B  

AUTOREGRESSIVE MODELING OF 

TEMPORAL/SPECTRAL ENVELOPES WITH 

FINITE-LENGTH DISCRETE TRIGONOMETRIC 

TRANSFORMS 

Autoregressive (AR) modeling [53], [64], also known as linear prediction (LP), has 

received more and more applications in audio coding. For example, SBR uses a second-order 

linear predictor for inverse filtering. MPEG-4 Audio Lossless Coding (ALS) [65] generates 

residuals with a smaller dynamic range via linear prediction. Also, some audio coding 

approaches are based on linear prediction performed on a warped frequency scale [66], [67]. 

In additional to the applying of the AR modeling in the time domain, due to the duality 

between the squared Hilbert envelope and the power spectrum [27], the AR modeling can be 

also applied to spectral sequences for temporal envelope estimation. In MPEG-2/4 AAC, the 

Temporal Noise Shaping (TNS) [27]-[30] is utilized as one of effective mechanisms for 

reducing the pre-echo noise that is a typical and critical artifact in audio coding. The TNS 

applies an open-loop linear prediction [31] across frequency lines prior to quantization in 

encoder to achieve the temporal envelope shaping on the quantization noise in decoder. 

Although the AR modeling is always preformed on windowed signals in practice, its 

theoretical derivation was given through the Fourier theory of infinite discrete-time sequences 

or continuous signals in the literatures, such as [53] and [64]. In [27]-[30], Herre and Johnston 

explained the concept of TNS through the duality between the squared Hilbert envelope and 

the power spectrum for continuous signals. Likewise, Kumaresan et al. [68]-[72] formulated 

the linear prediction in spectral domain equations for the AR modeling of temporal envelope 
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in the indirect ways. No exact derivation for finite sequences was developed until Athineos 

and Ellis [73] formulated via matrix operations the solution of the problem that finding an AR 

model of a discrete spectrum and relating it to the temporal envelope of the finite 

time-domain sequence. However, the derivation in [73] was limited in the scenario when the 

discrete spectrum is the odd type-I discrete cosine transform (DCT-I) coefficients. 

In Appendix B, we concern the temporal and spectral AR modeling of a finite sequence 

when one of the 16 members of the discrete trigonometric transform (DTT) is used in the 

temporal and spectral domains. Different from DCT-I, other DTTs have a 1/2-sample delay in 

the time domain and/or a 1/2-sample advance in the frequency domain. When considering a 

finite-length sequence as a discrete periodic signal obtained by sampling a continuous signal, 

we need to consider the aliasing effect in the dual domain. We systematically establish the AR 

modeling fundamentals for the DTTs by exploiting the relationship of the DTTs and the 

generalized discrete Fourier transforms (GDFTs) [76]. We address the AR problem with 

GDFTs by extending the well-known relationship between the autocorrelation and the power 

spectrum to the GDFT/Inverse GDFT domains. Then we define new finite-length analytical 

transformations based on GDFTs. Through the analytical transformations, we establish the AR 

modeling fundamentals for DTTs by relating the DTT spectra to the corresponding GDFT 

spectra with appropriate symmetric extension or zero padding operations. In addition to the 

temporal Hilbert envelope, we also concern the power envelope estimation for a real-valued 

sequence without introducing the Hilbert signal. The dual results can be derived with the 

consistent representation in the temporal and spectral domains, i.e., both are periodic and 

finite. Our formulation is expressed entirely in the discrete finite domain in matrix form. The 

compact expressions not only disclose that the AR modeling concept can hold in each DTT 

domain, not limited in DCT-I domain, but also can be used for more clearly examining the 

related methods based on AR modeling in DTTs. 
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B.1. Preliminaries 

To derive the AR modeling with the sixteen DTTs, we summarize the common terms 

and the existing theorems on the convolution-multiplication and periodicity properties for the 

GDFTs. The convolution-multiplication property sets the fundamental for modeling the 

temporal/spectral envelopes. The periodicity property is fundamental to discuss the effect of 

finite-length transforms when applying to periodic sequences. Then, the terms, transform 

formula, periodicity, and the relation with GDFTs are summarized for the sixteen DTTs. 

B.1.1. Notations 

Throughout Appendix B, we use calligraphic capital letters to denote matrices (e.g., A, G, 

T) and calligraphic lower case letters to denote column vectors (e.g., a, x, y). For vectors and 

matrices, both row and column indices used are zero based. To refer to the kth entry of x, the 

notations xk and (x)k are used. Some operation notations are described as follows. Superscripts 

(T), (H), and (*) denote the transpose, Hermitian transpose, and conjugate operations, 

respectively. The notation ( ) denotes the Hadamard product (i.e., the entry-wise product of 

two vectors or matrices); (|| ||) denotes 2-norm. In terms of linear algebra, we consider and 

represent a finite sequence x(n), for 10 nnn ≤≤ , as a column vector x of length (n1 − n0 + 1): 

Tnxnxnxnx )](),...,2(),1(),([ 1000 ++=x . 

B.1.2. Generalized Discrete Fourier Transform 

 The generalized DFT (GDFT) [77] of a finite sequence x(n), n = 0, 1, …, N − 1, is 

defined as  

�
−

=

++−=
1

0

}/))((2exp{)()(
N

n

Nbnakjnxky π , for k = 0, 1, …, N − 1. (B.1) 

Four special forms of the GDFT arise when a and b take on the values 0 or 1/2. They are 
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classified and named as follows [76]: (i) DFT (Discrete Fourier transform): a = 0 and b = 0; 

(ii) OTDFT (Odd-Time DFT): a = 0 and b = 1/2; (iii) OFDFT (Odd-Frequency DFT): a = 1/2 

and b = 0; (iv) O2DFT (Odd-Time Odd-Frequency DFT): a = 1/2 and b = 1/2. The last three 

transforms can be regarded as the modified version of the DFT with a 1/2-sample delay in the 

time domain and/or a 1/2-sample advance in the frequency domain. The GDFT matrix is 

defined by [Ga,b] k,n = exp{−j2�(k + a)(n + b)/N}, where the row and column indexes are k, n = 

0, 1,…, N − 1. Since the inverse GDFT (IGDFT) matrix is the scaled Hermitian transpose of 

the forward GDFT matrix, the IGDFT matrix is related to the forward matrix as  

*
,

1
,

11
, abN

H
baNba GGG ==− . (B.2) 

B.1.3. Generalized-Periodic Sequence, Periodic Convolution, and GDFT 

Considering the generalized-periodic sequence (GPS) by extending a finite sequence into 

an infinite sequence in either strictly periodic or anti-periodic way, Martucci summarized the 

four different periodic relationships for the four special GDFTs/IGDFTs in Table B.1. A 

sequence is said to be anti-periodic with period N if x(n) = −x(n + N) for all n. For a period-N 

GPS, we refer to the samples in the base period (for index n = 0, 1,…, N − 1)  as the 

representative samples or vector. 

The periodic convolution of two period-N GPSs, )(~ nx and )(~ ny , of the same type (i.e., 

both of them are either strictly periodic or anti-periodic) is defined as 

��
−

=

−

=

−=−=⊗
1

0

1

0

)(~)(~)(~)(~)(~)(~
N

k

N

k

kyknxknykxnynx . (B.3) 

The periodic convolution is also a GPS with the same periodic type and period. On the other 

hand, the circular and skew-circular convolutions of two vectors x and y are defined by (B.4) 

and (B.5), respectively. 
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(x c  y)n ��
−

+=
+−

=
− +=

1

10

N

nk
Nknk

n

k
knk yxyx , for n = 0, 1,…, N − 1. (B.4) 

(x s  y)n ��
−

+=
+−

=
− −=

1

10

N

nk
Nknk

n

k
knk yxyx , for n = 0, 1,…, N − 1. (B.5) 

The circular and skew-circular convolutions of two length-N sequences are, respectively, 

equivalent to the representative vectors of the periodic convolutions of the period-N strictly 

periodic and anti-periodic sequences extended from the finite sequences. 

Table B.1. Periodicity Properties of GDFTs and IGDFTs 

Periodicity Property 
before-after Transform 

GDFT 
with the relation 

IGDFT 
with the relation 

(Strictly Periodic, Strictly Periodic) 0,0G  (DFT) 1
0,0

−G
 

(IDFT) 

(Strictly Periodic, Anti-Periodic) 
2
1,0G

 
(OTDFT) 1

0,2
1
−G

 
(IOFDFT) 

(Ant-Periodic, Strictly Periodic) 0,2
1G

 
(OFDFT) 1

,0 2
1

−G
 

(IOTDFT) 

(Anti-Periodic, Anti-Periodic) 
2
1

2
1 ,G  (O2DFT) 1

, 2
1

2
1
−G  (IO2DFT) 

B.1.4. Convolution-Multiplication Property of GDFT 

The DFT has the convolution-multiplication property that the inverse transformation 

after entry-wise multiplication gives the same result as the circular convolution of the original 

sequences. Martucci [76] derived such properties for other GDFTs. We summarize the results 

in matrix/vector form as follows. Let u = x c  y and w = x s  y, then the following 

properties hold: 

)]()[( 0,00,0
1
0,0 yGxGGu �

−= . (B.6) 

)]()[( 0,0,0
1
,0 2

1
2
1 yGxGGu �

−= . (B.7) 

)]()[( 0,0,
1
0, 2

1
2
1

2
1 yGxGGw �
−= . (B.8) 

)]()[( 0,,
1
, 2

1
2
1

2
1

2
1

2
1 yGxGGw �
−= . (B.9) 

Notice that the implied periodicity of un is strictly periodic and that of wn is anti-periodic due 
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to the periodicity inherence of the periodic convolution of the original sequences represented 

by x and y. 

B.1.5. Discrete Trigonometric Transform 

The family of DTTs comprises eight versions of the discrete cosine transform (DCT) and 

eight versions of the discrete sine transform (DST). Martucci formulated the DTTs through 

the convolution forms as defined in [76, Appendix]. The orthogonal-like relations between the 

inverse and forward DTTs are 

IMI TT 11 =− , IIIMII TT 11 =− , IIMIII TT 11 =− , and IVMIV TT 11 =−  , (B.10) 

where the DTTs in both sides of each equality must be the same in the categories of cosine or 

sine and even or odd; and M is 2N and 2N − 1 for the even and odd cases, respectively. 

B.1.6. DTT and GDFT 

B.1.6.1. Symmetric-Extension Operator  

Just as the special forms of the GDFT provide representations for GPSs, the symmetry 

and periodicity of the basis functions of the DTTs establish a one-to-one correspondence 

between the DTTs and the 16 symmetric-periodic sequences (SPSs) that are summarized in 

[76, Fig. 2]. Since these SPSs are also generalized-periodic, the SPS extended from a DTT of 

a finite sequence can be produced from the corresponding GDFT of that sequence after 

having been symmetrically extended to a base period. Therefore, each DTT can be directly 

constructed in terms of its corresponding GDFT by cascading an appropriate 

symmetric-extension operator as defined in Table B.2, where the subscripts are in terms of 

Martucci’s naming rules, including whole-sample symmetry (WS), whole-sample 

anti-symmetry (WA), half-sample symmetry (HS), and half-sample anti-symmetry (HA). The 
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notations IN and JN mean the identity matrix and reversal matrix of order N. For instance, we 

have  

xCxEGy e
IIHSHS ==

2
1,0

, (B.11) 

where y is P × 1, 
2
1,0G  is P × 2N, HSHSE is 2N × N,  e

IIC  is P × N, x is N × 1, and positive 

integer P determines how long the output SPS is captured. 

Table B.2. Matrix Forms for Symmetric Extension Operators 

M = 2N M = 2N − 1 
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B.1.6.2. Zero-Padding and Selective Matrices 

For capturing the standard index range of the DTT output, the transposed zero-padding 

matrix is introduced. The (r + p + q) × p zero-padding matrix qpr ,,Z  is defined as 

T
qpprp ][ ×× 0 I 0 . The name “zero-padding” comes from the fact that left-multiplying a length-p 
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column vector x by qpr ,,Z  is equivalent to padding x to the up and down by r and q zeros, 

respectively. On the contrary, left-multiplying a length-(r + p + q) column vector x by 

T
qpr ,,Z is equivalent to selecting xn for r n  p + r − 1. For instance, 

TTT ],,,[],...,,[ 65438102,4,3 xxxxxxxZ =⋅  . Hence, we name the transposed zero-padding 

matrix as the “selective” matrix. 

B.1.6.3. Relationship of DTT and GDFT  

By using the selective matrix and symmetric-extension operator defined above, we can 

express the relation between a DTT matrix and its corresponding GDFT matrix as 

qq
T
qq EFZT ⋅⋅= , (B.12) 

where Tq denotes the DTT matrix, Fq denotes the GDFT matrix, T
qZ  denotes the selective 

matrix, Eq denotes the symmetric-extension operator; and subscript q indicates the type of 

DTT, which takes on I, II, III, and IV. Alternatively, by left-multiplying the DTT matrix by a 

symmetric-extension operator to obtain another half of samples in the base period of the 

corresponding GDFT, we can define the correspondent symmetric-extension operator E
q 

through the following relation.  

qqqq EFTE ⋅=⋅′ . (B.13) 

B.1.6.4. Relationship of IDTT and IGDFT  

The dual formula related to (B.13) is derived as follows:  

qqqqqqqqqqqq EFTTEFTEFFTE ′=′== −−−−−− 111111 )()( . (B.14) 

Note that Eq and E
q are interchanged in (B.13) and (B.14). Taking conjugate of (B.14) and 

using the properties (B.2) and (B.10) lead to qqqq EFTE ′= ΦΦ )()( , and hence )(qq Φ′= EE , where  



 

 98

Table B.3. Definitions of Related Matrices for DTT. 

 q Tq 
Input Index 

Range qZ  Fq Eq qE′  +
qA  +′qW  Kq .Freqr  

I e
IC  0 � N 1,1,0 −+ NNZ  0,0G  

WSWSE  WSWSE  +e
IA  II

N 1+W  0,0G  c 
II e

IIC  0 � N − 1 NN   Z ,,0  
2
1

,0
G  

HSHSE  WSWAE  +e
IIA  I

NW  
2
1

,0
G  

s 

III e
IIIC  0 � N − 1 NN   Z ,,0  0,

2
1G  

WSWAE  HSHSE  +e
IIIA  N2I  0,0G  c 

IV e
IVC  0 � N − 1 NN   Z ,,0  

2
1

,
2
1G  

HSHAE  HSHAE  +e
IVA  N2I  

2
1

,0
G  

s 

I e
IS  1 � N − 1 NN   Z ,1,1 −  0,0Gj  WAWAE  WAWAE  +e

IA  1−N2I  0,0G  c 
II e

IIS  1 � N NN   Z ,,0  
2
1

,0
Gj  

HAHAE  WAWSE  +e
IIA  I

NW  
2
1

,0
G  

s 

III e
IIIS  0 � N − 1 1,,1 −NN   Z  0,

2
1Gj  

WAWSE  HAHAE  +e
IIIA  N2I  0,0G  c 

M
 = 2N

  

IV e
IVS  0 � N − 1 NN   Z ,,0  

2
1

,
2
1Gj  

HAHSE  HAHSE  +e
IVA  N2I  

2
1

,0
G  

s 

I o
IC  0 � N − 1 1,,0 −NN   Z  0,0G  

WSHSE  WSHSE  +o
IA  I

NW  0,0G  c 
II o

IIC  0 � N − 1 1,,0 −NN   Z  
2
1

,0
G  

HSWSE  WSHAE  +o
IIA  I

NW  
2
1

,0
G  

s 

III o
IIIC  0 � N − 1 1,,0 −NN   Z  0,

2
1G  

WSHAE  HSWSE  +o
IIIA  III

NW  0,0G  c 

IV o
IVC  0 � N − 2 NN   Z ,1,0 −  

2
1

,
2
1G  

HSWAE  HSWAE  +o
IVA  1−N2I  

2
1

,0
G  

s 

I o
IS  1 � N − 1 1,1,1 −− NN   Z  0,0Gj  WAHAE  WAHAE  +o

IA  1−N2I  0,0G  c 
II o

IIS  1 � N − 1 NN   Z ,1,0 −  
2
1

,0
Gj  

HAWAE  WAHSE  +o
IIA  I

N 1−W  
2
1

,0
G  

s 

III o
IIIS  0 � N − 2 1,1,1 −− NN   Z  0,

2
1Gj  

WAHSE  HAWAE  +o
IIIA  III

N 1−W  0,0G  c 

M
 = 2N

 − 1  

IV o
IVS  0 � N − 1 1,,0 −NN   Z  

2
1

,
2
1Gj  

HAWSE  HAWSE  +o
IVA  III

NW  
2
1

,0
G  

s 

 

subscript �(q) indicates the pair type according to (B.10) (i.e., �(I) = I, �(II) = III, �(III) = II, 

and �(IV) = IV).  On the other hand, by (B.2) and (B.10), the dual formula related to (B.12) 

is derived as follows: 

qq
T

qqq
T

qqq
T

qMqMq EFZEFZEFZTT ′==== −
ΦΦ

−
ΦΦ

∗
ΦΦΦ

− 1
)()(

1
)()()()(

1
)(

11 . (B.15) 

Since )(qΦT is real-valued, the conjugate operation can be applied in the second equality.  

The relationships of DTT/IDTT and GDFT/IGDFT as illustrated in (B.12)-(B.15) are 

depicted in pictorially in Figures B.1 and B.2. In the above generic formulas, the specific 

definitions of the related matrices are given in the first six columns of Tables B.3 and B.4. As 
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an example, according to (B.12) and Table B.3, the relation between the odd DST-II of length 

N − 1 and the OTDFT of length M that equals 2N − 1 is given by 

yxEGZxS =⋅⋅= − HAWA
T

NN
o
II j

2
1,0,1,0 , (B.16) 

where TNxxx )]1(),...,2(),1([ −=x  and .)]2(),...,1(),0([ TNyyy −=y  According to (B.13) 

and Table B.4, another relation is expressed by  

xEGxSE HAWA
o
IIWAHS j

2
1,0= . (B.17) 
 

Table B.4. Definitions of Related Matrices for IDTT. 

 q 1−
qT  Input Index 

Range )(qΦZ  1−
qF  Eq qE′  −

qA  −′qW  1−
q�  Timer

 
I 1−e

IC  0 � N 1,1,0 −+ NNZ  1
0,0

−G  WSWSE  WSWSE  -e
IA  II

N 1+W  1
0,0

−G  c 

II 1−e
IIC  0 � N − 1 NN   Z ,,0  

1

2
1

,0

−G  
HSHSE  WSWAE  -e

IIA  N2I  1
0,0

−G  c 

III 1−e
IIIC  0 � N − 1 NN   Z ,,0  

1

0,
2
1
−G  

WSWAE  HSHSE  -e
IIIA  I

NW  
1

0,
2
1
−G  s 

IV 1−e
IVC  0 � N − 1 NN   Z ,,0  

1

2
1

,
2
1
−G  

HSHAE  HSHAE  -e
IVA  N2I  

1

0,
2
1
−G  s 

I 1−e
IS  1 � N − 1 NN   Z ,1,1 −  1

0,0
−G-j  WAWAE  WAWAE  -e

IA  1−N2I  1
0,0

−G  c 

II 1−e
IIS  0 � N − 1 1,,1 −NN   Z  

1

2
1

,0

−G-j  
HAHAE  WAWSE  -e

IIA  N2I  1
0,0

−G  c 

III 1−e
IIIS  1 � N  NN   Z ,,0  

1

0,
2
1
−G-j  

WAWSE  HAHAE  -e
IIIA  I

NW  
1

0,
2
1
−G  s 

M
 = 2N

  

IV 1−e
IVS  0 � N − 1 NN   Z ,,0  

1

2
1

,
2
1
−G-j  

HAHSE  HAHSE  -e
IVA  N2I  

1

0,
2
1
−G  s 

I 1−o
IC  0 � N − 1 1,,0 −NN   Z  1

0,0
−G  WSHSE  WSHSE  -o

IA  I
NW  1

0,0
−G  c 

II 1−o
IIC  0 � N − 1 1,,0 −NN   Z  

1

2
1

,0

−G  
HSWSE  WSHAE  -o

IIA  III
NW  1

0,0
−G  c 

III 1−o
IIIC  0 � N − 1 1,,0 −NN   Z  

1

0,
2
1
−G  

WSHAE  HSWSE  -o
IIIA  I

NW  
1

0,
2
1
−G  s 

IV 1−o
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Figure B.1. Relationship of DTT/IDTT and GDFT/IGDFT. A pictorial representation of (B.12) 
and (B.15). 

DTT/IDTTInput vector

Output vectorSymmetric Extension GDFT/IGDFT

|||

Symmetric Extension

Input vector

Output vectorDTT/IDTTInput vector

Output vectorSymmetric Extension GDFT/IGDFT

|||

Symmetric Extension

Input vector

Output vector

 

Figure B.2. Relationship of DTT/IDTT and GDFT/IGDFT. A pictorial representation of (B.13) 
and (B.14). 

B.2. Autoregressive Modeling and GDFT 

In this section, we first establish the time-frequency relation between the periodic 

autocorrelation and power spectrum in the GDFT frequency domain. Then we show that, like 

the traditional approach, the Yule-Walker equations consisting of periodic autocorrelations is 

derived in the least square error sense for evaluating the AR parameters in the finite length 

problems with GDFTs.  

Before proceeding, we show a general property of two GPSs with period N, which will be 

heavily used in later derivation. 

Lemma 1 Given two GPSs, )(~ nx and )(~ ny , which are either strictly periodic or anti-periodic 

with period N. Then any summation over successive N terms of their product is equal to the 

summation over the base period from 0 to N − 1. That is, 
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nynxnynx , for any integer i. (B.18) 

Proof: Since ),(~)(~)(~)(~ nynxNnyNnx =++  the product )(~)(~ nynx  is a strictly periodic 

sequence with period N. Thus, any summation over successive N terms of their product has 

the same result.                                                             � 

B.2.1. Autocorrelation and Power Spectrum in GDFT 

The periodic correlation of two period-N GPSs )(~ nx  and )(~ ny  of the same type is 

defined as  

)(~)(~)(~)(~
1

0

1 mnymxnynx
N

m
N +=∗ �

−

=

∗  (B.19) 

Note that the periodic correlation is also a period-N GPS that has the same periodic type 

as the input GPSs have. Similarly, to distinguish the strictly periodic and anti-periodic cases, 

the circular and skew-circular correlations of two length-N vectors x and y are defined as 
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(B.20) 
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(B.21) 

The circular and skew-circular correlations of two length-N vectors are, respectively, 

equivalent to the representative vectors of the periodic correlations of the period-N strictly 

periodic and anti-periodic sequences extended from the finite vectors.  

 To express a periodic correlation in terms of a periodic convolution, the flip operation on 

a GPS is introduced and defined as 

)(~)}(~{ nxnxFLIP −= . (B.22) 

The flip operation can also preserve the periodicity of the input GPS. For finite sequences of 

length N, the strict-flip and anti-flip operations are defined in matrix form as 
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The strict-flip and anti-flip operations of a length-N vector are equivalent to the representative 

vectors of the flip operations of the period-N strictly periodic and anti-periodic sequences 

extended from the finite vector. For instance, let x = [1,2,3,4]T, then SFLIPx = [1,4,3,2]T and 

AFLIPx = [1, −4, −3, −2]T.  

Theorem 1 Given two period-N GPSs, )(~ nx and )(~ ny , of the same periodic type. Then, 

)(~)}(~{)(~)(~ 1 nynxFLIPnynx N ⊗=∗ ∗ . (B.24) 

Proof: Since both )(~ mx ∗  and )(~ mny + for any fixed n are either strictly periodic or 

anti-periodic with period N, by Lemma 1, we have  
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N
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mnymxmnymx . � 

Corollary 1 For two column vectors x and y of length N, the following properties hold. 

)(1 ∗=∗ xSyx FLIPNC
c y , and )(1 ∗=∗ xAyx FLIPNS

s y .                                             (B.25) 

� 

Like the conjugate relation between the DFTs of a vector and its strict-flipped conjugate 

[52], we extend without proof such properties for other GDFTs in the next lemma. 

Lemma 2 Consider a column vectors x of length N. 

(i) The DFT and OTDFT of the strict-flipped conjugated x can be evaluated by 

∗∗ ⋅−= kbkFLIPb Nkbj )()/4exp()( ,0,0 xGxSG π ,  

for b = 0 or 1/2, and k = 0, 1,…, N − 1. (B.26) 

(ii) The OFDFT and O2DFT of the anti-flipped conjugated x can be evaluated by 

∗∗ ⋅+−= kbkFLIPb Nbkj )()/)(4exp()( ,2
1

, 2
1

2
1 xGxAG π ,  

for b = 0 or 1/2, and k = 0, 1,…, N −1.                                                                                    (B.27) 
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 The periodic autocorrelation of a GPS )(~ nx  with period N is defined as 

)(~)(~)(~)(~)(
1

0

1
~ mnxmxnxnxnr

N

m
Nx +=∗= �

−

=

∗ . (B.28) 

For a vector x of length N, the circular and skew-circular autocorrelations are defined as 

xxrx C
C ∗=  and xxrx S

S ∗= . (B.29) 

It is well known that the DFT of the circular autocorrelation of a vector equals the DFT power 

spectrum of the vector. We extend such important relations for other GDFTs and GPSs. 

Theorem 2 Consider a column vector x of length N. 

(i)  The relation between the circular autocorrelation and DFT/OTDFT power spectra is 

given by 
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C . (B.30) 

(ii)  The relation between the skew-circular autocorrelation and OFDFT/O2DFT power 

spectra is given by 
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S . (B.31) 

Proof: We first consider the case of skew-circular autocorrelation and OFDFT in part (ii). By 

Corollary 1, we have 

)( 1 ∗= xArx FLIPN
S s  x. 

Thus, using (B.7) yields 

)]()[( 0,0,
1
0,

1

2
1

2
1

2
1 xGxAGGrx �

∗−= FLIPN
S . 

Then, by Lemma 2 (ii), we obtain  
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2
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2
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2
1 xGxGGr �
−= N

S
x . 

Due to  kk )()(
2
1

2
1

2
1 ,0, xGxG =  , part (ii) is proved completely. Similarly, part (i) can be 

proved by the same technique and using (B.6).                                     � 
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Corollary 2 Consider a column vector y of length N. 

(iii)The relation between the skew-circular autocorrelation and IOTDFT/IO2DFT power 

spectra is given by 

])()[(])()[( *1
,

1
,,0

*1
,0

1
,0,0 2

1
2
1

2
1

2
1

2
1

2
1

2
1

2
1 yGyGGyGyGGry

−−−− == ��
S . (B.32) 

(iv) The relation between the circular autocorrelation and IDFT/IOFDFT power spectra is 

given by 
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Proof: We first represent (B.30) and (B.31) in Theorem 2 in generic form as  

])()[( *
,,

1
0,

1 xGxGGrx babaaN �
−= . (B.34) 

By taking conjugate of both sides of (B.34) and using the property (B.2), we have  
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NN �� . (B.35) 

Letting x be ∗y  in (B.35) yields  

])()[( *1
,

1
,,0 yGyGGr

y
−−∗ =∗ ababa � . (B.36) 

Since yy
rr =∗

∗  in both circular and skew-circular autocorrelations, the proof is accomplished. 

�                                                             

Thus far, the relation between the periodic autocorrelation and GDFT power spectra has 

been connected in Theorem 2 and Corollary 2. These results are the theoretical fundamental 

of AR modeling of GDFT spectra in later derivation. 

B.2.2. AR Modeling with GDFT 

An order-P AR model for a period-N GPS )(~ nx with parameters (1), (2),…, (P) is 

defined as 

)(~)(~)()(~
1

neknxknx
P

k

+−−= �
=

α , (B.37) 
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where )(~ ne  is a generalized-periodic excitation sequence, which is regarded as residuals in 

linear prediction sense. The residual term can be written as 

)(~)(~)(~)()(~
1

0

nnxknxkne
N

k

αα ⊗=−=�
−

=

, (B.38) 

where �(0) = 1 and �(n) = 0  for n = P + 1, P + 2, …, N − 1. The periodic type of )(~ nα  that 

is the GPS extended from (n), n = 0, 1,…, N − 1, must be the same as that of )(~ nx to make 

the periodic convolution computable. Let e�x ,,  denote the representative vectors for )(~ nx , 

)(~ nα , and )(~ ne , respectively. Then, by the convolution-multiplication properties (B.6)-(B.9), 

e can be transformed into the GDFT frequency domain as  

)()( 0,,, �GxGeG ababa �= , (B.39) 

where a and b take on the values 0 or 1/2 depending on the periodicity type of )(~ nx and the 

GDFT type used. Hence, by viewing )(~ ne as a white noise, the power spectrum of the 

order-P AR model is given by 

2

0,
22
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,

2

, )()()()(
−−

⋅≈= kaekakbakba �G�GeGxG σ , for k = 0, 1,…, N − 1. (B.40) 

To evaluate the AR parameters, the Yule-Walker equations can be derived through the least 

square error (LSE) approach for the GDFT family. We present the result without proof. 

Theorem 3 For a GPS )(~ nx with period N, the parameters for the order-P AR modeling in 

the LSE criterion (i.e., minimize�
−

=

1

0

2
)(~

N

n

ne ) can be obtained by solving the Yule-Walker 

equations consisting of the periodic autocorrelations: 

�
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xx nnirir
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~~ )()()( α , for i = 1, 2,…, P. (B.41) 

Furthermore, the LSE is given by 
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Proof: We first rewrite (B.41) in vector/matrix form as X�xe −=  expressed as follows: 
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The parameter vector �  corresponding to the LSE can be found through the normal 

equation:  

xXX�X HH =− . (B.44) 

The (i, j) entry of XHX can be derived as follows: 
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Since both )(~ mx ∗ and )(~ jimx −+ are either strictly periodic or anti-periodic with period N 

when i − j is fixed, by using Lemma 1, we have 

)()(~)(~][ ~

1

0
, jirNjimxmx x

N

m
ji

H −⋅=−+=�
−

=

∗XX , for 1 � i, j � N. (B.46) 

Similarly, we have )()( ~ irN xi
H ⋅=xX  for 1 � i � N. Thus, (B.44) can be rewritten as (B.41). 

Equation (B.42) can be derived by using (B.44). We ignore the details.                     �                                                 

Remarkable, in both strictly periodic and anti-periodic cases, the Yule-Walker equations 

can be expressed in terms of a Toeplitz matrix, and hence the Levinson-Durbin algorithm [53] 

can be used for efficiently computing AR parameters. Also, according to the next theorem, 

only P + 1 periodic autocorrelation entries, )(~ irx , i = 0, 1,…, P, are required to comprise the 

Yule-Walker equations.  

Theorem 4 Let )(~ nx  be a GPS with period N. Then its periodic autocorrelation has the 

conjugate-symmetric property as   

)()( *
~~ nrnr xx =− . (B.47) 
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Proof: Applying Lemma 1 to )(~ mx ∗ and )(~ mnx +−  leads to  
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 (B.48) 

�  

The next theorem describes the well-known Parseval’s Theorem [52] for GDFTs. 

Theorem 5 Let x be a column vector of length N. Then 

21
,

2

,
12 xGxGx −== babaN N  for a, b = 0, 1/2. (B.49) 

�                                                                     

To summarize, like the traditional AR modeling method, the Yule-Walker equations in 

Theorem 3 can be solved to yield AR parameters in finite length problems. Then 
2

, )( kba xG  

can be estimated by 
2

0,
2 )(

−
kae �Gσ . By Theorem 5, we have 

22

,
12 eeG =≈ baNeσ . Also, 
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2
1,0, xGxG = . Thus, when viewing x in the strictly periodic sense, we can 

approximate its DFT and OTDFT power spectra by 
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Oppositely, when viewing x in the anti-periodic sense, we can approximate its OFDFT and 

O2DFT power spectra by  
2
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Likewise, for the frequency-domain AR modeling, we can estimate the squared temporal 

envelope by  
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2221
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,
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−
−−−−−−− =≈= nbenbenbnb NN �G�GyGyG σσ . (B.52) 

where b = 0 or 1/2 depending on the forward GDFT used, and 
21

21
,

12
2 eeG

NbaNe =≈ −σ .  As 

an instance, Figure B.3 illustrates the spectral power envelopes of a speech segment of 2048 
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samples at 44.1 kHz. The power spectra obtained from its DFT and OFDFT are shown in 

Figure B.3 (b) and (c), where the spectral power envelopes of order-24 AR modeling are 

obtained by solving the Yule-Walker equations consisting of the circular and skew-circular 

autocorrelations, respectively. The two spectral power envelopes are depicted together in 

Figure B.3 (d) to compare their difference. In the low frequency part, the two envelopes are 

almost identical, whereas the major deviation occurs in the high frequency part and reveals 

the difference of the circular and skew-circular autocorrelations. 

 

 

Figure B.3. Comparison of spectral power envelopes (i.e., squared envelope). (a) The 
time-domain speech segments of 2048 points at 44.1 kHz. (b) The DFT power spectrum and 
the spectral power envelope. (c) The OFDFT power spectrum and the spectral power envelope. 
Both the power envelopes are obtained by order-24 AR modeling, for which the Yule-Walker 
equations are comprised by the circular and skew-circular autocorrelations in (b) and in (c), 
respectively. (d) The comparison of the two power envelopes.  
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B.3. Autoregressive Modeling and DTT 

In this section, we derive the theorems for the AR modeling in DTTs. First, associated 

with GDFTs, we derive the analytic transform matrices which convert real-valued vectors into 

analytic vectors. Then, based on the analytic vectors in DTT/IDTT, we derive the close form 

between DTT/IDTT with the GDFT/IGDFT. Combing the AR modeling in last section with 

the close form, we derive the AR modeling formulation with the DTTs in both temporal and 

spectral domains.  

B.3.1. Analytic Transform based on GDFT and IGDFT 

Marple has proposed a DFT-based method for computing the analytic signal 

corresponding to a finite real-valued sequence of an even length [79]. The N × N analytic 

transform matrix A converting a real-valued vector x into a complex-valued analytic vector a 

is decomposed in matrix product form:  

FZWZFA T1−= , (B.53) 

where F denotes the DFT matrix, Z denotes the zero-padding matrix Z0, N/2+1, N/2-1 ,and W is 

the weighting matrix diag{1,2,2,…,2,1}of order N/2 + 1. As can be seen, the analytic 

transformation proposed by Marple discards the negative DFT frequencies. With the 

appropriate weighting by W, the analytic vector can have two desired properties. First, the 

real part of a exactly equals the original vector: 

nn xa =)Re( , for n = 0, 1, …, N − 1. (B.54) 

Second, the real and imaginary parts of a are orthogonal: 

0)Im()Re(
1

0

=⋅�
−

=

N

n
nn aa . (B.55) 

As the fundamental for establishing the analytic transformation via the GDFT, we show 
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without proof the generalized symmetry of the GDFT of a real-valued input 

Lemma 3 Given a column vector x of length M, and xGy ba ,= . Then x is real-valued if and 

only if the following conjugate symmetric/anti-symmetric property of y holds. 

(i) For DFT and OTDFT, i.e., a = 0,  

� � 
 �
∗

−+ ⋅= kMkM s 2/2/ yy , for 0 � k � 
 �2/M . (B.56) 

(ii) For OFDFT and O2DFT, i.e., a = 1/2, 

� � 
 �
∗

−−+ ⋅= kMkM s 2/12/ yy , for 0 � k � 
 �2/M . (B.57) 

Here s is 1 when b = 0 and −1 when b = 1/2. 

Proof: Using the rule � � 
 �2/2/ MMM += , we can derive the generalized symmetric 

properties of the basis functions of the GDFTs in (i) and (ii) in the frequency direction as 

follows.  
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 (B.59) 

Since a GDFT output is the linear combination of the basis functions of the GDFT by taking 

the input vector as the combination coefficients, it has the same generalized symmetric 

property as the basis functions have if the input vector is real-valued. 

 Conversely, we only consider the case of a = 1/2, and the case of a = 0 can be proved in 

the same way. Let ImRe xxx j+= , where xRe and xIm denote the real and imaginary parts of x. 

Let Re
,

Re

2
1 xGz

b
=  and Im

,
Im

2
1 xGz

b
= . Suppose y satisfies the condition (B.57). Of course, 

Rez  has the same property as shown in the forward part. Thus, ReIm zzz −=j  still satisfies 
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the condition (B.57), implying that � � 
 �
*Im

2/
Im

12/ )( kMkM jsj −−+ ⋅−= zz . However, since xIm is 

real-valued, we have � � 
 �
*Im

2/
Im

12/ )( kMkM jsj −−+ ⋅= zz . Thus, for 0 � k � 
 �2/M , � � 0Im
12/ =−+kMz , 

and then 
 � 0Im
2/ =−kMz . This implies 0Im =nx  for all n, and hence x is real-valued.                                                                        

Based on the generalized symmetry of GDFTs, we can construct other analytic transform 

matrices as shown in the next theorem. 

Theorem 6 Via each GDFT, we can define the analytic transform matrix, which satisfies both 

the properties (B.54) and (B.55), in the generic form:  

q
T

qqqqq FZWZFA )(1 +++−+ = , (B.60) 

where +
qA  is the M × M analytic transform matrix, Fq is the GDFT matrix, +

qZ  is the 

zero-padding matrix, and +
qW  is the weighting matrix. The specific matrices are tabulated in 

Table IV, where +
qW  belongs to one of the following diagonal matrices of order N or N + 1 

denoted as subscripts: 2IN  = diag{2, 2,…, 2}, I
NW  = diag{1, 2, 2,…,2}, II

N 1+W  = diag{1, 2, 

2,…,2, 1}, and III
NW  = diag{2, 2,…,2, 1}. 

Proof: In the same approach in [79], we can construct the analytic vector by defining the 

conjugate symmetric and anti-symmetric functions. For example, we consider the 

construction of odd +
IIIA . Let xGy 0,2

1=  and xAaaa +=+= o
IIIj ImRe  for a real-valued vector 

x of length M, where aRe and aIm denote the real and imaginary parts of a. Let Rez  and Imz  

denote the OFDFTs of Rea  and Ima , respectively. For the condition (B.54), we must define 

yz =Re  to have xa =Re . On the other hand, we define   

�
�

�
�

�

−≤≤+⋅
+=

−≤≤⋅−
=

12/)3(
2/)1(0

2/)1(0
)( Im

MkMj

Mk

Mkj

k

k

k

y

y
z . (B.61) 
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Note that adding Rez  to Imzj  not only eliminates the negative spectrum but also leads to the 

definition of +o
IIIW  as diag{2, 2,…,2, 1} of order (M +1)/2. The definition (B.61) indeed 

implies that Im1
0,

Im

2
1 zGa −=  is purely real-valued since the conjugate symmetric property (B.57) 

holds; thus, the condition (B.54) is satisfied. The orthogonal property (B.55) can be confirmed 

as follows: 

.0)()()()( ImRe1Im
0,

Re
0,

1ImRe

2
1

2
1 === zzaGaGaa H

M
H

M
T  (B.62) 

In the last step, the conjugate symmetric property of y  is used. Other analytic transform 

matrices can be constructed in the same way.                                      �                                                  

In the next corollary, we show the dual formula of (B.60).      

Corollary 3 Let *
)( )( +

Φ
− = qq AA , +

Φ
− = )(qq ZZ , and +

Φ
− = )(qq WW . We can define the analytic 

transform matrix which converts a real-valued spectral vector into a spectral analytic vector as  

1)( −−−−− = q
T

qqqqq FZWZFA . (B.63) 

Proof: We take conjugate of (B.60) and use the property (B.2) to have 

1
)()(

* )()( −
Φ

+++
Φ

+ = q
T

qqqqq FZWZFA . (B.64) 

Then replacing q by �(q) yields 

 1
)()()(

*
)( )()( −+

Φ
+

Φ
+
Φ

+
Φ = q

T
qqqqq FZWZFA . (B. 65) 

� 
Take for example, let x = [1, −2, −3, 7, 11]T, we have 

Tjjjjj ]8385.311,1816.87,0867.43,8809.12,5489.61[ +−−−+−+=+     xAo
II , 

Tjjjjj ]1978.411,7628.87,9929.63,1534.02,1211.61[ +−−−−−−=+     xAo
III , 

and *)( xAxA o
III

o
II

+− = . Figure B.4 depicts pictorially the reconstruction of analytic transforms 

defined in Theorem 6 and Corollary 3. 
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Table B.5.Definitions of Related Matrices for Analytic Transform 
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Figure B.4. Reconstruction of analytic transform. 

B.3.2. DTT and Analytic Transform 

The next theorem illustrates the interpretation of DTT spectra as the GDFT spectra of 

analytic vectors. 

Theorem 7 Given a temporal column vector x and y = Tq x. Then the IGDFT of the 

zero-padded and scaled DTT equals the analytic transformation of the symmetrized temporal 

vector, that is, 

)()( 1 yWZFxEA +−+ ′= qqqqq , (B.66) 

where the related matrices are defined in Table II. 
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Proof: To relate the DTT and the analytic transform, we combine the generic formulas (B.12) 

and (B.60) into the form: 

)()()()( 111 yWZFxTZWZFxEFZWZFxEA +−++−+++−+ ′=′== qqqqqqqqqq
T

qqqqqq . (B.67) 

In the second step, the purpose of zero-padding matrix qZ ′
 is to gather the inherent zero 

output at the boundary indices of Tq to make up the total output length of N or N + 1. The 

matrix product qqq ZWZ ′++  can be rewritten as ++ ′′ qqq WZZ , where +′qW  is obtained from +
qW  

by removing the boundary diagonal terms and reducing the order if necessary. Also, qq ZZ ′+

 

can pad the DTT output to fill the lengths 2N and 2N − 1 for the even and odd cases, 

respectively; hence, qq ZZ ′+  equals qZ , and the last step is arrived.                    �                     

Remarkably, when combined with DST, the qF  and 1−
qF  associated with +

qA  should 

be scaled by j and −j, and the derivation above has no affection. In the dual manner, the next 

corollary illustrates the interpretation of temporal vectors as the IGDFT of DTT-domain 

analytic vectors. 

Corollary 4 Given a spectral column vector y and yTx 1−= q  . Then the GDFT of the 

zero-padded and scaled temporal vector equals the analytic transformation of the symmetrized 

DTT vector. That is, 

)()( )( xWZFyEA −
Φ

− ′=′ qqqqq , (B.68) 

where the related matrices are defined in Table III. 

Proof: By Theorem 7 and the properties +
Φ

− = )(
*)( qq AA  and qq EE ′=Φ )( , we have 

)()()]([ )()()(
1

)()()( yTWZFyEAyEA qqqqqqqq Φ
+

ΦΦ
−

ΦΦ
+
Φ

∗− ′==′ . (B.69) 

Then, by taking conjugate again and using the property +
Φ

− ′=′ )(qq WW  due to +
Φ

− = )(qq WW  , 
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the dual formula for IDTT is derived as  

)()()( )(
1

)()( xWZFyTWZFyEA −
Φ

−+
ΦΦ

− ′=′=′ qqqqqqqqq . (B.70) 

                                                                          �                                                                                           

The dual formulas (B.66) and (B.68) describe how a vector is related to its DTT and 

IDTT in the sense of analytic transformation through appropriate symmetrization, 

zero-padding and weighting operations. 
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Analytic 
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Entry 
Scaling Zero Padding

Temporal vector Analytic vector

DTT vector Scaled and zero-padded 
DTT vector

IGDFTDTT

Symmetric 
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Analytic 
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Entry 
Scaling Zero Padding

Temporal vector Analytic vector

DTT vector Scaled and zero-padded 
DTT vector

IGDFTDTT

 

Figure B.5. A pictorial representation of (B.66). 
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Figure B.6. A pictorial representation of (B.66). 

B.3.3. Autocorrelation and Squared Hilbert Envelope 

Thanks to Corollary 2, we have linked the GDFT-domain periodic autocorrelation with 

the IGDFT-domain (temporal) envelope. Combining the corollary with Theorem 7, we can 

immediately obtain the time-frequency relation between the DTT-domain periodic 
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autocorrelation and the Hilbert envelope (i.e., the magnitude envelope of the analytic signal) 

for a time-domain finite sequence. 

Theorem 8 Given a temporal real-valued vector x and y = Tq x. Let yWZy +′= qqˆ , then 

])()[( *
ˆ xEAxEAKry qqqqq

++= � , (B.71) 

where yrˆ  is the circular or skew-circular autocorrelation of ŷ  depending on the type of Kq 

that is a DFT or OTDFT matrix. (The specific types of transform and autocorrelation are 

defined in Table II, where notations (c) and (s) denote the circular and skew-circular 

autocorrelations, respectively.)  

Proof: From Theorem 7, we have xEAyF qqq
+− =ˆ1 ; by Corollary 2, the proof is accomplished. 

 � 

The next theorem gives the dual formulation for estimating the spectral Hilbert envelope. 

Theorem 9 Given a spectral real-valued vector y and yTx 1−= q . Let xWZx +
ΦΦ ′= )()(ˆ qq , then 

])()[( *11
ˆ yEAyEA�rx qqqqqM

′′= −−−
� , (B.72) 

where xrˆ  is the circular or skew-circular autocorrelation of x̂  depending on the type of 

1−
q�  that is a IDFT or IOFDFT matrix; and the scale factor M is the length of x̂ . (The 

specific types of transform and autocorrelation are defined in Table III.) 

Proof: From Corollary 4, we have yEAxF qqq ′= −ˆ ; by Theorem 2, the proof is accomplished. 

� 

Theorems 8 and 9 permit to model the squared temporal or spectral Hilbert envelope of 

the symmetrized time-domain or DTT-domain vector by fitting an AR model to the 

zero-padded and weighted vector in the dual domain. The AR parameters obtained by the 

Yule-Walker equations should be zero-padded to length M and transformed by qF  and 1−
qF  , 

respectively, for the spectral and temporal envelope estimation. 
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B.3.4. Autocorrelation and DTT Power Envelope 

Rather than the squared Hilbert envelope, we may be interested in modeling the squared 

DTT spectrum (i.e., evaluating the DTT power envelope). This can be achieved by applying 

the periodic autocorrelation analysis to the symmetrized data vector, instead of the 

zero-padded and scaled data vector.  

Theorem 10 Given a spectral real-valued vector y and yTx 1−= q . Let xEx q=�� , then 

)]()[(11 yEyE�rx qqqM ′′= −
��� , (B.73) 

where xr ��  is the circular or skew-circular autocorrelation of x��  depending on the type of 

1−
q�  ; and M is the length of x�� . (The specific types of transform and autocorrelation are 

defined in Table III.) 

Proof: From (B.13), it implies yExTExEF qqqqq ′=′= ; by Theorem 2, the proof is 

accomplished.                                                              � 

Oppositely, the next theorem provides the fundamental for estimating the temporal 

power envelope. 

Theorem 11 Given a temporal real-valued vector x and xTy q= . Let yEy q′=�� , then 

)]()[( xExEKry qqq ��� = , (B. 74) 

where yr ��  is the circular or skew-circular autocorrelation of y��  depending on the type of Kq . 

(The specific types of transform and autocorrelation are defined in Table II.)  

Proof: From (B.14), it implies xEyTEyEF qqqqq ==′ −− 11 ; by Corollary 2, the proof is 

accomplished.                                                              � 

The dual formulas in Theorems 10 and 11 permit to estimate the temporal or spectral 

power envelope of the symmetrized time-domain or DTT-domain vector by fitting an AR 
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model to the symmetrized vector in the dual domain. 

B.3.5. Remarks and Examples 

We notice that the periodic autocorrelation of the zero-padded samples is equivalent to 

the linear correlation used in the autocorrelation method [64] for linear prediction. Therefore, 

the traditional autocorrelation method with scaling can be interpreted as the Hilbert envelope 

estimation of the DTT/IDTT spectrum as illustrated in Theorems 8 and 9. However, looking 

at the time-domain AR modeling in Theorems 9 and 10, the squared spectral Hilbert envelope 

and the spectral power envelope will be close when the time-domain input signal is steady 

and the order of AR modeling is much smaller than the length of the input segment. The 

phenomenon can be interpreted by the approximate results of periodic autocorrelation xr ��  and 

xrˆ  in that condition. Likewise, when a windowing operation, such as sine windowing, is 

applied to the input samples, the aliasing part of periodic autocorrelation becomes small; 

hence, the resultant spectral Hilbert or power envelopes of all the DTTs do not have 

significant difference. On the other hand, the difference of the two kinds of envelopes are 

easier to be observed in the frequency-domain AR modeling because the frequency 

coefficients in the DTT domain are usually unsteady and have large energy variation in 

low-frequency part. In AR modeling, we can expect the temporal Hilbert envelop should be 

more smooth due to the imagery part added by the analytic transform, while the power 

envelope can fit the temporal samples better in the LSE sense.  

In the following, we provide some examples to illustrate the remarks. Figure B.7 

compares two approaches on a time-domain audio segment of 1024 samples at 44.1 kHz for 

evaluating spectral envelopes. In Figure B.7 (b) the skew-circular autocorrelations of the 

zero-padded and scaled time-domain samples are used to evaluate the spectral Hilbert 

envelope of the symmetrized odd DST-IV spectrum, while in Figure B.7 (c) the skew-circular 

autocorrelations of the symmetrized time-domain samples are used to evaluate the spectral 



 

 119 

power envelope fitting the squared of the symmetrized odd DST-IV spectrum. The order of 

AR modeling in the two cases is 24. Note that the squared envelopes corresponding to AR 

models in Figure B.7 (b) and (c) are computed by squaring the length-2048 O2DFT (or 

OFDFT) of AR parameters. In Figure B.7 (d), the two squared envelopes are depicted 

together with the squared odd DST-IV spectrum for comparison. Since
22 ˆ

2
1 xx ≈�� , the 

estimated envelope from the zero-padded and scaled samples should have energy alignment 

by 1/2 when compared with the squared DTT spectrum. As can be seen, the envelopes 

associated with (b) and (c) are highly close. The observation can be interpreted from the 

approximation of the two skew-circular autocorrelations, especially when the predictive order 

is much smaller than the sample number. 

As an instance of the frequency-domain AR modeling of order 24 on the length-1024 

even DCT-IV spectrum, Figure B.8 (b) and (c) show the squared temporal Hilbert envelope 

and the temporal power envelope, respectively. In Figure B.9, in  addition  to  the  two  

envelopes  in  Figure B.8,  the  two  kinds  of  temporal  envelope evaluated from 

the odd DCT-I spectrum of the same time-domain segment are also depicted. Here the Hilbert 

envelopes through AR modeling have energy alignment by 1/2. The temporal envelopes are 

evaluated from the length-2048 IO2DFT (or IOTDFT) of AR parameters for even DCT-IV and 

from the length-2048 IDFT (or IOFDFT) of AR parameters for odd DCT-I, respectively. As 

can be seen, the two Hilbert envelopes have minor deviation since the corresponding analytic 

signals are similar but different in magnitude, while the other two envelopes are too close to 

distinguish because they are corresponding to the squared time-domain samples which are 

symmetrized by EHSHA and EHAWS , respectively, and only differ by one zero sample. We note 

that the temporal envelope evaluated from the symmetrized frequency data can fit well the 

time-domain audio segment in LSE sense and fit the valley better than the Hilbert envelope 

does. Figure B.10 illustrates another instance, where an even DCT-IV spectrum of length 
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2048, which has strong low-frequency sinusoid component, is analyzed by the AR modeling 

of order 50. In Figure B.10 (d), the Hilbert envelope without energy alignment fits the peaks 

of the magnitude of the sinusoid component in the segment, while the square-root power 

envelop leads to a saw-tooth response. Since 
2

)(cos
1

lim
2

0

22 a
dtta

T

T

T
=�∞→

ω , the ratio of the 

energy and the squared amplitude of a sinusoid is 1/2; hence, the Hilbert envelope without 

energy alignment in this example can well fit the peaks of the sinusoid component. 

 
Figure B.7. Comparison of squared spectral envelopes. (a) The time-domain audio segment of 
1024 samples at 44.1 kHz. (b) The squared analytic transform of the odd DST-IV spectrum 
and the squared Hilbert envelope through AR modeling. (c) The squared odd DST-IV 
spectrum and the power envelope. (d) The power envelope (thick line), the squared Hilbert 
envelope with energy alignment (thin line), and the squared odd DST-IV spectrum. Both the 
squared spectral envelopes are obtained by order-24 AR modeling. Only positive spectra are 
depicted in (b)-(d) due to symmetry. 
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Figure B.8. Comparison of squared temporal envelopes. (a) The even DCT-IV coefficients of 
an audio segment of 1024 samples at 44.1 kHz. (b) The squared analytic transform of the 
symmetrized time-domain samples and the squared temporal Hilbert envelope through AR 
modeling. (c) The squared symmetrized time-domain samples and the temporal power 
envelope. (d) The time-domain samples and the two (non-squared) envelopes depicted in 
linear scale.  The two squared temporal envelopes are obtained by order-24 AR modeling. 
The symmetrized parts are not depicted in (b)-(d).  

 
Figure B.9. Comparison of temporal envelopes evaluated from even DCT-IV and odd DCT-I 
coefficients, where the two (non-squared) envelopes and the magnitude of the time-domain 
samples in Figure B.8 are depicted in linear scale. Furthermore, the two envelopes evaluated 
from odd DCT-I coefficients are shown for comparison. Note that the two envelopes 
corresponding to the squared symmetrized time-domain samples are too close to distinguish. 
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Figure B.10. Comparison of squared temporal envelopes. (a) The even DCT-IV coefficients of 
an audio segment of 2048 samples at 44.1 kHz. (b) The squared analytic transform of the 
symmetrized time-domain samples and the squared temporal Hilbert envelope through AR 
modeling. (c) The squared symmetrized time-domain samples and the temporal power 
envelope. (d) The time-domain samples, its magnitude, the square-root power envelopes 
(thick line), and the Hilbert envelope without energy alignment are depicted in linear scale. 
The two temporal envelopes are obtained by order-50 AR modeling.
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APPENDIX C  

EVALUATION FOR ZEROS OF 

FIRST/SECOND-ORDER LP FILTERS ON 

ANALYTIC SIGNALS 

C.1. Proof of Three Integrations 

By using the trigonometric properties sin(� – �) = sin(�)cos(�) – cos(�)sin(�) and cos(� – 

�) = cos(�)cos(�) + sin(�)sin(�), (71) and (72) can be rewritten as  

,0)
~

sin()
~

cos()
~

( 00 =−−−= CSA θθθθθ  (C.1) 

0~)
~

sin()
~

cos()
~

,~( 00 =−−+−= KrSCrB θθθθθ , (C.2) 

where three integrations S, C, and K are defined as 

� +−−
−

=
π

ω
θω

θω

0
2

000

0

)cos(21

)sin(
d

rr
S , 

(C.3) 

� +−−
−=

π

ω
θω

θω
0

2
000

0

)cos(21
)cos(

d
rr

C , 
(C.4) 

� +−−
=

π

ω
θω0

2
000 )cos(21

1
d

rr
K . 

(C.5) 

First consider the evaluation of integration K:   
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=
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2
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2
000 )cos(21

1
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1
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d
rr

d
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Note that we assume 10 0 << r and πθ ≤≤ 00 . We might write  
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where path � is the upper arc of the unit circle which is from 0θje− to )( 0θπ −je . Since K is real, 

(C.7) can be rewritten as  

�
�
�

�

	
	



�
�
�


�
�
�
�

�
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−��


�
�
�
�

�
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K 1
00

2
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1
Im

1
Im

1
1

. (C.8) 

Using the formula )arg(||log)log( 000 rzjrzrz −+−=− , the first integration can be 

evaluated as  

)].sin()arg[cos()]sin()arg[cos(
1

Im 000000
0

θθθπθπ −+−−−−+−−=
−�

Ω

jrjrdz
rz

  (C.9) 

In (C.9), we can choose the branch with ππ <−<− )arg( 0rz such that )log( 0rz −  is analytic 

in the domain })arg(|}{{ 00 ππ <−<−−∈ rzrz C  containing �. Then, in terms of the arc 

tangent function arctan that is with range of (−�/2, �/2), the integration in (C.9) can be 

rewritten as T defined in (78). Similarly, we can choose the branch 

with π2)arg(0 1
0 <−< −rz such that )log( 1

0
−− rz  is analytic in the domain 

}2)arg(0|}{{ 1
0

1
0 π<−<−∈ −− rzrz C  containing �. Subsequently, we have 
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)cos(
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Im
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rz θ
θ

θ
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. (C.10) 

Substituting the two close forms of (C.9) and (C.10) into (C.8) yields (77). On the other hand, 

from the integral identity πω
θω
θωπ

=
+−−
+−−

�
0

2
000

2
000

)cos(21
)cos(21

d
rr
rr

, we can evaluate C as (76). 

Equation (75) can be derived by the technique of changing valuables. Thus, from (C.1), the 

angle of the zero of the MMSE predictive filter is given as (73). By substituting (73) into 

(C.2), the radius of the zero of the MMSE predictive filter is derived as (74). 
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C.2. Proof of Zeros 

 To find the MMSE solution of (80), from the geometric symmetry of the solution, we 

might assume that rrr == 21
~~ , θθ =1

~
, θπθ −=2

~
 and ]2,0[ πθ ∈ . Then we can evaluate 

the integration in (80) as 

)sin()(8))2cos(221( 3422 θπθ rrrrr +−+−+ . (C.11) 

Deriving �F/�� = 0 and �F/�r = 0 yields, respectively,  

0)sin()31(2)]2cos(1[ 22 =+−−+ θπθ rrr , (C.12) 

)sin(1 2 θπrr =+ . (C.13) 

Repeatedly substituting (C.13) into (C.12) to reduce the power of term r from 2 to 1 and using 

the trigonometric property 2sin2(�) + cos(2�) = 1 can give  

)sin()4( 2 θπ
π

−
=r . (C.14) 

We can obtain θ  by substituting (C.14) into (C.13) as  

42
)sin(

2 −
=

π
πθ ; (C.15) 

then substituting (C.15) into (C.14) yields (81). Similarly, by repeatedly substituting (C.12) 

and using the trigonometric property 2sin2(�) + cos(2�) = 1, we can derive (C.11) as  

)](sin[8)]2cos(2)(sin[),( 22222 θπθθππθ rrrF −−= . (C.16) 

By substituting (C.15) and (81) into (C.16), we can obtain the MMSE as �(�2 − 8) / (�2 − 4). 
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