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Student: Han-Wen Hsu Advisor: Dr. Chi-Min Liu
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National Chiao Tung University

ABSTRACT

Perceptual audio coding achieves a high compression ratio by exploiting perceptual
irrelevance and data redundancy. By using advanced and sophisticated signal processing
methods, perceptual audio coding has generated artifacts that are quite different from the
traditional distortions. A new audio technology becomes mature through the successful
modeling, measuring and control on the artifacts incurred from the technology. With the
advance of new coding modules in the state-of-the-art coding methods such as Advanced
Audio Coding (AAC), Spectral Band Replication (SBR), and parametric coding, the incurred
artifacts are far more difficult to model, measure and control than those caused by previous
encoding systems like pulse code modulation. In this dissertation, we take into consideration
the MPEG audio, including MP3, AAC, SBR and PS (Parametric Stereo) coding, to explore
the compression artifacts from the novel coding methods in terms of principle, generation
sources, perception, and related relief methods. We model the audible artifacts through the
time-frequency diagrams; consider the artifacts-susceptible music types; analyze the critical
encoding technologies incurring these artifacts; and provide empirical verifications for the
artifacts. Specifically, we propose an audio patch method for reducing the two
zero-quantization artifacts and the fast odd-radix algorithm for computing the type-IV discrete
cosine transform in the filterbank computation for breaking the tradeoff of parallelism and
numerical distortion in the existing methods. We establish the compact forms for the

Temporal Noise Shaping (TNS) in AAC and consider the known artifact named the
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time-domain aliasing noise. New kinds of artifacts are explored for SBR and PS. We also

demonstrate the predictive bias of the linear prediction used in SBR.
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CHAPTER 1
INTRODUCTION

Digital audio coding is a major technology in the multimedia industry. Significant
advances in audio compression have facilitated the development of numerous applications,
including audio storage, digital audio broadcasting (DAB), mobile applications and Internet
streaming video. In addition to the traditional audio coders, such as MPEG-1 Layer-11I (MP3)
[1], MPEG-2/4 Advanced Audio Coding (AAC) [2], [3] and Dolby Adaptive Transform Coder
3 (AC-3), some state-of-the-art coding methods, such as Spectral Band Replication (SBR)
[5]-[9] and spatial audio coding [10]-[17], have been developed to achieve near-transparent
CD-quality at very low bit rates.

Advances in recording technologies in'the audio industry have led to distortions like
wow&flutter, tape saturation, crosstalk, aliasing, quantization nonlinearity, underwater feeling,
ringing, drop-outs and metal hissing. [18]. Understanding these artifacts has motivated
researches on audio restoration, audio enhancement, filter bank design, and objective quality
evaluation. Likewise, perceptual audio coding [19] has incurred various annoying artifacts
such as pre-echo, birdies, speech reverberation, binaural masking level difference (BLMD)
effect and stereo image loosening [18]. The adoption of new coding technologies has led to
more “complex” artifacts challenging audio modeling, measuring and listening. To achieve
high audio quality, knowing these artifacts is of priority concern in encoder design,
post-processing, and understanding the limitations of compression methods. In this

dissertation, we aim to explore the audible artifacts from new coding methods.

1.1. Technology Evolution of Perceptual Audio Coding

In the technology evolution of perceptual audio coding, the early effort was made to



exploit the psychoacoustic knowledge for the rate-distortion control and to scale the
time-frequency resolution of filterbank [19]-[22]. After the success of conventional
frequency-domain audio coders such as AC-3, MP3 and AAC, many researches turned to the
audio bandwidth extension. Several efficient coding methods for the high frequency (HF)
components of audio were proposed, such as PlusV [25] and SBR. Based on the spectral
harmonic redundancy, the essential concept of these bandwidth extension methods is to
reconstruct the HF components by the replicated low frequency (LF) components or white
noise with additional tonality control mechanisms. Since only a small amount of side
information is required for the HF reconstruction, the combination of the bandwidth extension
modules with the conventional coders can provide the transparent quality at very low bit rate.
For example, MPEG-4 High-Efficiency AAC (HE-AAC), which combines SBR with AAC,
can generally achieve the comparable quality at 48K. bps (bit per second) when compared
with AAC at 96K bps. Later, the channel reduction became another dimension for increasing
coding efficiency further. The spatial audio coding;-such as Binaural Cue Coding (BCC) and
Parametric Stereo (PS) coding, can reconstruct-a-binaural signal from a down-mix monaural
signal by means of spatial parameters for recovering stereo sound images. In particular, PS

has been merged into HE-AAC as HE-AAC version 2 [10].

1.2. Compression Artifacts in MPEG Audio

As a typical representation among the related coding methods, in this dissertation, the
MPEG audio [23], [24], including MP3, AAC, SBR and PS, are taken into consideration to
explore the compression artifacts from the traditional and novel coding methods. We model
the audible artifacts from new coding methods through the time-frequency diagrams, consider
the artifact-susceptible music types, analyze the critical encoder modules leading to the
artifacts, and provide empirical verifications for the artifacts. We first consider the two
common zero-quantization artifacts in frequency-domain audio coders, the “band-limited”
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and “birdie” artifacts [18], [35]. Under bit rate constraint, most audio coders discard the HF
part of audio to preserve the quality of the LF part but decrease the brightness of audio.
Another artifact due to insufficient bits is the birdie artifact that comes from a zero band
where all frequency lines are zero-quantized. We propose an audio patch method for reducing
the two artifacts. On the other hand, we concern the numerical distortion of the type-IV DCT
(DCT-IV) that is the fundamental module in the efficient computation of MDCT. Various
composite lengths have been used in several audio applications such as the 12/36-point
MDCT in MP3. In the literature, there exist four algorithms for computing DCT-IV of
composite lengths based on the fast algorithms for DCT-II/DCT-III computation [26].
However, these methods involve either serial computations or reciprocal cosine coefficients
which result in large dynamic ranges. In other words, such parallel implementations
inherently introduce large numerical .distortion due to finite precision. We present a fast
radix-g algorithm for the DCT-IV computation with merits in parallelism, numerical stability
and computational complexity.

We next consider the Temporal Noise Shaping (TNS) module [27]-[30] in AAC. TNS,
which is a linear predictive coding method in the frequency domain, is one of the effective
methods for handling the pre-echo artifact [18], [19]. Although Herre and Johnston have
explained the principle of the discrete cosine transform (DCT)-domain TNS through the
duality between the squared temporal Hilbert envelope and the power spectrum for
continuous-time signals, there is no exact formulation for the DCT-domain TNS for finite
discrete sequences. Based on the autoregressive (AR) modeling formulation with discrete
trigonometric transforms (DTTs), we establish the compact forms for the DTT-domain TNS in
a unified way for DCTs and DSTs (discrete sine transforms). Then we concern the artifacts of
TNS due to the time-domain aliasing property of MDCT (modified DCT) [74], [75] and
propose an artifact reduction method.

Subsequently, we consider the artifacts in the two major modules, SBR and PS, in
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HE-AAC version 2. To approximate the original spectral harmonics and envelopes, SBR
allows adaptive time-frequency resolutions and different envelop adjustment modes. For this
new kind of audio coding, we explore six new artifacts that are quite different from the
traditional coding distortions. On the other hand, in SBR, the second-order linear prediction is
applied to LF subbands to clip the undesired tonal components and smooth the associated
spectra for the replication to HF bands. Such a process is referred to as the whitening filtering.
To avoid the alias artifact from spectral adjustment, SBR adopts a complex-valued filterbank
instead of a real-valued filterbank. We demonstrate that the linear prediction defined in the
SBR standard results in predictive bias. A new whitening filter is proposed to eliminate the
predictive bias. Finally, for PS, we consider the crosstalk artifacts due to the down-mix
processing. According to different down-mix approaches, we classify the loss of stereo image

and concern the spectral modulation effect due to the varying down-mix coefficients.

1.3. Organization

This dissertation is organized as follows. Chapter 2 considers the two zero-quantization
artifacts, “band-limited” and “birdie” artifacts,” and develops a fast radix-g algorithm of
DCT-1V for handling the tradeoff of parallelism and numerical distortion. Chapter 3 derives
the theoretic fundamental of TNS, considers the artifacts of TNS, and proposes the related
artifacts reduction method. In Chapter 4 and Chapter 5, the artifacts of SBR and PS are

concerned, respectively. Chapter 6 concludes this dissertation.



CHAPTER 2

COMMON ARTIFACTS BY
ZERO-QUANTIZATION AND
NUMERICAL DISTORTION

In this chapter, we first concern two common zero-quantization artifacts which lead to the
loss of high or middle frequency. On the other hand, to achieve the best system efficiency, the
sequence lengths other than a power of two have been used in many audio applications. We
develop a fast odd radix algorithm for computing DCT-IV of composite lengths with low

numerical distortion artifacts and high parallelism.

2.1. Band-Limited and Birdie Artifacts

The two most common compression artifacts-from audio coding are the “band-limited”
and the “birdie” artifacts [18], [35]. The bit-rate-constraint inflicts the artifacts on critical audio
segments showing up in spectrum as the “spectral valley” or the “spectral clipping”. Spectral
valley, as shown in Figure 2.1 (b), means a band in which all frequency lines are zero-quantized.
Spectral valley phenomenon is mainly due to unsuitable bit-allocation policies or excessive
masking energy measured from the psychoacoustic model in audio encoders. Spectral valleys
may appear and disappear successively due to unsteady demand for bits between frames. This
causes the changes in timbre and the energy variation in spectrum and results in the birdie
effect to which the human hearing is very sensitive.

Spectral clipping, as shown in Figure 2.2 (b), results from cutting the high frequency (HF)
content during audio compression. The loss of HF may lead to “muffled” audio. Because of the
limited bit rate, most audio coding approaches save the bits required for HF spectra and put all
available bits to low frequency (LF) spectra, which are more relevant for the human hearing.
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Figure 2.1. Spectral valley phenomenon and its concealment: (a) original audio signal spectrum;
(b) compressed spectrum with two zero bands in low and middle frequency parts; (c)

compressed spectrum enhanced by ZBD.

For instance, the bandwidth in MP3 is generally restricted to 16 kHz due to the protocol
constraint, and the speech signal can even be limited to 7-8 kHz with good clarity. However,
the HF loss significantly degrades the signal with rich HF components. Handling the two
artifacts is a tradeoff for the encoder design owing to the limited available bits. A coding
method that aggressively retains HF contents brings more risk to spectral valleys to which the
human hearing is more sensitive among the two artifacts. Therefore, the HF content is
generally cut to reduce the risk of spectral valleys.

Many attempts [36]-[44] have been made to reduce the two artifacts. For instance, our
work [36]-[38] presented an audio patch method comprising two schemes, Zero Band

Dithering (ZBD) and High Frequency Reconstruction (HFR), to handle the artifacts in decoder.



Figure 2.1 (c) and Figure 2.2 (c) illustrate the enhanced spectra resulting from the patch method.
The method can be included in frequency-domain decoders, such as MP3, AAC and HE-AAC,
to conceal the artifacts without prior information. The ZBD module can be applied to frequency
lines after dequantization and dithers zero lines with random noises. On the other hand, the
HFR module can be applied to the transform coefficients before the inverse transform or the
QMF subbands before the synthesis filterbank and regenerate the clipped HF spectrum by
linear extrapolation. For instance, Figure 2.3 and Figure 2.4 illustrate the incorporation of the
two models into AAC and HE-AAC decoders, respectively. Figure 2.5 illustrates the
application of the audio patch method to a HE-AAC audio. As can be seen, the ZBD method
patches the LF part of the HE-AAC audio spectrum is dupliated to middle HF part; moreover,

the HFR method extends the bandwidth.
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Figure 2.2. Spectral clipping phenomenon and its concealment: (a) original audio signal
spectrum; (b) compressed spectrum with narrow bandwidth; (c) compressed spectrum with
bandwidth extension by HFR.
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2.2. Fast Radix-g Algorithm for DCT-IV with Low

Numerical Distortion Artifact and High Parallelism

The DCT-IV as defined in (1) is the fundamental module in the efficient computation of

the lapped orthogonal transforms and cosine modulated filter banks known as MDCT.

N-1
Yo = x, cos[(n+1)(k+H/N], k=0,1,2,..,N-1. (1)

n=0
The sequence length of a power of two is most popular due to the computational efficiency and
structure simplicity of the existing radix-2 algorithms. However, various sequence lengths
other than a power of two have been used to achieve the best efficiency in audio coding and
processing, such as the 12/36-point MDCT in MP3 audio coding.

In the literature, there exist various fast radix-2 algorithms for computing DCT-II and
DCT-III [45], [46]. The fast radix-g algorithms for the DCT-II/DCT-III computation have been
also developed and extended to the fast mixed-radix algorithms for composite lengths [47],
[48]. On the computation of DCT-IV, we can consider the four existing approaches, which
convert DCT-IV into DCT-II or DCT-III [26]. The four fast algorithms are represented in
matrix form as

Cy=LCyD=D'C/'DL'=D"Cy'L' =(L")'D/Cy (D™, (2)
where the DCT-1I/ DCT-III/ DCT-IV matrices are respectively defined as
[C})/ 1, =cos[(n+1/2)k/NT],
[C i, =cos[n(k+1/2)/ N1,

[Cy 1., =cos[(n+1/2)(k+1/2)/N],

for n, k =0, 1, 2, ..., N — 1; diagonal matrices D and D; of order N are defined by

diag{2cos(n(i+1/2)/2N) | i = 0, 1,..., N — 1} and diag{1/2, 1, 1,..., 1} respectively; lower
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triangular matrix L is defined by the serial computation: [ y,, y,»..., Vy_; 1" = L[ Xy X;sec0s Xy, 1"

[X0/2, X,= Yoy Xy = Ve Xy — vy, 1. However, as depicted in Figure 2.6, the four

methods indicated in (2) involve either serial computations or reciprocal cosine coefficients

which result in large numerical distortion artifact due to large dynamic ranges. In other words,

these DCT-1I/DCT-III-based fast algorithms have a tradeoff between numerical distortion and

parallelism. In this section, we propose a fast radix-q algorithm for the DCT-IV computation

with merits in parallelism, numerical stability and computational complexity, where ¢ is an odd

positive integer. The proposed radix-g algorithm can be extended to the fast mixed-radix

DCT-II/DCT-1V computation for composite lengths.

2cos 7 AN 12 [2cos 7 /4N] !
Y0 cos 7 34N L ) W Recosz3/4N] 1 0
M 2cos 17 5/4N -1 4 xl\ [2cos 7 5/4N 11 g4
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> —_—————p
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Figure 2.6. Signal flow graphs of the four DCT-IV algorithms indicated in (2),
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2.2.1. Fast Radix-q Algorithm for DCT-IV Computation

We begin with the scaled DCT-IV (SDCT-1V) defined as

N-1
Y, =2 > x,cos®, ,k=0,1,....,N -1, 3)
where enotes m(n + + . For the case of lengt s - requires one
h CIDka d ( 1/2)(k + 1/2)/N. For th f length 1, DCT-IV requi

multiplication, but SDCT-IV requires no multiplication. Let the sequence length N be a
multiple of g that is an odd positive integer. Equation (3) can be partitioned into g

superpositions by grouping the terms with the same indices under the module g as

N 3 N L‘ N
q q 2 q

a3

N 2

_ 7 / N N

Yk - 2 anyi%‘ COs ¢;:k + 2 n+m COS@qVHm k z gn+q—1-m COS(I)quq 1-m,k * (4)
n=0 - m=0 n=0 m=0 n=0

Combining the second and the third terms of (4)-and- using the trigonometric identity cos(a+b)

= cos(a)cos(b) - sin(a)sin(b), we obtain

43
2

Y, =A + Z(C,:" cos @, +8/ sin®) ), (5)
m=0
where
0, =5 (5 —mk+1), (6)
4 .
A =2 X0 COSP (7
n=0
Xy
Cl:n = \/5 (an+m +X qn+q 1- m)COSq)n k> (8)
n=0
.
Sl:n = \/EZ (an+m - qn+q —1- m) Sln q)n k (9)
n=0
2
or SZ] 1-k \/EZ (_1)” ('xq11+m - an+q—1 m ) COS q)n k >
n=0 (10)

form=0,1,...,(¢g-3)/2,k=0,1,..., N- 1.

Equation (5) consists of ¢ length-N/g SDCTs-IV defined by (7)-(10). Further, it can be shown

12



that for any integer p,

AZIT]N+1< - AZ%N—l—k =(=D"A,, (1D
C%Nw - C%N—l—k =(=D"C/, (12)
Sty = =80, = (D8] (13)

In order to save multiplications, by using properties (11)-(13), we form the two sequences U/

and Y,,, as follows:

and V,” thatare 1/2 of the sum and difference of Y., oy

q-3

Ul =D A+ (C,Z" cos® , +5."sin@®" )Cos—”(z”;“)” i

m,k m,k

m=0 (14)
forp=0,1,...,(q— 12, k=0,1,..,Nlg -1

3
2
: N N . 2m+1
v = Z(C,:" sin@®, , — S/ cos@mk)-smm,

m,k

=0 ! (15)
forp=1,2,...,(¢g - D2, k=0, 1,...;Nlg — 1.

Similar to the strategy utilized in [47], for each k and each p, (¢ — 1)/2 multiplications can be

saved by moving the cosine coefficients ‘outside the brackets in (14) and (15), respectively.

However, the range of the angles ®11Z,k 1s from O to n/2, and thus the dynamic range of tangent
values is large. To control numerical stability, (14) and (15) are rewritten as
Ul =(=D"A+ DT (N} cos LZ2DT)
m=0 (16)
forp=0,1,....,(q—-1)/2,k=0,1,..., Nlg — 1;

g3
2

. 2m+l1
V7 = ZHI:" (A Smw)’

prary (17)
forp=1,2,...,(q— 1)/2,k=0, 1,..., Nlg - 1,
where
(cos®),,C/" + S tan@®) ,,C; tan®), —S") if O), <Z
(N, T ,H")= . (18)
(sin® ,,C/' cot®), +8,",C;" =S cot®) ) if O >Z
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Figure 2.7. Signal flow graphs of length-27 SDCT-IV.

In (18), the dynamic range of the tangent and cotangent values is controlled within the interval

[0, 1]. The final SDCT-IV outputs are obtained from

Y, =U;, fork=0,1,...,N/q-1; (19)

Yo =U/+V/ and V.,  =U-V/,
,, q (20)
forp=1,2,....,(q=1)/2,k=0,1,...,Nig - 1.

Equation (19) is obtained from the symmetry around k = -1/2 of DCT-IV output. For a

length—qx SDCT-1V, the decomposition must be repeated until the lengths of subsequences are

one. To obtain the output of DCT-IV or IDCT-IV, N multiplications are required for the scaling
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operations. Absorbing the scaling factors into (16) and (17) yields

UP=(-D"d-A + ZT,;" A -5-005—”(2”;“)” ,
"= 1)

forp=0,1,...,(q=1)/2,k=0,1,..., Nig - 1;

q-3

V/p — & Hm ‘Am ‘5‘Sin p(2m+l)7 ,
k n;) k k q (22)

forp = 1’ 2"--7 (q - 1)/2, k:O, 1,...,N/q - 1,

where 9 is 1/ V2 and V2 / N for DCT-IV and IDCT-1V, respectively. The number of scaling

operations can be reduced from N to N/q. To summarize, the proposed algorithm comprises
(7)-(10) and (16)-(22). Figure 2.7 shows the signal flow graph for a length-27 SDCT-IV after

the first stage decomposition.
2.2.1.1 Parallelism and Numerical Stability

Each DCT-II-based algorithm for DCT-IV computation illustrated in (2) involves either
serial computations or reciprocal cosine coefficients. ' However, the proposed radix-g algorithm
avoids reciprocal cosine coefficients, especially due to the mechanism in (18), and thus has
good numerical stability. On the other hand, if the latency of hardware implementation is
considered, the length of the critical path of the DCT-1I-based algorithm involving the serial
computation is N because of the recursive computation for matrix L. The unit of the length is
one multiplication or addition operation. For the proposed radix-g algorithm, the length of the
critical path is ceiling{log,[(g — 3)/2]} because of the summation in (21). This result shows the
critical path of the proposed radix-g algorithm is significantly shorter than that of the

DCT-II-based algorithm involving the serial computation.
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2.2.1.2 Computational Complexity

The recursive forms of the cost functions for the proposed algorithm are shown in
Appendix A. Let N = ¢, the non-recursive forms are given by
Mi(N) = (q = 1)(g + 2)/(2q) Nlog,N + Nig, (23)
An(N) = (q - 1)(g + 5)/(2q) "Nlog,N . (24)
In general, a lower computational cost than that induced from (23) and (24) can be achieved by
rearranging the operation factors. Furthermore, the optimization of the initial case for small
length-g SDCT-1V can reduce the overall complexity. In Appendix A.2-A.4, we derive and tune
the fast algorithms for radix-3, radix-5, and radix-9 DCT-IV computation.
The arithmetic complexity of the DCT-II-based algorithm indicated in (2) is given by
M (N)=M;(N) + N, (25)
An(N) = Ap(N) + N~1. (26)
Table 2.1 compares the arithmetic.complexity-of the proposed DCT-IV algorithm and the
DCT-1I-based algorithm, where the fast algorithm [47] is adopted for computing DCT-II of
length N = qk. The comparison shows that the proposed algorithm not only is free from the
serial computation and numerical instability but also achieves a lower arithmetic complexity

than the DCT-II-based algorithm for g = 3 and 9.

Table 2.1. Arithmetic Complexity Comparison for DCT-1V of N = q

The proposed algorithm DCT-II based algorithm
q Mn(N), N>gq My (q) Mn(N), N>gq My (q)
3 | 4/3-NlogsN —TNI6 + 5/2 3 4/3-N logs N — 17N/18 + 3/2 4
5 | 11/5-N logs N 11 11/5-N logs N — TN/10 + 3/2 9
7 | 27/7-N log; N + NI 28 27/7-N log; N — NI2 + 3/2 25
9 | 20/9:N logo N — 177N/216 + 11/8 16 23/9-N logo N — TN/8 + 15/8 17
q An(N), N>gq A (@) AvN), N>gq A (@)
3 | 8/3NlogsN—N+1 6 8/3-N logs N —TN/9 + 1 6
5 | 21/5'N logsN 21 21/5-N logsN — N + 1 17
7 | 36/7-N log; N 36 36/7-N log;N— N+ 1 30
9 | 53/9°'NlogyN —103N/72-1/8 40 50/9-N loggN — N + 1 42
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2.2.2. Fast Mixed-Radix DCT-1I /DCT-1V Algorithm

For composite lengths, i.e., N= 2% -qf‘ -q;? qf , for odd integers 0 < g1 < ¢2 <...< @y

and any non-negative integers A,,4,...,4,, the proposed radix-g algorithm can be flexibly
combined with the existing fast DCT-II/DCT-IV algorithms for composite lengths. The
illustrated radix-2 DCT-II/DCT-IV algorithm consisting of Wang’s [49, eq. (50)] and Britanak’s
[50, eq. (16)] algorithms is described in Appendix A.5. As depicted in Figure 2.8 and Figure 2.9,
the radix-2 DCT-1I/DCT-1V algorithm decomposes a length-N DCT-II into a length-N/2 DCT-1I
and a length-N/2 DCT-IV and decomposes a DCT-IV into two length-N/2 DCTs-II without
involving serial computations and reciprocal cosine coefficients. The proposed radix-g DCT-IV
algorithm can be combined with the radix-2 DCT-II/DCT-IV algorithm and the radix-¢ DCT-1I
algorithm [47] to constitute a mixed-radix algorithm. for DCT-II/DCT-IV computation to
achieve the demands in parallelism and numerical stability. Furthermore, as shown in Appendix

A.6, the mixed-radix algorithm obtains the merit in computational complexity.
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Length—-N/2
DCT-II

Y22
Y21

Yni2

Y241

Length-N/2 Y241
DCT-IV :

é/
{

Y2

Y

y O* x+y X ---» X

Figure 2.8. Signal flow graph of the length-N DCT-1I decomposition.
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Figure 2.9. Signal flow graph of the length-N DCT-IV decomposition.

2.3. Concluding Remarks

In this chapter, we have considered the two common zero-quantization artifacts,
“band-limited” and “birdie” artifacts. An audio patch method comprising two schemes, ZBD
and HFR, has been proposed to reduce the two artifacts. The patch method can be incorporated
into transform or subband based audio decoders, such as MP3, AAC and HE-AAC. On the
other hand, for the computation of the cosine modulated filterbank, we have proposed a fast
radix-g DCT-IV algorithm to handle the conflict between parallelism and numerical distortion
artifact in the existing algorithms. The radix-g algorithm can be extended into a mixed-radix
algorithm for the DCT-IV computation of composition lengths with the merits in parallelism,

numerical stability and computational complexity.
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CHAPTER 3
ARTIFACTS IN
TEMPORAL NOISE SHAPING

The TNS method [27]-[30] has been utilized in MPEG-2/4 AAC for attenuating the
quantization noise preceding the attack signal known as the pre-echo artifact [18], [19]. As
illustrated in Figure 3.1, the quantization noise spreads throughout the entire signal block in
the time domain. The TNS module can shape and control the spread of quantization noise to
improve audio quality.

Since the TNS in AAC is applied to the MDCT coefficients that are highly related to the
even DCT-1V, based on the theory of the spectral AR modeling in the DTT domain, we
establish the compact form of the TNS in the DTT domain and explain the “time-domain
aliasing noise” [30], which has an unusual noise around the attack segment. We also concern
the degradation of the artifact with the TINS. filter orders. Finally, we compare the TNS by the

Hilbert and power envelope methods.

l
I ll
\nl

Iy ;

‘“‘fni I:' :"'“i yl ’F'”‘{‘\{"\c'w"'w
PR ‘" il
b

Figure 3.1. Pre-echo artifact (dashed line: original waveform; solid line: quantization noise).
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3.1.TNS Formulation in DTT Domain

TNS aims to shape the temporal envelope of the quantization noise by incorporating an
open-loop predictive coding [31] across frequency lines in audio encoders/decoders. In terms
of z-transform, the concept of TNS can be explained as follows. As depicted in Figure 3.2, x(k)
and d(k) denote the input and the predictive residual signals in the frequency domain in the
analysis part, whereas x,(k) and d,(k) denote the reconstructed signals related to x(k) and d(k)
in the synthesis part. The relation between the reconstruction error r(k), i.e., x(k) — x,(k), and

the quantization noise g(k), 1.e., d(k) — d,(k), is expressed in z-transform as

R(z)= 0(2)

T1-HG) @7

where R(z) and Q(z) are the z-transforms of 7(k)-and. g(k). If the magnitude response of the
inverse or whitening filter 1/(1-H(z)) can' approximate the temporal envelope of the
frequency-domain input signal x(k),-the quantization noise Q(e ’“) (in the time domain) can
be amplified or attenuated with the temporal shape.-Figure 3.3 illustrates the shaping effect of
the TNS applied in the MDCT domain.

In [27]-[30], Herre and Johnston have proposed the TNS predictive filter by exploiting
the duality between the squared temporal Hilbert envelope and the power spectrum for
continuous-time signals. Since, in the literature, there is no derivation for the finite discrete
sequences in the DTT domain, this section derives the compact form for the TNS in the DTT

domain through the theory of the AR modeling in the DTT domain.
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Figure 3.3. TNS effect. (a) original signal in the time domain; (b) decoded signal without TNS;
(c) decoded signal with TNS.
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3.1.1.Autoregressive Modeling in DTT Domain

The AR modeling [53], [64], also known as linear prediction (LP), has received more and
more applications in audio coding. The theoretical fundamental for AR modeling of
temporal/spectral envelopes with various DTTs has been established in Appendix B. Here, we
summarize the critical results related to the TNS formulation.

Through this chapter, we consider all transforms as matrices that left-multiply the input

sequence represented as a column vector.
3.1.1.1 Generalized Discrete Fourier Transform
The N x N generalized DFT (GDFT) [77] matrix is defined by

— j27(k + a)(n+b)
N.

(G s i = exp{ ] fork,n=0,1,...,N—1. (28)

Four special forms of the GDFT arise when a and b take on the values O or 1/2. They are
classified and named as follows [76]:

(i) DFT (Discrete Fourier transform):'a=0and b = 0.

(i1) OTDFT (Odd-Time DFT): a =0 and b = 1/2.

(i11)) OFDFT (Odd-Frequency DFT): a = 1/2 and b = 0.

(iv) O°DFT (Odd-Time Odd-Frequency DFT): a =1/2 and b = 1/2.
The last three transforms can be regarded as the modified versions of the DFT with a
1/2-sample delay in the time domain and/or a 1/2-sample advance in the frequency domain.
The inverse GDFT (IGDFT) matrix is the scaled Hermitian transpose of the forward GDFT

matrix:

G, =%G.y =76, (29)

where superscripts (H) and (*) denote the Hermitian transpose and conjugate operations,

respectively.
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3.1.1.2 Convolution-Multiplication Property of GDFT

The circular and skew-circular convolutions of two vectors x and y of length N are

defined as
n N-1 (30)
@ © Y= %y, 0+ XXV sun-forn=0,1..,N-1
k=0 k=n+1
n N-1 31)
(x @ y)n :Zxkyn—k - Zxkyll—k+N ’ forn :O’ 1’~-~aN_ 1- (
k=0 k=n+1

The DFT has the convolution-multiplication property that the inverse transformation after
entry-wise multiplication gives the same result as the circular convolution of the original
sequences. Vernet [78] and Martucci [76] derived such properties for other GDFTs. We
summarize the results in matrix form as follows.

Letu=x © yandw=x ® y, thenthe following hold:

1 =Gpl(Gye) o (G )] (32)
u =G, (G %) oGy, (33)
w =G, [G, ¥)e(G ). (34)
w=GLI(G,,x)° G, ). (35)

3.1.1.3 Discrete Trigonometric Transform

The family of DTTs comprises eight versions of the discrete cosine transform (DCT) and
eight versions of the discrete sine transform (DST). Martucci formulated the DTTs through
the convolution forms as defined in [76, Appendix]. The orthogonal-like relations between the

inverse and forward DTTs are

TI_I =T TI;I =5 Ly » TI;II =T, ,and TI;/I =3 T (36)

L
M

where the DTTs in both sides of each equality must be the same in the categories of cosine or

sine and even or odd; and M is 2N and 2N — 1 for the even and odd cases, respectively.
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3.1.1.4 Analytic Transform based on GDFT and IGDFT

Marple proposed a DFT-based method for computing the analytic signal corresponding
to a real-valued finite sequence of an even length [79]. We extend the result to the GDFTs as
described in the following.

Via each GDFT, we can define the generic form for the analytic transform matrix:

-1 T
A; =F, Z;Wqu(Z;) F,, (37)
where A;’ is the M x M analytic transform matrix, F, is the GDFT matrix, Z;’ is the

zero-padding matrix, and W' is the weighting matrix. Figure 3.4 depicts pictorially the

reconstruction of the analytic transforms. The specific matrices are tabulated in Table 3.1,

where Z, v is defined as [0px,, I » 0pX q]T, where I \ is the identity matrix of order p, and

0,., 1s the p x g zero matrix. For instance, the 2N 'x 2N O’DFT-based analytic transform

matrix A;, is defined as

- (38)

2=

|
A;;:Gil'{ N}'le'[IN 0N><N]’G
N

2 XN
As can be seen in (37), the analytic transformation can discard the negative GDFT

frequencies. Especially, let x denote the real-valued column vector of length M and a = A, x,

then the analytic vector a has two important properties. First, the real part of @ exactly equals

the original vector:

Re(a,)=x, ,forn=0,1,...M - 1. 39)

Second, the real and imaginary parts of a are orthogonal:

MZ_:lRe(an) -Im(a,)=0. (40)
n=0
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For example, letx = [1, -2, -3, 7, 11]T, then

A%x =[1+ j6.5489,— 2+ j1.8809, —3— j4.0867,7— j8.1816,11+ j3.8385]",

A% x =[1- j6.1211,—2— j0.1534,—3— j6.9929,7 — j8.7628,11+ j4.1978]" .

Real vector — Analytic Transform [— Analytic vector

Real vector — GDFT IGDFT — Analytic vector

v t

Entry Selection [* Entry Scaling * Zero Padding

Figure 3.4. Reconstruction of analytic transform based on GDFT.

Table 3.1. Definitions of Related Matrices for Analytic Transforms

+ + +
A, F, Z, w,
A;+ G,, diag{12,2,...,2,1} of order N + 1
. G Zi yana .
A 0% diag{12,2,...,2,1} of order N+ 1
M=2N Ay Gé,o diag{2,2,...,2} of order N
G Zyyn
Ay % diag{2,2,...,2} of order N
AT G,, diag{l,2,2,...,2} of order N
Ar | G diag{1,2,2,...,2} of order N
2
M=2N-1 Z _
Ay | G N diag(2,2,...,2,1} of order N
Ay Gé% diag{2,2,...,2,1} of order N
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3.1.1.5 DTT and Analytic Transform

The DTT spectra can be interpreted as the GDFT spectra of analytic vectors in the
following way. Given a temporal column vector x and the DTT vector y = T, x. Then the
IGDFT of the zero-padded scaled DTT equals the analytic transform of the symmetrized

temporal vector, that is

A;(qu):Fq_l(ZquHy)’ (41)

. . . . . . -1 -
where A; is the analytic transform matrix, E, is the symmetric extension operator, F_~ is

the IGDFT matrix, Z, is the zero-padding matrix, and Wq' " is the weighting matrix. The

specific types and definitions of the related matrices are defined in Tables B.2 and B.4 in
Appendix B. The relation illustrated in (41) is depicted pictorially in Figure 3.5. We take the
even DCT-1V for instance. For a real-valued column vector x of length N, the specific

expression of (41) is given by

I 1
y ol =G;\ || " |2, Cix],
v £|:_ JN j| ] 272 (|:0N><Ni| v lva (42)

where J, 1is the reversal matrix of order N.

Symmetric | || Analytic

Temporal vector —»| - Analytic vector

Extension Transform
DTT IGDFT
Entry .
DTT vector —» y — Zero Padding —» Scaled and zero-padded
Scaling DTT vector

Figure 3.5. A pictorial representation of (41).
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3.1.1.6 Autocorrelation and Temporal Envelope

The circular and skew-circular autocorrelations of a vector x of length N are defined as

1 N-n-1 i N-1 .
ro), :N( Zxk X T Zxk 'xn+kN]v forn=0,1,...N-1. (43)
k=0 k=N
1 (Nt N-1
r}), =—{ Dxp X - DX, ‘xM_Nj, forn=0,1,...,N—- 1. (44)
N k=0 k=N-n

Just like the time-frequency duality between circular autocorrelations and DFT power spectra,
we can have dualities between the GDFT-domain circular or skew-circular autocorrelations

and the temporal (IGDFT-domain) envelopes as follows.

B Consider a column vector y of length V.
(i) The relation between its skew-circular autocorrelation and IOTDFT/IO*DFT power

spectra is given by

rS =G, ,[G;}9)° (G, W 1=G, [(GAp)° G\ ). 45)

1
2

(i1) The relation between its circular autocorrelation and IDFT/IOFDFT power spectra is

given by
ry =Gy [(Gypy) 0 (Gyp¥) 1= Gy [(G,y) o (G, ()] (46)

Here the notation ( ° ) denotes the Hadamard product (i.e., the entry-wise product of two

vectors or matrices). O

By substituting (41) to (45) and (46), we immediately obtain two dualities between the
DTT-domain circular or skew-circular autocorrelation and the temporal envelopes. In the
following, the two dualities are expressed in generic form, and the specific types of

transforms and autocorrelations are defined in Table B.3 in Appendix B.1.6.4.
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B Given a temporal vectorx and its DTT vectory = T, x.
(i) Let y=Z Wy, then
r,=K,[(ATE x)o(AE x)"]. 47)
(i) Let j=Ey,then
r; =K, [(E x)°(E x)]. (48)
Here r; and r; are the circular or skew-circular autocorrelation of y and y depending

on the type of K. O

For example, given a real-valued column vector x of length N, the two dualities for even

DCT-1V are expressed below.

Si—
S 4N
_EB
<%

|
N~ =
=
| I |
=
N
[e]
VR
j>
<%
|
P~y
N =
=
L 1
=
;/*

. . |1 . S
(1) Let yz[ N ]ZIN-C,Vx,then r; —Go,

NXN

i) Let j=| % |-Chx.then r2G
(i) Let y= 7 -Cpx,then ryj=

“JN

To summarize, the dualities (47) and (48), corresponding to the Hilbert and power
envelopes respectively, provide the fundament for AR modeling in the DTT domain. In
Appendix B, we also confirm that the traditional Yule-Walker equations can be solved to yield

the AR parameters in the GDFT AR modeling problem.

3.1.2. Evaluation and Representation of Whitening Filter

Let x denote the data vector and y = T,x. According to (47) and (48), we can have the

squared Hilbert envelope or power envelope for shaping the reconstruction noise. As defined

in the two dualities, ry and ry consist of the circular or skew-circular autocorrelation of

yandy respectively, where
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3 =[50). 31, M DI =Z,W,"y and §=[5(0), j(1),.... (M ~]" =E_y.

Subsequently, the parameters of the whitening filter are obtained by solving the Yule-Walker
equations. Since the relations in the two dualities are based on length M instead of N, we
assume that the whitening filter is applied to y covering y in our derivation.

The whitening filter can be represented as a circulant or skew-circulant matrix [32] in the
case of the circular or skew-circular convolution. By taking conjugate of both sides of
(32)-(35) and assuming that the operands x and y are real-valued, we have the alternative

relations:

u=N-G,,[(Gyx)°(Gyoy]l;
u=N-G, (G x)° Gy
w=N-Gy (G, %) (G, 1)

w=N-G,

11
202

[(G;1%)=(G," ). (49)

Hence, the matrix representation H for the whitening filter can be diagonalized by GDFTs as

H=F, & F, (50)

where ¢:N-diag{(G(;La)n ln=0,1,..,M -1}, where b is 0 or 1/2 depending on the

convolution type.

In the MPEG standard [2], [3], the TNS predictive error filter is performed through the
linear convolution (filtering) in the transform domain. In matrix form, the linear convolution
L which is lower triangular is the same as the periodic convolution H except for the upper
triangular entries. Thus, by padding the input data with suitable zeros, the periodic
convolution equals the linear convolution. However, to reconstruct y, all M residuals are
necessary to be transmitted to the decoder to perform the periodic deconvolution H™'. In

contrast, only the residuals corresponding to y are required for the linear deconvolution L™ for
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it is still lower triangular. Interestingly, if L™ 'u = v and v, = 0 for M — P < n < M — 1, then
H'w=H '(Lv) = H '(Hv) = v. Hence, H and H ~'are equivalent to L and L'on § and the
related residuals respectively, and thus we can develop the TNS formulation on y in the

periodic convolution/deconvolution manner.

3.1.3. Formulation of TNS

We now establish the formulation of the shaping effect of TNS. First, the dequantized

residual d, is given by
d =d+e=Hy+eg, (51)

where d is the original residual, and & is the additive quantization noise. After deconvolution,

the reconstructed spectral sequence y, is'given by
y.,=H'd, =H '"(Hy+e)=y+H 'c. (52)

In other words, the quantization noise. & can be shaped by the periodic deconvolution H ™'
in the transform domain. Notice that only the-part of d corresponding to y is quantized and
transmitted from the encoder to the decoder. Let the zero-padded part be perfectly

reconstructed, then the reconstructed noise exists only for non-zero-padded samples of y.

Thus we can confirm the equivalency of H 'andL'on & to have H '¢e=L'¢e=Z n,

where Z,is the zero-padding matrix corresponding to T, and n denotes the reconstruction

noise related to Wq'+ y . This implies that some quantization noise should be “virtually”

imposed on the P samples after y to correct the noise propagation in the open-loop prediction.

To check the temporal shaping effect, T;1 is applied to the part of y, related to y,
ie, W/ )"'Z.y, , to yield the reconstructed temporal sequence x,, where (W )" is

multiplied for removing the scaling of Wq” on y. Before formulating x,, we consider
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another relation between IDTT and IGDFT as follows. For an arbitrary vector z, (41) can be

rewritten as
AJET 'z=F'ZW z. (53)
Thus, by the property that the real part of the analytic transform exactly equals the original
sequence, for an arbitrary data vector z, we have
ET 'z=Re{F, 'ZW z}. (54)
Consequently, by settingz as (W,")"'Z] ¥, to (54), the reconstructed symmetrized temporal
sequence is given by
Ex =ET 'W')'Z5, =Re{F'ZW " W/)"'Z.y,}. (55)
Substituting (52) into (55) leads to

E x, =Re(F 'Z,Z (3+H'¢)}
=Re(F,'Z, 2, (ZW, y+H &)
=Re{F,'ZW/ 'y+F Z Z H ¢} (56)
=Re{F'Z W/ y}*+Re{F'Z ZH s}
=ET 'y+Re{F 'H ¢},

In the last step in (56), the property (54) is used, and the product Z Z Z can be removed due
to H'e=Z ,1 - Then substituting (50) to (56) yields
_ 1-1.4 _ -1
Ex =E x+Re{®@ F_¢}=E x+noRe{woF ¢}, (57)

where column vectors # and  are defined by #, = ‘(di_l)ii‘ and w, =(@7").-n;' fori=
0,1,..., M — 1. Hence, n results in the temporal shaping effect. Furthermore, due toy , the
imaginary part of F q’ls is also involved in the reconstruction noise.

Figure 3.6 illustrates a TNS analysis result based on order-12 AR modeling on the even

DCT-1V coefficients of 64 audio samples at 8 kHz sampling rate. As shown in Figure 3.6 (c),
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although only 64 quantization noise samples are applied to the 64 residual samples
transmitted, the 12 *“virtual” quantization noises indexed from 64 to 75 occur when analyzed
with the skew-circular convolution. In Figure 3.6 (d), the original time-domain samples and
the reconstructed noise are depicted to show the shaping effect. Also notice that the TNS
processing is applied to a data segment of length 64 but is analyzed in the O’DFT domain of

length 128. Because of symmetry, only one side is shown in this illustration.

4 4
ol
0
2+
4 31 83 o 31 63
Frequency Index Frequency Index

(a) (b)

-04 ——Original
i —Reconstructed Noise
% Ll -0.6 .
64 75 127 0 31 63
Frequency Index Time Index

(c) (d)

Figure 3.6. TNS analysis. (a) The even DCT-IV coefficients of an audio segment of 64
samples at 8 kHz. (b) The predictive residuals by the order-12 whitening filter corresponding
to temporal Hilbert envelope. (c) The quantization noise on the residuals indexed 0~63, and
the virtual quantization noise indexed 64~75. (d) The original time-domain samples and the

reconstruction time-domain noise.
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3.2.Artifacts in TNS

It has been known that the lapping operation of MDCT creates the time-domain aliasing
and results in the undesired shaping of TNS at silence or weak-energy segments [27]. In this
section, we explain the phenomenon through the relation between the MDCT and DCT-1V

together with the fundamentals of AR modeling in DTTs.

3.2.1. Time-Domain Aliasing Noise

The N x 2N MDCT matrix M is defined as

7wk +1/2)(n+1/2+N/2)
N

[M]k,,l=cos( j for0<k<N-land0<n<2N-1. (58)

The MDCT matrix can be factorized into the product of the “time-domain aliasing” matrix

and the even DCT-IV matrix: [26]
M=C: A, (59)

where M is the N x 2N MDCT matrix, Cj, isthe N x N even DCT-IV matrix, and A is the N

x 2N time-domain aliasing matrix defined as

A:|:0N/2 0N/2 _JN/Z _IN/2:|’ (6())

IN/2 _JN/Z 0N/2 0N/2

where I, is the identity matrix and Jyy, is the reversal matrix. The factorization of the MDCT
matrix is depicted pictorially in Figure 3.7. Consequently, the MDCT of a finite sequence of
length 2N is equal to the even DCT-IV of the aliased sequence of length N. According to the
time-domain aliasing cancellation (TDAC) principle [74], the aliasing effect can be perfectly
removed by the overlap-and-add operation, which makes the MDCT especially attractive in
audio coding for the blocking effect reduction. However, the time-domain aliasing operation

of MDCT brings the “time-domain aliasing noise” artifact in TNS.
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According to (47), when the linear predictive parameters are estimated in the DCT
domain, the spectral magnitude response of the corresponding inverse filter should fit the
temporal Hilbert envelope of the time-domain original signal. Equation (59) implies that the
predictor evaluated from the MDCT of an audio segment is equal to that evaluated from the
DCT-1V of the aliased one. More specifically, the duality formula (47) in this situation is
given as follows.

a IN e 2 S e+ IN A e+ IN N *
Let y= 0 21y -Cly(Ax) , then ri =G .|| A} J (Ax) |o| Ay 7 (Ax) | |,
? “Jy “Jn

NXN
where X means a windowed input signal (e.g., when the sine window is applied,
x =diag{sin[r(n+1/2)/(2N)]In=0,1,2,....2N —1}-x ). Thus, rather than the original
temporal Hilbert envelope, the inverse filter, evaluated in the MDCT domain shapes the
time-domain quantization noise according to the temporal Hilbert envelope of the aliased
time-domain signal. Consequently, -as illustrated in Figure 3.8, the artificial pre/post-aliasing
artifacts are introduced due to the time-domain aliasing operation of MDCT. The aliasing
noise may occur at perceptually sensitive positions (e.g., silence segments) and degrade the
audio quality. Figure 3.9 and Figure 3.10 illustrate the pre-aliasing and post-aliasing artifacts,

respectively.

PN
N~

Figure 3.7. MDCT factorization. Identity and reversal matrices are represented by diagonal

and anti-diagonal lines and row vectors are represented by horizontal lines.
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Figure 3.8. The time-domain aliasing of MDCT:(a) the input signal and the analysis sine
window; (b) the post-aliasing signal corresponding to (a); (c) the input signal and the analysis

sine window; (d) the pre-aliasing signal corresponding to (c).
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Figure 3.9. TNS pre-aliasing artifact: (a) original signal in time domain; (b) decoded signal
without TNS; (c) decoded signal with TNS.
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Figure 3.10. TNS post-aliasing artifact: (a)original signal in time domain; (b) decoded signal
without TNS; (c) decoded signal with TNS.

3.2.2. Aliasing Noise by High-Order TNS

The accuracy of AR modeling generally rises with increasing predictive orders. This
implies that the spectral magnitude response of the evaluated inverse filter should fit more and
more accurately the temporal envelope of the original time-domain signal when the predictive
order increases. For attack signals, the predictor shapes the abrupt changes of temporal attacks.
Depending on the time-domain aliasing nature of MDCT mentioned above, the pre-aliasing or
post-aliasing artifacts deteriorate with the TNS order due to the higher abrupt shaping. For
instance, comparing Figure 3.11 (c) with (b) shows that the TNS of order 12 concentrates the
quantization noise within the attack position but worsens the pre-aliasing artifact. Hence, the

predictive order cannot be decided purely on complexity or coding gain.
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Figure 3.11. Deterioration of TNS aliasing artifact with high TNS orders: (a) original
time-domain signal; (b) reconstruction noise with order-3 TNS; (c) reconstruction noise with
order-12 TNS.

3.2.3. Artifacts Reducing Method

By applying the property that the IMDCT (inverse MDCT) matrix is the scaled transpose

of the MDCT matrix to (59), we have

O IN/Z

-1 1 1 0o -J
M=—M"=—A"C,, =—. Nerle,,, 61
> NACh =Ny T | (61)

_IN/2 0
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where M is the 2N x N IMDCT matrix. The factorization of the IMDCT matrix is depicted
pictorially in Figure 3.12. Equation (61) specifies the symmetric structure of the IMDCT
output and implies that the shaped quantization noise by TNS must have the same symmetric
structure after the IMDCT conversion. Unlike the aliased original signal, the shaped
quantization noise cannot be perfectly cancelled by the overlap-and-add operation.
Accordingly, the time-domain aliasing noise always accompanies symmetrically with the
shaped noise centralized in an attack. This means that the aliasing artifact cannot be avoided
through the TNS filter design.

In audio coding, the window switch [1]-[3] is another mechanism for handling attack
signals, where the start and stop windows are used in the transition between a long window
and a short window. In [33], a method is proposed to detect attacks and to apply the start and
stop windows in AAC to attenuate the.aliasing noise (see Figure 3.13). Figure 3.14 illustrates
the effect of the stop window. As shown in Figure 3.14 (d), the aliasing term of the original
signal can be removed through the windowing-operation, instead of the overlap-and-add
operation. In the same way, the aliasing noise can be eliminated. Similar concept is adopted in
MPEG-4 Low Delay AAC, where a window which exhibits only a small overlap between
subsequent frames is provided to minimize the time-domain aliasing noise [34]. Figure 3.15
provides an example to compare the waveforms and spectrograms of several signals including
the original signal, the decoded signal without TNS, the decoded signals with the TNS of
order 3 and 12, and the decoded signal with the TNS of order 12 and the artifacts reducing
method. A comparison of Figure 3.15 (h) and (i) shows that the stronger noise centralized in
the aliasing segment arises in the case of TNS order 12. On the other hand, in Figure 3.15 (j),
the time-domain aliasing noise of the decoded signal with TNS order 12 is eliminated by the

artifacts reducing method.
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order 12; (e) the waveform from the artifacts reducing method for the TNS with order 12
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3.2.4. TNS by Hilbert Envelope and Power Envelope

Figure 3.16 illustrates the noise shaping effect of the Hilbert-envelope method and the
power-envelope method, where the two order-12 AR modeling methods are applied to a
transient audio segment of 2048 samples at 44.1 kHz. The inverted magnitude responses of
the two skew-circular predictors corresponding to the Hilbert and power envelopes are
aligned in energy and depicted in Figure 3.16 (c). The quantization noises on the residuals are
simulated by a white random sequence shown in Figure 3.16 (d). The reconstructed temporal

noises by the two predictors are shown in Figure 3.16 (e) and (f). As shown in Figure 3.16 (c),
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the magnitude response of the predictor corresponding to the power envelope is sharper than
that corresponding to the Hilbert envelope at the silence segment. Therefore, the pre-echo
artifact in Figure 3.16 (f) has higher attenuation when compared with that in Figure 3.16 (e).
The major difference of the two methods comes from the envelope estimation of the low
frequency tones. The Hilbert envelope can avoid the smoothing effect by removing the low
frequency lines in the calculation of the filter coefficients while applying the noise shaping to

all the frequency lines to achieve similar effects as the power envelope method.
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Figure 3.16. Comparison of TNS effect by the order-12 predictors corresponding to the
Hilbert and power envelopes. (a) A transient audio segment of 2048 samples at 44.1 kHz. (b)
The even DCT-IV coefficients. (c) The energy-aligned inverted magnitude responses of the
two skew-circular predictors corresponding to the Hilbert and power envelopes. (d) The
simulated quantization noise. (e) The reconstruction temporal noises by the predictor
corresponding to the Hilbert envelope. (f) The reconstruction temporal noises by the predictor

corresponding to the power envelope.
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3.3.Concluding Remarks

In this chapter, the compact form of TNS has been established for 16 DTTs through the
spectral AR modeling theory of finite discrete signals. According to the compact form, the
well-known “time-domain aliasing noise” artifact associated with TNS in the MDCT domain
has been explained analytically. The time-domain aliasing noise deteriorates with the TNS
predictive order. A reduction method combining TNS and window switch has been proposed
to reduce this artifact. We also compared the TNS effects by the Hilbert envelope and power

envelope.
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CHAPTER 4
ARTIFACTS IN
SPECTRAL BAND REPLICATION

In contrast to the traditional transform or subband coding methods such as AAC and
MP3, the SBR exploits the similarity between low frequency (LF) and high frequency (HF)
spectra to reconstruct high bands by replicating low bands. The efficient coding method of HF

brings several new types of artifact.

4.1. SBR Overview

SBR is a technique of bandwidth _extension or high frequency reconstruction and can be
combined with any audio core coders such as AAC and MP3. SBR reconstructs high bands by
transposing and adjusting the replicated low bands thanks to the strong correlation of spectral
harmonic characteristics. Only a small -amount of" side information, including spectral
envelope data and control parameters for additional means such as inverse filtering and
noise/sinusoidal addition, is transmitted from the encoder to the decoder for guiding the HF
reconstruction. Since SBR requires significantly lower bit rate for high bands and reduces the
underlying core coder bandwidth, the core encoder can compress the LF part with most of the
available bits to achieve high coding efficiency.

As depicted in Figure 4.1, in addition to the analysis/synthesis filterbank, the SBR
decoding has three major procedures. In the HF generator, the low bands split from the
decoded LF signal are first transposed to HE. Subsequently, to control tonality, the inverse
filtering is applied to the regenerated high bands to clip the undesired sinusoidal components
from low bands. The inverse filtering is performed by in-band filtering using an adaptive

spectral whitening filter. The second-order covariance method is employed to evaluate the
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whitening filters on low bands. Furthermore, a chirp factor given from the bitstream is used to
control the amount of inverse filtering by moving the two zeros of the LP filter toward the

origin. The regenerated high band xi(n) for QMF subband & and time slot » is defined as:
x,(n)=x,n)—a,()-c,-x,(n=1)—a,2)-c; - x,(n—2), (62)

where a;(1) and a/(2) are the predictive coefficients estimated on the low band x;(n), and ¢y is
the chirp factor whose range is between 0 and 0.98. In the envelope adjuster, the envelope of
the regenerated high bands is scaled according to the transmitted envelope information that is
represented by the average energies in time-frequency (T-F) grids (explained below).
Subsequently, additional tones and random noise are compensated to adjust the tonality of the
reconstructed high bands. Finally, all low and high bands are synthesized to generate a
full-bandwidth decoded signal.

Figure 4.2 illustrates the reconstruction procedures-of SBR in HE-AAC decoder. In the
HF generator, the low QMF bands -analyzed from the decoded LF AAC signal are replicated
to HF and further inversely filtered (see Figure 4.2-(c)). In Figure 4.2 (d), the envelope of the
replicated bands is adjusted; moreover, the ‘compensation of tone and noise is applied to

adjust the tonality of the reconstructed signal.

SBR Decoder
LF | Analysis QMF .
signal (32 bands)
: Synthesis .
bitstream Core QMF audio output
¢ * Decoder v HF Generator Additional (32 bands) »
HF )] Inverse || Envelope [ HF —
Generation Filtering Adjuster Components
SBR T ' ® :
data

Figure 4.1. The block diagram of the SBR decoder.
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Figure 4.2. HF reconstruction process of SBR: (a) original spectrum; (b) decoded AAC LF
spectrum; (c) HF generation by SBR; (d) HF adjustment by SBR.

The T-F grid for recording energy data (see Figure 4.3) is formed through the “time
borders” and the frequency band borders that are indicated in “high/low resolution frequency
band tables” [5]. The T-F grid determines the resolutions of data record units in the time and
frequency dimensions. In the same way, the “noise-floor frequency table” and “limiter
frequency table” are used to define the frequency resolution for noise compensation and
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scaling-gain limitation, respectively. All the tables are constructed from the “master frequency
band table” that can vary with spectral contents. The decision of T-F grid is one of the most
critical design issues of the SBR encoder [61]. More details about the SBR algorithm can be

found in [5]-[9].

0 01 02 03 04 05sec
Figure 4.3. An-instance of the T-F grid in SBR [7].

4.2. Tone Trembling Artifact

SBR aims to reconstruct high bands by replicating low bands. The “patching algorithm”
[5] defined in the SBR syntax determines the correspondent relation between replicated low
bands and original high bands. The patching algorithm has three constituting factors, namely
the master frequency band table and the start as well as the stop boundaries of the SBR range.
SBR permits to vary frequency band tables to adapt the frequency resolution of encoding
according to spectral envelopes. Furthermore, depending on the encoding difficulty of the LF
part, the SBR range is variable to adapt different conditions. However, a flexible design of
SBR through switching tables or adjusting the SBR range to control the overall quality

generates time-varying LF replication sources and thus leads to spectral discontinuities in
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regenerated subbans. As illustrated in Figure 4.4, at the present frame, the 8th low band is
replicated to the high band according to the patching algorithm, while the replicated source
can be changed to the 10th low band at the next successive frame.

For noise-like signals, the resultant discontinuity level of reconstructed spectra is in
general small, and the human hearing is insensitive to the artifact. But, for tonal signals, the
human hearing is very sensitive to the artifact. To highlight this problem, Figure 4.5 provides
an artificial example with frequently varying tables. The “billow-like” spectrogram originates
from the replicated LF tones. This artifact sounds “trembling” and hence is named the “tone
trembling” artifact. To analytically model the artifact, each specific replicated LF tone can be

represented as

s(n) = A(n)expl(i(w(n)-n+8)), (63)

where A(n) denotes the amplitude which will be scaled by energy adjustment; w(n) denotes
the frequency; and @ denotes the phase. When the patching relation alters, w(n) also changes
with the frequency location. Hence, the teplicated tone can be regarded as a frequency

modulated signal, making the trembling artifact easy to visualize.

obuey ygs

10

Figure 4.4. Patching source change for low band replication.
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(a) (b)

Figure 4.5. Tone trembling effect in spectrogram, where the vertical coordination is the

frequency range from O to 22 kHz and the horizontal coordination is the time with frames: (a)

normal spectrogram; (b) abnormal spectrogram.

4.3. Tone Shift Artifact

A tone-rich signal, e.g. flute sound, has a dense harmonic structure with regularly
distributed tone series (see Figure 4.6 (a)). Tone-rich signals produce an apparent
phenomenon in SBR called the “tone shift” artifact. As illustrated in Figure 4.6 (b), the direct
replication of low bands leads to the obvious offsets between the recreated tones and the
original ones. Exact matching of tones is almost impossible under direct replication.

SBR provides two mechanisms to correct spectral structures of replicated low bands. The
first is the inverse filtering for eliminating undesired tones in replicated low bands. After that,
the second mechanism allows to add sinusoids at the centers of the “high resolution frequency
bands”. Using the two mechanisms still cannot avoid the tone shift artifact owing to the
limited locations of tone addition. Fortunately, it is not easy to perceive the slight offsets,
which may be due to the lower perceptual resolution of the critical bands at the HF range.
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Figure 4.6. Tone shift effect: (a) original signal spectrum; (b) comparison of the original (with

complete noise floor) and decoded spectra.

4.4. Noise Overflow and Tonal Spike

SBR can be regarded as a synthesis method-for HF bands based on LF bands. The
synthesis brings some distortions between:the-original and the simulated HF bands. The
“noise overflow” artifact is a common one in SBR due to the inaccuracy of tone number and
tone energy in a T/F grid. The noise overflow artifact (see Figure 4.7) produces a rasping
sound and significantly degrades the perceived quality. Tonal signals, such as the
glockenspiel signal in Figure 4.7 (b), are very susceptible to this artifact. The accuracy of
tonality measure is crucial to this artifact because underestimating tonal energy and/or
overestimating noise energy directly leads to the noise overflow. However, since the SBR
syntax restricts the frequency location and number of compensated tones, the noise overflow
artifact is still unavoidable even with an accurate tonality measure.

Another reason of the noise overflow artifact is on the choice of the two envelope
adjustment modes, “interpolation” and “non-interpolation” [5]. Figure 4.8 illustrates the two
adjustment modes, where the energies of the original HF bands and those of the
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corresponding replicated LF bands in a T/F grid are shown in Figure 4.8 (a) and (b)
respectively, and the dashed line means the average energy of the original HF bands in the
grid. In the interpolation mode, the energy of each subband in a T-F grid is adjusted to fit the
average energy of the original high bands as depicted in Figure 4.8 (c). In contrast, in the
non-interpolation mode, not adjusted individually, all the replicated bands in a T/F grid are
adjusted up or down to fit the average energy as depicted in Figure 4.8 (d). By comparing the
resultant envelops in the two modes (see Figure 4.8 (c), (d)), we can observe that the
interpolation mode generates a flat envelop in a grid, whereas the non-interpolation mode

maintains the original envelop shape of the replicated low bands.
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Figure 4.7. Noise overflow due to tone loss: (a) noise overflow due to the tone losing; (b) the

spectrogram of glockenspiel with noise overflow (top: the original, down: the compressed).
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Figure 4.8. Envelope adjustment at interpolation and non-interpolation modes: (a) energies of
the original HF bands in a grid; (b) energies of the replicated LF bands in a grid; (c) adjusted
energies of the replicated LF bands at interpolation mode; (d) adjusted energies of the

replicated LF bands at non-interpolation mode.

In the interpolation mode, the inherent characteristic of flat envelop cannot fit well sharp
envelopes of tonal bands. Hence, the interpolation mode needs to be considered carefully for
tonal signals due to the noise overflow effect. In Figure 4.9, the original signal contains one
tone in the indicated passband. Although a tone is replicated from LF, it is overwhelmed by
the amplified noise in the interpolation mode. Compensating the last two tones avoids the
artifact because the tonality is maintained by the tone addition mechanism. Figure 4.10
provides a counterpart without tone compensation, which reveals the immunity of the
mechanism to the noise overflow artifact in the interpolation mode. Figure 4.11 compares the
adjusted spectra in the two modes, where a serious noise overflow artifact occurs in the
interpolation mode, whereas the envelop structure of the replicated low bands is maintained in

the non-interpolation mode.
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Oppositely, compensating excessive tones or insufficient noises makes a noise floor
underflow and leads to the “tonal spike” artifact (see Figure 4.12) which produces a

“metallic” sound.
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Figure 4.10. Noise overflow without tone compensation in interpolation mode.
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Figure 4.12. Tonal spike artifact.

52



4.5.Sawtooth Artifact

SBR decoder provides the “limited gain” mechanism [5] for avoiding excessive noise
substitution which leads to serious noise overflow artifacts. The “limited gain” value @, is
evaluated as (64) for a limiter grid defined by the limiter frequency band table and time
borders,

@, = E[E! «, (64)

where E; and E; are the energies of the original HF and the replicated LF bands covered

within the gth limiter grid; x can be chosen as 0.70795, 1, 1.41254 or 10" (x = 10" , i.e. the
limited gain mechanism is turned off). The limited gain restricts adaptively the upper bound
of the maximum gain value for envelope adjustment so as to limit the degree of revision on
the replicated low bands. The noise overflow artifact generally arises from a relatively larger
scaling gain compared to other gains in a limiter grid. Therefore, restricting the upper bound
can restrain the noise overflow artifact.

However, this protection mechanism brings about another artifact, named the “sawtooth”
artifact (see Figure 4.13 (b)). In Figure 4.13 (a), the original spectrum has a steep slope in the
LF part and a flat slope in the HF part. To flat the steep slop for the HF part, some scaling
gains must be much larger than others. The limited gain restrains the larger scaling gains and

hence destroys the slop adjustment in the reconstructed spectrum.
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Figure 4.13. Illustration of sawtooth artifact: (a) original audio signal spectrum; (b) decoded
spectrum with sawtooth effect due to the limited gain mechanism; (c) decoded spectrum

without sawtooth effect by turning off the limited gain mechanism.

4.6. Beat Artifact

When two tones are close to each other in frequency, their mutual interference generates
amplitude fluctuation at a regular rate. The fluctuation in amplitude is known in the audio
industry as the “beat” phenomenon [51]. For instance, when two equal-amplitude sine waves

occur simultaneously, the resultant signal can be expressed as
x(t) =sin(@t) +sin(@,t + ) = 2 cos(Aw-t +£) sin(@t +9) (65)

where Aw = (w2 - @1) /2, and @ = (w2+ 1) / 2. Once the frequencies of the two sine waves
are close, i.e. Aw is small, a special period is generated because the very low frequency cosine

curve shapes the sine wave of a higher frequency. SBR has risks to generate the beats artifact
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because the tones patched from low bands or the compensated ones have inaccurate positions.
For example, as shown in Figure 4.14 (c), after band replication (also see Figure 4.15), one
replicated tone is closed to another tone in the low band. Figure 4.14 (d) shows that the cosine
envelope is imposed on the signal waveform. In perception, the fluctuation can be perceived

obviously.
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Figure 4.14. Beat artifact: (a) original spectrum containing two tones with large distance; (b)
time-domain waveform for (a); (c¢) decoded spectrum containing two tones with small

distance; (d) time-domain waveform for (c).
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Figure 4.15. Explication of the beat artifact in Figure 4.14: (a) original spectrum; (b) decoded
AAC LF spectrum; (c) HF generation by SBR; (d) HF adjustment by SBR.

4.7. Linear Predictive Bias on CEMFB Subbands

Rather than the cosine modulated filterbank (CMFB) commonly employed in audio
coding, SBR utilizes the comparatively high-complexity complex-exponential modulated
filterbank (CEMFB) [8] to eliminate main alias terms and thus avoid the alias artifact
introduced from spectral adjustmentor.equalization. In this section, however, we demonstrate
that when applied to the CEMFB subbands, the conventional LP method defined in the SBR
standard has natively the predictive ‘bias-which ‘affects the whitening effect and the
noise-to-signal ratio (NSR) measure. We demonstrate the predictive bias through the
first-order and second-order autoregressive (AR) modeling on analytic signals together with
the empirical verification on the CEMFB subbands. Subsequently, the new filter, named the

decimation-whitening filter, is proposed to remove the bias for the SBR algorithm.

4.7.1. CEMFB Subbands and Analytic Signals

The discrete-time analytic signal x.(n) corresponding to a real signal x(n) [52] is defined

as x(n)+ jx(n),where x(n) denotes the discrete-time Hilbert transform of x(n):

In the frequency domain, the relation between the original and analytic signals is given by
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Similarly, the analytic signal x_(n) containing merely the negative spectrum can be defined as
x(n)— jx(n). For convenience, we call x,(n) and x_(n) the positive and negative analytic
signals, respectively.

The analysis and synthesis filters of the 64-channel CEMFB system used in SBR are

defined by

h(n) = f, (n) = p(n)- eXP(zj—;(Zk +D)(n-N/ Z)J, (68)

for k =0,..., M — 1, where M is the number of channels, and N is the order of the prototype
filter p(n). Compared with the CMFB, the CEMFB adds an imaginary part that consists of
sine modulated versions of the same prototype filter, which can be interpreted as the Hilbert
transforms of the real part. Accordingly, the resultant subbands decimated by M can be
approximately regarded as the analytic.signals of the real output obtained from the CMFB [8].
Moreover, the CEMFB subbands alternately consist of positive and negative analysis signals.

In the absence of either the positive or negative side band, the excitation noise for each
CEMFB subband can be also regarded as the analytic signal that has flat power spectrum
density (PSD) in the other side band; but it is no longer white. Nevertheless, the whiteness of
the noise is a desirable property for confirming the asymptotically unbiased LP estimation of
spectral peaks [53]. This property implies that the absence of one side band leads to the

predictive bias that is demonstrated in Section 4.7.2.

4.7.2. Linear Predictive Bias on Analytic Signals

This subsection demonstrates and quantifies the predictive bias on analytic signals
through the first-order and second-order LPs. We first analyze the bias through the theoretical
derivation on ideal analytic signals. Next, we confirm through the empirical verification the

bias on the CEMFB subbands which are generated by the modulated non-ideal prototype filter.

57



The affection of the bias in SBR will be discussed in Section 4.7.3. Our derivation and
illustration are given according to the positive analytic signal model, and the same result can

be extended to the negative analytic signal model.

4.7.2.1 First-Order LP on Analytic Signals of First-Order AR Model

Consider the analytic signal modeled by the AR model with single pole 7,e’® in the

frequency domain:

E
S — 69

6,
1-re’™e

X, (w)

where the PSD of the excitation signal E(w) is assumed to be 1 for 0 < w < 7 and 0 for 7 < @
< 2m, and the pole locates inside the upper half of the unit circle. The mean-square error
function of the first-order predictive filter re’z-'on the single-pole analytic signal is

expressed as

-jo

dw= dw. (70)

e
Ho —jw

F(r,0) = j

1—re’

T 1=2rcos(w—0)+r’
0

\e 1-2rco8(w—6,) +r,’

The minimum mean-square error (MMSE) predictive filter can be obtained through solving

the two equations: 0F/06 = 0 and 0F/Or = 0. Thus, in polar coordinates, the conditions of the

zero position (7, ] ) of the MMSE filter can be derived as

sin(w — 5)

A@)=
© ‘([1—2r0cos((0—6?0)+r02

dw=0, (71)

B(?,§)=T cos(w—0)—F 72)

1-2r,cos(w—6,)+r,’
As shown in Appendix C.1, the angle of the zero of the MMSE predictive filter is solved as
~ S
0=6,+ arctan(E] , (73)

and the radius of the zero of the MMSE predictive filter is derived as
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where S,C, and K are defined as follows:

s 11n[1+2“00“a9*'“2J

- 2_r0 1-2r,cos(6,) +1,°
C:a+%%K—z
2r, ’

K = ! > T + arctan ﬂ% — arctan &0)71 ,
-7, cos(8,) +r, cos(8,) —r,

- arctan[Lgo)j + arctan(m} |c0s(6’0 )| > 7,

where

cos(6,) +r, cos(6,)—r,
3—7[ + arctan Lﬁo) , cos(8,) = —r,
T 2 cos(8,) — 1,
27 — arctan _sin6,) + arctan Jeute , lcos(6,) Ik r,
cos(6,) + 1, cos(6y) — 1,

cos(8,) =,

T ( sin(6,) J
E—arctan —=\

cos(6,) +r,

4.7.2.2 General case of ro> 0

(74)

(75)

(76)

(77)

(78)

Equation (73) shows an angle bias, arctan(S/C), between @ and 6y, which is non-zero

except the case of 6y = m/2. Moreover, it can be shown that A(6y)-A(n/2) < 0 except 6y = n/2.

By Root Location Theorem, the root of (71) locates within the open interval between 6, and

n/2. Therefore, in general, the angle of the zero of the MMSE filter is biased from 6, toward

/2 and cannot match the pole r,e'® of the AR model. Figure 4.16 illustrates that the angle bias

with rp = 1/2 increases as 6 is far away from n/2. By substituting 8y = /2 into (75)-(77) and

using the trigonometric property arctan(—f) = —arctan(f) and arctan(1/a) = n/2 — arctan(a) for

o > 0, it can be derived that
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. 1-7,"  2arct
For 4 r,  2arctan(r) . (79)
r, 7 +4arctan(r,)

Although @ is fitted to 6y = 7/2, there exists a bias between r and ry in (79). Figure 4.17
depicts the radius curve corresponding to 6= m/2 together with those corresponding to 6=
n/4 and 0. The curves show that the radius bias increases as the pole of the predicted spectrum
moves away the unit circle. This trend implies that the prediction on noise-like signals should

have a larger radius bias than that on tonal signals.
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Figure 4.16. The angle biases for different 6, values with r,= 1/2.
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Figure 4.17. The radius of the zero of the MMSE predictive filter on single-pole analytic

signals with different 6.
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4.7.2.3 Flat-spectral case of ro =0

The analytic signal corresponding to a real white-spectral signal, such as impulse and
white noise signals, can be modeled by (69) with ry = 0. Substituting ro = 0 into (71) yields

~

cos(m — 0) = cos(0); thus € should be n/2 or 3n/2. Similarly, with ry = 0, solving (72) leads

to 7 = 2sin(0)/n. Since 7 is nonnegative, the zero of the MMSE filter on the analytic
signal positions at (F,é )= (2/m, n/2), instead of the origin. Furthermore, the MMSE is F(2/m,

n/2) = m© — 4/x, and the estimated NSR is (nm — 4/n)/m = 0.594 which is much lower than the
excepted value 1. Figure 4.18 illustrates the first-order whitening processing on the analytic
signals. In the absence of negative bands, all the whitened analytic signals have additional

spectral hollows in positive bands.
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Figure 4.18.Whitening processing on analytic signals of first-order AR model by first-order
LP. (a) flat-spectral analytic signal, (b)-(d) single-pole analytic signals with (r, ) = (0.5, n/4),
(0.7, m/2) and (0.9, w/2). The zero location (r, 0) of first-order whitening filter in (a)-(d) are
(0.6369, n/2), (0.7720, 0.3363m), (0.8594, n/2) and (0.9510, n/2), respectively. (Solid line: the
original signals, dashed line: the whitened signals; these simulations are implemented via
2048-point DFT.) For ensuring the orthogonality of the real and imaginary parts of the
analytic signals simulated by DFT, the frequency response of the excitation signal at ® = 0
and mis 1/2, not 1.

61



4.7.2.4 Second-Order LP on Flat-Spectral Analytic Signals

The mean-square error function F(r,, r2, 01, 6,) of the second-order LP filter on the

analytic signal corresponding to white-spectral signals is expressed as

J' ‘(l—reﬂ'e )1 = re®e ) dw, (80)

where the PSD of the analytic signal is assumed to be 1 for 0 < w <mand O for-t < w <0 .

As shown in Appendix C.2, the radiuses and angles of zeros of the MMSE filter are given by

=(0.826, (81)

-~
Il
Ol
Il

7t -4

~

g, = arcsin[+) ~0.22457 and 8, =~0.77557 . (82)
Wt -4

Also, the MMSE is n(n’ — 8)/(n” - 4) = 0.3185x; the estimated NSR is about 0.317, which is
lower than that evaluated by the first-order LP. Figure 4.19 shows the resultant spectral

hollows on the flat-spectral analytic signal by the second-order LP.
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Figure 4.19. Whitening processing on the flat-spectral analytic signal by second-order LP. The
estimated NSR value is 0.3181, and the two zeros position at (r, ) = (0.8257, 0.2247x) and
(0.8257, 0.7753m). (Solid line: original signals, dashed line: whitened signals; the simulation
is implemented via 2048-point DFT and covariance method.)
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4.7.2.5 Empirical Verification for SBR

The empirical example is conducted in Figure 4.20 for first-order and second-order LP
by the covariance method. In the example, the original signal is a 32-point CEMFB subband
signal of an impulse. The power spectrum of the input signal approximates the PSD of the
white-spectral subband signal filtered by one modulated prototype filter and decimated by M.
As can be seen, the spectral hollows are shaped on the whitened signals in the frequency
domain. For the first-order case in Figure 4.20 (a), the radius and angle of the zero of the LP
filter are 0.5676 and #/2, and the estimated NSR value is 0.6778. For the zeros of
second-order LP filter in Figure 4.20 (b), their common radius is 0.6891 and their angles are
0.20787 and 0.7922x; the estimated NSR value is 0.5249. Hence, in SBR, the estimated NSR
for the white-spectral or noise-like signals will be underestimated by about 30 and 50 percent
for the first-order and second-order LP, respectively. Through the above analysis on the ideal
analytic signal model, we can also expect that the predictive bias becomes significant as the
NSR of the predicted spectrum increases.-This result is different from the intuition that the

inverse filter should keep or slightly shape the spectrum of noise-like signals.
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(a) (b)
Figure 4.20. Whitening processing on a 32-point CEMFB subband signal of an impulse. (a)
First-order LP (b) Second-order LP (Solid line depicts original signals; dashed line depicts

whitened signals.)
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4.7.3. Decimation-Whitening Filter

As shown above, the non-whiteness of the excitation noise components in analytic
signals leads to the predictive bias. To remove the non-whiteness, the decimation by two
should be included before applying the LP to the CEMFB subbands in SBR. The new
approach has benefits in terms of the frequency resolution, NSR measure, analytic signal

property maintaining, and computational complexity.

4.7.3.1 The Decimation-Whitening Filter for SBR

The relation between the original analytic signal and the signal decimated by two is
expressed in the frequency domain as
X,Qw)y=;X (@), (83)
for either 0 < w < m or —w < w <.0, where X and X; denote the Fourier transforms of the
analytic and the decimated signals, respectively, -and the range of @ depends on the absent
side band of the analytic signal. Applying the second-order LP to the decimated signal can
obtain two LP coefficients a; and a,, and then the estimated PSD of the analytic signal is
given as

40’
Py (@) = ‘

: : ’ 84
1—ale_’2‘” - aze_’4“’ ’ 84

for either 0 < @ < 7 or -t < @ < 0, where 0. denotes the variance of the residuals.

Consequently, for the analytic signal, the fourth-order LP filter derived from the second-order
LP filter of the decimated signal can be given in the z-transform domain as

H(z)=1—alz_2 —azz_4. (85)

The design of the decimation LP filter is not new in AR modeling or maximum-entropy

spectral estimation. In the literature, there have been researches of the advantages of the

complex decimation LP filter over the real LP filter on the improvement of the sinusoidal
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phase issues or neighboring frequency resolution. Especially, the expanding of the frequency
scale by two can reduce the interference at one spectral peak caused by other neighboring
frequency components, and hence a higher resolution of LP estimation can be achieved [58].
The decimation filter has been suggested [54]-[58]. However, these alternative complex filters
require computational overhead when compared with the real ones in these scenarios. In SBR,
the decimation-whitening filter not only has the advantages but also saves half the
computational complexity to evaluate LP coefficients thanks to the data reduction from

decimation.

4.7.3.2 Examples and Comparisons

According to the standard [5], the LP in SBR should be implemented via the
second-order covariance method covering 32 samples for each CEMFB subband per audio
frame. Figure 4.21 compares the original whitening method in SBR with the proposed method.
In each subfigure, the 32-point DFT magnitude spectrums of the original CEMFB subband
and the whitened ones by the original and the proposed methods are depicted in the decibel
(dB) domain. As can be seen in Figure 4.21 (a) where the subband is generated from a real
white noise, the proposed method slightly alters the original spectrum, while the original
method not only alters the positive spectrum but also amplifies the negative spectrum. The
evaluated NSR values in this case are 0.38 and 0.93, respectively, by the original and the
proposed methods; the original method gives the poor NSR estimation. For the second
instance illustrated in Figure 4.21 (b) where the subband contains a very strong sinusoid
component, both methods have good whitening effect, but the proposed method results in a
flatter whitened spectrum. In Figure 4.21 (c¢) where the original subband has three sinusoid
components located in the frequency interval between 0 and 3n/2, the original method slightly
attenuates the largest one but amplifies the others. This phenomenon illustrates the
interference among the components. In contrast, the proposed method destroys the largest one
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Figure 4.21. Whitening comparison for the original method and the proposed method. The
magnitude spectra are evaluated through 32-point DFT; thin line depicts the original signals,
thick line depicts the whitened signals by the proposed method, and dashed line depicts the
whitened signals by the original method.
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Figure 4.22. Whitening comparison for the original method and the proposed method. (a) The
original DFT magnitude spectrum. (b) The decoded DFT magnitude spectrum with the
original whitening filter. (c) The decoded DFT magnitude spectrum with the decimation-
whitening filter. The spectra are depicted in dB domain. For both the filters, the chirp factor
takes 1. Also, no additional noise is added, and the audio sampling rate is 44.1 kHz.

without amplifying the others thanks to the frequency scaling. Figure 4.22 illustrates another
instance for the better whitening result of the proposed filter on the tonal-rich signal. In Figure
4.22 (b) and (c), the LF decoded AAC signal is filtered by the original filter and the proposed
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filter respectively. Both chirp factor values for the filters are equal to 1, and no additional
noise is added. From the HF spectra, we can see that the original filter cannot “whiten” the
tonal structure, while the decimation-whitening filter does better.

Another noticeable feature is that the proposed method keeps better the energy than the
original method. In the SBR encoder, the energy of HF is calculated and recorded based on
the HF CEMFB subbands which have the good analytic-signal property. Subsequently, the
SBR decoder adjusts the energy of the whitened LF subbands to fit the recorded HF energy.
However, as noticed in the previous discussion, the original filter has more energy leakage
due to the amplification in the negative side band. After filtered by the synthesis filterbank,
these negative components will be filtered out and lead to an energy loss because these
energies in the negative side bands have contributed to the energy estimation. The proposed
filter has better control due to the less leakage from the negative frequency range. Figure 4.23
illustrates the better envelope by comparing the spectra of the two methods, where the chirp
factors take 0.98 for all replicated subbands and-no additional noise is added for HF. The

original signal consists of the white noise and-a single tone in LF.
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Figure 4.23. The energy loss effect of the original whitening method. The depicted spectra are
the decoded spectra with the original method (the upper) and the proposed method (the below)
respectively. For both the filters, the chirp factor takes 0.98. Also, no additional noise is added,
and the audio sampling rate is 44.1 kHz. The HF envelope of the decoded spectrum with the
proposed method fits —36dB, while that with the original method is under —36dB.
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4.8. Concluding Remarks

In this chapter, we explored six new types of artifact in SBR which are very different
from those in conventional frequency domain coders. The “tone trembling”, “tone shift” and
“beat” artifacts are mainly due to the duplication of spectral bands. Tonality control and
interpolation mode are the main keys of handling the “noise overflow” and “tone spike”
artifacts. The limited gain mechanism in SBR decode causes the “sawtooth” artifact. On the
other hand, we also demonstrated the predictive bias of the second-order linear prediction in

SBR. The predictive bias is due to the analytic property of the CEMFB in SBR. A

decimation-whitening filter has been proposed to remove the bias.
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CHAPTER 5
ARTIFACTS IN
PARAMETRIC STEREO CODING

The parametric stereo (PS) coding [10] has been unitized in the MPEG-4 audio
parametric coding scheme for compressing high-quality stereo audio at the bit rates around
24-32 kbps. PS attempts to reconstruct a binaural signal from a monaural down-mix signal
according to the parameters extracted by capturing the stereo sound image of an original
binaural signal. In the down-mixing procedure, the loss of stereo sound images and the
variability of mixing coefficients bring two obvious artifacts referred to as the “tone leakage”

and the “tone modulation” artifacts.

5.1. Parametric Stereo Coding Overview

The PS coding utilizes four critical. spatial ‘cues, including inter-channel intensity
difference (IID), intensity coherence (ICC), intensity phase difference (IPD) and overall phase
differences (OPD) [16], to characterize lateralization and width of audio objects. As
illustrated in Figure 5.1, through the auxiliary of these spatial cues, referred to as the stereo
parameters, PS can merely encode a monaural signal down-mixed from an original binaural
signal and reconstruct the space perception through the up-mixing processing. Consequently,
most bits are saved thanks to the channel reduction. Figure 5.2 depicts the block diagram of
PS in MPEG-4 HE-AAC V.2 encoder. Both the stereo parameter extraction and the
down-mixing process in PS are performed on the complex-valued QMF bands that are
analyzed by the 64-band analysis CEMFB and are further split through a hybrid analysis
filterbank to increase the frequency resolution in the LF part. The LF and HF parts of the

down-mix monaural signal are encoded by AAC and SBR, respectively.
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Figure 5.1. Illustration of the down-mixing monaural signal and the up-mixing binaural

signal.
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Figure 5.2. Diagram of PS in MPEG-4 HE-AAC version 2 encoder.
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Figure 5.3. Signal vanishing effect of the average method: (a) original binaural signal; (b)

extracted monaural signal by the average method.

71



i
st

(a)

e e T

(b)

e

(©)

Figure 5.4. The advantage of energy conservation of the KLT method: (a) original binaural

signal; (b) extracted monaural signal by the average method; (c) extracted monaural signal by
the KLT method.

In the literature, the average and the KLT (Karhunen-Loeve Transform) based methods
are the most common down-mixing methods. Among the existing methods, the average
method is the simplest down-mixing approach by averaging a binaural signal (i.e. M =
(L+R)/2, for a stereo signal L and R). As shown in Figure 5.3, the average method may result
in serious signal vanishing due to phase cancellation. Even though the original left and right
channels have similar temporal envelopes, their phase difference can cause waveform
cancellation. Many recent researches have focused on other advanced methods, especially
those based on the KLT, also known as the PCA (Principal Component Analysis) [17],

[59]-[61]. In general, the down-mix kth subband signal m(n) is expressed as

m, ()=, -1, (n)+ A4 -1 (n), (86)
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where }J{ and /1,2( are the (complex-valued) combination coefficients; [, (n) and r, (n)

are the kth subbands of the left and right channels. The typical KLT-based method substitutes
the combination coefficients by the orthonormal eigenvector corresponding to the largest
eigenvalue of the cross-correlation matrix of the stereo subband [62]. Figure 5.4 compares the
resultant envelopes of the down-mix signals by the two methods to the original envelopes and

exhibits the advantage of energy conservation of the KLLT-based method.

5.2. Artifacts in PS coding

The crosstalk of stereo images after the down-mixing process smears the space cues.
Further, varying mixing coefficients leads to more artifacts. For instance, to achieve energy
compactness, the KLT-based method bears more risks than the simple average method.
Discarding weak signal components and varying combination coefficients are the major

causes of artifacts under the KL T-based method.

5.2.1. Tone Leakage Artifact

The “tone leakage” artifact can be classified into two types. Type-I tone leakage artifact
means that one tone in some channel leaks to another channel after the up-mixing process.
Any down-mixing method has risks to suffer such a kind of artifact. Type-II tone leakage
artifact means that some tone vanishes in a decoded signal. In PS, both the KL T-based and
average down-mixing methods are susceptible to the two kinds of tone leakage artifact.
However, the KLT-based method incurs type-II tone leakage artifact more easily than the
average method due to discarding weak components.

Figure 5.5 illustrates the tone leakage artifacts under the average and KLT-based
methods. In Figure 5.5 (a), the stereo signal has two tones in individual channels, which have

slightly different frequencies and the magnitude difference of 12 dB. The down-mix signal
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obtained by the average method retains the two tones that come from the distinct channels. In
Figure 5.5 (b), the type-I tone leakage artifact occurs on the two tones. Although each channel
maintains its own tone component, the additional tone is leaked to the other channel after the
up-mixing process. On the other hand, to keep energy compactness, the KL T-based method
trends to save the energy dominant channel. This implies that when two channels have a
significant difference in energy, the weaker channel will be ignored and lose the spectral
structure in the down-mix signal. As illustrated in Figure 5.5 (c), the decoded binaural signal

keeps the stronger tone and suppresses the weaker one.

il
N }r“Af‘:".‘*-',“"r“"r*“\_"*‘5“""‘3’“*‘“5?"'5*—"“‘“§

T hean e ARG
/ '.i}‘f*"f"‘"\ﬁn\"{ i ".’,l‘\\i\ﬁr‘l‘{\,]

VLM

Wi

f lts bl
M “,\“ Wi ‘.-{f(l&”'”‘- # g~/hﬁ5-’:l(ﬂz1ﬂﬁ|-,‘c"
,“l?' TR M ',r! R A ¢

(©)

Figure 5.5. The illustration and the comparison of the tone leakage effect under the average

method and the KLT method: (a) linear-scaled spectrum of the original stereo signal; (b)
linear-scaled spectrum of the reconstructed stereo signal by the average method; (c)

linear-scaled spectrum of the reconstructed stereo signal by the KLT method.
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To summarize, both the average and KLT-based methods have risks to generate the
type-I and type-II tone leakage artifacts. Due to the inherent property that the components in a
down-mix signal are regenerated into the up-mix binaural signal, any down-mixing method
suffers the type-I tone leakage artifact. On the other hand, although the KL T-based method
can keep the dominant tones, the weaker channel is usually ignored due to the biased
combination ratio. The tradeoff between the spectral component conservation and energy

compactness is a major design issue for the down-mixing strategy.

5.2.2. Binaural Beat Artifact

Unlike the beat phenomenon where two tones with slightly different frequencies coexist
in a channel, the “binaural beats” artifact [51] arises when two tones with slightly different
frequencies occur in distinct channels. In this sitvation, listeners can hear a movement of
sound image between their two ears; Occurring at the rate that equals the frequency difference.
In PS, the tone leakage artifact breaks down the binaural beats phenomenon. For instance, in
Figure 5.6 (b), the type-I tone leakage artifact-under the average down-mix method merges
the tones in the distinct channels into the monaural signal, and hence the beat artifact is
caused. This mergence makes the movement of sound image between ears disappear and
generates an intensity fluctuation due to beats. The change from a binaural beat phenomenon
to the beat artifact is called the “type-I binaural beat” artifact. In another case, as illustrated in
Figure 5.6 (c), the type-II tone leakage artifact under the KLT-based method suppresses the
weaker tone and makes the special space perception disappear. Such a phenomenon is called
“type-II binaural beat” artifact. Figure 5.7 provides an example to show both type-I tone
leakage and type-I binaural beat artifacts, where the original stereo signal has chirp sounds
between 0 and 5 kHz increasingly and decreasingly in the left and right channels, respectively.
In Figure 5.7 (b), the type-I tone leakage and the type-I binaural beat artifacts are introduced
into the PS decoded signal; in Figure 5.7 (d), an obvious fluctuation occurs in the PS decoded
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signal waveform due to the beat phenomenon.
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Figure 5.6. The degeneration of the binaural beat effect in PS coding: (a) original binaural
signal with the binaural beat from the 200Hz and 201Hz tones; (b) binaural beat artifact in the
decoded binaural signal by the average method; (c) elimination of the binaural beat in the
decoded binaural signal by the KLT method.
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Figure 5.7. The type-I tone leakage and the type-I binaural beat artifacts in PS coding: (a) the
original signal in spectrogram form; (b) the decoded signal with the two artifacts; (c) the
waveform of (a); (d) the waveform of (b). In (a) and (b), the vertical coordination is the

frequency range from 0 to 22 kHz and the horizontal coordination is the time with frames.

5.2.3. Tone Modulation Artifact

Although the KLT-based down-mixing method has the merit of optimal energy
conservation, frame-by-frame varying coefficient vectors leads to connection discontinuities
of down-mix spectra between adjacent frames and thus causes an artifact sounding like
“click”. Figure 5.8 exhibits a series of reconstructed spectra under the KLT-based method.

The phenomenon that the spectral shape of tone expands and contracts is called the “tone
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modulation” artifact. To analytically explain the artifact, we consider the effect of combination

coefficients through the linear combination form of a down-mix subband signal:
d(n) = A, (n)exp(ié, (n))-1(n) + A, (n)exp(i&, (n))r(n), (87)

where Ax(n)exp(ibi(n)) for k = 1, 2 means the polar form of the combination coefficients, and
[(n) and r(n) are the left and right subband signals. The multiplier Ax(n)exp(ifi(n)) in (87) is
constant within a frame but may change abruptly at frame bounders. Let
s(n) = Aexp(i(an+ ©®)) be a sinusoid contained in the left channel and coupled into the

down-mix subband signal. Then it is modulated in amplitude and phase as follows.
§(n)=(A- A, (n))expli(an + © +6,(n))). (88)

Therefore, a KL T-based down-mix signal can be regarded as a summation of two signals with
mixed modulation in amplitude and phase and easily. has the tone modulation artifact.

Like the PSOLA (Pitch Synchroenous Overlap Add) method [63] for waveform synthesis
in speech processing, a reduction-method for the tone modulation artifact is to smooth
combination coefficients to avoid spectral discontinuities in a down-mix signal. Let y; and y;y;
denote the combination coefficients of one subband in the ith and (i+1)th frames. To smoothly
connect two constant values, the coefficients from time index 1 to k in the (i+1)th frame is

interpolated as a cosine curve (see Figure 5.9):
%(71‘ _7i+1)‘COS(7m/k)+%(7i +Vin) - (89)

The reduction method can reduce the “click” noise caused by the tone modulation artifact

[61].
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Figure 5.8. Example of tone modulation effect (the original spectrum has stable and fine

tones).

Figure 5.9. Cosine smooth connection of coefficients between frames.
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5.3.Concluding Remarks

The cross-talk effect is an inherent artifact in the down-mix based audio coding.
According to the average and KLT based approaches, we considered the “type-I tone leakage”
and “type-II tone leakage” artifacts to indicate two different cross-talk phenomena. The two
artifacts can break down the “binaural beat” effect into the “type-I binaural beat” and “type-II
binaural beat” artifacts. We also concerned the spectral modulation effect due to varying
down-mix coefficients and proposed a coefficient smooth scheme to reduce the “tone

modulation” artifact.
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CHAPTER 6
CONCLUSION

This dissertation has investigated the audible artifacts in the state-of-the-art perceptual
audio codecs. We have modeled the audible artifacts through the time-frequency diagrams;
considered the artifacts-susceptible music types; and analyzed the critical encoding
technologies incurring these artifacts and summarized these artifacts in Table 6.1. We began
from the two common artifacts in most perceptual audio codecs, the “band-limited” and
“birdie” artifacts. The characteristic of the two artifacts shown up in spectra are the spectral
clipping and spectral valley which lead to the “muffled” audio and “fishy” sound, respectively.
On the other hand, for handling the tradeoff between the parallelism and the numerical
distortion of cosine modulated filterbanks, -a fast algorithm for computing DCT-IV of
composite lengths has been proposed. We next considered the TNS in AAC. The compact
forms for the TNS fundamental were established through the AR modeling theory in DTTs.
Based on the developed compact forms, we have revisited the well-known “time-domain
aliasing” noise through the relationship between MDCT and DCT-IV. A reduction method
combining TNS and window switch was proposed to reduce the time-domain aliasing noise in
AAC. Furthermore, both the temporal Hilbert-envelope method used in the standard and the
power-envelope method were compared. Subsequently, six new artifacts in SBR have been
introduced. The “tone trembling” artifact originating from constant changes in replicated
sources generates a ‘“billow-like” spectrogram. The “tone shift” artifact that is a common
artifact for tone-rich signal indicates the obvious offsets between the recreated and original
tones. The “noise overflow” and the “tonal spike” phenomena, which originate from
inaccurate tonality matching, generate annoying “rasping” and “metallic” sounds, respectively.

The “sawtooth” artifact due to the limitation of the upper bound of scaling gain is brought
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about by the protection mechanism “limiter gain” in SBR. Furthermore, because of the
inaccurate position of the patched or compensated tone, the risk of the “beat” artifact needs to
be concerned. On the other hand, we have demonstrated the predictive bias from the
whitening filter in SBR. The bias increases the interference of the noise component to the
sinusoid component in LP and leads to the spectral hollows in noise-like subbands. A novel
filter, named the decimation-whitening filter, has been proposed for removal of the bias. The
new filter provides advantages in terms of NSR measure, frequency resolution, energy
leakage, and computational complexity for SBR. Finally, the loss of stereo image due to
down-mixing has been considered for the PS coding. The “type-I tone leakage” artifact means
that one tone in some channel leaks to another channel after up-mixing process. In contrast,
the “type-II tone leakage” artifact means that the tone vanishes in the decoded signals. An
example of the loss of space perception in PS is the dégeneration of the “binaural beat” to the
beat artifact, named “type-I binaural beat’™ artifact, or the disappearance of the “binaural beat”,
named “type-1I binaural beat” artifact. Table 6.1 lists.these artifacts in terms of the perception,
the generation source, the time/frequency feature, the music types, the typical tracks and the

existing relief methods.
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Table 6.1.

Summary of Compression Artifacts

ARTIFACTS PERCEPTION | GENERATION TIME/ FREQ. | MUSIC TYPES TYPICAL RELIEF
SOURCES FEATURES TRACKS METHODS
Birdie Fishy (1) Unsuitable bit Zero bands Wideband signal with velvet in Figure | Zero band dither
allocation policies relative small spectral 2.1 [371[38]
(2) Excessive masking component
energy estimation
Band-Limited Muftled (1) Sampling rate HF range HF-rich signal sc03 in High frequency
reduction Figure 2.2 reconstruction
(2) Bit rate constraint [37]1[38]
Pre-echo Annoying (1) Transient signal Temporal Transient signal 5102 (1) Window
(2) Inappropriate size of precedence switch
coding block around attack (2) TNS
(3) Gain control
(4) Bit reservoir
(5) Pre-echo
control
Time-domain Annoying (1) Time-domain aliasing Before or after Transient signal 102 in Figure A joint method by
Aliasing of MDCT the attack 3.9 and Figure TNS and window
(2) Shaping of TNS filter 3.10 switch [33]
Aliasing Noise Annoying High-order prediction Before or after Transient signal 5102 in Figure
by High-Order filter in TNS the attack 3.11
TNS
Tone Trembling (1) Tone-rich signal in Discontinuous Tonal signal si03 in Figure Fixed table and
Trembling SBR spectrogram 4.5 Fixed SBR range
(2) Adaptive frequency
table and SBR range in
SBR
Tone Shift Not Sensitive (1) Harmonic signal in Tones with Harmonic signal si03 in Figure
SBR frequency offset 4.6
(2) Band replication in in SBR range

SBR

Noise Overflow | Dull (1) Tone losing in T/F grid | Noise replacing Tonal signal sm02 in Figure Non-interpolation
in SBR for losing tones 4.7 mode
(2) Envelope adjustment and Figure 4.9
at interpolation mode
in SBR
Tonal Spike Metallic (1) False alarm of tone Tone replacing Tonal signal sm02 in Figure
detection in SBR for noise 4.12
(2) Overestimation of
tonal component in
SBR
Sawtooth Depend on Limiter gain mechanism Sawtooth Signal with slant sc01 in Figure Limiter gain turns
energy in SBR spectral spectral envelope 4.13 off
envelope in
SBR range
Tone Leakage Blurred spatial Down-mixing procedure Any range Tonal binaural signal Artificial
Type-1 position in PS signal in Figure
5.5
Tone Leakage Blurred spatial Down-mixing procedure Any range Tonal binaural signal Artificial
Type-2 position by the KLT in PS signal in Figure
5.5
Tone Click Down-mixing procedure Any range Tonal binaural signal sc01 in Figure Coefficient
Modulation by the KLT in PS 5.5 smooth
Beat Intensity Patch procedure in SBR LF range in The two tones of slightly | Artificial
fluctuation SBR different frequencies in signal in Figure
the same channel. 4.14
Binaural Beat Degeneration to | (1) Binaural beat effectin | LF range The two tones of slightly | Artificial
Type-1 beat effect original stereo signal different frequencies in signal in Figure
(2) Tone Leakage Type-1 different channels. 5.6(b)
Binaural Beat Space (1) Binaural beat effectin | LF range The two tones of slightly | Artificial
Type-11 perception original stereo signal different frequencies in signal in Figure
elimination (2) Tone Leakage Type-II different channels. 5.6 (¢)
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APPENDIX A

COMPUTATIONAL COMPLEXITY AND FINE
TURNING FOR FAST RADIX-Q AND
MIXED-RADIX ALGORITHMS

A.1l. Computational Complexity of Fast Radix-g Algorithm

For k=0, 1,..., N/q — 1, the arithmetic costs for the radix-g SDCT-IV computation are

listed as follows:

(1) g(g — 1)/2 multiplications in (13) and (14). (2) g — 1 multiplications in (15).
3) (g - 1)%/2 additions in (13) and (14). (4) g — 1 additions in (15).
(5) g — 1 additions in (5) and (7). (6) g — 1 additions in (17).

Totally, the numbers of multiplications and additions required by the radix-g algorithm

for SDCT-IV computation of length N are
Ms.ii(N) = q *+ Ms.iv(Nlq) + (g = 1)(q + 2)[2:Nq, (A.D)
As.V(N) = q * As.v(NIg) + (g - 1)(g + 5)/2-Nq. (A.2)

For DCT-IV computation, additional N/g multiplications in (18) are required; hence, the

numbers of multiplications and additions are respectively

Mi(N) = Ms.,((N) + Nig, (A.3)
Ay(N) = As.v(N). (A4)

A2, Radix-3 Algorithm

As g =3 and p = 1, one multiplication is saved for a trivial factor cos(n/3) = 0.5 in (13).

Also, if N is odd and k* = (N/3-1)/2, it implies ), = 7/6 and
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Y. =(A. +18° )+ L, (A.5)

Voo ==(A. 4180 )45 (A.6)
0
Y, . =S'-A.. (A7)

Equations (A.5)-(A.7) require one multiplication and four additions; thus, three
multiplications and two additions are saved. Hence, from (A.1) and (A.2), the nontrivial

arithmetic costs required for SDCT-IV computation are
Ms.(N) =3 + Ms.(N/3) + 4N/3-3, N > 1, (A.8)
As.v(N) =3 - As.(N/3) + 8N/3-2, N> 1, (A.9)
where the initial values are Mgp(1) = Asp(1) = 0. Hence, the corresponding DCT-IV
multiplicative complexity is
Mp(N) = Mg (N) + NI3+1, N> 1, (A.10)

where the number of scaling multiplications is two for (A.5) and (A.7) instead of one.

A.3. Radix-5 Algorithm

As g=5, applying cosd4n/5+1/2 = -cos2n/5 to (13) for p = 1 and 2 gives
U, =—A, +1B+(B)—B,)cos, (A.11)

Ul=A -L1B +(B)-B)cos%, (A.12)

where B =(C"cos®", +5"sin®",) for m = 0, 1. Equations (A.11) and (A.12) require

m,k m,k

one multiplication and five additions instead of four multiplications and four additions; thus,
three multiplications are saved but one more addition is required. Hence, according to (A.1)
and (A.2), the nontrivial arithmetic costs required for SDCT-IV are

Ms.(N) =5 + Ms.v(NIS) + 11N/5, N > 1, (A.13)

As.v(N) =5 - As.;(NIS) + 21N/5, N > 1. (A.14)

Thus, the corresponding DCT-IV multiplicative complexity is
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Mp(N) = Ms.nAN) + NIS, N> 1, (A.15)
where the scaling factor ¢'can be absorbed into B;" as
B"=(cr -dcos@) , + S ﬁsin@ﬁwk). (A.16)
For the initial case N = 5, using sinn/10 = cos2n/5 and cosn/10 = sin2n/5 in (14) gives

V, =(Cy =S, cotZ)sin® £ —(C, cot 2 — ;) sin” 2Z, (A.17)

Vy =[(Cy =Sy cotZ) = (Cycot2Z— S, )]sin Zsin 2. (A.18)
A.4. Radix-9 Algorithm

For g = 9, applying the relations cosn/9 = cos4n/9 + cos2n/9 and sinm/9 = sin4n/9 -

sin27t/9 to (13) and (14) for each p gives

Uy = (A, +B)*(B +B{ % B)), (A.19)
Ul=—(A +B)+1(B}+ B +B}), (A.20)
Ul =(A,—1B))+ (B} —B;)cosZ— (B =B])cos“Z, (A.21)
U} =(A, —1B))— (B} =B})cos2Z+(B —B;)cosZ, (A.22)
U, =(-A, +1B)+(B—B;)cos*Z+(B —B;)cos &, (A.23)
V!=E +(E}+E)sinZ+(E; +E])sin%, (A.24)
V:=E +(E +E})sin2Z—(E} +E})sin*& (A.25)
V!=—E +(E)+E;)sin*Z—(E; +E])sinZ, (A.26)
V) =L(E'-E}+E)), (A.27)

where we define
B!'=C/"cos®) , +8;"sin®) ,,m=0,1,2,3, (A.28)
E!'=C/sin®, -8, cos®) ,,m=0,2,3, (A.29)
E,=H, (A, sin%), fork=0,1,..., N/9-1. (A.30)
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Equations (A.19) -(A.27) can be computed efficiently as follows. The last terms in (A.23) and
(A.26) can be obtained from the sum of the last term in (A.21) and (A.22), and in (A.24) and
(A.25), respectively. Also, using algebraic identities ax+by = b(x+y) + (a-b)x and bx+cy =
b(x+y) + (c-b)y, the pairs ax+by and bx+cy require three multiplications and three additions by

sharing the common part b(x+y). Hence, equations (A.19)-(A.30) require only 20

multiplications and 37 additions for each k. Furthermore, if N is odd, it implies that @fk =
/6 as k = (N/9-1)/2 and m =1, and thus (A.28) and (A.30) can be computed by

B. =Ll +1S. (A31)

2 25K

1 _ J3 Al 1 1
E.=1(FC.)-+(2S. +S.), (A.32)

which require only one multiplication and three additions. Hence, three multiplications are
saved, but one addition is wasted. On the other hand; 16 additions used in (5), (7) and (17)
should be counted. For the scaling operations of DCT-1V; it requires one more multiplication

in the following way.

B =L CH+48], (A.33)
OE! :%(573Cli )—%(2§S}+&92*). (A.34)
In summary, the nontrivial arithmetic costs required for the SDCT-IV are
Ms.(N)=9 * Ms.v(N/9) + 20N/9 - 3, N> 9, (A.35)
Asv(N) =9 +As.(N/9) + 53N/9 + 1, N> 9. (A.36)

The initial cases are Mg ;(9) = 12 and As;(9) = 40 that are derived from the radix-3

algorithm. Thus, the corresponding DCT-IV multiplicative complexity is

Mp(N)=Ms.(N)+ N9+ 1, N>9, (A.37)

with Mp(9) = 16 that are derived from the radix-3 algorithm.
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A.5. Radix-2 DCT-II/DCT-IV Algorithm

Let the length N be even. The radix-2 DCT-II/DCT-1V algorithm is represented as

Cz(zl :PN[Cg/z 0 :||:IN/2 Iy }’ 3
0 JN/ZCZC//ZJN/Z JN/2 _IN/2 ( ’ )

CcV =R Lo ~Jwina | Cuind v 0 G I 0 (A39)
’ ’ -1 0 Cy 2Dy ) "o ~Jynl .

_JN/Z—I _IN/Z—l
where matrices Iy and Jy denote the identity and anti-identity matrices respectively, and
diagonal matrix Dy is defined by diag{(-1)"| n =0, 1,..., N — 1}. The Givens rotation matrix
Gy is defined by Ay + By, where diagonal matrix Ay and anti-diagonal matrix By are defined
by a,, = cos(m(N — 1 — 2n)/4N) and b, yo 1, = =sin((N — 1 — 2n)/4N), forn =0, 1,..., N - 1.
For a data vector x = [xg, X1,..., Xy~ I]T, the two permutation matrices Py and Ry are defined
by PnX = [X0, XN_1, X2, XN—3, X4,y XN 4, X3, XN 25 xl]T and Ryx = [xo, X2, X4,..., XN_2, —XN_—
Toerey —X5, —X3, —xl]T. The complexity functions for-the radix-2 DCT-II/DCT-IV algorithm are

given in the recursive form:

My(N) = Mj(N/2) + M(NI2), (A.40)
Mp(N) =2-My(N/2) + 3N/2, (A41)
Ap(N) = A (NI2) + Ap(NI2) + N, (A.42)
Ap(N) =2-Ai(NI2) + SN/2 - 2. (A.43)

A.6. Computational Complexity Comparison for N = ¢ x 2*

Figure B.1 depicts the number of multiplications per input sample for the proposed
mix-radix algorithm for computing DCT-1V of length N = g x 2" and shows the efficiency of
sequence lengths other than a power of two. On the other hand, the fast computation of

DCT-II of length N = g x 2" can be realized through the radix-2 [45] and radix-g [47]
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algorithms. The associated arithmetical costs are

My(N) = 2-M;(NI2) + NI2, N>gq, (A.44)
An(N) =2-Au(N/i2) + 3N/2-1, N > q. (A.45)

Table B.1 lists the arithmetic complexity reduction of DCT-II and DCT-IV when ¢ = 3 and 9
by comparing the proposed mixed-radix method and the DCT-1I-based method. The result
shows the introduction of the proposed radix-g algorithm for DCT-IV computation improves
not only the computation of DCT-IV but also that of DCT-II for the two cases due to the more

efficient computation of length-3 and length-9 DCTs-1V.
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Figure A. 1. Multiplicative cost of DCT-IV by the proposed method for N = g x 2"

Table A. 1. Arithmetic Complexity Reduction

q=3 DCT-IV DCT-II q=9 DCT-IV DCT-II
N X + X + N X + X +
12 2 0 1 0 18 0 0 1 2
24 2 0 3 0 36 2 4 1 2
48 6 0 5 0 72 2 4 3 6
96 10 0 11 0 144 6 12 5 10
192 22 0 21 0 288 10 20 11 22
384 42 0 43 0 576 22 44 21 42
768 86 0 85 0 1152 42 84 43 86
1536 170 0 171 0 2304 86 172 85 170
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APPENDIX B

AUTOREGRESSIVE MODELING OF
TEMPORAL/SPECTRAL ENVELOPES WITH
FINITE-LENGTH DISCRETE TRIGONOMETRIC
TRANSFORMS

Autoregressive (AR) modeling [53], [64], also known as linear prediction (LP), has
received more and more applications in audio coding. For example, SBR uses a second-order
linear predictor for inverse filtering. MPEG-4 Audio Lossless Coding (ALS) [65] generates
residuals with a smaller dynamic range via linear prediction. Also, some audio coding
approaches are based on linear prediction performed on a warped frequency scale [66], [67].
In additional to the applying of the AR modeling. in the time domain, due to the duality
between the squared Hilbert envelope and the power spectrum [27], the AR modeling can be
also applied to spectral sequences for temporal envelope estimation. In MPEG-2/4 AAC, the
Temporal Noise Shaping (TNS) [27]-[30] is utilized as one of effective mechanisms for
reducing the pre-echo noise that is a typical and critical artifact in audio coding. The TNS
applies an open-loop linear prediction [31] across frequency lines prior to quantization in
encoder to achieve the temporal envelope shaping on the quantization noise in decoder.

Although the AR modeling is always preformed on windowed signals in practice, its
theoretical derivation was given through the Fourier theory of infinite discrete-time sequences
or continuous signals in the literatures, such as [53] and [64]. In [27]-[30], Herre and Johnston
explained the concept of TNS through the duality between the squared Hilbert envelope and
the power spectrum for continuous signals. Likewise, Kumaresan et al. [68]-[72] formulated
the linear prediction in spectral domain equations for the AR modeling of temporal envelope
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in the indirect ways. No exact derivation for finite sequences was developed until Athineos
and Ellis [73] formulated via matrix operations the solution of the problem that finding an AR
model of a discrete spectrum and relating it to the temporal envelope of the finite
time-domain sequence. However, the derivation in [73] was limited in the scenario when the
discrete spectrum is the odd type-I discrete cosine transform (DCT-I) coefficients.

In Appendix B, we concern the temporal and spectral AR modeling of a finite sequence
when one of the 16 members of the discrete trigonometric transform (DTT) is used in the
temporal and spectral domains. Different from DCT-I, other DTTs have a 1/2-sample delay in
the time domain and/or a 1/2-sample advance in the frequency domain. When considering a
finite-length sequence as a discrete periodic signal obtained by sampling a continuous signal,
we need to consider the aliasing effect in the dual domain. We systematically establish the AR
modeling fundamentals for the DTTs by exploiting the relationship of the DTTs and the
generalized discrete Fourier transforms (GDFTs) [76]. We address the AR problem with
GDFTs by extending the well-known relationship-between the autocorrelation and the power
spectrum to the GDFT/Inverse GDFT domains.-Then we define new finite-length analytical
transformations based on GDFTs. Through the analytical transformations, we establish the AR
modeling fundamentals for DTTs by relating the DTT spectra to the corresponding GDFT
spectra with appropriate symmetric extension or zero padding operations. In addition to the
temporal Hilbert envelope, we also concern the power envelope estimation for a real-valued
sequence without introducing the Hilbert signal. The dual results can be derived with the
consistent representation in the temporal and spectral domains, i.e., both are periodic and
finite. Our formulation is expressed entirely in the discrete finite domain in matrix form. The
compact expressions not only disclose that the AR modeling concept can hold in each DTT
domain, not limited in DCT-I domain, but also can be used for more clearly examining the

related methods based on AR modeling in DTTs.
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B.1. Preliminaries

To derive the AR modeling with the sixteen DTTs, we summarize the common terms
and the existing theorems on the convolution-multiplication and periodicity properties for the
GDFTs. The convolution-multiplication property sets the fundamental for modeling the
temporal/spectral envelopes. The periodicity property is fundamental to discuss the effect of
finite-length transforms when applying to periodic sequences. Then, the terms, transform

formula, periodicity, and the relation with GDFTs are summarized for the sixteen DTTs.

B.1.1. Notations

Throughout Appendix B, we use calligraphic capital letters to denote matrices (e.g., A, G,
T) and calligraphic lower case letters to denote column vectors (e.g., a, x, y). For vectors and
matrices, both row and column indices used are zero based. To refer to the kth entry of x, the
notations x; and (x); are used. Some-operation notations are described as follows. Superscripts
(T), (H), and (*) denote the transpose, Hermitian transpose, and conjugate operations,
respectively. The notation ( ° ) denotes the Hadamard product (i.e., the entry-wise product of
two vectors or matrices); (Il - ) denotes 2-norm. In terms of linear algebra, we consider and

represent a finite sequence x(n), for n, <n <n,, as a column vector x of length (n;— no+ 1):

x =[x(ny),x(n, +1), x(n, +2),...,x(n, )"

B.1.2. Generalized Discrete Fourier Transform

The generalized DFT (GDFT) [77] of a finite sequence x(n), n =0, 1, ..., N — 1, is
defined as

y(k)=Nz_lx(n)exp{—j%[(k+a)(n+b)/N}, fork=0,1,...,N-1. (B.1)

n=0
Four special forms of the GDFT arise when a and b take on the values O or 1/2. They are
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classified and named as follows [76]: (i) DFT (Discrete Fourier transform): a = 0 and b = 0;
(i1)) OTDFT (Odd-Time DFT): a = 0 and b = 1/2; (iii)) OFDFT (Odd-Frequency DFT): a = 1/2
and b = 0; (iv) O°DFT (Odd-Time Odd-Frequency DFT): a = 1/2 and b = 1/2. The last three
transforms can be regarded as the modified version of the DFT with a 1/2-sample delay in the
time domain and/or a 1/2-sample advance in the frequency domain. The GDFT matrix is
defined by [G, ] r.n = exp{—j2n(k + a)(n + b)/N}, where the row and column indexes are k, n =
0, 1,..., N — 1. Since the inverse GDFT (IGDFT) matrix is the scaled Hermitian transpose of

the forward GDFT matrix, the IGDFT matrix is related to the forward matrix as

G,.,=+G., =+G,, (B.2)
B.1.3. Generalized-Periodic Sequence, Periodic Convolution, and GDFT

Considering the generalized-periodic sequence (GPS) by extending a finite sequence into
an infinite sequence in either strictly periodic or anti-periodic way, Martucci summarized the
four different periodic relationships-for the four special GDFTs/IGDFTs in Table B.1. A
sequence is said to be anti-periodic with period N if x(n) = —x(n + N) for all n. For a period-N
GPS, we refer to the samples in the base period (for index n = 0, 1,..., N — 1) as the
representative samples or vector.

The periodic convolution of two period-N GPSs, X(n)and y(n), of the same type (i.e.,

both of them are either strictly periodic or anti-periodic) is defined as
N-1 N-1
X @®F(n)=Y X(k)¥(n—k)=Y F(n—k)y(k). (B.3)
k=0 k=0

The periodic convolution is also a GPS with the same periodic type and period. On the other
hand, the circular and skew-circular convolutions of two vectors x and y are defined by (B.4)

and (B.5), respectively.
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n N-I1
X © Y=Y 2yt DX Yy forn=0,1..,N-1.
k=0

k=n+1

n N-1
x ® yh ZZxkyn_k — Zxkyn_kw ,forn=0,1,..., N-1.
k=0

k=n+1

The circular and skew-circular convolutions of two length-N sequences are, respectively,

equivalent to the representative vectors of the periodic convolutions of the period-N strictly

periodic and anti-periodic sequences extended from the finite sequences.

Table B.1. Periodicity Properties of GDFTs and IGDFTs

Periodicity Property
before-after Transform

GDFT
with the relation

IGDFT
with the relation

(Strictly Periodic, Strictly Periodic)

G,, (DFT)

G,, (IDFT)

(Strictly Periodic, Anti-Periodic)

G,, (OTDFT)
I B

G, (IOFDFT)
L

(Ant-Periodic, Strictly Periodic)

G, , (OFDFT)

G—l

.. (IOTDFT)
2

G, (I0°DFT)

1
2

(Anti-Periodic, Anti-Periodic) G, , (O'DFT)

o=
)=
=

B.1.4. Convolution-Multiplication Property of GDFT

The DFT has the convolution-multiplication property that the inverse transformation
after entry-wise multiplication gives the same result as the circular convolution of the original
sequences. Martucci [76] derived such properties for other GDFTs. We summarize the results
in matrix/vector form as follows. Let u = x © y and w = x (® y, then the following

properties hold:

u=Gy[(Gy,x) 2 (Gyoy)]. (B.6)
u= G(;‘%[(GO%x) o (Gy )] (B.7)
w=G,[G, x) (G, Y. (B.8)
w=G.\[G, ,x)° (G, ). (B.9)

Notice that the implied periodicity of u, is strictly periodic and that of w, is anti-periodic due
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to the periodicity inherence of the periodic convolution of the original sequences represented

by x and y.

B.1.5. Discrete Trigonometric Transform

The family of DTTs comprises eight versions of the discrete cosine transform (DCT) and
eight versions of the discrete sine transform (DST). Martucci formulated the DTTs through
the convolution forms as defined in [76, Appendix]. The orthogonal-like relations between the

inverse and forward DTTs are

T,, T.'=

-1 _ 1 -1 _ 1
T1 _MTI’ Tu - i » III_MT

-1 _
u.and T, =

mn il (B.10)
where the DTTs in both sides of each equality must be the same in the categories of cosine or

sine and even or odd; and M is 2N and 2N = 1 for the even and odd cases, respectively.

B.1.6. DTT and GDFT

B.1.6.1. Symmetric-Extension Operator

Just as the special forms of the GDFT provide representations for GPSs, the symmetry
and periodicity of the basis functions of the DTTs establish a one-to-one correspondence
between the DTTs and the 16 symmetric-periodic sequences (SPSs) that are summarized in
[76, Fig. 2]. Since these SPSs are also generalized-periodic, the SPS extended from a DTT of
a finite sequence can be produced from the corresponding GDFT of that sequence after
having been symmetrically extended to a base period. Therefore, each DTT can be directly
constructed in terms of its corresponding GDFT by cascading an appropriate
symmetric-extension operator as defined in Table B.2, where the subscripts are in terms of
Martucci’s naming rules, including whole-sample symmetry (WS), whole-sample

anti-symmetry (WA), half-sample symmetry (HS), and half-sample anti-symmetry (HA). The
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notations Iy and Jy mean the identity matrix and reversal matrix of order N. For instance, we
have

Y =G, Eygusx =C)yx, (B.11)

whereyis Px 1, G, is Px 2N, E;qis2Nx N, Cj is Px N, xis N x 1, and positive

1
’2

integer P determines how long the output SPS is captured.

Table B.2. Matrix Forms for Symmetric Extension Operators

M =2N M=2N-1
E B !Nﬂ - } E IN ......... }
WSWS : : WSHS :
_0N—l><l 3 JN—l 3 0N—J><l _0N—1><l : J N-1
01><N—1 0
I """" IXN-1
E v E I,
WAWA 0 """" WAHA CON-L
IXN-1
"""""" JN—l
_']N—l
EHSHS IN:| EHSWS IN _________ }
EHAHS _JN EHAWS _JN—l 0N—l><l
r I IN—l
EHAHA IN EHAWA 0 """"
E HSHA __J N E HSWA _I}N_l
N-1
— ; -
............ N I,
EWSWA 01><1v EWSHA n Ty
"""""" _0N—1><l Iy
0N—1><1 ; JN—I
....... O Oy
EWAWS IN _________ EWAHS __!_1_\/____1_
_JN 1 0N—l><1 L JN—l

B.1.6.2. Zero-Padding and Selective Matrices

For capturing the standard index range of the DTT output, the transposed zero-padding

matrix is introduced. The (r + p + ¢) x p zero-padding matrix Z,  is defined as

T (13 : 29 . .
0,.,1,0,,] . The name “zero-padding” comes from the fact that left-multiplying a length-p
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column vector x by Z, is equivalent to padding x to the up and down by r and g zeros,

respectively. On the contrary, left-multiplying a length-(r + p + ¢g) column vector x by

Z: g 18 equivalent to selecting x, for r = n = p + r - 1. For instance,

Zy,, [x5.%,.,xs1" =[x;,x,,x5,x;,]" . Hence, we name the transposed zero-padding

matrix as the “selective” matrix.
B.1.6.3. Relationship of DTT and GDFT

By using the selective matrix and symmetric-extension operator defined above, we can

express the relation between a DTT matrix and its corresponding GDFT matrix as

T,=2! F,.E,, (B.12)

where T, denotes the DTT matrix, ¥, denotes the GDFT matrix, Z Z denotes the selective

matrix, E, denotes the symmetric-extension operator; and subscript ¢ indicates the type of
DTT, which takes on I, II, III, and IV. Alternatively, by left-multiplying the DTT matrix by a
symmetric-extension operator to obtain another half of samples in the base period of the
corresponding GDFT, we can define the correspondent symmetric-extension operator E’,

through the following relation.

E T =F, E,. (B.13)
B.1.6.4. Relationship of IDTT and IGDFT

The dual formula related to (B.13) is derived as follows:
-1 -1 -1 1, -1 e
ET ' =F '(FE),  =F (ET)I =F E,. (B.14)
Note that E, and E’, are interchanged in (B.13) and (B.14). Taking conjugate of (B.14) and

=F

®(q)

using the properties (B.2) and (B.10) lead to E qTq[> E ; ,and hence FE g = E; where

(q) P(q)°
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Table B.3. Definitions of Related Matrices for DTT.

q | T, In%lat\;gg - Z, F, E, E; A | W Ky | o
Cle 0—N Zonana Gy, Eyows | Ewsws A;Jr W1\7+1 Gy, C
) C;, [0->N-1 Zynn GO% Eysns | Ewswa | Ay Wy GO% S
ar| Cy [0-N-1 | Zyy G%,o Eyows | Ensus | Apy | 21y | Goo C
= |[IV| Cy |0—-N-1 Zo v G%% Eygn | Eysun | Ay | 21y GO% S
% 1 S; l->N-1 Zl,N—l,N jGo,o Eywa | Evawa A;+ 21, | Gy, C
i} s 161 I —N Z 0.N,.N jGO% E s | Ewaws A;1+ Wzé GO% S
m| 8g |0-oN=1{ Ziywa | 790 | Eyaus | B | At | 21y | G | ¢
A% SIEV 0—->N-1 ZO, N,N jGé% E s | Enans A;‘t 21, GO% S
1] C; |0>N-1 Zyyn-1| Goo | Eysus | Eysus A;* Wy Gy, C
] Cy |0-N=1 | Zyy y GO% E s | Eysn | Ay | Wy Go% S
I C;)II 0—-N-1 ZO, N,N-1 G%,O Eysun | Epsws A;IJ; W/éH Gy, C
§ V] Cp | 0oN=2 | Zo .y G%% Eysii-| Enswa | Ay | 21y, Go% S
%) IS |1-oN=-1]|Z JGoo " Evisia | “Ewana AT | 2L, | G c
T sy 1Nt | Zosin | TG B | s | Ay | WL G | s
ar| S;, |[0->N-2| Z y_y5 J'G%,O Eyius U E s | Asr | Wil | Goo C
v S;v 0—-N-1 ZO, N,N-1 jG%% E s | Epaws A;’; W[\I/H GO% S

subscript @(g) indicates the pair type according to (B.10) (i.e., (1) =1, @(I) = IlI, ®(11]) =11,
and @(IV) =1V). On the other hand, by (B.2) and (B.10), the dual formula related to (B.12)

is derived as follows:

=z, F'E

P(q)" ¢q P(q)

T =LT,

q

17! F. E

DP(q)" P(q)P(q)

(q) = = ch(q)FqilE; : (B.15)

Since T, is real-valued, the conjugate operation can be applied in the second equality.

The relationships of DTT/IDTT and GDFT/IGDFT as illustrated in (B.12)-(B.15) are
depicted in pictorially in Figures B.1 and B.2. In the above generic formulas, the specific

definitions of the related matrices are given in the first six columns of Tables B.3 and B.4. As
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an example, according to (B.12) and Table B.3, the relation between the odd DST-II of length

N — 1 and the OTDFT of length M that equals 2N — 1 is given by
SiX=Zgy 1y jGo,% EpaX =Y, (B.16)

where x =[x(1),x(2),...,x(N=D]" and y=[y(0),y(D),...,y(N -2)]". According to (B.13)

and Table B.4, another relation is expressed by

EyunsSpx = jGO’%EHAWAx. (B.17)

Table B.4. Definitions of Related Matrices for IDTT.

-1 Input Index -1 ’ . ’— -1 i
q Tq Range Z<I>(q) Fq Eq Eq A w r e

-1 -1 e- 11 -1
I ¢y 0—-N Zynn- G, Eyows | Ewsws | A Wia | Goo C

m)cy [0-N-1| Zoyy (08 B | B | A | 2y | Goy | ©
m C[e”_] 0=>N=1|Zyyy G;O Eyswit Eusus | A W]é G;o S
S v Clevil 0—>N-1 ZO,N.N G;% E ysui | E psun Ay 2, G;o S
% I Sf_1 l->N-1 Zl,N—l,N 'J'Go_,i) EWAWA EWAWA Ale- 21, G(;,lo C
1 SZ_I 0->N-1 Zl»N»N—l _jGO_é EHAHA EWAWS A;I ZIN G(;,lo C
1| s ;1_1 1—->N Zyy.n _jG%_ lo Eyws | Epun | Al | Wy ;o S
v vail 0—->N-1 ZO,N,N _jG;% E s | Epans A;V 21, G;o S
1 C7_1 0—-N-1 ZO,N,Nfl G(;j) EWSHS EWSHS A;. WAI/ G(;j) C
e |[0sN-1]Zyyy G;% Eugs | Evoun | AZ | W | Gyl | ¢
m C;I[l 0—-N-1 ZO,N,Nfl G;o Eygin | Epysws A W/é G;o S
? v C;’V_l 0->N-2 | Zyyn G;% Eysun | Euswa | Apy | 2Ly ;o S
[|\2) I SIO_1 l—>N-1 Zl,N—l,N—l 'jG(;,:> EWAHA EWAHA A;- 21, G(;,l) C

.1
_1 _ ) B
1 S;} 0—>N-2 ZI’N*LN*I JGo,l EHAWA EWAHS A;I W]é”l Go,i) C

-1 -1
i S 1>N-1|Zyy1y _JGl,o Eyius | Epawa | App Wy, L S

-1 -1
v\ S 0—->N-1 ZO,N,N—I _]Gli Epiws | Epaws | Al W]\i” Gl,() S




Input vector —> DTT/IDTT [— Output vector

Input . . . Output
vector | Symmetric Extension — GDFT/IGDFT —* Entry Selection — ...

Figure B.1. Relationship of DTT/IDTT and GDFT/IGDFT. A pictorial representation of (B.12)
and (B.15).

Input vector —> DTT/IDTT —* Symmetric Extension — Output vector

Input vector — Symmetric Extension —* GDFT/IGDFT [— Output vector

Figure B.2. Relationship of DTT/IDTT and GDFT/IGDFT. A pictorial representation of (B.13)
and (B.14).

B.2. Autoregressive Modeling and GDFT

In this section, we first establish the time-frequency relation between the periodic
autocorrelation and power spectrum in the GDFT frequency domain. Then we show that, like
the traditional approach, the Yule-Walker equations consisting of periodic autocorrelations is
derived in the least square error sense for evaluating the AR parameters in the finite length
problems with GDFTs.

Before proceeding, we show a general property of two GPSs with period N, which will be
heavily used in later derivation.

Lemma 1 Given two GPSs, X(n)and y(n), which are either strictly periodic or anti-periodic
with period N. Then any summation over successive N terms of their product is equal to the
summation over the base period from O to N — 1. That is,
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i+N-1

> ¥(m)F(n)= 3 F(n)F(n), for any integer i. (B.18)

n=i n=0
Proof: Since X(n+ N)y(n+ N)=Xx(n)y(n), the product Xx(n)y(n) is a strictly periodic
sequence with period N. Thus, any summation over successive N terms of their product has

the same result. =

B.2.1. Autocorrelation and Power Spectrum in GDFT

The periodic correlation of two period-N GPSs Xx(n) and y(n) of the same type is

defined as

R(n) F(n) =4 Y & (m)F(n+m) (B.19)

Note that the periodic correlation is also.a period-N GPS that has the same periodic type
as the input GPSs have. Similarly, to distinguish the strictly periodic and anti-periodic cases,
the circular and skew-circular correlations of two length-N vectors x and y are defined as

[[N-n-1

N=1
(Xx*.y), =+ ZxZ-yn+k+ le’:.ymk_N forn=0,1,...N—1. (B.20)
L k=0 k=N-n i
[[N-n-1 N-1 .
(x*s y)n:% zxz.yn+k_ let.ylHk—N ,forl’l:(),l,,,,,N—l_ (B21)
L k=0 k=N-n i

The circular and skew-circular correlations of two length-N vectors are, respectively,
equivalent to the representative vectors of the periodic correlations of the period-N strictly
periodic and anti-periodic sequences extended from the finite vectors.

To express a periodic correlation in terms of a periodic convolution, the flip operation on

a GPS is introduced and defined as

FLIP{X(n)} =X(-n). (B.22)

The flip operation can also preserve the periodicity of the input GPS. For finite sequences of

length N, the strict-flip and anti-flip operations are defined in matrix form as
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1 0., 1 0
sm{b ----------- ;-----‘-F-’-V---l?} and AFL,P=[b-----------;---_-‘-f--”---l?}. B.23)

The strict-flip and anti-flip operations of a length-N vector are equivalent to the representative
vectors of the flip operations of the period-N strictly periodic and anti-periodic sequences
extended from the finite vector. For instance, let x = [1,2,3,4]T, then Srrpx = [1,4,3,2]T and
Appx =[1,-4,-3,-2]".

Theorem 1 Given two period-N GPSs, X(n) and y(n), of the same periodic type. Then,

F(n) % §(n) =+ FLIP{Z" ()} ® 5(n). (B.24)

Proof: Since both X"(m) and y(n+m)for any fixed n are either strictly periodic or

anti-periodic with period N, by Lemma 1, we have

> F () (n+ m)= 3 T ) (n—m). -

m=0 m=0

Corollary 1 For two column vectors x and y of length N, the following properties hold.

x¥c Yy =3 (Sppx’) © yoand x*;y=1(A,,x)Oy. (B.25)

Like the conjugate relation between the DFTs of a vector and its strict-flipped conjugate
[52], we extend without proof such properties for other GDFTs in the next lemma.
Lemma 2 Consider a column vectors x of length N.

(i) The DFT and OTDFT of the strict-flipped conjugated x can be evaluated by

(Gy,S ppXx "), =exp(—j4nkb/ N)- (G, ,x),,

forb=0or1/2,and k=0, 1,...,N-1.  (B-20)
(i1) The OFDFT and O’DFT of the anti-flipped conjugated x can be evaluated by
(G%,bAFLIPx*)k =exp(—j4z(k+3)b/N)- (G%,bx)z ,
forb=0or1/2,and k=0, 1,...N-1.  B-2D
=
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The periodic autocorrelation of a GPS X (n) with period N is defined as

e (n) = F(n) * ¥(n) =+ 3 & (m)F(n+m). (B.28)

m=0

For a vector x of length N, the circular and skew-circular autocorrelations are defined as

ri=x#*.x and r) =x%*x. (B.29)

B

It is well known that the DFT of the circular autocorrelation of a vector equals the DFT power
spectrum of the vector. We extend such important relations for other GDFTs and GPSs.
Theorem 2 Consider a column vector x of length N.

(i) The relation between the circular autocorrelation and DFT/OTDFT power spectra is

given by

C

re =3 Gool(Gypx)°(Gypx) ] = %Go_,i)[(Go,%x) ° (GO,%X)*] ' (B.30)

(i) The relation between the skew-circular autocorrelation and OFDFT/O’DET power

spectra is given by

rxS = %G;O[(G%Ox) o (G%Ox)*] :ﬁG;()[(GHx) o (G%%x)x] . (B31)

Proof: We first consider the case of skew-circular autocorrelation and OFDFT in part (ii). By

Corollary 1, we have
r’=(1A,x)0® x.
Thus, using (B.7) yields
1 =36 (G Appx) 2 (G, )],

Then, by Lemma 2 (ii), we obtain

r’ =#G;O[(G%!Ox)* °(G, )]

Due to ‘(Glsox)k

-G, %),

272

, part (ii) is proved completely. Similarly, part (i) can be

proved by the same technique and using (B.6). -
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Corollary 2 Consider a column vector y of length N.
(iii)The relation between the skew-circular autocorrelation and IOTDFT/IO’DFT power

spectra is given by

ry = GO,%[(GO_,I%)’) ° (G&l%y)*] = GO,%[(G;%)’) ° (G;%y)*] : (B.32)

(iv)The relation between the circular autocorrelation and IDFT/IOFDFT power spectra is

given by
ryC = Goo[(Go_i)y) ° (Go_i)y)*] = G(),o [(G;loy) ° (G;loy)%] . (B33)

Proof: We first represent (B.30) and (B.31) in Theorem 2 in generic form as

rx = %thl()[(Gabx) ° (Gu,bx)*] * (B34)

By taking conjugate of both sides of (B.34) and using the property (B.2), we have
r; =LG, [(NG,,x") o (NG, x") 1= Gj,[(G;x") > (G, x")]. (B.35)
Lettingx be y~ in (B.35) yields
r. =G, [G;,¥)° (G, ») 1 (B.36)
Since ryi =r, in both circular and skew-circular autocorrelations, the proof is accomplished.

Thus far, the relation between the periodic autocorrelation and GDFT power spectra has
been connected in Theorem 2 and Corollary 2. These results are the theoretical fundamental

of AR modeling of GDFT spectra in later derivation.

B.2.2. AR Modeling with GDFT

An order-P AR model for a period-N GPS X (n) with parameters « (1), a (2),...,a (P) is

defined as

X(n) ==Y a(k)i(n—k)+&(n), (B.37)
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where €(n) is a generalized-periodic excitation sequence, which is regarded as residuals in

linear prediction sense. The residual term can be written as
N-1
e(n) =Y ak)i(n—k)=X(n)®@a(n), (B.38)
k=0

where a(0)=1and a(n) =0 forn=P+ 1, P+ 2, ..., N— 1. The periodic type of &(n) that
is the GPS extended from « (n),n =0, 1,..., N — 1, must be the same as that of X(n) to make
the periodic convolution computable. Let x,a,e denote the representative vectors for x(n),
d(n),and € (n), respectively. Then, by the convolution-multiplication properties (B.6)-(B.9),

e can be transformed into the GDFT frequency domain as
Ga,be = (Ga,bx) ° (Ga,Oa) s (B39)
where a and b take on the values 0 or 1/2.depending on the periodicity type of X (n)and the

GDFT type used. Hence, by viewing e(n)as a white noise, the power spectrum of the

order-P AR model is given by

(G,,x).[ =[G, ,0),[]G, ), 262G, 00l fork=0,1....N - 1. (B.40)

To evaluate the AR parameters, the Yule-Walker equations can be derived through the least
square error (LSE) approach for the GDFT family. We present the result without proof.

Theorem 3 For a GPS X (n) with period N, the parameters for the order-P AR modeling in

N-1
the LSE criterion (i.e., minimizeZ|'é (n)|2) can be obtained by solving the Yule-Walker
n=0

equations consisting of the periodic autocorrelations:

rz(i):—zp“r}(i—n)a(n),fori: 1,2,...,P. (B.41)

n=1

Furthermore, the LSE is given by

-1

MZ

e =N r (~ma(n). (B.42)

I
(=]

n
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Proof: We first rewrite (B.41) in vector/matrix form as e = x — Xa expressed as follows:

e(0) ¥0) | [ F-D X(-2) (=3 - X=P) [ a®]

Z() (1) %(0) =)  F=2) - ¥1-P) | a@®

2Q) |=| ¥ |+ O %(0) (- - ¥2-P) |aB) |- (B43)
EN-D| |[FN-D]| [F(N-2) F(N-3) F(N-4) - IN-P-1)|a(P)

The parameter vector a corresponding to the LSE can be found through the normal

equation:

-X"Xa=X"x. (B.44)

The (i, j) entry of X”X can be derived as follows:

(ki) k= j-D= Y (m) Fmti—j). (BAS)

1 m=—i

M=

(X"X],, =

i,

[XH]i,ka,j =

N
k=

>~
1l

Since both X*(m)and X(m+i— j)are either strictly periodic or anti-periodic with period N

when i — j is fixed, by using Lemma- 1, we have

N-1
(XX, =D X (mF(m+i=)=N-rl~j), for | <i,j<N. (B.46)

m=0

Similarly, we have (X ”x), =N-r.(i) for 1<i<N. Thus, (B.44) can be rewritten as (B.41).

Equation (B.42) can be derived by using (B.44). We ignore the details. -
Remarkable, in both strictly periodic and anti-periodic cases, the Yule-Walker equations
can be expressed in terms of a Toeplitz matrix, and hence the Levinson-Durbin algorithm [53]
can be used for efficiently computing AR parameters. Also, according to the next theorem,
only P + 1 periodic autocorrelation entries, r. (i), =0, 1,..., P, are required to comprise the
Yule-Walker equations.
Theorem 4 Let x(n) be a GPS with period N. Then its periodic autocorrelation has the
conjugate-symmetric property as

r(=n)=r; (n). (B.47)
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Proof: Applying Lemma 1to X"(m)and X(—n+m) leads to

N-r.(—n) = Nz_li*(m))?(—n +m)= Ni_;"c'*(m)i(—n +m)
"= " (B.48)

T (m+n)¥(m)=N -7, (n).

N-1

3

[
The next theorem describes the well-known Parseval’s Theorem [52] for GDFTs.
Theorem S Let x be a column vector of length N. Then
%* =+[G.,x|" = N[, fora.b=0,122. (B.49)
[

To summarize, like the traditional AR modeling method, the Yule-Walker equations in

Theorem 3 can be solved to yield AR parameters in finite length problems. Then ‘(Ga’bx) k‘z

can be estimated by o’

a’oa)k‘ By Theorem 5, we have o’ ‘

be” = ||e|| Also,

‘(Ga,ox)k‘:‘(Ga’;x)k . Thus, when viewing x in the strictly periodic sense, we can

approximate its DFT and OTDFT power spectra by

-2

= 02|(Gya),|” =07 (B.50)

‘(Goyox)k‘z = ‘(GO’;X),( 2

1
0.5

Oppositely, when viewing x in the anti-periodic sense, we can approximate its OFDFT and

O’DFT power spectra by

-2

=0’ =0’ (B.51)

11
2’2

2 2
‘(G;,Ox)k - ‘(G;,;x)k

1
2’0

Likewise, for the frequency-domain AR modeling, we can estimate the squared temporal

envelope by

-2

Gy, ‘(G ~ N2>

05%) ‘ =N"o’

%),

(B.52)

where b = 0 or 1/2 depending on the forward GDFT used, and o’ = ﬂ

e = lel”

an instance, Figure B.3 illustrates the spectral power envelopes of a speech segment of 2048
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samples at 44.1 kHz. The power spectra obtained from its DFT and OFDFT are shown in
Figure B.3 (b) and (c), where the spectral power envelopes of order-24 AR modeling are
obtained by solving the Yule-Walker equations consisting of the circular and skew-circular
autocorrelations, respectively. The two spectral power envelopes are depicted together in
Figure B.3 (d) to compare their difference. In the low frequency part, the two envelopes are
almost identical, whereas the major deviation occurs in the high frequency part and reveals

the difference of the circular and skew-circular autocorrelations.

e
(2}

3 £
2 0.4f 2
E =1
EAAARAN
E "l o 1 L 5
5 ogqﬂw W \W\, gl b [M\r ¢
% .02 \ j \‘ \ﬁ ’ ' e
2f | [
= 0.4 - \ &
7 1023 2047
Time Index
(a)
S o
a 2
o _ D
= &5 =
o
T —
g G
© pi'5048 P2+ pil2048 pi+pi/2048o % 511 1024
n/2048 = w = n+7/2048 Frequency Index
(c) (d)

Figure B.3. Comparison of spectral power envelopes (i.e., squared envelope). (a) The
time-domain speech segments of 2048 points at 44.1 kHz. (b) The DFT power spectrum and
the spectral power envelope. (¢c) The OFDFT power spectrum and the spectral power envelope.
Both the power envelopes are obtained by order-24 AR modeling, for which the Yule-Walker
equations are comprised by the circular and skew-circular autocorrelations in (b) and in (c),

respectively. (d) The comparison of the two power envelopes.
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B.3. Autoregressive Modeling and DTT

In this section, we derive the theorems for the AR modeling in DTTs. First, associated
with GDFTs, we derive the analytic transform matrices which convert real-valued vectors into
analytic vectors. Then, based on the analytic vectors in DTT/IDTT, we derive the close form
between DTT/IDTT with the GDFT/IGDFT. Combing the AR modeling in last section with
the close form, we derive the AR modeling formulation with the DTTs in both temporal and

spectral domains.

B.3.1. Analytic Transform based on GDFT and IGDFT

Marple has proposed a DFT-based method for computing the analytic signal
corresponding to a finite real-valued sequence of an even length [79]. The N x N analytic
transform matrix A converting a real-valued vector x into'a complex-valued analytic vector a

is decomposed in matrix product form:

A=F 'ZWZ F;, (B.53)

where F denotes the DFT matrix, Z denotes the zero-padding matrix Zo np+1, n2-1 ,and W is
the weighting matrix diag{1,2,2,...,2,1}of order N/2 + 1. As can be seen, the analytic
transformation proposed by Marple discards the negative DFT frequencies. With the
appropriate weighting by W, the analytic vector can have two desired properties. First, the

real part of a exactly equals the original vector:

Re(a,)=x,,forn=0,1,...,N- 1. (B.54)

Second, the real and imaginary parts of a are orthogonal:

Nz_lRe(an) -Im(a,)=0. (B.55)

n=0

As the fundamental for establishing the analytic transformation via the GDFT, we show
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without proof the generalized symmetry of the GDFT of a real-valued input

Lemma 3 Given a column vector x of length M, andy =G, ,x . Then x is real-valued if and

only if the following conjugate symmetric/anti-symmetric property of y holds.

(1) For DFT and OTDFT, i.e.,a =0,

Yu gk =8 Vtsaj - for 0k < [M/2]. (B.56)
(ii) For OFDFT and O’DFT, i.e., a = 1/2,

Yiutiteics =8 Vs for 0< k< [M72]. (B.57)

Here s is 1 when b =0 and —1 when b = 1/2.

Proof: Using the rule M =|_M /2_|+\_M / 2J, we can derive the generalized symmetric

properties of the basis functions of the GDFTs in (i) and (ii) in the frequency direction as

follows.
exp(_ ]J;” (M 127+ k) + b)j = exp(_ 5” (M =M /2]-k)n+ b)]
] (B.58)
=5- exp*(_ S M 2]~ k) +b)].
M
exp(_ﬁﬂ (M 12]+k —1+%)(n+b)j = exp(_ 2T M2~k +%)(n+b)j
(B.59)

- s.exp*(_]{;” (M712]-k +%)(n+b)j.

Since a GDFT output is the linear combination of the basis functions of the GDFT by taking
the input vector as the combination coefficients, it has the same generalized symmetric
property as the basis functions have if the input vector is real-valued.

Conversely, we only consider the case of a = 1/2, and the case of a = 0 can be proved in
the same way. Let x = x*¢ + jx'™, where x*° and x™ denote the real and imaginary parts of x.

Let z*¢ =Glbee and z™ =Glbxlm. Suppose y satisfies the condition (B.57). Of course,

Re

7" has the same property as shown in the forward part. Thus, jz"™ =z-2z" still satisfies
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the condition (B.57), implying that jzfn“/} 2k =8 j(zb"; /s J_k)*. However, since x™ is
real-valued, we have jzf}f},wk_l =s- j(zf?},zj_k)*. Thus, for 0 <k < |[M /2], zf,,“,’,,mk_l =0,

and then zfﬂ"; j2 -« = 0. This implies x™ =0 for all n, and hence x is real-valued. n

Based on the generalized symmetry of GDFTs, we can construct other analytic transform
matrices as shown in the next theorem.
Theorem 6 Via each GDFT, we can define the analytic transform matrix, which satisfies both

the properties (B.54) and (B.55), in the generic form:

v _ p-lgtyr+ 7 +\T
Aq =F Z,W (Z,)F,, (B.60)

where A; is the M x M analytic transform matrix, F, is the GDFT matrix, Z; is the
zero-padding matrix, and W is the weighting matrix. The specific matrices are tabulated in
Table IV, where W " belongs to one of the following diagonal matrices of order N or N + 1
denoted as subscripts: 2Iy = diag{2, 2,..:,2}, W,é =diag{1, 2, 2,...,2}, W,\Zl =diag{1, 2,

2,....2,1},and W) =diag{2,2,...2,1}.
Proof: In the same approach in [79], we can construct the analytic vector by defining the
conjugate symmetric and anti-symmetric functions. For example, we consider the

construction of odd A;,.Let y=G, x and a= a® + ja™ = Ajrx for areal-valued vector

x of length M, where a"®and a™ denote the real and imaginary parts of a. Let z*° and z™
denote the OFDFTs of a*° anda™, respectively. For the condition (B.54), we must define

2% =y tohave a®® =x.On the other hand, we define

—j-y, 0<k<(M-1)/2
™), =40 k=M +1)/2 : (B.61)
Jjye (M+3)/2<k<M -1
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Note that adding z*° to jz™ not only eliminates the negative spectrum but also leads to the

definition of W, as diag{2, 2,...,2, 1} of order (M +1)/2. The definition (B.61) indeed

implies that a™ Gl 1Oz1m is purely real-valued since the conjugate symmetric property (B.57)

holds; thus, the condition (B.54) is satisfied. The orthogonal property (B.55) can be confirmed

as follows:

(a )Talm _ (G%,OaRe)H (Glz’oalm) =L (z )Hzlm — O (B.62)

In the last step, the conjugate symmetric property of y is used. Other analytic transform

matrices can be constructed in the same way. -

In the next corollary, we show the dual formula of (B.60).
Corollary 3 Let A, =(Ag ), Z, =Zggmand W =Wg . We can define the analytic
transform matrix which converts a real-valued:spectral vector into a spectral analytic vector as

A, =FZ W (Z)'FE . (B.63)

Proof: We take conjugate of (B.60) and use the property (B.2) to have

(A)) =Fo, Z;W (Z]) Fq,. (B.64)

Then replacing g by @(q) yields

(Aq (q)) =F Z;(q) ¢><q>(Zd+><q>)TFq_1' (B. 65)
u
Take for example, letx =[1, -2, -3, 7, ll]T, we have
Al x =[1+ j6.5489,—2+ j1.8809,—3— j4.0867,7— j8.1816,11+ j3.8385]",
Aprx =[1—-j6.1211,—2— j0.1534,-3— j6.9929,7 — j8.7628,11+ j4.1978]",
and A x = (At x) . Figure B.4 depicts pictorially the reconstruction of analytic transforms

defined in Theorem 6 and Corollary 3.
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Table B.5.Definitions of Related Matrices for Analytic Transform

+ + + - -1 - -
A F, z W, A, F, z W,
e e- -1
AI i GO»O 7 W1\7+1 A1 Go,o Z) yina W,\I,il
e G 0,N+1,N-1 I . 1
= A11+ 0% Wya A11 Go,g Z 0.N.N 21,
I
e G - -1
S Ay Lo 7 21, Al G%’o Zynona wl
Ae+ G| 1 0.N.N 21 Ae- G*l Z 21
v 27 N v 1 0,N,N N
0 1 0- -1 1
A[+ G(),() WN AI GO,O WN
G 1 - -1 1
s Al , w,! Al 01 . W)
N 0,N,N-1 - 0.N.N-1
o+ G o biid 0- 1 N, I
|2 A111 %*0 Wy AIII 3.0 Wy
- 0 G ur o- -1 biig
Al\j %% WN AIV Gg,g WN
Real vector —>  Analytic Transform [—> Analytic vector
1]
Real Analytic
vector GDFT/IGDFT IGDFT/GDFT [— y
vector
! f
Entry Selection < Entry Scaling.~ =  Zero Padding

Figure B.4. Reconstruction of analytic transform.

B.3.2. DTT and Analytic Transform

The next theorem illustrates the interpretation of DTT spectra as the GDFT spectra of

analytic vectors.

Theorem 7 Given a temporal column vector x and y = T, x. Then the IGDFT of the

zero-padded and scaled DTT equals the analytic transformation of the symmetrized temporal

vector, that is,

+ _ -l ’+
AJ(Ex)=F ' (ZWy),

where the related matrices are defined in Table II.
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Proof: To relate the DTT and the analytic transform, we combine the generic formulas (B.12)

and (B.60) into the form:

-l _ -l ’ -l ’
A;’(qu)—Fq Z;Wq+(Z;)TFqqu—Fq Z;’W;(Zqqu)—Fq (Zqu+y). (B.67)

In the second step, the purpose of zero-padding matrix Z; is to gather the inherent zero
output at the boundary indices of T, to make up the total output length of N or N + 1. The
matrix product Z;W_Z  can be rewritten as Z ;Z W *, where W= is obtained from W'
by removing the boundary diagonal terms and reducing the order if necessary. Also, Z;Z;

can pad the DTT output to fill the lengths 2N and 2N — 1 for the even and odd cases,

respectively; hence, Z;Z; equals Z , and the last step is arrived. -

Remarkably, when combined with DST, the F ) and F q_l associated with A;r should

be scaled by j and —j, and the derivation above has no affection. In the dual manner, the next
corollary illustrates the interpretation of temporal vectors as the IGDFT of DTT-domain

analytic vectors.

Corollary 4 Given a spectral column vector y and x =Tq’1 y . Then the GDFT of the

zero-padded and scaled temporal vector equals the analytic transformation of the symmetrized

DTT vector. That is,
A (Ey)=F (Zy, W, %), (B.68)

where the related matrices are defined in Table II1.

Proof: By Theorem 7 and the properties (Aq_)* =Ag, p and Eg  =E ; , we have
(A, (E 0] =Ag ) (Eq)) = Foi)(Z oy WaiyToi¥) - (B.69)

Then, by taking conjugate again and using the property Wq' T = Wq';q) due to W =W,

P(q) >
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the dual formula for IDTT is derived as

A; (E;y) = Fq (Z<I>(q)W<I,>:q)Tqily) = Fq (Z

oW, ). (B.70)

[
The dual formulas (B.66) and (B.68) describe how a vector is related to its DTT and

IDTT in the sense of analytic transformation through appropriate symmetrization,

zero-padding and weighting operations.

Symmetric | || Analytic

Temporal vector — .
Extension Transform

- Analytic vector

DTT IGDFT

Entry

DTT vector —| == Zero Padding — Scaled and zero-padded

Scaling DTT vector

Figure B.5. A pictorial representation of (B.66).

E Scaled and zero-padded
Temporal vector —» ntry —-Zero Padding —— T )
Scaling emporal vector
IDTT GDFT

Symmetric | | Analytic

DTT vector — .
Extension Transform

—» Analytic vector

Figure B.6. A pictorial representation of (B.66).

B.3.3. Autocorrelation and Squared Hilbert Envelope

Thanks to Corollary 2, we have linked the GDFT-domain periodic autocorrelation with
the IGDFT-domain (temporal) envelope. Combining the corollary with Theorem 7, we can

immediately obtain the time-frequency relation between the DTT-domain periodic
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autocorrelation and the Hilbert envelope (i.e., the magnitude envelope of the analytic signal)

for a time-domain finite sequence.

Theorem 8 Given a temporal real-valued vectorx andy = T x. Let y=Z N q' “y, then
_ + + *
r; —Kq[(Aqqu)O(Aqqu) 1, (B.71)

where r; is the circular or skew-circular autocorrelation of y depending on the type of K,

that is a DFT or OTDFT matrix. (The specific types of transform and autocorrelation are
defined in Table II, where notations (c) and (s) denote the circular and skew-circular

autocorrelations, respectively.)
Proof: From Theorem 7, we have F q‘l y= A;E ,X > by Corollary 2, the proof is accomplished.

The next theorem gives the dual formulation for estimating the spectral Hilbert envelope.

Theorem 9 Given a spectral real-valued vectory and x = T,;l y.Let x=2Z Wq',?q)x , then

@(q)
re = T, [(A7Ey) o (A, Egy) ], (B.72)
where r; is the circular or skew-circular autocorrelation of X depending on the type of

I'"' that is a IDFT or IOFDFT matrix; and the scale factor M is the length of x. (The

q

specific types of transform and autocorrelation are defined in Table III.)
Proof: From Corollary 4, we have F X = A_E ; y ; by Theorem 2, the proof is accomplished.

Theorems 8 and 9 permit to model the squared temporal or spectral Hilbert envelope of
the symmetrized time-domain or DTT-domain vector by fitting an AR model to the

zero-padded and weighted vector in the dual domain. The AR parameters obtained by the

Yule-Walker equations should be zero-padded to length M and transformed by F, and F, q’l ,

respectively, for the spectral and temporal envelope estimation.
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B.3.4. Autocorrelation and DTT Power Envelope

Rather than the squared Hilbert envelope, we may be interested in modeling the squared
DTT spectrum (i.e., evaluating the DTT power envelope). This can be achieved by applying
the periodic autocorrelation analysis to the symmetrized data vector, instead of the

zero-padded and scaled data vector.

Theorem 10 Given a spectral real-valued vectory and x =T q_l y.Let X=E x,then

re=+T,'[(E,y)o(E )], (B.73)

where r; is the circular or skew-circular autocorrelation of X depending on the type of
r ;1 ; and M is the length of X. (The specific types of transform and autocorrelation are

defined in Table III.)
Proof: From (B.13), it implies F E x=ETx=E)y; by Theorem 2, the proof is
accomplished. m

Oppositely, the next theorem provides the fundamental for estimating the temporal

power envelope.

Theorem 11 Given a temporal real-valued vectorx and y =T, x.Let y=E ; y, then

ry =K, [(E x)o(E x)], (B. 74)

where r; is the circular or skew-circular autocorrelation of y depending on the type of K,, .

(The specific types of transform and autocorrelation are defined in Table II.)
Proof: From (B.14), it implies F,'E y=E T 'y=E x; by Corollary 2, the proof is

accomplished. m
The dual formulas in Theorems 10 and 11 permit to estimate the temporal or spectral
power envelope of the symmetrized time-domain or DTT-domain vector by fitting an AR
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model to the symmetrized vector in the dual domain.

B.3.5. Remarks and Examples

We notice that the periodic autocorrelation of the zero-padded samples is equivalent to
the linear correlation used in the autocorrelation method [64] for linear prediction. Therefore,
the traditional autocorrelation method with scaling can be interpreted as the Hilbert envelope
estimation of the DTT/IDTT spectrum as illustrated in Theorems 8 and 9. However, looking
at the time-domain AR modeling in Theorems 9 and 10, the squared spectral Hilbert envelope
and the spectral power envelope will be close when the time-domain input signal is steady

and the order of AR modeling is much smaller than the length of the input segment. The
phenomenon can be interpreted by the approximate results of periodic autocorrelation r, and
r, in that condition. Likewise, when a windowing operation, such as sine windowing, is
applied to the input samples, the aliasing part of periodic autocorrelation becomes small;
hence, the resultant spectral Hilbert ot power-eavelopes of all the DTTs do not have
significant difference. On the other hand, the difference of the two kinds of envelopes are
easier to be observed in the frequency-domain AR modeling because the frequency
coefficients in the DTT domain are usually unsteady and have large energy variation in
low-frequency part. In AR modeling, we can expect the temporal Hilbert envelop should be
more smooth due to the imagery part added by the analytic transform, while the power
envelope can fit the temporal samples better in the LSE sense.

In the following, we provide some examples to illustrate the remarks. Figure B.7
compares two approaches on a time-domain audio segment of 1024 samples at 44.1 kHz for
evaluating spectral envelopes. In Figure B.7 (b) the skew-circular autocorrelations of the
zero-padded and scaled time-domain samples are used to evaluate the spectral Hilbert
envelope of the symmetrized odd DST-1V spectrum, while in Figure B.7 (c) the skew-circular
autocorrelations of the symmetrized time-domain samples are used to evaluate the spectral

118



power envelope fitting the squared of the symmetrized odd DST-IV spectrum. The order of
AR modeling in the two cases is 24. Note that the squared envelopes corresponding to AR
models in Figure B.7 (b) and (c) are computed by squaring the length-2048 O’DFT (or

OFDFT) of AR parameters. In Figure B.7 (d), the two squared envelopes are depicted

Iy,

together with the squared odd DST-IV spectrum for comparison. Since”.ic'”2 zE il

, the

estimated envelope from the zero-padded and scaled samples should have energy alignment
by 1/2 when compared with the squared DTT spectrum. As can be seen, the envelopes
associated with (b) and (c) are highly close. The observation can be interpreted from the
approximation of the two skew-circular autocorrelations, especially when the predictive order
is much smaller than the sample number.

As an instance of the frequency-domain AR modeling of order 24 on the length-1024
even DCT-1V spectrum, Figure B.8 (b) and. (¢) show the squared temporal Hilbert envelope
and the temporal power envelope, respectively. In Figure B.9, in addition to the two
envelopes in Figure B.§, the two kinds of ‘temporal envelope evaluated from
the odd DCT-I spectrum of the same time-domain segment are also depicted. Here the Hilbert
envelopes through AR modeling have energy alignment by 1/2. The temporal envelopes are
evaluated from the length-2048 IO’DFT (or IOTDFT) of AR parameters for even DCT-IV and
from the length-2048 IDFT (or IOFDFT) of AR parameters for odd DCT-I, respectively. As
can be seen, the two Hilbert envelopes have minor deviation since the corresponding analytic
signals are similar but different in magnitude, while the other two envelopes are too close to
distinguish because they are corresponding to the squared time-domain samples which are
symmetrized by Egsua and Epaws , respectively, and only differ by one zero sample. We note
that the temporal envelope evaluated from the symmetrized frequency data can fit well the
time-domain audio segment in LSE sense and fit the valley better than the Hilbert envelope

does. Figure B.10 illustrates another instance, where an even DCT-IV spectrum of length
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2048, which has strong low-frequency sinusoid component, is analyzed by the AR modeling
of order 50. In Figure B.10 (d), the Hilbert envelope without energy alignment fits the peaks
of the magnitude of the sinusoid component in the segment, while the square-root power

2

T
a .
envelop leads to a saw-tooth response. Since lim Iazcosz(al)dt=7, the ratio of the
0

1
T—e T
energy and the squared amplitude of a sinusoid is 1/2; hence, the Hilbert envelope without

energy alignment in this example can well fit the peaks of the sinusoid component.
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Figure B.7. Comparison of squared spectral envelopes. (a) The time-domain audio segment of
1024 samples at 44.1 kHz. (b) The squared analytic transform of the odd DST-IV spectrum
and the squared Hilbert envelope through AR modeling. (¢) The squared odd DST-IV
spectrum and the power envelope. (d) The power envelope (thick line), the squared Hilbert
envelope with energy alignment (thin line), and the squared odd DST-IV spectrum. Both the
squared spectral envelopes are obtained by order-24 AR modeling. Only positive spectra are

depicted in (b)-(d) due to symmetry.
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Figure B.8. Comparison of squared temporal envelopes. (a) The even DCT-IV coefficients of
an audio segment of 1024 samples at 44.1 kHz. (b) The squared analytic transform of the

symmetrized time-domain samples and the squared temporal Hilbert envelope through AR

modeling. (¢) The squared symmetrized time-domain samples and the temporal power

envelope. (d) The time-domain samples and the two (non-squared) envelopes depicted in

linear scale.

The two squared temporal envelopes. are obtained by order-24 AR modeling.

The symmetrized parts are not depicted in (b)-(d).
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Figure B.9. Comparison of temporal envelopes evaluated from even DCT-IV and odd DCT-I

1023

coefficients, where the two (non-squared) envelopes and the magnitude of the time-domain

samples in Figure B.8 are depicted in linear scale. Furthermore, the two envelopes evaluated

from odd DCT-I coefficients are shown for comparison. Note that the two envelopes

corresponding to the squared symmetrized time-domain samples are too close to distinguish.
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Figure B.10. Comparison of squared temporal envelopes. (a) The even DCT-IV coefficients of
an audio segment of 2048 samples at 44.1 kHz. (b) The squared analytic transform of the
symmetrized time-domain samples and the squared temporal Hilbert envelope through AR
modeling. (c) The squared symmetrized time-domain samples and the temporal power
envelope. (d) The time-domain samples, its. magnitude, the square-root power envelopes
(thick line), and the Hilbert envelope without energy alignment are depicted in linear scale.

The two temporal envelopes are obtained by order-50 AR modeling.
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APPENDIX C

EVALUATION FOR ZEROS OF
FIRST/SECOND-ORDER LP FILTERS ON
ANALYTIC SIGNALS

C.1. Proof of Three Integrations

By using the trigonometric properties sin(a — f) = sin(a)cos(f) — cos(a)sin(f) and cos(a —

L) = cos(a)cos(p) + sin(a)sin(f), (71) and (72) can be rewritten as

A(@) = cos(d —6,)S —sin(d —6,)C =0,

(C.1)
B(7,0) = cos(8 — 8,)C +sin(@=8,)S — FK =0, (C.2)
where three integrations S, C, and K-are defined as
f in(w— 6, C3
s=] HOTOT 45, (C3)
o 1=2r, cos(@w—~6,)+r,
f - C4
C=J- cos(w—6,) _do, (C.4)
o 1—2r, cos(w—6,) + 1,
f C5
K =.[ d >dw. (€
o 1—2r, cos(w—6,) + 1,
First consider the evaluation of integration K:
V4 1 7[—9[) 1
K=| sdo= | ~do. (C.6)
o 1 =21, cos(w—6,) + 1 4, 1= 2rcos(@) + 1,
Note that we assume 0<r, <land0 <6, <7 . We might write
1 d i 1 1
K= Y e 1U -] *dZ]’ C7)
91—2r0-(z+j+r02 Jo T = et T RN )
Z
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where path Q is the upper arc of the unit circle which is from e/* toe’ "’ . Since K is real,

(C.7) can be rewritten as

1 1 1
A {Im[i z—1y dZJ ) Im@ z-ry dZH ' €9

Using the formula log(z—r,)=loglz—r, |+jarg(z—r,) , the first integration can be

evaluated as

ImJ‘ ! dz = arg[cos(r —6,) —r, + jsin(x — 6,)] — arg[cos(—6,) — r, + jsin(=6,)]. (C.9)
ol h

In (C.9), we can choose the branch with— 7 <arg(z —r;) < 7 such that log(z—r,) is analytic
in the domain{ze C —{r,}| -7 <arg(z—r,) <z} containing Q. Then, in terms of the arc

tangent function arctan that is with range of (-z/2, 7/2), the integration in (C.9) can be

rewritten as 7T defined in (78). ~Similarly, we can choose the branch

with O<arg(z—r,')<27 such “that log(z—# ') = is analytic in the domain

{ze C—{r,"}10<arg(z—7r,") < 27} containing Q. Subsequently, we have

Im ! —dz = —arctan ﬂo)_l + arctan ﬂo)_l . (C.10)
ni—1 cos(8,) +r, cos(8,) —r,

Substituting the two close forms of (C.9) and (C.10) into (C.8) yields (77). On the other hand,

V4

2
from the integral identity .[ 1-2r, cos(@—6,) + b
o 1=2r, cos(w—6,)+r,

dw=rm, we can evaluate C as (76).

Equation (75) can be derived by the technique of changing valuables. Thus, from (C.1), the
angle of the zero of the MMSE predictive filter is given as (73). By substituting (73) into

(C.2), the radius of the zero of the MMSE predictive filter is derived as (74).
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C.2. Proof of Zeros

To find the MMSE solution of (80), from the geometric symmetry of the solution, we
might assume that 7, =7 =r, 51 =0, 52 =7—6 and 6€[0,7/2]. Then we can evaluate

the integration in (80) as

(1+2r* =2r* cos(26) + r*)m —8(r + r*)sin(6). (C.11)
Deriving 0F/00 = 0 and 0F/0r = 0 yields, respectively,
1+ 7 —cos(20)]z —2(1+3r*)sin(6) =0, (C.12)
1+ r* = rzsin(@). (C.13)
Repeatedly substituting (C.13) into (C.12) to reduce the power of term r from 2 to 1 and using
the trigonometric property 2sin’(d) + cos(26) = 1 can give

/4
=
(% —4)sin(0) (C.14)
We can obtain 6 by substituting (C:14) into (C:13) as

T

m’ (C.15)

then substituting (C.15) into (C.14) yields (81). Similarly, by repeatedly substituting (C.12)

sin(@) =

and using the trigonometric property 2sin2(0) + cos(20) = 1, we can derive (C.11) as

F(r,0)=r’z{x*sin’(6) —2cos(26)]—-8[r 7sin’ (6)]. (C.16)

By substituting (C.15) and (81) into (C.16), we can obtain the MMSE as n(n2 -8)/ (7[2 —4).
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