以鈦金屬接合氧化鋯介面之微觀結構分析

學生:蔡宜庭

指導教授:林健正

國立交通大學材料工程學系研究所碩士班

摘 要

本實驗在氫氣為保護氣氛下,以鈦箔(30μ m)接合ZrO₂,接合時間、 溫度為1100°C/36hr~1500°C/36hr。反應後利用掃描式電子顯微鏡 (SEM/BEI)、電子微探儀(EPMA)、電子顯微鏡(TEM/EDS)來鑑定ZrO₂與 鈦箔之介面反應與鈦箔本身的氧化行為。實驗結果顯示,1400°C/36hr 與1500°C/36hr反應後,錶層出現許多孔洞與裂縫,接合效果較差。 在鈦箔與氧化鋯之反應中,鈦本身的氧化行為較為顯著,Zr與Ti之交 互擴散狀況不明顯。在1100°C/36hr反應後,鈦側經TEM鑑定為 α -Ti 固溶氧,而氧化鋯側為tetragonal相之ZrO_{2-x}。1200°C/36hr與1300 °C/36hr反應後,在鈦側發現針狀之Ti₂O₃與TiO;氧化鋯側在1300°C /36hr反應後出現許多TiO於晶粒間析出,且觀察到c-ZrO_{2-x}與 t-ZrO_{2-x};1200°C/36hr反應後於氧化鋯側則只發現t-ZrO_{2-x}。1400°C

Microstructral Characterization of the ZrO₂/Ti interface

between 1100℃-1500℃

student : Yi-Ting Tsai

Advisor : Chien-Cheng Lin

Department of Material Science and Engineering National Chiao Tung University

ABSTRACT

The objective of this work is to joint ZrO_2 to itself using Ti foil. The reaction was at the temperature from 1100°C to 1500°C in the atmosphere of argon. The microstructure of the reaction interface were characterized by scanning electron microscopy(SEM) electron probe microanalyzer (EPMA) and analytical transmission electron microscopy(TEM/EDS). After annealing at 1100°C/36h, the dissolution of a large amount of oxygen into titanium gave rise to α -Ti(O) solid solution. At temperature above 1200°C \cdot the oxygen transport through the interface resulting in the growth of titanium oxide, TiO and Ti₂O₃.In the zirconia side, t-ZrO₂ was found after 1100°C/36h-1400°C/36h.

致謝

研究所兩年的學習即將在此時收成,感謝所有幫過我的人和鼓勵過我的人,因為你們,我才能正面積極的面對所有應完成的工作。

首先要感謝的是我的指導教授林健正教授,感謝您提供我各種資源、 良好的學習與實驗環境,傳授我各方面的經驗與知識,在實驗上悉心 的指導與指正,學生銘感五內。

在此要特別感謝實驗室學長昆霖對於我實驗進行與 TEM 分析等各方 面的協助與指導,家祥、宏達學長在分析、實驗操作和許多方面的提 醒與傳授,因為你們無私的支援,我才能順利的完成實驗與論文撰 寫,謝謝實在不足以形容我的感激。此外,也要衷心感謝學長耀文、 桓德、伸紘、小草,學弟妹阿瑤、小基、國駿還有讓實驗室天天都熱 熱鬧鬧的同窗 kiki 這段時間的陪伴與砥礪,讓我的每一天都過的充 實而快樂。

另外,謝謝交大其他實驗室學長姐與同學的鼓勵與幫助,謝謝厥揚與 騰凱在我實驗遇到瓶頸時提供意見,不吝教導。更感謝同學一飛、芳 慈、一起唱歌的四人組,讓初到新竹的我因為你們的友情而不孤單,

iii

谢谢你們給予我無比的力量。

在此還要感謝中興大學吳威德教授與小強學長這些年來的教導與默 默支持,還有一直陪在我身邊的大學同學大桃、阿奎、小馬、志峰、 阿伯、紹睿,因為你們陪我哭、陪我笑、陪我玩,陪我一起度過六個 年頭,謝謝你們一直願意與我分享你們的生活,真誠的關心我、支持 我,謝謝你們。

最後, 謹將本論文獻給我最心愛的父母, 兩位姊姊與男友劭儒。感謝 我的父母給我無後顧之憂的生活與從小的教導, 我才有今天樂觀上進 的生活觀; 因為有劭儒的陪伴, 讓我的每一天都快樂而積極。你們全 力的支持永遠是我最大的後盾, 讓我能化苦楚為喜悅, 化挫折為力 量, 於此奉上最真摯的感恩。

中文摘要		i
英文摘要	•••••	ii
誌謝	•••••	iii
目錄	••••••	v
表目錄	••••••	vi
圖目錄	••••••	vii
第一章	前言	1
第二章	原理與文獻回顧	3
2.1	鈦與鈦合金	3
2.2	氧化鋯之介紹	5
2.3	鈦之氧化行為	8
2.4	氧化鋯陶瓷之接合	10
2.5	氧化鋯與鈦之反應	14
第三章	實驗步驟	17
3.1	試片之製備	17
3.2	接合夾具製作	18
3.3	試片之製備	18
3.4	分析試片的製備	19
3.5	分析儀器	20
第四章	結果與討論	22
4.1	1100°C/36hr	22
4.2	1200°C/36hr	24
4.3	1300°C/36hr	31
4.4	1400°C/36hr·····	37
4.5	1500°C/36hr·····	39
4.6	與Bulk Ti/ZrO₂反應比較	40
第五章	結論	42
參考文獻		44

目

錄

v

表目錄

表 2.1	鈦之基本理化學性質	50
表 3.1	氧化鋯粉末成分及特性	51
表 3.2	鈦箔成分表	51
表 3.3	各組試片之接合條件	52
表 4.1	Bulk Ti 與 Ti foil 生成物比較	53

圖目錄

A 0 1		
圖 2.1	純鈦之異構物晶體結構圖	54
圖 2.2	鈦由 β 相轉變為 α 相之晶體結構圖	54
圖 2.3	合金元素對鈦結晶相之影響	55
圖 2.4	氧化錯之相變化流程圖	55
圖 3.1	實驗流程圖	56
圖 3.2	接合夾具示意圖	57
圖 4.1	ZrO₂/Ti/ZrO₂經 1100℃/36hr接合後介面SEM之BEI影	
	像。 (a)SEM之背向散射電子影像(BEI), (b)圖(a)中標	
	示處之放大圖	58
圖.4.2	(a)ZrO ₂ /Ti/ZrO ₂ 於 1100℃/36hr反應接合後之背向散	
	射電子影像(BEI),(b)標示處之TEM明視野影像(BFI)	59
圖 4.3	Zr0₂/Ti/Zr0₂於1100℃/36hr反應接合後,(a)介面處之	
	TEM明視野影像(BFI);(b) t-ZrO _{2-x} 之SADP (c)t-ZrO _{2-x}	
	之EDS分析光譜; (d) α -Ti(0)之SADP;(c) α -Ti(0)	
	之EDS分析光譜	60
圖 4.4	ZrO₂/Ti/ZrO₂ 經 1200℃/36hr接合後介面SEM之BEI影	
	像。(a)SEM之背向散射電子影像(BEI),(b)圖(a)中標	
	示處之放大圖	61
圖 4.5	以 WDS 量測 1200℃/36hr 接合後之 Ti,Zr,O 元素之	
	分布	62
圖 4.6	(a)ZrO ₂ /Ti/ZrO ₂ 於 1200℃/36hr反應接合後之背向散	
	射電子影像(BEI)(b)zone I 之TEM明視野影像(BFI)	63
圖 4.7	Zr0₂/Ti/Zr0₂於 1200℃/36hr反應接合後,(a)氧化鋯側	
	介面處之TEM明視野影像(BFI);(b)t-ZrO2-x之EDS分析	
	光譜;(c)、(d) t-ZrO _{2-x} 之SADP······	64
圖 4.8	Zr0₂/Ti/Zr0₂於 1200℃/36hr反應接合後,(a)鈦側介面	
	處之TEM明視野影像(BFI);(b)Ti2O3之EDS分析光譜;	
	(c) $(d) Ti_2 O_3 \gtrsim SADP$	65
圖 4.9	Zr0₂/Ti/Zr0₂於 1200℃/36hr反應接合後,(a)氧化鋯側	
	介面處之TEM明視野影像(BFI);(b)TiO之EDS分析光	
	譜;(c)、(d) TiO之SADP	66
圖 4.10	Ti-O 相圖	67
圖 4.11	(a)ZrO₂/Ti/ZrO₂於 1200℃/36hr反應接合後之背向散	
	射電子影像(BEI)(b)zoneⅡ之TEM明視野影像(BFI)	68
圖 4.12	Zr0₂/Ti/Zr0₂於 1200℃/36hr反應接合後,(a)氧化鋯側	
	介面處之TEM明視野影像(BFI);(b)Ti2O3之EDS分析光	

		譜;(c)、(d) Ti ₂ O3之SADP	69
圖	. 4. 13	(a)Ti0 (b)Ti203 (c)Ti02之晶體結構	70
圖	4.14	Monoclinic相(Ti₅Vaı)(O₅Vaı) 結構	71
圖	4.15	(a)ZrO₂/Ti/ZrO₂ 經 1300℃/36hr接合後介面SEM之BEI	
		影像。(b)圖(a)中標示處之放大圖	72
圖	4.16	EPMA/WDS 量測 1300℃/36hr 接合後之 Ti,Zr,0 元素	
		之分布	73
啚	4.17	(a)ZrO₂/Ti/ZrO₂於 1300℃/36hr反應接合後SEM之BEI	
		影像(b)zone I 之TEM明視野影像(BFI)	74
圖	4.18	ZrO ₂ /Ti/ZrO ₂ 於1300℃/36hr反應接合後,(a)氧化鋯侧	
		介面處之TEM明視野影像(BFI);(b)c-ZrO _{2-x} 之EDS分析	
		光譜;(c)、(d) c-ZrO _{2-x} 之SADP·······	75
圖	4.19	Zr0₂/Ti/Zr0₂於1300℃/36hr反應接合後,(a)氧化鋯側	
		介面處之TEM明視野影像(BFI);(b)t-ZrO2-x之EDS分析	
_	4	光譜;(c)、(d) t-ZrO _{2-x} 之SADP····································	76
啚	4.20	Zr02/T1/Zr02於1300℃/36hr反應接合後,(a)氧化鋯侧	
		介面處之TEM明視野影像(BF1);(b)T10之EDS分析光	
	4 01	語; (c)、(d) 110之SADP	77
宣	4.21	$Zr0_2/11/Zr0_2 $ 1300 C/3bhr反應接合後,(a)氧化錯側 $\Delta T = \sum TEV(n) = R = R = K + C = C + C + C = C + C + C = C + C + C$	
		介面處之 $IEM 明 祝 野 家 (BF1), (D) IIU 之 EDS分析 无 $	70
হা	1 99	(C) (Q) 110 < SADP ····································	/8
回	4.22	LIU2/11/LIU2於 1300 C/30III 及應按合後'(a)鈦側介面 	
			70
图	1 93	(c)、(u) 11203~SADF (a)7r0₀/Ti/7r0₀钛 1300°C /36br 反应注入公SEM > BEI	79
凹	4.20	(a) 2102/11/2102/? 1500 C/50111 次愿按古夜5Em~DET 影像(h) zone II クTFM的词野影像(BFI)	80
晑	1 21	$7rO_{\circ}/Ti/7rO_{\circ}$ 於 1300°C /36hr反應 接合後,(a)氧化 供個	80
E.	1. 41	介面處之TFM明視野影像(BFI):(b) $Ti_{2}O_{2}$ 之后公析光	
		$:: (c) \times (d) Ti_2 0 2 SADP$	81
圖	4.25	$ZrO_2/Ti/ZrO_2$ 於1300°C/36hr反應接合後,(a)氧化錯側	01
-		介面處之TEM明視野影像(BFI);(b)TiO之EDS分析光	
		譜;(c)、(d) TiO之SADP	82
圖	4.26	ZrO ₂ /Ti/ZrO ₂ 經 1400℃/36hr接合後介面(a)SEM之背	0
		向散射電子影像(BEI),(b)圖(a)中標示處之放大圖…	83
圖	4.27	(a)ZrO ₂ /Ti/ZrO ₂ 於 1400℃/36hr反應接合後之背向散	-
		射影像(BEI),(b)標示處之TEM明視野影像(BFI)	84
圖	4.28	ZrO₂/Ti/ZrO₂於1400℃/36hr反應接合後,(a)介面處之	

	TEM明視野影像(BFI);(b) TiO之SADP;(c)TiO之EDS	
	分析光譜;(d)t-ZrO2-x之SADP;(e)t-ZrO2-x之EDS分析	
	光譜。	85
圖 4.29	ZrO₂/Ti/ZrO₂ 經 1500℃/36hr接合後介面(a)SEM之背	
	向散射電子影像(BEI),(b)圖(a)中標示處之放大圖。	86
圖 4.30	α-Ti 中氧原子百分比與晶格常數之關係	87

圖 4.31 (a)-(c)高溫反應下, ZrO2側生成TiO之機構圖 88

