

3-1 實驗藥品

藥品名稱	廠商
n-Butyllithium	ACROS
4,4'-Biphenol	ACROS
N,N'-Dimethylaniline	ACROS
N,N'-Dicyclohexylcarbpdiimide	ACROS
Hydroquinone	ACROS
Acryloyl chloride 96%	Lancaster
2,6-Di-tert-butyl-4-methyl-phenol	Lancaster
4-Dimethylaminopyridine 99%	Lancaster
Hydrobromic acid 48%	Lancaster
1,6-Hexanediol 97%	Lancaster
Resorcinol	Lancaster
Triisopropyl borate 98%	Lancaster
Tetrakis(triphenylphosphine)palladium	Lancaster
4-Bromoanisol	Merck
Magnesium sulfate, anhydrous	SHOWA
Potassium carbonate	SHOWA
Potassium hydroxide	SHOWA
Potassium iodide	SHOWA
Triethylamine	TEDIA

表一. 實驗藥品

表二. 實驗溶劑

溶劑	廠商
Acetone	Aldrich
Chloroform	Aldrich
Dichloromethane	Fisher
Ethyl Acetate	Janssen
n-Hexane	Lancaster
1,4'- Dioxane	TEDIA
Isopropyl Alcohol	TEDIA

Tetrahydrofuran	TEDIA
Toluene	TEDIA

**無水的 THF 是以金屬鈉乾燥,煮沸蒸餾而得;無水的 CH₂Cl₂ 是以 CaH 乾燥,煮沸蒸餾而得。

3-2 實驗儀器

1.真空系統(Vacuum Line)

2. 核磁共振光譜儀 (Nuclear Magnetic Resonance Spectrometer)

型號: Varian 300型

將 Sample溶於 d-solvent中,利用所測得之1H與13C光 譜判斷單體之結構與純度。化學位移單位為ppm,偶合常 數單位為Hz,並以TMS為內標 (δ = 0 ppm)。s代表 singlet,d代表doublet,t代表triplet,m代表multiplet。 3.元素分析儀 (Elemental Analyzer):由交通大學貴重儀器中 心代測樣品

型號: Perkin-Elmer 240C型

4.熱差掃描熱量計 (Differential Scanning Calorimeter, DSC)

型號: Perkin Elmer Pyris 7型

DSC 是分析熱向性液晶熱力學的有效利器。使用儀器前先作儀器校正,接著將待測之樣品稱重3.0~5.0 mg之間。可由吸熱或放熱的熱分析圖形,可得其熱焓值之

大小,及相轉變時的溫度。DSC 分析只可觀察相變化之存在,並無法鑑定出液晶相之轉移,因此液晶相之確定 須輔以其他儀器如偏光顯微鏡,X-ray 繞射等。 5.偏光顯微鏡 (Polarized Optical Microscope) 型號:LEICA DMLP

偏光顯微鏡以兩片偏光片加上 Mettler FP900 與 FP82HT 組合之加熱裝置,觀察樣品在加熱或冷卻過程 中光學條紋之變化。可初步判斷樣品是否具有液晶性質 及其液晶相種類與溫度範圍。一般下偏光片稱為 polarizer,上偏光片稱為 analyzer,上下偏光片交角為 90°。

6.紫外光照射儀器

型號:自行組裝

燈源為 Philips 製預熱型高壓汞燈 (400 mW),輸入電壓為 AC 220V,主要波長為 365nm,有效照射範圍 20X20 cm。

7. 光功率檢測計 (optical power meter)

型號: Newport 1830-c

8. 波形產生器 (Function Generation)

型號: GW GFG-813

9. 數位示波器 (Digital Oscilloscope)

型號: Tektronix TDS 301213

10. 氦氖雷射 (He-Ne Laser)

型號: Unipgase, 10 mW

11.液晶 cell : 購於美相液晶, antiparallel rubbing cell, 9 µm。

12.高速電源放大器 (High Speed Power Amplifier)

自行組裝

13.PhotoDSC

型號:Perkin Elmer Pyris 7 型

使用原理和 DSC 相似,其最大的差異在於 PhotoDSC 是利用照光時,雙鍵斷鍵的放熱,來觀察熱性質。

14.UV衰減片 (reflective filter)

型號: Neutral Density, NDU-1.31-50.8 SQ

15.SEM (scanning electron microscope)

掃描電子顯微鏡基本原理與電視相同,它是利用加熱燈絲(鎬 絲)所發射出來之電子束(electron beam)充當光源,經柵極靜電聚 焦之,形成一約10~50 μm 大小之點光源,在陽極之加速電壓(0.2 ~40 KV)的作用下,經過2至3個電磁透鏡所組成的電子光學系統, 將匯聚成電子射束後,聚焦在試件表面並且必須在真空的環境中以減 少電子被空氣漫射。

又由於在末級透鏡上裝有掃描線圈,能使電子射束在試件上掃描,高 能電子射束與物質之交互作用,即電子彈性碰撞與非彈性碰撞之效 果,其結果產生了各種訊號如二次電子(secondary electrons)、背向 散射電子(backscattered electrons)、吸收電子(absorbed electrons)、 透射電子(transmitted electrons)、X 射線及陰極螢光(cathode luminescence)。只要進入接收器便會經過放大後在 TV 螢幕的相對位 置上產生亮點,接收的散射電子訊號愈多,螢幕上的光點愈亮。而在 成像原理中,電子束的大小決定其解析度的高低。

3-3 實驗方法

本次實驗所使用的液晶小分子分別是E7、commercial VA及 commercial TN 小分子液晶 (由Merck購得)。圖二十六,我們使用的 燈泡為波長 365 nm的高壓汞燈 400 mW,並在燈源及液晶盒之間加入 衰減片 (衰減 95%),用以調控光強度。所使用液晶盒的 cell gap 為 9µm (由<u>美相</u>購得) 且為 anti-rubbing。而在照光過程中,給予其外加 電場 (25 V, f=60 Hz),且照光時的溫度大約 50~70°C 之間。

圖二十六. 照光實驗示意圖

3-4 高分子型態探討

表三為照光聚合條件,分別在不同照光時間下,來觀察高分子的 型態。以單體 C 為例,我們可以由圖二十七的 SEM 可知,當照光 時間越久,其高分子網狀結構就更明顯。由單體的分子結構對高分子 型態來比較,而其單體 B 和 C 之化學結構為彎曲型,並與上年度 計畫所合成的直線型單體 1F2Me 來比較,所以由圖二十八之低倍率 SEM 圖 (x 10000 倍),顯示單體 1F2Me 之高分子絕大部分呈現直 線型態,則其高分子會較易形成稻穗狀 (ricelike) 和樹枝狀,而 B 及 C 之圖樣,則可以看出其型態是以三顆顆粒為一組之高分子。而圖 二十九為單體 B 及 C 的高倍率 SEM 圖,從圖中便可更清楚當化 學結構為彎曲型時,其高分子較易形成顆粒狀 (beadlike) 或纖維狀, 所以初步判定化學結構對聚合後的高分子型態有關。

Compound ^a	Ration ^b (Wt %)	Exposed Time ^c (sec)	LC Materials
В	100:3:1	500/300/100	TN
С	100:3:1	500/300/100	VA
D	100:3:1	500/300/100	VA
1F	100:3:1	500/300/100	VA

表三. 不同照光時間對高分子的影響

^aThe cell gap is 9 µm (No rubbing).

^bThe mixture is commercial liquid crystal (Merck), monomer and photo-initiator (Irgacure 651). Inhibitor in the mixture is about 100 ppm. ^cThe mercury lamp is 400 mW (365 nm).

圖二十七. 為單體 C 照光 (a) 100 s (b) 300 s (c) 500 s 後高分子 SEM

圖

圖二十八. 不同化學結構之 SEM 圖(a) B 為顆粒狀 (b) C 為顆粒狀(c)

1F2Me 為纖維狀

圖二十九. 高分子 (a) B 50000 倍 SEM 圖 (b) C 30000 倍 SEM 圖

3-5 Normal-mode 之光電量測

圖三十為本實驗光電量測之示意圖,我們在 He-Ne laser 及液晶 盒間置入一偏光片,且與液晶盒的 rubbing direction 一致,其目的是 用以降低光源強度。而表四為光電量測所使用之液晶混合成份與照光 條件,液晶、反應單體和光起始劑之比例為 100:2:0.2 (Wt%)。為 了避免照光時單體受溫度影響,所以加入大約 100 ppm 抑制劑,來 抑制熱聚的現象。圖三十一為液晶混合物在照光聚合後POM圖。(a) 圖分別為單體 A(上)及 1F2Me(下)。由圖可知,其因化學結構的不 同,對於液晶區 (domain) 之紋理也會有一定的影響,(b) 圖為液晶 盒和偏光片夾 45°時,所呈現出為最亮態,而液晶盒和偏光片平行時, 則為暗態。圖三十二為在POM 下,液晶盒與偏光片夾 45° 之紋理 圖,當單體 A 和 B 化學結構相似時,則會有相似的紋理圖。

圖三十三為單體在曝光後,其穿透度對電壓作圖。單體 C 和 1F2Me 分別在 2.7 V 及 3.7 V 會有明顯的不穩定態生成,這可能是 因為低電壓對於液晶小分子無法有效的控制所導致,而當電壓慢慢上 升,此時可以有效的控制液晶小分子的排列方向。單體 D 在電壓上 升到 18 V 時,其穿透度會較明顯的下降趨勢。因此,我們可以猜測 當電壓上升到某一飽合值,會使液晶小分子無法再被高分子束縛住, 導致液晶產生擾動,所以穿透度會有慢慢下降的趨勢。

圖三十. 光電量測示意圖

表四. 不同單體之照光條件

Compound	Ratio ^a (wt %)	LC ^b	Irradiation Condition ^c
Α	100 : 2 : 0.2	E7	28 mW/ 25 V/ 30 min
В	100 : 2 : 0.2	E7	28 mW/ 25 V/ 30 min
С	100 : 2 : 0.2	E7	28 mW/ 25 V/ 30 min
D	100 : 2 : 0.2	E7	28 mW/ 25 V/ 30 min
1F2Me	100:2:0.2	E7	28 mW/ 25 V/ 30 min

^a LC: monomer: photo initiator = 100 : 2 : 0.2 (Wt%).The cell gap is 9 μ m (anti-parallel).

^b LC was purchased from Merck.

^c UV-exposed at $60 \sim 70^{\circ}$ C, electron field was 25 V (f = 60 Hz).

表五為單體照光聚合後之光電量測,單體 1F2Me 和 B 相較於 其它單體,有著較佳的對比,而從圖三十四之 SEM 則可以清楚的發 現到兩者高分子形狀大小較為均勻,而單體 B 之高分子呈現出直徑 大約為 150 nm 的球狀高分子,單體 1F2Me 的化學結構較為直線 狀,所以其高分子就呈現出類似稻穗的結構。由表五,我們可知當高 分子型態越均勻,其會有較佳的對比,所以單體 B 和 1F2Me 和其 餘單體相比會有較佳的對比。對於化學結構為彎曲型,我們發現會有 較快的上升時間 (rise time),而這是因為彎曲型結構對於液晶小分子 的束縛力較弱,使液晶分子較易站立起來,因此會有較快的上升時 間。而單體 D 和 1F2Me 為直線結構,所以會有較慢的上升時間。 此外,對於下降時間 (decay time),我們也發現到當分子引進酯基, 使其不易躺下,進而造成下降時間變慢。在應答時間方面,我們也發 現當化學結構為彎曲型者,其有較佳的應答時間。圖三十五為所有單 體高分子型態之 SEM 圖,我們可發現到當高分子為顆粒狀 (單體 B)或同時具顆粒狀和纖維狀 (單體 A)時,皆具有較佳的應答時 間、上升時間和下降時間。單體 D 和 1F2Me 之化學結構較接近線 狀,因此可明顯看出單體 D 之高分子易形成樹枝狀,但單體 1F2Me 則會形成稻穗狀,並有著規律的排列方向。

圖三十一. 上圖為 A 而下圖為 **1F2Me** 照光聚合後之 POM 圖。(a) 和偏光片平行; (b) 和偏光片夾 45° (R 為cell 之 rubbing direction)

圖三十二. (a) A 和 (b) B 照光聚合後之 POM 圖 (偏光片夾 45°).

圖三十三. V-T curve

表五. 光學量測數據

Sample	$ au_{ m r}(m ms)$	τ_{d} (ms)	Response Time $(ms)/(V)^*$	Contrast Ratio
Α	0.085	0.79	0.87/ 20	3.2
В	0.90	0.9	1.80/25	17.4
С	0.48	4.12	4.60/30	2.0
D	0.92	3.73	4.65/27	1.7
1F2Me	3.73	0.92	4.65/20	21.0

*Saturate voltage (V)

(a)

(b)

圖三十四. 單體 B 和 1F2Me 之 SEM 圖

圖三十五. 單體 (a) A (b) B (c) C (d) D 在有外家電場下聚合後之

SEM 圖

圖三十六所示,在照光聚合後,A 和 C 除了會形成顆粒狀高分子,同時也會形成纖維狀高分子,這是因為單體化學結構為彎曲型

所致。

圖三十六. 單體 A 和 C 照光後 SEM 圖 圖三十七 (a) 和 (c) 所示,為單體 A 在通電時給予其液晶盒一 外加電場 (25 V, f = 60 Hz), 而圖 (b) 和 (d) 則在無外加電場下給予 照光時。首先從圖 (a) 和 (b) 小倍率之 SEM 觀察有無電場之下, 照光聚合後,高分子的差異。當單體在未給予電場下進行照光聚合, 我們可以清楚的發現到高分子排列較為整齊,且有一特定方向。反 之,在有電場下進行照光反應,則其高分子較無規律性。而圖 (c) 和 (d) 為放大圖,雖然圖 (b) 之高分子類似纖維狀,但從圖 (d) 可以發 現高分子是由顆粒狀構成,此高分子型態和圖 (c) 相比非常類似。如 圖三十八所示,此為試片傾斜 30° 時所觀測到的 SEM 圖,而由圖 就可發現單體 A 照光後高分子的型態,為堆疊的方式所構成,我們 也發現其四周還是會有類似通電照光聚合所形成之顆粒狀高分子 (如圖三十七)。

圖三十九. 單體 A 在照光時 (a)有電場(b) 無電場之下對高分子的

影響

圖四十. 電場對單體 D 照光後高分子之影響 (a) 有電場下照光。(b)

和 (c) 為沒有電場下進行照光。

由圖三十九,發現單體 A 不管是否在電場下,其高分子型態皆為顆粒狀。圖 (a) 和 (b) 分別在不同倍率下所觀測之高分子 SEM 圖,和圖三十四 (b) 相比較,我們就可清楚的比較出兩者差並不大。

由圖四十所示,我們也可以發現到單體 D 在不同照光條件下, 其高分子型態也是會有明顯的差異,(a)為通電時照光,(b)為未加 任何電場下進行照光聚合。當提供外加電場時,其照光聚合之高分子 型態為呈現出樹枝狀。而在未加任何電場下進行照光聚合時,由圖 (b) 和 (c)所呈現,其高分子結構不再為樹枝狀,反倒是形成表面較平滑 的板狀高分子。而圖 (c) 為高分子局部放大圖,此時我們可以清楚的 看出其高分子還是由許多顆粒狀所組成。

圖四十一. 單體 D 在沒有電場下進行照光後其 AFM 圖 (a) 1D (b)

2D •

圖四十一為單體 D 在無電場下進行照光後其 AFM 圖,由 (a) 和 (b) 可知高分子表面非常平坦,其 Rms 值大約為 17 nm。因此和 圖四十 (c) 單體 D 的 SEM 圖就可明顯看出。

^{*}A polarizer was used to polarize the incident light.

圖四十二. 液晶盒 (單體 A) 在有無電場下之 UV-Vis 穿透圖

由於一般液晶顯示器的背光源為白光,所以我們希望液晶盒在可 見光範圍內,不可以有明顯的光色吸收。因此,我們在試片及光源之 間,置入一偏光片且與液晶盒之 rubbing direction 平行,並量測試片 對於不同光源之波長的穿透值,由圖四十二可以清楚的看到液晶盒在 可見光範圍內,並沒有選則性的吸收。而在長波長區域,我們也發現 到 turn off 之曲線會有上飄的情況發生,而 turn on (25 V) 則不會有 較明顯的向上飄移情況,所以我們可以知道液晶小分子在未給予任何 電場下,液晶分子的排列較不整齊。當給予其一適當電場時,液晶小 分子會受電場驅動和高分子的影響,使其排列較為規則。在波長為 633 nm 時,其對比大約為 3.3,此數值和先前的光電量測吻合。

3-6 熱學性質

對於照光聚合之熱性質方面,我們對於不同溫度下進行照光聚合 的轉換率,加以討論。由圖四十三所示,單體 C 在照光溫度大約 60 ^oC時,會有較佳的聚合效率,其轉化率為 93 %。而當溫度上升到 70^o, 其反應速率反而下降。此現象由文獻中也有提到^{[24][25]},對於照光時溫 度的影響,並非高溫下,可有效促進轉化率。而轉化率可由公式一可 以求得^{[24][25]}。

*monomer : photo initiator = 100:1 ; UV intensity 100 mW

圖四十三. 溫度對單體 C 聚合轉換率之影響

本實驗所合成的單體,除了單體 D 具有液晶相,其於單體皆未發現液晶相,圖四十四為單體 D 在降溫時所拍攝,從圖中就可以看出明顯的絲帶狀紋理圖 (schlieren texture),即為 nametic phase。

$$\mathbf{P} = \triangle H_{\text{poly}} \cdot \mathbf{M} / \mathbf{z} \cdot \triangle H_{\text{acrylate}}$$
(1)

 $\triangle H_{\text{poly}}$: the enthalpy of polymerization (J/g) M: molecular weight Z: the number of acrylate groups per molecule $\triangle H_{\text{acrylate}}$: the enthalpy of polymerization per acrylate group

圖四十四. 單體 D 之向列相紋理圖 (schlieren texture)

3-7 結論

 本次實驗成功的合成出中心為三環彎曲型之結構單體,並在末端 接上壓克力基用以照光聚合。

 除了單體 D 之外,其餘單體在升溫降溫過程中皆未發現液晶相。
 當化學結構為彎曲型時,其高分子較易形顆粒狀 (beadlike) 或纖 維狀,而化學結構為直線型,則其高分子會較易形成稻穗狀 (ricelike)
 和樹枝狀 。

對於化學結構和光電性質方面,化學結構為彎曲型時,會有較快的上升和應答時間。而當分子引進酯基時,則造成下降時間變慢。
 高分子型態會受到照光時溫度和電場的影響,而在照光時,電場會對某些單體的高分子型態,會有影響。如同單體 A 和 D。
 對於 photoDSC的量測,單體轉換率並不會因為照光溫度的持續上升,而有所提高。當單體 C 的照光溫度在 60°時,有較佳的轉化率為 93%。

55