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Alternating Hashing for Expansible Files
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Abstract —In this paper, we propose a generalized approach for
designing a class of dynamic hashing schemes which require no index

and have the growth of a file at a rate of 
n

n
+ 1

 per full expansion, where

n is the number of pages of the file, as compared to a rate of two in
linear hashing. Based on this generalized approach, we derive a new
dynamic hashing scheme called alternating hashing, in which, when a
split occurs in page k, the data records in page k will be redistributed to

page k and page (k + 1), or page k and page (k - 1), according to
whether the value of level d is even or odd, respectively. (Note that a
level is defined as the number of full expansions happened so far.)
From our performance analysis, given a fixed load control, the
proposed scheme can achieve nearly 97% storage utilization as
compared to 78% storage utilization by using linear hashing.

Index Terms —Access methods, dynamic storage allocation, file
organization, file system management, hashing.

————————   ✦   ————————

1 INTRODUCTION

THE goal of dynamic hashing is to design a function and a file
structure that can adapt in response to large, unpredictable
changes in the number and distribution of keys while maintaining
fast retrieval time [2]. Basically, dynamic hashing schemes can be
divided into two classes: one needs an index, the other one does
not need an index. Extendible hashing [4] and dynamic hashing [5]
belong to the first class. Linear hashing [3], [6], [7], [8], [10], [11],
[13], [15], [16] and spiral storage [1], [14] belong to the second
class. Among these dynamic hashing schemes, linear hashing dis-
penses with the use of an index at the cost of requiring overflow
space. In linear hashing, a file is expanded by adding a new page
at the end of the file when a split occurs and re-locating a number
of records to the new page by using a new hashing function. The
new hashing function doubles the size of the address space created
by the old hashing function. Therefore, after a full expansion
(defined in Section 2), the number of pages is doubled. To main-
tain stable performance through file expansions in linear hashing,
many strategies have been proposed in which linear hashing with
partial expansions as first presented by Larson [6], [8] is a gener-
alization of Litwin’s linear hashing [13]. This method splits a num-
ber of buddy pages together at one time, and the data records in
each of those buddy pages are redistributed into the related old
page and the new added page.

In this paper, we propose a generalized approach for designing
a class of dynamic hashing schemes which require no index and

have the growth of a file at a rate of n
n
+ 1  per full expansion, where

n is the number of pages of the file, as compared to a rate of two in
linear hashing. Since the growth rate of the proposed approach is
smaller than that of linear hashing, the proposed approach can
maintain more stable performance through file expansions and

better storage utilization than linear hashing. Based on this gener-
alized approach, we derive a new dynamic hashing scheme called
alternating hashing, in which, when a split occurs in page k, the data
records in page k will be redistributed to page k and page (k + 1),

or page k and page (k - 1), according to whether the value of level d
is even or odd, respectively. (Note that a level is defined as the
number of full expansions happened so far.) From our perform-
ance analysis and simulation, given a fixed load control, alternat-
ing hashing can achieve nearly 97%, as compared to 78% storage
utilization using linear hashing, when the keys are uniformly dis-
tributed. (Note that a load control denotes the upper bound of the
number of new inserted records before the next split can occur.)
Moreover, the proposed scheme can be generalized to set the

growth of a file at a rate of n t
n

+ -1  per full expansion, where t is an
integer larger than 1. As t is increased, the average number of
overflow pages per home page is reduced, resulting in a decrease
of the average number of disk accesses for data retrieval (while
also decreases storage utilization).

2 THE GENERALIZED APPROACH AND ALTERNATING
HASHING

In a dynamic hashing scheme without using an index, the data
records are stored in chains of pages linked together. A page split
occurs under certain conditions, for example, whenever the number
of records exceeds a positive integer value. Let each key be mapped
into a string of binary bits bi first, i.e., H(key) = (bq−1, ..., b1, b0) = c.
Then, this scheme addresses records by using a series of split func-
tions, h0, h1, ..., hq, where each function hi maps c to a non-negative
integer. Let a split pointer sp point to the next page to be split, and
initially, split pointer sp points to page 0. A full expansion occurs
when a split occurs at a page next to which is a new added page
[13]. A level is defined as the number of full expansions happened
so far. For each level d, hd, or hd+1 is used to locate a page depend-
ing on whether hd(c) ≥ sp or not. On each level d, the pages are split
in the order from page 0 to the maximum index of pages on that
level. After all the pages on the current level d have been split, i.e.,
after a full expansion, the value of level d is increased by 1 and the
splitting process starts again from page 0.

Based on the above strategy to handle file expansions, we can
give a class of dynamic hashing schemes with a growth rate of
n

n
+ 1  per full expansion by defining the relationship among hi in

the following way. Let h0(c) be the function to load the file initially

and h0: c Æ {0, ..., s0 - 1}, where s0 is the number of pages of the file

initially. Let w(i) be a function with w: i Æ Z - {0}, where Z denotes
the set of integer numbers. (Note that w(i) denotes the distance

from the current page hi(c) to the new page hi+1(c).) The rest of the

split functions, h1, h2, ..., hi, are defined as follows:

h0(c) = c mod s0;

hi+1(c) = (hi(c) + w(i)bi) mod (s0 + i + 1),       for i ≥ 0,

where bi is the value of the ith bit of c; that is, 0 £ hi+1(c) £ i + 1 + h0(c).
From the above definitions of the relationships between func-

tions hi+1 and hi, where i ≥ 0, the address space returned from func-

tion hi+1 is in the set of {0, 1, ..., s0 + i}; that is, the file size si+1 on

level (i + 1) is (s0 + i + 1). Consequently, the growth rate of a file is
n

n
+ 1  per full expansion, where n is the number of pages of the file.

Based on the above proposed generalized approach, now we
derive a specific dynamic hashing scheme called alternating hash-

ing. Let s0 = 1 (i.e., h0(c) = 0) and w(i) = (−1)i, then
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In general, when an insertion causes a split and sp = k, the data
records in page k will be redistributed into page k and page (k + 1),
or page k and page (k - 1), according to whether the value of level
d is even or odd, respectively. If d is an even number, the data
records in page k will be reinserted into page k or (k + 1), according
to whether the value of bit bd is 0 or 1, respectively; otherwise (i.e.,
d is an odd number), the data records in page k will be reinserted
into page k or (k - 1), according to whether the value of bit bd is 0
or 1, respectively. When d is an even number and sp = d, i.e., sp has
pointed to the maximum index of pages on level d, then a new
page (d + 1) is added at the end of the file, and the data records in
page d are redistributed to page d or page (d + 1), according to
whether the value of bit bd is 0 or 1, respectively. When d is an odd
number and sp = 0, then a new page (d + 1) is added at the end of
the file, and the data records in page 0 are redistributed to page 0
or page (d + 1), according to whether the value of bit bd is 0 or 1,
respectively.

3 THE ALGORITHMS

In this section, we give descriptions of address computation, retrieval,
insertion, file split and file contraction algorithms. In these algorithms,
the following variables are used globally:
1)  b: the size of a home page in terms of the number of records;
2)  w: the size of an overflow page in terms of the number of

records;
3)  sp: the split pointer with an initial value = 0;
4)  d: the level with an initial value = 0.

3.1 Address Computation
Let function H(key) map a key into random binary bit pattern of
length q, for q sufficiently large. Let function bi(c) return the value
of the ith bit of the binary pattern, which is denoted by
c (= H(key)). To compute the final home page number after d full
expansions, function home_address is shown in Fig. 1a. In this func-
tion, initially, all the data records are mapped into page 0 by
h0(c) = 0 and hence, address = 0. The address after the for-loop
statement represents the home page number after the dth full ex-
pansion. Depending on whether or not address < sp, the final home
page number is determined.

3.2 Overflow Handling and Retrieval
In [11], Larson applied separators [9] for home pages to linear
hashing to guarantee that any data record can be retrieved in one
disk access, where overflow records are distributed among the
home pages. To understand what a separator is, let’s define a probe
sequence first [11]. Assume that all of the data records are stored in
an external file consisting of n pages, and each of those n pages has
a capacity of b records. For each data record with key = K, its probe
sequence, p(K) = (p1(K), p2(K), ..., pn(K)), (n ≥ 1), defines the order in
which the pages will be checked when inserting or retrieving the
record. That is, every probe sequence is a permutation of the set
{1, 2, ..., n}. For each data record with key = K, its signature sequence,
s(K) = (s1(K), s2(K), ..., sn(K)), is a q-bit integer. (Note that q ≥ 1 and q
should be large enough such that the values of the signatures of all
data records can be in {0, (2q - 2)} [9], [11]. When a data record
with key = K probes page pi(K),  signature si(K) is used, 1 £ i £ n.
Implementation of p(K) and s(K) are discussed in detailed in [9].
Consider a home page j to which r, r > b, records hash. In this case,
at least (r - b) records must be moved out to their next pages in
their probe sequences, respectively. Only at most b records are
stored on their current signatures, and records with low signatures
are stored on the page whereas records with high signatures are
moved out. A signature value which uniquely separates the two

Fig. 1. The algorithms: a) function home_address; b) function retrieval;
c) procedure file_split.
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groups is called a separator, and is stored in a separator table. The
value stored is the lowest signature occurring among those records
which must be moved out. (Note that a separator table has two en-
tries: one is a separator value and the other one is a pointer to a
page. And, the initial values of separators are strictly greater than
all signature values. For example, using q bits as described before,
the initial values of separators are set to (2q - 1), meaning that their
corresponding pages are empty, initially [9], [11].)

Since in [11], overflow records are distributed among the home
pages, the costs of file-split, insertion, and maintaining separators
will be expensive. To avoid this disadvantage and efficiently
search a data record stored in overflow pages, alternating hashing
also applies separators but only for overflow pages. To apply sepa-
rators to handle overflow pages in alternating hashing, we need
the following modification. Assume that for each home page i, its
overflow records are stored in an external file consisting of m
pages, and that each of these m pages has a capacity of w records.
For each overflow record of home page i with key = K, let its probe
sequence be pi(K) = (pi1(K), pi2(K), ..., pim(K)) = (1, 2, ..., m), m ≥ 1.
(Note that to increase storage utilization, we probe overflow page j
only when overflow pages 1, 2, ..., (j - 1) are full.) For each over-
flow record of home page i with key = K, let its signature sequence
be si(K) = (si1(K), si2(K), ..., sim(K)). When an overflow record of
home page i with key = K probes page pij(K), the signature sij(K) is
used, 1 £ j £ m. As a file grows, the total size of separator tables of all
the home pages (which have overflow pages) can be too large to
be loaded into main memory at the same time. Moreover, to re-
duce the number of disk accesses for loading a separator table for a
certain home page which has overflow pages, we store a separator
table in each home page.

As shown in Fig. 1b, the function retrieval(key) is used to lo-
cate the actual physical address (either in a home page or one of
its related overflow pages), where separatorij, 1 £ j £ m, represents
the separator for the jth overflow page of home page i. In this
function, home page i is searched first, which is one disk access.
If the data record cannot be found in home page i, its overflow
pages are tried by using separators. If the data record exists in
those overflow pages, one more disk access is needed; otherwise,
0/1 more disk access is needed. Therefore, at most two disk ac-
cesses are needed.

3.3 Insertion, File Split and File Contraction
When a data record is inserted, its home page is searched first. If the
size of its home page has exceeded the page size b, then one of its
related overflow pages is searched according to its probe sequences. In
the case that a data record insertion causes relocations of some other
records in overflow pages, related separators which are stored in the
home page may also have to be updated. Whenever the growth of a
file exceeds a split control condition, a split occurs. In this case, data
records in page sp (including its overflow pages) have to be redis-
tributed to page sp and page (sp + 1) or page sp and page (sp − 1),
according to whether the value of level d is even or odd, respec-
tively. If sp = d, d is increased by 1 and sp is reset to 0. The results of
the above actions are equal to update sp (and d) first and then rein-
sert those data records which are in the page where the old sp points
to by using the new hashing function hd+1. The description of proce-
dure file_split is shown in Fig. 1c. (Note that to reduce the number of
disk accesses, we use a buffer mechanism to reduce the overhead of
reinsertion.) Whenever the number of deletions of a file drops below
a control condition, a contraction occurs. The description of proce-
dure file_contraction can be found in [12].

4 PERFORMANCE ANALYSIS

In all dynamic hashing schemes without using an index, a split
occurs under a certain condition. There are two kinds of strategies

[2], [13]: uncontrolled and controlled splitting. The uncontrolled
splitting means that a split occurs whenever a collision occurs. In
the controlled splitting, a split occurs when the number of inserted
data records exceeds a load control (L), or when storage utilization
exceeds a load factor (A), 0 < A < 1. (Note that a load control de-
notes the upper bound of the number of new inserted records be-
fore the next split can occur, and a load factor is a storage utiliza-
tion threshold.) In general, the controlled strategy can provide
better storage utilization than the uncontrolled strategy, which is
verified in [13]. Moreover, when the load factor is used as the split
control strategy, the system will suffer more unstable performance
during a full expansion as stated in [6], [15]. Therefore, we prefer to
use the load control as the split control strategy as that in [15], [16].

In this section, we present the performance analysis of alternating
hashing under the split control of the load control L. In this perform-
ance analysis model [15], we assume that the keys for data records
are distributed uniformly and independently to each other, and that
the page size is measured in terms of number of record slots. The
size of a home page is denoted by b, and the size of an overflow page
is denoted by w. We also assume that the number of overflow pages
for each home page is a minimum. In other words, if a home page

has k, k ≥ 0, overflow records, then there will be k
w  overflow pages

for this home page. The overflow data records are handled by using
separators as stated in Section 3.2. When the search cost is computed,
all records are assumed to have the same probability of retrieval. Let

s0 be the number of pages of a file initially and N be the number of
data records inserted into the file. Given N, we are able to derive
information about the current state of the file, such as the number of
used home pages, sp, the average retrieval cost and the storage utili-
zation; that is, we can analyze these properties of a file as a function
of N. The various properties that we are interested in are discussed
below.

The number of splits performed is given by ns(N) = 0 when

0 £ N £ s0 L or ns(N) = 
N s L

L
-L

MM
O
PP

0  when N > s0 L. (Note that to reduce

the number of splits, we assume that the first split is not started

until the first s0 pages are filled with s0L records in this perform-
ance analysis.) Since in alternating hashing, the growth rate of a

file is n
n
+ 1  per full expansion, the number of home pages ex-

panded (denoted by m) is given by

s0 + (s0 + 1) + ... + (s0 + (m - 1)) £ ns(N) < s0 + (s0 + 1) + ... + (s0 + m).

The first page will be added after sp scans over s0 pages, the

second page will be added after sp scans over (s0 + 1) pages, and so

on; therefore, the mth page is added to the file after i
i s

s m

=

+ -Â
0

0 1
 splits.

Therefore, 
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m s m
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£
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2
0  and m

ns N s s
=
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P
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2
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Then, the maximum index of home pages for the file is s (= (s 0 +

m - 1)), and sp is ns N
m s m

( )
( )

-FH IK
+ -2 1

2
0 . The load distribution for

each home page is different in alternating hashing as shown in
Table 1. The value shown in the intersection position of level d and
page number i is the number of records stored after d full expan-
sions and is denoted by Xi

d , when there are 2d data records whose

keys are uniformly distributed. Initially, we have X0
1 1= , X1

1 1= .

The value of Xi
d  is X Xi

d
i
d-
-
-+1
1
1e j  when d is odd (d > 1), 0 £ i £ d. On

the other hand, the value of Xi
d  is X Xi

d
i
d-
+
-+1
1
1e j  when d is even

(d > 1), 0 £ i < (d − 1). Moreover, the value of Xd
d

-1  is Xd
d

-
-

1
1  and the

value of Xd
d  is Xd

0
1- .
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Let P(sp, i, s) be the probability of a data record hashed into
home page i after s full expansions when the split pointer points to
page sp. In general, after s full expansions in alternating hashing
(when s is even) and sp = 0, that is, alternating hashing splits
backwards during the sth full expansion, the probability P(0, i, s)

for home page i (0 £ i < s) is P i s P i s( , , ) ( , , )0 1 0 1 1
2

- + + - and the prob-

ability P(0, s, s) for home page s is P s( , , )0 0 1
2

- . During the (s + 1)th

full expansion, since (s + 1) is odd, alternating hashing splits for-
wards. After a split occurs in home page 0 (i.e., sp = 1) and all the
data records of home page 0 have been redistributed to home page

0 and home page 1, the probability P(1, 0, s) is P s
P s
( , , )

( , , )
0 0

1 0 0+ , the prob-

ability P(1, 1, s) is P s P s
P s

( , , ) ( , , )
( , , )

0 0 0 1
1 0 0

+
+  and the probability P(1, i, s)

(2 £ i £ s) is P i s
P s
( , , )

( , , )
0

1 0 0+ . Moreover, when 1 < sp £ s, the probability

P(sp, i, s) of the page left of page (sp + 1) (i.e., 0 £ i < (sp + 1)) is
P i s P i s

P k s
k
sp

( , , ) ( , , )

( , , )

0 0 1

1 0
0
1

+ -

+ =
-Â

 (with P(0, −1, s) = 0), while the probability

P(sp, i, s) of the page right of page (sp + 1), including page (sp + 1),

(i.e., (sp + 1) £ i £ s) is P i s

P k s
k
sp
( , , )

( , , )

0

1 0
0
1+ =

-Â
.

TABLE 1
THE VARIANCE OF THE LOAD DISTRIBUTION IN ALTERNATING HASHING

Level Page number (1) Mean Variance

d 0 1 2 3 4 5 6 7
1 1 1 1 0
2 2 1 1 1.3 0.2
3 2 3 2 1 2 0.5
4 5 5 3 1 2 3.2 2.56
5 5 10 8 4 3 2 5.3 7.88
6 15 18 12 7 5 2 3 9.1 30.1
7 15 33 30 19 12 7 7 5 16 99.2

Mean = 1
1

2
10d dXi

d d

i

d

+ +=
=Â e j        Variance = 1

1

2

0d i
dX Mean

i

d

+ -
=Â e j

On the other hand, if s is odd and sp = 0, that is, alternating
hashing split forwards during the sth full expansion, the probabil-

ity P(0, i, s) for home page i (0 £ i < s) is P i s P i s( , , ) ( , , )0 1 0 1 1
2

- + - -  and

the probability P(0, s, s) for home page s is P s s( , , )0 1 1
2

- -  (with

P(0, −1, s − 1) = 0). During the (s + 1)th full expansion, since (s + 1)
is even, alternating hashing splits backwards. After a split occurs
in home page 0 (i.e., sp = 1) and all the data records of home page 0
have been redistributed to home page 0 and a new added home

page (i.e., page (s + 1)), the probability P(1, i, s) (0 £ i £ s) is
P i s

P s
( , , )

( , , )
0

1 0 0+  and the probability P(1, s + 1, s) for the new added home

page (s + 1) is P s
P s
( , , )

( , , )
0 0

1 0 0+ . Moreover, when 1 < sp £ s, the probability

P(sp, i, s) of the page left of page (sp − 1) (i.e., 0 £ i < (sp − 1)) is
P i s P i s

P k s
k
sp

( , , ) ( , )

( , , )

0 0 1,

1 0
0
1

+ +

+
=
-Â

, while the probability P(sp, i, s) of the page right of

page (sp − 1), including page (sp − 1), (i.e., (sp − 1) £ i £ s) is
P i s

P k s
k
sp
( , , )

( , , )

0

1 0
0
1

+
=
-Â

 and the probability P(sp, s + 1, s) for the new added

home page (s + 1) is P s

P k s
k
sp
( , , )

( , , )

0 0

1 0
0
1+ =

-Â
.

From the above load distribution analysis, we observe that
during the (s + 1)th full expansion, the maximum used index (n) of
home pages is s if s is even (or s is odd and sp = 0). Otherwise, n is
(s + 1). Let W(t) be a function to denote the number of overflow
pages of a home page with t data records inserted and let it be
defined as follows:

W(t) = 0                            0 £ t £ b

W(t) = j,                           (b + (j - 1)w + 1) £ t £ (b + jw)

Let Bin(t; N, P) denote the binomial distribution, i.e.,
Bin( ; , ) ( ) )t N P C P Pt

N t N t= - -1 . The probability that home page

i (0 £ i £ n) contains t data records is Bin(t; N, P(sp, i, s)). The ex-
pected number of overflow pages for home page i is obtained as

OP N W t t N P sp i si t

N
( ) ( ( ) ( ; , ( , , )))=

=Â Bin
0

. Then, the average number

of overflow pages for the file after inserting N data records is

given by OP N
OP N

n
ii

n

( )
( )

= =Â
+

0
1 , and the storage utilization can be

given by UTI N N
n b wOP N( ) ( )( ( ))= + +1 .

By using separators for handling overflow records, the expected

cost of an unsuccessful search for home page i (0 £ i £ n) in terms

of the number of disk accesses is USi = 1 when OPi = 0, or USi = 2

when OPi > 0. Then, the average number of disk accesses for an

unsuccessful search is given by US N US N P sp i sii

n
( ) ( ( ) ( , , ))=

=Â 0
.

For the successful search, we first consider the expected num-
ber of disk accesses for retrieving all the data records in home
page i (0 £ i £ n) plus its overflow pages, which can be obtained by

RA N t t N P sp i s t t b t N P sp i si t b

N

t

b
( ) ( ( , , ( , , ))) (( ( )) ( , , ( , , )))= + + -

= += ÂÂ Bin Bin
10

Then, the average number of disk accesses for a successful search

can be calculated by SS N
RA N

N
ii

n

( )
( )

= =Â 0 .

For the average insertion cost, we first consider the split cost at

the insertion of the tth (t £ N) data record, which is given by SC(t)
= 1 + OP(t) + 2(1 + OP(t + 1)). (Note that since we apply a buffer
mechanism, (1 + OP(t)) disk accesses are need to read the split
page and its overflow pages into the buffer, and 2(1 + OP(t + 1))
disk accesses are needed to write the split results.) Since a split

occurs only when t is L, 2L, ..., ns(N)L (ns(N)L £ N), the total split
cost for N inserted data records can be obtained by

TSC N SC iL
i

ns N
( ) ( )

( )
=

=Â 1
.

Then, we consider the average cost of inserting a data record
when there are t data records which have been inserted. (Note that
given the number of data records t, we can obtain the corre-
sponding split pointer sp′ and the number of full expansion s′ as
explained before.) Since a data insertion may cause the other data
records to be reinserted, the average number of disk accesses for
inserting the (t + 1)th data record in page i is as follows:

AC t
b OP t w OP t OP t

b wOP t

b OP t wOP t OP t
b wOP t

i
i i i

i

i i i

i

( )
( ( )) ( ( ) ( ) . . . )

( )

( ( )) ( )( ( ))
( )

.

=
+ + + - + +

+

=
+ + +

+

2 1 2 1 1

2 1 1

Then, the average number of disk accesses for inserting a data
record in any page i among those (s′ + 1) pages is given by

AC t P sp i s AC tii

s
( ) ( , , ) ( )= ¢ ¢

=

¢Â 0
. Finally, we can obtain the average

insertion cost in the insertion process of N data records (including

the split cost), which is given by INS N
TSC N AC t

N
t
N

( )
( ) ( )

=
+ =

-Â 0
1

.

Table 2a shows the results derived from the above formulas,
where s0 = 1, N = 106, b = 10, 20, 40, and 80, w = 0.5b, and L = 0.8b,
L = b, and L = 1.2b in alternating hashing. From this table, we ob-
serve that the storage utilization can be up to nearly 97%.

5 SIMULATION RESULTS

In this section, we show the simulation results of alternating
hashing, linear hashing [13] and linear hashing with partial expan-
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sions [6] under two different split control strategies. In this simu-
lation study [15], we assume that N input data records are uni-
formly distributed [8]. The environment control variables are the
size of a home page (b), the size of an overflow page (w), and a
load control (L) (or a load factor (A)). Storage utilization, average
insertion cost, average successful search cost and average unsuc-
cessful search cost are the main performance measures considered.
These costs are measured in terms of the number of disk accesses.
Moreover, overflow pages are handled by separators in all these
three approaches. Table 2b shows the simulation results of alter-
nating hashing under the split control of the load control L, where
N = 106, w = 0.5b, and L = 0.8b, L = b and L = 1.2b, respectively.
Compared with the analysis results shown in Table 2a, the simu-
lation results shown in Table 2b are very close to those shown in
Table 2a.

Simulation results of alternating hashing, linear hashing, linear
hashing with two partial expansions per full expansion and linear
hashing with three partial expansions per full expansion under the
split control of the load control L are shown in Tables 2b, 2c, 2d,
and 2e, respectively, where N = 106, w = 0.5b, and L = 0.8b, L = b,
and L = 1.2b. From these tables, alternating hashing has the highest
storage utilization among these four methods. When b = 40,
w = 20, and L = 48, alternating hashing can achieve 97% storage
utilization, as compared to 78% storage utilization in linear hash-
ing and in linear hashing with partial expansions under the same
conditions. Under a fixed N, as L is increased from 8 to 96, the
number of file splits is decreased, which results in a decrease of
the average insertion cost in all these three methods. Moreover,

the ratio of the average insertion cost of alternating hashing to that
of linear hashing is decreased from 6 7

2 7 2 5.
. ( . )ª  to 2 9

2 6 11.
. ( . )ª , when L

is increased. The reason is that when L is increased, the ratio of the
number of newly added pages of alternating hashing to that of
linear hashing is increased under a fixed N. (Note that this ratio is
always smaller than 1.) Fig. 2. shows the relationship between
storage utilization and the number of inserted data records in al-
ternating hashing and linear hashing, where b = 80, w = 40, and
L = 80. From this figure, we observe that alternating hashing has
more stable and higher storage utilization than linear hashing.
That is, the oscillation in performance during a full expansion in
alternating hashing is smaller than the one in linear hashing.

Recall that the growth rate of alternating hashing is n
n
+ 1  per

full expansion, which is not a constant since n is changed during
file growth, where n is the current size of the file. To compare the

TABLE 2
PERFORMANCE: a) ANALYSIS RESULTS OF ALTERNATING HASHING; b) SIMULATION RESULTS OF ALTERNATING HASHING;
c) LINEAR HASHING; d) LINEAR HASHING WITH TWO PARTIAL EXPANSION; e) LINEAR WITH THREE PARTIAL EXPANSIONS

Fig. 2. The relationship between storage utilization and the number of
inserted data records.
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average insertion/retrieval cost in linear hashing and alternating
hashing when both approaches achieve the same storage utiliza-
tion, we try to run linear hashing under different choices of L.
Table 3 shows that storage utilization in linear hashing can be in-
creased as L is increased, at the cost of increasing the average re-
trieval cost, where b = 40, w = 20, and N = 106. From this table, we
observe that when both approaches have the same storage utiliza-
tion (or the similar average successful search cost, or the same
average unsuccessful search cost, or the same average insertion
cost), one will have better performance than the other in some
performance measure, while having worse performance than the
other in some other performance measures. The reason is that as L
is increased a lot in linear hashing, the number of file splits is de-
creased in linear hashing. Therefore, given a fixed N and the same
storage utilization, the number of home pages in linear hashing is
less than the one in alternating hashing. At the same time, the
number of overflow pages in linear hashing is greater than the one
in alternating hashing. Consequently, the average retrieval cost in
alternating hashing is better than the one in linear hashing.

Table 4 shows the simulation results of alternating hashing and
linear hashing under the split control of the load factor (A), where
N = 106, b = 10, and w = 5. In alternating hashing, when A is in-
creased from 0.5 to 0.95, the number of file splits is decreased,
which results in a decrease of the average insertion cost. While in
linear hashing, as A is increased from 0.5 to 0.95, the average in-

sertion cost is increased. The reason is that as A is increased, the
number of overflow pages is increased (which is denoted as factor
one), while the number of file splits is decreased (which is denoted
as factor two). As A is increased, factor one dominates the per-
formance of the average insertion cost in linear hashing; while in
alternating hashing, factor two dominates the performance of the
average insertion cost. As A is increased, which implies that the
storage utilization threshold is increased, oscillation in perform-
ance during a full expansion is increased as stated in [6], [13]. Since

the growth rate of alternating hashing is n
n
+ 1  per full expansion as

compared to 2 in linear hashing, alternating hashing will result in
smaller oscillation during a full expansion than linear hashing.
From Table 4, as A is increased from 0.5 to 0.95, the ratio of the
average insertion cost of alternating hashing to that of linear
hashing is decreased from 57

2 62.  to 5
3 28. . Moreover, when A > 0.85,

alternating hashing can have higher storage utilization than linear
hashing. The reason is that the higher A is, the higher the ratio of
performance oscillation during a full expansion in linear hashing
to the one in alternating hashing is.

The proposed scheme can be extended to have a growth rate of
n t

n
+ - 1  per full expansion (t ≥ 2); i.e., (t - 1) more pages are added

per full expansion, such that the number of disk accesses for data
retrieval and insertion operations can be reduced. Let each key be

mapped into a string of t_base digits, i.e., Ht(key) = c = (cq−1, cq−2, ...,

TABLE 3
THE RELATIONSHIP BETWEEN PERFORMANCE

AND L IN LINEAR HASHING

TABLE 4
SIMULATION RESULTS UNDER THE SPLIT CONTROL

OF THE LOAD FACTOR (A)
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c1, c0) (0 £ ci < t and 0 £ i < q). Let h0(c) = m0 be the function to load

the file initially, where 0 £ m0 £ (m − 1) and m denotes the number

of pages of a file initially. The rest of the split functions, h1, h2, ..., hi
for extended alternating hashing are defined as follows:

h c m m m

h c h c c h c c

h c i t h c c m

h c m i t

i i
i

i i
i

i

i i
i

i

i

0 0 0

1

1

0 1

1 1 0

1 1 1 1 1

0 1 1 1

( ) , ( )

( ) ( ) ( ) ( ) ( ) ,

( ) ( )( ) ( ( ) ( ) ,

, ( ) ( ) ( )( ).

= £ £ -

= + - + - ≥

= + - + + - + - +
£ £ - + + -

+

+

where

if or

otherwise;

that is

+1

b g

As t is increased, the growth rate per full expansion is in-
creased, resulting in a decrease of storage utilization and costs of
data retrieval and insertion operations. Therefore, if we are care
about fast retrieval (and a low average insertion cost) more than
high storage utilization, we choose a t with a large value in ex-
tended alternating hashing [12].

6 CONCLUSION

In this paper, we have proposed a generalized approach for de-
signing a class of dynamic hashing scheme. By reducing the
growth rate per full expansion to increase storage utilization, we
have derived a new relationship among a series of split func-
tions, resulting in a new dynamic hashing scheme called alter-
nating hashing. Alternating hashing always adds only one more
page after a full expansion; that is, the growth rate of a file is
n

n
+ 1  per full expansion, when n is the number of pages of the

current size of the file. From our mathematical analysis and
simulation study, given a fixed load control, alternating hashing
can achieve 97% storage utilization as compared to 78% storage
utilization using linear hashing, when the keys are uniformly
distributed. Moreover, we have extended alternating hashing to

set a growth rate of a file to n t
n

+ - 1  per full expansion in order to
find a compromise between high storage utilization and fast
data retrieval. Therefore, extended alternating hashing provides
a flexible choice between these two requirements. Since there are
many factors which a file structure designer cares about, in-
cluding fast data retrieval, a low average insertion cost, high
storage utilization, and stable performance through file expan-
sions, our approach provides the designers a useful and flexible
formula to reach their goals.
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