中文摘要…	••••••	۰i
英文摘要…		• ii
誌謝		• iii
目錄		· iv
表目錄		• vi
圖目錄		• vii
	STILLIER.	
第一章、	電子封裝簡介與研究動機	1
1-1.	電子封裝簡介	1
1-2.	研究動機	2
1-3.	研究流程簡述	4
第二章、	文獻回顧	9
2-1.	銲錫接點內的電遷移現象日日日日	9
2-2.	銲錫受電流作用的研究	10
2-3.	電遷移造成銲錫接點破壞的機制	14
2-4.	銲錫電流密度分布的模擬	16
2-5.	減緩電遷移現象的應變與討論	17
第三章、	實驗方法、步驟與結果	27
3-1.	試片製備	27
3-2.	實驗方法	28
3-2-1.	凱文結構在本實驗中的應用	28
3-2-2.	銲錫電阻變化的量測	29
3-2-3.	試片破壞模式的觀測	30
3-3.	模擬流程	31

	3-3-1.	前處理	31
	3-3-2.	求解	33
	3-3-3.	後處理	34
第四	四章、	結果討論·····	46
4	-1.	試片剖面的觀測	46
4	-2.	銲錫電阻曲線分析	47
4	-3.	利用電阻量測標定孔洞形成的各階段	49
4	-4.	模擬結果與實驗結果的對照	52
4	-5.	結論·····	55
第	F音、	參考文獻	61

表目錄

表1	各階段之實際量測時間與正規化時間	36
表2	模擬運算中所輸入之電阻率	36

圖目錄

圖 1	各封裝層級示意圖	7
圖 2	BGA 封裝示意圖	•7
圖 3	覆晶接合示意圖	8
圖 4	Kelvin structure 在半導體電性量測示意圖	8
圖 5	SAC 銲錫經過 1431 小時通電流 1.68×10 ⁴ A-cm ⁻² ,	
	孔洞生成於導線進入銲錫處	19
圖 6	利用 Arrhenius equation : $D = D_0 \exp (-Q / RT)$	· 20
圖 7	共晶錫鉛觀測電流作用後 segregation 的試片結構	21
圖 8	錫鉛銲錫的兩端微結構 SEM 影像。	
	(a)(b)通電前、(c)(d)通電後	·21
圖 9	(a) 通入 0.59 A 電流,以紅外線顯像儀觀測到的溫度分布。	
	(b) 通入電流時, 銲錫內部溫度分布模擬	22
圖 10	鬆餅狀的孔洞示意圖	22
圖 11	銅墊層快速反應示意圖	23
圖 12	兩不同結構之有限元素分析結果	24
圖 13	有限元素分析銲錫內部電流密度分布示意圖	25
圖 14	電子流進入處,微結構 SEM 圖	26
圖 15	銲錫接點剖面示意圖	37
圖 16	銲錫接點 SEM 影像	37
圖 17	(a) 凱文銲錫結構俯視圖	
	(b) 凱文銲錫結構剖面側視圖	38
圖 18	試片研磨方向示意圖	38
圖 19	(a)總電阻對正規化時間曲線	
	(b) 銲錫電阻對正規化時間曲線	39

圖 20 150℃通 0.8 A 電流

	(a) 未通電前 (b) 29.8 hr (c) 101.5hr
	(d) 140 hr (e) 155.3 hr (f) 383.0 hr 40
圖 21	前處理流程示意圖
圖 22	材料性質分布示意圖
圖 23	模擬之電流密度與電位分布
圖 24	對應實驗的各階段
	(a) Stage 0 (b) Stage 1 (c) Stage 2
	(d) Stage 3 (e) Stage 4 (f) Stage 5 43
圖 25	銲錫電阻量測方式示意圖
圖 26	不同位置的銲錫電阻量測方式示意圖 44
圖 27	不同角度量測得之銲錫電阻 45
圖 28	150℃通入 0.9 A,銲錫電阻上升到八倍的 b3 銲錫接點
	剖面 SEM 影像 ······ 56
圖 29	150℃通入 0.9 A,量測到電路開路後的 b3 銲錫接點
	剖面 SEM 影像
圖 30	150℃通入 0.9 A,量測到電路開路後的 b3 銲錫接點
	剖面 SEM 影像
圖 31	150℃通入 0.8 A,銲錫電阻上升到十倍的 b3 銲錫接點
	剖面 SEM 影像
圖 32	實驗與有限元素分析對應的各階段
圖 33	模擬與實驗觀察之孔洞長度比較
圖 34	有限元素模型與 IMC 相接處的銲錫
	(a) 孔洞面積佔 UBM 面積 16.9 %
	(b) 孔洞面積佔 UBM 面積 77.5 % ······ 59
圖 35	高度 75 µm 之銲錫接點量測 140 小時的電阻曲線60