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Study of Quantum and Optical Coherent Waves:
Pattern Formation and Polarization Singularities Generated
from Microchip Laser Cavity

Student: Ting-Hua Lu Advisor: Prof. Yung-Fu Chen

Institute and Department of Electrophysics
National Chiao Tung University

ABSTRACT

This thesis presents several novel optical experiments which provide fresh insights for
guantum-classical correspondence with pattern formation and polarization characteristics of
light by use of microchip laser cavity. Quantum physics was developed substantially after
Schrodinger proposed his important coherent states of quantum harmonic oscillator.
Harmonic oscillator is the analogue of spherical laser cavity in our system. We start from
one-dimensional Schrodinger coherent states and broaden the theory to two-dimensional
problem to be related to our laser system under.paraxial approximation.

We not only develop a generaliform to, elucidate various kinds of states completely in the
laser system which is slightly disturbed by-coupling- with environment but also extract the
coherent states in the degenerate-cavity of longitudinal-transverse coupling. In addition to the
eigenstates in laser cavity, the three-dimensional coherent waves exhibit the classical-like
feature on the transverse patterns in“virtue of nonlinear optical effects. We verify that the
specific phenomenon leads to “Devil’s staircase” which is demonstrated in other physical
regime but firstly found in laser cavity. Furthermore, the analytic results have good agreement
with experimental patterns and provide efficient approach to understand the nature of
coherent waves in the cavity. With the theoretical results, the coherent waves are found to
carry large angular momentum and may provide some applications in laser technique.

Another topic in this thesis is polarization singularity in laser cavity. Besides phase
singularity in complex scalar waves which provide some unique applications, polarization
singularities also play a vital role such as the skeleton in vector waves for the study of optical
fields. We employ the hemispherical cavity to generate vector fields. After precise
measurement and deliberate analysis, the variation of polarization singularities embedded in
high-order vector laser waves can be realized. Interestingly, the polarization singularities are
discovered as fascinating patterns accompany with vector fields. Studying the structures of the
polarization singularities in coherent vector fields may help us to understand the nature of the

waves and provide insights in application.
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Chap 0 Introduction: Guide to the Main Text

Chapter 0

Introduction:
Guide to the Main Text

In recent years, pattern formation has become a famous topic in various fields of modern
physics such as nonlinear optics, quantum chaos, and quantum billiard. At the same time
coherent superposition is of significance for exploring the boundary between the microscopic
(quantum; wave) and macroscopic (classical; ray) worlds. As demonstrated in diverse
experiment, coherent superposition not only leads to understand the mesoscopic physics but
also results in rich pattern formation in the transition. from classical to quantum regime. Here |
will introduce several interesting experimental results to reveal the importance of coherent
superposition.

Firstly, we start from harmonic -oscillator model to one-dimensional Schrodinger
coherent states and broaden the theory to two-dimensional problem to be related to our laser
system under paraxial approximation. Furthermore, the fundamental theory and the
eigenmode of laser cavity will be mentioned in chapter 2. The generalized coherent state
(GCS) has been found as the complete basis to form the various kinds of patterns which are
the continuous transitions from Hermite-Gaussian to Laguerre-Gaussian modes. Furthermore,
when the polarization entanglement is involved, the situation becomes more complicated. The
GCSs can be properly employed to reconstruct the experimental results which are entangled
with polarization. With the theoretical analysis of GCSs the polarization singularities can be
revealed clearly.

Coherent superposition leads to complex pattern formation. In chapter 3 we will find

another kind of fascinating patterns which induced form the longitudinal-transverse coupling
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phenomenon. With the longitudinal-transverse coupling of frequencies, the degenerate states
of the cavity can be coherent superposed to form the three-dimensional coherent states with
Lissajous parametric surfaces which lead to constitute the nearly complete Devil’s staircase.
Moreover, when the experimental setup is slightly modified, there is not only one 3D coherent
state to be excited. The superposition of 3D coherent modes which are caused by the
longitudinal-transverse coupling and the mode-locking has been verified to lead to the
formation of spatially localized patterns on the Lissajous parametric surface in the mesoscopic
regime. The studies may provide some useful insights into the coherent superposition
problems with optical coherent waves in mesoscopic regime.

When the polarization and longitudinal-transverse coupling are involved with the
coherent superposition, the patterns become the most complicated to analyze. We have used
an isotropic microchip laser with the-longitudinal-transverse coupling and the entanglement of
the polarization states to generate.the propagation-dependent polarization vector fields in
chapter 4. The phase singularity<in complex-sealar fields leads to orbital angular momentum
and the polarization singularity in complex.vectar fields leads to spin angular momentum. It is
why singular optics is so important in optical fields. We employed the analytical
representation to perform comprehensive analysis for the singularities of the C lines, L
surfaces, and V points, which play important roles in singular optics.

Angular momentum of optical waves can be decomposed into orbital angular momentum
and spin angular momentum. Both of orbital and spin parts have extensive applications in
biological and physical fields such as optical tweezers and optical spanner. A typical class of
paraxial beams possess angular momentum, Laguerre-Gaussian beams, is studied for recent
decades. In addition to typical paraxial Laguerre-Gaussian beams, we demonstrate the optical
waves carrying large angular momentum in degenerate cavity in chapter 5. We look forward

to useful applications of the specific coherent optical waves in other field in the future.
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Chapter 1
Classical and Quantum Harmonic
Oscillators

Harmonic oscillator is a general and useful model in either classical or quantum physics.
The quantum harmonic oscillator is the quantum analogue of the classical harmonic oscillator.
It is one of the most important systems in quantum mechanics because an arbitrary potential
can be approximated as a harmonic potential at the vicinity of a stable equilibrium point.
Moreover, it is one of the few quantum mechanical systems for which a simple exact solution
is known. In this chapter we introduce the characteristics of classical and quantum harmonic

oscillators for the basic preparation of following chapters.

1.1 One-dimensional Harmonic Oscillator
In classical dynamics, a particle of mass m subjects to the potential V(x)= %ma)zx2 is

the so-called one-dimensional (1D) harmonic oscillator problem, where mw? =k is the
force constant and @ is the angular frequency. On the other hand, harmonic oscillator is a
system according to Hooke’s law: F(x) =—kx. If F is the only force acting on the system, the
system is called a simple harmonic oscillator and moving as sinusoidal oscillations about the

equilibrium point. Using Newton’s second law of motion

d?x

F=ma=m—-=
dt

—kx (1.1.1)

and define ®® =k/m, the differential equation can be written as X+ »°x = 0. Solving the
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differential equation, the general solution of the simple harmonic oscillator is

x(t)= Acos(wt —¢) or x(t)= Asin(at —¢), (1.1.2)

where the amplitude A and the phase ¢ are determined by the initial condition. From
another view, we can put a particle into a parabolic potential and the projection of particle
moves as the general solution, such as shown is Fig. 1.1.1 (a).

In quantum mechanics, the quantum harmonic oscillator is the analogue of the classical
harmonic oscillator. Furthermore, it is one of the most important systems in quantum
mechanics because an arbitrary potential can be approximated as a harmonic potential at the
vicinity of a stable equilibrium point. Fortunately, the exact solution of the quantum harmonic

oscillator can be solved analytically. The Hamiltonian can be written as

X, (1.1.3)

: . ] ., 0
where x is the position operator and p is the momentum operator( p = —|ha—). In order to
X

solve the differential equation, we have to solve the time-independent Schrddinger equation.

Using the power series method, the energy eigenstates can be depicted as [1-2]

1

Mo Mo
———X —X

e (n)

(1.1.4)

n

where n=012,--- and Hn(x)=(—1)”exzofne‘Xz is the Hermite polynomial. The
X

corresponding energy levels are E, =(n+%)ha). Figure 1.1.1 (b) shows the probability

density |‘//n|2 of the ground state and several excited states. The characteristics of the classical
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and quantum harmonic system are quite different. The fact is well-known that when the
quantum number of the excited state becomes large enough, the behavior of the quantum
harmonic oscillator exhibits the classical-like feature of the classical harmonic oscillator. In
order to connect the behavior of the particle and the wave in harmonic potential, we have to
introduce the Schrodinger’s coherent states. It plays an important role in the

classical-quantum correspondence and will be discussed in section three of this chapter.
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Fig. 1.1.1 (a) 1D classical harmonic oscillator. (b) 1D quantum harmonic oscillator. (The probability
density of several states)
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1.2 Two-dimensional Harmonic Oscillator

It is very important to extend the 1D harmonic oscillator problem to two-dimensional
(2D), because 2D figure is more impressive than 1D figure for human’s eye and the 2D
problems are more general existing in many physics phenomenon. For the rectangular
coordinate, which x and y is orthogonal, the general solution of the classical harmonic

oscillator can be expressed as

x(t) = Acos(o,t —¢) and y(t)=Bcos(o,t), (1.2.1)

where A and B are the amplitudes, ©, and «, are the angular frequencies of xandy, ¢ is

the phase. If we assume thatA=B=1, o, '@, =Jo: peo, where g and p are integers and

have no common factor and gozﬁ, the general solution of the 2D classical harmonic
oscillator is
x(t):cos(qa)t—ﬁj and y(t)=cos(pat). (1.2.2)
p

The several examples of the solutions shown in Fig. 1.2.1 (b) are famous Lissajous figures.
Lissajous figures can describe the trajectory of a particle which moves inside a parabolic-like
bowl such as shown in Fig. 1.2.1 (a). This kind of curves was investigated by Nathaniel
Bowditch in 1815, and later in more detail by Jules Antoine Lissajous in 1857. Jules Antoine
Lissajous (1822-1880) was a French mathematician, who invented the Lissajous apparatus to
create the figures that bear his name [3]. In the experiment, a light was shone off a mirror
which attached to a vibrating tuning fork then the light was reflected off another mirror

attached to another perpendicular vibrating tuning fork with different pitch, then on the wall
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resulted in a Lissajous figure.
From 1D quantum harmonic oscillator, the general solution of 2D quantum harmonic

oscillator can be easily demonstrated as the form which comprises two orthogonal parts:

1

m 2 m m m
Y = L i eXp| — Pa)(X2+y2) 'Hm Pa)x 'Hn pa)y )
’ A 2™ min! wh 2h 7] h

(1.2.3)

where m,n=012,--, H_(x) and H,(y) are the Hermite polynomials. The

corresponding energy levels are E = (m+ n +%)ha) In order to distinguish the quantum

number m and the mass of particle, we use.xm; .to represent the mass of particle. Figure 1.2.1

(c) shows the density of the wave function-with. different quantum number. Obviously, the
quantum harmonic oscillator and classical-harmonic escillator lead to totally different results
which are shown in Fig. 1.2.1. Thérefore we have to connect the two ends of the classical and
guantum harmonic oscillator problem from studying wave packet states and coherent states in

quantum mechanics.
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Fig. 1.2.1 (a) The description of the potential of 2D harmonic oscillator. (b) Lissajous figures with
different frequency ratio and phase. (c) The eigenstates of 2D quantum harmonic oscillator with
different orders.
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1.3 Schrédinger Coherent States of the 1D Harmonic Oscillator

In recent years, there has been growing attention to quantum manifestations of classical
periodic orbits in mesoscopic systems [4-14]. Therefore, the connection between the quantum
wave functions and the classical trajectories in mesoscopic systems with internal nonlinear
resonances is important for understanding the quantum features of nonlinear classical
dynamics, which is also a central issue in modern physics. It is well known that Schrédinger
in 1926 [15] originally constructed a coherent state of a 1D harmonic oscillator to describe a
classical particle with a wave packet whose center in the time evolution follows the
corresponding classical motion. Schrddinger demonstrated a coherent state to explore the
continuous transition from micro- to macro-mechanics by showing that a group of proper
vibrations of high-order quantum number and of relatively small quantum number differences
may represent a “particle”, which is executing -the “motion”, expected from the usual

mechanics. The Schrédinger coherent wave packet state can be generalized as

En

Pt =Y e, e T (1.3.1)
with
¢ = grafrz (1.3.2)

n \/m !
7, =z e H () (13.3)

E, :(n+%jha) , (1.3.4)

where the parameter « can be generalized as
a=ale? (1.3.5)

10
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where ¢ is a real number and represents the phase factor. Note that the normalized

eigenfunction for the variable x is given by w(x) = (ma/®)™ ¥ (&), &= ‘/ X. It can be

found that the norm square of the coefficient |c, |* is exactly the same as the Poisson

distribution with the mean of |« |*. Substituting (1.3.3) and (1.3.4) into (1.3.1) and

rearranging the result, we can obtain

(|a |e|¢) o-lali2 1

Y ta)= y ——
: Z? o N

H ) (g)e—leze—i(ml/Z)wt

, (1.3.6)
:ﬁe (aP+63)12 g-iot/2 g [|0‘|e_i(w;_!¢) /ﬁ]n H, (&)
Using the generating function, equation(1.3.6) can be rewritten as
\P(é,t,a)— 1 e lal+ehi2g o2 exp{ [|oz|e*"“’t ¢’/«/_] +42 | |eir “”5}
—#e"”"z*fz”ze“"“2 exp{—|a Pe 20D 1242 | g e @t } |
(1.3.7)

As a result, the probability distribution of the coherent state is given by

11
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P ta) =Y (&,ta) P( ta)

=L et expl | o |2 cos[2(wt - #)] + 292 | |Ecos(wt — 6) |
N
:% exp{—gZZ —2|a|? cos?(wt — @) + 24/2 | ar | £ cos(wt — @) }
T
- oxp{-[£ V2 | alcos(ot )] |

(1.3.8)
It can be clearly seen that the center of the wave packet moves in the path of the classical

motion

& =2a cos(wt — @) . (1.3.9)

Figure 1.3.1(a) and (b) show the-sixtiéth exeiied-state;and 1D coherent state moving around a
period, respectively. It is important to note.that the probability density of 1D coherent state
can represent the behavior of particle which was confined in a potential of 1D harmonic
oscillator. As a result, Schrodinger coherent state of 1D harmonic oscillator plays a vital role
to connect the relation between classical and quantum regime and makes a significant
contribution to understand the mesoscopic physics between microscopic and macroscopic

regime.

12
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Fig. 1.3.1 (a) Sixtieth excited state of 1D harmonic oscillator (b) 1D coherent state moving with
time
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1.4 Stationary Coherent States of 2D Harmonic Oscillator

The time-independent Schrodinger equation for a 2D harmonic oscillator with

commensurate frequencies can generally given by

(o o 1 s 2 9
~or 8x2+6y2 +Em(a)xx +oy*) w(xy)=Ew(x,y) , (1.4.1)

where o, =qw and o, = pw, @ is the common factor of the frequencies by », and o,, and

p and q are relative prime integers. With the results in the preceding section, the eigenfunction

and the eigenvalue of the 2D harmonic oscillator with commensurate frequencies are given by

-1/2

l/’/"m’n(eg)(,é:y)z(zn+mm!n!,7z-) e—(§f+§y2)/2Hm(§X)Hn(§y) . (142)

and
1 1
Em,n = (m + E) hC[)X + (n +Ej ha)y , (143)

where &, =.me,/hx and & =.ma, /hy. However the conventional eigenstates of a 2D

harmonic oscillator with commensurate frequencies do not reveal the characteristics of
classical Lissajous figures even in the correspondence limit of large quantum number.

Since the eigenfunction is separable, the corresponding Schrédinger coherent state can
be extended to 2D system as the product of two 1D coherent states. The Schrodinger coherent
state of 2D system is expected to correspond to a wave packet with its center generally
moving along a classical trajectory. This exact correspondence enables us to construct the

guantum stationary states localized on the classical Lissajous orbits from the

14
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time-independent Schrodinger coherent state.
Since the Hamiltonian is separable, the Schrddinger coherent state for 2D harmonic

oscillator can be expressed as:

L ax ei¢x n 2 L o )
\P(gx’gy’t):[z ( ) e /2 Hm((fx)e §X/2e (m+1/2)q tJ

% N y e ; H (é: )effyz/Ze—i(nJrl/Z)pwt
o e ,

e—(af+a$)/2 & (é: é; )e—i(qm+pn+q/2+p/2)cot
mn\ox15y

(1.4.4)

It is clear that the center of the wave packet follows the motion of a classical 2D isotropic

harmonic oscillator, i.e.,
& =~2a, cos(qot-¢,); & =20, cos(pot-¢,) . (1.4.5)

The set of states with indices (m,n) in (1.4.4) can be divided into subsets characterized by a
pair of indices (u,,u,) given by m=u, (modp) and n=u, (modq). In terms of these

subsets, the Schrodinger coherent state in (1.4.4) can be rewritten as

g1 pl o oo (ax ei¢x)pNX+uX (ay ei¢5y)qu+uy

wsx,fsy,o:[z 3

u,=0 U y=0Nxzo\/(pNX+UX)!\/(qu+uy)!

~ —i[pa(N,+N,)+q(u,+1/2)+p(u,+1/2)]wt
><l//pNX+-u)(,qN),+uy (égx’éty) € ’ ’ )

—(af+a})l2

=0N

X

, (1.4.6)

As seen in (1.4.6), the 2D Schrodinger coherent state is divided into a product of two infinite

15
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series and two finite series. The method of the triangular partial sums is used to make precise

sense out of the product of two infinite series in (1.4.6). With the representation of the Cauchy

product, the terms ‘/7pNx+ux,qu+uy (¢,,&,) in (1.4.6) can be arranged diagonally by grouping

together those terms for which N, +N, =N

_ 1w id, \ pK+u, ig, \ Q(N-K)+u
g N (axe ) (aye y) ’ —(af+a§)/2

wssty,o{z ¥5$

U, =0 uX:ON:OK:O\/(pK +u,)! \/[q(N -K)+u, ]!

5 ) e—i[qu +q(u,+1/2)+p(u, +1/2)]wt )
y

X l//pKJrux, a(N-K)+u, (gx !

N P/l K oi(Pg—ady) 7K
x{z (af o) JeTE Y]

o (PK +u )T [q(N=K)+u, ]! Vpcsuan-rs, (fx"fy)}

(1.4.7)

The expression in the curly bracket of Eq.(1.4.7) represents the stationary coherent states
labeled with one major index N and two minor indices uy and uy. These stationary coherent
states are physically expected to be associated with the Lissajous trajectories. Note that the
minor indices uy and uy essentially do not affect the characteristics of the stationary states.

Including the normalization condition, the stationary coherent states in Cartesian coordinates

are given by
©P (£ ;A,¢):[ N A2K ]1/2
e £ (PK)LTa(N —K) +u, ]
N ig 1K ,
E=NE] J[?qil\l]— et e asom (608)
(1.4.8)
where

16
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A=50 G- pp —ap, (1.4.9)

The equation (1.4.8) reveals that the stationary coherent states associated with the Lissajous
trajectories are the superposition of degenerate eigenstates with the relative amplitude factor A

and phase factor ¢ [16]. Furthermore, the expression (1.4.9) indicates that the relative

amplitude factor A and phase factor ¢ in the stationary coherent states @, (& & AP)
are explicitly related to the classical variables (ax,ay,¢x,¢y) in (1.4.6).

From (1.4.7), the eigenenergies of the stationary coherent states ® ¢ | (&,,&,; A #)

N,Uy,Uy

are found to be

E = |paN +q(u, +1/2)4'p(u, +1/2)[io———>(Npa)re, (1.4.10)

N, Uy, uy N>>1

Figures 1.4.1-1.4.3 depicts the. comparison ._between the quantum wave patterns
2
cDﬁ‘*]‘f,X,uy(fx,g ;A,¢)| and the corresponding classical periodic orbits for p:q to be 2:1,

3:2, and 4:3, respectively. Here three different phase factors, ¢=0, ¢=0.37, and
¢ =0.67, are displayed in each figure for the purpose of clear comparison. The behavior of
the quantum wave patterns in all cases can be found to be in precise agreement with the
classical Lissajous figures.

It is worthwhile to mention that the stationary coherent states for the 2D isotropic

harmonic oscillator p:q=1:1 can be simplified to give rise to the expression of elliptic

states [17]. After some algebra and setting u, =u, =0, equation (1.4.7) can be rewritten as

WELE D= Cy O, (€8, Ag)e (L4.10)

where

17
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. N
2 ig,
~(a2+a?)i2 (”1+A ay e y)

Cy =¢ o , (1.4.12)
N N 1/2 _ _
(D:kll,ux,uy (é:x’fy;A! ¢)=ﬁz [Kj (Aemj)Kl//K,NfK (éx'gy) ) (1413)
+ K=0
A= g=g -4, , (1.4.14)
a

The wave function in (1.4.13) represents a type of normalized elliptic stationary coherent state.

Figure 1.4.4 shows the dependence of the wave pattern of the stationary coherent states

Do (&, s Ag)’on the factors Aand ¢ for N=20. It can be seen that the coherent states

CDlh',l,O’O (&x, &, Ag) correspond to the, elliptic, stationary states. The superposition of two
elliptic states with a phase factor: ¢ 'in the opposite'sign can form a standing wave pattern:
Diloo (& & AR EDY (&, &, A-p))~ Figure (1.4.4 also shows the standing wave

patterns corresponding to the elliptic states.

Equation (1.4.11) manifestly reveals the relationship between the Schrédinger coherent
state and the stationary coherent state. As is known from gquantum mechanics, |C, |

represents the probability of finding the system in the elliptic stationary state with order N.

With equation (1.4.12), it can be found that

2, 2
(a5 +ay)

Cyl* = e , (1.4.15)

As the result of the Schrddinger coherent state in the 1D harmonic oscillator, the probability

distribution |C,|* is identical to the Poisson distribution with the mean value of

<N>=af+a} .
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Fig. 1.4.1 Comparison between the quantum stationary state q;ﬁfxuwuv (.8, A ) 2 [(@)-(c)] and
the classical Lissajous orbits [(a’)-(c’)] for the systemof p:q=2:1 with N=40, A=5.2
and (@) ¢=0,(b) ¢=0.37,and(c) ¢=0.67.
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N

Fig. 1.4.2 The same as Fig. 1.4.1 for the systemof p:q=3:2 with N =22, A=5.2 and (a)
¢=0,(b) ¢=037,and(c) ¢=0.6r.
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Fig. 1.4.3 The same as Fig. 1.4.1 for the systemof p:q=4:3 with N =15, A=5.2 and (a)
¢=0,(b) ¢=037,and(c) ¢=0.6r.
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Fig. 1.4.4 (a) Upper: wave patterns of stationary coherent states for N=20 with different values of the

N

parameters ¢ . Lower: standing wave patterns corresponding to upper figures. (b) Upper: wave

patterns of stationary coherent states for N=20 with different values of the parameters A. Lower:
standing wave patterns corresponding to upper figures.
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1.5 Unitary Transformation between Stationary States and wave
packet states

Even though the Schrédinger coherent state is an analytic and elegant representation for

the wave packet state, another important representation is given by

H EN+m

W(Etg) = J_Ze”“’ Fym@e 1 (M<<N) (15.1)

The representation in equation (1.5.1) resembles the definition of the phase state. Unlike the
Schrodinger coherent state, the coherent state in equation (1.5.1) is expanded by a
finite-dimensional basis. In order to simplify the representation of the wave function, here |

use

@) (15.2)

)= S e
= e n
" Nmzo

to replace (1.5.1). The phase ¢+ must be-properly: chosen to make the wave function to

maintain the characteristic of orthonormal Then we can get

(w,)= L%

v em(¢s—¢n):5 = ¢ :2_”.n & :2_”.3 : (1.5.3)

- n,s n M S M

MZ

3

Continuously, the relation between wave packet states and stationary states can be shown as

following:
1 i 2% mn
O |V¥Y )=——eM
(0, 9) e
1 -iZ%mn
¥ |o )=
9,[0,) Lo
)= 3 Conl ) Con = (2,0, = Ao ¥
m/ = mn| Tn = mn — n m/ = €
n=0 M

(1.5.4)
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Finally, (1.5.5) shows that the stationary states can be represented as the superposition of

wave packet states and vice versa.

1
vi=—"Ye D,
)= e ()
@)=~ Sy = LS e LS o)
o )=—-Ve Phl=—=Ne v | N em P )| (1.5.5)
M n=0 M n=0 M m=0
.27
It is worthy to notice that J_ __1 "™ s the unitary operator which represents the

JM

transition matrix from the wave packet states and stationary states. Figure 1.5.1 shows the 1D

wave packet states (1D Schrodinger coherent states) and stationary states (eigenstates). Figure

1.5.1(a) represents the wave packet states | )@s. M =5 and n=0~4 respectively. On the

other, Fig. 1.5.1(b) reconstructs-the.stationary-states from the superposition of wave packet
statesas M =5 and m=0~4 respectively:

In 1D harmonic oscillator, the unitary.transform not only connect the wave packet states
and stationary coherent states but also play an important role in the quantum-classical
correspondence. To expand the method, the unitary transform of equation (1.5.5) can also
express the relation between the time-independent stationary coherent states and eigenstates
of 2D harmonic oscillator. Figure 1.5.2 depicts time-independent elliptical stationary coherent
states as M =7 and n=0~6 respectively. On the other, Fig. 1.5.3 reconstructs the
eigenstates from the superposition of stationary coherent states as M =7 and m=0~6
respectively.

In summary, the wave packet states and stationary states can be constructed by each
other with unitary transformation in 1D harmonic oscillator. Therefore, the time-independent
stationary coherent states and eigenstates can also be constructed by each other with unitary

transformation in 2D harmonic oscillator.
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) (b)

L
i

Fig. 1.5.1 (a) The 1D wave packet states with M =5 and n=0~4 respectively. (b) The 1D
stationary states with M =5 and m=0~4 respectively.
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Fig. 1.5.2 The 2D time-independent stationary states with M =7 and n=0~6 respectively.
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Fig. 1.5.3 The 2D eigenstates with M =7 and m=0~6 respectively.
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Chapter 2
Eigenstates of Harmonic Oscillator and

Spherical Laser Cavity:
Generalized Coherent States and Polarization-
entangled Patterns

It is well known that the paraxial wave equation for the spherical resonator has the
identical form with the Schrddinger equation for the two dimensional (2D) harmonic
oscillator. In this chapter we derive the, paraxial wave equation has the same form with the
Schrddinger equation for the 2D harmoniesoscillator. The wave function for the paraxial field
in the spherical laser resonator can-be expressed-as-Hermite-Gaussian (HG) function with
Cartesian symmetry or Laguerre=Gaussian-function with cylindrical symmetry which are the
eigenfunctions of harmonic oscillater mentioned:in‘chapter one. We introduce the generalized
coherent states (GCSs) to be related to the transition form HG modes to various experimental
modes which are high order polarization-entangled transverse modes. With the connection
between theoretical analysis and experimental results, the formation of complicated

singularities can be represented.

2.1 Paraxial Approximation of Maxwell’s Equations

According to the Helmholtz wave equation, the wave propagation in a source-free

medium follows the Maxwell’s equations which can be represented as [1-2]
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0
VXE=—u—H
Mot

VxH=¢_F (2.1.1).

V-E=0
V-H=0

Therefore, the electric field can be expressed as

2

VZE—,ugg—zE:O. (2.1.2)
t

Assume the electric field to be monochromatic wave FE = E(x,y,z)~e""”, Eq. (2.1.2) can be

written as
(V? +k2)E(x,y,2)=0, (2.1.3)

where k is the wave vector. For a wave ‘which propagates primarily along the z direction,

E = E(x,y,z) can be written as
E(x, §2 z) = u(x, ¥, z)~ e (2.1.4)

where u(x,y,z) is the transverse variation, k_ is the z-component of the wave vector.

Substituting Eqg. (2.1.4) into Eq. (2.1.3), the Helmholtz equation is represented as

82 82 82 a 5 )
+—+——2ik, —+\k* —k? ) |u(x,y,2)=0. 2.15
ax2 ayZ aZZ l z 62 ( 2) ( y Z) ( )
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2
In the paraxial approximation, the term (j—zu(x,y,z) is quite small in comparison with
z

remaining terms, therefore

[vf —2ik2§+k,2}u(x,y,z):0, (2.1.6)
Z
where vf:(fzer(fzz and k?=k*—k?. We assume that u(x,y,z)="¥(x,y)G(x,y,z),
X’ Oy

where ¥(x,y) is a scalar wave function which describes the transverse variation of the beam,
G(x,y,z) is a wave function which describes the wave as Gaussian spherical wave between
plane wave and spherical wave. According to the cavity confinement, the Gaussian spherical

wave can be written as

" 2407 > (x2+y2)
k[ﬂ—ﬂ B T (2.1.7)

ZR
‘ " ol2) |

Glx, y2) = ——2
\zi+z2
where @, is the minimum spotsizeat z=0, a)(z) Is the spot size at arbitrary position, and

ZR

2
R(z) is the radius of curvature. The relation is given by o(z)=w, 1+(i] and
z 2
R(z)= z|:1+ (—RJ } . Then Eq. (2.1.6) can be written as
z

{vf — 2ik. §+k,2}‘l’(x, y)G(x,v,2)=0. (2.1.8)
Z

Using paraxial approximation and after some algebra, the paraxial wave equation can be

analyzed as:
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G(x, v, z)(V,Z +k? )‘P(x y)+¥(x, y)(vf — 2ik, aijG(x, y,z)
(2.1.9)

= G(x,y, Z){V,z +k? — (kzsz)z (xz;:yz)}l’(x,y) =0

Let’s replace the variation in Eqg. (2.1.9), the general transverse wave equation is shown in

rectangular coordinate as
2 2
{vf +k? —4("—”)}\}'()@ )=0. (2.1.10)

We can divide the wave function into two,independent partsas  ¥(x,y)= f(x)g(»), then

i

2

0 ; |55 +hkie 4y4 g(y)=0 and k*+k’=k’. Assume that
dt 7 alf) '

2

e J2x

f(x)=v(x)e ““ and &= o) the differential equation can be written as
w\Z

dzﬁ —252{1‘5“’(2) —l]v:O, (2.1.11)
dé dé

which has the same form with Hermite polynomial: y"—2xy'+2my =0. Therefore the

normalized wave functions are

(2+?)
¥, (x ) 1 H,{ﬁx JHn(ﬁy je ol (2.1.12)
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2 ~(2m+1) ; kj:iz(znu), where m,n=012,....
o(z) o(z)

Here Hm( ) is the mth order Hermite polynomial. It is worthy to note that the differential

and the eigenvalues are k> =

equation is similar to the time-independent Schrédinger equation for the simple harmonic
oscillator [3]. Combine the equations used before and the paraxial approximation, the

longitudinal component of the wave vector can be given by

(m+n+1). (2.1.13)

Using I d =1tanl(£j and integrate the phase term, then

2 2
X +a a a

k.z= kz—(m+n+l)tanl(ij, (2.1.14)

Zp

where —(m+n+1)tanl(ij is the Gouy: phase shift. In Summary, the wave function in
ZpR

rectangular coordinate can be expressed:as

—ik.z xz;yzz —i| kz=(m+n+1)tan* kS
E(x,y.2)="¥,, (xy) 2o ) e | [“H, (2.1.15)
| o(z)
where
(24?)
¥, (x )= L Hm[ﬁxan(ﬁy je o (2.1.12)
J2r iamm " olz)) " olz)

For a cylindrical symmetry system, the general wave equation shown in Eq. (2.1.6) can

be represented as
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2
li(r£j+i2 o , —2ikzﬁ+kf u(r,0,z)=0, (2.1.16)
ror\ or) r°o0 0z

2
where V? ziﬁ(rﬁ}i 0

ror\_ or) r?of?* and “(r’e’z):T(’”ﬁ)'G(rﬂ,z).Then

u(r,@,z):‘l’(r,é?)- @ -e_iZR(Z), (2.1.17)

where ¥(r,@) is a scalar wave function describing the transverse profile of the wave. Using
the paraxial approximation R(z) >>r, the general transverse wave equation in cylindrical

coordinate can be written as

{vz + k2 —M}P(r,ﬁ)zo. (2.1.18)

Assume that W(r,#) becomes two independent functions ¥(r,8)=R(r)-e" , then

Eq.(2.1.18) can be expressed as

d> 1d I? ,  4r?
B PSR L R(»)=0. 2.1.19
0 to gtk o) (r) ( )

Continuously letting R(r)=r"-e «* F(r), then we can get

+1 , ]+
F'+| ———4— |F'+| k} -4——- |F =0. (2.1.20)
r [0 @
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L .. 2r? . . . .
Considering the condition ¢ = Lz the differential equation can be varied as
w

d*F dF 1| o* , _
- +(]l|+1—t)z+§{7kt —([Z|+1)}F—O. (2.1.21)

Eqg. (2.1.21) is similar to the Laguerre polynomial: xy”+(a +1—x)y'+py:0, then the

eigenvalues are k;} = (2p+[i|+1), where p=012,... and /=12,.... Compare with

4
wlz)’

the eigenvalues in rectangular coordinate, the relation is 2p+|l|+1: m+n+1. As a result,

the normalized wave function can be represented as

_ 2p! \/E”l (2’ _a)rzz 6
- TR iy b e

where &,, =1 for /=0 and &,, =0fer [+#0. In summary, the wave function in

cylindrical coordinate can be represented as

E(I’,@,Z)Z \PN (I’,H)- , _e_ikzzzzzrﬁlze .e—{kz—(Zp-FH-l)tan1(@)} (2129

o(2)

Figure 2.1.1 shows HG modes with different index (m , n) and standing waves of LG modes
with different index (/ , p). Both of the two modes are the eigenstates of 2D harmonic
oscillator in rectangular and cylindrical coordinates respectively. Besides the two special
eigenmodes in spherical laser cavity, there should be a general wave function for the cavity in

case of some perturbations existing in the system. We will discuss the “generalized coherent
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states” in the spherical laser cavity in next section to explain the experimental results between

HG and LG beams in some special condition.
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Fig. 2.1.1 (a) Hermite-Gaussian modes with different index (m , n). (b) Standing waves of
Laguerre-Gaussian modes with different index (Z, p)
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2.2 The Generalized Coherent States:

Between Hermite-Gaussian and Laguerre-Gaussian modes

As mentioned above, HG and LG modes are the eigenmodes of the spherical laser cavity.
In this section we will discuss another complete basis, generalized coherent state, which is
also the eigenmode between HG and LG modes in the laser cavity. To explain other

experimental patterns which are different from HG and LG modes, we need to use the

generalized coherent states to be related to the transition from HG modes ®”° (x,y,z) into

m,n

various experimental modes with different phase factor. Before demonstrating the generalized
coherent states, we consider a related problem of harmonic oscillator with a perturbation.

The Hamiltonian of a 2D isotropic harmonic oscillator can be expressed as

A, = (ﬁxz +P 2)+%ma)02(fc2 + )72) : (2.2.1)

A mw, ~ - mw, ~ . = 1 =~ - 1 -
= x y = y P = (. P =

6]1 h 12 n Y b\ mayh 2\ mogh 7

- 1 ~ - 1 (. ~ - 1 (. ~ ~t 1 ~

a, =——\g, +iP ), a, =— iP) ;. a +1 , a4, =—— iP

1 2(‘]1 1) 1 \/E(ql 1) 2 \/E(‘b 2) 2 2(‘]2 2)
(2.2.2)
The Hamiltonian can be written as
A, - %hwo (B2 + 7 a2+, )=hwola'a, +a,a, +1) . (2.2.3)

In order to simplify the complex mathematics, here we use some operators to make the
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process smoothly:

j-Ma'aaa) g -Maa-aa) 0 -2ea-aa) eaa

X

Therefore, the operators have some characteristics as following:

nl,n2> = [nl ;nz ]|n1,n2>

N

J.

. : 2.2.5
J2|nl’n2>:[nl+n2j(nl-;n2 +1j|nl,l’l2> ( )

Replacing the index of the state |n,,n,) with

. nm+n n,—n
_MhTh m=_1""

2 2 , (2.2.6)

m=j+m , n,=j—m

equation (2.2.5) can be reduced as

J?|jomy= j(j+1)j,m)

(2.2.7)
JZ

jim) = m|j,m)

Consider a charged particle in a harmonic oscillator potential and is applied a uniform

magnetic field inthe z direction. The Hamiltonian is expressed as

X

2m . (2.2.8)

2 2(~t~ A ta 7
=ho, +o, (al a, +a, a2+1)+2thJy

H =i(}3x2 +ﬁy2)+%m(w02 +a>L2)(fc2 +)32)+ a)L()%ﬁy .y )

The operator jy in equation (2.2.8) share the same eigenstate of ﬁo, so we should use
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some techniques of unitary transformation to solve this problem. After the unitary

transformation twice as

(2.2.9)

the new Hamiltonian can be written as

H' =hjo,” +, (&1*&1 +a,a, +1)+ 2hw, J
i A . (2.2.10)
A" = o, +0,°(6'a, +a,' a6, +1)% 2he,J

The unitary transformation makes_the Hamiltonian-become a new one, so the corresponding

eigenstate become the new state which comprises the old eigenstate with degeneracy

H"],m> VU, l}TI}T|],m>
Apn " J iZm .
Ur'ljm =3 e? -d,;if,mﬁgjlj,m’) , (2.2.11)
m'==j
where d’/, [Tr %) is the so-called Wigner d-coefficient [4-5]. If the d-coefficient can be

known, the problem can be solved exactly. Therefore we want to extract the d-coefficient

following. The d-coefficient can be expressed as d;{l,,m(ﬂ):<j,m'|e’iﬂj)’ j,m), here we use

the relations:

At Va[A~ T Y2
4 a4, ' |010> (2212)

|1m,) = |
NUAYA

then
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(&'lT )f+m (&ZT)J_m |0’0> . (2.2.13)

The generating function is applied to find out the d-coefficient:

G(&m)

o9 Z’: (fﬁfym(’?f’zw |o 0)

m=—j (J+m) (] m

(i
S
-3 2 a2.p)

m)!(j—m)!

(2.2.14)

It is worthy to note the binomial term in equation (2.2.14)

o lea) "hay) " (ed) el (2.2.15)

then equation (2.2.14) can be written as

1

G(f,ﬂ)—( ) <

e (ea, +na, f'|0,0)

(2.2.16)
:L) ]m|[ (ga) +na, " [ 00)

/—\

Using the important relations:

e PN g e _cos(gj&lfﬂin{gj&;

e 70a,te" = —sin[ﬁj a, + cos[ﬁ)&;
2 2

The generating function is simplified to

(2.2.17)
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g2 o Zrof2]

G(&,n)= . (2.2.18)

NG +mN(=m)!

Again using the binomial expansion, equation (2.2.18) is written as

G(&n) =0 +m") (j—m")! ”Zmr[gcos(gﬂ | {_Usm(gﬂ x

=0 (j+m'—v)!v!

(2.2.19)

After some complicated algebra, equation (2.2.19) is shown as

G(¢n)= 22J(j+m')!(j—m')!(_1)v (é)ﬂm(ﬂ)jm{co{gﬂ B {Sin(@} 7

— G+m —v)W(j—m—v)(m—m'+v)!

(2.2.20)

Finally, the d-coefficient can be extracted by comparing equation (2.2.14) and (2.2.20):
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d), . (B) =~ +m N —mN(j+m)1(j —m)lx

(2.2.21)
2j—(m-m'+2v) (m—m'+2v)
Lo {cos(ﬂﬂ {sin[ﬂﬂ
min[j—m, j+m'] ( l)v 2 2
-1) x
V_ma%mr_m] (j+m’—v)!v!(j—m—v)!(m—m’+v)!
Replacing the |j,m) state by |n,n,), the d-coefficient becomes:
d@m(ﬁ): JE) (i, + 1, — k)Y, )1, )1
2 2
(2.2.22)
ny+k—2v m—k+2v
_ {cos(ﬂﬂ {sin(ﬂﬂ
min[n, k] ( 1)]/ 2 2
— X
vma%k_m (k —v) W g Mg — k +v)!

Finally the problem of a charged-particle in“a-harmenic oscillator potential and is applied a

uniform magnetic field in the z direction can be solved exactly. The wave function is

(m+ny)  ny+n, ny+ny

lr//nl,nz (x1y): e_l 2 ‘ Z eika x dk (2n1+n2) M(ﬂ)x q)k,(n1+n2)—k(x’y) (2223)
k=0 !

2 2

where

1

1 mao 4 mo , mao
CI) = = . - .H -
)= {otm) NG ( Z j exp( th} (V . xﬂx
1
1 mao \4 mae , mao
eXp| ——— | H, | \|[—
\/2"2112!\/;( h } p( 2n y) [ n y]]

(2.2.24)
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and a=/f-= % Figure 2.2.1 depicts the wave function with different (nl,nz) of a charged

particle in a harmonic oscillator with uniform magnetic field. It is obvious to understand that a
charged particle in a harmonic oscillator with uniform magnetic field leads to the eigenmodes
to be LG modes which comprise degenerate HG modes with special d-coefficients and other
phase. In general, equation (2.2.23) and (2.2.24) demonstrate the connection between HG and
LG modes of harmonic oscillator. With manipulating the parameters « and f, various
wave functions between HG and LG modes can be demonstrated arbitrarily.

The problem which is solved exactly by use of the unitary transformation and
complicated algebra can be analogous to the eigenstates in the spherical laser cavity. Because
it is well known that the paraxial wave equation for the spherical resonator has the identical
form with the Schrodinger equation for the 2D.harmonic oscillator. The wave function for the
paraxial field in the spherical laser resonator can be expressed as HG function with Cartesian
symmetry or LG function with -cylindrical symmetry. The normalized wave function of the
HG mode for a spherical cavity with-longitudinal ‘index / and transverse index m and # in

Cartesian coordinates (x, y, z) is given by

i (m+n+1) tanl[;] —'{”LZ][H—(m-HH—l)Q]{2::;:):122)+1:|

q)(HG) e '

m,n,l (X,y,Z) zq)m,n(x’yiz) €

where

2x 2 2412
q)m,n(x!ylz): 1 1 Hm \/7 Hn \/7); exp _x +);
’2m+n+l7z. m! nl W(Z) W(Z) W(Z) W(Z)

(2.2.25)

The normalized wave function of LG mode with longitudinal index s, transverse radial index

p, and transverse azimuthal index / in cylindrical coordinates (p, ¢, z) is given by
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\Pp,l,s(p7¢’z): eil¢ qDp,l,s(p’z)'

where

o (o Z):\/T 1 (ﬁpjmm( 2p° j exp[— o }
P (e 11D w@)  w(z) ) w(z)? w(z)’

2
. Yo, . 4 z
x exp{—zkp,z,s Z[1+ 2(22—%}} exp{z(2p+ |7]+1) tan 1(ZH

(2.2.26)

w(z) =w,/1+(z/z,)?, w, is the beam radius at the waist, and z,is the Rayleigh range.

H_ () and L!’,(-) are the Hermite polynomials and associated Laguerre polynomials,

respectively. The factor Q= A [ /A f, JiNf7=c/2L is the longitudinal mode spacing and

A f; s the transverse mode spacing. Therefore, %, is the wave number and tan‘l(z/zR)

s

is the Gouy phase. In terms of the effective length L, the wave number k,, = is given by

k,, L= 7z[s +(2p+|1)) Q] . Here we applied the same method which is mentioned above to

connect HG and LG in spherical cavity. Equation (2.2.23) represents the general wave

function, so we fix g :% and manipulate « to get the various wave functions which are

defined as GCSs between HG and LG modes. Figure 2.2.2 shows the numerical patterns of
the GCSs with different phase factor and different order. As shown in Fig. 2.2.2, it exhibits
that the phase factor « plays an important role for the GCSs to transform from the HG
modes to the LG modes in different order. On the one hand the GCSs represent to the HG
modes when the phase factor is equal to zero, and on the other the GCSs represent to the LG
modes when the phase factor is equal toz /2. It can be seen distinctly that HG modes steady

convert to LG modes by controlling the phase factor precisely.

45



Chap 2  Eigenstates of Harmonic Oscillator and Spherical Laser Cavity

(rn)-010) 49

N
oo
~

Total "Ial "I©I I"@pl
[ 222 N a2 N _9a |
~ il e
(3.7) #6):- (55
R
P N .

Fig. 2.2.1 The wave functions with different (nl,nz) of a charged particle in a harmonic
oscillator with uniform magnetic field.
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Fig. 2.2.2 Numerical patterns of the GCSs with different phase factor and different order.
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2.3 Generation of Polarization-entangled Optical Coherent Waves

Over the past few years a considerable number of studies have been made on the
coherent wave properties in mesoscopic physics. Many researches have been focused on
phase singularities in scalar fields, known as wave front dislocations, such as quantum
ballistic transport [6], vortex lattices in superconductors [7], quantum Hall effects [8], linear
and nonlinear optics [9-10] and Bose-Einstein condensates [11-12]. In recent years,
polarization singularities, known as wave front disclinations, are also noticed in modern
physics [13-15]. As mentioned by Freund [16], there are two types of singularities of the
polarization vectors of paraxial optical beams: vector singularities and Stokes singularities.
Vector singularities are isolated, stationary points in a plane at which the orientation of the
electric vector of a linearly polarized vector; field becomes undefined. The nature of the vector
singularities has been studied in coherent.optical.waves with the correlated behavior of spatial
structures and polarization states [17-20]. The experimental results reveal the importance of
vector singularities with the coherent:‘polarization vector field from a highly isotropic
microchip laser system [21].

Currently, a diode-pumped microchip laser has been employed to perform analogous
studies of coherent phenomenon in scalar waves [22-23]. The experimental polarization
vector field is found to be made up of two linearly polarized modes with different spatial
structures that are phase synchronized to a single frequency. With the pump source of
ring-shaped profile, the high order entangled transverse modes constructed by the
polarization-resolved patterns are found to lack of variety and manipulation in microchip laser
cavity. To overcome the weakness of operation, in this experiment we demonstrate the two
important configurations instead of the doughnut pump profile to get various kinds of
polarization-entangled patterns. One of the configurations is off-axis focused pumping profile,

and the other is on-axis circular pumping. Consequently, the complex transverse modes can
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be differentiated into four types: square pattern, hyperbolic pattern, elliptic pattern, and
circular pattern. More noteworthy is that all types of the polarization-entangled patterns can
be well analyzed with the generalized coherent states.

With the relation between pumping position and the phase factor in the overlap function of
intensity distribution and pumping distribution, we can manipulate various kinds of
polarization-entangled patterns in the highly isotropic resonator. For that reason, the formation
of complex singularities can be clearly represented with the connection between theoretical

analysis and experimental results.
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2.3.1 Experimental Setup and Results

In this experiment, the laser system is a diode-pumped Nd:YVO, microchip laser and the
resonator configuration is shown in Fig. 2.3.1. The laser gain medium was a c-cut 2.0-at. %
Nd:YVO, crystal with a length of 2 mm. One side of the Nd:YVOQO, crystal was coated for
partial reflection at 1064nm. The radius of curvature of the cavity mirror is R=10 mm and its
reflectivity is 99.8% at 1064nm. The pump source was an 809 nm fiber-coupled laser diode
with a core diameter of 100um, a numerical aperture of 0.16, and a maximum output power of
1W. A focusing lens with 20 mm focal length and 90% coupling efficiency was used to
reimage the pump beam into the laser crystal. Since the YVOy crystal belongs to the group of
oxide compounds crystallizing in a Zircon structure with tetragonal space group, the
Nd-doped YVO, crystals show strong_polarization dependent fluorescence emission duo to
the anisotropic crystal field. The fourfold symmetry axis of the YVO, crystal is the
crystallographic ¢ axis; perpendicular to this axis are the two indistinguishable a and b axes.
Therefore, the Nd: YVO, crystalis precisely-cut along the c axis for high-level transverse
isotropy. It is practical to note that our‘gain medium is different from the conventional Nd:
YVO, crystals that are cut along the a axis to use the largest stimulated emission cross section
for lowering the lasing threshold. To measure the transverse far-field pattern, the output beam
was directly projected into the CCD camera. Figure 1 shows the scheme of the highly
isotropic laser system in this work. All of the experimental modes are preserved from the
near-field to the far-field patterns because they are pure transverse modes which correspond to

the same Gouy phase.
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Fig. 2.3.1 Experimental setup for the generation of polarization-entangled transverse modes

with off-axis pumping scheme in a highly isotropic diode-pumped microchip laser.
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Experimental results demonstrate that the transverse patterns were localized on the
elliptic orbits when we used an output coupler with the reflectivity of 98% in the laser cavity
[17-18]. However, the transverse patterns were usually the extended structures restricted by
the hyperbolic caustics when we used an output coupler with the reflectivity of 99%.
Above-mentioned results were all manifested with the pump source of ring-shaped profile. In
this experiment we demonstrate the off-axis focused configuration to get the first three kinds
of polarization-entangled patterns: square pattern, hyperbolic pattern, and elliptic pattern
which are shown in Fig. 2.3.2 (a)-(c). With controlling the pumping position (x,, y,), the
square, hyperbolic, and elliptic pattern can be generated according to the pumping positions

which are equal to (-50um,63um), (=140um,20um), and (=137 um,61um), respectively.
The radial distance of the pumping beam 7 =/x,”> +y,> determines the lasing mode size.

Here the radial distances of pumping,beam of the sguare, hyperbolic, and elliptic pattern are
80, 140, and 150 um , respectively. Consistently the-mode sizes of the three experimental
transverse modes are 95, 139, and 131 um-~respectively. By use of the ring-pump profile in
the past, we can generate the hyperbolic pattern which is unstable due to the environmental
disturbances. To our knowledge, this is the first time to employ the off-axis pumping to
generate the polarization-entangled states which are respectably stable with highly isotropic
laser system. Figure 2.3.2 (d) shows the circular pattern which can be generated with the
on-axis defocused pumping scheme. The on-axis pumping provides a good symmetry to
generate the stable circular modes. It can be seen that the formation of the stationary
polarization-entangled mode is primarily dependent on the overlap between the pump
intensity and the lasing mode distribution. This is consistent with the fact that the cavity mode
with the biggest overlap of the gain region will dominate the lasing process. Accordingly, a
significant finding is that controlling the pumping approach and pumping position can

straightforwardly manipulate the generation of various stationary polarization-entangled
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modes in the highly isotropic resonator.

For reasons mentioned above, adjusting the pumping beam delicately can generate the
lasing modes to be made up of two distinct patterns with orthogonal linear polarization. That
is to say, the transverse pattern is linearly polarized, but the polarization is spatially dependent.
Although the structures of the polarization-entangled patterns are complex, the transverse
modes are still stable and repeatable with the critical pumping approach in highly isotropic
laser system. Figure 2.3.3-2.3.6 show the experimental polarization-resolved patterns in the
45° 90°, 135°, and 180° direction according to the patterns in Fig. 2.3.2 (a)-(d). It is found that
the entanglement of the spatial structures and polarization states forms an optical vector field
and leads to the transverse patterns to be polarization dependent. The basic essentiality for a
vector polarization pattern is that the orthogonal polarization modes with different spatial
patterns are phase synchronized te*a common frequency. The measurement of the optical
spectrum verifies that the polarization-resolved pattern is phase synchronized to a single

frequency at 1064 nm.
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Fig. 2.3.2 Experimental polarization-entangled patterns (a) square pattern, (b) hyperbolic
pattern, (c) elliptic pattern, (d) circular pattern.
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Fig. 2.3.3 Upper: Square experimental polarization-resolved patterns (a) 45° polarization (b)
90° polarization (c) 135° polarization, (d) 180°polarization
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Fig. 2.3.4 Upper: Hyperbolic experimental polarization-resolved patterns (a) 45° polarization

(b) 90° polarization (c) 135° polarization, (d) 180°polarization
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Fig. 2.3.5 Upper: Elliptical experimental polarization-resolved patterns (a) 45° polarization (b)
90° polarization (c) 135° polarization, (d) 180°polarization
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Fig. 2.3.6 Upper: Circular experimental polarization-resolved patterns (a) 45° polarization (b)
90° polarization (c) 135° polarization, (d) 180°polarization
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2.3.2 Analytical Wave Functions for Experimental Polarization-
entangled Patterns

In terms of the HG modes, the SU(2) coherent states for the elliptic modes are expressed

as [24,25]

cs \/_ K DHG

voxx (60, 2) (2.3.1)

where the parameter ¢ is the relative phase between various HG modes and is related to the

eccentricity of the elliptic trajectory. As shown in a variety of integrable 2D quantum billiard

systems, the phase factor ¢ in the SU(2) coherent states plays a vital role in the
quantum-classical correspondence: [26,27]: It has’.been confirmed that the experimental
elliptic patterns agree very well with the SU(2) elliptic states [28,29]. However the SU(2)

coherent states can only be usedto describe-the elliptic patterns, we develop the GCSs to be

related to the transition from a HG mode” '®”%(x, y,z) into various experimental modes with

m,n

different phase factor. Any LG modes quf,(r,(ﬁ, z) can be decomposed into a sum of HG

modes d),i’nm L (x,y) with index relations n =p , n,=p+/ and the Wigner

d-coefficient and phase factor « equalto z/2:

. (n1+r12) ny+n, ny+ny

DL (r.pz)=e 2 ‘ Zeik“xdki@m(ﬂ) Dk (x,7,2) (2.3.2)

k=0 2 2

where
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T — 1y |25 @} {_u}
q)nl,nz( ' Vs ) \/mw(z) Hnl|:w(z):| Hn2|:W(Z) exp W(Z)

(2.3.3)
As mentioned in last section, the GCSs can be written as
4( 1+”z)a ny+ny " ny+ny -
Vo (0 ,2) =€ 2 Z e xd G, B)XPL 0y (0302) (2.3.4)
= 2 2

The GCSs in Eqg. (2.3.4) exhibit a traveling-wave property. The standing-wave representation

of GCSs is given by

Wi || e [cos(ke)| st o
{\Ijsin } = l: 4 {Sin (k(D) dk7@M (IB) Xq)k,(nfrnz)fk (x, Y Z) )

(2.3.5)

where the phase factor can be replaces by ¢. The GCSs represent a general family to
comprise the HG and LG mode families as special cases. More importantly, the superposition
of the GCSs with the particular phase factor reveals the patterns of experimental results. It is
worthwhile to mention that the present GCSs are intimately correlated to the Ince-Gaussian
(IG) beams described by Miguel A. Bandres and Julio C. Gutierrez-Vega [30-33].
Ince-Gaussian beams not only constitute the exact and continuous transition modes between
HG and LG beams but also constitute the third complete family of transverse eigenmodes of
stable resonator. The transverse structures of IG modes are adjusted by the ellipticity factor,
whereas the present GCSs are varied by the additional phase factor. It can be shown that the
IG modes can be completely identical to the GCSs with some connection between the

ellipticity factor of IG modes and the phase factor of GCSs. However the representation of
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GCSs is more convenient and elegant to interpret the present experimental patterns.
With the discussion of GCSs before, we applied the GCSs to explain the experimental
results and found that the observed vector patterns shown in Figs. 2.3.3-2.3.6 can be fittingly

described as following wave functions respectively:

E(x,y,z) = V35 (x,,2,0.0487) % +¥55 (x,v,2,0.0487) (2.3.6)
E(x,y,z) =¥ (x,»,2,0.3057) % (23.7)
+[ W, (x,9,2,0.3057) - Wi, (x,3,2,0.357) | § -
E(x,p,2) =35 (x,9,2,0.47) % (238
- [‘szg (x,9,2,0.2957) + 5% (x, . z; 0.2957[)])7 -
E(x,y,2) = W (x,y,z;0.487r)fc an ] (x,y,z;0.457r))7 . (2.3.9)

The wave function can be written as £(x;3,2) =E, (x,3,2)x +E, (x,y,z)p, where E (x,y,z)

and Ey (x,y,z) are composed by the GCSs. With the analytical function given in Egs.

(2.3.6)-(2.3.9), Fig. 2.3.7 depicts the numerically reconstructed patterns for the four kinds of
the experimental results shown in Fig. 2.3.2. The patterns in Fig. 2.3.7(a) and (d) which are
found to be close to HG and LG mode arise from the phase factor slightly different from the
phase factor of HG and LG mode. Moreover, the superposition of GCSs with the phase factor
appreciably different from the phase factors of HG and LG modes reveals the hyperbolic and
elliptic modes shown in Figs. 2.3.7(b) and (c). From this point of view, the phase factor
indeed plays a vital role in the GCSs to construct the polarization-entangled modes different

from pure HG and LG modes.
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Fig. 2.3.7 Numerically reconstructed patterns for the experimental results shown in Fig. 2.3.2.
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For stable stationary polarization-entangled wave patterns, the phase factor ¢ of the

GCS is governed by the criterion of the maximum overlap between the cavity mode

distribution and the pump distribution. Note that the maximum overlap integral corresponds
to the minimum pump threshold. The overlap integral for the transverse mode E (x,y,z) can

be written as

1(p) = [[ S(x.3, Z:9)R, (x, y)dxdy (2.3.10)

where the normalized intensity distribution S(x,y,z;@) and the pumping distribution

R, (x,y) aregiven by

— 2
E (&ywz
S(x,y,z,0) = ‘ [ )‘ I=x,y (2.3.11)

e

and

(x_xo)z + (y_yo)z]

R, (x,y)= g%exp[—Z (2.3.12)
T

p p
with the pumping radius @, =25um in the scheme. Figure 2.3.8 shows the overlap

functional I(p) as a function of ¢ for the state E =W, (x,»z¢) and

E (x,y,z) =¥3% (x,y,z,¢) corresponding to the experimental patterns shown in Figs. 2.3.2
(@) and (c) with x, =-50um , y, =63um , and x, =—-137um,y, = 61um, respectively. The
maximum of the overlap indicates the most possible phase factor to construct the

experimental result with the specific off axis. As a result, we can control the phase factor in

the vicinity of the peaks 0.07z and 0.4z in Figs. 2.3.8 (a) and (b) to simulate the patterns
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which are in good agreement with the experimental patterns as shown in Figs. 2.3.2 (a) and
(c). The diagram of the phase factor indicates the accurate direction to construct the
experimental results. In other words, we can manipulate various patterns by use of the relation
between the pumping position and the phase factor in the overlap function. Continuously, Fig.
2.3.9-2.3.12 display the numerical results of the polarization-resolved patterns according to
the patterns in Fig. 2.3.3-2.3.6. From the analytical results of the polarization-resolved
patterns, we can confirm that the polarization-entangled patterns are composed of two distinct
patterns with orthogonal linear polarization. The important point to note is that the transverse
pattern is linearly polarized, but the polarization is spatially dependent. The good agreement
between the reconstructed and experimental patterns verifies that the GCSs provide a practical

description for the polarization-entangled optical coherent waves.
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Fig. 2.3.8 (a) The overlap functional I(¢) as a function of ¢ for the state E_(x,y,z) in
Eq. (2.3.6). (b) The overlap functional I(p) as a function of ¢ for the state E, (x,y,z)
in Eq. (2.3.8).
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Fig. 2.3.9 Numerically reconstructed patterns for the experimental results shown in
Fig. 2.3.3.
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Fig. 2.3.10 Numerically reconstructed patterns for the experimental results shown in Fig. 2.3.4.
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Fig. 2.3.11 Numerically reconstructed patterns for the experimental results shown in Fig. 2.3.5.
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Fig. 2.3.12 Numerically reconstructed patterns for the experimental results shown in Fig. 2.3.6.

69



Chap 2  Eigenstates of Harmonic Oscillator and Spherical Laser Cavity

Two types of point singularities in the polarization of a paraxial Gaussian laser beam had
been researched in recent years. Vector singularities are isolated, stationary points in a plane
at which the orientation of the electric vector of a linearly polarized vector field becomes
undefined. Therefore elliptic singularities are isolated, stationary points in a plane at which
the orientation of the elliptically polarized fields becomes undefined. In this chapter, we
investigate the elegant GCSs to reconstruct the polarization-entangled experimental results.
For this reason, the V-points of the various experimental patterns which are the transitions

between HG and LG modes can be revealed explicitly. Vector point singularities are

conventionally described in terms of the angle field ©(x,y)=arctan(£,/E,), where E_ and

E are the scalar components of the vector field E along the x and y axes. The vortices of

O(x,y) are the vector singularities at:which the:orientation of the vector of E is undefined.
Figure 2.3.13 shows the contour plot of phase field ©(x, y) according to the patterns which
are reconstructed by the GCSs in Fig. 2.3:7. The contour plots reveal that the singularities of
different GCSs belong to extremely different kinds of singular patterns. Figures 2.3.13 (a), (b),
and (d) display the grid, twist, and row patterns respectively. As well, Fig. 2.3.13 (c) shows
that the singular pattern seems to be the transition between the twist and row patterns
according to Fig. 2.3.13 (b) and (d). Figure 2.3.14 depicts the contour plot of angle field
O(x, y) for the boxed regions to show the details, and it can be found that all saddle points
are to be open saddles with no joined arms. Since no closed saddles are found in the
experimental vector field, no extrema are observed. The phase extrema are really rare because

there is little room left in the phase field to accommodate them [34,35].
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(a) (b)

Fig. 2.3.13 Contour plot of angle field ®(x, y) according to the reconstructed patterns in Fig.
2.3.7.
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Fig. 2.3.14 Contour plot of angle field ®(x, y) for the boxed regions shown in Fig. 2.4.13.
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2.3.3 Summary

In summary, we have used a high-level isotropic laser with off-axis focused pumping and
on-axis defocused pumping to generate various high-order polarization-entangled optical
coherent patterns. The structures of the polarization-entangled patterns are highly stable and
the experimental results are easily reproducible. All the experimental patterns have been well
analyzed with the GCSs which constitute a useful family of quantum states for the 2D
harmonic oscillator. Furthermore, various patterns can be manifestly explained by use of the
relation between the pumping position and the phase factor of the GCSs in the overlap
integral. With the connection between theoretical analysis and experimental results, the
formation of vector singularities can be clearly represented. The perfect reconstructed results
also reveal that the GCSs play an impaortant role in the mesoscopic region with optical

coherent waves.
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Chapter 3

Three-dimensional Optical Coherent
Waves with Longitudinal-transverse
Coupling

The bunch of energy levels in the quantum spectra has been found to lead to the shell
structures in nuclei [1], metallic clusters [2], and quantum dots [3]. More intriguingly, the
existence of bunch level has a deep and far-reaching relation with the emergence of classical
features in a mesoscopic quantum system [4-5]. Recent experimental and theoretical studies
have verified that the coherent-superposition-of degenerate or nearly degenerate quantum
states can result in mesoscopic quantum-wave-functions localized on periodic orbits in the
classical counterpart of the given ‘system [6-7]. Furthermore, experimental results [8-10]
indicated that the mode-locking effects lead to the stationary coherent waves associated with
periodic orbits to be robust and structurally stable within a finite range of the perturbation or
detuning. Devil’s staircases, Arnold tongues, and Farey trees are the hallmark of mode locking
and have been found to be ubiquitous in physical, chemical and biological systems [11-13].
The phenomenon of mode-locked staircases have been extensively studied in
Rayleigh-Bénard experiments [14], charge-density-wave system [15-16], Josephson-junction
arrays [17-18], reaction-diffusion systems [19], the modulated external-cavity semiconductor
laser [20], the driven vortex lattices with periodic pinning [21], the motion of a charge particle
in two waves [22], and the bimode CO2 laser with a saturable absorber [23]. Nevertheless,
experiments on the mode-locked staircase in high-order optical coherent waves have never

been realized.
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3.1 Frequency Locking, Mode Locking, and Resonance

In the 17" century the Dutch physicist Christian Huyghens observed that two clocks
hanging back to back on the wall tend to synchronize their motion. This phenomenon is
known as phase locking, frequency locking, or resonance, and is generally present in
dynamical systems with two competing frequencies [24-25]. The phenomenon of these
important effects has been extensively studied in current-driven Josephson junction [26],
Belusov-Zabotinsky reaction [27], and ionic conductor barium sodium niobate [28].
Furthermore Mogens Jensen, Per Bak, and Tomas Bohr found that at the transition to chaos
the motion is always locked. As one changes the frequency of either oscillator, the ratio
between the two frequencies locks onto every single rational value p/q. To demonstrate the
important and interesting results, we employ: the high-Q laser system to realize the frequency

locking with the coupling of longitudinal,and transvérse modes.

3.2 Devil’s Staircase with“Fwo Competing Frequencies

The phenomenon of devil’s staircase comes from two competing frequencies. For two
oscillators in Fig. 3.2.1, as one changes the frequency of either oscillator the ratio between the
two frequencies locks onto every single rational value p/q. If a pendulum is employed to fix
to a driving frequency and plots the actual frequency of the pendulum against the natural
frequency, we will obtain a curve consisting of infinity of steps. The transition can be
established by varying the ratio of two frequencies and may be studied by means of circle

map,

f(0)=0+Q—(K/2x)sin(270) (3.2.1)

where Q represents the ratio of two frequencies and K is the coupling strength of the two
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oscillator. The ratio between the frequencies with considering the coupling strength is given

by the winding number

W(K,Q):}]iilgn‘l[f "(0)-6). (3.2.2)

Figure 3.2.2 shows the variation when the coupling strength starts from0t00.99 . When the
coupling strength is strong enough (K = 0.99), the ratio of two frequencies always locks onto
one of the infinity of resonant frequencies. If one slowly changes the driving frequency, the
pendulum will lock onto each resonant frequency, jumping from one to the next, forming an
infinite series of steps. There is infinity of steps between any two steps because between any
two rational numbers there is infinity of.ratienal numbers. It is the reason why the property of

the curve shown in Fig. 3.2.2 (d) has been'named “the Devil’s staircase”.
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two oscillators
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Fig. 3.2.1 Two oscillators of different frequencies with some coupling strength
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Fig. 3.2.2 Results of circle map with different coupling strength.



Chap 3 Three-dimensional Optical Coherent Waves with Longitudinal-Transverse Coupling

3.3 Three-dimensional Coherent Waves Demonstrated from Laser
Cavity

In this section we originally show that the longitudinal-transverse coupling leads to the
formation of three-dimensional coherent waves localized on Lissajous parametric surfaces
which are formed by the Lissajous curves with the relative phase varying with the
longitudinal direction. A high-Q symmetric laser cavity is experimentally employed to verify
the existence and prevalence of 3D coherent waves in the mesoscopic regime. More
importantly, the detailed experimental measurements indicate that the formation of plentiful
3D coherent waves constructs a nearly complete devil’s staircase in the mesoscopic regime.
Since the laser cavity may be used as an excellent analog system for the investigation of
quantum systems, the present results will be useful for understanding the mesoscopic wave

functions.

3.3.1 Theoretical Analysis for the Resonator

The resonance frequency for‘an.optical cavity with two spherical mirrors and the mirror
distance L is generally expressed as f(n,m,I)=Af [I+(m+n+1)(Af;/Af)], where
A f_ =c/2L is the longitudinal mode spacing, A f; is the transverse mode spacing, and | is
the longitudinal mode index, and m and n are the transverse mode indices. For an empty
symmetric resonator consisting of two identical spherical mirrors with radius of curvature R,

the bare ratio between the transverse and longitudinal mode spacing is given by

Q=Af /Af =(/7)cos™ (1-L/R), where z, =+ L(2R- L)/2. As a consequence, the
bare mode-spacing ratio € can be changed in the range between 0 and 1 by varying the cavity
length L for a given R. Figure 3.3.1 shows a portion of the spectrum f (I,n,m) as a function
of the bare mode-spacing ratio Q for the range of 10<1<30 and 0< Lm + n)é 20. It can be

seen that the degeneracies and gaps appear at the values of Q corresponding to the rational

numbers P/Q, forming an interesting fractal structure. Degeneracies in the spectra of the
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quantum systems have been found to play a vital role in the relationship between quantum
shell structures and classical periodic orbits, especially in the mesoscopic regime. The
following analysis will verify that the longitudinal-transverse coupling and the mode-locking
effect can lead to the 3D coherent waves to be localized on the parametric surfaces with

Lissajous transverse patterns.

The wave functions of the Hermite-Gaussian (HG) modes for a spherical cavity are given

by

2 2
i (M+n+1) tanl[;] —i [”LZ][I+(m+n+1)§2]L:Z;+yzé)+1}

DN (X,Y,2) =D, (X,Y,2) € e : (3.3.1)

where

2.X 2 24 y2
NCRE) E— S+ A RET- XAV (63
hrt e i W) )| | wi) w(2)

W(z) =W,+/1+(z/z5)* , W, is the beam radius at the waist, and zgis the Rayleigh
range. When the mode-spacing ratio Q is locked to a rational number P/Q, the group of the

HG modes @&:'f:)k,ank,,ﬂsk (X,y,z) with k=0,1,2,3-+ can be found to constitute a family of

frequency degenerate states, provided that the given integers (p, g, S) obey the equation
S+(p+ q)(P/ Q)= 0. For convenience, the integer S is taken to be negative. The equation
S+(p+ q)LP/Q): 0 indicates that q+ p needs to be an integral multiple of Q, i.e.
g+ p=KxQ, where K=1, 2, 3 ----. It has been verified that the coherent superposition of the
mode-locked degenerate states manifestly leads to the wave functions to be associated with

the classical periodic orbits in the 2D quantum systems [29-31].
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Fig. 3.3.1 A portion of the spectrum f (I,n,m) as a function of the bare mode-spacing ratio Q

<I<30and 0<(M+n)<20.

for the range of 10
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In the present case, the 3D coherent states constructed by the family of @', .\ (X,y,2)
M .

can be generally given by WX%° (X,y,z:¢,)=> e* D0 . 4 (X.Y,2), where the
k=0

parameter ¢, is the relative phase between various HG modes at z=0. The relative phase
¢, has been verified to play an important role in the quantum-classical connection. With the

expression of equation (3.3.1), the 3D coherent states can be rewritten as

2,2
—i [ﬂ]{loﬁ-(m“noﬁ-l)PH X 2+y > +1}
L Q|| 2(z7+zR)

Poss (6 Y, 24,) =S (X, Y,2;6,) € , (3.3.3)
where
M .
an?O,an (Xa y, Z;¢o) = Zelk " CI)m0+pk,n0+qk (Xa ya Z) s (334)
k=0
and
#(2)=(q+ p)tan'(z/z, )+ 0 . (3.3.5)

Equation (3.3.3) indicates that the wave pattern of the 3D coherent state ‘¥''%°, (X,Y,Z;4,)

Ngslo

is utterly determined by the wave function ‘Pn‘fqn (X,Y,Z;¢,) . As seen in equation (3.3.4), the
wave function W (X,Y,2;¢4,) is a coherent superposition of the modes

D yokonrak (X Y5 236,) with the phase factor ¢(z). It is worth while to mention that the

z-dependence of the phase factor ¢(z) arises from the Gouy-phase difference between the

HG modes with distinct transverse orders. With the results obtained in the 2D quantum

harmonic oscillator [32], the wave function ‘Prﬁfno (X,Y,Z;¢,) can be manifestly deduced to

have the intensity distribution concentrated on the parametric surface:
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x(9,2) = mo+%w(z)co{ql9—¢(—pz)} y(9,z):‘/no+%w(z)cos(p9), (3.3.6)

where 0<9<27 and —oo<7z<o. Equation (3.3.6) reveals that the parametric surface
related to the 3D coherent waves is formed by the Lissajous curves with the relative phase
varying with the position z. In other words, the longitudinal-transverse coupling leads to the
3D coherent states to be localized on the Lissajous parametric surfaces. With q+ p=K xQ
and equation (3.3.5), the total change of the relative phase of the 3D coherent wave from
Z=-0 to Z=o0 isgiven by @(o)—@d(—0)=(K xQ)x . On the other hand, the total change
of the relative phase of the 3D coherent wave from one cavity mirror at z=-L/2 to another
one at z=L/2 is given by ¢(L/2)—¢(-L/2)=(KxP)zr , where the mode-locking
condition tan~'(L/2R)=(P/Q)(z/2) is used. Figure 3.3.2 depicts an example for the
Lissajous parametric surface deseribed in equation (3.3.6) for the range from z=-L/2 to
z=L/2 with (p,q)=(3,2), P=2,tand ¢, =0. The tomographic transverse patterns are
also plotted in the same figure to display.the Lissajous feature of the 3D coherent state. Even
though the relationship between the 2D quantum coherent states and the Lissajous curves has
been previously developed [29-31], this is the first time that the 3D coherent states are derived

to be related to the Lissajous parametric surfaces.
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Fig. 3.3.2 Upper: an example for the Lissajous parametric surface described in equation (3.3.6) for the
range from z =—L/2 to z= L/2 with (p,)=(3,2), P=2 and ¢, =0 . Bottom: the

tomographic transverse patterns along the longitudinal axis.

85



Chap 3 Three-dimensional Optical Coherent Waves with Longitudinal-Transverse Coupling

3.3.2 Experimental Setup and Results

The wave patterns localized on the classical orbits have been realized in the degenerate laser
resonator with the ring-shaped pump profile [33]. However, the index order of the laser
modes is not high enough to explore the complete devil’s staircase phenomenon in the
wave-ray correspondence or quantum-classical correspondence. To generate super high-order
laser modes, here we use the off-axis focused pumping scheme to excite a very high-gain
crystal in a symmetric cavity with extremely low losses (<0.5%), as depicted in Fig. 3.3.3.
The laser medium was a a-cut 2.0-at.% Nd**:YVO, crystal with a length of 1 mm. Both sides
of the Nd:YVQ, crystal was coated for antireflection at 1064 nm (reflection < 0.1%). The
radius of curvature of the cavity mirrors are R=10 mm and their reflectivity is 99.8% at 1064
nm. The pump source was an 809 nm_fiber-coupled laser diode with a core diameter of 100
um of core diameter, a numerical-aperture of 0.16, and a maximum output power of 1 W. A
focusing lens with 20 mm focal-ength and 90% coupling efficiency was used to reimage the
pump beam into the laser crystal. The"pump-radius was estimated to be 25 um. A microscope
objective lens mounted on a translation stage was used to reimage the tomographic transverse
patterns inside the cavity onto a CCD camera. To measure the far-field pattern, the output
beam was directly projected on a paper screen at a distance of ~50 cm from the rear cavity
mirror and the scattered light was captured by a digital camera.

At a pump power of 1 W, the emission powers were generally found to be on the order of
0.5 mW. The low emission powers indicate the cavity Q value to be rather high. The pump
positions on the gain medium were controlled to excite the laser modes with the transverse
orders n and m in the range of 100 to 500. Experimental results revealed that the far-field
transverse patterns were not the familiar HG modes but were almost the coherent waves
concentrated on various Lissajous figures for all cavity lengths. Furthermore, the tomographic

transverse patterns inside the cavity evidently displayed the revolution of the Lissajous curve
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along the longitudinal axis to form a Lissajous parametric surface. Figure 3.3.4 shows the

experimental tomographic transverse patterns observed at Q=0.422 . The experimental

tomographic transverse patterns are found to be in good agreement with the
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Fiber coupled
laser diode

Cavity mirror  Gain Cavity mirror

medium
Pumping
beam

Focusing
lens

Fig. 3.3.3 Experimental setup for the generation of 3D coherent waves in a diode-pumped

microchip laser with off axis pumping scheme in a symmetric spherical resonator.
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feature that the 3D coherent states are well localized on the Lissajous parametric surfaces.
Furthermore, the experimental patterns shown in Fig. 3.3.4 for —0.15L <z < 0.15L have
a noticeable bright spot that represents the location of the pump beam. It can be seen that the
pump intensity has a great overlap with the lasing mode distribution. Since the cavity mode
possessing the biggest overlap with the gain region will dominate the laser emission, distinct
3D coherent waves can be precisely generated by manipulating the pump position. Figure
3.3.6 shows another set of experimental tomographic transverse patterns observed at
Q~0.573 for 0.0L < z < 0.5L.Here we use a filter to reflect the pumping light to make
the patterns clearly demonstrated.

Continuously adjusting the bare mode-spacing ratio €, the far-field transverse patterns
were found to change from one mode-locked Lissajous wave to another in discrete steps.
According to the above-mentioned-analysis, the appearance of the Lissajous waves signifies
the mode-spacing ratios to be locked.to rational numbers P/Q . The analytical representation
of the 3D coherent states enables us to-identify-the mode-locked ratios P/Q precisely from
the information of the revolution numbers.of the Lissajous wave patterns inside and outside
the cavity. Based on thorough experiments, we found that each mode-locked ratio P/Q is
composed of numerous 3D coherent waves localized on various Lissajous parametric surfaces
with indices (+ p to be an integral multiple of Q. On the whole, more than 560 different 3D
coherent states have been obtained. The locking range of each coherent state was found to be
AQ=~(1.5+£0.2)x10~ on average. More noticeably, the experimental mode-locked ratios
P/Q were found to form a fairly complete devil staircase, as shown in Fig. 3.3.5. Figure
3.3.5 also demonstrates the experimental far-field patterns observed in the mode-locked
plateau with P/Q =2/5. The 3D optical waves which localize on the Lissajous parametric
surface are not special cases in the laser cavity. With longitudinal-transverse coupling and
mode-locking effect, the localized 3D optical coherent waves are general phenomenon of the

laser system. Figure 3.3.7-3.3.9 depict the experimental far-field patterns observed in the
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Fig. 3.3.4 Experimental tomographic transverse patterns inside the cavity observed at () ~0.422.
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mode-locked plateau with P/Q =1/3, 1/4,and 2/7 respectively. The absolute values of the
indices p and q were firstly determined from the feature of the Lissajous transverse pattern
and their signs were determined from the equation of q+ p=K xQ, where the factor K
could be found from the total change of the relative phase of the Lissajous transverse pattern
inside the cavity and the indices Q and P were confirmed with the cavity length. The indices
(p, q) of blue color in Fig. 3.3.5 and 3.3.7-3.3.9 represent that the factor K is not equal to
one. It is worth while to mention that p and g can have the opposite sign, as longas q+ p is
an integral multiple of Q. On the other hand, the locking regimes for the coherent states with
the indices (p,q) and (q, p) are split due to the anisotropic properties of the gain medium.
As the transverse order (m,,n,) of the coherent mode is increased, the number of
mode-locked plateaus increases, suggesting that all rational steps will be seen in an infinite

order system.

3.3.3 Summary

In summary, the longitudinal-transverse coupling has been verified to cause the
formation of 3D coherent waves with localization on parametric surfaces in the mesoscopic
regime. The theoretical analysis reveals that the tomographic transverse patterns of the 3D
coherent waves exhibit to be well localized on the Lissajous parametric surfaces. A high-Q
symmetric laser cavity with the off-axis pumping scheme has been utilized to realize the
experiment. Experimental results reveal that the mode locking of the 3D coherent states forms
a nearly complete Devil’s staircase with the hierarchical ordering. Our studies may provide

some useful insights into the nature of the mesoscopic wave functions.
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Fig. 3.3.5 Bottom: Experimental mode-locked ratio P/Q as a function of the bare
Sode-spacing ratio 2. Upper: experimental far-field patterns observed in the mode-locked
plateau with P/Q =2/5.
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Fig. 3.3.6 Experimental tomographic transverse patterns inside the cavity observed at Q ~ (0.573.
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Fig. 3.3.7 Bottom: Experimental mode-locked ratio P / Q as a function of the bare
Sode-spacing ratio Q. Upper: experimental far-field patterns observed in the mode-locked
plateau with P/Q =1/3.
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Fig. 3.3.8 Bottom: Experimental mode-locked ratio P/ Q as a function of the bare

Sode-spacing ratio Q2. Upper: experimental far-field patterns observed in the mode-locked
plateau with P/Q =1/4.
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Fig. 3.3.9 Bottom: Experimental mode-locked ratio P/ Q as a function of the bare

Sode-spacing ratio Q2. Upper: experimental far-field patterns observed in the mode-locked
plateau with P/Q =2/7.
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3.4 Spatially Localized Patterns Generated from Macroscopic
Superposition of 3D Coherent Laser Waves

In recent years coherent wave properties of mesoscopic physics have been studied for
understanding the pattern formations of laser modes such as honeycomb patterns [34],
whispering gallery modes [35-36], and high-order transverse patterns [37-38]. Coherence
plays an important role not only in optical waves such as pattern formation of nonlinear
optical fields [39-41] but also in matter waves such as spatial interference patterns of
Bose-Einstein condensates [42-44] for connecting the relation between quantum-classical
correspondences. The coherence of Bose-Einstein condensates represents that the system
should be characterized by a well-controlled phase to form the spatial interference patterns,
however it is the most difficult point to control the Bose-Einstein condensates. Frequency
beating and transverse-mode locking of coherentrwaves in nonlinear optical resonators have
been focused in mesoscopic regime of modern physics [45-47]. Furthermore, recent
experimental and theoretical studies' have wverified that the coherent superposition of
degenerate or nearly degenerate quantum state’ can result in mesoscopic quantum wave
functions localized on periodic orbits in the classical counterpart of the given system [48-49].
Perceivably, coherent wave properties are critical in a considerable number of physical
systems to connect the quantum-classical correspondence in mesoscopic regime [50-53].

While the issue of quantum superposition of macroscopic states has been discussed by
Schrodinger in 1935 [54], there has been growing attention to the generation and
manipulation of the superposition states [55-56]. In this experiment we investigate the
spatially localized patterns from superposition of 3D coherent optical modes localized on
Lissajous parametric surface. The spatially localized patterns from the superposition of 3D
coherent modes provide analogous evidences for the existence of macroscopic quantum
superposition states. Experimental results [57] show that in a high-Q symmetric laser cavity

the longitudinal-transverse coupling leads to the formation of 3D coherent waves localized on
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Lissajous parametric surfaces which are formed by the Lissajous curves with the relative
phase varying with the longitudinal direction. By the superposition of two coherent optical
modes with different close Fresnel number, the spatial interference patterns become
structure-localized on Lissajous parametric surface which represent the spatial beating of the
two coherent optical modes in the resonator. Theoretical analysis reveals that the
superposition of optical coherent modes with different order leads to different kinds of
structured-localized patterns which can be related to the beating phenomenon of different but
close frequencies in time domain. With the good agreement of theoretical analysis and
experimental results, the formation of spatially interfered structure-localized patterns can

provide a useful aspect for the coherent wave properties in mesoscopic physics.

3.4.1 Experimental Setup and Results

The formation of the nearly-complete devil’s staircase from the wave patterns localized
on the Lissajous parametric surface has-been realized in the degenerate laser resonator.
However, the index order of the laser modes® is not high enough to explore the
super-high-order 3D coherent optical modes to generate the interference pattern from the
superposition of coherent modes with different orders. The resonator configuration is
basically similar to that used in section 3.3 but with different size of gain medium with sides
of 10 mm and length of 2 mm shown in Fig. 3.4.1. In this section we investigate the spatially
localized patterns from interference of 3D coherent optical waves localized on Lissajous
parametric surface. The modification of the cavity medium size makes the generation of
super-high-order coherent optical waves to be flexibly controlled. In other words, the large
area of gain medium provides an improvement to generate the super-high-order 3D coherent
optical waves. To generate the super-high-order laser modes, we control the off-axis pump
positions on the gain medium with the transverse orders n and m in the range of 500 to

1000.
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Fig. 3.4.1 Photograph of the experimental laser cavity.
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Experimental results revealed that the far-field transverse patterns become spatially
structure localized on the classical Lissajous trajectory from the interference of the
super-high-order coherent optical waves. Here we select several spatially localized patterns
with Lissajous transverse patterns of different cavity length in Fig. 3.4.2. The figure shows the
two kinds of structure localized patterns which the top two rows indicate the dot-like patterns
localized on the Lissajous trajectory and the third row indicates the line-like patterns localized
on the Lissajous trajectory with different cavity length. The pump positions on the gain
medium were controlled to excite the 3D coherent optical waves with the vicinity of
transverse orders. With adjusting the cavity length to manipulate the mode size inside the
resonator, the super-high-order coherent modes can be generated to achieve the superposition
condition. The following analysis will verify that the interference patterns of super-high-order
3D coherent optical modes which are localized on the Lissajous parametric surface can lead to
be further spatially localized to form the .dot-like: or line-like patterns with Lissajous

transverse trajectory.
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Fig. 3.4.2 Typical experimental far-field patterns observed in different cavity lengths for different
indices (p,q;P/Q).
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3.4.2 Analysis and Theoretical Results

It follows from what has been said that the wave function ‘I’r';;fﬂ]o (X,Y,Z;4,) represents

the 3D coherent optical mode with Lissajous transverse pattern from the coherent

superposition of the modes @, ., . .. (X, Y,Z;4,) with the phase factor ¢(z). By the

superposition of the 3D coherent optical modes localized on the Lissajous parametric surface
with different transverse mode indices n and m, the spatially localized patterns from the
interference of 3D coherent optical waves can be realized. Nevertheless, the relative phase ¢,
has been verified to play a vital role in the quantum-classical connection. Here we choose

¢, =0 and M=6 to construct the spatially localized far-field patterns of the experimental

results. Figure 3.4.3 reveals the spatially localized patterns which are the superposition of 3D

coherent optical modes with different transvetse mode indices such as W3 +¥3; and

Wioho + Waoso - Apparently, the spatially localized patterns become line-like modes from the

interference of two coherent optical waves ‘with' close transverse orders. Moreover, the
spatially localized patterns become dot-like modes from the interference of two coherent
optical waves with far transverse orders. As a result of the calculation limit of mathematical
software, the theoretical patterns with the transverse orders in the range of 140 to 160 are not
localized completely as the experimental results with the transverse orders in the range of 500
to 1000. However the tendency of the theoretical appearance is found to be in good agreement
with the experimental patterns. It is worthwhile to mention that the interference patterns
which are the superposition of the 3D coherent optical modes with different transverse indices
can be analog to the beating phenomenon of different but close frequencies in time domain.
Until now there has been no experimental evidence of the spatially localized patterns from
interference of super-high-order 3D coherent optical waves in mesoscopic regime.

The phase factor ¢(z) which arises from the Gouy phase difference between the HG
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Fig. 3.4.3 Upper: Numerical results of 3D coherent modes according to different transverse
orders. Bottom: Numerical results of the superposition from the coherent modes with different

orders.
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modes with distinct transverse orders is verified to play an important role in the 3D coherent
waves localized on Lissajous parametric surfaces. Furthermore, the tomographic transverse
patterns inside the cavity displayed the revolution of the spatially localized patterns along the
longitudinal axis to form a complete 3D interference patterns from the superposition of 3D
coherent optical waves. Figure 3.4.4 (a) shows the experimental tomographic transverse
patterns observed at Q = 0.84. The experimental patterns are found to be in good agreement
with the feature of the theoretical results shown in Fig. 3.4.4 (b). Furthermore, the spatially
interfered patterns which were found to be structure localized on the Lissajous parametric
surface are clearly visualized. It is worthwhile to emphasize that the Gouy phase of the
coherent modes with different transverse orders is predominant in the degenerate laser cavity
to induce the phase difference of the spatially localized patterns in the different positions of
z-axis. According to the analysis mentioned in last section, the appearance of the Lissajous
waves signifies the mode-spacing ratiosto be locked to rational numbers P/Q . Continuously
controlling the pump position of the off-axis.corresponding to the mode size in proper cavity
length, the super-high-order coherent modes can be generated flexibly and the superposition
of the coherent modes can be achieved in the laser cavity. Figure 3.4.5 shows the interference
patterns of the superposition of the super-high-order coherent modes with strongly localized
dot-like Lissajous patterns. The structure of the spatially localized patterns is highly stable

because of the mode-locked effect in the nonlinear resonator.
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2.0z, 3.0z, 6.0 z, Far field

Fig. 3.4.4 (a) Experimental tomographic transverse patterns inside the cavity observed at

QO ~ 0.84. (b) Numerical results corresponding to (a).
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Fig. 3.4.5 Experimental strong spatiallylocalized patterns with different (p,q;P/Q).
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3.4.3 Summary

In summary, we have used an off-axis focused pumping laser system with a large-size
gain medium to generate various super-high-order coherent modes. The superposition of 3D
coherent modes which are caused by the longitudinal-transverse coupling and the
mode-locking has been verified to lead to the formation of spatially localized patterns on the
Lissajous parametric surface in the mesoscopic regime. The theoretical analysis has revealed
that the superposition of the coherent modes with different transverse orders leads to dot-like
or line-like transverse patterns which are corresponding to the difference of transverse orders
of the coherent modes. Furthermore, the structures of the interference patterns are highly
stable and the experimental results are easily reproducible in the degenerate laser cavity. Our
studies may provide some useful insights into the coherent superposition problems with

optical coherent waves in mesoscopic regime.
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Chapter 4
Polarization Singularities Iin
Hemispherical Cavity

Recently, singular optics has become an important topic in modern physics. In 1974, J. F.
Nye and M. V. Berry proposed the notion about phase singularities (optical vortices) which
are points in the plane and lines in space where the phase of an optical field becomes
undefined [1]. The phase singularities in complex scalar waves have been discussed
extensively in lasers [2-5], and other:optical beams [6-7]. Furthermore, the phase singularity
also provides some unique applications {8-9]:

In addition to phase singularities of the scalar field, there are two types of singularities of
the polarization vector field should'be mentioned: Vector singularities and Stokes singularities
[10-12]. The importance of the vector singularities has been explored in the optical coherent
waves with the representation of spatial structures and polarization states [13-16]. However,
the more general state of the optical field with two orthogonal components is elliptically
polarized state which leads to two special conditions of Stokes singularities: C lines and L
surfaces [17]. In this chapter we will introduce the polarization characteristics of light and

verify the importance in the specific laser cavity.

4.1 Polarization and Stokes Parameter

Christian Huygens was the first to suggest that light was not a scalar quantity based on

his work on the propagation of light through crystals. It appeared that light had “sides” in the
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words of Newton. This nature of light is called polarization. The polarization light is one of its
important and fundamental properties, the others being its intensity, frequency, and coherence
[18-19]. Polarization is a property of transverse waves which describes the orientation of the
oscillations in the plane perpendicular to the direction of traveling waves. In electrodynamics,
polarization characterizes electromagnetic waves, such as light, by specifying the direction of
the electric field of waves. Longitudinal waves such as sound waves in air or liquids do not
exhibit polarization, because for the direction of oscillation of these waves is along the
direction of wave's travel. The simplest manifestation of polarization to visualize is a plane
wave, which is a good approximation of most light waves. All electromagnetic waves
propagating in free space or in a uniform material have electric and magnetic fields
perpendicular to the direction of propagation. However, when considering polarization, the
electric field vector is described and the magnetic field is ignored since it is perpendicular to
the electric field and proportional te.it. Figure 4.1.1 shows some examples of the evolution of
the electric field vector with time (the.vertical-axes),.along with its x and y components, and
the path traced by the tip of the vector.in.the plane. In Fig. 4.1.1 (a), the two orthogonal
components are in phase. In this case the ratio of the strengths of the two components is
constant, so the direction of the electric vector is constant. Since the tip of the vector traces
out a single line in the plane, this special case is called linear polarization. The direction of
this line depends on the relative amplitudes of the two components. In Fig. 4.1.1 (b), the two
orthogonal components have exactly the same amplitude and are exactly ninety degrees out of
phase. In this case one component is zero when the other component is at maximum or
minimum amplitude. There are two possible phase relationships that satisfy this requirement:
the x component can be ninety degrees ahead of the y component or it can be ninety degrees
behind the y component. In this special case the electric vector traces out a circle in the plane,
so this special case is called circular polarization. The direction the field rotates in depends on

which of the two phase relationships exists. These cases are called right-hand circular
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polarization and left-hand circular polarization, depending on which way the electric vector
rotates. In all other cases, where the two components are not in phase and either do not have
the same amplitude or are not ninety degrees out of phase, the polarization is called elliptical
polarization because the electric vector traces out an ellipse in the plane. This is shown in Fig.
4.1.1 (c). For high-order transverse patterns, there are three kinds of polarization states
embedded in the light beams such as shown in Fig. 4.1.2 which represents azimuthally

polarized, circularly polarized, and radially polarized respectively.

113



Chap4  Polarization Singularities in Hemispherical Cavity

//{ S c .
// L d (
4/7 . d
S
(a) Linear (b) Circuylar (c) Elliptical

Fig. 4.1.1 The evolution of the electric field vector leads to different kinds of polarization states: (a)
Linear, (b) Circular, (c) Elliptical.
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(a)

(b)

Fig. 4.1.2 Three kinds of polarization states of high-order transverse modes: (a) Azimuthally polarized,
(b) Circularly polarized, (c) Radially polarized.
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In order to understand the Stokes parameter we have to consider a pair of plane waves

that are orthogonal to each other in space and taketobe z=0:

E, (t) = E,, (t)cos[wt + &, ] = Re|E,, (t)e'* ]
(4.1.1)
E (t) = EOy (t)COS[a)t + 5y ] — Re[EOy(t)ei(wH&y)]

y

where Eq,(t) and E,,(t) are the instantaneous amplitudes,  is the instantaneous angular

frequency, and 6, and o, are the instantaneous phase factors. Equation (4.1.1) can be

written as

E, (t) = COS[CO'[]COS[5X ] - sin[a)t]sin[5x]

(4.1.2)
EEOyy((tt)) — cos[wt]cos|s, |- sin[wt]sin|s, |
Hence,
EET((tt))Si [5y]—%((tt))sin[5x]: cos[a)t]sin[dy - 5X]
(4.1.3)
EX Ey(t) . .
EOX(Et))C l5,]- Eoy(t)cos[éx]: sin[wt]sin[s, -5, ]

-2 t cos[s]=sin?[5] (4.1.4)

116



Chap4  Polarization Singularities in Hemispherical Cavity

where 6 =6, — &, . For monochromatic radiation, the amplitudes and phases are constant for

all time, so Eq. (4.1.4) reduces to

E, (t)E, (t)

x Y cos|s|=sin?(s . 4.15
et PEg, coWlmsinld] (4.15)

While E, , E,,, and o are constants, E, and E, continue to be implicitly dependent

Oy
on time. In order to represent Eq. (4.1.5) in terms of the observables of the optical field, we

must take an average over the time of observation. However, in view of the periodicity of

E,(t) and E,(t), we have to average Eq. (4.1.5) only over a single period of oscillation. The

time average is represented by the symbol <> . So we write Eq. (4.1.5) as

-2 cos|s|=sin?|o]| | 4.1.6
7 R ELE. [6]=sin?[s] (4.1.6)
where
.o 1T ..
<Ei (t)Ej(t)> :TI'_TO? 0 Ei(t)Ej(t)dt v LI=EXYy (4.1.7)

Multiplying Eq. (4.1.6) by 4E,,°E,,*, we can get that

48,,* (€2 (1) + 4B, (B, (t)) - 8Eo Eo, (E, (VE, (1)) cos[s] = (2E,, B, sin[s]f (4.1.8)

Using Eqg. (4.1.7) and (4.1.1), we find that the average values are
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Substituting Eqg. (4.1.9) into (4.1.8) yields
2B, Ey,” +2E,, Ey, — (2B, Ey, cos[S] = (2E,,Ey, sin[s])

After some algebra, Eq. (4.1.10) can be represented as

(o2 +Eo,2f = (o — o) J = (2E4, B, cos[5]F = (2E,,E,, sin[s]} .

We write the quantities above as
2 2
Sy =Ey + EOy
2 2
Sl = EOx - EOy

S, = 2By, Ey, cos[5]

Sy = 2E,,Ey, sin[s]
and then

S, =S, +S,”+S,°.

(4.1.9)

(4.1.10)

(4.1.11)

(4.1.12)

(4.1.13)

The four quantities given in Eq. (4.1.12) are the Stokes polarization parameters for a plane

wave. They were introduced by George Gabriel Stokes in 1852, as a mathematically

convenient alternative to the more common description of incoherent or partially polarized

radiation light. It is important to note that the Stokes parameters are real quantities. The first
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Stokes parameter S, is the total intensity of the light. The S, describes the amount of linear
horizontal or vertical polarization, the S, describes the amount of linear +45° or —45°
polarization, and the parameter S, describes the amount of right or left circular polarization
contained within the beam. Combining polarization ellipse and Stokes parameter, Eq. (4.1.12)

can be represented as another mathematical form which can be related to a polarization state

easily:
2—: = cos[2y|cos[2y/]
2—2 =cos[2y]sin[2y] . (4.1.14)
35 _sinf2y]

The Stokes parameters are almost identical to the equations relating Cartesian coordinates to

Spherical coordinates where
x = rsin[@]cos[4]
y = rsin[@]sin[g] (4.1.15)
z =rcos|d]

and =90°—-2y,4=2y. In Fig. 4.1.3 we have drawn a sphere which is called Poincaré
sphere expressing the polarization state of an optical beam in terms of » and y and allows
us to describe its ellipticity and orientation on a sphere. The radius of the sphere is taken to be
unity. The representation of the polarization state on a sphere was first introduced by Henri
Poincaré in 1892. It is useful for describing the change in polarized light when it interacts

with polarizing elements and some nonlinear phenomenon.
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Fig. 4.1.3 The Poincaré representation of polarized light on a sphere.
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4.2 Polarization Singularities

Singular optics which includes phase and polarization singularities has become an
important topic in modern physics to understand the physics of light [20-21]. Recently, a
considerable number of studies have been focused on experimental and theoretical results of
phase singularities in scalar fields, known as wave front dislocations, such as optical vortices
[22], vortex lattices in superconductors [23], quantum and microwave billiards [24], quantum
Hall effects [25], and linear and nonlinear optics [26-28]. In addition to phase singularities in
scalar fields, there are two types of polarization singularities in vector fields of paraxial
optical beams, known as wave front disclinations, to be discussed: vector singularities and
Stokes singularities [29]. Vector singularities (V points) are stationary points at which the
orientation of the electric vector of a linearly: polarized vector field becomes undefined. The
importance of the vector singularities hasbeen.explored in the optical coherent waves with
the representation of spatial Structures and polarization states [30-33]. Recently, the
complicated V point structure has been:studied-from the low-order [34] and high-order [35]
space-dependent linearly polarized fields‘in‘transversely isotropic laser systems. However, the
mapping of vector field singularities onto the scalar field vortices leads to many new
consequences [29].

The more general state of optical field with two orthogonal components is elliptically
polarized state which leads to two special conditions of Stokes singularities. C lines on which
the field is circularly polarized and the orientations of the major and minor axes of the ellipse
are undefined indicate the North and South Pole of the Poincaré sphere. L surfaces on which
the field is linearly polarized and the handedness of the ellipse is undefined [36] indicate the
equator of the Poincaré sphere. In paraxial optics, C lines present as isolated points in the
observation plane and L surfaces present as continuous lines, L lines, which separate regions

of right-handed and left-handed polarization [37-39]. With the experimental results of
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microwaves [29] and optical waves [40-43], the importance of polarization singularities of

elliptically polarized fields has been revealed.

4.3 Generalized Structures of Polarization Singularities in Laguerre-

Gaussian Vector fields

Recently, a diode-pumped microchip laser has been employed to generate the
propagation-dependent polarization vector fields with the longitudinal-transverse coupling
and the entanglement of the polarization states [44]. However, the characteristics of
polarization singularities are revealed with the theoretical wave representation only in the
condition of single-ring wave pattern. In next section we demonstrate the general expression
of the multiple structures of polarization singularities embedded in the multi-ring vector wave
patterns. With the coherent superposition of orthegonal circularly polarized vortex modes
composed of two Laguerre-Gaussian (LG) modes with different order, the general structures
of the polarization singularities are systematically analyzed. The theoretical analyses reveal
that the projection of the C lines*on the.transverse plane displays the intriguing petal
structures. From the analytical results of the singularities, the polarization states of the

experimental LG vector fields under propagation can be clearly demonstrated.

4.3.1 Experimental setup and results

In this experiment, the laser system was a diode-pumped Nd:YVO, microchip laser and
the resonator was formed by a spherical mirror and a gain medium such as shown in Fig. 4.3.1.
The spherical mirror was a 10-mm radius-of-curvature concave mirror with antireflection
coating at the pumping wavelength on the entrance face (R<0.2%), high-reflection coating at
lasing wavelength (R>99.8%), and high-transmission coating at the pumping wavelength on
the other surface (T>95%). The gain medium was a 2.0 at.% Nd:YVQ, crystal with the length

of 2 mm. The laser crystal was precisely cut along the c-axis for high-level transverse isotropy
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[45]. One planar surface of the laser crystal was coated for antireflection at the pumping and
lasing wavelengths; the other surface was coated to be an output coupler with the reflectivity
of 99%. The pump source was a 1-W 808-nm fiber-coupled laser diode with a core diameter
of 100 um and a numerical aperture of 0.2. A focusing lens was used to re-image the pump
beam into the laser crystal. The pump spot radius was controlled to be in the range of 50~200
um. The effective cavity length was set in the range of 9.6~9.9 mm to form a nearly
hemispherical resonator, in which the fundamental cavity mode size was approximately 20
um. Since the pump-to-mode size ratio was significantly greater than unity, a variety of
high-order transverse modes could be generated. The pump power was controlled to be near
lasing threshold to maintain the single mode in the cavity to explore the characteristic of
polarization. To measure the far-field pattern, the output beam was directly projected on a
paper screen at a distance of ~50.cm from the rear cavity mirror and the scattered light was
captured by a digital camera.

Figures 4.3.2(a)-1(c) show- expeérimental-fai-field transverse patterns with different radial
index p and azimuthal index | which are represented as flower modes. Not only the single-ring
but also the multi-ring is the general transverse mode formed by the propagation-dependent
polarization states to prevail in the laser cavity. The fundamental mode is not excited because
the pump-to-mode size ratio is significantly greater than unity and then the lasing threshold of
fundamental mode is higher than that of high-order transverse modes. A microscope objective
lens mounted on a translation stage was used to reimage the tomographic transverse patterns
at different propagation position onto a CCD camera. Figure 4.3.3 display the
polarization-resolved transverse patterns at three different propagation positions: z=0,
Z=1,,and z>>1z,, where the Z, is the Rayleigh range and Z, =1.26 and 1.28 mm.
It can be found that the polarization-resolved pattern represent as an azimuthally polarized
flower mode at the beam waist (z = 0), whereas it turns to be like a radially polarized flower

mode at the far field (z >> z; ). Moreover, the polarization state at z =z, was confirmed
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Fiber coupled
laser diode

Cavity mirror Gain
medium

CCD
camera

Pumping
beam

Focusing
lens

Fig. 4.3.1 Experimental setup for the generation of propagation-dependent polarization vector
fields in a diode-pumped microchip laser in a hemi-spherical resonator.
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Fig. 4.3.2 Experimental far-field transverse patterns with different radial index p and
azimuthal index I: (a) (0, 9), (b) (0, 23), (c) (1, 39), (d) (1, 66), (e) (2, 41), (f) (7, 100).
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to behave as a circularly polarized flower mode by use of a quarter-wave plate. The
polarization-resolved transverse modes formed by the three-dimensional (3D) coherent vector
field provide an important aspect to explore the physics of polarization singularities. It is
worthwhile to mention that the lasing modes are propagation-dependent polarization vector
fields which are generated from the nearly hemispherical cavity. The following analysis will
substantiate that the longitudinal-transverse coupling with the entanglement of the
polarization states leads to the formation of 3D coherent vector fields in the isotropic laser
cavity. Therefore, the generalized structures of polarization singularities in coherent vector
fields with longitudinal-transverse coupling can be clearly revealed with the theoretical

analysis.
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(a)
z=2% I

Fig. 4.3.3 Polarization-resolved transverse patterns for the experimental result at three different
propagation positions: z=0, z=12;, and z >>z,: (a) corresponding to Fig. 4.3.2 (b) where
Z, =1.26 mm. (b) corresponding to Fig. 4.3.2 (c) where z, =1.28mm. The arrows indicate the
transmission axis of the polarizer. z =z,,and z >>z,,where z, =1.28mm.
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4.3.2 Analytical Wave Functions for Experimental Patterns and
Polarization Singularities

According to the lasing modes represented as flower modes in the transverse patterns, we
start from the LG mode to be the basis of the experimental results. The wave function of LG

mode with longitudinal index s, transverse radial index p, and transverse azimuthal index | in

cylindrical coordinates (o, 4,2 ) isgivenby ¥ , (0.4,2)=¢"" @ (p,2), where

_ 2p| 1 | p2
®yuelpa)- n(p+|l|)' W(Z{W(Z)} H p{ W(ZV}
, (4.3.1)

2
x exp —ikpls{1+2(22’0—+zé)} exp[i(2p+|I|+1)HG(z)]

where w(z) =w,,/1+(z/z,)* , W, isthe.beam radius at the waist, and z, =zw2 /A isthe

Rayleigh range, LL(-) are the associated Laguerre polynomials, k ,  is the wave number,

l,s
and 6;(z) :tan‘l(z/zR) is the Gouy phase. In the resonator with the effective length L, the

wave number k ,  is given by kpvllsL:n[s+(2p+|l (AT, /A fL)} , Where Af =c/2L

l,s
is the longitudinal mode spacing and A f; is the transverse mode spacing. It has been
verified [46] that the longitudinal-transverse coupling and mode-locking effect can lead to the
frequency locking among different transverse modes with the help of different longitudinal
orders when the ratio Af,/Af_ is close to a simple fractional. As a result, the

configuration of the nearly hemispherical cavity refers to be A f; /A f_ ~1/2, and the group

of LG modes ¥, 5 . (p.4,2), with k = 0,1,2,3--, forms an important family of frequency

degenerate states. With LG modes as the basis, the experimental vector fields can be

decomposed into a coherent superposition of orthogonal circularly polarized helical modes
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E=E.(p,¢,2) & +E_(p,¢,2) &, where

E(p.0 D) =| ¥,y a8 -, 100D \2 (4.32)
E (P D)= ¥y a(P.D) =, s (00D |2 (433)

and 4, =(4,-i4,)/v2 and & =(a, +i4,)/v2 are the helical basis unit vectors for the

right- and left-handed circulation polarizations, respectively. Figure 4.3.4 displays the
numerically reconstructed patterns for the experimental results shown in Fig. 4.3.3. There is a
good agreement between the reconstructed and experimental patterns. From this point of view,
the circularly polarized vortex -modes indeed:-play an important role to form the
propagation-dependent polarization.vector fields. Equations (4.3.2) and (4.3.3) indicate that
each circularly polarized component of the vector fields is composed of two LG modes with
different order. It is worthwhile to mention.that the frequency locking of two LG modes with
different azimuthal orders arises from the longitudinal-transverse coupling in a nearly
hemispherical cavity.

After some algebra, Eq. (4.3.2) and (4.3.3) for the general condition can be simplified as

Ex(p.4,2) = [pre e e _1]e % @ (p,2)/42 | 4.34)

L (pg2) = [pre e _1le 0 & (p2)/N2 4.35)
where

~2 _ 2 af 2p° af 2p°

52 =2 p/w@ [ I/ Ja+ p) p+1)]{Lp (w(z)zj/L" [W(Z)Zﬂ. (4.3.6)
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Fig. 4.3.4: (a) Numerically reconstructed patterns for the experimental results shown in Fig. 4.3.3
(@), (b) Numerically reconstructed patterns for the experimental results shown in Fig. 4.3.3 (b).
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In the basis of circular polarizations, the condition for left-handed and right-handed C point
loci can be given by E;(p,4,2)=0 and E (p,¢,z) =0, respectively. For the paraxial 3D
vector fields, the trajectories of C singularities can be expressed as the parametric curves with
z as a variable. In addition to the central singularity at the origin, the expression in the bracket

of Eq. (4.3.4) indicates the left-handed C point trajectories are determined by the two
conditions: (1) p7 =lande?"e'**® =1  (2) pf =-lande'?'?e"*™ =_1. In general,

there are 2p+1 solutions of the exact radius which the C points are symmetrically

embedded in. Note that for p=0 there are 2I peripheral left-handed C points symmetrically

arrayed on a circle of radius p, = / {1 +1) w(z)/ﬁ at angles ¢, =(6;(z) + mz)/l with

m=0,1,2,---,21-1 and 2l peripheral right-handed C points on the same circle of radius at angles
¢, = (=05 (z)+mx)/l with m=0,1,2,+%,2-1."The brief case of p=0 has been verified to be
in good agreement with experimental results:[1]. Besides of p =0, the theoretical solution of
radius with radial index p can:be solved analytically for the cases p=1~3. Further, we

analyzed the case of p>1. For: p=1, the three solutions of radius can be expressed

analytically:

o) :%\/ZH +(+D(1+2) —\/6+7I +212 + 41+ (1 +2) — 21 (1 + D (1 + 2) w(2)

(4.3.7)

p2=%\/2+|+ (I+1)(I+2)+\/6+7I+2I2+4\/(I+1)(I+2)—2I\/(I+1)(I+2)W(z)

(4.3.8)

2s =%\/2+| ~JU+1)(1+2) +\/6+7I + 212 =41+ )1 +2) + 21/ +1)(1 +2) w(z).

(4.3.9)

131



Chap4  Polarization Singularities in Hemispherical Cavity

On the one hand there are 21 peripheral left-handed and 2l peripheral right-handed C points

symmetrically arrayed at angles ¢, =(6;(z)+mz)/l and ¢, =(-6,(z)+mx)/l
respectively with m=0,1,2,-,2I-1 according to the circle radius in the situation of p° =1,

and on the other there are 21 peripheral left-handed and 21 peripheral right-handed C points
symmetrically arrayed at angles $n =(265(2)+(2m+1x)/21 and

P = (265 (2) +(2m+1)7)/21 respectively with m=0,1,2,---,2]-1 according to the circle
radius in the situation of p’ =-1. As a result, there are 21(2p+1) left-handed C points

and 21(2p+1) right-handed C points embedded in the polarization-dependent vector field.
Therefore, C lines singularities embedded in the propagation-dependent polarization vector
field with p =0 form the hyperboloid structure. The theoretical results of the view from the
propagation direction to the beam waist of the general structures of the C lines singularities
with p=0~2 and 1=1~6 are represented.in Fig. 4.3.5-4.3.7. The different color of C
line singularities represents the:different-allowable circle of radius according to the radial
index p of the transverse modeS: Therefore, the* different radial position of the C line
singularity with the same color implies the different propagation position of the
propagation-dependent polarization vector field. The minimum of the radial position

represents the beam waist and the maximum of the radial position represents the far field.
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Fig. 4.3.5 Structure of the C line singularities of the theoretical vector field from the view of
propagation direction to the beam waist with the same radial index p=0 and different azimuthal
index I: () (p, )=(0, 1); (b) (p, N=(0, 2); (c) (p, N=(0, 3); (d) (p. 1)=(0, 4); (&) (p, N=(0. 5); (e) (p,
1)=(0, 6).
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Fig. 4.3.6 Structure of the C line singularities of the theoretical vector field from the view of
propagation direction to the beam waist with the same radial index p=0 and different azimuthal
index I: (&) (p, )=(1, 1); (b) (p, )=(1, 2); (¢) (p, D=(1, 3); (d) (p, D=(1, 4); (e) (p, )=(1, 5); (e) (p,
1)=(1, 6).
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Fig. 4.3.7 Structure of the C line singularities of the theoretical vector field from the view of
propagation direction to the beam waist with the same radial index p=0 and different azimuthal

index 1: (a) (p, )=(2, 1); (b) (p, 1)=(2, 2); (c) (p, =(2, 3); (d) (p, N=(2, 4); (&) (p, N=(2, 5); (&) (P,
)=(2, 6).
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Another important and interesting feature is that the experimental 3D polarization vector
fields at the beam waist and far field which are made up of two linearly polarized modes with

different spatial structures. For the general condition, the experimental vector field can be

givenby E=E (o, ¢, p) X +E, (0 4, p) ¥, where

E (0 4.2)=®,,,,(p.0){ 57 ™= cos[(1 +Dg] - cos[( -Dgl}/v2 ,  (4310)
and

E,(0.4.2)= ©,,,,(00) {52 €D sin[(1 + D] +sin[(l -DAIY/v2 . (43.11)

The transverse vector field at beam waist and far field can be verified to possess the V point

singularities that are generally described in terms of the field of the angle function

O(x,y)=arctan(E, /E, ) [47],‘where E, and E, are the scalar components of the vector

field along the x and y axes. The vorticesof (X, y) are the vector singularities at which

the orientation of the electric vector is undefined. Figures 4.3.8-4.3.10 show the angle pattern

O(x,y) of the numerical vector field at the far field. Consistently, the V point singularities
are right at the intersections of the right-handed and left-handed C lines shown in Fig.
4.3.5-4.3.7.

With Egs. (4.3.10) and (4.3.11) and some algebra, there are 2l peripheral V points

symmetrically arrayed at angles ¢, =mz/l on a circle of radius o of the condition

pf =1 and 2l peripheral V points symmetrically arrayed at angles ¢ =(2m+1)z/21 ona

circle of radius p of the condition p? =-1 with m=0,1,2,--,2I-1 at the beam waist in

addition to the central singularity at the origin. The Gouy phase plays a vital role to transform

the singularities between V points and C points under propagation of the 3D vector field.
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Fig. 4.3.8 Numerical patterns of the angle function at the far field of the same radial index p=0 and
different azimuthal index I: (a) (p, 1)=(0, 1); (b) (p, 1)=(0, 2); (c) (p, 1)=(0, 3); (d) (p, 1)=(0, 4); (e)
(. D=(0, 5); (e) (p, )=(0, 6).
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Fig. 4.3.9 Numerical patterns of the angle function at the far field of the same radial index p=0
and different azimuthal index I: (a) (p, D=(1, 1); (b) (p, N=(1, 2); (c) (p, N=(1, 3); (d) (p, N=(1,
4); (e) (p, N=(1, 5); (&) (p, D=(1, 6).
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Fig. 4.3.10 Numerical patterns of the angle function at the far field of the same radial index
p=0 and different azimuthal index I: (a) (p, N=(2, 1); (b) (p, N=(2, 2); (c) (p, D=(2, 3); (d) (p,
N=(2, 4); (e) (p, N=(2, 5); (e) (p, )=(2, 6).
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Consequently, there are 2l peripheral V points symmetrically arrayed at angles
$, =(2m+1)z/21 on a circle of radius p of the condition 57 =1 and 2l peripheral V
points symmetrically arrayed at angles ¢, =mz/l on a circle of radius o of the condition
p’ =-1 with m=0,1,2,---,2I-1 at the far field in addition to the central singularity at the

origin. Intriguingly, each peripheral V point with the winding number of 1 is transformed to
two different handed C points with the winding number of 1/2. Apparently, the winding
numbers are conserved during the singularity transformation and under the vector field
propagation [48]. Figure 4.3.11 depicts the characteristics of the C line and V point
singularities of an experimental result. It can be found that the structure of C lines shown in
Fig. 4.3.11 (b) forms the hyperboloid with multi-layer in the radial direction. The theoretical
pattern of the view from the propagation direction, to the beam waist of the structures of the C
lines singularities forms a kind of fascinating petal pattern corresponding to the experimental
transverse pattern shown in Fig. 4.3.11 (a):

Besides C line and V point singularities, there+is L surface singularity embedded in the
propagation-dependent polarization vector fields with the longitudinal-transverse coupling

and the entanglement of the polarization states. The L singularities can be determined by the

conditions ‘ER‘Z :‘EL‘Z. With Egs. (4.3.4) and (4.3.5), it can be found that there are 41 L

surfaces on the p-z plane with the azimuthal angles at ¢, =nz/(2l), where n=0,1,2,----,4l-1.

Figure 4.3.12 displays the vector and polarization singularities with the analytical
representation of the transverse pattern with the radial and azimuthal index (p,l) to be
(0,4) from the view of the propagation direction to the beam waist. The different radial
position of the figure implies the different propagation position of the 3D polarization vector
field. The minimum of the radial position represents the beam waist and the maximum of the

radial position represents the far field.
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Fig. 4.3.11 (a) Experimental far-field pattern with radial and azimuthal index (p, 1)=(1,
12). (b) Structure of C line singularities of the correspondent 3D vector field. (c) Structure
of the C line singularities from the view of propagation direction to the beam waist. (d)
Numerical pattern of the angle function at the far field.
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From the analytical structures of the singularities, the polarization state of the experimental
3D vector field under propagation can be clearly revealed. From the loci of C lines, it can be
confirmed that L surfaces separate regions of right-handed and left-handed polarization and V
points locate on the intersection of right-handed and left-handed polarization.

It is worthwhile to give a more detailed comparison between theory and experimental
results. The present hyperboloid structures of polarization singularities are directly derived
form Eq. (4.3.2) and (4.3.3) in which the two different LG modes are superposed with equal
amplitude. For general cases of experimental results, however, the amplitude of the two LG
modes can be somewhat different. Nevertheless, with the same theoretical analysis, the
distributions of the polarization singularities can be certainly found to be topologically
invariant. In other words, the hyperboloid structure of polarization singularities represents a
characteristic feature of resonant laser modes emitted from degenerate cavities. On the other
hand, a more complicated phase singularities, such as link and knot structures, can be
produced by using a Gaussian laser:beam-uminating a hologram or a phase modulator
[49-50]. However, these complex structures.are not at all related to the fundamental aspects of
laser resonators.

The present polarization singularities are explored based on the paraxial approximation
in which the longitudinal electric field is neglected. For a rigorous point of view, it is more
appropriate to analyze the experimental polarization singularities with the full 3D electric
field. Recently, Berry [51] has confirmed that the separations between two singularities
obtained with the paraxial approximation and the full 3D fields are generally much smaller
than the wavelength. Therefore, the present findings are almost not affected by neglecting the

longitudinal field.
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Fig. 4.3.12 Diagram of the representation of the polarization state under propagation
corresponding to the singularities of C lines (blue line), V points (white points at far field and
pink points at beam waist), and L surfaces (yellow dashed lines).
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4.3.3 Summary

In summary, we have used an isotropic microchip laser to generate the
propagation-dependent polarization vector fields with the longitudinal-transverse coupling
and the entanglement of the polarization states. It is found that the experimental 3D coherent
vector fields can be reconstructed by the orthogonal circularly polarized vortex mode which is
made up of two LG modes with different order. With the analytical representation, the general
structures for the singularities of the C lines, V points, and L surfaces can be systematically
analyzed. In general, there are 2p+1 solutions of the radius which the C lines and V points
are symmetrically embedded in and the theoretical solutions of the radius can be represented
analytically for the cases p =0~ 3. Importantly, the theoretical analyses reveal that the
trajectories of the C lines projected on, the, transverse plane displays the intriguing petal
structures. Furthermore, the polarization states.of the experimental LG vector fields under
propagation can be clearly demonstrated. The generalized structures of the polarization
singularities in coherent vector fields ‘may provide some useful insights into the nature of the

waves.
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Chapter 5
Optical Waves Carrying Large Angular
Momentum in Degenerate Cavity

A general study of paraxial light beans’ spatial structures such as transverse energy flows
is presented in recent years. The transverse spatial energy can be divided into the spin and
orbital contributions which lead to the spin and orbital angular momentum, correspondingly
[1]. Characteristics of these elements are studied in relation with the optical field of linear and
circular orthogonal polarization states;On-the 6ne hand, the spin angular momentum is related
to the photons of circular polarization. On the other-hand, the orbital angular momentum is
related to the macro transverse energy circtulations and independent of the polarization states.
A typical class of paraxial beams Wwith orbital angular momentum is Laguerre-Gaussian beam
which possesses angular momentum with 1% per photon. The applications include the
transmission of the beam’s angular momentum to other bodies such as optical elements and to
suspend micro particles. In this chapter we introduce the angular momentum of
electromagnetic fields firstly and then demonstrate the optical coherent waves which are
different from Laguerre-Gaussian beams carrying large angular momentum in degenerate

cavity.

5.1 Angular Momentum of Electromagnetic Fields

For electromagnetism the electric and magnetic fields can be represented as
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E=1/2|(E,e” +Eje™ g+ (E,e” + Eje™ )y +(E,e" + Ele™ )z (5.1.1)
and

B=1/2|(B,e" +B; e )x+(B, e +B e )y +(B, e + B e )2] (5.1.2)

respectively. The parameter ¢ is kz—wt where k is the wave vector and @ is the angular
frequency. The linear momentum density P and angular momentum density | of a light
beam can be calculated from the electric, E , and magnetic, B , fields, such as
p= £O<E X I§> and j=rxp [2-3], where ¢, is the permittivity of vacuum. From
Maxwell’s equationsV-E =0 and VxE =-2B/ét, the z component of the electric and
magnetic fields can be determined under the paraxial approximation. After some algebra, the

linear momentum density P = p,Xs# P, Y+ p,Z. can be written in detail:

_ & . 0 A e
pe=5" Im{EX ~E+E TE (EXEY)} (5.1.3)
P .0 . 0 0 (e .
b =g M B E L E S ) o
gkq > 2) & q > 2)
pz=2';w E,[" +|E| =2—°C E,[" +|E,| (5.1.5)

where Im denotes the imaginary part of the expression. Following, the angular momentum

density of z component, j, , which contributes to the orbital angular momentum can be
written as

= & = * *

i, = ﬁlm[r <(E;VE, +E;VE,)] . (5.1.6)
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When the cylindrical coordinate is used to replace the Cartesian coordinate, the orbital

angular momentum density j, can be represented in a concise form such as

j,=fome 2E e LE | (5.1.7)
20 o¢ o¢
As a consequence, the z-component of the orbital AM density for a linearly polarized light

beam is given by
0, =—>Im| P~ [x——y—} Y. (5.1.8)

The optical AM contains spin and .orbital 'AM densities that are related to the circular
polarization and the spatial distribution of.the optical beam, respectively. The spin angular

momentum density S, can be written as

S, =25—2)1m[rva(ExE;)] . (5.1.9)

After some algebra, the spin angular momentum density can be represented as

s, :%Im[E:Ey] . (5.1.10)

Through the electromagnetism and the classical concept, the linear and angular
momentum of electromagnetic waves can be understood more clearly. Besides, the
representation of angular momentum of natural light helps us to study and analyze the wave

properties in the laser cavity.
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5.2 Linked and Knotted Coherent Laser Waves with Large Angular
Momentum

Pattern formation has been the subject of interest in many physical, chemical, and
biological problems such as, nonlinear optics [4-5], BZ interaction [6], structures inside living
cells [7], Turing patterns in reaction-diffusion systems [8-10], and the DNA structures [11-12].
Naturally, pattern formation possesses some common features that make it possible to
understand the analogies in different fields. In recent years, various laser systems are widely
employed to realize optical transverse pattern formation including the high order
Laguerre-Gaussian (LG) modes, Hermite-Gaussian (HG) modes, and the generalized coherent
states that form a general family to comprise the HG and LG mode families as special cases
[13-16].

In the optical pattern formation,.the phase singularities or the optical vortices which have
been studied by Nye and Berry [17] not only reveal the interesting phase structures but also
signify the existence of the local-angular momentum (AM) [18-20]. The AM of optical waves
can be divided into an orbital part associated with spatial distribution of the fields and a spin
part associated with polarization in electromagnetic radiation [21-23]. So far, LG laser modes
have been confirmed to have a well-defined orbital AM [24-25] and applied to the fields of
fundamental researches and practical applications such as optical tweezers, optical traps, and
wireless and optical communications [26-29]. Motivated by these applications, there are
noticeably a rapidly increasing number of researches exploring the orbital AM of coherent
optical waves.

In this section, we originally demonstrate a fascinating discovery of linked and knotted
optical waves that are experimentally found to be the prevailing resonant modes in
large-Fresnel-number laser cavities with longitudinal-transverse coupling. Although we had
found that longitudinal-transverse coupling and mode-locking effect lead to the localization of

3D coherent waves on the Lissajous parametric surface. We neglect the fine structures of the
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linked and knotted characteristics and demonstrate the optical wave as only one 3D coherent
state. Based on the thorough experiments and established theory, it is confirmed that linked
and knotted laser waves can be analytically expressed as a superposition of two degenerate
3D coherent states with a relative phase of 7/2. With the analytical representation, the AM
densities of linked and knotted lasing modes are manifestly visualized and the average AM
per photon is derived to be proportional to the Fresnel numbers of the laser cavities. The
exploration of linked and knotted optical waves can provide a fresh insight into pattern

formation and the large AM can be quite beneficial to many scientific applications.

5.2.1 Experimental Setup and Results

As mentioned before, a diode-pumped:microchip laser has been employed to perform the
analogous investigation of quantum-classical correspondence and pattern formation [30-32].
For an empty plane-concave resonator consisting of spherical mirror with radius of curvature
R and cavity length L, the bare ratio between the transverse and longitudinal mode spacing is
givenby Q=Av,/Av, =(1/7)cos™ (1- L/R)% . The bare ratio can be changed in the range
between 0 to 1/2 by varying the cavity length L for a given R in the half-spherical cavity. As
shown in Fig. 5.2.1, the experimental setup in this section is only the half of the setup in
chapter three. The experimental results are almost the same but it is easier to observe the
variation from the near-field to far-field patterns. It has been experimentally observed [30-32]
in chapter three that the longitudinal-transverse coupling and the mode-locking effect
generally force the bare ratio, Q, to be locked to a rational number P/Q, forming an
interesting fractal structure in a high-Q laser cavity with a large Fresnel number. The
experimental lasing modes were found to form 3D coherent waves that are localized on the
parametric surfaces with Lissajous transverse patterns. Figure 5.2.2 displays two typical

experimental results for the tomographic transverse patterns of the 3D coherent waves for
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P/Q=1/4 with (p,q)=(2,2) and P/Q=1/3 with (p,q)=(3,3). It can be seen that the
experimental transverse patterns are not only localized on the Lissajous figures but also
exhibit linked features. Figure 5.2.3 displays another experimental result for the tomographic
transverse patterns of the 3D coherent waves for P/Q=2/7 with (p,q)=(2,5) and
exhibits knotted features. In our previous work in chapter three, we have employed the
representation of quantum coherent states to derive the analytical wave functions well
concentrated on Lissajous parametric surfaces. Figures 5.2.4-5.2.5 depicts the numerical result
corresponding to the experimental transverse patterns shown in Fig. 5.2.2 and 5.2.3. Although
the 3D coherent states are confirmed to display the coarse morphology of the experimental
transverse patterns, they can not manifest the stereographic features. Reconstructing the
stereographic patterns is indispensable for extracting the all-encompassing information in

linked or knotted coherent laser waves.

153



Chap 5

Optical Waves Carrying Large Angular Momentum in Degenerate Cavity

Cavity mirror Microscope Screen

objective lens

Focusing Pumping
lens beam

Laser diode

Fig. 5.2.1 Experimental setup for the generation of 3D coherent waves.
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z=0.0L 0.1L 02L 04L 0.6L 1.0L

1.00 L 1.35L 155L 1.80L 2.20L 2.75L

Fig. 5.2.2 (a) Experimental tomographic transverse patterns for the range from beam waist to far field
with Q=1/4, (p,q)=(2,2). The pump position is at (0.29 mm, 0.30 mm); (b) Experimental
tomographic transverse patterns for the range from beam waist to z =2.75L with Q=1/3,
(p,q) =(3,3) . The pump position is at (0.23 mm, 0.30 mm).
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0.50L 0.55L 0.60.k£ 0.70 L 0.80 L 1.00 L

Fig. 5.2.3 Experimental tomographic transverse patterns for the range from beam waist to far field with
Q=2/7, (p,q) =(2,5). The pump position is at (0.22 mm, 0.32 mm).
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Fig. 5.2.4 (a) Numerical tomographic transverse patterns corresponding to Fig. 5.2.2 (a) with Eq. (5.2.1)
and the parameters of (m,,n,)=(110,110), (p,q)=(2,2), P/Q=1/4, ¢,=0 and M =13. (b)
(a) Numerical tomographic transverse patterns corresponding to Fig. 5.2.2 (b) with Eq. (5.2.1) and the
parameters of (m,,n,)=(60,140), (p,q)=(3,3), P/Q=1/3, ¢, =0 and M =8.
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Fig. 5.2.5 Numerical tomographic transverse patterns corresponding to Fig. 5.2.3 with Eq. (5.2.1) and
the parameters of (m_,n,) =(60,130), (p,q)=(2,5), P/Q=2/7, ¢,=0 and M =5.
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Based on thorough experiments and numerical analysis, the stereographic structures of
linked and knotted coherent waves are completely deduced to originate from a superposition
of two degenerate 3D coherent states. With the representation of quantum coherent states, the

3D coherent waves localized on the Lissajous parametric surfaces can be described as

p.q.s ik, (HG)

l//m Ng.lo (X y,Z) = ﬁze m, +pk,n0+qk,lo+sk(X9 y,Z) ’

(5.2.1)

where the parameter ¢, 1is the relative phase between the adjoining Hermite-Gaussian (HG)

(HG)
m,n,l

modes @, "”/(X,Y,Z) which are given by

X2 +y?
2 X 2 {w z 2}
(DEnHr?I)(X’y,Z): 711 1 Hm \/_ Hn \/_y e (2)
2™ 2t W(z) - w(2) w(2) , (5.2.2)
_ - X2+y?
oy TR 82

X e

where m and n are the indices of X and y coordinates, | is the longitudinal mode
index, W(z) =W, /1+(z/z;)* , W, is the beam radius at the waist, L is the effective cavity

length and z; is the Rayleigh range. We can abbreviate . °° (X,y,z) to be

WS (X,Y,2) because the indices s and |, obey the equations s+(p+q)(P/Q)=0 and

l, +(m, +n, +1)(P/Q)=24/L, respectively, where A is the lasing wavelength. Note that the

cases of p+ (=0 mean no longitudinal-transverse coupling and can not be allowed. With

the spatial features of stationary coherent states in the 2D quantum harmonic oscillator

[33-36], we can obtain that the 3D coherent waves l//,ﬁfno(x, y,z) are well concentrated on
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the parametric surface: X(9,z) =+/m,W(z) cos [q%—¢(z)/ p] and y(&2)=+/n,W(z)cos(pH),
where 0<9<27 , —-o0<z<ow , and the z-dependent phase factor is given by
#(z)=(q+ p)tan’l(z/ ZR)+ ¢, . Note that the phase factor ¢(z) comes from the Gouy-phase

difference between the HG modes with distinct transverse orders. Although the phase factor
¢, can be experimentally manipulated, we focus on the cases of ¢ =0 hereafter for
convenience.

In terms of the 3D coherent waves of Eq. (5.2.1), a superposition of two degenerate 3D

coherent states with the nearest neighbors can be generally expressed as
Pz =| i oy eyt )| [ (523)

where ¢ is the relative phase. Comparing with-the whole experimental results, we substantiate
that linked and knotted lasing modes can-be-utterly reconstructed with the superposition state
of Eq. (5.2.3) and setting the relativeiphase @ 'to be +7/2. Figures 5.2.6 illustrates the
numerical transverse patterns calculated with Eq. (5.2.3) and the parameters of: (a)
(m,,n,)=(110,110) , M =13, and @=7x/2, (b) (m,,n,)=(60,140), M =8, and

@ =n/2 corresponding to the experimental results shown in Fig. 5.2.2 (a) and (b),
respectively. Excellent agreement validates the superposition states ‘I’,ﬁfno(x, Y,2;+7/2)

can entirely reconstruct the intriguing stereographic features of linked and knotted wave
patterns. More importantly, the analytical representation enables us to discover the inherent
properties of linked and knotted coherent waves. We henceforth concentrate on exploring the
AM densities of the linked and knotted optical waves because of their applications in atomic

trapping, tweezers, and imaging [26-29].
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7
() (A

Fig. 5.2.6 (a) Numerical tomographic transverse patterns corresponding to Fig. 5.2.2 (a) with Eq. (5.2.3)
and the parameters of (m,,n, )= (110,110), (p,q)=(2,2), P/Q=1/4, ¢=7x/2 and M =13.
(b) (a) Numerical tomographic transverse patterns corresponding to Fig. 5.2.2 (b) with Eq. (5.2.3) and
the parameters of (m,,n,) =(60,140), (p,q)=(3,3), P/Q=1/3, ¢p=7/2 and M =8.
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Fig. 5.2.7 Numerical tomographic transverse patterns corresponding to Fig. 5.2.3 with Eq. (5.2.3) and
the parameters of (m_,n,) =(60,130), (p,q)=(2,5), P/Q=2/7, ¢p=7/2 and M =5.
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5.2.2 Analyses of Angular Momentum for Two Degenerate Coherent
States

The linear momentum density P and AM density j of a light beam can be calculated
from the electric, E, and magnetic, B , fields, such as p= 50<E x I§> and J=Trxp
[24-25], where ¢, is the permittivity of vacuum. The optical AM contains spin and orbital
AM densities that are related to the circular polarization and the spatial distribution of the
optical beam, respectively. In the paraxial approximation, experimental linked and knotted
coherent waves are measured to be linearly polarized beams that can be expressed as
E=X%Y¥, where the unit vector R is right on the c-axis of the gain medium. As a

consequence, the z-component of the orbital AM density for a linearly polarized light beam is

given by
0, ==—Im|¥" (x——y—] L (5.2.4)

where o is the angular frequency and Im denotes the imaginary part of the expression.

Figure 5.2.8 depicts the numerical results for the orbital AM densities obtained with Eq. (5.2.4)
and the parameters of (m,,n,)=(110,110), (p,q)=(2,2), P/Q=1/4, and M =13

corresponding to experimental wave patterns shown in Figs. 5.2.2 (a). The regions of
maximum AM density can be clearly divided into four parts that exhibit to rotate with
propagation. Furthermore, it is worth noting that some regions of the AM density have the
opposite sign to the average AM of the whole beam, even though their overall contribution is
extremely smaller than the global value. Unlike the LG modes that are the orbital AM
eigenmodes [24-25], the orbital AM densities of linked and knotted coherent waves are not
precisely matching to the local energy densities. Recently, Zambrini and Barnett [37] have

numerically shown the possibility to engineer independently the local densities of optical AM

163



Chap 5  Optical Waves Carrying Large Angular Momentum in Degenerate Cavity

and energy. Nevertheless, in the present experiment the regions of maximum AM density
almost coincide with the regions with maximum energy density.

Efficiently generating the average AM is of practical significance for numerous
applications. Hence, it is essentially meaningful to consider the average AM per photon in
linked and knotted coherent waves. Although the transverse patterns of the present coherent
waves depend on the propagation distance from the laser cavity, the average AMs are constant

at different longitudinal planes. With the quantum operator, the z-component of the orbital

where L, =—in[ x (6/0y)—y (6/0x)]. With the orthogonal properties of the eigenfunctions

4

AM for a normalized linearly polarized light beam ¥ can be expressed as L, = < b4 ‘ I:Z

L,

of the 2D quantum harmonic oscillator, we can verify that L, = < Yo n, t//nﬂ’fno> =0, ie.

the L, values of the 3D coherent waves gy . are.zero.

Although the average angular momentums of the single 3D coherent waves are zero,
linked and knotted waves arising front the superposition of two degenerate 3D coherent states
can possess very large L, values. In order'to derive the L, value for experimental linked
and knotted waves, we first use the annihilation and creation operators to show the result:

L,

<q)HG 4 e pHe

mgy,n, mgy+1,n,—1

D e q>;§+1,n01> =2h [m, +1 \/? sing.  (5.2.5)

With Eq. (5.2.5) and after some algebra, the L, values for the wave functions in Eq. (5.2.3)

can be derived to be

B

YA

p.q
<leD N,

M M
PP >: h Zmo +pk+1 |- Zno +gk |[sing . (5.2.6)
oo M +1 k=0 k=0
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Fig. 5.2.8 Numerical results for AM densities obtained with Eq. (4) and the
parameters of (m,,n,)=(110,110) , (p,q)=(2,2) , P/Q=1/4 , and M =13

corresponding to experimental wave patterns shown in Fig. 5.2.2(a)
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Since the indices m, and n, are generally much greater than the absolute numbers of

pM and gqM, the L, values in Eq. (5.2.6) can be approximately to %,/m n, sing. The

factor 4/m n, indicates the geometric mean of the transverse orders and is nearly

proportional to the Fresnel number Fr of the laser cavity. The Fresnel number Fr in the
present microchip laser can be in the range of 10-1000. As analyzed above, linked and knotted
coherent waves have been confirmed to correspond to the relative phase of @ =27/2.
Therefore, the average AM per photon can be approximated as Fr -7 and their values in the
present experiment can be estimated to be greater than 10007 . To be brief, experimental

linked and knotted coherent waves are the most efficient states in producing huge orbital AM

in the set of the superposition states ¥ % (X,Y,z;¢) of Eq. (5.2.3).

5.2.3 Summary

In summary, we have successfully-used-the répresentation of the 3D coherent states to
deduce the analytical wave functions for experimental linked and knotted lasing modes which
can be straightforwardly generated in large-Fresnel-number microchip lasers with
longitudinal-transverse coupling. The analytical expression enables us to explore the orbital
AM densities. Moreover, we also manifest that experimental linked and knotted coherent
waves have the largest AMs per photon in the set of the superposition states and the maximum
value is as large as 10007 . Since links and knots are widely encountered in many branches of
science [38-41], the present findings certainly provide some insights into various classical and

quantum waves in the mesoscopic regime.
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Chapter 6
Summary and Future Work

The various interesting patterns have been realized by use of the precise microchip laser
cavity. With the transversely isotropic gain medium, the various polarization-resolved patterns
can be generated and the GCSs theoretically reconstructed the experimental results. Therefore
off-axis pumping scheme leads to the high-order three-dimensional coherent states which are
localized on the three-dimensional Lissajous parametric surfaces. Furthermore superposition
of three-dimensional coherent states results in the three-dimensional interference patterns
which spatially localized on the Lissajous parametric surface. Importantly, the 3D coherent
optical waves are demonstrated:to-carry large angular momentum. In chapter 4 the most
complicated pattern is investigated in.-detailywith the interesting and important polarization
singularities, V points, C lines, and L surfaces: The polarization singularities can be revealed
with the theoretical results perfectly.

However the various plentiful patterns have been showed and analyzed in the contents,
the main target of our research will focus on the improvement of the Fresnel number in the
laser cavity to study the super-high order coherent waves. We can demonstrate the
eigenfunction of the laser cavity with the quantum mechanics and show the classical-like
periodic orbits corresponding to classical world. The Fresnel number of the patterns which we
had studied is about 20 to 1000. If we can enlarge the gain medium and the off-axis pumping
radius, the Fresnel number can be increased substantially. The situation we can expect is that
the patterns will be more colorful and complex than the patterns with small Fresnel number.
Until now, the mathematical software is restricted to some limit of calculation results. It will

be difficult to reconstruct the super-high order coherent waves. Therefore we will focus on the
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classical theoretical analysis to help to study the formation of the various patterns. With the
research of the formation of patterns the connection between microscopic and macroscopic
can be explored deeply. The world of the physics is so wonderful, and then we should

challenge ourselves to reach the limit what we can to see the beautiful of the physical world.
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