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量子與光學同調波之研究:  
利用微晶體雷射研究空間模態與極化奇異點特徵 

 
                                                         
學生: 陸亭樺                                  指導老師: 陳永富教授 
                  
 

 

             國立交通大學電子物理系博士班 
 
 

          摘要 
 

 本論文係用微晶體雷射的空間模態研究同調光波的量子與古典對應關係以及極化

向量場中奇異點的特徵。由於雷射共振腔在近軸近似下的波函數解與量子簡諧運動有異

曲同工的數學形式，因此深入研究量子簡諧運動為本論文中相當重要的基石。首先我們

以一維 Schrödinger 同調態出發並推廣至二維系統。經由縝密的分析與思考得到符合共

振腔條件的廣義同調態，藉此與實驗中所見之有趣的光學物理現象做一番連接。進一步

研究發現共振腔中縱向與橫向的頻率耦合與模態鎖定的結果所顯示的”魔梯”現象。這一

類的空間模態不僅帶領我們進入鮮少被探討的雷射領域更提供了介於微觀與宏觀之間

的綜觀領域一些相關研究方向。再者，針對實驗結果的理論分析更顯示了這些空間模態

擁有很大的角動量，這對於未來的雷射技術提供了一些前瞻性的想法。 

 本文另一個重點是探討極化向量場中奇異點的特徵。極化奇異點的形態與光場本身

的模態密不可分且相依相生。文中利用半球形共振腔產生光與增益介質之交互作用使得

空間模態衍生出極化糾纏的實驗結果。透過嚴謹的理論分析不僅完整地重建出光波之空

間模態，且各種極化奇異點特徵的有趣面貌亦被清楚地呈現。對於極化奇異點的深入研

究除了能夠更了解光波的特性也對光波的應用層面提供了值得思考的方向。 
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Study of Quantum and Optical Coherent Waves:  
Pattern Formation and Polarization Singularities Generated  

from Microchip Laser Cavity  
                                                         
Student: Ting-Hua Lu                                  Advisor: Prof. Yung-Fu Chen    
                  

             Institute and Department of Electrophysics 
             National Chiao Tung University 

 
          ABSTRACT 

 
 This thesis presents several novel optical experiments which provide fresh insights for 

quantum-classical correspondence with pattern formation and polarization characteristics of 

light by use of microchip laser cavity. Quantum physics was developed substantially after 

Schrödinger proposed his important coherent states of quantum harmonic oscillator. 

Harmonic oscillator is the analogue of spherical laser cavity in our system. We start from 

one-dimensional Schrödinger coherent states and broaden the theory to two-dimensional 

problem to be related to our laser system under paraxial approximation.   

 We not only develop a general form to elucidate various kinds of states completely in the 

laser system which is slightly disturbed by coupling with environment but also extract the 

coherent states in the degenerate cavity of longitudinal-transverse coupling. In addition to the 

eigenstates in laser cavity, the three-dimensional coherent waves exhibit the classical-like 

feature on the transverse patterns in virtue of nonlinear optical effects. We verify that the 

specific phenomenon leads to “Devil’s staircase” which is demonstrated in other physical 

regime but firstly found in laser cavity. Furthermore, the analytic results have good agreement 

with experimental patterns and provide efficient approach to understand the nature of 

coherent waves in the cavity. With the theoretical results, the coherent waves are found to 

carry large angular momentum and may provide some applications in laser technique.  

 Another topic in this thesis is polarization singularity in laser cavity. Besides phase 

singularity in complex scalar waves which provide some unique applications, polarization 

singularities also play a vital role such as the skeleton in vector waves for the study of optical 

fields. We employ the hemispherical cavity to generate vector fields. After precise 

measurement and deliberate analysis, the variation of polarization singularities embedded in 

high-order vector laser waves can be realized. Interestingly, the polarization singularities are 

discovered as fascinating patterns accompany with vector fields. Studying the structures of the 

polarization singularities in coherent vector fields may help us to understand the nature of the 

waves and provide insights in application.  
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polarization (b) 900 polarization (c) 1350 polarization, (d) 1800polarization 

Fig. 2.3.5 Upper: Elliptical experimental polarization-resolved patterns (a) 450 polarization 
(b) 900 polarization (c) 1350 polarization, (d) 1800polarization 

Fig. 2.3.6 Upper: Circular experimental polarization-resolved patterns (a) 450 polarization 
(b) 900 polarization (c) 1350 polarization, (d) 1800polarization 

Fig. 2.3.7 Numerically reconstructed patterns for the experimental results shown in Fig. 
2.3.2. 

Fig. 2.3.8 (a) The overlap functional ( )I ϕ  as a function of ϕ  for the state ( , , )xE x y z
v

 in 
Eq. (2.3.6). (b) The overlap functional ( )I ϕ  as a function of ϕ  for the state 

( , , )xE x y z
v

 in Eq. (2.3.8).  

Fig. 2.3.9 Numerically reconstructed patterns for the experimental results shown in Fig. 
2.3.3.  

Fig. 2.3.10 Numerically reconstructed patterns for the experimental results shown in Fig. 
2.3.4. 

Fig. 2.3.11 Numerically reconstructed patterns for the experimental results shown in Fig. 
2.3.5.  

Fig. 2.3.12 Numerically reconstructed patterns for the experimental results shown in Fig. 
2.3.6.  

Fig. 2.3.13 Contour plot of angle field ( , )x yΘ  according to the reconstructed patterns in 
Fig. 2.3.7. 

Fig. 2.3.14 Contour plot of angle field ( , )x yΘ  for the boxed regions shown in Fig. 2.4.13. 

Fig. 3.2.1 Two oscillators of different frequencies with some coupling strength 

Fig. 3.2.2 Results of circle map with different coupling strength. 

Fig. 3.3.1 A portion of the spectrum ),,( mnlf  as a function of the bare mode-spacing 
ratio Ω  for the range of 3010 ≤≤ l and 20)(0 ≤+≤ nm . 

Fig. 3.3.2 Upper: an example for the Lissajous parametric surface described in equation 
(3.3.6) for the range from 2Lz −=  to 2Lz =  with )2,3(),( =qp , 2=P  and 

00 =φ .  Bottom: the tomographic transverse patterns along the longitudinal 
axis. 
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 ix

Fig. 3.3.3 Experimental setup for the generation of 3D coherent waves in a diode-pumped 
microchip laser with off axis pumping scheme in a symmetric spherical 
resonator. 

Fig. 3.3.4 Experimental tomographic transverse patterns inside the cavity observed at 
422.0≈Ω . 

Fig. 3.3.5 Bottom: Experimental mode-locked ratio QP  as a function of the bare 
5ode-spacing ratio Ω.  Upper: experimental far-field patterns observed in the 
mode-locked plateau with 5/2=QP . 

Fig. 3.3.6 Experimental tomographic transverse patterns inside the cavity observed at 
573.0≈Ω . 

Fig. 3.3.7 Bottom: Experimental mode-locked ratio QP  as a function of the bare 
5ode-spacing ratio Ω.  Upper: experimental far-field patterns observed in the 
mode-locked plateau with 3/1=QP . 

Fig. 3.3.8 Bottom: Experimental mode-locked ratio QP  as a function of the bare 
5ode-spacing ratio Ω.  Upper: experimental far-field patterns observed in the 
mode-locked plateau with 4/1=QP . 

Fig. 3.3.9 Bottom: Experimental mode-locked ratio QP  as a function of the bare 
5ode-spacing ratio Ω.  Upper: experimental far-field patterns observed in the 
mode-locked plateau with 7/2=QP . 

Fig. 3.4.1 Photograph of the experimental laser cavity. 

Fig. 3.4.2 Typical experimental far-field patterns observed in different cavity lengths for 
different indices ( , ; / )p q P Q . 

Fig. 3.4.3 Upper: Numerical results of 3D coherent modes according to different transverse 
orders. Bottom: Numerical results of the superposition from the coherent modes 
with different orders. 

Fig. 3.4.4 (a) Experimental tomographic transverse patterns inside the cavity observed at 
0.84Ω ≈ . (b) Numerical results corresponding to (a). 

Fig. 3.4.5 Experimental strong spatially localized patterns with different ( , ; / )p q P Q . 

Fig. 4.1.1 The evolution of the electric field vector leads to different kinds of polarization 
states: (a) Linear, (b) Circular, (c) Elliptical. 

Fig. 4.1.2 Three kinds of polarization states of high-order transverse modes: (a) 
Azimuthally polarized, (b) Circularly polarized, (c) Radially polarized. 

Fig. 4.1.3 The Poincaré representation of polarized light on a sphere. 

Fig. 4.3.1 Experimental setup for the generation of propagation-dependent polarization 
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 x

vector fields in a diode-pumped microchip laser in a hemi-spherical resonator. 

Fig. 4.3.2 Experimental far-field transverse patterns with different radial index p and 
azimuthal index l: (a) (0, 9), (b) (0, 23), (c) (1, 39), (d) (1, 66), (e) (2, 41), (f) (7, 
100). 

Fig. 4.3.3 Polarization-resolved transverse patterns for the experimental result at three 
different propagation positions: 0=z , Rzz = , and Rzz >> : (a) corresponding 
to Fig. 4.3.2 (b) where 26.1=Rz mm. (b) corresponding to Fig. 4.3.2 (c) where 

28.1=Rz mm. The arrows indicate the transmission axis of the polarizer. Rzz = , 
and Rzz >> , where 28.1=Rz mm. 

Fig. 4.3.4 (a) Numerically reconstructed patterns for the experimental results shown in Fig. 
4.3.3 (a), (b) Numerically reconstructed patterns for the experimental results 
shown in Fig. 4.3.3 (b). 

Fig. 4.3.5 Structure of the C line singularities of the theoretical vector field from the view 
of propagation direction to the beam waist with the same radial index p=0 and 
different azimuthal index l: (a) (p, l)=(0, 1); (b) (p, l)=(0, 2); (c) (p, l)=(0, 3); (d) 
(p, l)=(0, 4); (e) (p, l)=(0, 5); (e) (p, l)=(0, 6). 

Fig. 4.3.6 Structure of the C line singularities of the theoretical vector field from the view 
of propagation direction to the beam waist with the same radial index p=0 and 
different azimuthal index l: (a) (p, l)=(1, 1); (b) (p, l)=(1, 2); (c) (p, l)=(1, 3); (d) 
(p, l)=(1, 4); (e) (p, l)=(1, 5); (e) (p, l)=(1, 6).   

Fig. 4.3.7 Structure of the C line singularities of the theoretical vector field from the view 
of propagation direction to the beam waist with the same radial index p=0 and 
different azimuthal index l: (a) (p, l)=(2, 1); (b) (p, l)=(2, 2); (c) (p, l)=(2, 3); (d) 
(p, l)=(2, 4); (e) (p, l)=(2, 5); (e) (p, l)=(2, 6).   

Fig. 4.3.8 Numerical patterns of the angle function at the far field of the same radial index 
p=0 and different azimuthal index l: (a) (p, l)=(0, 1); (b) (p, l)=(0, 2); (c) (p, l)=(0, 
3); (d) (p, l)=(0, 4); (e) (p, l)=(0, 5); (e) (p, l)=(0, 6). 

Fig. 4.3.9 Numerical patterns of the angle function at the far field of the same radial index 
p=0 and different azimuthal index l: (a) (p, l)=(1, 1); (b) (p, l)=(1, 2); (c) (p, l)=(1, 
3); (d) (p, l)=(1, 4); (e) (p, l)=(1, 5); (e) (p, l)=(1, 6).   

Fig. 4.3.10 Numerical patterns of the angle function at the far field of the same radial index 
p=0 and different azimuthal index l: (a) (p, l)=(2, 1); (b) (p, l)=(2, 2); (c) (p, l)=(2, 
3); (d) (p, l)=(2, 4); (e) (p, l)=(2, 5); (e) (p, l)=(2, 6). 

Fig. 4.3.11 (a) Experimental far-field pattern with radial and azimuthal index (p, l)=(1, 12). 
(b) Structure of C line singularities of the correspondent 3D vector field. (c) 
Structure of the C line singularities from the view of propagation direction to the 
beam waist. (d) Numerical pattern of the angle function at the far field. 

Fig. 4.3.12 Diagram of the representation of the polarization state under propagation 
corresponding to the singularities of C lines (blue line), V points (white points at 
far field and pink points at beam waist), and L surfaces (yellow dashed lines). 
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 xi

Fig. 5.2.1 Experimental setup for the generation of 3D coherent waves.   

Fig. 5.2.2 (a) Experimental tomographic transverse patterns for the range from beam waist 
to far field with 1 4Ω= , ( , ) (2, 2)p q = . The pump position is at (0.29 mm, 
0.30 mm); (b) Experimental tomographic transverse patterns for the range from 
beam waist to 2.75z L=  with 1 3Ω = , ( , ) (3,3)p q = . The pump position is 
at (0.23 mm, 0.30 mm).  

Fig. 5.2.3 Experimental tomographic transverse patterns for the range from beam waist to 
far field with 2 7Ω = , ( , ) (2,5)p q = . The pump position is at (0.22 mm, 0.32 
mm).  

Fig. 5.2.4 (a) Numerical tomographic transverse patterns corresponding to Fig. 5.2.2 (a) 
with Eq. (5.2.1) and the parameters of )110,110(),( =oo nm , ( , ) (2, 2)p q = , 

1 4P Q = , 0=oφ  and 13M = . (b) (a) Numerical tomographic transverse 
patterns corresponding to Fig. 5.2.2 (b) with Eq. (5.2.1) and the parameters of 

)140,60(),( =oo nm , ( , ) (3,3)p q = , 1 3P Q = , 0=oφ  and 8M = .  

Fig. 5.2.5 Numerical tomographic transverse patterns corresponding to Fig. 5.2.3 with Eq. 
(5.2.1) and the parameters of )130,60(),( =oo nm , ( , ) (2,5)p q = , 2 7P Q = , 

0=oφ  and 5M = .  

Fig. 5.2.6 (a) Numerical tomographic transverse patterns corresponding to Fig. 5.2.2 (a) 
with Eq. (5.2.3) and the parameters of )110,110(),( =oo nm , ( , ) (2, 2)p q = , 

1 4P Q = , 2ϕ π=  and 13M = . (b) (a) Numerical tomographic transverse 
patterns corresponding to Fig. 5.2.2 (b) with Eq. (5.2.3) and the parameters of 

)140,60(),( =oo nm , ( , ) (3,3)p q = , 1 3P Q = , 2ϕ π=  and 8M = .  

Fig. 5.2.7 Numerical tomographic transverse patterns corresponding to Fig. 5.2.3 with Eq. 
(5.2.3) and the parameters of )130,60(),( =oo nm , ( , ) (2,5)p q = , 2 7P Q = , 

2ϕ π=  and 5M = .  

Fig. 5.2.8 Numerical results for the orbital AM densities obtained with Eq. (4) and the 
parameters of )110,110(),( =oo nm , ( , ) (2,2)p q = , 1 4P Q = , and 13M =  
corresponding to experimental wave patterns shown in Fig. 5.2.2(a) 
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Chapter 0 
Introduction:  

Guide to the Main Text 
 

In recent years, pattern formation has become a famous topic in various fields of modern 

physics such as nonlinear optics, quantum chaos, and quantum billiard. At the same time 

coherent superposition is of significance for exploring the boundary between the microscopic 

(quantum; wave) and macroscopic (classical; ray) worlds. As demonstrated in diverse 

experiment, coherent superposition not only leads to understand the mesoscopic physics but 

also results in rich pattern formation in the transition from classical to quantum regime. Here I 

will introduce several interesting experimental results to reveal the importance of coherent 

superposition. 

    Firstly, we start from harmonic oscillator model to one-dimensional Schrödinger 

coherent states and broaden the theory to two-dimensional problem to be related to our laser 

system under paraxial approximation. Furthermore, the fundamental theory and the 

eigenmode of laser cavity will be mentioned in chapter 2. The generalized coherent state 

(GCS) has been found as the complete basis to form the various kinds of patterns which are 

the continuous transitions from Hermite-Gaussian to Laguerre-Gaussian modes. Furthermore, 

when the polarization entanglement is involved, the situation becomes more complicated. The 

GCSs can be properly employed to reconstruct the experimental results which are entangled 

with polarization. With the theoretical analysis of GCSs the polarization singularities can be 

revealed clearly. 

Coherent superposition leads to complex pattern formation. In chapter 3 we will find 

another kind of fascinating patterns which induced form the longitudinal-transverse coupling 
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phenomenon. With the longitudinal-transverse coupling of frequencies, the degenerate states 

of the cavity can be coherent superposed to form the three-dimensional coherent states with 

Lissajous parametric surfaces which lead to constitute the nearly complete Devil’s staircase. 

Moreover, when the experimental setup is slightly modified, there is not only one 3D coherent 

state to be excited. The superposition of 3D coherent modes which are caused by the 

longitudinal-transverse coupling and the mode-locking has been verified to lead to the 

formation of spatially localized patterns on the Lissajous parametric surface in the mesoscopic 

regime. The studies may provide some useful insights into the coherent superposition 

problems with optical coherent waves in mesoscopic regime.   

When the polarization and longitudinal-transverse coupling are involved with the 

coherent superposition, the patterns become the most complicated to analyze. We have used 

an isotropic microchip laser with the longitudinal-transverse coupling and the entanglement of 

the polarization states to generate the propagation-dependent polarization vector fields in 

chapter 4. The phase singularity in complex scalar fields leads to orbital angular momentum 

and the polarization singularity in complex vector fields leads to spin angular momentum. It is 

why singular optics is so important in optical fields. We employed the analytical 

representation to perform comprehensive analysis for the singularities of the C lines, L 

surfaces, and V points, which play important roles in singular optics. 

 Angular momentum of optical waves can be decomposed into orbital angular momentum 

and spin angular momentum. Both of orbital and spin parts have extensive applications in 

biological and physical fields such as optical tweezers and optical spanner. A typical class of 

paraxial beams possess angular momentum, Laguerre-Gaussian beams, is studied for recent 

decades. In addition to typical paraxial Laguerre-Gaussian beams, we demonstrate the optical 

waves carrying large angular momentum in degenerate cavity in chapter 5. We look forward 

to useful applications of the specific coherent optical waves in other field in the future. 
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Chapter 1 
Classical and Quantum Harmonic 
Oscillators 
 Harmonic oscillator is a general and useful model in either classical or quantum physics. 

The quantum harmonic oscillator is the quantum analogue of the classical harmonic oscillator. 

It is one of the most important systems in quantum mechanics because an arbitrary potential 

can be approximated as a harmonic potential at the vicinity of a stable equilibrium point. 

Moreover, it is one of the few quantum mechanical systems for which a simple exact solution 

is known. In this chapter we introduce the characteristics of classical and quantum harmonic 

oscillators for the basic preparation of following chapters.   

1.1 One-dimensional Harmonic Oscillator 

In classical dynamics, a particle of mass m subjects to the potential ( ) 22

2
1 xmxV ω=  is 

the so-called one-dimensional (1D) harmonic oscillator problem, where km =2ω  is the 

force constant and ω  is the angular frequency. On the other hand, harmonic oscillator is a 

system according to Hooke’s law: ( ) kxxF −= . If F is the only force acting on the system, the 

system is called a simple harmonic oscillator and moving as sinusoidal oscillations about the 

equilibrium point. Using Newton’s second law of motion 

 

kx
dt

xdmmaF −=== 2

2

             (1.1.1) 

 

and define mk=2ω , the differential equation can be written as 02 =+ xx ω&& . Solving the 
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differential equation, the general solution of the simple harmonic oscillator is 

 ( ) ( )φω −= tAtx cos  or ( ) ( )φω −= tAtx sin ,          (1.1.2) 

 

where the amplitude A  and the phase φ  are determined by the initial condition. From 

another view, we can put a particle into a parabolic potential and the projection of particle 

moves as the general solution, such as shown is Fig. 1.1.1 (a).  

 In quantum mechanics, the quantum harmonic oscillator is the analogue of the classical 

harmonic oscillator. Furthermore, it is one of the most important systems in quantum 

mechanics because an arbitrary potential can be approximated as a harmonic potential at the 

vicinity of a stable equilibrium point. Fortunately, the exact solution of the quantum harmonic 

oscillator can be solved analytically. The Hamiltonian can be written as  

 

 2
22

22
xm

m
pH ω

+= ,               (1.1.3) 

 

where x is the position operator and p is the momentum operator(
x

ip
∂
∂

−= h ). In order to 

solve the differential equation, we have to solve the time-independent Schrödinger equation. 

Using the power series method, the energy eigenstates can be depicted as [1-2] 

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟

⎠
⎞

⎜
⎝
⎛−⋅⎟

⎠
⎞

⎜
⎝
⎛= xmHxmm

n
n

n
n

hhh

ωωω

π
ψ 24

1

2
exp

!2

1 ,         (1.1.4) 

 

where L,2,1,0=n  and ( ) ( ) 22

1 x
n

n
xn

n e
dx
dexH −−=  is the Hermite polynomial. The 

corresponding energy levels are ωh⎟
⎠
⎞

⎜
⎝
⎛ +=

2
1nEn . Figure 1.1.1 (b) shows the probability 

density 2
nψ of the ground state and several excited states. The characteristics of the classical 
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and quantum harmonic system are quite different. The fact is well-known that when the 

quantum number of the excited state becomes large enough, the behavior of the quantum 

harmonic oscillator exhibits the classical-like feature of the classical harmonic oscillator. In 

order to connect the behavior of the particle and the wave in harmonic potential, we have to 

introduce the Schrödinger’s coherent states. It plays an important role in the 

classical-quantum correspondence and will be discussed in section three of this chapter.   
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Fig. 1.1.1 (a) 1D classical harmonic oscillator. (b) 1D quantum harmonic oscillator. (The probability 
density of several states)  

Energy

ωh

ωh

ωh

x

ground state

excited state 
<1>

<2>

<5>

<20>

<50>

Energy

x

(a) (b) Energy

ωh

ωh

ωh

x

ground state

excited state 
<1>

<2>

<5>

<20>

<50>

Energy

ωh

ωh

ωh

x

ground state

excited state 
<1>

<2>

<5>

<20>

<50>

Energy

x

Energy

x

(a) (b)



Chap 1   Classical and Quantum Harmonic Oscillators                                                        

                   7

1.2 Two-dimensional Harmonic Oscillator 

 It is very important to extend the 1D harmonic oscillator problem to two-dimensional 

(2D), because 2D figure is more impressive than 1D figure for human’s eye and the 2D 

problems are more general existing in many physics phenomenon. For the rectangular 

coordinate, which x and y is orthogonal, the general solution of the classical harmonic 

oscillator can be expressed as  

 

 ( ) ( )ϕω −= tAtx xcos  and ( ) ( )tBty yωcos= ,          (1.2.1) 

 

where A and B are the amplitudes, xω  and yω  are the angular frequencies of x and y, ϕ  is 

the phase. If we assume that 1== BA , ωωωω pqyx :: = , where q and p are integers and 

have no common factor and 
p
φϕ = , the general solution of the 2D classical harmonic 

oscillator is 

 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

p
tqtx φωcos  and ( ) ( )tpty ωcos= .             (1.2.2) 

 

The several examples of the solutions shown in Fig. 1.2.1 (b) are famous Lissajous figures. 

Lissajous figures can describe the trajectory of a particle which moves inside a parabolic-like 

bowl such as shown in Fig. 1.2.1 (a). This kind of curves was investigated by Nathaniel 

Bowditch in 1815, and later in more detail by Jules Antoine Lissajous in 1857. Jules Antoine 

Lissajous (1822-1880) was a French mathematician, who invented the Lissajous apparatus to 

create the figures that bear his name [3]. In the experiment, a light was shone off a mirror 

which attached to a vibrating tuning fork then the light was reflected off another mirror 

attached to another perpendicular vibrating tuning fork with different pitch, then on the wall 
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resulted in a Lissajous figure.  

 From 1D quantum harmonic oscillator, the general solution of 2D quantum harmonic 

oscillator can be easily demonstrated as the form which comprises two orthogonal parts: 

 

 ( )
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, 2
exp

!!2
1 , 

                   (1.2.3) 

 

where L,2,1,0, =nm , ( )xH m  and ( )yH n  are the Hermite polynomials. The 

corresponding energy levels are ωh⎟
⎠
⎞

⎜
⎝
⎛ ++=

2
1

, nmE nm . In order to distinguish the quantum 

number m and the mass of particle, we use pm  to represent the mass of particle. Figure 1.2.1 

(c) shows the density of the wave function with different quantum number. Obviously, the 

quantum harmonic oscillator and classical harmonic oscillator lead to totally different results 

which are shown in Fig. 1.2.1. Therefore we have to connect the two ends of the classical and 

quantum harmonic oscillator problem from studying wave packet states and coherent states in 

quantum mechanics. 
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Fig. 1.2.1 (a) The description of the potential of 2D harmonic oscillator. (b) Lissajous figures with 
different frequency ratio and phase. (c) The eigenstates of 2D quantum harmonic oscillator with 
different orders. 
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1.3 Schrödinger Coherent States of the 1D Harmonic Oscillator 

 In recent years, there has been growing attention to quantum manifestations of classical 

periodic orbits in mesoscopic systems [4–14]. Therefore, the connection between the quantum 

wave functions and the classical trajectories in mesoscopic systems with internal nonlinear 

resonances is important for understanding the quantum features of nonlinear classical 

dynamics, which is also a central issue in modern physics. It is well known that Schrödinger 

in 1926 [15] originally constructed a coherent state of a 1D harmonic oscillator to describe a 

classical particle with a wave packet whose center in the time evolution follows the 

corresponding classical motion. Schrödinger demonstrated a coherent state to explore the 

continuous transition from micro- to macro-mechanics by showing that a group of proper 

vibrations of high-order quantum number and of relatively small quantum number differences 

may represent a “particle”, which is executing the “motion”, expected from the usual 

mechanics. The Schrödinger coherent wave packet state can be generalized as 

 

∑
∞

=

−
=Ψ

0

)(~);,(
n

t
E

i

nn

n

ect hξψαξ  ,           (1.3.1) 

with 

 2/|| 2

!
αα −= e

n
c

n

n  ,               (1.3.2) 

 ( ) )(!2)(~ 2/2/1 2

ξπξψ ξ
n

n
n Hen −−

⋅=  ,           (1.3.3) 

 ωh⎟
⎠
⎞

⎜
⎝
⎛ +=

2
1nEn  ,               (1.3.4) 

 

where the parameter α can be generalized as  

 

 φαα ie||=   ,                  (1.3.5) 
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where φ is a real number and represents the phase factor. Note that the normalized 

eigenfunction for the variable x is given by )(~)/()( 1/4 ξψωψ nmx h= , xm
h

ωξ = . It can be 

found that the norm square of the coefficient 2|| nc is exactly the same as the Poisson 

distribution with the mean of 2||α . Substituting (1.3.3) and (1.3.4) into (1.3.1) and 

rearranging the result, we can obtain 
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 ,      (1.3.6)  

 

Using the generating function, equation (1.3.6) can be rewritten as 

 

[ ]{ }

{ }ξαα
π

ξαα
π

αξ

φωφωωξα

φωφωωξα

)()(222/2/)|(|
4/1

)(2)(2/2/)|(|
4/1

||22/||exp1            

||22/||exp1);,(

22

22

−−−−−+−

−−−−−+−

+−=

+−=Ψ

tititi

tititi

eeee

eeeet

,     

 

                  (1.3.7) 

 

As a result, the probability distribution of the coherent state is given by 
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                      (1.3.8) 

It can be clearly seen that the center of the wave packet moves in the path of the classical 

motion  

 

 )cos(2 φωαξ −= t    .            (1.3.9) 

 

Figure 1.3.1(a) and (b) show the sixtieth excited state and 1D coherent state moving around a 

period, respectively. It is important to note that the probability density of 1D coherent state 

can represent the behavior of particle which was confined in a potential of 1D harmonic 

oscillator. As a result, Schrödinger coherent state of 1D harmonic oscillator plays a vital role 

to connect the relation between classical and quantum regime and makes a significant 

contribution to understand the mesoscopic physics between microscopic and macroscopic 

regime.   
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Fig. 1.3.1 (a) Sixtieth excited state of 1D harmonic oscillator (b) 1D coherent state moving with 
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1.4 Stationary Coherent States of 2D Harmonic Oscillator 

 The time-independent Schrödinger equation for a 2D harmonic oscillator with 

commensurate frequencies can generally given by    

 

 ),(),()(
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2
2222
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22

yxEyxyxm
yxm yx ψψωω =⎥⎦
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h  ,      (1.4.1) 

 

where ωω qx =  and ωω py = , ω is the common factor of the frequencies by xω  and yω , and 

p and q are relative prime integers. With the results in the preceding section, the eigenfunction 

and the eigenvalue of the 2D harmonic oscillator with commensurate frequencies are given by 

 

 ( ) )()(!!2),(~ 2/)(2/1
,

22

ynxm
mn

yxnm HHenm yx ξξπξξψ ξξ +−−+ ⋅=  .        (1.4.2) 

 

and  

 

 yxnm nmE ωω hh ⎟
⎠
⎞⎜

⎝
⎛ ++⎟

⎠
⎞⎜

⎝
⎛ +=

2
1

2
1

,  ,          (1.4.3) 

 

where xm xx hωξ =  and ym yy hωξ = . However the conventional eigenstates of a 2D 

harmonic oscillator with commensurate frequencies do not reveal the characteristics of 

classical Lissajous figures even in the correspondence limit of large quantum number. 

Since the eigenfunction is separable, the corresponding Schrödinger coherent state can 

be extended to 2D system as the product of two 1D coherent states. The Schrödinger coherent 

state of 2D system is expected to correspond to a wave packet with its center generally 

moving along a classical trajectory. This exact correspondence enables us to construct the 

quantum stationary states localized on the classical Lissajous orbits from the 
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time-independent Schrödinger coherent state.  

Since the Hamiltonian is separable, the Schrödinger coherent state for 2D harmonic 

oscillator can be expressed as: 
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                   (1.4.4) 

 

It is clear that the center of the wave packet follows the motion of a classical 2D isotropic 

harmonic oscillator, i.e., 

 

 )cos(2;)cos(2 yyyxxx tptq φωαξφωαξ −=−=    .      (1.4.5) 

  

The set of states with indices ),( nm  in (1.4.4) can be divided into subsets characterized by a 

pair of indices ),( yx uu  given by ( )pum x mod≡  and ( )qun y mod≡ . In terms of these 

subsets, the Schrödinger coherent state in (1.4.4) can be rewritten as 
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As seen in (1.4.6), the 2D Schrödinger coherent state is divided into a product of two infinite 
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series and two finite series. The method of the triangular partial sums is used to make precise 

sense out of the product of two infinite series in (1.4.6). With the representation of the Cauchy 

product, the terms ),(~
, yxuqNupN yyxx

ξξψ ++  in (1.4.6) can be arranged diagonally by grouping 

together those terms for which NNN yx =+ : 

 

)

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−+
×

=

×

⎜
⎜
⎝

⎛

+−+
=Ψ

+−+
=

−

−

=

−

=

∞

=

++++−++−

++++−
+−+

−

=

−

=

∞

= =

+−
+−+

∑

∑ ∑∑

∑ ∑∑∑

),(~
!])([!)(

][)/(

)()(                   

),(~
!])([!)(

)()(
),,(

)(,
0

)(

1

0

1

0 0

)]2/1()2/1([2/)(

)]2/1()2/1([
)(,

1

0

1

0 0 0

2/)(
)(

22

22

yxuKNqupK

N

K yx

KqpiKq
y

p
x

q

u

p

u N

tupuqpqNiuqNi
y

ui
x

tupuqpqNi
yxuKNqupK

q

u

p

u N

N

K yx

uKNqi
y

upKi
x

yx

yx

yx

y x

yxyyxxyx

yx

yx

y x

yx

yyxx

uKNqupK

e

eeee

e

e
uKNqupK

ee
t

ξξψ
αα

αα

ξξψ

αα
ξξ

φφ

ωφφαα

ω

αα
φφ

, 

                  (1.4.7) 

 

The expression in the curly bracket of Eq. (1.4.7) represents the stationary coherent states 

labeled with one major index N and two minor indices ux and uy. These stationary coherent 

states are physically expected to be associated with the Lissajous trajectories. Note that the 

minor indices ux and uy essentially do not affect the characteristics of the stationary states.  

Including the normalization condition, the stationary coherent states in Cartesian coordinates 

are given by 
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                     (1.4.8) 

where 



Chap 1   Classical and Quantum Harmonic Oscillators                                                        

                   17

 yxq
y

p
x qpA φφφ

α
α

−== ,
)(
)(

   .           (1.4.9) 

The equation (1.4.8) reveals that the stationary coherent states associated with the Lissajous 

trajectories are the superposition of degenerate eigenstates with the relative amplitude factor A 

and phase factor φ  [16]. Furthermore, the expression (1.4.9) indicates that the relative 

amplitude factor A and phase factor φ in the stationary coherent states ),;,(,, φξξ AyxuuN yx
Φ  

are explicitly related to the classical variables ( )yxyx φφαα ,,,  in (1.4.6).   

From (1.4.7), the eigenenergies of the stationary coherent states ),;,(,
,, φξξ Ayx

qp
uuN yx

Φ  

are found to be 

 

 [ ] ( ) ωω hh NpqupuqpqNE NyxuuN yx
⎯⎯ →⎯++++= >>1,, )2/1()2/1( ,   (1.4.10) 

 

Figures 1.4.1-1.4.3 depicts the comparison between the quantum wave patterns 

2,
,, ),;,( φξξ Ayx

qp
uuN yx

Φ  and the corresponding classical periodic orbits for qp :  to be 1:2 , 

2:3 , and 3:4 , respectively. Here three different phase factors, 0=φ , πφ 3.0= , and 

πφ 6.0= , are displayed in each figure for the purpose of clear comparison. The behavior of 

the quantum wave patterns in all cases can be found to be in precise agreement with the 

classical Lissajous figures.  

 It is worthwhile to mention that the stationary coherent states for the 2D isotropic 

harmonic oscillator 1:1: =qp  can be simplified to give rise to the expression of elliptic 

states [17]. After some algebra and setting 0== yx uu , equation (1.4.7) can be rewritten as 
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where 
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xA φφφ
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The wave function in (1.4.13) represents a type of normalized elliptic stationary coherent state. 

Figure 1.4.4 shows the dependence of the wave pattern of the stationary coherent states 

21,1
0,0, ),;,( φξξ AyxNΦ on the factors A and φ  for N=20. It can be seen that the coherent states 

),;,(1,1
0,0, φξξ AyxNΦ  correspond to the elliptic stationary states. The superposition of two 

elliptic states with a phase factor φ  in the opposite sign can form a standing wave pattern: 

)),;,(),;,( 1,1
0,0,

1,1
0,0, φξξφξξ −Φ±Φ AA yxNyxN . Figure 1.4.4 also shows the standing wave 

patterns corresponding to the elliptic states.  

Equation (1.4.11) manifestly reveals the relationship between the Schrödinger coherent 

state and the stationary coherent state. As is known from quantum mechanics, 2
NC  

represents the probability of finding the system in the elliptic stationary state with order N. 

With equation (1.4.12), it can be found that 
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As the result of the Schrödinger coherent state in the 1D harmonic oscillator, the probability 

distribution 2
NC  is identical to the Poisson distribution with the mean value of 

22
yxN αα +>=<  . 
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(a) (b) (c)

(a’) (b’) (c’)’)

(a) (b) (c)

(a’) (b’) (c’)’)

Fig. 1.4.1 Comparison between the quantum stationary state 
2,

,, ),;,( φξξ Ayx
qp

uuN yx
Φ  [(a)-(c)] and 

the classical Lissajous orbits [(a’)-(c’)] for the system of 1:2: =qp  with 40=N , 2.5=A  
and (a) 0=φ , (b) πφ 3.0= , and (c) πφ 6.0= . 



Chap 1   Classical and Quantum Harmonic Oscillators                                                        

                   20

 

(a) (b) (c)

(a’) (b’) (c’)’)

(a) (b) (c)

(a’) (b’) (c’)’)

Fig. 1.4.2 The same as Fig. 1.4.1 for the system of 2:3: =qp  with 22=N , 2.5=A  and (a) 
0=φ , (b) πφ 3.0= , and (c) πφ 6.0= . 
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(a) (b) (c)

(a’) (b’) (c’)’)

(a) (b) (c)

(a’) (b’) (c’)’)

Fig. 1.4.3 The same as Fig. 1.4.1 for the system of 3:4: =qp  with 15=N , 2.5=A  and (a) 
0=φ , (b) πφ 3.0= , and (c) πφ 6.0= . 
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Fig. 1.4.4 (a) Upper: wave patterns of stationary coherent states for N=20 with different values of the 
parameters φ . Lower: standing wave patterns corresponding to upper figures. (b) Upper: wave 

patterns of stationary coherent states for N=20 with different values of the parameters A . Lower: 
standing wave patterns corresponding to upper figures. 
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1.5 Unitary Transformation between Stationary States and wave 
packet states 

 Even though the Schrödinger coherent state is an analytic and elegant representation for 

the wave packet state, another important representation is given by 
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The representation in equation (1.5.1) resembles the definition of the phase state. Unlike the 

Schrödinger coherent state, the coherent state in equation (1.5.1) is expanded by a 

finite-dimensional basis. In order to simplify the representation of the wave function, here I 

use  
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to replace (1.5.1). The phase nφ  must be properly chosen to make the wave function to 

maintain the characteristic of orthonormal. Then we can get 
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Continuously, the relation between wave packet states and stationary states can be shown as 

following:  
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Finally, (1.5.5) shows that the stationary states can be represented as the superposition of 

wave packet states and vice versa. 
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It is worthy to notice that nm
M

i

mn e
M

U
π21ˆ =  is the unitary operator which represents the 

transition matrix from the wave packet states and stationary states. Figure 1.5.1 shows the 1D 

wave packet states (1D Schrödinger coherent states) and stationary states (eigenstates). Figure 

1.5.1(a) represents the wave packet states nΨ  as 5=M  and 4~0=n  respectively. On the 

other, Fig. 1.5.1(b) reconstructs the stationary states from the superposition of wave packet 

states as 5=M  and 4~0=m  respectively. 

 In 1D harmonic oscillator, the unitary transform not only connect the wave packet states 

and stationary coherent states but also play an important role in the quantum-classical 

correspondence. To expand the method, the unitary transform of equation (1.5.5) can also 

express the relation between the time-independent stationary coherent states and eigenstates 

of 2D harmonic oscillator. Figure 1.5.2 depicts time-independent elliptical stationary coherent 

states as  7=M  and 6~0=n  respectively. On the other, Fig. 1.5.3 reconstructs the 

eigenstates from the superposition of stationary coherent states as 7=M  and 6~0=m  

respectively.  

 In summary, the wave packet states and stationary states can be constructed by each 

other with unitary transformation in 1D harmonic oscillator. Therefore, the time-independent 

stationary coherent states and eigenstates can also be constructed by each other with unitary 

transformation in 2D harmonic oscillator. 
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(a) (b)(a) (b)

Fig. 1.5.1 (a) The 1D wave packet states with 5=M  and 4~0=n  respectively. (b) The 1D 
stationary states with 5=M  and 4~0=m  respectively. 
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(a) (b) (c) (d)

(e) (f) (g) (h)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1.5.2 The 2D time-independent stationary states with 7=M  and 6~0=n  respectively. 
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(a) (b) (c) (d)

(e) (f) (g) (h)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1.5.3 The 2D eigenstates with 7=M  and 6~0=m  respectively. 
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Chapter 2 
Eigenstates of Harmonic Oscillator and 
Spherical Laser Cavity:  
Generalized Coherent States and Polarization- 
entangled Patterns 
 
 It is well known that the paraxial wave equation for the spherical resonator has the 

identical form with the Schrödinger equation for the two dimensional (2D) harmonic 

oscillator. In this chapter we derive the paraxial wave equation has the same form with the 

Schrödinger equation for the 2D harmonic oscillator. The wave function for the paraxial field 

in the spherical laser resonator can be expressed as Hermite-Gaussian (HG) function with 

Cartesian symmetry or Laguerre-Gaussian function with cylindrical symmetry which are the 

eigenfunctions of harmonic oscillator mentioned in chapter one. We introduce the generalized 

coherent states (GCSs) to be related to the transition form HG modes to various experimental 

modes which are high order polarization-entangled transverse modes. With the connection 

between theoretical analysis and experimental results, the formation of complicated 

singularities can be represented. 

 

2.1 Paraxial Approximation of Maxwell’s Equations 

According to the Helmholtz wave equation, the wave propagation in a source-free 

medium follows the Maxwell’s equations which can be represented as [1-2] 
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Therefore, the electric field can be expressed as  
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Assume the electric field to be monochromatic wave ( ) tiezyxEE ω⋅= ,, , Eq. (2.1.2) can be 

written as   

 

( ) ( ) 0,,22 =+∇ zyxEk ,                                              (2.1.3) 

 

where k is the wave vector. For a wave which propagates primarily along the z direction, 

( )zyxEE ,,=  can be written as  

 

( ) ( ) zik zezyxuzyxE −⋅= ,,,, ,                                           (2.1.4) 

 

where ( )zyxu ,,  is the transverse variation, zk  is the z-component of the wave vector. 

Substituting Eq. (2.1.4) into Eq. (2.1.3), the Helmholtz equation is represented as 
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In the paraxial approximation, the term ( )zyxu
z

,,2

2

∂
∂  is quite small in comparison with 

remaining terms, therefore 
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where 
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yxt ∂
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=∇  and 222
zt kkk −= . We assume that ( ) ( ) ( )zyxGyxzyxu ,,,,, Ψ= , 

where ( )yx,Ψ  is a scalar wave function which describes the transverse variation of the beam, 

( )zyxG ,,  is a wave function which describes the wave as Gaussian spherical wave between 

plane wave and spherical wave. According to the cavity confinement, the Gaussian spherical 

wave can be written as  
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R e
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⎥
⎦
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⎣
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=
+

=
ω
ω

  ,                       (2.1.7) 

 

where 0ω  is the minimum spot size at 0=z , ( )zω  is the spot size at arbitrary position, and 

( )zR  is the radius of curvature. The relation is given by ( )
2

0 1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

Rz
zz ωω  and 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+=

2

1
z

zzzR R . Then Eq. (2.1.6) can be written as  

 

( ) ( ) 0,,,2 22 =Ψ⎥⎦
⎤

⎢⎣
⎡ +

∂
∂

−∇ zyxGyxk
z

ik tzt .                                 (2.1.8) 

 

Using paraxial approximation and after some algebra, the paraxial wave equation can be 

analyzed as: 
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tt

zttt

.                 (2.1.9) 

 

Let’s replace the variation in Eq. (2.1.9), the general transverse wave equation is shown in 

rectangular coordinate as  
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( ) 0,4
4

22
22 =Ψ⎥

⎦

⎤
⎢
⎣

⎡ +
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z
yxktt ω

.              (2.1.10) 

 

We can divide the wave function into two independent parts as  ( ) ( ) ( )ygxfyx =Ψ , , then  
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⎡
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z
yk

dy
d

y ω
 and 222

tyx kkk =+ . Assume that 

( ) ( ) ( )2
2

z
x

exvxf ω
−

=  and ( )z
x

ω
ξ 2
= , the differential equation can be written as  
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−+− v

zk
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d
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ξ
ξ

ξ
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which has the same form with Hermite polynomial: 022 =+′−′′ myyxy . Therefore the 

normalized wave functions are  

 

 ( ) ( ) ( )
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!!2
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1,

z
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z
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and the eigenvalues are 
( )

( )122
2

2 += m
z

kx ω
 ; 

( )
( )122

2
2 += n

z
k y ω

, where K,2,1,0, =nm . 

Here ( )mH  is the mth order Hermite polynomial. It is worthy to note that the differential 

equation is similar to the time-independent Schrödinger equation for the simple harmonic 

oscillator [3]. Combine the equations used before and the paraxial approximation, the 

longitudinal component of the wave vector can be given by  

 

 
( )

( )12
2 ++−= nm
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kk

z
z ω

.           (2.1.13) 

 

Using ∫ ⎟
⎠
⎞

⎜
⎝
⎛=

+
−

a
x

aax
dx 1

22 tan1  and integrate the phase term, then  

 ( ) ⎟⎟
⎠

⎞
⎜⎜
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R
z z

znmkzzk 1tan1 ,          (2.1.14) 

where ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++− −

Rz
znm 1tan1  is the Gouy phase shift. In Summary, the wave function in 

rectangular coordinate can be expressed as  
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where 
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. 

 For a cylindrical symmetry system, the general wave equation shown in Eq. (2.1.6) can 

be represented as  
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where 2

2

2
2 11

θ∂
∂
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⎠
⎞

⎜
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∂

∂
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i z

e
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rzru 20

2

,,,
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⋅⋅Ψ=
ω
ω

θθ ,            (2.1.17) 

 

where ( )θ,rΨ  is a scalar wave function describing the transverse profile of the wave. Using 

the paraxial approximation ( ) rzR >> , the general transverse wave equation in cylindrical 

coordinate can be written as  
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ω
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z
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Assume that ( )θ,rΨ  becomes two independent functions ( ) ( ) θθ ilerRr ⋅=Ψ , , then 

Eq.(2.1.18) can be expressed as  
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Continuously letting ( ) ( )rFerrR
r

l 2

2

ω
−

⋅= , then we can get  
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Considering the condition 2

22
ω
rt = , the differential equation can be varied as  

 

 ( ) ( ) 01
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11 2
22

=⎥
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⎤
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⎣
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+−+−++⋅ Flk

dt
dFtl

dt
Fdt t

ω .      (2.1.21) 

 

Eq. (2.1.21) is similar to the Laguerre polynomial: ( ) 01 =+′−++′′ pyyxyx α , then the 

eigenvalues are 
( )

( )124
2

2 ++= lp
z

kt ω
, where K,2,1,0=p  and K,2,1=l . Compare with 

the eigenvalues in rectangular coordinate, the relation is 112 ++=++ nmlp . As a result, 

the normalized wave function can be represented as  
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where 1,0 =lδ  for 0=l  and 0,0 =lδ  for 0≠l . In summary, the wave function in 

cylindrical coordinate can be represented as  

 

 ( ) ( ) ( )
( ) ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−−

+
− −

⋅⋅⋅Ψ= RR
z z

zlpkzi
zz

rzik

lp ee
z

rzrE
1

22

2
tan12

20
, ,,,

ω
ω

θθ .     (2.1.23) 

 

Figure 2.1.1 shows HG modes with different index (m , n) and standing waves of LG modes 

with different index (l , p). Both of the two modes are the eigenstates of 2D harmonic 

oscillator in rectangular and cylindrical coordinates respectively. Besides the two special 

eigenmodes in spherical laser cavity, there should be a general wave function for the cavity in 

case of some perturbations existing in the system. We will discuss the “generalized coherent 
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states” in the spherical laser cavity in next section to explain the experimental results between 

HG and LG beams in some special condition. 
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(0,0)                      (0,1)                       (0,2)    (0,3)

(1,0)                     (1,1)                       (1,2)     (1,3)

(2,0)                     (2,1)                       (2,2)     (2,3)

(0,0)                        (0,1)                       (0,2)  (0,3)

(1,0)                        (1,1)                        (1,2) (1,3)

(2,0)                       (2,1)                       (2,2)   (2,3)

(0,0)                        (0,1)                       (0,2)  (0,3)

(1,0)                        (1,1)                        (1,2) (1,3)

(2,0)                       (2,1)                       (2,2)   (2,3)

Fig. 2.1.1 (a) Hermite-Gaussian modes with different index (m , n). (b) Standing waves of 
Laguerre-Gaussian modes with different index (l , p) 

(a) 

(b) 
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2.2 The Generalized Coherent States:  
    Between Hermite-Gaussian and Laguerre-Gaussian modes 

As mentioned above, HG and LG modes are the eigenmodes of the spherical laser cavity. 

In this section we will discuss another complete basis, generalized coherent state, which is 

also the eigenmode between HG and LG modes in the laser cavity. To explain other 

experimental patterns which are different from HG and LG modes, we need to use the 

generalized coherent states to be related to the transition from HG modes , ( , , )HG
m n x y zΦ  into 

various experimental modes with different phase factor. Before demonstrating the generalized 

coherent states, we consider a related problem of harmonic oscillator with a perturbation.  

The Hamiltonian of a 2D isotropic harmonic oscillator can be expressed as 

 

( ) ( )222
0

22
0 ˆˆ

2
1ˆˆ

2
1ˆ yxmωPP
m

H yx +++=  .          (2.2.1) 

 

After some definitions,† 
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hhhh

====  
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2
1ˆ PiqaPiqaPiqaPiqa −=+=−=+=   

                  (2.2.2) 

The Hamiltonian can be written as 

 

 ( ) ( )1ˆˆˆˆˆˆˆˆ
2
1ˆ

2
†

21
†

10
2

2
2

1
2

2
2

100 ++=+++= aaaaωqqPPωH hh  .      (2.2.3) 

 

In order to simplify the complex mathematics, here we use some operators to make the 
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process smoothly: 

 ( ) ( ) ( )2
†

21
†

11
†

22
†
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2
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Therefore, the operators have some characteristics as following: 
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Replacing the index of the state 21,nn  with  
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+
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   ,   
2   ,           (2.2.6) 

 

equation (2.2.5) can be reduced as 
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mjjjmjJ

z ,,ˆ
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=

+=
 .             (2.2.7) 

 

 Consider a charged particle in a harmonic oscillator potential and is applied a uniform 

magnetic field in the z  direction. The Hamiltonian is expressed as  
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The operator yĴ  in equation (2.2.8) share the same eigenstate of 0Ĥ , so we should use 
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some techniques of unitary transformation to solve this problem. After the unitary 

transformation twice as 

 

 
†††
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the new Hamiltonian can be written as  

 

 
( )
( ) zLL

xLL

JωaaaaωωH

JωaaaaωωH

ˆ21ˆˆˆˆˆ

ˆ21ˆˆˆˆˆ

2
†

21
†

1
22

0

2
†

21
†

1
22

0

hh

hh

±+++=′′

++++=′
   .      (2.2.10) 

 

The unitary transformation makes the Hamiltonian become a new one, so the corresponding 

eigenstate become the new state which comprises the old eigenstate with degeneracy 
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where ⎟
⎠
⎞

⎜
⎝
⎛

′ 2,
π

mj
mmd  is the so-called Wigner d-coefficient [4-5]. If the d-coefficient can be 

known, the problem can be solved exactly. Therefore we want to extract the d-coefficient 

following. The d-coefficient can be expressed as ( ) mjemjd yJij
mm ,,

ˆ
,

ββ −
′ ′= , here we use 

the relations: 
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then 
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The generating function is applied to find out the d-coefficient: 
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It is worthy to note the binomial term in equation (2.2.14) 
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then equation (2.2.14) can be written as 
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Using the important relations: 
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The generating function is simplified to  
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Again using the binomial expansion, equation (2.2.18) is written as 
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                 (2.2.19) 

 

After some complicated algebra, equation (2.2.19) is shown as 
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Finally, the d-coefficient can be extracted by comparing equation (2.2.14) and (2.2.20): 
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Replacing the mj,  state by 21 , nn , the d-coefficient becomes: 
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Finally the problem of a charged particle in a harmonic oscillator potential and is applied a 

uniform magnetic field in the z  direction can be solved exactly. The wave function is 
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and 
2
πβα == . Figure 2.2.1 depicts the wave function with different ( )21 , nn  of a charged 

particle in a harmonic oscillator with uniform magnetic field. It is obvious to understand that a 

charged particle in a harmonic oscillator with uniform magnetic field leads to the eigenmodes 

to be LG modes which comprise degenerate HG modes with special d-coefficients and other 

phase. In general, equation (2.2.23) and (2.2.24) demonstrate the connection between HG and 

LG modes of harmonic oscillator. With manipulating the parameters α  and β , various 

wave functions between HG and LG modes can be demonstrated arbitrarily. 

 The problem which is solved exactly by use of the unitary transformation and 

complicated algebra can be analogous to the eigenstates in the spherical laser cavity. Because 

it is well known that the paraxial wave equation for the spherical resonator has the identical 

form with the Schrödinger equation for the 2D harmonic oscillator. The wave function for the 

paraxial field in the spherical laser resonator can be expressed as HG function with Cartesian 

symmetry or LG function with cylindrical symmetry. The normalized wave function of the 

HG mode for a spherical cavity with longitudinal index l and transverse index m and n in 

Cartesian coordinates ( x , y , z ) is given by 
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The normalized wave function of LG mode with longitudinal index s, transverse radial index 

p, and transverse azimuthal index l in cylindrical coordinates (ρ, φ, z) is given by  
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2)(1)( Ro zzwzw += , ow  is the beam radius at the waist, and Rz is the Rayleigh range.  

)(, ⋅nmH  and )(⋅l
pL  are the Hermite polynomials and associated Laguerre polynomials, 

respectively. The factor LT ff ∆∆=Ω / , LcfL 2=∆  is the longitudinal mode spacing and 

Tf∆  is the transverse mode spacing. Therefore, slpk ,,  is the wave number and ( )Rzz1tan −  

is the Gouy phase. In terms of the effective length L, the wave number slpk ,,  is given by 

[ ]Ω++= |)|2(,, lpsLk slp π . Here we applied the same method which is mentioned above to 

connect HG and LG in spherical cavity. Equation (2.2.23) represents the general wave 

function, so we fix 
2
πβ =  and manipulate α  to get the various wave functions which are 

defined as GCSs between HG and LG modes. Figure 2.2.2 shows the numerical patterns of 

the GCSs with different phase factor and different order. As shown in Fig. 2.2.2, it exhibits 

that the phase factor α  plays an important role for the GCSs to transform from the HG 

modes to the LG modes in different order. On the one hand the GCSs represent to the HG 

modes when the phase factor is equal to zero, and on the other the GCSs represent to the LG 

modes when the phase factor is equal to / 2π . It can be seen distinctly that HG modes steady 

convert to LG modes by controlling the phase factor precisely. 



Chap 2   Eigenstates of Harmonic Oscillator and Spherical Laser Cavity 
                                            

46 

 

( )9,1( ) ( )10,0, 21 =nn ( )8,2

( )7,3 ( )6,4 ( )5,5

Total

Odd

Total

Odd

Fig. 2.2.1 The wave functions with different ( )21 , nn  of a charged particle in a harmonic 

oscillator with uniform magnetic field. 



Chap 2   Eigenstates of Harmonic Oscillator and Spherical Laser Cavity 
                                            

47 

 

(0,20) (5,15) (10,10) (2,18) 

6
π

3
π

2
5
π

0

),( 21 nn (7,13) 
α

2
π

(0,20) (5,15) (10,10) (2,18) 

6
π

3
π

2
5
π

0

),( 21 nn (7,13) 
α

2
π

Fig. 2.2.2 Numerical patterns of the GCSs with different phase factor and different order. 
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2.3 Generation of Polarization-entangled Optical Coherent Waves 

 Over the past few years a considerable number of studies have been made on the 

coherent wave properties in mesoscopic physics. Many researches have been focused on 

phase singularities in scalar fields, known as wave front dislocations, such as quantum 

ballistic transport [6], vortex lattices in superconductors [7], quantum Hall effects [8], linear 

and nonlinear optics [9-10] and Bose-Einstein condensates [11-12]. In recent years, 

polarization singularities, known as wave front disclinations, are also noticed in modern 

physics [13-15]. As mentioned by Freund [16], there are two types of singularities of the 

polarization vectors of paraxial optical beams: vector singularities and Stokes singularities. 

Vector singularities are isolated, stationary points in a plane at which the orientation of the 

electric vector of a linearly polarized vector field becomes undefined. The nature of the vector 

singularities has been studied in coherent optical waves with the correlated behavior of spatial 

structures and polarization states [17-20]. The experimental results reveal the importance of 

vector singularities with the coherent polarization vector field from a highly isotropic 

microchip laser system [21].  

Currently, a diode-pumped microchip laser has been employed to perform analogous 

studies of coherent phenomenon in scalar waves [22-23]. The experimental polarization 

vector field is found to be made up of two linearly polarized modes with different spatial 

structures that are phase synchronized to a single frequency. With the pump source of 

ring-shaped profile, the high order entangled transverse modes constructed by the 

polarization-resolved patterns are found to lack of variety and manipulation in microchip laser 

cavity. To overcome the weakness of operation, in this experiment we demonstrate the two 

important configurations instead of the doughnut pump profile to get various kinds of 

polarization-entangled patterns. One of the configurations is off-axis focused pumping profile, 

and the other is on-axis circular pumping. Consequently, the complex transverse modes can 
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be differentiated into four types: square pattern, hyperbolic pattern, elliptic pattern, and 

circular pattern. More noteworthy is that all types of the polarization-entangled patterns can 

be well analyzed with the generalized coherent states.  

With the relation between pumping position and the phase factor in the overlap function of 

intensity distribution and pumping distribution, we can manipulate various kinds of 

polarization-entangled patterns in the highly isotropic resonator. For that reason, the formation 

of complex singularities can be clearly represented with the connection between theoretical 

analysis and experimental results. 
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2.3.1 Experimental Setup and Results 

In this experiment, the laser system is a diode-pumped Nd:YVO4 microchip laser and the 

resonator configuration is shown in Fig. 2.3.1. The laser gain medium was a c-cut 2.0-at. % 

Nd:YVO4 crystal with a length of 2 mm. One side of the Nd:YVO4 crystal was coated for 

partial reflection at 1064nm. The radius of curvature of the cavity mirror is R=10 mm and its 

reflectivity is 99.8% at 1064nm. The pump source was an 809 nm fiber-coupled laser diode 

with a core diameter of 100µm, a numerical aperture of 0.16, and a maximum output power of 

1W. A focusing lens with 20 mm focal length and 90% coupling efficiency was used to 

reimage the pump beam into the laser crystal. Since the YVO4 crystal belongs to the group of 

oxide compounds crystallizing in a Zircon structure with tetragonal space group, the 

Nd-doped YVO4 crystals show strong polarization dependent fluorescence emission duo to 

the anisotropic crystal field. The fourfold symmetry axis of the YVO4 crystal is the 

crystallographic c axis; perpendicular to this axis are the two indistinguishable a and b axes. 

Therefore, the Nd: YVO4 crystal is precisely cut along the c axis for high-level transverse 

isotropy. It is practical to note that our gain medium is different from the conventional Nd: 

YVO4 crystals that are cut along the a axis to use the largest stimulated emission cross section 

for lowering the lasing threshold. To measure the transverse far-field pattern, the output beam 

was directly projected into the CCD camera. Figure 1 shows the scheme of the highly 

isotropic laser system in this work. All of the experimental modes are preserved from the 

near-field to the far-field patterns because they are pure transverse modes which correspond to 

the same Gouy phase.   
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Fig. 2.3.1 Experimental setup for the generation of polarization-entangled transverse modes 
with off-axis pumping scheme in a highly isotropic diode-pumped microchip laser. 
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Experimental results demonstrate that the transverse patterns were localized on the 

elliptic orbits when we used an output coupler with the reflectivity of 98% in the laser cavity 

[17-18]. However, the transverse patterns were usually the extended structures restricted by 

the hyperbolic caustics when we used an output coupler with the reflectivity of 99%. 

Above-mentioned results were all manifested with the pump source of ring-shaped profile. In 

this experiment we demonstrate the off-axis focused configuration to get the first three kinds 

of polarization-entangled patterns: square pattern, hyperbolic pattern, and elliptic pattern 

which are shown in Fig. 2.3.2 (a)-(c). With controlling the pumping position 0 0( , )x y , the 

square, hyperbolic, and elliptic pattern can be generated according to the pumping positions 

which are equal to ( 50 ,63 )m mµ µ− , ( 140 ,20 )m mµ µ− , and ( 137 ,61 )m mµ µ− , respectively. 

The radial distance of the pumping beam 2 2
0 0 0r x y= +  determines the lasing mode size. 

Here the radial distances of pumping beam of the square, hyperbolic, and elliptic pattern are 

80, 140, and 150 mµ , respectively. Consistently the mode sizes of the three experimental 

transverse modes are 95, 139, and 131 mµ , respectively. By use of the ring-pump profile in 

the past, we can generate the hyperbolic pattern which is unstable due to the environmental 

disturbances. To our knowledge, this is the first time to employ the off-axis pumping to 

generate the polarization-entangled states which are respectably stable with highly isotropic 

laser system. Figure 2.3.2 (d) shows the circular pattern which can be generated with the 

on-axis defocused pumping scheme. The on-axis pumping provides a good symmetry to 

generate the stable circular modes. It can be seen that the formation of the stationary 

polarization-entangled mode is primarily dependent on the overlap between the pump 

intensity and the lasing mode distribution. This is consistent with the fact that the cavity mode 

with the biggest overlap of the gain region will dominate the lasing process. Accordingly, a 

significant finding is that controlling the pumping approach and pumping position can 

straightforwardly manipulate the generation of various stationary polarization-entangled 
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modes in the highly isotropic resonator. 

For reasons mentioned above, adjusting the pumping beam delicately can generate the 

lasing modes to be made up of two distinct patterns with orthogonal linear polarization. That 

is to say, the transverse pattern is linearly polarized, but the polarization is spatially dependent. 

Although the structures of the polarization-entangled patterns are complex, the transverse 

modes are still stable and repeatable with the critical pumping approach in highly isotropic 

laser system. Figure 2.3.3-2.3.6 show the experimental polarization-resolved patterns in the 

450, 900, 1350, and 1800 direction according to the patterns in Fig. 2.3.2 (a)-(d). It is found that 

the entanglement of the spatial structures and polarization states forms an optical vector field 

and leads to the transverse patterns to be polarization dependent. The basic essentiality for a 

vector polarization pattern is that the orthogonal polarization modes with different spatial 

patterns are phase synchronized to a common frequency. The measurement of the optical 

spectrum verifies that the polarization-resolved pattern is phase synchronized to a single 

frequency at 1064 nm. 
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

Fig. 2.3.2 Experimental polarization-entangled patterns (a) square pattern, (b) hyperbolic 
pattern, (c) elliptic pattern, (d) circular pattern. 
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Fig. 2.3.3 Upper: Square experimental polarization-resolved patterns (a) 450 polarization (b) 
900 polarization (c) 1350 polarization, (d) 1800polarization 

(a) (b) 

(c) (d) 
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(a) (b) 

(c) (d) 

Fig. 2.3.4 Upper: Hyperbolic experimental polarization-resolved patterns (a) 450 polarization 
(b) 900 polarization (c) 1350 polarization, (d) 1800polarization 
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(a) (b) 

(c) (d) 

Fig. 2.3.5 Upper: Elliptical experimental polarization-resolved patterns (a) 450 polarization (b) 
900 polarization (c) 1350 polarization, (d) 1800polarization 
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(a) (b) 

(c) (d) 

Fig. 2.3.6 Upper: Circular experimental polarization-resolved patterns (a) 450 polarization (b) 
900 polarization (c) 1350 polarization, (d) 1800polarization 
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2.3.2 Analytical Wave Functions for Experimental Polarization-             
 entangled Patterns 
 
In terms of the HG modes, the SU(2) coherent states for the elliptic modes are expressed 

as [24,25]  
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where the parameter ϕ  is the relative phase between various HG modes and is related to the 

eccentricity of the elliptic trajectory. As shown in a variety of integrable 2D quantum billiard 

systems, the phase factor ϕ  in the SU(2) coherent states plays a vital role in the 

quantum-classical correspondence [26,27]. It has been confirmed that the experimental 

elliptic patterns agree very well with the SU(2) elliptic states [28,29]. However the SU(2) 

coherent states can only be used to describe the elliptic patterns, we develop the GCSs to be 

related to the transition from a HG mode , ( , , )HG
m n x y zΦ  into various experimental modes with 

different phase factor. Any LG modes , ( , , )LG
p l r zφΦ  can be decomposed into a sum of HG 

modes 
1 2, ( , )HG

k n n k x y+ −Φ  with index relations 1n p= , 2n p l= +  and the Wigner 

d-coefficient and phase factor α  equal to / 2π :   

 

 ( )
( )

( ) ( ) ( ) ( )zyxdeezr HG
knnk

nn

nnnn
k

nn

k

ki
nn

iLG
lp ,, ,,

21

21

2121

2121

,
2

2
,

20

2
, −+

+

−+
−

+

=

+
−

Φ××=Φ ∑ βφ αα
     (2.3.2) 

 

where  
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As mentioned in last section, the GCSs can be written as 
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The GCSs in Eq. (2.3.4) exhibit a traveling-wave property. The standing-wave representation 

of GCSs is given by 
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where the phase factor can be replaces by ϕ . The GCSs represent a general family to 

comprise the HG and LG mode families as special cases. More importantly, the superposition 

of the GCSs with the particular phase factor reveals the patterns of experimental results. It is 

worthwhile to mention that the present GCSs are intimately correlated to the Ince-Gaussian 

(IG) beams described by Miguel A. Bandres and Julio C. Gutierrez-Vega [30-33]. 

Ince-Gaussian beams not only constitute the exact and continuous transition modes between 

HG and LG beams but also constitute the third complete family of transverse eigenmodes of 

stable resonator. The transverse structures of IG modes are adjusted by the ellipticity factor, 

whereas the present GCSs are varied by the additional phase factor. It can be shown that the 

IG modes can be completely identical to the GCSs with some connection between the 

ellipticity factor of IG modes and the phase factor of GCSs. However the representation of 
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GCSs is more convenient and elegant to interpret the present experimental patterns. 

 With the discussion of GCSs before, we applied the GCSs to explain the experimental 

results and found that the observed vector patterns shown in Figs. 2.3.3-2.3.6 can be fittingly 

described as following wave functions respectively:  
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The wave function can be written as ˆ( , , ) ( , , )xE x y z E x y z x=
v v

ˆ( , , )yE x y z y+
v

, where ( , , )xE x y z
v

 

and ( , , )yE x y z
v

 are composed by the GCSs. With the analytical function given in Eqs. 

(2.3.6)-(2.3.9), Fig. 2.3.7 depicts the numerically reconstructed patterns for the four kinds of 

the experimental results shown in Fig. 2.3.2. The patterns in Fig. 2.3.7(a) and (d) which are 

found to be close to HG and LG mode arise from the phase factor slightly different from the 

phase factor of HG and LG mode. Moreover, the superposition of GCSs with the phase factor 

appreciably different from the phase factors of HG and LG modes reveals the hyperbolic and 

elliptic modes shown in Figs. 2.3.7(b) and (c). From this point of view, the phase factor 

indeed plays a vital role in the GCSs to construct the polarization-entangled modes different 

from pure HG and LG modes.  
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Fig. 2.3.7 Numerically reconstructed patterns for the experimental results shown in Fig. 2.3.2. 

(a) (b)

(c) (d)

(a) (b)

(c) (d)
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For stable stationary polarization-entangled wave patterns, the phase factor ϕ  of the 

GCS is governed by the criterion of the maximum overlap between the cavity mode 

distribution and the pump distribution. Note that the maximum overlap integral corresponds 

to the minimum pump threshold. The overlap integral for the transverse mode ( , , )iE x y z
v

 can 

be written as  

 

( ) ( , , ; ) ( , )pI S x y z R x y dxdyϕ ϕ= ∫∫                                    (2.3.10) 

 

where the normalized intensity distribution ( , , ; )S x y z ϕ  and the pumping distribution 

( , )pR x y  are given by  

  

 
2

2

( , , )
( , , ; )

( , , )

i

i

E x y z
S x y z

dx dy dz E x y z
ϕ ∞ ∞ ∞

−∞ −∞ −∞

=
∫ ∫ ∫

v

v  , ,i x y=                      (2.3.11) 

and      

 
2 2

0 0
2 2

( ) ( )2 1( , ) exp[ 2 ]p
p p

x x y y
R x y

π ω ω
− + −

= −                       (2.3.12) 

 

with the pumping radius 25p mω µ≅  in the scheme. Figure 2.3.8 shows the overlap 

functional ( )I ϕ  as a function of ϕ  for the state ( )sin
4,7 , , ;xE x y z ϕ= Ψ

v
 and 

( )sin
3,18( , , ) , , ;xE x y z x y z ϕ= Ψ

v
 corresponding to the experimental patterns shown in Figs. 2.3.2 

(a) and (c) with 0 50x mµ= − , 0 63y mµ= , and 0 137x mµ= − , 0 61y mµ= , respectively. The 

maximum of the overlap indicates the most possible phase factor to construct the 

experimental result with the specific off axis. As a result, we can control the phase factor in 

the vicinity of the peaks 0.07π  and 0.4π  in Figs. 2.3.8 (a) and (b) to simulate the patterns 
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which are in good agreement with the experimental patterns as shown in Figs. 2.3.2 (a) and 

(c). The diagram of the phase factor indicates the accurate direction to construct the 

experimental results. In other words, we can manipulate various patterns by use of the relation 

between the pumping position and the phase factor in the overlap function. Continuously, Fig. 

2.3.9-2.3.12 display the numerical results of the polarization-resolved patterns according to 

the patterns in Fig. 2.3.3-2.3.6. From the analytical results of the polarization-resolved 

patterns, we can confirm that the polarization-entangled patterns are composed of two distinct 

patterns with orthogonal linear polarization. The important point to note is that the transverse 

pattern is linearly polarized, but the polarization is spatially dependent. The good agreement 

between the reconstructed and experimental patterns verifies that the GCSs provide a practical 

description for the polarization-entangled optical coherent waves.  
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Fig. 2.3.8 (a) The overlap functional ( )I ϕ  as a function of ϕ  for the state ( , , )xE x y z
v

 in 
Eq. (2.3.6). (b) The overlap functional ( )I ϕ  as a function of ϕ  for the state ( , , )xE x y z

v
 

in Eq. (2.3.8).  
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Fig. 2.3.9 Numerically reconstructed patterns for the experimental results shown in 
Fig. 2.3.3.  

(a) (b) 

(c) (d) 
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(a) (b) 

(c) (d) 

Fig. 2.3.10 Numerically reconstructed patterns for the experimental results shown in Fig. 2.3.4. 
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(a) (b) 

(c) (d) 

Fig. 2.3.11 Numerically reconstructed patterns for the experimental results shown in Fig. 2.3.5. 
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(a) (b) 

(c) (d) 

Fig. 2.3.12 Numerically reconstructed patterns for the experimental results shown in Fig. 2.3.6. 
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 Two types of point singularities in the polarization of a paraxial Gaussian laser beam had 

been researched in recent years. Vector singularities are isolated, stationary points in a plane 

at which the orientation of the electric vector of a linearly polarized vector field becomes 

undefined. Therefore elliptic singularities are isolated, stationary points in a plane at which 

the orientation of the elliptically polarized fields becomes undefined. In this chapter, we 

investigate the elegant GCSs to reconstruct the polarization-entangled experimental results. 

For this reason, the V-points of the various experimental patterns which are the transitions 

between HG and LG modes can be revealed explicitly. Vector point singularities are 

conventionally described in terms of the angle field ( , ) arctan( / )y xx y E EΘ = , where xE  and 

yE  are the scalar components of the vector field E
v

 along the x and y axes. The vortices of 

( , )x yΘ  are the vector singularities at which the orientation of the vector of E
v

 is undefined. 

Figure 2.3.13 shows the contour plot of phase field ( , )x yΘ  according to the patterns which 

are reconstructed by the GCSs in Fig. 2.3.7. The contour plots reveal that the singularities of 

different GCSs belong to extremely different kinds of singular patterns. Figures 2.3.13 (a), (b), 

and (d) display the grid, twist, and row patterns respectively. As well, Fig. 2.3.13 (c) shows 

that the singular pattern seems to be the transition between the twist and row patterns 

according to Fig. 2.3.13 (b) and (d). Figure 2.3.14 depicts the contour plot of angle field 

( , )x yΘ  for the boxed regions to show the details, and it can be found that all saddle points 

are to be open saddles with no joined arms. Since no closed saddles are found in the 

experimental vector field, no extrema are observed. The phase extrema are really rare because 

there is little room left in the phase field to accommodate them [34,35]. 
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Fig. 2.3.13 Contour plot of angle field ( , )x yΘ  according to the reconstructed patterns in Fig. 

2.3.7. 

(a) (b)

(c) (d)

(a) (b)

(c) (d)
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Fig. 2.3.14 Contour plot of angle field ( , )x yΘ  for the boxed regions shown in Fig. 2.4.13. 

(a) (b)

(c) (d)

(a) (b)

(c) (d)
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2.3.3 Summary 

In summary, we have used a high-level isotropic laser with off-axis focused pumping and 

on-axis defocused pumping to generate various high-order polarization-entangled optical 

coherent patterns. The structures of the polarization-entangled patterns are highly stable and 

the experimental results are easily reproducible. All the experimental patterns have been well 

analyzed with the GCSs which constitute a useful family of quantum states for the 2D 

harmonic oscillator. Furthermore, various patterns can be manifestly explained by use of the 

relation between the pumping position and the phase factor of the GCSs in the overlap 

integral. With the connection between theoretical analysis and experimental results, the 

formation of vector singularities can be clearly represented. The perfect reconstructed results 

also reveal that the GCSs play an important role in the mesoscopic region with optical 

coherent waves. 
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Chapter 3 
Three-dimensional Optical Coherent 
Waves with Longitudinal-transverse 
Coupling  
 

The bunch of energy levels in the quantum spectra has been found to lead to the shell 

structures in nuclei [1], metallic clusters [2], and quantum dots [3]. More intriguingly, the 

existence of bunch level has a deep and far-reaching relation with the emergence of classical 

features in a mesoscopic quantum system [4-5]. Recent experimental and theoretical studies 

have verified that the coherent superposition of degenerate or nearly degenerate quantum 

states can result in mesoscopic quantum wave functions localized on periodic orbits in the 

classical counterpart of the given system [6-7]. Furthermore, experimental results [8-10] 

indicated that the mode-locking effects lead to the stationary coherent waves associated with 

periodic orbits to be robust and structurally stable within a finite range of the perturbation or 

detuning. Devil’s staircases, Arnold tongues, and Farey trees are the hallmark of mode locking 

and have been found to be ubiquitous in physical, chemical and biological systems [11-13]. 

The phenomenon of mode-locked staircases have been extensively studied in 

Rayleigh-Bénard experiments [14], charge-density-wave system [15-16], Josephson-junction 

arrays [17-18], reaction-diffusion systems [19], the modulated external-cavity semiconductor 

laser [20], the driven vortex lattices with periodic pinning [21], the motion of a charge particle 

in two waves [22], and the bimode CO2 laser with a saturable absorber [23]. Nevertheless, 

experiments on the mode-locked staircase in high-order optical coherent waves have never 

been realized. 
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3.1 Frequency Locking, Mode Locking, and Resonance 

    In the 17th century the Dutch physicist Christian Huyghens observed that two clocks 

hanging back to back on the wall tend to synchronize their motion. This phenomenon is 

known as phase locking, frequency locking, or resonance, and is generally present in 

dynamical systems with two competing frequencies [24-25]. The phenomenon of these 

important effects has been extensively studied in current-driven Josephson junction [26], 

Belusov-Zabotinsky reaction [27], and ionic conductor barium sodium niobate [28]. 

Furthermore Mogens Jensen, Per Bak, and Tomas Bohr found that at the transition to chaos 

the motion is always locked. As one changes the frequency of either oscillator, the ratio 

between the two frequencies locks onto every single rational value qp / . To demonstrate the 

important and interesting results, we employ the high-Q laser system to realize the frequency 

locking with the coupling of longitudinal and transverse modes.   

 

3.2 Devil’s Staircase with Two Competing Frequencies 

    The phenomenon of devil’s staircase comes from two competing frequencies. For two 

oscillators in Fig. 3.2.1, as one changes the frequency of either oscillator the ratio between the 

two frequencies locks onto every single rational value qp / . If a pendulum is employed to fix 

to a driving frequency and plots the actual frequency of the pendulum against the natural 

frequency, we will obtain a curve consisting of infinity of steps. The transition can be 

established by varying the ratio of two frequencies and may be studied by means of circle 

map, 

 

( ) ( )πθπθθ 2sin2/)( Kf −Ω+=                        (3.2.1) 

 

where Ω  represents the ratio of two frequencies and K  is the coupling strength of the two 
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oscillator. The ratio between the frequencies with considering the coupling strength is given 

by the winding number 

 

[ ]θθ −=Ω −

∞→
)(lim),( 1 n

n
fnKW .                       (3.2.2) 

 

Figure 3.2.2 shows the variation when the coupling strength starts from 0 to 99.0 . When the 

coupling strength is strong enough ( 99.0=K ), the ratio of two frequencies always locks onto 

one of the infinity of resonant frequencies. If one slowly changes the driving frequency, the 

pendulum will lock onto each resonant frequency, jumping from one to the next, forming an 

infinite series of steps. There is infinity of steps between any two steps because between any 

two rational numbers there is infinity of rational numbers. It is the reason why the property of 

the curve shown in Fig. 3.2.2 (d) has been named “the Devil’s staircase”. 
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Fig. 3.2.1 Two oscillators of different frequencies with some coupling strength 

Fig. 3.2.2 Results of circle map with different coupling strength. 
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3.3 Three-dimensional Coherent Waves Demonstrated from Laser  
 Cavity  

In this section we originally show that the longitudinal-transverse coupling leads to the 

formation of three-dimensional coherent waves localized on Lissajous parametric surfaces 

which are formed by the Lissajous curves with the relative phase varying with the 

longitudinal direction. A high-Q symmetric laser cavity is experimentally employed to verify 

the existence and prevalence of 3D coherent waves in the mesoscopic regime. More 

importantly, the detailed experimental measurements indicate that the formation of plentiful 

3D coherent waves constructs a nearly complete devil’s staircase in the mesoscopic regime. 

Since the laser cavity may be used as an excellent analog system for the investigation of 

quantum systems, the present results will be useful for understanding the mesoscopic wave 

functions.   

 

3.3.1 Theoretical Analysis for the Resonator 

The resonance frequency for an optical cavity with two spherical mirrors and the mirror 

distance L is generally expressed as )]()1([),,( LTL ffnmlflmnf ∆∆+++∆= , where 

Lcf L 2=∆  is the longitudinal mode spacing, Tf∆  is the transverse mode spacing, and l is 

the longitudinal mode index, and m and n are the transverse mode indices. For an empty 

symmetric resonator consisting of two identical spherical mirrors with radius of curvature R, 

the bare ratio between the transverse and longitudinal mode spacing is given by       

( ) )1(cos1 1 RLff LT −=∆∆=Ω −π , where 2)2( LRLz R −= . As a consequence, the 

bare mode-spacing ratio Ω can be changed in the range between 0 and 1 by varying the cavity 

length L for a given R. Figure 3.3.1 shows a portion of the spectrum ),,( mnlf  as a function 

of the bare mode-spacing ratio Ω for the range of 3010 ≤≤ l  and ( ) 200 ≤+≤ nm . It can be 

seen that the degeneracies and gaps appear at the values of Ω corresponding to the rational 

numbers QP , forming an interesting fractal structure. Degeneracies in the spectra of the 
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quantum systems have been found to play a vital role in the relationship between quantum 

shell structures and classical periodic orbits, especially in the mesoscopic regime. The 

following analysis will verify that the longitudinal-transverse coupling and the mode-locking 

effect can lead to the 3D coherent waves to be localized on the parametric surfaces with 

Lissajous transverse patterns.   

The wave functions of the Hermite-Gaussian (HG) modes for a spherical cavity are given 

by  
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2)(1)( Ro zzwzw += , ow  is the beam radius at the waist, and Rz is the Rayleigh 

range. When the mode-spacing ratio Ω is locked to a rational number QP , the group of the 

HG modes ),,()(
,, zyxHG

sklqknpkm ooo +++Φ  with k=0,1,2,3···· can be found to constitute a family of 

frequency degenerate states, provided that the given integers (p, q, s) obey the equation 

( ) 0)( =++ QPqps . For convenience, the integer s is taken to be negative.  The equation 

( ) 0)( =++ QPqps  indicates that pq +  needs to be an integral multiple of Q, i.e. 

QKpq ×=+ , where K=1, 2, 3 ····. It has been verified that the coherent superposition of the 

mode-locked degenerate states manifestly leads to the wave functions to be associated with 

the classical periodic orbits in the 2D quantum systems [29-31]. 
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Fig. 3.3.1 A portion of the spectrum ),,( mnlf  as a function of the bare mode-spacing ratio Ω  
for the range of 3010 ≤≤ l and 20)(0 ≤+≤ nm . 
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In the present case, the 3D coherent states constructed by the family of ),,()(
,, zyxHG

sklqknpkm ooo +++Φ  

can be generally given by ∑
=

+++Φ=Ψ
M

k

HG
sklqknpkm

ik
o

sqp
lnm zyxezyx

ooo

o

ooo
0

)(
,,

,,
,, ),,();,,( φφ , where the 

parameter oφ  is the relative phase between various HG modes at 0=z . The relative phase 

oφ  has been verified to play an important role in the quantum-classical connection. With the 

expression of equation (3.3.1), the 3D coherent states can be rewritten as  
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where  
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,
)(,

, ),,();,,( φφ  ,        (3.3.4) 

and 

( ) oRzzpqz φφ ++= −1tan)()(  .           (3.3.5) 

 

Equation (3.3.3) indicates that the wave pattern of the 3D coherent state );,,(,,
,, o

sqp
lnm zyx
ooo

φΨ  

is utterly determined by the wave function );,,(,
, o
qp
nm zyx

oo
φΨ . As seen in equation (3.3.4), the 

wave function );,,(,
, o
qp
nm zyx

oo
φΨ  is a coherent superposition of the modes 

);,,(, oqknpkm zyx
oo

φ++Φ  with the phase factor )(zφ . It is worth while to mention that the 

z-dependence of the phase factor )(zφ  arises from the Gouy-phase difference between the 

HG modes with distinct transverse orders. With the results obtained in the 2D quantum 

harmonic oscillator [32], the wave function );,,(,
, o
qp
nm zyx

oo
φΨ  can be manifestly deduced to 

have the intensity distribution concentrated on the parametric surface:  
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where πϑ 20 ≤≤  and ∞≤≤∞− z . Equation (3.3.6) reveals that the parametric surface 

related to the 3D coherent waves is formed by the Lissajous curves with the relative phase 

varying with the position z. In other words, the longitudinal-transverse coupling leads to the 

3D coherent states to be localized on the Lissajous parametric surfaces. With QKpq ×=+  

and equation (3.3.5), the total change of the relative phase of the 3D coherent wave from 

−∞=z  to ∞=z  is given by πφφ )()()( QK ×=−∞−∞ . On the other hand, the total change 

of the relative phase of the 3D coherent wave from one cavity mirror at 2Lz −=  to another 

one at 2Lz =  is given by πφφ )()2()2( PKLL ×=−− , where the mode-locking 

condition ( )( )2)2(tan 1 πQPRL =−  is used. Figure 3.3.2 depicts an example for the 

Lissajous parametric surface described in equation (3.3.6) for the range from 2Lz −=  to 

2Lz =  with )2,3(),( =qp , 2=P , and 0=oφ . The tomographic transverse patterns are 

also plotted in the same figure to display the Lissajous feature of the 3D coherent state. Even 

though the relationship between the 2D quantum coherent states and the Lissajous curves has 

been previously developed [29-31], this is the first time that the 3D coherent states are derived 

to be related to the Lissajous parametric surfaces.      
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Lz  50. 0　 　 L  40. 0 　 L 31.0　 L 22.0　 L 15.0　 L  07. 0　 L 0. 0

L  07. 0 L 15.0 L 22.0 L 31.0 L   40.0 L  50. 0

Lz  50. 0　 　 L  40. 0 　 L 31.0　 L 22.0　 L 15.0　 L  07. 0　 L 0. 0

L  07. 0 L 15.0 L 22.0 L 31.0 L   40.0 L  50. 0

Fig. 3.3.2 Upper: an example for the Lissajous parametric surface described in equation (3.3.6) for the 
range from 2Lz −=  to 2Lz =  with )2,3(),( =qp , 2=P  and 0=oφ .  Bottom: the 

tomographic transverse patterns along the longitudinal axis. 
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3.3.2 Experimental Setup and Results 

The wave patterns localized on the classical orbits have been realized in the degenerate laser 

resonator with the ring-shaped pump profile [33]. However, the index order of the laser 

modes is not high enough to explore the complete devil’s staircase phenomenon in the 

wave-ray correspondence or quantum-classical correspondence. To generate super high-order 

laser modes, here we use the off-axis focused pumping scheme to excite a very high-gain 

crystal in a symmetric cavity with extremely low losses (<0.5%), as depicted in Fig. 3.3.3. 

The laser medium was a a-cut 2.0-at.% Nd3+:YVO4 crystal with a length of 1 mm. Both sides 

of the Nd:YVO4 crystal was coated for antireflection at 1064 nm (reflection < 0.1%). The 

radius of curvature of the cavity mirrors are R=10 mm and their reflectivity is 99.8% at 1064 

nm. The pump source was an 809 nm fiber-coupled laser diode with a core diameter of 100 

µm of core diameter, a numerical aperture of 0.16, and a maximum output power of 1 W. A 

focusing lens with 20 mm focal length and 90% coupling efficiency was used to reimage the 

pump beam into the laser crystal. The pump radius was estimated to be 25 µm. A microscope 

objective lens mounted on a translation stage was used to reimage the tomographic transverse 

patterns inside the cavity onto a CCD camera. To measure the far-field pattern, the output 

beam was directly projected on a paper screen at a distance of ~50 cm from the rear cavity 

mirror and the scattered light was captured by a digital camera.    

At a pump power of 1 W, the emission powers were generally found to be on the order of 

0.5 mW. The low emission powers indicate the cavity Q value to be rather high. The pump 

positions on the gain medium were controlled to excite the laser modes with the transverse 

orders n and m in the range of 100 to 500. Experimental results revealed that the far-field 

transverse patterns were not the familiar HG modes but were almost the coherent waves 

concentrated on various Lissajous figures for all cavity lengths. Furthermore, the tomographic 

transverse patterns inside the cavity evidently displayed the revolution of the Lissajous curve 
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along the longitudinal axis to form a Lissajous parametric surface. Figure 3.3.4 shows the 

experimental tomographic transverse patterns observed at 422.0≈Ω . The experimental 

tomographic transverse patterns are found to be in good agreement with the  
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Fig. 3.3.3 Experimental setup for the generation of 3D coherent waves in a diode-pumped 
microchip laser with off axis pumping scheme in a symmetric spherical resonator. 
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feature that the 3D coherent states are well localized on the Lissajous parametric surfaces. 

Furthermore, the experimental patterns shown in Fig. 3.3.4 for LzL 15.0     15.0 ≤≤−  have 

a noticeable bright spot that represents the location of the pump beam. It can be seen that the 

pump intensity has a great overlap with the lasing mode distribution. Since the cavity mode 

possessing the biggest overlap with the gain region will dominate the laser emission, distinct 

3D coherent waves can be precisely generated by manipulating the pump position. Figure 

3.3.6 shows another set of experimental tomographic transverse patterns observed at 

573.0≈Ω  for LzL 5.0     0.0 ≤≤ . Here we use a filter to reflect the pumping light to make 

the patterns clearly demonstrated.  

Continuously adjusting the bare mode-spacing ratio Ω, the far-field transverse patterns 

were found to change from one mode-locked Lissajous wave to another in discrete steps. 

According to the above-mentioned analysis, the appearance of the Lissajous waves signifies 

the mode-spacing ratios to be locked to rational numbers QP . The analytical representation 

of the 3D coherent states enables us to identify the mode-locked ratios QP  precisely from 

the information of the revolution numbers of the Lissajous wave patterns inside and outside 

the cavity. Based on thorough experiments, we found that each mode-locked ratio QP  is 

composed of numerous 3D coherent waves localized on various Lissajous parametric surfaces 

with indices pq +  to be an integral multiple of Q. On the whole, more than 560 different 3D 

coherent states have been obtained. The locking range of each coherent state was found to be 

310)2.05.1( −×±≈∆Ω  on average. More noticeably, the experimental mode-locked ratios 

QP  were found to form a fairly complete devil staircase, as shown in Fig. 3.3.5. Figure 

3.3.5 also demonstrates the experimental far-field patterns observed in the mode-locked 

plateau with 52=QP . The 3D optical waves which localize on the Lissajous parametric 

surface are not special cases in the laser cavity. With longitudinal-transverse coupling and 

mode-locking effect, the localized 3D optical coherent waves are general phenomenon of the 

laser system. Figure 3.3.7-3.3.9 depict the experimental far-field patterns observed in the      
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Fig. 3.3.4 Experimental tomographic transverse patterns inside the cavity observed at 422.0≈Ω . 
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mode-locked plateau with 31=QP , 41 , and 72  respectively. The absolute values of the 

indices p and q were firstly determined from the feature of the Lissajous transverse pattern 

and their signs were determined from the equation of QKpq ×=+ , where the factor K 

could be found from the total change of the relative phase of the Lissajous transverse pattern 

inside the cavity and the indices Q and P were confirmed with the cavity length. The indices 

( )qp,  of blue color in Fig. 3.3.5 and 3.3.7-3.3.9 represent that the factor K is not equal to 

one. It is worth while to mention that p and q can have the opposite sign, as long as pq +  is 

an integral multiple of Q. On the other hand, the locking regimes for the coherent states with 

the indices ),( qp  and ),( pq  are split due to the anisotropic properties of the gain medium. 

As the transverse order ),( oo nm  of the coherent mode is increased, the number of 

mode-locked plateaus increases, suggesting that all rational steps will be seen in an infinite 

order system.    

 

3.3.3 Summary 

In summary, the longitudinal-transverse coupling has been verified to cause the 

formation of 3D coherent waves with localization on parametric surfaces in the mesoscopic 

regime. The theoretical analysis reveals that the tomographic transverse patterns of the 3D 

coherent waves exhibit to be well localized on the Lissajous parametric surfaces. A high-Q 

symmetric laser cavity with the off-axis pumping scheme has been utilized to realize the 

experiment. Experimental results reveal that the mode locking of the 3D coherent states forms 

a nearly complete Devil’s staircase with the hierarchical ordering. Our studies may provide 

some useful insights into the nature of the mesoscopic wave functions.     
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Fig. 3.3.5 Bottom: Experimental mode-locked ratio QP  as a function of the bare 

5ode-spacing ratio Ω.  Upper: experimental far-field patterns observed in the mode-locked 
plateau with 5/2=QP . 
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Fig. 3.3.6 Experimental tomographic transverse patterns inside the cavity observed at 573.0≈Ω . 
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Fig. 3.3.7 Bottom: Experimental mode-locked ratio QP  as a function of the bare 

5ode-spacing ratio Ω.  Upper: experimental far-field patterns observed in the mode-locked 
plateau with 3/1=QP . 
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Fig. 3.3.8 Bottom: Experimental mode-locked ratio QP  as a function of the bare 

5ode-spacing ratio Ω.  Upper: experimental far-field patterns observed in the mode-locked 
plateau with 4/1=QP . 
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Fig. 3.3.9 Bottom: Experimental mode-locked ratio QP  as a function of the bare 

5ode-spacing ratio Ω.  Upper: experimental far-field patterns observed in the mode-locked 
plateau with 7/2=QP . 
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3.4 Spatially Localized Patterns Generated from Macroscopic 
 Superposition of 3D Coherent Laser Waves 
 

 In recent years coherent wave properties of mesoscopic physics have been studied for 

understanding the pattern formations of laser modes such as honeycomb patterns [34], 

whispering gallery modes [35-36], and high-order transverse patterns [37-38]. Coherence 

plays an important role not only in optical waves such as pattern formation of nonlinear 

optical fields [39-41] but also in matter waves such as spatial interference patterns of 

Bose-Einstein condensates [42-44] for connecting the relation between quantum-classical 

correspondences. The coherence of Bose-Einstein condensates represents that the system 

should be characterized by a well-controlled phase to form the spatial interference patterns, 

however it is the most difficult point to control the Bose-Einstein condensates. Frequency 

beating and transverse-mode locking of coherent waves in nonlinear optical resonators have 

been focused in mesoscopic regime of modern physics [45-47]. Furthermore, recent 

experimental and theoretical studies have verified that the coherent superposition of 

degenerate or nearly degenerate quantum state can result in mesoscopic quantum wave 

functions localized on periodic orbits in the classical counterpart of the given system [48-49]. 

Perceivably, coherent wave properties are critical in a considerable number of physical 

systems to connect the quantum-classical correspondence in mesoscopic regime [50-53].  

While the issue of quantum superposition of macroscopic states has been discussed by 

Schrödinger in 1935 [54], there has been growing attention to the generation and 

manipulation of the superposition states [55-56]. In this experiment we investigate the 

spatially localized patterns from superposition of 3D coherent optical modes localized on 

Lissajous parametric surface. The spatially localized patterns from the superposition of 3D 

coherent modes provide analogous evidences for the existence of macroscopic quantum 

superposition states. Experimental results [57] show that in a high-Q symmetric laser cavity 

the longitudinal-transverse coupling leads to the formation of 3D coherent waves localized on 
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Lissajous parametric surfaces which are formed by the Lissajous curves with the relative 

phase varying with the longitudinal direction. By the superposition of two coherent optical 

modes with different close Fresnel number, the spatial interference patterns become 

structure-localized on Lissajous parametric surface which represent the spatial beating of the 

two coherent optical modes in the resonator. Theoretical analysis reveals that the 

superposition of optical coherent modes with different order leads to different kinds of 

structured-localized patterns which can be related to the beating phenomenon of different but 

close frequencies in time domain. With the good agreement of theoretical analysis and 

experimental results, the formation of spatially interfered structure-localized patterns can 

provide a useful aspect for the coherent wave properties in mesoscopic physics. 

3.4.1 Experimental Setup and Results 

The formation of the nearly complete devil’s staircase from the wave patterns localized 

on the Lissajous parametric surface has been realized in the degenerate laser resonator. 

However, the index order of the laser modes is not high enough to explore the 

super-high-order 3D coherent optical modes to generate the interference pattern from the 

superposition of coherent modes with different orders. The resonator configuration is 

basically similar to that used in section 3.3 but with different size of gain medium with sides 

of 10 mm and length of 2 mm shown in Fig. 3.4.1. In this section we investigate the spatially 

localized patterns from interference of 3D coherent optical waves localized on Lissajous 

parametric surface. The modification of the cavity medium size makes the generation of 

super-high-order coherent optical waves to be flexibly controlled. In other words, the large 

area of gain medium provides an improvement to generate the super-high-order 3D coherent 

optical waves. To generate the super-high-order laser modes, we control the off-axis pump 

positions on the gain medium with the transverse orders n  and m  in the range of 500 to 

1000. 
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Fig. 3.4.1 Photograph of the experimental laser cavity. 

 



Chap 3    Three-dimensional Optical Coherent Waves with Longitudinal-Transverse Coupling 
                                                            

100 

Experimental results revealed that the far-field transverse patterns become spatially 

structure localized on the classical Lissajous trajectory from the interference of the 

super-high-order coherent optical waves. Here we select several spatially localized patterns 

with Lissajous transverse patterns of different cavity length in Fig. 3.4.2. The figure shows the 

two kinds of structure localized patterns which the top two rows indicate the dot-like patterns 

localized on the Lissajous trajectory and the third row indicates the line-like patterns localized 

on the Lissajous trajectory with different cavity length. The pump positions on the gain 

medium were controlled to excite the 3D coherent optical waves with the vicinity of 

transverse orders. With adjusting the cavity length to manipulate the mode size inside the 

resonator, the super-high-order coherent modes can be generated to achieve the superposition 

condition. The following analysis will verify that the interference patterns of super-high-order 

3D coherent optical modes which are localized on the Lissajous parametric surface can lead to 

be further spatially localized to form the dot-like or line-like patterns with Lissajous 

transverse trajectory.  
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Fig. 3.4.2 Typical experimental far-field patterns observed in different cavity lengths for different 
indices ( , ; / )p q P Q . 
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3.4.2 Analysis and Theoretical Results 

 It follows from what has been said that the wave function ,
, ( , , ; )

o o

p q
m n ox y z φΨ  represents 

the 3D coherent optical mode with Lissajous transverse pattern from the coherent 

superposition of the modes );,,(, oqknpkm zyx
oo

φ++Φ  with the phase factor )(zφ . By the 

superposition of the 3D coherent optical modes localized on the Lissajous parametric surface 

with different transverse mode indices n  and m , the spatially localized patterns from the 

interference of 3D coherent optical waves can be realized. Nevertheless, the relative phase oφ  

has been verified to play a vital role in the quantum-classical connection. Here we choose 

0oφ =  and M=6 to construct the spatially localized far-field patterns of the experimental 

results. Figure 3.4.3 reveals the spatially localized patterns which are the superposition of 3D 

coherent optical modes with different transverse mode indices such as 5,4 5,4
70,70 73,73Ψ + Ψ and 

5,4 5,4
70,70 80,80Ψ + Ψ . Apparently, the spatially localized patterns become line-like modes from the 

interference of two coherent optical waves with close transverse orders. Moreover, the 

spatially localized patterns become dot-like modes from the interference of two coherent 

optical waves with far transverse orders. As a result of the calculation limit of mathematical 

software, the theoretical patterns with the transverse orders in the range of 140 to 160 are not 

localized completely as the experimental results with the transverse orders in the range of 500 

to 1000. However the tendency of the theoretical appearance is found to be in good agreement 

with the experimental patterns. It is worthwhile to mention that the interference patterns 

which are the superposition of the 3D coherent optical modes with different transverse indices 

can be analog to the beating phenomenon of different but close frequencies in time domain. 

Until now there has been no experimental evidence of the spatially localized patterns from 

interference of super-high-order 3D coherent optical waves in mesoscopic regime. 

    The phase factor )(zφ  which arises from the Gouy phase difference between the HG 
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Fig. 3.4.3 Upper: Numerical results of 3D coherent modes according to different transverse 
orders. Bottom: Numerical results of the superposition from the coherent modes with different 
orders.  

0
5, 4
73,73 ( , , ; )x y z φ−Ψ 0

5, 4
70,70 ( , , ; )x y z φ−Ψ 0

5, 4
80,80 ( , , ; )x y z φ−Ψ0

5, 4
73,73 ( , , ; )x y z φ−Ψ 0

5, 4
70,70 ( , , ; )x y z φ−Ψ 0

5, 4
80,80 ( , , ; )x y z φ−Ψ
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modes with distinct transverse orders is verified to play an important role in the 3D coherent 

waves localized on Lissajous parametric surfaces. Furthermore, the tomographic transverse 

patterns inside the cavity displayed the revolution of the spatially localized patterns along the 

longitudinal axis to form a complete 3D interference patterns from the superposition of 3D 

coherent optical waves. Figure 3.4.4 (a) shows the experimental tomographic transverse 

patterns observed at 0.84Ω ≈ . The experimental patterns are found to be in good agreement 

with the feature of the theoretical results shown in Fig. 3.4.4 (b). Furthermore, the spatially 

interfered patterns which were found to be structure localized on the Lissajous parametric 

surface are clearly visualized. It is worthwhile to emphasize that the Gouy phase of the 

coherent modes with different transverse orders is predominant in the degenerate laser cavity 

to induce the phase difference of the spatially localized patterns in the different positions of 

z-axis. According to the analysis mentioned in last section, the appearance of the Lissajous 

waves signifies the mode-spacing ratios to be locked to rational numbers QP . Continuously 

controlling the pump position of the off-axis corresponding to the mode size in proper cavity 

length, the super-high-order coherent modes can be generated flexibly and the superposition 

of the coherent modes can be achieved in the laser cavity. Figure 3.4.5 shows the interference 

patterns of the superposition of the super-high-order coherent modes with strongly localized 

dot-like Lissajous patterns. The structure of the spatially localized patterns is highly stable 

because of the mode-locked effect in the nonlinear resonator. 
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6.0 Rz z= −

 Far field

4.0 Rz− 2.0 Rz− 0.0 Rz

2.0 Rz 3.0 Rz 6.0 Rz

(a)

(b)

6.0 Rz z= −

 Far field

4.0 Rz− 2.0 Rz− 0.0 Rz

2.0 Rz 3.0 Rz 6.0 Rz

(a)

(b)

Fig. 3.4.4 (a) Experimental tomographic transverse patterns inside the cavity observed at 

0.84Ω ≈ . (b) Numerical results corresponding to (a). 
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Fig. 3.4.5 Experimental strong spatially localized patterns with different ( , ; / )p q P Q . 
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3.4.3 Summary 

In summary, we have used an off-axis focused pumping laser system with a large-size 

gain medium to generate various super-high-order coherent modes. The superposition of 3D 

coherent modes which are caused by the longitudinal-transverse coupling and the 

mode-locking has been verified to lead to the formation of spatially localized patterns on the 

Lissajous parametric surface in the mesoscopic regime. The theoretical analysis has revealed 

that the superposition of the coherent modes with different transverse orders leads to dot-like 

or line-like transverse patterns which are corresponding to the difference of transverse orders 

of the coherent modes. Furthermore, the structures of the interference patterns are highly 

stable and the experimental results are easily reproducible in the degenerate laser cavity. Our 

studies may provide some useful insights into the coherent superposition problems with 

optical coherent waves in mesoscopic regime.   
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Chapter 4 
Polarization Singularities in 
Hemispherical Cavity 
 

Recently, singular optics has become an important topic in modern physics. In 1974, J. F. 

Nye and M. V. Berry proposed the notion about phase singularities (optical vortices) which 

are points in the plane and lines in space where the phase of an optical field becomes 

undefined [1]. The phase singularities in complex scalar waves have been discussed 

extensively in lasers [2-5], and other optical beams [6-7]. Furthermore, the phase singularity 

also provides some unique applications [8-9]. 

 In addition to phase singularities of the scalar field, there are two types of singularities of 

the polarization vector field should be mentioned: Vector singularities and Stokes singularities 

[10-12]. The importance of the vector singularities has been explored in the optical coherent 

waves with the representation of spatial structures and polarization states [13-16]. However, 

the more general state of the optical field with two orthogonal components is elliptically 

polarized state which leads to two special conditions of Stokes singularities: C lines and L 

surfaces [17]. In this chapter we will introduce the polarization characteristics of light and 

verify the importance in the specific laser cavity. 

 

4.1 Polarization and Stokes Parameter 

 Christian Huygens was the first to suggest that light was not a scalar quantity based on 

his work on the propagation of light through crystals. It appeared that light had “sides” in the 
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words of Newton. This nature of light is called polarization. The polarization light is one of its 

important and fundamental properties, the others being its intensity, frequency, and coherence 

[18-19]. Polarization is a property of transverse waves which describes the orientation of the 

oscillations in the plane perpendicular to the direction of traveling waves. In electrodynamics, 

polarization characterizes electromagnetic waves, such as light, by specifying the direction of 

the electric field of waves. Longitudinal waves such as sound waves in air or liquids do not 

exhibit polarization, because for the direction of oscillation of these waves is along the 

direction of wave's travel. The simplest manifestation of polarization to visualize is a plane 

wave, which is a good approximation of most light waves. All electromagnetic waves 

propagating in free space or in a uniform material have electric and magnetic fields 

perpendicular to the direction of propagation. However, when considering polarization, the 

electric field vector is described and the magnetic field is ignored since it is perpendicular to 

the electric field and proportional to it. Figure 4.1.1 shows some examples of the evolution of 

the electric field vector with time (the vertical axes), along with its x and y components, and 

the path traced by the tip of the vector in the plane. In Fig. 4.1.1 (a), the two orthogonal 

components are in phase. In this case the ratio of the strengths of the two components is 

constant, so the direction of the electric vector is constant. Since the tip of the vector traces 

out a single line in the plane, this special case is called linear polarization. The direction of 

this line depends on the relative amplitudes of the two components. In Fig. 4.1.1 (b), the two 

orthogonal components have exactly the same amplitude and are exactly ninety degrees out of 

phase. In this case one component is zero when the other component is at maximum or 

minimum amplitude. There are two possible phase relationships that satisfy this requirement: 

the x component can be ninety degrees ahead of the y component or it can be ninety degrees 

behind the y component. In this special case the electric vector traces out a circle in the plane, 

so this special case is called circular polarization. The direction the field rotates in depends on 

which of the two phase relationships exists. These cases are called right-hand circular 
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polarization and left-hand circular polarization, depending on which way the electric vector 

rotates. In all other cases, where the two components are not in phase and either do not have 

the same amplitude or are not ninety degrees out of phase, the polarization is called elliptical 

polarization because the electric vector traces out an ellipse in the plane. This is shown in Fig. 

4.1.1 (c). For high-order transverse patterns, there are three kinds of polarization states 

embedded in the light beams such as shown in Fig. 4.1.2 which represents azimuthally 

polarized, circularly polarized, and radially polarized respectively.   
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Fig. 4.1.1 The evolution of the electric field vector leads to different kinds of polarization states: (a) 
Linear, (b) Circular, (c) Elliptical. 
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(a)

(b)

(c)

Fig. 4.1.2 Three kinds of polarization states of high-order transverse modes: (a) Azimuthally polarized, 
(b) Circularly polarized, (c) Radially polarized. 
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 In order to understand the Stokes parameter we have to consider a pair of plane waves 

that are orthogonal to each other in space and take to be  0=z : 
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where ( )tE x0  and ( )tE y0  are the instantaneous amplitudes, ω  is the instantaneous angular 

frequency, and xδ  and yδ  are the instantaneous phase factors. Equation (4.1.1) can be 

written as  
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Hence,  
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Squaring (4.1.3) and adding gives 
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where xy δδδ −= . For monochromatic radiation, the amplitudes and phases are constant for 

all time, so Eq. (4.1.4) reduces to  
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While xE0 , yE0 , and δ  are constants, xE  and yE  continue to be implicitly dependent 

on time. In order to represent Eq. (4.1.5) in terms of the observables of the optical field, we 

must take an average over the time of observation. However, in view of the periodicity of 

( )tEx  and ( )tEy , we have to average Eq. (4.1.5) only over a single period of oscillation. The 

time average is represented by the symbol L . So we write Eq. (4.1.5) as  
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where 
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Multiplying Eq. (4.1.6) by 2
0

2
04 yx EE , we can get that  
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Using Eq. (4.1.7) and (4.1.1), we find that the average values are 
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Substituting Eq. (4.1.9) into (4.1.8) yields  
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After some algebra, Eq. (4.1.10) can be represented as 

 ( ) ( ) [ ]( ) [ ]( )2
00

2
00

22
0

2
0

22
0

2
0 sin2cos2 δδ yxyxyxyx EEEEEEEE =−−−+  .    (4.1.11) 

We write the quantities above as 
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and then  

 2
3

2
2

2
10 SSSS ++= .             (4.1.13) 

The four quantities given in Eq. (4.1.12) are the Stokes polarization parameters for a plane 

wave. They were introduced by George Gabriel Stokes in 1852, as a mathematically 

convenient alternative to the more common description of incoherent or partially polarized 

radiation light. It is important to note that the Stokes parameters are real quantities. The first 
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Stokes parameter 0S  is the total intensity of the light. The 1S  describes the amount of linear 

horizontal or vertical polarization, the 2S  describes the amount of linear 045+  or 045−  

polarization, and the parameter 3S  describes the amount of right or left circular polarization 

contained within the beam. Combining polarization ellipse and Stokes parameter, Eq. (4.1.12) 

can be represented as another mathematical form which can be related to a polarization state 

easily: 
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The Stokes parameters are almost identical to the equations relating Cartesian coordinates to 

Spherical coordinates where 
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and ψφχθ 2,2900 =−= . In Fig. 4.1.3 we have drawn a sphere which is called Poincaré 

sphere expressing the polarization state of an optical beam in terms of χ  and ψ  and allows 

us to describe its ellipticity and orientation on a sphere. The radius of the sphere is taken to be 

unity. The representation of the polarization state on a sphere was first introduced by Henri 

Poincaré in 1892. It is useful for describing the change in polarized light when it interacts 

with polarizing elements and some nonlinear phenomenon.   
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Fig. 4.1.3 The Poincaré representation of polarized light on a sphere. 
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4.2 Polarization Singularities 

 Singular optics which includes phase and polarization singularities has become an 

important topic in modern physics to understand the physics of light [20-21]. Recently, a 

considerable number of studies have been focused on experimental and theoretical results of 

phase singularities in scalar fields, known as wave front dislocations, such as optical vortices 

[22], vortex lattices in superconductors [23], quantum and microwave billiards [24], quantum 

Hall effects [25], and linear and nonlinear optics [26-28]. In addition to phase singularities in 

scalar fields, there are two types of polarization singularities in vector fields of paraxial 

optical beams, known as wave front disclinations, to be discussed: vector singularities and 

Stokes singularities [29]. Vector singularities (V points) are stationary points at which the 

orientation of the electric vector of a linearly polarized vector field becomes undefined. The 

importance of the vector singularities has been explored in the optical coherent waves with 

the representation of spatial structures and polarization states [30-33]. Recently, the 

complicated V point structure has been studied from the low-order [34] and high-order [35] 

space-dependent linearly polarized fields in transversely isotropic laser systems. However, the 

mapping of vector field singularities onto the scalar field vortices leads to many new 

consequences [29]. 

The more general state of optical field with two orthogonal components is elliptically 

polarized state which leads to two special conditions of Stokes singularities. C lines on which 

the field is circularly polarized and the orientations of the major and minor axes of the ellipse 

are undefined indicate the North and South Pole of the Poincaré sphere. L surfaces on which 

the field is linearly polarized and the handedness of the ellipse is undefined [36] indicate the 

equator of the Poincaré sphere. In paraxial optics, C lines present as isolated points in the 

observation plane and L surfaces present as continuous lines, L lines, which separate regions 

of right-handed and left-handed polarization [37-39]. With the experimental results of 
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microwaves [29] and optical waves [40-43], the importance of polarization singularities of 

elliptically polarized fields has been revealed.  

 

4.3 Generalized Structures of Polarization Singularities in Laguerre-  

Gaussian Vector fields  

 Recently, a diode-pumped microchip laser has been employed to generate the 

propagation-dependent polarization vector fields with the longitudinal-transverse coupling 

and the entanglement of the polarization states [44]. However, the characteristics of 

polarization singularities are revealed with the theoretical wave representation only in the 

condition of single-ring wave pattern. In next section we demonstrate the general expression 

of the multiple structures of polarization singularities embedded in the multi-ring vector wave 

patterns. With the coherent superposition of orthogonal circularly polarized vortex modes 

composed of two Laguerre-Gaussian (LG) modes with different order, the general structures 

of the polarization singularities are systematically analyzed. The theoretical analyses reveal 

that the projection of the C lines on the transverse plane displays the intriguing petal 

structures. From the analytical results of the singularities, the polarization states of the 

experimental LG vector fields under propagation can be clearly demonstrated. 

 

4.3.1 Experimental setup and results  

 In this experiment, the laser system was a diode-pumped Nd:YVO4 microchip laser and 

the resonator was formed by a spherical mirror and a gain medium such as shown in Fig. 4.3.1.  

The spherical mirror was a 10-mm radius-of-curvature concave mirror with antireflection 

coating at the pumping wavelength on the entrance face (R<0.2%), high-reflection coating at 

lasing wavelength (R>99.8%), and high-transmission coating at the pumping wavelength on 

the other surface (T>95%). The gain medium was a 2.0 at.% Nd:YVO4 crystal with the length 

of 2 mm. The laser crystal was precisely cut along the c-axis for high-level transverse isotropy 
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[45]. One planar surface of the laser crystal was coated for antireflection at the pumping and 

lasing wavelengths; the other surface was coated to be an output coupler with the reflectivity 

of 99%. The pump source was a 1-W 808-nm fiber-coupled laser diode with a core diameter 

of 100 µm and a numerical aperture of 0.2. A focusing lens was used to re-image the pump 

beam into the laser crystal. The pump spot radius was controlled to be in the range of 50~200 

µm. The effective cavity length was set in the range of 9.6~9.9 mm to form a nearly 

hemispherical resonator, in which the fundamental cavity mode size was approximately 20 

µm. Since the pump-to-mode size ratio was significantly greater than unity, a variety of 

high-order transverse modes could be generated. The pump power was controlled to be near 

lasing threshold to maintain the single mode in the cavity to explore the characteristic of 

polarization. To measure the far-field pattern, the output beam was directly projected on a 

paper screen at a distance of ～50 cm from the rear cavity mirror and the scattered light was 

captured by a digital camera. 

 Figures 4.3.2(a)-1(c) show experimental far-field transverse patterns with different radial 

index p and azimuthal index l which are represented as flower modes. Not only the single-ring 

but also the multi-ring is the general transverse mode formed by the propagation-dependent 

polarization states to prevail in the laser cavity. The fundamental mode is not excited because 

the pump-to-mode size ratio is significantly greater than unity and then the lasing threshold of    

fundamental mode is higher than that of high-order transverse modes. A microscope objective 

lens mounted on a translation stage was used to reimage the tomographic transverse patterns 

at different propagation position onto a CCD camera. Figure 4.3.3 display the 

polarization-resolved transverse patterns at three different propagation positions: 0=z , 

Rzz = , and Rzz >> , where the RZ  is the Rayleigh range and 26.1=RZ  and 28.1  mm. 

It can be found that the polarization-resolved pattern represent as an azimuthally polarized 

flower mode at the beam waist ( 0=z ), whereas it turns to be like a radially polarized flower 

mode at the far field ( Rzz >> ). Moreover, the polarization state at Rzz =  was confirmed 
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Fig. 4.3.1 Experimental setup for the generation of propagation-dependent polarization vector 
fields in a diode-pumped microchip laser in a hemi-spherical resonator. 
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(b) (c)(a)

(e) (f)(d)

(b) (c)(a)

(e) (f)(d)

Fig. 4.3.2 Experimental far-field transverse patterns with different radial index p and 
azimuthal index l: (a) (0, 9), (b) (0, 23), (c) (1, 39), (d) (1, 66), (e) (2, 41), (f) (7, 100). 
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to behave as a circularly polarized flower mode by use of a quarter-wave plate. The 

polarization-resolved transverse modes formed by the three-dimensional (3D) coherent vector 

field provide an important aspect to explore the physics of polarization singularities. It is 

worthwhile to mention that the lasing modes are propagation-dependent polarization vector 

fields which are generated from the nearly hemispherical cavity. The following analysis will 

substantiate that the longitudinal-transverse coupling with the entanglement of the 

polarization states leads to the formation of 3D coherent vector fields in the isotropic laser 

cavity. Therefore, the generalized structures of polarization singularities in coherent vector 

fields with longitudinal-transverse coupling can be clearly revealed with the theoretical 

analysis.   
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(a) 

Fig. 4.3.3 Polarization-resolved transverse patterns for the experimental result at three different 
propagation positions: 0=z , Rzz = , and Rzz >> : (a) corresponding to Fig. 4.3.2 (b) where 

26.1=Rz mm. (b) corresponding to Fig. 4.3.2 (c) where 28.1=Rz mm. The arrows indicate the 
transmission axis of the polarizer. Rzz = , and Rzz >> , where 28.1=Rz mm. 
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4.3.2 Analytical Wave Functions for Experimental Patterns and             
Polarization Singularities 
 

 According to the lasing modes represented as flower modes in the transverse patterns, we 

start from the LG mode to be the basis of the experimental results. The wave function of LG 

mode with longitudinal index s, transverse radial index p, and transverse azimuthal index l in 

cylindrical coordinates ( ρ ,φ , z ) is given by ( ) ( )zez slp
li

slp ,,, ,,,, ρφρ φ Φ=Ψ , where 
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where 2
0 )(1)( Rzzwzw += , 0w  is the beam radius at the waist, and λπ 2

0wzR =  is the 

Rayleigh range, )(⋅l
pL  are the associated Laguerre polynomials, slpk ,,  is the wave number, 

and ( )RG zzz 1tan)( −=θ  is the Gouy phase. In the resonator with the effective length L, the 

wave number slpk ,,  is given by ⎥⎦
⎤

⎢⎣
⎡ ∆∆++= )(|)|2(,, LTslp fflpsLk π , where LcfL 2=∆  

is the longitudinal mode spacing and Tf∆  is the transverse mode spacing. It has been 

verified [46] that the longitudinal-transverse coupling and mode-locking effect can lead to the 

frequency locking among different transverse modes with the help of different longitudinal 

orders when the ratio  LT ff ∆∆  is close to a simple fractional. As a result, the 

configuration of the nearly hemispherical cavity refers to be 21≈∆∆ LT ff , and the group 

of LG modes ( )zksklp ,,,2, φρ−+Ψ , with k = 0,1,2,3····, forms an important family of frequency 

degenerate states. With LG modes as the basis, the experimental vector fields can be 

decomposed into a coherent superposition of orthogonal circularly polarized helical modes 
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LLRR azEazEE ˆ),,(ˆ),,( φρφρ +=
v

, where 

 

2),,(),,(),,( ,1,1),1(, ⎥⎦
⎤

⎢⎣
⎡ Ψ−Ψ= −−+− zzzE slpslpR φρφρφρ   ,      (4.3.2) 

 

2),,(),,(),,( ),1(,1,1, ⎥⎦
⎤

⎢⎣
⎡ Ψ−Ψ= −−−+ zzzE slpslpL φρφρφρ   ,       (4.3.3) 

 

and ( ) 2ˆˆˆ yxR aiaa −=  and ( ) 2ˆˆˆ yxL aiaa +=  are the helical basis unit vectors for the 

right- and left-handed circulation polarizations, respectively. Figure 4.3.4 displays the 

numerically reconstructed patterns for the experimental results shown in Fig. 4.3.3. There is a 

good agreement between the reconstructed and experimental patterns. From this point of view, 

the circularly polarized vortex modes indeed play an important role to form the 

propagation-dependent polarization vector fields. Equations (4.3.2) and (4.3.3) indicate that 

each circularly polarized component of the vector fields is composed of two LG modes with 

different order. It is worthwhile to mention that the frequency locking of two LG modes with 

different azimuthal orders arises from the longitudinal-transverse coupling in a nearly 

hemispherical cavity.   

After some algebra, Eq. (4.3.2) and (4.3.3) for the general condition can be simplified as   
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(b) 

Fig. 4.3.4: (a) Numerically reconstructed patterns for the experimental results shown in Fig. 4.3.3 
(a), (b) Numerically reconstructed patterns for the experimental results shown in Fig. 4.3.3 (b). 
 
 

 

(a) 
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In the basis of circular polarizations, the condition for left-handed and right-handed C point 

loci can be given by 0),,( =zER φρ  and 0),,( =zEL φρ , respectively. For the paraxial 3D 

vector fields, the trajectories of C singularities can be expressed as the parametric curves with 

z as a variable. In addition to the central singularity at the origin, the expression in the bracket 

of Eq. (4.3.4) indicates the left-handed C point trajectories are determined by the two 

conditions: (1) 1~ 2 =lρ and 1)(22 =− zili Gee θφ  , (2)  1~ 2 −=lρ and 1)(22 −=− zili Gee θφ . In general, 

there are 12 +p  solutions of the exact radius which the C points are symmetrically 

embedded in. Note that for 0p =  there are 2l peripheral left-handed C points symmetrically 

arrayed on a circle of radius 2)()1(0 zwll +=ρ  at angles lmzGm ))(( πθφ +=  with 

m=0,1,2,····,2l-1 and 2l peripheral right-handed C points on the same circle of radius at angles 

lmzGm ))(( πθφ +−=  with m=0,1,2,····,2l-1. The brief case of 0p =  has been verified to be 

in good agreement with experimental results [1]. Besides of 0p = , the theoretical solution of 

radius with radial index p can be solved analytically for the cases 1 ~ 3p = . Further, we 

analyzed the case of 1p ≥ . For 1=p , the three solutions of radius can be expressed 

analytically: 

 

)()2)(1(2)2)(1(4276)2)(1(2
2
1 2

1 zwllllllllll ++−+++++−++++=ρ

                   (4.3.7) 

 

)()2)(1(2)2)(1(4276)2)(1(2
2
1 2

2 zwllllllllll ++−++++++++++= ρ  

                  (4.3.8) 

 

)()2)(1(2)2)(1(4276)2)(1(2
2
1 2

3 zwllllllllll +++++−+++++−+= ρ . 

  (4.3.9) 
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On the one hand there are 2l peripheral left-handed and 2l peripheral right-handed C points 

symmetrically arrayed at angles lmzGm ))(( πθφ +=  and lmzGm ))(( πθφ +−=  

respectively with m=0,1,2,····,2l-1 according to the circle radius in the situation of 1~2 =lρ , 

and on the other there are 2l peripheral left-handed and 2l peripheral right-handed C points 

symmetrically arrayed at angles lmzGm 2))12()(2( πθφ ++=  and 

lmzGm 2))12()(2( πθφ ++−=  respectively with m=0,1,2,····,2l-1 according to the circle 

radius in the situation of 1~ 2 −=lρ . As a result, there are )12(2 +pl  left-handed C points 

and )12(2 +pl  right-handed C points embedded in the polarization-dependent vector field. 

Therefore, C lines singularities embedded in the propagation-dependent polarization vector 

field with 0=p  form the hyperboloid structure. The theoretical results of the view from the 

propagation direction to the beam waist of the general structures of the C lines singularities 

with 2~0=p  and 6~1=l  are represented in Fig. 4.3.5-4.3.7. The different color of C 

line singularities represents the different allowable circle of radius according to the radial 

index p of the transverse modes. Therefore, the different radial position of the C line 

singularity with the same color implies the different propagation position of the 

propagation-dependent polarization vector field. The minimum of the radial position 

represents the beam waist and the maximum of the radial position represents the far field.   
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Fig. 4.3.5 Structure of the C line singularities of the theoretical vector field from the view of 
propagation direction to the beam waist with the same radial index p=0 and different azimuthal 
index l: (a) (p, l)=(0, 1); (b) (p, l)=(0, 2); (c) (p, l)=(0, 3); (d) (p, l)=(0, 4); (e) (p, l)=(0, 5); (e) (p, 
l)=(0, 6).      

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)
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Fig. 4.3.6 Structure of the C line singularities of the theoretical vector field from the view of 
propagation direction to the beam waist with the same radial index p=0 and different azimuthal 
index l: (a) (p, l)=(1, 1); (b) (p, l)=(1, 2); (c) (p, l)=(1, 3); (d) (p, l)=(1, 4); (e) (p, l)=(1, 5); (e) (p, 
l)=(1, 6).   

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)
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Fig. 4.3.7 Structure of the C line singularities of the theoretical vector field from the view of 
propagation direction to the beam waist with the same radial index p=0 and different azimuthal 
index l: (a) (p, l)=(2, 1); (b) (p, l)=(2, 2); (c) (p, l)=(2, 3); (d) (p, l)=(2, 4); (e) (p, l)=(2, 5); (e) (p, 
l)=(2, 6).   

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)
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Another important and interesting feature is that the experimental 3D polarization vector 

fields at the beam waist and far field which are made up of two linearly polarized modes with 

different spatial structures. For the general condition, the experimental vector field can be 

given by ypExpEE yx ˆ),,(ˆ),,( φρφρ +=
v

, where 

 

{ } 2])1cos[(])1cos[(~)0,(),,( )(22
,1, φφρρφρ θ −−+Φ= − llezE zi

lslpx
G  ,   (4.3.10) 

and 

{ } 2])1sin[(])1sin[(~)0,(),,( )(22
,1, φφρρφρ θ −++Φ= − llezE zi

lslpy
G .   (4.3.11) 

 

The transverse vector field at beam waist and far field can be verified to possess the V point 

singularities that are generally described in terms of the field of the angle function  

)arctan(),( xy EEyx =Θ [47], where xE  and yE  are the scalar components of the vector 

field along the x  and y  axes. The vortices of ),( yxΘ  are the vector singularities at which 

the orientation of the electric vector is undefined. Figures 4.3.8-4.3.10 show the angle pattern 

),( yxΘ  of the numerical vector field at the far field.  Consistently, the V point singularities 

are right at the intersections of the right-handed and left-handed C lines shown in Fig. 

4.3.5-4.3.7.   

 With Eqs. (4.3.10) and (4.3.11) and some algebra, there are 2l peripheral V points 

symmetrically arrayed at angles lmm πφ =  on a circle of radius ρ  of the condition 

1~2 =lρ  and 2l peripheral V points symmetrically arrayed at angles lmm 2)12( πφ +=  on a 

circle of radius ρ  of the condition 1~ 2 −=lρ  with m=0,1,2,····,2l-1 at the beam waist in 

addition to the central singularity at the origin. The Gouy phase plays a vital role to transform 

the singularities between V points and C points under propagation of the 3D vector field. 
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(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

Fig. 4.3.8 Numerical patterns of the angle function at the far field of the same radial index p=0 and 
different azimuthal index l: (a) (p, l)=(0, 1); (b) (p, l)=(0, 2); (c) (p, l)=(0, 3); (d) (p, l)=(0, 4); (e) 
(p, l)=(0, 5); (e) (p, l)=(0, 6).   
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(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

Fig. 4.3.9 Numerical patterns of the angle function at the far field of the same radial index p=0 
and different azimuthal index l: (a) (p, l)=(1, 1); (b) (p, l)=(1, 2); (c) (p, l)=(1, 3); (d) (p, l)=(1, 
4); (e) (p, l)=(1, 5); (e) (p, l)=(1, 6).   
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(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

Fig. 4.3.10 Numerical patterns of the angle function at the far field of the same radial index 
p=0 and different azimuthal index l: (a) (p, l)=(2, 1); (b) (p, l)=(2, 2); (c) (p, l)=(2, 3); (d) (p, 
l)=(2, 4); (e) (p, l)=(2, 5); (e) (p, l)=(2, 6).   
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Consequently, there are 2l peripheral V points symmetrically arrayed at angles 

lmm 2)12( πφ +=  on a circle of radius ρ  of the condition 1~2 =lρ  and 2l peripheral V 

points symmetrically arrayed at angles lmm πφ =  on a circle of radius ρ  of the condition 

1~ 2 −=lρ  with m=0,1,2,····,2l-1 at the far field in addition to the central singularity at the 

origin. Intriguingly, each peripheral V point with the winding number of 1 is transformed to 

two different handed C points with the winding number of 21 . Apparently, the winding 

numbers are conserved during the singularity transformation and under the vector field 

propagation [48]. Figure 4.3.11 depicts the characteristics of the C line and V point 

singularities of an experimental result.  It can be found that the structure of C lines shown in 

Fig. 4.3.11 (b) forms the hyperboloid with multi-layer in the radial direction.  The theoretical 

pattern of the view from the propagation direction to the beam waist of the structures of the C 

lines singularities forms a kind of fascinating petal pattern corresponding to the experimental 

transverse pattern shown in Fig. 4.3.11 (a).    

    Besides C line and V point singularities, there is L surface singularity embedded in the 

propagation-dependent polarization vector fields with the longitudinal-transverse coupling 

and the entanglement of the polarization states. The L singularities can be determined by the 

conditions 
22

LR EE = . With Eqs. (4.3.4) and (4.3.5), it can be found that there are 4l L 

surfaces on the ρ-z plane with the azimuthal angles at )2( lnn πφ = , where n=0,1,2,····,4l-1.  

Figure 4.3.12 displays the vector and polarization singularities with the analytical 

representation of the transverse pattern with the radial and azimuthal index ),( lp  to be 

)4,0(  from the view of the propagation direction to the beam waist. The different radial 

position of the figure implies the different propagation position of the 3D polarization vector 

field. The minimum of the radial position represents the beam waist and the maximum of the 

radial position represents the far field. 
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Fig. 4.3.11 (a) Experimental far-field pattern with radial and azimuthal index (p, l)=(1, 
12). (b) Structure of C line singularities of the correspondent 3D vector field. (c) Structure 
of the C line singularities from the view of propagation direction to the beam waist. (d) 
Numerical pattern of the angle function at the far field. 
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From the analytical structures of the singularities, the polarization state of the experimental 

3D vector field under propagation can be clearly revealed. From the loci of C lines, it can be 

confirmed that L surfaces separate regions of right-handed and left-handed polarization and V 

points locate on the intersection of right-handed and left-handed polarization. 

    It is worthwhile to give a more detailed comparison between theory and experimental 

results. The present hyperboloid structures of polarization singularities are directly derived 

form Eq. (4.3.2) and (4.3.3) in which the two different LG modes are superposed with equal 

amplitude. For general cases of experimental results, however, the amplitude of the two LG 

modes can be somewhat different. Nevertheless, with the same theoretical analysis, the 

distributions of the polarization singularities can be certainly found to be topologically 

invariant. In other words, the hyperboloid structure of polarization singularities represents a 

characteristic feature of resonant laser modes emitted from degenerate cavities. On the other 

hand, a more complicated phase singularities, such as link and knot structures, can be 

produced by using a Gaussian laser beam illuminating a hologram or a phase modulator 

[49-50]. However, these complex structures are not at all related to the fundamental aspects of 

laser resonators.   

The present polarization singularities are explored based on the paraxial approximation 

in which the longitudinal electric field is neglected. For a rigorous point of view, it is more 

appropriate to analyze the experimental polarization singularities with the full 3D electric 

field. Recently, Berry [51] has confirmed that the separations between two singularities 

obtained with the paraxial approximation and the full 3D fields are generally much smaller 

than the wavelength. Therefore, the present findings are almost not affected by neglecting the 

longitudinal field.    
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Fig. 4.3.12 Diagram of the representation of the polarization state under propagation 
corresponding to the singularities of C lines (blue line), V points (white points at far field and 
pink points at beam waist), and L surfaces (yellow dashed lines). 
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4.3.3 Summary 

 In summary, we have used an isotropic microchip laser to generate the 

propagation-dependent polarization vector fields with the longitudinal-transverse coupling 

and the entanglement of the polarization states. It is found that the experimental 3D coherent 

vector fields can be reconstructed by the orthogonal circularly polarized vortex mode which is 

made up of two LG modes with different order. With the analytical representation, the general 

structures for the singularities of the C lines, V points, and L surfaces can be systematically 

analyzed.  In general, there are 2p+1 solutions of the radius which the C lines and V points 

are symmetrically embedded in and the theoretical solutions of the radius can be represented 

analytically for the cases 3~0=p . Importantly, the theoretical analyses reveal that the 

trajectories of the C lines projected on the transverse plane displays the intriguing petal 

structures. Furthermore, the polarization states of the experimental LG vector fields under 

propagation can be clearly demonstrated. The generalized structures of the polarization 

singularities in coherent vector fields may provide some useful insights into the nature of the 

waves. 

 

 

 

 

 

 

 

 

 

 

 



Chap 4   Polarization Singularities in Hemispherical Cavity 
                                                                      

145 

REFERENCES 

[1] J. F. Nye and M. V. Berry, Proc. R. Soc. A 336, 165 (1974). 

[2] V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, JETP Lett. 52, 429 (1990). 

[3] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 

 8185 (1992). 

[4] N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, Opt. Lett. 17, 221 (1992).  

[5] K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, Phys. Rev. A 54, R3742 (1996).   

[6] M. V. Berry and M. R. Dennis, Proc. Roy. Soc. A 456, 2059 (2000).  

[7] M. V. Berry and M. R. Dennis, Proc. Roy. Soc. A 457, 2251 (2001). 

[8] Y. S. Kivshar, B. Luther-Davies, Phys. Rep. 298, 81 (1998). 

[9] M. S. Soskin and M. V. Vasnetsov, Photonic Science News 4, 21 (1999). 

[10] J. F. Nye, Proc. R. Soc. A 387, 105 (1983).  

[11] M. Soskin, V. Denisenko, and R. Egorov, J. Opt. A Prue Appl. Opt. 6, S281 (2004). 

[12] M. V. Berry, J. Opt. A Prue Appl. Opt. 6, 475 (2004). 

[13] L. Gil, Phys. Rev. Lett. 70, 162 (1993). 

[14] T. Erdogan, Appl. Phys. Lett. 60, 1921 (1992). 

[15] Y. F. Chen, K. F. Huang, H. C. Lai, and Y. P. Lan, Phys. Rev. Lett. 90, 053904 (2003). 

[16] I. V. Veshneva, A. I. Konukhov, L. A. Melnikov, and M. V. Byabinina, J. Opt. B: 

 Quantum Semiclassical Opt. 3, S209 (2001).  

[17] J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations 

 (Institute of Physics Publishing Bristol, 1999). 

[18] Dennis Goldstein, Polarized Light ( 2nd ed.), Revised and Expanded, (2003).  

[19] David S. Kliger, James W. Lewis, and Cora Einterz Randall, Polarized Light in Optics 

 and Spectroscopy,(1990). 

[20] M S Soskin and M V Vasnetsov, Pure Appl. Opt. 7, 301–311 (1998). 

[21] Michael Berry, SPIE Vol. 4403, p. 1-12 (2001). 



Chap 4   Polarization Singularities in Hemispherical Cavity 
                                                                      

146 

[22] J. F. Nye, M. V. Berry, Proc. Roy. Soc. Lond. A 366, 165-190 (1974). 

[23] G. Blatter, M. V. Feigelman, and V. B. Geshkenbein, Rev. Mod. Phys. 66, 1125 (1994). 

[24] P. Seba, U. Kuhl, M. Barth, and H. J. Stockmann, J. Phys. A 32, 8225 (1999). 

[25] The Quantum Hall Effect, (2nd ed. edited by R.E. Prange and S.M. Girvin) 

 (Springer-Verlag, Berlin, 1990). 

[26] M. V. Berry, J. Mod. Opt. 45, 1845-1858 (1998). 

[27] Optical Vortices, edited by M. V. Vasnetsov and K. Staliunas (Nova Science, New York, 

 1999). 

[28] M. S. Soskin and M. V. Vasnetsov, in Progress in Optics, edited by E. Wolf (Elsevier, 

 New York, 2001), Vol. 42, Chap. 4. 

[29] I. Freund, Opt. Commun. 199, 47 (2001). 

[30] L. Gil, Phys. Rev. Lett. 70, 162 (1993). 

[31] T. Erdogan, Appl. Phys. Lett. 60, 1921 (1992). 

[32] Y. F. Chen, K. F. Huang, H. C. Lai, and Y. P. Lan, Phys. Rev. Lett. 90, 053904 (2003). 

[33] I. V. Veshneva, A. I. Konukhov, L. A. Melnikov, and M. V. Ryabinina, J. Opt. B: 

 Quantum Semiclassical Opt. 3, S209 (2001). 

[34] F. Prati, G. Tissoni, M. S. Miguel, and N. B. Abraham, Opt. Commun. 143, 133 (1997). 

[35] T. H. Lu, Y. F. Chen, and K. F. Huang, Phys. Rev. E. 75, 026614 (2007). 

[36] J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations 

 (Institute of Physics Publishing, Bristol, 1999). 

[37] M. V. Berry, J. Opt. A: Pure Appl. Opt. 6, 475 (2004). 

[38] J. F. Nye and J. V. Hajnal, Proc. R. Soc. London Ser. A 409, 21 (1987). 

[39] I. Freund, Opt. Lett. 29, 15 (2004). 

[40] M. S. Soskin, V. Denisenko, and I. Freund, Opt. Lett. 28, 1475 (2003). 

[41] F. Flossmann, U. T. Schwartz, M. Maier, and M. R. Dennis, Phys. Rev. Lett. 95, 253901 

 (2005). 



Chap 4   Polarization Singularities in Hemispherical Cavity 
                                                                      

147 

[42] A. Volyar, V. Shvedov, T. Fadeyeva, A. S. Desyatnikov, D. N. Neshev, W. Krolikowski, 

 and Y. S. Kivshar, Opt. Express 14, 3724 (2006). 

[43] M V Berry and M R Dennis, Journal of Physics A Mathematical and Theoretical 40, 65  

 (2007). 

[44] Y. F. Chen, T. H. Lu, and K. F. Huang, Phys. Rev. Lett. 97, 233903 (2006). 

[45] Y. F. Chen, T. H. Lu, and K. F. Huang, Phys. Rev. Lett. 96, 033901 (2006). 

[46] Y. F. Chen, T. H. Lu, K. W. Su, and K. F. Huang, Phys. Rev. Lett. 96, 213902 (2006). 

[47] I. Freund, Opt. Commun. 201, 251 (2002). 

[48] G. Indebetouw, J. Mod. Opt. 40, 73 (1993). 

[49] M. V. Berry and M. R. Dennis, Proc. R. Soc. London Ser. A 457, 2251 (2001). 

[50] J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, Nature 432, 165 (2004). 

[51] M. V. Berry, J. Opt. A: Pure Appl. Opt. 6, 475 (2004). 

 

 

 

 

 

 

 

 

 

 

 



Chap 5   Optical Waves Carrying Large Angular Momentum in Degenerate Cavity 
 

 148

 
Chapter 5 
Optical Waves Carrying Large Angular 
Momentum in Degenerate Cavity 
 
 A general study of paraxial light beans’ spatial structures such as transverse energy flows 

is presented in recent years. The transverse spatial energy can be divided into the spin and 

orbital contributions which lead to the spin and orbital angular momentum, correspondingly 

[1]. Characteristics of these elements are studied in relation with the optical field of linear and 

circular orthogonal polarization states. On the one hand, the spin angular momentum is related 

to the photons of circular polarization. On the other hand, the orbital angular momentum is 

related to the macro transverse energy circulations and independent of the polarization states. 

A typical class of paraxial beams with orbital angular momentum is Laguerre-Gaussian beam 

which possesses angular momentum with hl  per photon. The applications include the 

transmission of the beam’s angular momentum to other bodies such as optical elements and to 

suspend micro particles. In this chapter we introduce the angular momentum of 

electromagnetic fields firstly and then demonstrate the optical coherent waves which are 

different from Laguerre-Gaussian beams carrying large angular momentum in degenerate 

cavity. 

 

5.1 Angular Momentum of Electromagnetic Fields 

For electromagnetism the electric and magnetic fields can be represented as   
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respectively. The parameter φ  is tkz ω−  where k  is the wave vector and ω is the angular 

frequency. The linear momentum density pv  and angular momentum density j
v

 of a light 

beam can be calculated from the electric, E
v

, and magnetic, B
v

 , fields, such as 

BEp o

vvv ×= ε  and prj vvv
×=  [2-3], where oε  is the permittivity of vacuum. From 

Maxwell’s equations 0=⋅∇ E
vv

 and tBE ∂∂−=×∇
vvv

, the z component of the electric and 

magnetic fields can be determined under the paraxial approximation. After some algebra, the 

linear momentum density zpypxpp zyx ˆˆˆ ++=v  can be written in detail: 
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where Im denotes the imaginary part of the expression. Following, the angular momentum 

density of z component, zj
v

 ,  which contributes to the orbital angular momentum can be 

written as  

 

( )[ ]yyxxz EEEErj ∇+∇×= ∗∗vv
Im

2
0

ω
ε

  .                                   (5.1.6) 
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When the cylindrical coordinate is used to replace the Cartesian coordinate, the orbital 

angular momentum density zj
v

 can be represented in a concise form such as   
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As a consequence, the z-component of the orbital AM density for a linearly polarized light 

beam is given by 
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The optical AM contains spin and orbital AM densities that are related to the circular 

polarization and the spatial distribution of the optical beam, respectively. The spin angular 

momentum density zS
v

 can be written as  

 

( )[ ]∗×∇×= yxz EErS vv
Im

2
0

ω
ε

 .                                          (5.1.9) 

 

After some algebra, the spin angular momentum density can be represented as  

 

[ ]yxz EES ∗= Im0

ω
εv

 .                                                  (5.1.10) 

 

 Through the electromagnetism and the classical concept, the linear and angular 

momentum of electromagnetic waves can be understood more clearly. Besides, the 

representation of angular momentum of natural light helps us to study and analyze the wave 

properties in the laser cavity.   
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5.2 Linked and Knotted Coherent Laser Waves with Large Angular 
Momentum 

 Pattern formation has been the subject of interest in many physical, chemical, and 

biological problems such as, nonlinear optics [4-5], BZ interaction [6], structures inside living 

cells [7], Turing patterns in reaction-diffusion systems [8-10], and the DNA structures [11-12]. 

Naturally, pattern formation possesses some common features that make it possible to 

understand the analogies in different fields. In recent years, various laser systems are widely 

employed to realize optical transverse pattern formation including the high order 

Laguerre-Gaussian (LG) modes, Hermite-Gaussian (HG) modes, and the generalized coherent 

states that form a general family to comprise the HG and LG mode families as special cases 

[13-16]. 

In the optical pattern formation, the phase singularities or the optical vortices which have 

been studied by Nye and Berry [17] not only reveal the interesting phase structures but also 

signify the existence of the local angular momentum (AM) [18-20]. The AM of optical waves 

can be divided into an orbital part associated with spatial distribution of the fields and a spin 

part associated with polarization in electromagnetic radiation [21-23]. So far, LG laser modes 

have been confirmed to have a well-defined orbital AM [24-25] and applied to the fields of 

fundamental researches and practical applications such as optical tweezers, optical traps, and 

wireless and optical communications [26-29]. Motivated by these applications, there are 

noticeably a rapidly increasing number of researches exploring the orbital AM of coherent 

optical waves. 

 In this section, we originally demonstrate a fascinating discovery of linked and knotted 

optical waves that are experimentally found to be the prevailing resonant modes in 

large-Fresnel-number laser cavities with longitudinal-transverse coupling. Although we had 

found that longitudinal-transverse coupling and mode-locking effect lead to the localization of 

3D coherent waves on the Lissajous parametric surface. We neglect the fine structures of the 
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linked and knotted characteristics and demonstrate the optical wave as only one 3D coherent 

state. Based on the thorough experiments and established theory, it is confirmed that linked 

and knotted laser waves can be analytically expressed as a superposition of two degenerate 

3D coherent states with a relative phase of 2π . With the analytical representation, the AM 

densities of linked and knotted lasing modes are manifestly visualized and the average AM 

per photon is derived to be proportional to the Fresnel numbers of the laser cavities. The 

exploration of linked and knotted optical waves can provide a fresh insight into pattern 

formation and the large AM can be quite beneficial to many scientific applications. 

 

5.2.1 Experimental Setup and Results 

 As mentioned before, a diode-pumped microchip laser has been employed to perform the 

analogous investigation of quantum-classical correspondence and pattern formation [30-32]. 

For an empty plane-concave resonator consisting of spherical mirror with radius of curvature 

R and cavity length L, the bare ratio between the transverse and longitudinal mode spacing is 

given by ( ) ( )
11 21 cos 1T L L Rν ν π −∆ ∆ −Ω = = . The bare ratio can be changed in the range 

between 0 to 1 2  by varying the cavity length L for a given R in the half-spherical cavity. As 

shown in Fig. 5.2.1, the experimental setup in this section is only the half of the setup in 

chapter three. The experimental results are almost the same but it is easier to observe the 

variation from the near-field to far-field patterns. It has been experimentally observed [30-32] 

in chapter three that the longitudinal-transverse coupling and the mode-locking effect 

generally force the bare ratio, Ω, to be locked to a rational number QP , forming an 

interesting fractal structure in a high-Q laser cavity with a large Fresnel number. The 

experimental lasing modes were found to form 3D coherent waves that are localized on the 

parametric surfaces with Lissajous transverse patterns. Figure 5.2.2 displays two typical 

experimental results for the tomographic transverse patterns of the 3D coherent waves for 
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1 4P Q =  with ( , ) (2, 2)p q =  and 1 3P Q =  with ( , ) (3,3)p q = .  It can be seen that the 

experimental transverse patterns are not only localized on the Lissajous figures but also 

exhibit linked features. Figure 5.2.3 displays another experimental result for the tomographic 

transverse patterns of the 3D coherent waves for 2 7P Q =  with ( , ) (2,5)p q =  and 

exhibits knotted features. In our previous work in chapter three, we have employed the 

representation of quantum coherent states to derive the analytical wave functions well 

concentrated on Lissajous parametric surfaces. Figures 5.2.4-5.2.5 depicts the numerical result 

corresponding to the experimental transverse patterns shown in Fig. 5.2.2 and 5.2.3. Although 

the 3D coherent states are confirmed to display the coarse morphology of the experimental 

transverse patterns, they can not manifest the stereographic features. Reconstructing the 

stereographic patterns is indispensable for extracting the all-encompassing information in 

linked or knotted coherent laser waves. 
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Fig. 5.2.1 Experimental setup for the generation of 3D coherent waves. 
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Fig. 5.2.2 (a) Experimental tomographic transverse patterns for the range from beam waist to far field 
with 1 4Ω= , ( , ) (2, 2)p q = . The pump position is at (0.29 mm, 0.30 mm); (b) Experimental 
tomographic transverse patterns for the range from beam waist to 2.75z L=  with 1 3Ω = , 
( , ) (3,3)p q = . The pump position is at (0.23 mm, 0.30 mm).  
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Fig. 5.2.3 Experimental tomographic transverse patterns for the range from beam waist to far field with 
2 7Ω = , ( , ) (2,5)p q = . The pump position is at (0.22 mm, 0.32 mm).  
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Fig. 5.2.4 (a) Numerical tomographic transverse patterns corresponding to Fig. 5.2.2 (a) with Eq. (5.2.1) 
and the parameters of )110,110(),( =oo nm , ( , ) (2, 2)p q = , 1 4P Q = , 0=oφ  and 13M = . (b) 

(a) Numerical tomographic transverse patterns corresponding to Fig. 5.2.2 (b) with Eq. (5.2.1) and the 
parameters of )140,60(),( =oo nm , ( , ) (3,3)p q = , 1 3P Q = , 0=oφ  and 8M = .  
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Fig. 5.2.5 Numerical tomographic transverse patterns corresponding to Fig. 5.2.3 with Eq. (5.2.1) and 
the parameters of )130,60(),( =oo nm , ( , ) (2,5)p q = , 2 7P Q = , 0=oφ  and 5M = .  

 



Chap 5   Optical Waves Carrying Large Angular Momentum in Degenerate Cavity 
 

 159

Based on thorough experiments and numerical analysis, the stereographic structures of 

linked and knotted coherent waves are completely deduced to originate from a superposition 

of two degenerate 3D coherent states. With the representation of quantum coherent states, the 

3D coherent waves localized on the Lissajous parametric surfaces can be described as 
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where the parameter oφ  is the relative phase between the adjoining Hermite-Gaussian (HG) 

modes ( )
, , ( , , )HG

m n l x y zΦ  which are given by 
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where m  and n  are the indices of  x  and y  coordinates, l is the longitudinal mode 

index, 2)(1)( Ro zzwzw += , ow  is the beam radius at the waist, L is the effective cavity 

length and Rz  is the Rayleigh range. We can abbreviate ),,(,,
,, zyxsqp
lnm ooo

ψ  to be 

),,(,
, zyxqp
nm oo

ψ  because the indices s and ol  obey the equations ( ) 0)( =++ QPqps  and 

( ) LQPnml ooo λ2)1( =+++ , respectively, where λ  is the lasing wavelength. Note that the 

cases of 0=+ qp  mean no longitudinal-transverse coupling and can not be allowed.  With 

the spatial features of stationary coherent states in the 2D quantum harmonic oscillator 

[33-36], we can obtain that the 3D coherent waves ),,(,
, zyxqp
nm oo

ψ  are well concentrated on 
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the parametric surface: [ ]pzqzwmzx o /)(cos)(),( φϑϑ −=  and ( )ϑϑ pzwnzy o cos)(),( = , 

where πϑ 20 ≤≤ , ∞≤≤∞− z , and the z-dependent phase factor is given by 

( ) oRzzpqz φφ ++= −1tan)()( . Note that the phase factor )(zφ  comes from the Gouy-phase 

difference between the HG modes with distinct transverse orders. Although the phase factor 

oφ  can be experimentally manipulated, we focus on the cases of 0=oφ  hereafter for 

convenience.  

    In terms of the 3D coherent waves of Eq. (5.2.1), a superposition of two degenerate 3D 

coherent states with the nearest neighbors can be generally expressed as 
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nm

iqp
nm

qp
nm oooooo

ψψϕ ϕ  ,    (5.2.3) 

  

where ϕ is the relative phase. Comparing with the whole experimental results, we substantiate 

that linked and knotted lasing modes can be utterly reconstructed with the superposition state 

of Eq. (5.2.3) and setting the relative phase ϕ  to be 2/π± . Figures 5.2.6 illustrates the 

numerical transverse patterns calculated with Eq. (5.2.3) and the parameters of: (a) 

)110,110(),( =oo nm , 13M = , and 2/πϕ = , (b) )140,60(),( =oo nm , 8M = , and 

2/πϕ =  corresponding to the experimental results shown in Fig. 5.2.2 (a) and (b), 

respectively. Excellent agreement validates the superposition states )2/;,,(,
, π±Ψ zyxqp
nm oo

 

can entirely reconstruct the intriguing stereographic features of linked and knotted wave 

patterns. More importantly, the analytical representation enables us to discover the inherent 

properties of linked and knotted coherent waves. We henceforth concentrate on exploring the 

AM densities of the linked and knotted optical waves because of their applications in atomic 

trapping, tweezers, and imaging [26-29]. 
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Fig. 5.2.6 (a) Numerical tomographic transverse patterns corresponding to Fig. 5.2.2 (a) with Eq. (5.2.3) 
and the parameters of )110,110(),( =oo nm , ( , ) (2,2)p q = , 1 4P Q = , 2ϕ π=  and 13M = . 

(b) (a) Numerical tomographic transverse patterns corresponding to Fig. 5.2.2 (b) with Eq. (5.2.3) and 
the parameters of )140,60(),( =oo nm , ( , ) (3,3)p q = , 1 3P Q = , 2ϕ π=  and 8M = .  
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Fig. 5.2.7 Numerical tomographic transverse patterns corresponding to Fig. 5.2.3 with Eq. (5.2.3) and 
the parameters of )130,60(),( =oo nm , ( , ) (2,5)p q = , 2 7P Q = , 2ϕ π=  and 5M = .  
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5.2.2 Analyses of Angular Momentum for Two Degenerate Coherent 
States 

The linear momentum density pv  and AM density j
v

 of a light beam can be calculated 

from the electric, E
v

, and magnetic, B
v

 , fields, such as BEp o

vvv ×= ε  and prj vvv
×=  

[24-25], where oε  is the permittivity of vacuum. The optical AM contains spin and orbital 

AM densities that are related to the circular polarization and the spatial distribution of the 

optical beam, respectively. In the paraxial approximation, experimental linked and knotted 

coherent waves are measured to be linearly polarized beams that can be expressed as 

Ψ= xE ˆ
v

, where the unit vector x̂  is right on the c-axis of the gain medium. As a 

consequence, the z-component of the orbital AM density for a linearly polarized light beam is 

given by 
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where ω is the angular frequency and Im denotes the imaginary part of the expression. 

Figure 5.2.8 depicts the numerical results for the orbital AM densities obtained with Eq. (5.2.4) 

and the parameters of )110,110(),( =oo nm , ( , ) (2, 2)p q = , 1 4P Q = , and 13M =  

corresponding to experimental wave patterns shown in Figs. 5.2.2 (a). The regions of 

maximum AM density can be clearly divided into four parts that exhibit to rotate with 

propagation. Furthermore, it is worth noting that some regions of the AM density have the 

opposite sign to the average AM of the whole beam, even though their overall contribution is 

extremely smaller than the global value. Unlike the LG modes that are the orbital AM 

eigenmodes [24-25], the orbital AM densities of linked and knotted coherent waves are not 

precisely matching to the local energy densities. Recently, Zambrini and Barnett [37] have 

numerically shown the possibility to engineer independently the local densities of optical AM 
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and energy. Nevertheless, in the present experiment the regions of maximum AM density 

almost coincide with the regions with maximum energy density.   

Efficiently generating the average AM is of practical significance for numerous 

applications. Hence, it is essentially meaningful to consider the average AM per photon in 

linked and knotted coherent waves. Although the transverse patterns of the present coherent 

waves depend on the propagation distance from the laser cavity, the average AMs are constant 

at different longitudinal planes. With the quantum operator, the z-component of the orbital 

AM for a normalized linearly polarized light beam Ψ can be expressed as ΨΨ= zz LL ˆ , 

where )]()([ˆ xyyxiLz ∂∂−∂∂−= h . With the orthogonal properties of the eigenfunctions 

of the 2D quantum harmonic oscillator, we can verify that 0ˆ ,
,

,
, == qp

nmz
qp
nmz oooo

LL ψψ , i.e. 

the zL  values of the 3D coherent waves qp
nm oo

,
,ψ  are zero.   

Although the average angular momentums of the single 3D coherent waves are zero, 

linked and knotted waves arising from the superposition of two degenerate 3D coherent states 

can possess very large zL  values. In order to derive the zL  value for experimental linked 

and knotted waves, we first use the annihilation and creation operators to show the result: 

 

ϕϕϕ sin12ˆ
1,1,1,1, oo

HG
nm

iHG
nmz

HG
nm

iHG
nm nmeLe

oooooooo
+=Φ+ΦΦ+Φ −+

−
−+

− h .   (5.2.5) 

 

With Eq. (5.2.5) and after some algebra, the zL  values for the wave functions in Eq. (5.2.3) 

can be derived to be  
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Fig. 5.2.8 Numerical results for the orbital AM densities obtained with Eq. (4) and the 
parameters of )110,110(),( =oo nm , ( , ) (2, 2)p q = , 1 4P Q = , and 13M =  

corresponding to experimental wave patterns shown in Fig. 5.2.2(a) 
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Since the indices om  and on  are generally much greater than the absolute numbers of 

pM and qM , the zL  values in Eq. (5.2.6) can be approximately to ϕsinoo nmh . The 

factor oo nm  indicates the geometric mean of the transverse orders and is nearly 

proportional to the Fresnel number Fr  of the laser cavity. The Fresnel number Fr  in the 

present microchip laser can be in the range of 10-1000. As analyzed above, linked and knotted 

coherent waves have been confirmed to correspond to the relative phase of 2/πϕ ±= . 

Therefore, the average AM per photon can be approximated as h⋅Fr  and their values in the 

present experiment can be estimated to be greater than 1000h . To be brief, experimental 

linked and knotted coherent waves are the most efficient states in producing huge orbital AM 

in the set of the superposition states );,,(,
, ϕzyxqp
nm oo

Ψ  of Eq. (5.2.3).   

 

5.2.3 Summary 

In summary, we have successfully used the representation of the 3D coherent states to 

deduce the analytical wave functions for experimental linked and knotted lasing modes which 

can be straightforwardly generated in large-Fresnel-number microchip lasers with 

longitudinal-transverse coupling. The analytical expression enables us to explore the orbital 

AM densities. Moreover, we also manifest that experimental linked and knotted coherent 

waves have the largest AMs per photon in the set of the superposition states and the maximum 

value is as large as 1000h . Since links and knots are widely encountered in many branches of 

science [38-41], the present findings certainly provide some insights into various classical and 

quantum waves in the mesoscopic regime.     
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Chapter 6 
Summary and Future Work 
 

The various interesting patterns have been realized by use of the precise microchip laser 

cavity. With the transversely isotropic gain medium, the various polarization-resolved patterns 

can be generated and the GCSs theoretically reconstructed the experimental results. Therefore 

off-axis pumping scheme leads to the high-order three-dimensional coherent states which are 

localized on the three-dimensional Lissajous parametric surfaces. Furthermore superposition 

of three-dimensional coherent states results in the three-dimensional interference patterns 

which spatially localized on the Lissajous parametric surface. Importantly, the 3D coherent 

optical waves are demonstrated to carry large angular momentum. In chapter 4 the most 

complicated pattern is investigated in detail with the interesting and important polarization 

singularities, V points, C lines, and L surfaces. The polarization singularities can be revealed 

with the theoretical results perfectly.  

However the various plentiful patterns have been showed and analyzed in the contents, 

the main target of our research will focus on the improvement of the Fresnel number in the 

laser cavity to study the super-high order coherent waves. We can demonstrate the 

eigenfunction of the laser cavity with the quantum mechanics and show the classical-like 

periodic orbits corresponding to classical world. The Fresnel number of the patterns which we 

had studied is about 20 to 1000. If we can enlarge the gain medium and the off-axis pumping 

radius, the Fresnel number can be increased substantially. The situation we can expect is that 

the patterns will be more colorful and complex than the patterns with small Fresnel number. 

Until now, the mathematical software is restricted to some limit of calculation results. It will 

be difficult to reconstruct the super-high order coherent waves. Therefore we will focus on the 
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classical theoretical analysis to help to study the formation of the various patterns. With the 

research of the formation of patterns the connection between microscopic and macroscopic 

can be explored deeply. The world of the physics is so wonderful, and then we should 

challenge ourselves to reach the limit what we can to see the beautiful of the physical world.        
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