
 
國 立 交 通 大 學 

 

電 子 物 理 研 究 所 
 

碩 士 論 文 

 
自旋霍爾效應設置下在微結構附近所產生的殘餘電阻

偶極和自旋偶極的共振現象 

 
RESONANT GENERATION OF  

RESIDUAL RESISTIVITY DIPOLE AND SPIN DIPOLE  
AROUND MICROSTRUCTURES  

IN A SPIN-HALL CONFIGURATION 

 

 

研 究 生：陳冠伊 

指導教授：朱仲夏教授 

 

 

中華民國九十六年七月 



自旋霍爾效應設置下在微結構附近所產生的殘餘電阻偶極

和電子自旋偶極的共振現象 

 

RESONANT GENERATION OF 
RESIDUAL RESISTIVITY DIPOLE AND SPIN DIPOLE  

AROUND MICROSTRUCTURES  
IN A SPIN-HALL CONFIGURATION 

 

研 究 生：陳冠伊                Student：Kuan-Yi Chen 

指導教授：朱仲夏教授               Advisor：Prof. Chon Saar Chu 

 

國 立 交 通 大 學 

電 子 物 理 研 究 所 

碩 士 論 文 

 
A Thesis 

Submitted to Department of Electrophysics 
College of Science 

National Chiao Tung University 
in Partial Fulfillment of the Requirements 

for the Degree of  
Master 

in 
Electrophysics 

 
 

July 2007 
Hsinchu, Taiwan, Republic of China 

 
 

中華民國九十六年七月 



i



RESONANT GENERATION OF

RESIDUAL RESISTIVITY DIPOLE AND SPIN DIPOLE

AROUND MICROSTRUCTURES

IN A SPIN-HALL CONFIGURATION

Student: Kuan-Yi Chen Advisor: Prof. Chon-Saar Chu

Department of Electrophysics

National Chiao Tung University

Abstract

This thesis focuses on spin-orbit interaction effect on charge and spin accumulation
around a microstructure in an external electric field. Furthermore, a ring type microstruc-
ture is introduced to explore possible amplification of the spin-orbit interaction effect from
quantum resonances allowed by such microstructures.

A major finding in this thesis is that the mostly overlooked spin-orbit interaction
arising from in-plane potential gradient can contribute to significant spin accumulation
around a microstructure. By considering quantum-mechanical scattering of individual
electrons in a nonequilibrium distribution acted upon by an external electric field, we
obtain a spin dipole, or spin accumulation of a dipole-like spatial variation, around a
microstructure within the ballistic range. The subsequent quantum scattering resonance
provides and additional knob for the manipulation of spin dipole. Specifically, the spin
dipole manifests both sign reversal and large amplification when the Fermi energy crosses
a resonance.

We have included the extrinsic spin-orbit interaction effects from background spin-
orbit scatterers by invoking a spin dependent nonequilibrium electron distribution. The
correction of the spin dipole is found to be insignificant in the resonant region.
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Chapter 1

Introduction

The main stream of present day technology is built upon charge-based electronics where

charge rather than spin of electrons is endeared as the carrier of information. The spin of

an electron, however, is essentially neglected in the technology arena.

This trend of neglecting spin in the application sector may have set a different course

in the past decades when prototypes of new, spin-based electronics, or spintronics, were

proposed and realized.

Earlier spin-based devices made use of the physics of giant magnetoresistance (GMR)

in a system consisting of magnetic materials [1]. More recent research takes on the greater

challenge of achieving spintronics in all semiconductor configurations: without magnetic

materials and applying magnetic fields.

To achieve an all electric control on spin transport and spin accumulation in semi-

conductors, we should invoke the spin-orbit interaction (SOI). According to the physical

origin of the SOI, the SOI can be divided into intrinsic and extrinsic types. The intrin-

sic type, such as Rashba [2], or Dresselhaus [3] SOI are associated with the lacking of

structural inversion symmetry, or spatial inversion symmetry, respectively. On the other

hand, the extrinsic SOI is due to the presence of SOI scatterers, or Mott scattering by

nonmagnetic impurities in the system [4, 5].

Recently, building on these SOI mechanisms, a physical phenomenon called spin-Hall
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CHAPTER 1. INTRODUCTION

effect (SHE) has attracted intensive attentions. This is a phenomenon where a dc charge

current can give rise to transverse spin current, in the lateral direction, and spin accumu-

lation at lateral edges of a strip-like sample [6–8]. This development has promoted great

hope in meeting the challenge of all-electric generation of spin transport and accumulation.

Experiment contribution of intrinsic SHE has been established in p-doped 2D semi-

conductor quantum wells [9], and of extrinsic SHE has been observed in n-doped 3D

semiconductor thin film strips of GaAs [10].

That the electron spin can precess when it moves in an electric or magnetic field,

complicates our lifes because any component of spin is not a conserved quantity. Hence

connecting the spin current to the spin accumulation is an issue that demands great

caution. As such, a proper definition was a great issue and remains to be entirely settled

[11–13].

Since experimentally it is as yet a tough issue concerning the direct measurement

of the spin current, the spin accumulation is the only alternative for the detection of

SHE. However, the spin accumulation on the lateral edges of a sample should not be the

only signature of SHE. Similar to Landauer’s picture of residual resistivity dipole (RRD)

around , where a dipole-like charge accumulation is generated by a dc charge current

around a local scatterer, a nonequilibrium spin dipole might be expected to form in a

spin-Hall configuration. That a spin dipole accumulated around a non-SOI scatterer in a

Rashba-type two dimensional electron gas (2DEG) has indeed be found recently [14]. On

the other hand, even though there are many recent works on spin-dependent quantum

scattering around microstructures [15–19], the SOI due to in-plane potential gradient has

essentially been neglected. In this thesis, we will show that this in-plane potential gradient

SOI can contribute to significant spin accumulation when quantum resonance is invoked.

2



CHAPTER 1. INTRODUCTION

Figure 1.1: An illustration of sample geometry for cross sectional STP experiments. [Su-
perlattices and Microstructures 23, 699 (1998)].

Figure 1.2: A. STM-topogragh, B. STP potential image and C. Cross sectional cut of B.
[Superlattices and Microstructures 23, 699 (1998)]

1.1 Introduction to Landauer’s residual resistivity dipole

The charge accumulation around a local scatterer that we will discuss in this section is

referred to as the residual resistivity dipole (RRD), first predicted by R. Landauer in

3



CHAPTER 1. INTRODUCTION

1957 [20]. According to Landauer, local scatterers are expected to give rise to spatial

variations in the electric field. This forms a microscopic point of view for the set-up of the

macroscopic potential drop from these individual electric dipole fields. In other words,

the Landauer RRD is the microscopic origin of the macroscopic resistance. Theoretical

formalism for the calculation of the RRD is built upon the asymptotic scattering wave

function around a target scatterer [21, 22]. Experiment confirmation of the Landauer

RRD has to wait until 1996, when the electric potential around a defect on a bismuth

surface was picked up by a scanning tunneling potentiometry (STP) [23].

1.2 Spin-orbit coupling in solid-state systems

Electron spin, the only internal degree of freedom of electrons, follows naturally from the

Dirac equation when Dirac tried to put wave function in a covariant form, when space

and time appear on equal footing. A nonrelativistic limit of the Dirac equation gives rise

to the spin-orbit interaction term, a term that has found great success in atomic energy

spectra. The form of this spin-orbit interaction, in vacuum, is [24]

HSO = − e�

4m2
0c

2
σ · (E × p) =

�

4m2
0c

2
σ · (∇V × p) , (1.1)

where m0 is the free electron mass, � the Planck constant and c the velocity of light. The

physical interpretation of HSO is given below. An electron moving in an electric potential

region sees, in its frame of reference, an effective magnetic field which couples with the

electron spin through the magnetic moment of the electron spin. Through this effective

magnetic field, which certainly depends on the orbital motion of the electron, the SOI is

established. This physics holds in semiconductor too, when V (r) becomes the periodic

potential of the host lattice and also the impurities.

Electronic state calculation in semiconductor is best described by the k·p model, when

the states in the vicinity of the band edges is of our interest. Furthermore, within the

envelope function approximation (EFA), the energy band can be characterized by effective

4



CHAPTER 1. INTRODUCTION

masses. The SOI in semiconductors requires, first of all, an effective electric field in the

material. Such effective electric field can find contribution from the build-in crystal field

when the crystal has bulk inversion asymmetric (BIA) the so-called Dresselhaus SOI, or

structural inversion asymmetry (SIA), the so-called Rashba SOI. The BIA is found in zinc-

blende structure and the SIA in asymmetric quantum wells (QWs) or heterostructures.

Within the effective mass approximation, the effect of all the fast-varying atomic po-

tential has been incorporated into the effective mass. Slower varying V (r), with variation

length scale much greater than the lattice spacing, is found to contribute to SOI with a

much greater SO coupling constant λ. For a central potential V (r) = V (r) in vacuum,

the SO coupling is

�

4m2
0c

2
σ · (∇V × p) =

�

4m2
0c

2

1

r

dV

dr
σ · (r × p) =

�
2

4m2
0c

2

1

r

dV

dr

L

�
·σ = −λvac

�

1

r

dV

dr
L ·σ

where L is the orbital angular momentum, σ is the vector Pauli matrices and λvac =

−�
2/(4m2

0c
2) ≈ −3.72 × 10−6 Å

2
.

But in a semiconductor, also for a central potential V (r) = V (r), the SO coupling is

HSO = −λ

�

1

r

dV

dr
L · σ,

where

λ ≈ P 2

3

[
1

E2
g

− 1

(Eg + Δ0)2

]
.

For a 2DEG, the SOI becomes

HSO = −λ

�

1

ρ

dV (ρ)

dρ
Lzσz.

Here P is the momentum matrix element between s- and p-orbitals, Eg is the energy band

gap, and Δ0 represents the SOI energy split to the spin split-off hole band [8, 25]. Of

5



CHAPTER 1. INTRODUCTION

particular interest is that λ = 120 Å
2

in InAs, which is seven order of magnitude greater

than λvac [25, 26].

Very roughly speaking, this large enhancement of SO coupling constant can be under-

stood in the following. With λvac ∝ 1
m2

0c2
= 1

m0

1
m0c2

, we can see that

λ

λvac

∼ m0

m∗
m0c

2

Eg

.

For InAs, m0/m
∗ ∼ 1

0.023
; m0c2

Eg
∼ 0.5 MeV

0.418 eV
; leading to

λ

λvac

∼ 52 × 106.

Comparing to 120 Å
2

3.73×10−6 Å
2 = 32 × 106, we see that the above hand waving argument has

captured the essential physical origin of the great enhancement.

1.3 Motivation

It is this great enhancement in the SO coupling constant that causes us to take the in-

plane potential SOI very seriously and to study its effect. As a result, we propose a

Figure 1.3: System configuration: A ring-shaped potential embedded in a two dimensional
electron gas (2DEG). An electric field E sets up a current in the 2DEG.

6



CHAPTER 1. INTRODUCTION

Figure 1.4: Radial profile of the central ring-shaped repulsive potential.

ring-shaped potential pattern.

To concentrate on the effect of the in-plane potential gradient SOI from the microstruc-

ture, we will not include other intrinsic and extrinsic SOI. Neglecting Rashba-type SOI

is justified in a symmetric quantum well. In our results, particulary near the quantum

resonances, to remain intact even when Dresselhaus SOI would be included. Extrinsic

SOI effect we will discuss in this thesis is found to be a small correction to our conclusion.

1.4 A guiding tour to this thesis

In Chapter 2, we will review the physics and formalism of a charge RRD around a local

scatterer. Concepts such as nonequilibrium distribution of incident electrons, obtained

from the Boltzmann kinetic equation, scattering wave functions of these electrons, and

Thomas-Fermi screening of these pile-up of charges to the electric potential field of the

electric dipole. As a preview to the resonant behavior, we will also consider the resonant

behavior of the RRD around a ring-shaped microstructure. No in-plane potential gradient

SOI is included in this preview session.

In Chapter 3, we reconsider the ring-shaped microstructure, but with in-plane po-

7



CHAPTER 1. INTRODUCTION

tential gradient SOI included. The 2D quantum-mechanical scattering becomes spin-

dependent and asymmetric. The resonant behavior in the charge RRD and the spin

accumulation is presented.

In Chapter 4, the effect of the extrinsic SOI to the resonant spin accumulation around

the ring-shaped microstructure is presented. Correction is shown to be small.

In Chapter 5, we consider a smooth potential profile of a ring-shaped microstructure.

The resonant behavior is shown to remain intact.

Finally in chapter 6, we present our conclusion and possible future work.

8



Chapter 2

Landauer’s residual resistivity dipole

around a ring-shaped microstructure

In this chapter, we will present the physics of Landauer’s residual resistivity dipole (RRD)

and formalism leading to such an entity. The distribution of the charge pile up of the

RRD around a local scatterer is obtained by summing up the density distribution of

electrons scattering from a target scatterer. The distribution of the electrons is set up by

an external field. The coulomb interaction between electrons causes screening to occur

and results in an induced potential variation around a scatterer. In the lowest order in

1/(kρ) where k is the Fermi wave number and and ρ the distance from the scatterer, the

induced potential takes on a dipole field from which we can define a RRD strength. We

present the energy dependence of the RRD which, as expected, exhibits resonant behavior

in the case of a ring-shaped microstructure.

2.1 Quantum-mechanical scattering in two dimensions

For a 2D central potential, the cylindrical symmetry governs that the scattering wave func-

tion be most conveniently expressed in polar coordinates. The scattering wave function

from an incident plane wave contains a scattered wave component representing cylindrical

9



CHAPTER 2. LANDAUER’S RESIDUAL RESISTIVITY DIPOLE AROUND A
RING-SHAPED MICROSTRUCTURE

outgoing wave co-centered with the central potential.

Without the central potential, the free particle Schrödinger equation is given by

(∇2 + k2)ψ = 0,

with the particle energy ε = �
2k2/2m∗. Expressed in polar coordinates, the equation is

1

ρ

∂

∂ρ
ρ
∂ψ

∂ρ
+

1

ρ2

∂2ψ

∂φ2
+ k2ψ = 0 . (2.1)

Applying the factored form ψ(ρ) = R(ρ) Φ(φ), it can be decoupled separately into the

radial and azimuthal coordinates,

d2R

dρ2
+

1

ρ

dR

dρ
+

(
k2 − l2

ρ2

)
R = 0 ;

d2Φ

dφ2
= −l2Φ ,

where the radial equation is the Bessel equation. Therefore the free electron wave function

in two dimensions can be written in the form

ψ(ρ, φ) = Jl(kρ) eilφ,

where Jl(x) is the Bessel function of the first kind with l = 0,±1,±2, . . . the quantum

number of the azimuthal motion, along the coordinate φ which is the angle between ρ

and x̂.

2.1.1 Method of partial waves

To perform the quantum scattering calculation from a cylindrical central potential, we

first expand the incident plane wave, along x̂, in terms of the cylindrical waves, the

10
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Jacobi-Anger expansion [27], given by

eikx = eikρ cos φ =
+∞∑

l=−∞
ilJl(kρ) eilφ. (2.2)

Since Jl(kρ) is a standing wave along the radial direction, it is convenient, for our

purpose, to express it in terms of two radial propagating waves, the Hankel functions,

Jl(kρ) =
1

2

[
H

(1)
l (kρ) + H

(2)
l (kρ)

]
,

where H
(1)
l (x) and H

(2)
l (x) are defined as

H
(1)
l (x) = Jl(x) + iYl(x) ;

H
(2)
l (x) = Jl(x) − iYl(x) .

The radial propagating nature of these Hankel functions is most transparent in their

asymptotic form, i.e. the region where kρ � 1,

lim
kρ→∞

H
(1)
l (kρ) =

√
2

πkρ
ei(kρ−lπ/2−π/4) ;

lim
kρ→∞

H
(2)
l (kρ) =

√
2

πkρ
e−i(kρ−lπ/2−π/4).

(2.3)

It is clear that H
(1)
l , H

(2)
l can be viewed as circular waves propagating radial outwards

from, inwards towards the scattering center, respectively. The cylindrical symmetry of the

scattering potential causes waves to be coupled only within the same l. This is essentially

the conservation of orbital angular momentum, which is true for a central potential but

without SOI. The total wave function, including the incident and the scattered waves, is

written in the form

Ψ(ρ) =
+∞∑

l=−∞
ilRl(ρ) eilφ, (2.4)

11
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where Rl is yet to be determined. Substituting Eq. (2.4) into the Schrödinger equation

Eq. (2.1), the radial equation becomes

1

ρ

d

dρ
ρ
dRl(ρ)

dρ
+

[
k2 − l2

ρ2
− 2m∗

�2
V (ρ)

]
Rl(ρ) = 0. (2.5)

Boundary conditions will be established in the next section for the solving of Rl(ρ).

2.1.2 Phase shift and the unitarity relation

For a scattering center, whatever goes in should be eventually go out. Hence physically, the

only thing that can be changed is the phase of the outgoing cylindrical waves. Therefore

phase shift in the asymptotic outgoing cylindrical wave, where V (ρ) = 0, should carry

information about V (ρ). Therefore, the asymptotic form of Rl(ρ) should be of the form

lim
kρ→∞

Rl(ρ) ∝
√

2

πkρ
cos

(
kρ − lπ

2
− π

4
+ δl

)
,

or more transparently,

lim
kρ→∞

Rl(ρ) =
1√

2πkρ

[
e2iδlei(kρ−lπ/2−π/4) + e−i(kρ−lπ/2−π/4)

]
. (2.6)

where δl is the phase shift of the outgoing wave. Clearly δl = 0 reduces Rl(ρ) to Jl(kρ) as

expected. Note that δl is the sole quantity to be determined since the amplitude of the

two cylindrical wave components in Eq. (2.6) should be the same, for unitary requirement.

On the same token, δl must be real.

We need to find a boundary condition for the determination of δl. For an arbitrary

radial potential profile, we need to integrate the radial equation for Rl(ρ) and matches it

with the expected form, Eq. (2.6), outside the potential. The radial wave function outside

the range of the potential can be expressed in the form

Rout
l (ρ) = eiδl [cos δlJl(kρ) − sin δlYl(kρ)] , (2.7)

12
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where the superscript ’out’ stands for ’outside’. Eq. (2.7) coincides with Eq. (2.6) in

its asymptotic region. The boundary condition for the radial differential equation, via

integrating Eq. (2.5), is that, the logarithmic derivative of Rl,

L [Rl(ρ)] ≡ ρ
d ln Rl(ρ)

dρ
, (2.8)

must be continuous at any ρ. Since the phase shift δl is defined in the potential-vanishing

region, we have

kρb [cos δlJ
′
l (kρb) − sin δlY

′
l (kρb)]

cos δlJl(kρb) − sin δlYl(kρb)
=

ρ

Rl

dRl

dρ

∣∣∣∣
ρ=ρ−b

,

where ρb is the ’outer edge’ of the scattering potential, beyond which the potential is

vanishing, and J ′
l (x) ≡ dJl(x)/dx. After some rearrangement, the phase shift is cast into

the form

tan δl =
kρbJ

′
l (kρb) − βlJl(kρb)

kρbY ′
l (kρb) − βlYl(kρb)

, (2.9)

where

βl ≡ ρ

Rl

dRl

dρ

∣∣∣∣
ρ=ρ−b

is the logarithmic derivative of the radial functions evaluated at ρ smaller but infinitesi-

mally close to ρb. Thus far the discussion is general, without being limited to any radial

potential profile inside ρb. Taking a unity amplitude for the plane wave, the total wave

function outside the range of the scattering potential is given by

Ψout
k (ρ) =

+∞∑
l=−∞

ileiδl [cos δlJl(kρ) − sin δlYl(kρ)] eilφ. (2.10)

The incident wave is along x̂, and the incident energy is ε, giving a free particle wave

number k =
√

2m∗ε/�.
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2.1.3 Asymptotic expansion of scattering wave and the differ-

ential cross section

The phase shift is related to the differential cross section. Separating out the plane wave,

in the total wave function in Eq. (2.10), we have

Ψk(ρ) = eik·ρ +
1

2

+∞∑
l=−∞

il
(
e2iδl − 1

)
H

(1)
l (kρ) eil(φρ−φk) , (2.11)

where incident wave direction k = (k, φk), rather than being restricted to k̂ = x̂. In the

asymptotic region, the above equation is in the form

Ψk(ρ) ≈ eikρ +
eikρ

√
ρ

f(φ),

with φ ≡ φρ − φk, and

fk(φ) =

√
2i

πk

+∞∑
l=−∞

eiδl sin δl e
ilφ, (2.12)

is the two dimensional scattering amplitude [28]. The scattering differential cross sections

is givne by D(φ) ≡ |f(φ)|2.

2.2 Nonequilibrium distribution of electrons: The-

ory of the Boltzmann kinetic equation

In this section we will give a brief review on the Boltzmann equation which we will use

to obtain the nonequilibrium electron distribution when an electric field is applied. In a

semiclassical regime, the state of a N particle system can be given by the set of coordinates

(pi, qi) , where i = 1, 2, 3, · · · , dN . This constitutes a state point in the phase space. The

Boltzmann equation aims to calculate the single? particle distribution f(k, r) by tracing
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its time evolution in the phase space, given by

∂f

∂t
+ k̇ · ∂f

∂k
+ ṙ · ∂f

∂r
=

∂f

∂t

∣∣∣∣
coll

, (2.13)

The left-hand side originates form the tracing of an infinitesimal phase space volume,

taking its volume changes in due course of its motion in the phase space, and requires

that the number of states enclosed remain the same. The right hand-side is the jump into

or out of the infinitesimal phase space volume due to collision with background impurities

and is given by

∂f(k)

∂t

∣∣∣∣
coll

= −
∑
k′

{Wk,k′f(k) [1 − f(k′)] − Wk′,kf(k′) [1 − f(k)]}, (2.14)

where Wk,k′ is the transition rate at which electrons are scattered from a state k to

another state k′, and its dimension is inverse of time. For the case when the scattering

by the background impurities preserve, then we have Wk,k′ = Wk′,k, and Eq. (2.14) can

be simplified to

∂f(k)

∂t

∣∣∣∣
coll

= −
∑
k′

Wk,k′ [f(k) − f(k′)]. (2.15)

2.2.1 Relaxation time approximation

If Wk,k′ is assumed to be momentum independent, then we have

∂f(k)

∂t

∣∣∣∣
coll

= −g(k)

τ
, (2.16)

where g(k) ≡ f(k) − f0(k) is the nonequilibrium part of the distribution and τ the

relaxation time. Eq. (2.16) describes the tendency of the nonequilibrium distribution

f(k) to evolve back to its equilibrium f0(k) in a time scale τ .

15



CHAPTER 2. LANDAUER’S RESIDUAL RESISTIVITY DIPOLE AROUND A
RING-SHAPED MICROSTRUCTURE

2.2.2 The linear response to the uniform electric field

In a spatially homogeneous and time-independent system, according to Eq. (2.13) and

Eq. (2.16), the Boltzmann equation reads, to the lowest order in the electric field E, or

for weak E,

−eE · 1

�

∂f0

∂k
= −g

τ
,

where e > 0. The equilibrium distribution f0 takes on the Fermi-Dirac distribution,

f0(k) =
1

e(εk−μ)/kBT + 1
, (2.17)

where εk = �
2k2

2m∗ is the electron energy, μ the chemical potential of the system, kB the

Boltzmann constant, and T the temperature. Therefore, the nonequilibrium distribution

is,

g(k) =
eτ�

m∗
∂f0

∂ε
E · k, (2.18)

which describes a edge-broadened, shifted Fermi sphere under the external applied electric

filed E.

2.3 Landauer’s residual resistivity dipole

2.3.1 Charge accumulation due to nonequilibrium incident dis-

tribution

The total nonequilibrium distribution in a uniform applied electric is

f(k) = f0(k) + g(k),
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Figure 2.1: Qualitative sketch of g(k) in the presence of a driving field E. The shifted
Fermi circle is towards negative x-axis because negatively charged electrons are driven
opposite to the direction of E.

where f0(k) is the equilibrium distribution. At very low temperature, f0 can be approxi-

mated by a Heaviside step function,

f0(k) = θ(μ − εk), (2.19)

and thus the nonequilibrium solution to the Boltzmann equation, according to Eq. (2.18),

is

g(k) = −eτ�

m∗ δ(εk − μ)E · k, (2.20)

where E = E0x̂ is the applied electric field.

Taking into account the incident direction k̂ and the direction of the position ρ̂ at

which the scattering wave function is referred, we have

Ψk(ρ) =
+∞∑

l=−∞
ilRl(ρ)eil(φρ−φk), (2.21)
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where Rl(ρ) is assumed to be determined from the radial Schrödinger equation Eq. (2.5).

The total charge density distribution can therefore be evaluated by summing over the

scattering wave functions of all these electrons

n(ρ) = 2 × 1

4π2

∫
dk f(k) |Ψk(ρ)|2 = neq(ρ) + δn(ρ), (2.22)

where

neq(ρ) =
1

2π2

∫
dk f0(k) |Ψk(ρ)|2

is the contribution due to equilibrium distribution, and

δn(ρ) =
1

2π2

∫
dk g(k) |Ψk(ρ)|2

is due to the nonequilibrium part of the distribution, which is also linear in E. The

multiplying factor 2 in Eq. (2.22) is due to spin degeneracy. Integrating over k gives us a

dipole-like distribution with the dipole aligned parallel to E,

δn(ρ) = −2eτE0kμ

π�
cos φρ Im

∞∑
l=0

Rl(ρ)R∗
l+1(ρ), (2.23)

where kμ =
√

2m∗μ/�. The detailed derivation of Eq. (2.23) is presented in Appendix A.

2.3.2 Screening effect and potential induced by charge accumu-

lation

The pile up of charges in the previous section invite screening by the electrons in the

system which then results in a local drop in the electric potential.

Although the local pile up of charges is expressed completely by Eq. (2.22), the only

contribution to the potential ’drop’ between electrodes is from the dipole-like distribution

δn(ρ). This is because the neq, being cylindrical symmetry, does not contribute to the
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potential drop. Only the δn(q) term contributes to the potential drop. This potential

drop is identified to be a dipole-like form, leading Landauer to the RRD picture. In the

following, we use the well-known method of Thomas-Fermi (T-F) screening [29] to obtain

the potential induced by this local pile up of charges.

2.3.3 Thomas-Fermi screening in two dimensions

It is found to be more convenient to discuss the T-F screening in 2D system in the integral

form than in the differential form, given by the Laplace equation. Let σ(ρ) be the total

charge distribution, including the external charge σext(ρ) and the screening charge σind(ρ).

The total potential φ(ρ) is given by

φ(ρ) =
1

4πε0

∫
σ(ρ′)

|ρ − ρ′| dρ′ (2.24)

By performing a Fourier transform on Eq. (2.24), and incorporating the convolution the-

orem, we obtain

φ(q) =
1

2ε0

1

q
σ(q) , (2.25)

where φ(q), σ(q) stand for the Fourier transforms of φ(ρ), σ(ρ), respectively, at wave

vector q. The equilibrium electron number density is given by

n0 = 2 × 1

4π2

∫
dkf0(k) =

1

2π2

∫
dk

1

e(ε−μ)/kBT + 1
,

and the factor 2 is due to the spin degeneracy. This density is neutralized by a corre-

sponding positively charged background. In the presence of φ(ρ), the electron density

becomes

n(ρ) = 2 × 1

(2π)2

∫
dk

1

e(ε−eφ(ρ)−μ)/kBT + 1
.
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From the assumption of the neutrality, the positive charge number density is n0, and the

induced charge density is σ(ρ) = −en(ρ), is written as

σind(ρ) = −en(ρ) + en0 = −e [n0(μ + eφ(ρ)) − n0(μ)] .

Assume that φ(ρ) is weak enough and can be regarded as a perturbation, then

σind(ρ) ≈ −e2 ∂n0

∂μ
φ(ρ) = e2 ∂n0

∂ε
φ(ρ) . (2.26)

The total potential can be written as

φ(ρ) = φext(ρ) + φind(ρ) (2.27)

which contains both the external and induced parts of potential. From Eq. (2.25), the

Fourier transform of Eq. (2.27) in q space is

φ(q) =
1

2ε0q

[
σext(q) + σind(q)

]
. (2.28)

By substituting Eq. (2.26) for σind in Eq. (2.28), one can relate the external charge or

number density to the total electric potential

φ(q) =
1/2ε0q

1 + k0/q
σext(q) =

−e

2ε0 (q + k0)
next(q), (2.29)

with k0 ≡ e2

2ε0

∂n0

∂μ
the reciprocal of screening length. In the spatial asymptotic regime of

the external charge location, the screening is dominated by q = 0 behavior. While q = 0,

we obtain

φ(ρ) = −
(

e
∂n0

∂μ

)−1

next(ρ) . (2.30)
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In 2D system, the density of states is

∂n0

∂μ
=

m∗

π�2
.

Therefore, the final induced potential by the charge accumulation is given by

φ(ρ) = − π�
2

em∗ next(ρ) . (2.31)

2.3.4 Definition of the strength of the residual resistivity dipole

From Eq. (2.23) and Eq. (2.30), the RRD potential is given by

δφ(ρ) =
2E0�kμτ

m∗ cos φρ Im
∞∑
l=0

Rl(ρ)R∗
l+1(ρ). (2.32)

Therefore, we can identify the RRD from Eq. (2.32). From Eq. (2.6) we can see that Bessel

function is proportional to ρ−1/2 in the asymptotic region, and therefore the potential in

Eq. (2.32) is proportional to ρ−1. Hence Eq. (2.32) indicates a 2D electric dipole potential.

After averaging away the Friedel oscillation and in the asymptotic region,

δφ(ρ) ∼ pc
cos φρ

ρ̃
, (2.33)

where pc corresponds to the RRD strength written as

pc = −E0�τ

2πm∗ kμσtr . (2.34)

Here ρ̃ = k∗ρ is a dimensionless ρ, kμ is the wave number corresponding to μ, and

σtr =
4

kμ

∞∑
l=0

sin2 (δl − δl+1), (2.35)
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is exactly the transport cross section of the scattering potential, being defined as

σtr ≡
∫ π

−π

dφ (1 − cos φ) D(φ). (2.36)

Eq. (2.36) describes the extent in which the electron population is deflected by the po-

tential and plays the role of reflectance in 1d system. The forward scattering is strong, or

reflection is small, when σtr is small. Meanwhile, the larger σtr is, the more the particles

are scattered into every directions.

2.4 Resonance generation of RRD around a ring-shaped

structure

Units

In the following expressions, all the physical quantities are dimensionless in units ac-

cording to a typical carrier concentration ne. The wave number is in units of k∗ =
√

2πne,

where ne = 7.4 × 1011 cm−2 is the typical carrier concentration; The system chemical

potential is in units of E∗ = �
2k∗2/2m∗, and length is in 1/k∗.
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Ring-shaped step potential

We consider a ring-shaped square potential barrier, described by step functions,

V (ρ) = V0[θ(ρ − a) − θ(ρ − b)], (2.37)

where a, b and V0 are inner, outer radii and the potential energy height, respectively. No

in-plane potential gradient SOI is included here. With this simple model of a ring-shaped

potential Eq. (2.37), the radial wave function can be exactly solved, for ε > V0,

Rl(ρ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ClJl(kρ), ρ ≤ a

Al [Jl(κρ) − BlYl(κρ)] , a < ρ ≤ b

eiδl [cosδlJl(kρ) − sinδlYl(kρ)] , ρ > b

, (2.38)

with κ =
√

2m∗ |ε − V0|/�. For ε < V0, the Bessel functions Jl(κρ), Yl(κρ) in the region

a < ρ ≤ b ought to be substituted by the modified Bessel functions, Il(κρ), Kl(κρ),

respectively. The undetermined coefficient Bl and δl can be obtained via matching the

boundary condition of the radial derivatives ρ (d ln Rl/dρ) at the inner and outer edges of

the scattering potential. At ρ = a,

Bl =
κaJ ′

l (κa) − γlJl(κa)

κaY ′
l (κa) − γlYl(κa)

,

where γl ≡ kaJ ′
l (ka)/J(ka); at ρ = b, we obtain

δl = tan−1

[
kbJ ′

l (kb) − βlJl(kb)

kbY ′
l (kb) − βlYl(kb)

]
, (2.39)

where βl ≡ κb [J ′
l (κb) − BlY

′
l (κb)]/ [Jl(κb) − BlYl(κb)] .

One can obtain the amplitudes of partial waves Al and Cl by simply matching the

function values Rl at each boundary. At ρ = b,

Al =
eiδl [cos δlJl(kb) − sin δlYl(kb)]

Jl(κb) − BlYl(κb)
;
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at ρ = a,

Cl =
Al [Jl(κa) − BlYl(κa)]

Jl(ka)
;

The radial function Rl(ρ) is completely solved.

In the following we review conventional resonance phenomena involving atomic scat-

tering, and then discuss the resonant behavior of the strength of RRD.

We now discuss properties of phase shift through the expression Eq. (2.39). First of

all, δ is well defined within an interval of π. The partial wave analysis can also be of help

to explain resonance phenomena of the total scattering cross section. From the optical

theorem, or directly integrating the differential cross section D(φ) with respect to φ, the

total cross section is given by

σtot =
1

k

+∞∑
l=−∞

sin2 δl. (2.40)

For a ring-shaped potential barrier, the dependence of σtot on the Fermi energy exhibits

resonant peak structures. At a certain resonance energy, there shows an enhancement

peak of σtot. It can be shown that the resonant peak is due solely to on phase shift term

in Eq. (2.40). The resonance occurs only when the phase shift of the dominant partial

wave crosses nπ/2 (n is odd integer) with positive dδl/dε [30].

Furthermore, the resonant energy is found to correspond to the bound state energy

set up within a cylindrical disc of radius a, the inner radius. Fig. 2.2 shows, in the upper

diagram, energy levels of a infinite circular disc well with radius a. The energy levels are

labeled by (n, l) where n is the radial quantum number and l the azimuthal quantum

number. Levels of the same l are indicated by the same color. The lower diagram of

Eq. (2.2) shows the μ dependence of the phase shift δl. The resonant structures in δl are

connected by arrows, and resonances of the same l have the same color. It can be seen

that, even the energy levels in the upper diagram do not align exactly with the resonant

energies in the lower diagram, they do correspond well in the color and all shows red shift
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Figure 2.2: Energy spectra of an infinite circular well and phase shifts versus the chemical
potential for a ring-shaped step potential barrier with parameters: V0 = 1 the potential
height, a = 6 the inner radius, and b = 9 the outer radius.

in the resonant energies. Thus we have established the physical origin of the resonances,

and we can label them with a set of resonance numbers (n, l), associated with the quantum

numbers in a disk-shaped infinite well. The physical origin of the resonances looks like

to be that when the resonance occurs, the incident wavelength of certain electron partial

waves match some characteristic resonant lengths that fits the geometry of the ring.

As for the RRD, Eq. (2.3) shows that the RRD strength exhibits dip structures at res-

onant energies. For the purpose of clarifying the physical picture, we choose a ring-shaped

structure of a smaller radius with parameters: inner, outer radii a = 6, b = 9, respec-

tively. The potential height V0 = 1. All of parameters are in the chosen units mentioned

previously. In the Fig. 2.3, we plot the quantity kσtr versus the chemical potential of the
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Figure 2.3: kσtr versus the chemical potential with parameters of a ring-shaped step
potential barrier: the potential height V0 = 1, the inner radius a = 6, and the outer
radius b = 9.

system because the dimensionless quantity kσtr can represent the charge dipole strength.

The dip structures at resonances imply that when resonance occurs, the pile up of charges

is smaller. This can be explained by the transport differential cross section σtr and the

reminiscent of the resonance behavior in one dimensional scattering on a double barrier

structure. When σtr is small, according to the definition of it Eq. (2.36), the forward

scattering is strong, that is, the particles encounters little impediment so that few parti-

cles are deflected into any other directions but the forward one. The small impediment

also implies a small pile up of charges, small potential drop, and most importantly, low

resistance around the ring-shaped structure.

In Fig. 2.3, the overall trend of
√

μ in the RRD strength near the low μ regime, i.e.
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μ ≤ V0, is because the nonequilibrium part of distribution g(k) is linear in k, and thus

the strength is a square root in energy, except at resonance structures.

2.5 Brief summary

Thus far in this chapter, we reviewed the theoretical formalism for Landuaer’s RRD and

analyzed its resonance around a repulsive, ring-shaped step potential within the ballistic

range. The resonance dips structures in the kσtr characterizing RRD strength which

has an analog of 1D resonant tunneling through a double barrier. The position of the

resonant dips below for electron energy lower than the potential barrier height is found

to correspond with the quantized energy levels, labeled by quantum numbers (n, l), for a

circular disk of radius a.
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Chapter 3

Residual resistivity dipole and spin

dipole in the presence of spin-orbit

interaction arising from in-plain

potential gradient of a

microstructure

The main focus in this chapter is to explore the significance of the spin-orbit interaction

arising from the in-plane potential gradient. Towards this end, we consider a ring-shaped

potential profile as an explicit example. The SOI effect from the in-plane potential gra-

dient to the Landauer RRD and the spin accumulation in driving electric field will be

studied.

We first present the spin dependent quantum scattering calculation and then make

use of the symmetry properties in the phase shifts to arrive at an analytical forms of the

charge RRD and the spin dipole that shows explicitly the dipole features as well as their

orientations.
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3.1 Spin dependent asymmetric scattering in the pres-

ence of SOI

The Hamiltonian of the system, together with a spin-orbit potential arising from the

in-plane gradient of the scattering potential in 2D, is written as

H =
p2

2m∗ + V (ρ) +
λ

�

1

ρ

dV (ρ)

dρ
σzLz , (3.1)

whereV (ρ) = V (ρ) is the cylindrical symmetric potential from the ring-shaped microstruc-

ture. The third term of H causes spin dependent scattering because of the presence of

the Pauli matrix σz but it does not cause spin flipping if we choose our basis spin states

in the ẑ direction.

Taking on a step-like profile, the ring-shaped potential V (ρ) = V0 [θ(ρ − a) − θ(ρ − b)]

gives rise to the SOI term

HSO =
λ

�

1

ρ
[δ(ρ − a) − δ(ρ − b)] σzLz. (3.2)

The total wave function for an electron incident along arbitrary direction k̂ and in

spin state χσ is written as Ψkσ(ρ) = ψσ
k(ρ)χσ, where

ψσ
k(ρ) =

+∞∑
l=−∞

ilRσ
l (ρ)eil(φρ−φk) . (3.3)

Here σzχσ = σχσ. Substituting Eq. (3.3) into the Schrödinger equation, the radial differ-

ential equation reads

1

ρ

d

dρ
ρ
dRσ

l (ρ)

dρ
+

{
k2 − l2

ρ2
− 2m∗

�2
[V (ρ) + lσHSO(ρ)]

}
Rσ

l (ρ) = 0. (3.4)

The radial function Rσ
l (ρ) as well as its coefficients in the three radial regions are all spin
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dependent, that is, depend on the index σ, and are given by

Rσ
l (ρ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Cσ
l Jl(kρ), ρ ≤ a ,

Aσ
l [Jl(κρ) − Bσ

l Yl(κρ)] , a < ρ ≤ b ,

eiδσ
l [cosδσ

l Jl(kρ) − sinδσ
l Yl(kρ)] , ρ > b .

(3.5)

For incident energy ε, we have ε = �
2k2

2m∗ , and in the barrier region, we have ε = V0 + �
2k2

2m∗ .

Since HSO is nonzero only at the inner and the outer radii, namely, ρ = a, b, respec-

tively, the boundary condition that bring forth the spin degeneracy is given by

ρ

Rσ
l

dRσ
l

dρ

∣∣∣∣
ρ=a+

=
ρ

Rσ
l

dRσ
l

dρ

∣∣∣∣
ρ=a−

+
2m∗V0λlσ

�2
;

ρ

Rσ
l

dRσ
l

dρ

∣∣∣∣
ρ=b+

=
ρ

Rσ
l

dRσ
l

dρ

∣∣∣∣
ρ=b−

− 2m∗V0λlσ

�2
.

(3.6)

The coefficient Bσ
l is given by,

Bσ
l =

κaJ ′
l (κa) − γσ

l Jl(κa)

κaY ′
l (κa) − γσ

l Yl(κa)
,

where

γσ
l =

kaJ ′
l (ka)

Jl(ka)
+

2m∗V0λlσ

�2
.

The phase shift is obtained to be

δσ
l = tan−1

[
kbJ ′

l (kb) − βσ
l Jl(kb)

kbY ′
l (kb) − βσ

l Yl(kb)

]
,

where

βσ
l =

κb [J ′
l (κb) − Bσ

l Y ′
l (κb)]

Jl(κb) − Bσ
l Yl(κb)

− 2m∗V0λlσ

�2
.

Finally, by imposing the condition that wave function is continuous, we obtain the coef-
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ficients Aσ
l and Cσ

l , given by

Aσ
l =

eiδσ
l [cos δσ

l Jl(kb) − sin δσ
l Yl(kb)]

Jl(κb) − Bσ
l Yl(κb)

;

and

Cσ
l =

Aσ
l [Jl(κa) − Bσ

l Yl(κa)]

Jl(ka)
.

We note in passing that in the low energy situation, when ε < V0, Bessel functions Jl(κρ),

Yl(κρ) are replaced by modified Bessel functions Il(κρ), Kl(κρ), respectively.

The effect of HSO is to lift the spin degeneracy such that the differential cross section

becomes Dσ(φ) = |fσ(φ)|2, where the spin-dependent scattering amplitude is given by

fσ(φ) ≡
√

2i

πk

+∞∑
l=−∞

eiδσ
l sin δσ

l eilφ. (3.7)

3.1.1 Two useful relations

Two important symmetry properties int he phase shift and the radial wave function are

to be presented in this section. The first symmetry can be seen from Eq. (3.6), when the

spin dependent term, the second term on the right-hand side, involves a product lσ of the

orbital and the spin quantum number. Thus we must have the symmetry

δσ
−l = δ−σ

l , or δ−σ
−l = δσ

l . (3.8)

Another symmetry relation is a direct consequence of the δσ
l symmetry. The radial wave

function is related to δσ
l via Bessel functions. For instance, outside the range of the

potential V (ρ), the radial function is given by

Rσ
l (ρ) = eiδσ

l [cosδσ
l Jl(kρ) − sinδσ

l Yl(kρ)] .
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The Bessel functions has a symmetry relation for l

Z−l(x) = (−1)lZl(x),

where Zl(x) stands for any one of the two kinds of Bessel functions. Thus imposing both

the symmetry properties in the phase shift and the Bessel function to Rσ
l (ρ), we have

Rσ
−l(ρ) = (−1)lR−σ

l (ρ), or R−σ
−l (ρ) = (−1)lRσ

l (ρ). (3.9)

This two symmetry relations Eq. (3.8) and Eq. (3.9) are useful for putting our expres-

sion, in the next section, for the RRD and spin dipole into elegant and physically most

transparent forms.

3.2 Residual resistivity dipole in the presence of local

structure SOI

Following similar procedure for obtaining the charge accumulation in Eq. (2.18), except

here the spin degeneracy is lifted, we write down the total charge accumulation n(ρ) as

follows

n(ρ) =
1

4π2

∫
dk f(k)

∑
σ

Ψ†
kσ(ρ)Ψkσ(ρ)

= neq(ρ) + δn(ρ),

where

δn(ρ) = −eτE0kμ

π�
cos φρ Im

∑
σ

∞∑
l=0

Rσ
l (ρ)Rσ∗

l+1(ρ) . (3.10)
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To obtain Eq. (3.10), we have to impose the symmetry relation given by Eq. (3.8) and

Eq. (3.9). With the T-F screening incorporated, the total potential becomes

δφ(ρ) =
E0�kμτ

m∗ cos φρ Im
∑

σ

∞∑
l=0

Rσ
l (ρ)Rσ∗

l+1(ρ), (3.11)

which is a dipole field form. The strength pc of the charge dipole, again, is obtained from

the asymptotic region,

pc = −E0�τ

2πm∗ kμσtr, (3.12)

where σtr is the transport cross section with removed spin degeneracy

σtr ≡ 1

2

∫ π

−π

dφ (1 − cos φ)
∑

σ

Dσ(φ)

=
2

kμ

∑
σ

∞∑
l=0

sin2
(
δσ
l − δσ

l+1

)
.

3.3 Spin dipole due to spin-independent nonequilib-

rium incident distribution

In addition to Landauer’s RRD, the presence of asymmetric Mott scattering [4], caused

by the SOI in the ring-shaped potential, should give rise to interesting spin accumulation.

The results of resonant scattering for the incident plane wave are in Appendix E. Following

similar procedure for the RRD calculation, the spin density, in units of �/2, is given by

Sz(ρ) =
1

4π2

∫
dk f(k)

∑
σ

σ Ψ†
kσ(ρ)Ψkσ(ρ)

= Seq
z (ρ) + δSz(ρ),
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where

Seq
z (ρ) =

1

4π2

∫
dkf0(k)

∑
σ

σ |ψσ
k(ρ)|2 .

That the equilibrium spin accumulation must be zero, Seq
z = 0, identically can be shown

by direct calculation. Simply that the equilibrium spin distribution is isotropic for each

spin causes exact cancellation between opposite spin. The total spin accumulation is then

determined solely by the nonequilibrium part

Sz(ρ) = δSz(ρ) =
1

4π2

∫
dk g(k)

∑
σ

σ |Ψkσ(ρ)|2 .

Again, making use of the symmetry properties in Eq. (3.8) and Eq. (3.9), we get

Sz(ρ) = nE sin φρ Re
∑

σ

σ

∞∑
l=0

Rσ
l (ρ)Rσ∗

l+1(ρ), (3.13)

by the use of relation Eq. (3.9). The factor nE = eE0τkμ

π�
has the dimension of density,

linear in E0, and with an energy dependence via kμ. The momentum relaxation time τ is

assumed to be a constant, independent of energy. The angular dependence, sin φ, of the

spin density Sz(ρ) indicates a dipole-like distribution, aligned perpendicular to the driving

field E. This expression of spin accumulation holds within a radial distance shorter than

the mean free path.

The screening of spin is assumed to be negligible because of the spin-spin interaction

between electrons. As in the charge dipole case, we can define a spin dipole strength from

the asymptotic form of the spin accumulation,

Sz(ρ) ∼ ps
sin φρ

ρ̃
, (3.14)

where ρ̃ ≡ k∗ρ is the dimensionless radial coordinate, and ps is the spin dipole strength.
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The expression for ps is

ps = − ñE

2π
kμσ⊥, (3.15)

where

σ⊥ ≡ 1

2

∫ +π

−π

dφ sin φ
∑

σ

σDσ(φ) (3.16)

is essentially the transverse moment of the net spin differential cross section, which we

may call the transverse transport cross section. In terms of phase shifts,

σ⊥ =
1

kμ

∑
σ

σ

∞∑
l=0

sin[2(δσ
l − δσ

l+1)]. (3.17)

The constant factor ñE =
m∗eE0l∗0

π�2 , where l∗0 = �k∗τ/m∗, is the product of the 2d density of

state m∗
π�2 and the work done by the electric field within the range of mean free path eE0l

∗
0.

The minus sign appearing in Eq. (3.15) indicates that the direction of electron motion is

opposite to E. As the electric field is driving in positive x-direction, the electron is driven

in the negative x-direction and therefore the orientation of the spin dipole is opposite to

that of kσ⊥.

3.3.1 Second-order correction to the spin dipole strength at res-

onance

The radial dependence of Sz for typical physical parameters is shown in Fig. 3.1. The

exact numerical result is given by the solid curve, the asymptotic form, Eq. (3.14), is given

by the dashed curve, whereas the dot-dashed curve denotes results that goes beyond the

usual asymptotic from, and has included a correction term. It is clearly shown that the
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Figure 3.1: Radial variation of Sz(ρ) along φρ = π/2 at the two resonant energies (a)
μ = 0.3312, and (b) μ = 0.3328 in the resonance pair labeled (1,5). The green dashed
curve is ps/k

∗ρ; the red dot-dashed curve includes the 2nd-order correction ℘s. The
geometry of the ring: the potential height V0 = 0.75, the inner radius a = 14, and the
outer radius b = 20.5.

corrected curve fits better. Thus

Sz ∼ sin φρ

ρ̃

[
ps +

℘s

ρ̃

]
, (3.18)

where

℘s =
ñE

4π
k∗σ′

⊥, (3.19)

with

σ′
⊥ =

1

k

∑
σ

σ

∞∑
l=0

(2l + 1) cos
[
2(δσ

l − δσ
l+1)

]
. (3.20)
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It is still reasonable to use ps for the representation of the spin dipole strength.

3.4 Resonance of charge and spin dipole in the pres-

ence of the SOI from the microstructure

In this section we discuss in detail the resonant features in the presence of SOI. First of

all, the SOI lifts the spin degeneracy at the resonance. That is, to every resonance in the

absence of SOI, we will have two resonances when SOI is introduced. This is shown in

Fig. 3.2, when the phase shifts are plotted against electron energy μ. In the upper part of

Fig. 3.2, the resonances denoted by the profile where the phase shift jumps from π/2 to

−π/2, are for zero SOI (λ=0). In the lower part of Fig. 3.2, when λ �= 0, the number of

curves are doubled, representing the spin-split, and subsequently the number of resonant

energies are doubled.

From the insight we obtained in Chapter 2, each resonance associated with quantum

numbers (n, l) occurs because the incident wavelength of the l’th and the −l’th partial

waves match certain characteristic resonant length (labeled by n) fitting the geometry of

the ring. In the absence of the SOI, there is spin degeneracy in the resonant lengths of

the l and the −l partial waves with the same radial mode n. When the SOI is introduced,

the spin degeneracy is lifted and hence the resonant energy in the phase shift is doubled.

We can see from Fig. 3.2 that the energies at which the phase shifts jump from π/2 to

−π/2 are different for the l’th and the −l’th partial waves.

3.4.1 Resonant asymmetric skew scattering

Asymmetric scattering near a resonant energy shows interesting characteristics. As the

asymptotes of the scattered wave is related to the differential scattering cross section,

it becomes spin dependent here, and the resonant energies are spin-split. If we want to

define a quantity representing the extent of lateral deflection in the scattering wave, the
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Figure 3.2: Qualitative sketch of the phase shift in the presence SOI: for the up-spin
partial waves, the solid curves in the lower plot is for positive l, and the dashed curves
are for negative l; or equivalently, for partial waves with positive l, the solid curves are
for up-spin waves, and the dashed curves are for down-spin waves.

following moment is a good choice

ση
⊥ ≡

∫ π

−π

dφ sin φDη(φ) (3.21)

where η = ± stands for the spin state, along ẑ, of the incident electron. Expressed in

terms of phase shifts, we have

ση
⊥ =

1

k

∞∑
l=0

{
sin[2(δη

l − δη
l+1)] − sin[2(δη

−l − δη
−(l+1))]

}
. (3.22)
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If this integral is positive, the incoming electron will be scattered to its left, or positive

y-direction, assuming x̂ is the incident direction. One can see from Eq. (3.22), that

σ+
⊥ = −σ−

⊥ , (3.23)

which implies that incident electrons with opposite spin-polarization along ẑ are deflected

in opposite directions laterally. If there were no SOI, the spin degeneracy would be

recovered, and ση
⊥ = 0 for both spin states, as it should be. The expression for ση

⊥,

according to Eq. (3.22), contains the difference of two terms, each is a summation over l,

but with l ≥ 0 and l ≤ 0, separately. If we have an amplification of kση
⊥ at the energy

Eη
n,+l, we should have similar amplification, but of the opposite sign, at the energy Eη

n,−l,

according to Eq. (3.22). We plot individually the two terms that constitutes kσ+
⊥, as

shown in Fig. 3.3. We see from Fig. 3.3 that the positive-l curve, denoted by the red

curve, has peak structures; the negative-l curve, as denoted by the blue curve, has peak

structures as well but is shifted in energy relative to the red curve. The black curve

denotes kσ+
⊥, which is the difference of the blue and the red curves.

3.4.2 Resonant RRD in the presence of the SOI

The resonant dip structures of charge dipole strength are spin-split, as shown in Fig. 3.4.

The resonant energy ε0
nl is split into εσ

n,±l so that a dip structure in the RRD strength, or

kσtr, becomes double dips. This is clearly seen in the (1,2), (1,3) and (1,4) structures in

the upper curve of Fig. 3.4. The split in energy
∣∣εσ

n,+l − εσ
n,−l

∣∣ is larger for larger l. This

is reasonable because the spin dependent term in Eq. (3.6) in creases with l. For the sake

of simplifying the notation, we denote each spin-split resonant pair by (n, l), the resonant

number for the mother resonant dip in kσtr.
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Figure 3.3: σ+
⊥ versus system energy: the red curve denotes the summation over posi-

tive l,
∑∞

l=0 sin[2(δ+
l − δ+

l+1)]; the blue curve stands for the summation over negative l,∑∞
l=0 sin[2(δ+

−l − δ+
−(l+1))]; the total σ+

⊥ is denoted by the black curve.

3.4.3 Resonance of spin dipole

In this section, we present the resonant characteristics of the spin dipole. The spin dipole

strength is shown to manifest large enhancement and sign reversal at resonance.

From the lower curve of Fig. 3.4, the resonant features in the spin dipole strength, or

kσ⊥, is shown to carry a peak-dip structure. To show that this resonant feature is indeed

remarkable, we plot, for comparison, the spin dipole strength due to a potential disc with

the same outer radius a, but having the inner radius b = 0. Denoted by the red line

in the kσ⊥ curve in Fig. 3.4, this line matches very well with the ring-shaped potential

result in the non-resonant and low energy regions. From this we also see that quantum

resonance has lead to very large enhancement in the spin dipole strength. Furthermore,
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Figure 3.4: kσtr (the upper plot) and kσ⊥ (the lower plot) versus the chemical potential
μ with parameters of a ring-shaped step potential barrier: the potential height V0 = 1,
the inner radius a = 6, and the outer radius b = 9. The red line in the lower plot is kσ⊥
for a disk-shaped potential barrier with its radius equal to 9.

Fig. 3.4 contains two series of resonant peak-dip pairs. Labeled by (n,l), the first series is

the n = 1 series, and starts from l = 1 at energy μ = 0.295 (energy unit E∗ = 77.1 meV).

The second series is the n = 2 series, and starts from l = 1 at energy μ = 0.94. There is

no peak-dip resonant structures in kσ⊥ for l = 0 because again, the spin dependent term

in Eq. (3.6), vanishes for l = 0.

From definitions Eq. (3.16), Eq. (3.21) and the relation Eq. (3.23), we have

σ⊥ =
1

2

(
σ+
⊥ − σ−

⊥
)

=
1

2

(
σ+
⊥ − (−σ+

⊥)
)

= σ+
⊥ .

From σ⊥ = σ+
⊥, and that the physical meaning of σ+

⊥ is the lateral moment of the spin

dependent differential scattering cross section, we have a better physical understanding
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Figure 3.5: (a) kσ⊥ versus the Fermi energy in units of E∗ = 77.1 meV. Parameters of
a ring-shaped step potential barrier: the potential height V0 = 0.75, the inner radius
a = 14, and the outer radius b = 20.5. (b)-(d) Blowups of the resonance pair labeled in
the same series n = 1 and l = 4, 5, 6, respectively. The dot-dashed (red) curves are the
partial summations of kσ⊥ including only terms involving δσ

5 . The dashed (blue) curves
are kσ⊥ for V0 = 0.751. The smallest abscissa in (b)-(d) is 0.0001.

of the spin dipole, which strength is kσ⊥.

In our numerical examples, physical parameters are chosen according to practical

experimental situation and for the material InAs. Parameters units typical for InAs

are: electron density n∗
e = 7.4 × 1011 cm−2; energy unit E∗ = n∗

eπ�
2/m∗ = 77.1 meV;

m∗ = 0.023 me; k∗ = 2.16 × 108 m−1; length unit L = 1/k∗ = 46.3 Å. In these units,

the ring-shaped potential has radii a = 14 and b = 20.5, and potential barrier height

V0 = 0.75; mean free path l∗0 = 238. The magnitude of electric field is E0 = 0.1 kV/cm.

The spin dipole strength is fully characterized by kσ⊥ except for a factor −ñE/(2π) =

−1.7 × 1010 cm−2 which is in units of density.
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In Fig. 3.5, the enhancement of spin dipole strength is large. Away from resonance,

|kσ⊥| ≈ 10−1, while at resonance its maximum magnitude can be reach up to 3.5. The

factor of enhancement reaches to 70. The peak-dip series labeled by n is clearly shown

here. Having the largest resonant enhancement, the n = 1 series starts from μ = 0.064,

with l = 1, and up to l = 16. The n = 2 series starts from μ = 0.213 and n = 3 from

μ = 0.44. There are two other series, with smaller resonant enhancement, the n = 2 and

n = 3 series, which starts at μ = 0.213 and μ = 0.44, respectively.

That the resonance features in kσ⊥ are contributed by the energy dependence of

phase shifts δ±l associated with one l only can be seen in Fig. 3.5 (b)-(d), which are

blowups of Fig. 3.5 (a) at resonance pairs (n = 1, l = 4, 5, 6). The solid curves are the full

expression evaluation of Eq. (3.17); the dot-dashed (red) curves are partial summations

including terms that only involves l = 5 in Eq. (3.17); and the dashed (blue) curves are

full expression evaluation of Eq. (3.17) but for V0 = 0.751. The dot-dashed (red) curve of

partial summation matches very well with the (1,5) peak-dip structure while producing

qualitative features for the peak-dip structures (1,4) and (1,6). The former confirms that

each peak-dip resonant structure is contributed from terms in Eq. (3.17) associated with

one l value only. The partial, or qualitative matches, in Fig. 3.5 (b) and (d) are due to

the fact that the summation involving only l = 5 have included partial contribution from

l = 4 and l = 6.

We comment on a general feature in a n-series of the peak-dip resonant structures.

Peak-dip pairs in an series trace out an envelope which strength is increasing in low l and

decreasing in high l. This demonstrates the competition between the trend of stronger

SOI for larger l, and the weakening of the resonance due to the wider resonance width at

energies higher than the potential height.

In Fig. 3.1, we present the radial variation of the spin density distribution Sz(ρ), as is

given in Eq. (3.13). Energies at (a) 0.3312, and (b) 0.3328, are the peak and dip energies,

respectively, of the (1, 5) resonance in Fig. 3.5 (a). The dashed curves are the asymptotes,

given by the first term in Eq. (3.18), and the dashed-dot curves are the adjusted ones,
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including the second term. Apart from the Friedel oscillations, the dash-dotted curves

traces the spin distribution outside the ring remarkably. Fig. 3.1 (a) and (b) reveal that

the sign of the spin density can be reversed by a small change in energy Δμ = 0.0016 E∗,

or 0.12 meV. The spin density at ρ̃ = 50, or ρ = 0.23 μm, is (a) −9.276 μm−2, and (b)

9.568 μm−2, or in terms of percentage of the electron density n = 2.45 × 1011 cm−2, the

spin density is (a) −3.79%, and (b) 0.39% of n, respectively. If we take the thickness of the

QW to be 100 Å, the 3D spin density becomes (a) −928 μm−3, and (b) 957 μm−3, which is

certainly large enough for observation [31]. The spin density at ρ̃ = 100, or ρ = 0.46 μm

is half of the above results. Finally in Fig. 3.6, we present the full 2D dependence of the

spin dipole Sz(ρ) for the case of μ = 0.3312.

The proposed ring-shaped potential barrier pattern is expected to be within reach of

the present experimental capability. Such pattern can be fabricated by recently developed

focused ion/molecular beam epitaxy technique for the pattering of the δ-doped layer [32].

The assumed step-like profile in the ring-shaped potential might look oversimplified, but

it provide us a clear physical picture for the spin dipole formation. We have considered

smooth profile situations. The resonant feature remain intact. This will be discussed in

Chapter 5.

3.5 Brief summary

The effect of the in-plane potential gradient SOI has a relatively small effect on the

Landauer RRD. The resonance gives rise to double dip structures in the RRD strength.

However for the spin accumulation, the effect of in-plane potential gradient SOI has a

large impact on it. There is no spin accumulation without the presence of SOI. With the

SOI, quantum resonance leads to large spin dipole strength enhancement and also sign

changes. The spin dipole orients perpendicularly to the applied electric field.

44



CHAPTER 3. RESIDUAL RESISTIVITY DIPOLE AND SPIN DIPOLE IN THE
PRESENCE OF SPIN-ORBIT INTERACTION ARISING FROM IN-PLAIN
POTENTIAL GRADIENT OF A MICROSTRUCTURE

Figure 3.6: Spatial distribution Sz(ρ) at the a resonant energy ε = 0.3312 with the
geometry of the ring: the potential height V0 = 0.75, the inner radius a = 14, and the
outer radius b = 20.5. The electric field E is applied along positive x-direction.
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Chapter 4

Spin dipole correction due to effect

of extrinsic spin-orbit interaction

In this chapter we explore the correction to the spin dipole picture obtained in the previous

chapter, if there are background spin-orbit scatterers (extrinsic SOI effect) in the system.

To obtain the electron distribution in the presence of these background scatterers, our

procedure follows closely to that detailed in a paper by H.-A. Engel et al. [8] except

that our derivation is 2D whereas the reference [8] is for 3D and they had mentioned 2D

results in their footnote. Using this spin dependent nonequilibrium electron distribution,

we obtain the spin dipole correction.

4.1 Differential cross section in terms of spin density

operator

4.1.1 Density operator formalism

The density operator formalism is used for dealing with the ensemble of a quantum system

via operators and wave functions characterizing the physical states.
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The density operator is defined as

ρ̂ =
∑

i

wi|α(i)〉〈α(i)|,

where |α(i)〉 could be any quantum state and the expectation values of the states |α(i)〉 is

further weighted by the corresponding populations wi. The ensemble average of a specific

observable represented by an operator Â is obtained by taking the trace of the matrix

product of density operator Â and density operator ρ̂

〈Â〉 = tr(ρ̂Â),

given that the density operator should satisfy the normalization condition,

tr(ρ̂) =
∑

i

∑
a

wi〈a|α(i)〉〈α(i)|a〉

=
∑

i

wi〈α(i)|α(i)〉

= 1,

otherwise the ensemble average of Â should be modified to be

〈Â〉 =
tr(ρ̂Â)

tr(ρ̂)
.

Since the trace is independent of representations, tr(ρ̂Â) can be evaluated using any

convenient basis. Observables can be expressed in terms of density operators as well, as

will be shown in the following.

4.1.2 Spin dependent scattering cross section in terms of spin

density operator

Any 2×2 matrix can be written as a linear combination of the identity and Pauli matrices.

A state describing an incident flux of particles can be expressed in terms of a density
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operator,

ρ̂ = a01 + a · σ.

The physical meaning of the constants a0 is associated with the intensity of incident beam,

by using the relation tr(σiσj) = δij, we have

I = tr(ρ̂) = 2a0,

and a = (a1, a2, a3) are simply related to the polarization of the beam, given by

P0 =
tr(ρ̂σ)

tr(ρ̂)
=

2a

I
.

Normalized to I, the particle beam with a polarization P0 can be expressed as

ρ̂ =
I

2
(1 + P0 · σ) .

The scattering matrix in a 2d system is written as

Ŝ =

⎛
⎜⎝ f+(φ) 0

0 f−(φ)

⎞
⎟⎠ ,

where fσ(φ) is the spin dependent scattering amplitude, and φ ≡ φk′ − φk. In the special

case of 2d spin dependent scattering, since the scattering under SOI does not mix the

spin components of the incident beam aligned out-of plane, therefore off-diagonal terms

are vanishing.

The density matrix of the particle beam under the scattering is therefore obtained by

operating the scattering matrix from the both side of the incident scattering matrix

ρ̂′ = Ŝρ̂Ŝ†.
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Letting the intensity I to be unity, we can write

ρ̂′ =
1

2
Ŝ (1 + P0 · σ) Ŝ†

=
1

2
ŜŜ† +

1

2
ŜP0 · σŜ†,

where

ŜŜ† =

⎛
⎜⎝ |f+(φ)|2 0

0 |f−(φ)|2

⎞
⎟⎠ .

The differential cross section for the unpolarized incident beam (P0 = 0) is given by

I(φ) ≡ tr(ρ̂′) =
1

2
ŜŜ† =

1

2

[|f+(φ)|2 + |f−(φ)|2] . (4.1)

Since that the order of the density operators does not matter after taken the trace and

that P0 is a constant, therefore we can obtain the second term in Eq. (4.1), describing

the spin polarization distribution in k space after the beam being scattered is

Pu(φ) ≡ tr(ρ̂′σ)

tr(ρ̂′)
=

tr(ŜŜ†σ)

tr(ŜŜ†)
= S(φ) ẑ, (4.2)

where

S(φ) ≡ |f+(φ)|2 − |f−(φ)|2
|f+(φ)|2 + |f−(φ)|2

is the Sherman function [4]. Therefore the spin dependent differential cross section for

arbitrary incident polarization (P0 �= 0) is given by

↔
D (φ) ≡ tr(ρ̂′) =

1

2
tr
[
Ŝ (1 + P0 · σ) Ŝ†

]
.
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Using Eq. (4.1) and Eq. (4.2),

↔
D (φ) = I(φ) [1 + P0 · ẑS(φ)] . (4.3)

From Eq. (4.3), for a spin unpolarized beam, the scattering cross section I(φ) is symmetric

in angle with respect to φ = 0, and the spin polarization in k-space is aligned normal to

the plane, i.e. along ẑ, in our 2D case. For a initially polarized beams, Eq. (4.3) depicts

a asymmetric differential cross section.

4.2 The spin dependent nonequilibrium distribution

The distribution function in phase space (ρ,k) should reveal the spin dependence in

the presence of impurity-induced SOI in the system background. The total distribution

function in k space can be described in terms of a two-by-two spin density operator

f̂(k) = [f0(k) + g(k)]1 + h(k) · σ

where g(k) and h(k) are assumed to possess the form

g(k) = a(k) · k (4.4a)

h(k) = b(k) × k, (4.4b)

where a(k) and b(k) are central symmetric functions in k space, provided that the scat-

tering is elastic and in an isotropic material. The form of h(k), motivated by the Mott

scattering, describes a spin polarization aligned in an effective magnetic field with its

direction relative to a normal line of a plane formed between the driving source E and a

scattered direction k. With solution of forms Eq. (4.4a) and Eq. (4.4b), f̂(k) is a solution

to the full Boltzmann equation in the relaxation time approximation after evaluating the

collision integral. The spatially homogeneous and time-independent Boltzmann equation
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is given by

−eE

�
· ∂f̂(k)

∂k
=

∂f̂(k)

∂t

∣∣∣∣∣
coll

with e > 0. The right-hand side is the collision integral

∂f̂(k)

∂t

∣∣∣∣∣
coll

= −ni

∑
k′;k′=k

�k

m∗
↔
D (k,k′)[f̂(k) − f̂(k′)] (4.5)

where ni is the impurity density. In 2d case, the scattering cross section D̂(k,k′) is spin

dependent and mixes the spin components of the incoming flux except those along z-

direction. The spin dependent scattering cross section expanded in SOI and in terms of

spin density operator is written as

↔
D (k,k′) = I(φ) [1 + σzS(φ)] ,

where I(φ) is the differential cross section for spin-unpolarized incident particles, and S(φ)

is the Sherman function, with φ the angle between k and k′; σz is the Pauli matrix of

z-component. The scattering cross section describes the transition rate at which electrons

are scattered from k into k′, while multiplied by a total incident flux on all the impurities,

ni�k/m∗, which is the incoming velocity of a electron times ni the number density of

impurities.

Therefore, the collision integral can be simplified by neglecting the cross terms of spin

dependent part of both D̂ and f̂ in the right hand side of Boltzmann equation

∑
k′;k′=k

↔
D (k,k′)[f̂(k) − f̂(k′)]

=

∫
dφk′

{
I(φ)[δf̂(k) − δf̂(k′)] + σzI(φ)S(φ) [g(k) − g(k′)]

}
,

(4.6)
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with δf̂ ≡ g + h · σ, the nonequlibrium part of f̂ . The integrals in Eq. (4.6) are equal to

∫
dφk′I(φ)[δf̂(k) − δf̂(k′)] = [a(k) · k + σzẑ · (b(k) × k)]

(∫ π

−π

dφI(φ) (1 − cos φ)

)
;∫

dφk′σzI(φ)S(φ) [g(k) − g(k′)] = σzẑ · (a(k) × k)

(∫ π

−π

dφI(φ)S(φ) sin φ

)
;

the detailed evaluation of the integrals is left in the appendix.

To the lowest order in the electric filed, δf̂ is linear in E and the left hand side of the

Boltzmann equation reads

−eE

�
· ∂f̂

∂k
= − e�

m∗
∂f0

∂ε
E · k,

provided that E is weak enough so that the product of δf and E can be neglect. Thus

the left-hand side of the equation should not have any spin dependence.

Since the lack of spin dependence of the right-hand-side of Boltzmann equation, the

second and the third term resulting from the collision integral (eq.1) must cancel each

other. With the terms surviving after the collision integral is done, the rest of the Boltz-

mann equation reads

− e�

m∗
∂f0

∂ε
E · k = −a(k) · k

τ
,

where τ−1 = ni�k
m∗

∫ 2π

0
dφI(φ) (1 − cos φ), and τ is the relaxation time. Therefore

a(k) = DkE;

where Dk = e�τ
m∗

∂f0

∂ε
. The requirement of cancellation of the spin dependence in the right-

hand-side leads to

b(k) = −γka(k) = −γkDkE,
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where γk denotes the transport skewness

γk ≡
∫ π

0
dφI(φ)S(φ) sin φ∫ π

0
dφI(φ) (1 − cos φ)

,

which describes the effect of skew scattering and depends on the detailed structure of the

scattering potential and on the energy of the elastic scattering. Therefore the nonequlib-

rium part of the solution to the Boltzmann equation is,

g(k) = DkE · k;

h(k) = −γkDkE × k

= −γkDkE0k sin φk ẑ; (4.7)

where Dk = − eτ�

m∗ δ(εk − μ) at low temperature around 0 K. The spin-independent part

g(k) depicts a shifted Fermi circle with its shifted direction opposite to the perturbing

electric field E as in the normal impurity case; the spin dependent part h(k) ·σ = σzhz(k)

because h always points along the z-axis and it describes a spread of spin polarization

along z-axis in k space. According to Eq. (4.7), the explicit angular dependence of spin

polarization is sin φk, which indicates left- and right-deflected electrons possess opposite

signs of spin polarization: with negative γμ, the left-deflected electrons (states in negative

y-plane) possess spin polarization aligned in the negative z-direction while the right-

deflected electrons (states in negative y-plane) have its spin polarization along the positive

z-direction, and vice versa. A qualitative sketch of the nonequilibrium distribution of

electron is depicted in Fig. 4.1. Furthermore, this spin dependent distribution h(k) ·σ is

partially responsible for a bulk spin-Hall current set up transversely across the 2DEG [8],

flowing towards positive y-axis. Thus the total nonequilibrium distribution of electrons is

f̂(k) = f0(k) + Dkk · [E − γk (σ × E)] .
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Figure 4.1: Qualitative sketch of k-dependent spin polarization due to the extrinsic SOI
for a negative SO coupling constant λ. Spin polarization of the upper semicircle (in the
positive y-plane) is up (aligned in positive z-direction); while spin polarization of the lower
semicircle (in the negative y-plane) is down (aligned in positive z-direction).

4.3 The correction to the spin dipole due to the term

h(k) · σ
In the language of quantum-mechanical ensemble theory, the spin polarization distribution

is defined by an ensemble average of spin operator σz projected on the real space,

Stot
z (ρ) ≡ 〈ρ| tr(σzρ̂)|ρ〉 , (4.8)

where

ρ̂ =
∑
k,σ

f̂(k) |k, σ〉χσχ
†
σ 〈k, σ|
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is the density operator of the system represented in the basis of wavevector k and z-

component of spin σz, and |ρ〉 is the ket eigenstate of the position operator. Therefore,

Stot
z (ρ) = tr

[
σz

∑
k,σ

f̂(k) 〈ρ |k, σ 〉χσχ
†
σ 〈k, σ |ρ〉

]
,

where 〈ρ |k, σ 〉 = ψσ
k(ρ). As in the previous chapter, since the equilibrium part of distri-

bution f0 does not contribute to the spin accumulation, therefore,

Stot
z = tr

[
σz

∑
k,σ

(g + h · σ) |ψσ
k(ρ)|2 χσχ

†
σ

]
,

after taking the trace, we find there are two contributions to the spin accumulation. The

first one is

Sz = tr

{
σz

∑
k,σ

g(k) |ψσ
k(ρ)|2 χσχ

†
σ

}

=
∑
σ′

χ†
σ′

{
σz

∑
k,σ

g(k) |ψσ
k(ρ)|2 χσχ

†
σ

}
χσ′

=
∑
k,σ

g(k) |ψσ
k(ρ)|2

∑
σ′

χ†
σ′σzχσχ

†
σχσ′

=
∑
k,σ

g(k) σ |ψσ
k(ρ)|2 .

This is the spin accumulation Sz = 1
4π2

∫
dk g(k)

∑
σ σ |Ψkσ(ρ)|2 we consider in the pre-

vious chapter; the second contribution due to the extrinsic effect

Sex
z = tr

{
σz

∑
k,σ

h(k) · σ |ψσ
k(ρ)|2 χσχ

†
σ

}

=
∑
σ′

χ†
σ′

{
σz

∑
k,σ

hz(k)σz |ψσ
k(ρ)|2 χσχ

†
σ

}
χσ′

=
∑
k,σ

hz(k) |ψσ
k(ρ)|2

∑
σ′

χ†
σ′σz

2χσχ
†
σχσ′

=
∑
k,σ

hz(k) |ψσ
k(ρ)|2 ,
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where hz(k) = −γkDkE0k sin φk. Thus the spin accumulation due to the spin dependent

distribution is therefore, after converting the summation into a integral,

Sex
z (ρ) =

1

4π2

∫
dkhz(k) |ψσ

k(ρ)|2 .

Finally we can obtain the spin dipole due the extrinsic SOI, given by

Sex
z = −γμnE sin φρ Im

∑
σ

∞∑
l=0

Rσ
l (ρ)Rσ∗

l+1(ρ), (4.9)

where γμ is short for γkμ and nE = eE0τk
π�

. In this spin dipole correction, sin φρ indicates,

again, a dipole distribution perpendicular to the driving field E, but its radial dependence

is the same as that of the charge dipole. This implies that the resonant structure of spin

dipole should be similar to the charge dipole. Obviously, the physical origin of different

contributions to the generation of spin dipole is different.

Figure 4.2: The relation between spin current direction and spin dipole pex
s = pex

s ŷ for
negative SO coupling constant λ. pex

s < 0 is shown in this figure. The plus sign below the
ring stands for spin up accumulation , and vice versa.
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The strength of spin dipole contribution Eq. (4.9) can be defined by

pex
s =

γμñE

2π
kσtr, (4.10)

where ñE =
m∗eE0l∗0

π�2 . The sign of pex
s (or the orientation of the spin dipole) is determined

by the sign of γμ because kσtr and ñE are always positive. Therefore, it seems that the

orientation of this spin dipole can be related to a direct consequence of the transverse spin-

Hall current set up due to extrinsic SOI. Since a spin current is the transport of electrons

with spin polarization, there should be a direct pile up of spin against the structure of

the ring. Unlike the case in the previous chapter that the spin accumulation is duo to

direct asymmetric scattering by the ring structure, since this spin accumulation may be

due to the direct pile up of spin along the direction of transported spin, its resonance

characteristics should be similar to that of the RRD.

The above conjecture can be implied by the spin dependent part of nonequilibrium

distribution of electrons h(k) and by the sign of pex
s . For more explicit demonstration, we

can look at Eq. (4.7) and Eq. (4.10): when γμ < 0, Fig. 4.1 indicates that the spin current

is flowing towards positive y-direction, and the sign of spin dipole is always negative, i.e.

pex
s < 0. The relation between the spin current and the orientation of the spin dipole is

shown in Fig. 4.2. The spin dipole pex
s is always directed towards the negative y-axis.

Next, we present the total contribution to the spin dipole strength. Since pex
s is

proportional to kσtr, its resonance behavior is similar to that of charge RRD, in contrary to

the resonance behavior of ps, both are depicted in Fig. 4.3, with a chosen γμ = −1/500. At

resonance, the dipole strength ps is enhanced and is either positive or negative; the dipole

strength pex
s is always negative and a local minimum of strength takes place. Therefore this

concludes that away from resonance, dipole strength ps and pex
s are comparable and thus

almost eliminate each other due to their opposite signs; on the other hand, at resonance,

ps is dominant, as shown in Fig. 4.4 and Fig. 4.5.
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Figure 4.3: (a) kσ⊥ versus energy with parameters the same as in Fig. 3.5-(a),and (b) a
blow-up of |γμ|kσtr versus energy.

4.4 Brief summary

The correction to the spin dipole Sex
z due to extrinsic SOI effect (SOI from background

impurities) is found to be negligible at resonances. Although this correction is significant

away from the resonances, the total spin dipole strength in this region is still insignificant

when comparing to that at resonances.
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Figure 4.4: (a) Radial variation of Sz(ρ), Sex
z (ρ), and (b) Blowup of the radial radiation

Sex
z (ρ) along φρ = π/2 at the resonant energy μ = 0.331178. At resonance, Sex

z so tiny
that it is negligible. Parameters are on top of the figure.
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Figure 4.5: (a) Radial variation of Sz(ρ), Sex
z (ρ), and (b) a blow-up of the radial radiation

Sex
z (ρ) along φρ = π/2 at the energy away from μ = 0.331000. Away from resonance,

Sex
z is comparable to Sz, so nearly no spin polarization in the region away from the ring

structure. Other parameters are the same as Fig. 4.4.
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Chapter 5

Numerical calculation for smooth

potential variation

As is mentioned in previous Chapter 3, the results of a step-like radial profile of the

potential of a ring-shaped microstructure may be valid merely within the regime that

the Fermi wavelength is comparable with or larger than the thickness of the ring of the

potential, therefore in this chapter, we will demonstrate the robustness of the results in

Chapter 3 if the step-like radial profile of the ring structure is replaced by a smoother

profile, via performing the variable phase approach.

5.1 Variable phase approach

In determining the scattering amplitude, only the radial function far outside the range

of the scattering potential is relevant. It can be completely determined by the given

phase shifts. All we need is the determination of phase shifts outside the range of the

scattering potential. Therefore we will introduce the concept of the phase of the wave as

a position-dependent function, that is, the variable phase approach [33, 34].

Another reason to introduce the variable phase approach is that when the detailed

wave variation within the range of scattering potential cannot be exactly solved with an
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arbitrary radial potential profile, coupled with the amplitude function, one can obtain the

particle wave function in the whole space via numerically integrating and radial differential

equation satisfied by a phase function δσ
l (ρ) from the origin to the exterior of the potential.

The phase shifts are defined from the asymptotic region of the radial functions, or the

potential-free region. That is to say, the scattering phase shifts in our previous analysis

is produced by the total scattering potential. Thus we can generalize this concept that

phase shifts can be produced by part of the scattering potential within the sphere of a

certain radius ρ. Therefore the phase shift is a position dependent function δσ
l (ρ), whose

value varies with non-vanishing potential and saturates to δσ
l in the asymptotic region,

that is,

lim
ρ→∞

δσ
l (ρ) ≡ δσ

l (5.1)

The phase function δσ
l (ρ) and the amplitude function Aσ

l (ρ) is introduced by the

relation to the definition of the radial function

Rσ
l (ρ) = Aσ

l (ρ) [cos δσ
l (ρ)Jl(kρ) − sin δσ

l (ρ)Yl(kρ)] . (5.2)

This radial function should satisfy the radial Schrödinger equation Eq. (3.4). To make the

two function governed by the independent differential equation, the derivative of Eq. (5.2)

possesses the form

dRσ
l (ρ)

dρ
= Aσ

l (ρ)

[
cos δσ

l (ρ)
dJl(kρ)

dρ
− sin δσ

l (ρ)
dYl(kρ)

dρ

]
. (5.3)

This form of radial derivative implies an extra restriction,

dAσ
l (ρ)

dρ
[cos δσ

l (ρ)Jl(kρ) − sin δσ
l (ρ)Yl(kρ)]

−Aσ
l (ρ)

dδσ
l (ρ)

dρ
[sin δσ

l (ρ)Jl(kρ) − cos δσ
l (ρ)Yl(kρ)] = 0. (5.4)
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The second-order derivative of radial function is

d2Rσ
l (ρ)

dρ2
=

dAσ
l (ρ)

dρ

[
cos δσ

l (ρ)
dJl(kρ)

dρ
− sin δσ

l (ρ)
dYl(kρ)

dρ

]

−Aσ
l (ρ)

δσ
l (ρ)

dρ

[
sin δσ

l (ρ)
dYl(kρ)

dρ
+ cos δσ

l (ρ)
dYl(kρ)

dρ

]

+Aσ
l (ρ)

[
cos δσ

l (ρ)
d2Jl(kρ)

dρ2
− sin δσ

l (ρ)
d2Yl(kρ)

dρ2

]
. (5.5)

Substitute Eq. (5.2), Eq. (5.3) and Eq. (5.5) into the Scrödinger equation Eq. (3.4), and

making use of the Bessel equation Eq. (2.1), we obtain

dAσ
l (ρ)

dρ

[
cos δσ

l (ρ)
dJl(kρ)

dρ
− sin δσ

l (ρ)
dYl(kρ)

dρ

]

−Aσ
l (ρ)

dδσ
l (ρ)

dρ

[
sin δσ

l (ρ)
dJl(kρ)

dρ
+ cos δσ

l (ρ)
dYl(kρ)

dρ

]

−V (ρ)Aσ
l (ρ) [cos δσ

l (ρ)Jl(kρ) − sin δσ
l (ρ)Yl(kρ)] = 0 .

(5.6)

Eq. (5.4) and Eq. (5.6) forms a set of differential equations sufficient for the unambiguous

description of the phase function δσ
l (ρ) and the amplitude function Aσ

l (ρ). By eliminating

the derivative of Aσ
l (ρ) using Eq. (5.4), one can obtain the differential equation for the

phase function δσ
l (ρ) for the 2d system

dδσ
l (ρ)

dρ
= −π

2
ρV (ρ) [cos δσ

l (ρ)Jl(kρ) − sin δσ
l (ρ)Yl(kρ)]2 , (5.7)

with the boundary condition

δσ
l (0) = 0.

The detailed derivation of this differential equation is in the appendix. From Eq. (5.7),

δσ
l (ρ) is independent of the wave amplitude because of the unitarity relation of the phase

shift, or the conservation of particles. Therefore obtaining the phase shift for a given arbi-

trary potential is reduced to solving a first-order nonlinear differential equation according
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to Eq. (5.7). Similarly, by eliminating the derivative of δσ
l (ρ) we can get the differential

equation for Aσ
l (ρ)

dAσ
l (ρ)

dρ
= −π

2
ρV (ρ)Aσ

l (ρ) [cos δσ
l (ρ)Jl(kρ) − sin δσ

l (ρ)Yl(kρ)]

× [sin δσ
l (ρ)Jl(kρ) + cos δσ

l (ρ)Yl(kρ)] .

(5.8)

Integrating Eq. (5.8) yields

Aσ
l (ρ) = Aσ

l (ρ0) exp

{
−π

2

∫ ρ

ρ0

dρV (ρ)ρ [cos δσ
l (ρ)Jl(kρ) − sin δσ

l (ρ)Yl(kρ)]

× [sin δσ
l (ρ)Jl(kρ) + cos δσ

l (ρ)Yl(kρ)]}
(5.9)

where Aσ
l (ρ0) is the amplitude at ρ = ρ0. In contrary to the phase function, the amplitude

function is dependent on the phase.

In principal, while dealing with the phase shift we can integrate the second-order

Schrödinger equation. But the numerical calculation can be simplified by evaluating the

phase function which is governed by a differential equation of first-order Eq. (5.7), though

it is nonlinear.

Thus far we can check the consistency of properties between the exact and variable

phase method. One of them is the relation between the scattering phase shift and the

potential. Since the expression in Eq. (5.7)

[cos δσ
l (ρ)Jl(kρ) − sin δσ

l (ρ)Yl(kρ)]2

is always positive, the sign of the phase shift is uniquely determined by the sign of the

potential. Because of the boundary value δσ
l (0) = 0, in the case of attractive potential,

the derivative of the phase function is positive and so is the phase shift, and vice versa.

The phase shift varies only within the range of the nonvanishing potential as shown in

Fig. 5.3, and has its value all negative with positive potential in the range of the ring as

described in Eq. (5.7).
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Figure 5.1: Variable phase function δl(ρ) vs. radial position without SOI for a step
potential of a ring. Dimensionless parameters are ε = 3, V0 = 1, a = 6, b = 9. We can
see the variation of phase is only within the range of the ring potential between a and b.

5.2 Numerical results

A smooth profile of a gaussian variation of potential with its maximum value centered at

ρ0 and its measure in width h is considered in this numerical calculation. The potential

form is written as

V (ρ) = V0 exp

[
−(ρ − ρ0)

2

h2

]
.

Phase shifts for this smoother profile of potential also manifests resonant features at

certain energies, as shown in Fig. 5.2. Phase shifts show an overall smooth negative trend

of departure from zero as energy increasing and abruptly pulling back from below of nπ/2
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Figure 5.2: Variable phase function δl(ρ) vs. radial position without SOI for a gaussian
radial potential profile. Dimensionless parameters are ε = 3, V0 = 1, ρ0 = 8, h = 3. We
can see the variation of phase is only within the range of the ring potential between a and
b.

(n is odd integer).

Next we demonstrate the charge and spin dipole strength against energy, as shown in

Fig. 5.4 and Fig. 5.5. We can see from Fig. 5.4 and Fig. 5.5 that the characteristics of

resonant behavior still remains intact.

5.3 Brief summary

The results of resonant features remains intact if we substitute the step radial profile by

a smoother gaussian profile.
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Figure 5.3: Phase shifts versus energy. We can see the splits of energies at which the
phase crosses nπ/2 (n is odd) from below. In the lower diagram, the solid curves are
phase shifts for positive l, and the dashed curves are for negative −l, both with σ = +1.
Parameters are: ρ0 = 8, h = 3, V0 = 1, and dimensionless spin-orbit coupling constant
λ = −0.055.
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Figure 5.4: kσtr versus energy. Parameters are ρ0 = 8, h = 3, V0 = 1

68



CHAPTER 5. NUMERICAL CALCULATION FOR SMOOTH POTENTIAL
VARIATION

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

δ l/π

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

l = 0
l = 1
l = 2
l = 3
l = 4
l = 5

μ / E*

kσ
⊥

Figure 5.5: kσ⊥ versus energy. Parameters are ρ0 = 8, h = 3, V0 = 1.
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Chapter 6

Conclusion and future work

In conclusion, we have obtained the resonance structures in the Landauer RRD around a

ring-shaped microstructure. The resonant structures exhibit as dip structures in the RRD

strength, or a drop in the charge pile up. In the presence of in-plane potential gradient

SOI, the resonant energies are spin-split. The dip structures in the RRD becomes double

dip structures.

Concerning the spin accumulation, we obtain a spin dipole distribution. Resonant

structures are in peak-dip pairs around each spin-split resonant energy pairs. Thus we have

shown unambiguously that in-plane potential gradient SOI can be significant, especially

when quantum resonances are involved. The peak-dip pairs in the spin dipole strength

allow the possibility of switching spin accumulation direction by electrical gate-control

method.

The spin dependent nonequilibrium solution to the kinetic equation with skew scat-

tering in the collision term in 2D is solved. The residual spin dipole produced by the

spin current arising from asymmetric scattering of impurities was shown to cause small

correction to the spin dipole near the resonances but is relatively large away from resonant

energies.

The robustness of the generation of spin dipole around the ring- shaped microstructure

is obtained when the radial potential is replaced by a smooth profile.
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In the future, the asymmetric scattering of an spin-polarized incoming beam of elec-

trons could provide an alternative way for the detection of the spin current. Directly

gauging the tilting angle of the charge RRD alignment could be used for the detection of

the polarization in the incoming electron flux.
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Appendix A

Derivation of charge accumulation

The charge dipole is produced by the nonequilibrium part of solution g(k)

δn(ρ) =
1

2π2

∫
dk g(k) |Ψk(ρ)|2,

where g(k) = − eτ�

m∗ δ(εk − μ)E · k and E = E0x̂. One can express the variable εk =

�
2k2/2m∗ in the k space variables, that is,

g(k, φk) = −eτ�

m∗ E0k cos φk δ

(
�

2

2m∗ (k2 − k2
μ)

)

=
eτ�

m∗ E0k cos φk
2m∗

�2

1

2kμ

[δ(k − kμ) + δ(k + kμ)]

=
eτE0

�kμ

k cos φk [δ(k − kμ) + δ(k + kμ)] .

Therefore,

δn(ρ) = − 1

2π2

eτE0

�kμ

∫ ∞

0

dkk2δ(k − kμ)

∫ 2π

0

dφk cos φk |Ψk(ρ)|2

= −eτE0kμ

2π2�

∫ 2π

0

dφk cos φk

∣∣Ψkμ(ρ)
∣∣2 . (A.1)
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The remaining integral in the above,

∫
dφk cos φk

∣∣Ψkμ(ρ)
∣∣2

=
+∞∑

l,l′=−∞
il(−i)l′Rl(ρ)R∗

l′(ρ)

∫
dφk cos φke

i(l−l′)(φρ−φk)

=
∑
l,l′

ei(l−l′)π/2RlR
∗
l′

∫
dφk cos(φk − φρ + φρ)e

i(l′−l)(φk−φρ)

=
∑
l,l′

ei(l−l′)π/2RlR
∗
l′

∫ 2π

0

dφk [cos(φk − φr) cos φρ − sin(φk − φρ) sin φρ] e
i(l′−l)(φk−φρ)

=
∑
l,l′

ei(l−l′)π/2RlR
∗
l′

[
cos φρ

∫ 2π

0

dφ cos φei(l′−l)φ − sin φr

∫ 2π

0

dφ sin φei(l′−l)φ

]
.

(A.2)

The two integrals in the above are

∫ 2π

0

dφ cos φ ei(l′−l)φ = π (δl′,l+1 + δl,l′+1) (A.3a)∫ 2π

0

dφ sin φ ei(l′−l)φ = iπ (δl′,l+1 − δl,l′+1) . (A.3b)

Therefore, the integral (A.2) becomes

∫
dφk cos φk

∣∣Ψkμ(ρ)
∣∣2

= π
∑
l,l′

ei(l−l′)π/2RlR
∗
l′ [cos φρ (δl′,l+1 + δl,l′+1) − i sin φρ (δl′,l+1 − δl,l′+1)]

= −iπ cos φρ

∑
l

(RlR
∗
l+1 − R∗

l Rl+1) − π sin φρ

∑
l

(RlR
∗
l+1 + R∗

l Rl+1)

= 2π

[
cos φρ Im

+∞∑
l=−∞

Rl(ρ)R∗
l+1(ρ) − sin φρ Re

+∞∑
l=−∞

Rl(ρ)R∗
l+1(ρ)

]
. (A.4)
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We can adjust the summation over l from zero to infinity by shifting the summation index,

coupled with the relation R−l = (−1)lRl, thus

+∞∑
l=−∞

Rl(ρ)R∗
l+1(ρ) = R0R

∗
1 +

∞∑
l=1

(
RlR

∗
l+1 + R−lR

∗
−l+1

)

= R0R
∗
1 +

∞∑
l=1

[
RlR

∗
l+1 + (−1)2l−1RlR

∗
l−1

]

= R0R
∗
1 +

∞∑
l=1

RlR
∗
l+1 −

∞∑
l=0

Rl+1R
∗
l

= 2i Im
∞∑
l=0

Rl(ρ)R∗
l+1(ρ). (A.5)

From Eq. (A.4) and Eq. (A.5), we obtain

δn(ρ) = −2eτE0kμ

π�
cos φρ Im

∞∑
l=0

Rl(ρ)R∗
l+1(ρ).

In the presence of local SOI, the spin degeneracy is removed and charge accumulation is

turned out to be

δn(ρ) = −eτE0kμ

π�
cos φρ Im

∑
σ

∞∑
l=0

Rσ
l (ρ)Rσ∗

l+1(ρ).
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Derivation of spin accumulation

The nonequilibrium contribution to the spin accumulation is written as

Sz(ρ) =
1

4π2

∫
dk f(k)

∑
σ

σ Ψ†
kσ(ρ)Ψkσ(ρ)

= Seq
z (ρ) + δSz(ρ),

where Ψkσ(ρ) = ψσ
k(ρ)χσ and

Seq
z (ρ) =

1

4π2

∫
dk f0(k)

∑
σ

σ |ψσ
k(ρ)|2;

δSz(ρ) =
1

4π2

∫
dk g(k)

∑
σ

σ |ψσ
k(ρ)|2.

For the temperature is low around 0 K, the equilibrium function is a circular step function

in k space, i.e. f0(k) = θ(μ − εk), the contribution due to nonequilibrium distribution is

therefore

Seq
z (ρ) =

1

4π2

∫
dkkθ(μ − εk)

∑
σ

σ

+∞∑
l,l′=−∞

ei(l−l′)π/2Rσ
l Rσ∗

l′

∫
dφke

i(l−l′)(φk−φρ), (B.1)
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where the angular integral is the Kronecker delta δll′ , and therefore Eq. (B.1) is equal to

Seq
z =

1

4π2

∫ kμ

0

dkk
∑

σ

σ

+∞∑
l=−∞

|Rσ
l |2

=
1

4π2

∫ kμ

0

dkk
∑

σ

σ

[
|R0|2 +

∞∑
l=1

|Rσ
l |2 +

∣∣Rσ
−l

∣∣2]

=
1

4π2

∫ kμ

0

dkk

∞∑
l=1

∣∣R+
l

∣∣2 − ∣∣R−
l

∣∣2 +
∣∣R−

l

∣∣2 − ∣∣R+
l

∣∣2
= 0.

In the above the terms associated with R0(ρ) are spin-independent and therefore can

be eliminated. The remaining terms are exactly canceled as well. Therefore the total

contribution to Sz is merely due to δSz.

Sz(ρ) = δSz(ρ) =
1

4π2

∫
dk g(k)

∑
σ

σ |ψσ
k(ρ)|2.

Similar to Eq. (A.1), Eq. (A.2), and Eq. (A.4)

Sz = −eτE0kμ

4π2�

∫ 2π

0

dφk cos φk

∑
σ

σ |ψσ
k(ρ)|2, (B.2)

and the integral is equal to

∫
dφk cos φk

∑
σ

σ
∣∣∣ψσ

kμ
(ρ)

∣∣∣2

= 2π

[
cos φρ Im

∑
σ

σ

+∞∑
l=−∞

Rσ
l (ρ)Rσ∗

l+1(ρ) − sin φρ Re
∑

σ

σ

+∞∑
l=−∞

Rσ
l (ρ)Rσ∗

l+1(ρ)

]

(B.3)
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Then we can use the relation Rσ
−l = (−1)lR−σ

l to reduce the summation

∑
σ

σ

+∞∑
l=−∞

Rσ
l (ρ)Rσ∗

l+1(ρ)

=
∑

σ

σR0R
σ∗
1 +

∞∑
l=1

(
R+

l R+∗
l+1 − R−

l R−∗
l+1 + R+

−lR
+∗
−l+1 − R−

−lR
−∗
−l+1

)

=
∑

σ

σR0R
σ∗
1 +

∞∑
l=1

(
R+

l R+∗
l+1 − R−

l R−∗
l+1 − R−

l R−∗
l−1 + R+

l R+∗
l−1

)

=
∑

σ

σR0R
σ∗
1 +

∑
σ

σ

∞∑
l=1

Rσ
l Rσ∗

l+1 +
∑

σ

σ

∞∑
l=0

Rσ
l+1R

σ∗
l

=
∑

σ

σ

∞∑
l=0

(
Rσ

l Rσ∗
l+1 + Rσ

l+1R
σ∗
l

)

= 2 Re
∞∑
l=0

Rσ
l (ρ)Rσ∗

l+1(ρ). (B.4)

Therefore coupled with Eq. (B.3) and Eq. (B.4), the angular integral becomes

∫
dφk cos φk

∑
σ

σ
∣∣∣ψσ

kμ
(ρ)

∣∣∣2 = −4π sin φρ Re
∞∑
l=0

Rσ
l (ρ)Rσ∗

l+1(ρ),

and then we can get the spin accumulation Sz(ρ),

Sz(ρ) =
eτE0kμ

π�
sin φρ Re

∑
σ

σ

∞∑
l=0

Rσ
l (ρ)Rσ∗

l+1(ρ) (B.5)
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Derivation of transport cross section

From Eq. (C.1), the scattering amplitude is

fk(φ) =

√
2i

πk

+∞∑
l=−∞

eiδl sin δl e
ilφ.

After decomposing sin δl into exponentials, we get

fk(φ) =

√
i

2πk

+∞∑
l=−∞

(
e2iδl − 1

)
eilφ.

Therefore the scattering cross section is, by definition,

D(φ) = |fk(φ)|2 =
1

2πk

∑
l,l′

(
e2iδl − 1

) (
e−2iδl′ − 1

)
ei(l−l′)φ. (C.1)

The transport cross section is defined by an integral of (1−cos φ) times D(φ) with respect

to φ,

σtr ≡
∫

dφ (1 − cos φ) D(φ),
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and then,

σtr = σtot − 1

2πk

∑
l,l′

(
e2iδl − 1

) (
e−2iδl′ − 1

) ∫
dφ cos φ ei(l−l′)φ, (C.2)

where σtot is the total cross section of scattered particles,

σtot ≡
∫

dφD(φ)

=
1

2πk

∑
l,l′

(
e2iδl − 1

) (
e−2iδl′ − 1

) ∫
dφ ei(l−l′)φ

=
1

k

∑
l,l′

δll′
[
e2i(δl−δl′ ) + 1 − (

e2iδl + e−2iδl′
)]

Thus,

σtot =
2

k

+∞∑
l=−∞

(1 − cos 2δl). (C.3)

Since the integral in φ in Eq. (C.2), according to Eq. (??), is equal to

∫
dφ cos φ ei(l−l′)φ = π (δl,l′+1 + δl′,l+1) ,

then,

σtr = σtot − 1

2k

+∞∑
l=−∞

[
e2i(δl−δl+1) + 1 − (

e2iδl + e−2iδl+1
)]

+ cc.

= σtot − 1

k
Re

+∞∑
l=−∞

e2i(δl−δl+1) + 1 − (
e2iδl + e−2iδl+1

)

= σtot − 1

k

+∞∑
l=−∞

cos [2(δl − δl+1)] + 1 − (cos 2δl + cos 2δl+1),

where cc. stands for the complex conjugate. In the last line of the above equation, we use

Eq. (C.3) and shift the dummy index of summation in the last term, cos 2δl+1 → cos 2δl,
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APPENDIX C. DERIVATION OF TRANSPORT CROSS SECTION

we have

σtr =
2

k

+∞∑
l=−∞

(1 − cos 2δl) − 1

k

+∞∑
l=−∞

[
1 − 2 sin2(δl − δl+1) + 1 − 2 cos 2δl

]

=
1

k

∞∑
l=−∞

(2 − 2 cos 2δl) − 1

k

∞∑
l=−∞

[
2 − 2 sin2(δl − δl+1) − 2 cos 2δl

]

=
2

k

∞∑
l=−∞

sin2(δl − δl+1).

By the use of the relation δ−l = δl, we can rearrange the summation,

σtr =
2

k

[
sin2(δ0 − δ1) +

∞∑
l=1

sin2(δl − δl+1) + sin2(δ−l − δ−l+1)

]

=
2

k

[
sin2(δ0 − δ1) +

∞∑
l=1

sin2(δl − δl+1) + sin2(δl − δl−1)

]
.

Shifting the index of summation again, we have

σtr =
2

k

[
sin2(δ0 − δ1) +

∞∑
l=1

sin2(δl − δl+1) +
∞∑
l=0

sin2(δl+1 − δl)

]
.

Therefore,

σtr =
4

k

∞∑
l=0

sin2(δl − δl+1). (C.4)
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Appendix D

Derivation of transverse transport

cross section

Similar to Eq. (C.1), the spin dependent scattering cross section, in terms of exponentials,

reads

Dσ(φ) = |fσ
k (φ)|2 =

1

2πk

+∞∑
l,l′=−∞

(
e2iδσ

l − 1
) (

e−2iδσ
l′ − 1

)
ei(l−l′)φ. (D.1)

The definition of transverse transport cross section is written as,

σ⊥ ≡
∫

dφ sin φ
∑

σ

σDσ(φ)

=
1

2πk

∑
σ

σ

+∞∑
l,l′=−∞

(e2iδσ
l − 1)(e−2iδσ

l′ − 1)

∫
dφ sin φ ei(l−l′)φ,

where the integral is equal to

∫
dφ sin φ ei(l−l′)φ = −iπ(δl′,l+1 − δl,l′+1),
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therefore,

σ⊥ =
−i

2k

∑
σ

σ

+∞∑
l,l′=−∞

(e2iδσ
l − 1)(e−2iδσ

l′ − 1) (δl′,l+1 − δl,l′+1)

=
−i

2k

∑
σ

σ

+∞∑
l=−∞

[
e2i(δσ

l −δσ
l+1) + 1 − (e2iδσ

l + e−2iδσ
l+1)

]− cc.

=
1

k
Im

∑
σ

σ

+∞∑
l=−∞

[
e2i(δσ

l −δσ
l+1) + 1 − (e2iδσ

l + e−2iδσ
l+1)

]

=
1

k

∑
σ

σ

+∞∑
l=−∞

sin[2(δσ
l − δσ

l+1)] − (sin 2δσ
l − sin 2δσ

l+1).

We can cancel the last two terms by shifting the index of summation, and then we can

get

σ⊥ =
1

k

+∞∑
l=−∞

{
sin[2(δ+

l − δ+
l+1)] − sin[2(δ−l − δ−l+1)]

}
.

By expressing the summation over l from zero to infinity, we have

σ⊥ =
1

k

{
sin[2(δ0 − δ+

1 )] − sin[2(δ0 − δ−1 )]
}

+
1

k

+∞∑
l=−∞;

l �=0

{
sin[2(δ+

l − δ+
l+1)] − sin[2(δ−l − δ−l+1)]

}

=
1

k

{
sin[2(δ0 − δ+

1 )] − sin[2(δ0 − δ−1 )]
}

+
1

k

+∞∑
l=1

{
sin[2(δ+

l − δ+
l+1)] + sin[2(δ+

−l − δ+
−l+1)]

− sin[2(δ−l − δ−l+1)] − sin[2(δ−−l − δ−−l+1)]
}

.
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By using the relation δσ
−l = δ−σ

l , we have

σ⊥ =
1

k

{
sin[2(δ0 − δ+

1 )] − sin[2(δ0 − δ−1 )]
}

+
1

k

∞∑
l=1

{
sin[2(δ+

l − δ+
l+1)] − sin[2(δ−l−1 − δ−l )]

− sin[2(δ−l − δ−l+1)] + sin[2(δ+
l−1 − δ+

l )]
}

=
1

k

∑
σ

σ

{
sin[2(δ0 − δσ

1 )] +
∞∑
l=1

{
sin[2(δσ

l − δσ
l+1)] + sin[2(δσ

l−1 − δσ
l )]

}}

=
1

k

∑
σ

σ

{
sin[2(δ0 − δσ

1 )] +
∞∑
l=1

sin[2(δσ
l − δσ

l+1)] +
∞∑
l=0

sin[2(δσ
l − δσ

l+1)]

}
.

Combining the first two terms in the summation, then we can get

σ⊥ =
2

k

∑
σ

σ

∞∑
l=0

sin[2(δσ
l − δσ

l+1)]. (D.2)
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Appendix E

Asymmetric Mott skew scattering

The spatial part of the total scattering wave an be separated into the incident plane wave

and a scattered wave,

ψσ
k(ρ) =

[
eik·ρ + ψsc

σ (ρ)
]
χσ .

We present here the asymmetric Mott skew scattering of an incident electron with its

spin-polarization along ẑ. In the following series of figures, we present the asymmetric

scattering at resonant energies E+
n,l for (n = 1, l = 0,±1,±2,±3), and an arbitrary

incident energy.

In the following series of figures, the left-hand side shows the probability distribution of

the total scattering wave function, while the right-hand side depicts that of the scattered

wave, defined by
∣∣ψsc

+ (ρ)
∣∣2.
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Figure E.1: Scattering of a plane wave with spin up polarization for both total wave
and scattered wave: (a) off-resonance scattering. (b) scattering resonance contributed by
partial waves labeled l = 0.
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Figure E.2: Scattering of a plane wave with spin up polarization for both total wave and
scattered wave: asymmetric scattering contributed by partial waves labeled (a) l = 1 and
(b) l = −1.
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Figure E.3: Scattering of a plane wave with spin up polarization for both total wave and
scattered wave: asymmetric scattering contributed by partial waves labeled (a) l = 2 and
(b) l = −2.
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Figure E.4: Scattering of a plane wave with spin up polarization for both total wave and
scattered wave: asymmetric scattering contributed by partial waves labeled (a) l = 3 and
(b) l = −3.
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Appendix F

Asymptotic expansion of residual

resistivity dipole and charge dipole

strength

The unscreened charge distribution is

δn(ρ) = −2eτE0kμ

π�
cos φρ Im

∞∑
l=0

Rl(ρ)R∗
l+1(ρ).

According to Eq. (2.6), the radial function is

lim
kρ→∞

Rl(ρ) =
1√

2πkρ

[
e2iδlei(kρ−lπ/2−π/4) + e−i(kρ−lπ/2−π/4)

]
.
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Therefore, the asymptotic expansion of charge accumulation is

δn(ρ) ∼ −2eτE0kμ

π�
cos φρ

1

2πkμρ

× Im
∞∑
l=0

[(
e2iδlei(kρ−lπ/2−π/4) + e−i(kρ−lπ/2−π/4)

)
× (

e−2iδl+1 e−i(kρ−(l+1)π/2−π/4) + ei(kρ−(l+1)π/2−π/4)
)]

= −eτE0

π2�

cos φρ

ρ
Im

∞∑
l=0

[
e2i(δl−δl+1)eiπ/2 + eiπ/2 + e−2iδl+1e−i(2kρ−lπ−π)

+e2iδlei(2kρ−lπ−π)
]

= −eτE0

π2�

cos φρ

ρ
Im

∑
l

{
i
[
e2i(δl−δl+1) − 1

]− [
e−2iδl+1e−i(2kr−lπ) + e2iδlei(2kr−lπ)

]}
.

The last two terms in the summation is referred to as the contribution to the well-known

Friedel oscillation. The remaining terms becomes

δn(ρ) ∼ −eτE0

π2�

cos φρ

ρ
Re

∑
l

[
e2i(δσ

l −δσ
l+1) − 1

]

= −eτE0

π2�

cos φρ

ρ
Re

∑
l

ei(δσ
l −δσ

l+1)
(
ei(δσ

l −δσ
l+1) − e−i(δσ

l −δσ
l+1)

)

= −2eτE0

π2�

cos φρ

ρ
Im

∑
l

ei(δσ
l −δσ

l+1) sin(δσ
l − δσ

l+1)

=
2eτE0

π2�

cos φρ

ρ

∑
l

sin2(δσ
l − δσ

l+1)

=
eτE0

2π2�

cos φρ

ρ

[
4
∑

l

sin2(δσ
l − δσ

l+1)

]
.

Thus far the potential due to charge accumulation in the asymptotic region can obtained

by multiplying the above a screening factor −π�
2/m∗e,

δφ(ρ) ∼ pc
cos φρ

ρ
,

where pc is referred to as the RRD strength,

pc = −E0�τ

2πm∗ kμσtr.
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where σtr is defined as

σtr ≡
∫ π

−π

(1 − cos φ)D(φ)

In the case the spin degeneracy is broken by SOI, the definition of charge dipole is the

same

pc = −E0�τ

2πm∗ kμσtr,

where σtr is defined as

σtr ≡ 1

2

∫ π

−π

(1 − cos φ)
∑

σ

σDσ(φ)
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Appendix G

Asymptotic expansion of spin dipole

and spin dipole strength

To define the spin dipole strength, we start from the expression of the spin-dipole, which

is written as

Sz(ρ) =
eτE0kμ

π�
sin φρ Re

∑
σ

σ

∞∑
l=0

Rσ
l (ρ)Rσ∗

l+1(ρ).

Again, using the radial function Rσ
l expanded in the first-order in ρ−1, according to

Eq. (2.6), is equal to

lim
kρ→∞

Rl(ρ) =
1√

2πkρ

[
e2iδlei(kρ−lπ/2−π/4) + e−i(kρ−lπ/2−π/4)

]
. (G.1)
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Therefore, the spin accumulation in the asymptotic region is

Sz(ρ) ∼ eτE0kμ

π�
sin φρ

1

2πkμρ

×Re
∑

σ

σ

∞∑
l=0

[(
e2iδσ

l ei(kρ−lπ/2−π/4) + e−i(kρ−lπ/2−π/4)
)

× (
e−2iδσ

l+1 e−i(kρ−(l+1)π/2−π/4) + ei(kρ−(l+1)π/2−π/4)
)]

=
eτE0

2π2�

sin φρ

ρ
Re

∑
σ

σ

∞∑
l=0

[
e2i(δσ

l −δσ
l+1)eiπ/2 + eiπ/2 + e−2iδσ

l+1e−i(2kρ−lπ−π)

+e2iδσ
l ei(2kρ−lπ−π)

]
=

eτE0

2π2�

sin φρ

ρ
Re

∑
σ

σ
∑

l

{
i
[
e2i(δσ

l −δσ
l+1) − 1

]− [
e−2iδσ

l+1e−i(2kr−lπ) + e2iδσ
l ei(2kr−lπ)

]}
.

Here the last two terms can eliminate each other by a index-shifted summation:

∞∑
l=0

[
e−2iδσ

l+1e−i(2kr−lπ) + e2iδσ
l ei(2kr−lπ)

]

= e2iδ0e2ikr +
∞∑
l=1

[
e2iδσ

l ei(2kr−lπ) − cc.
]

= e2iδ0e2ikr + 2i Im
∞∑
l=1

e2iδσ
l ei(2kr−lπ)

The first term is spin-independent and thus can be eliminated while being summed over

σ, and the remaining term does not contribute either after being taken the real part. It is

interesting that the Friedel oscillation of spin does not appear in the first-order expansion

in ρ−1. Therefore,

Sz(ρ) ∼ eτE0

2π2�

sin φρ

ρ
Re i

∑
σ

σ
∑

l

e2i(δσ
l −δσ

l+1)

= −eτE0

2π2�

sin φρ

ρ
Im

∑
σ

σ
∑

l

e2i(δσ
l −δσ

l+1)

= −eτE0

2π2�

sin φρ

ρ

∑
σ

σ
∑

l

sin[2(δσ
l − δσ

l+1)]

= −eτE0

4π2�

sin φρ

ρ

{
2
∑

σ

σ
∑

l

sin[2(δσ
l − δσ

l+1)]

}
.
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Thus the asymptotics of Sz(ρ) can be expressed in the form

Sz(ρ) ∼ ps
sin φρ

ρ
,

where

ps = −eτE0

4π2�
kμσ⊥.
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Collision integrals in detail

The projection of a vector k′ to another one k is, in terms of φ ≡ φk − φk′ ,

k′ = k′‖ + k′⊥

= k̂(k′ · k̂) + (k̂ × k′) × k̂

= kk̂(k̂′ · k̂) + k(k̂ × k̂′) × k̂

= kk̂ cos φ + k sin φ ẑ × k̂

= k cos φ + ẑ × k sin φ

The first collision term is

∫
dφk′I (φ) [δf̂ (k) − δf̂ (k′)]

=

∫
dφk′I (φ) [a (k) + σ × b (k)] · (k − k′)

= [a (k) + σ × b (k)] ·
∫

dφk′I (φ) (k − k′)

= [a (k) + σ × b (k)] ·
∫ π

−π

dφk′I (φ) (k − k cos φ − ẑ × k sin φ)

= [a(k) · k + σzẑ · (b (k) × k)]

[
2

∫ π

0

dφI (φ) (1 − cos φ)

]
.
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The second collision term is

∫
dφk′σzI (φ) S (φ) [g (k) − g (k′)]

= σz

∫
dφk′I (φ) S(φ) [k · a(k) − k′ · a(k′)]

= σz

∫
dφk′I (φ) S(φ)(k − k′) · a(k)

= σz

∫ π

−π

dφk′I (φ) S (φ) (k − k cos φ − ẑ × k sin φ) · a(k)

= −σz(ẑ × k) · a(k)

[
2

∫ π

0

dφI (φ) S (φ) sin φ

]

= σzẑ · [a(k) × k]

[
2

∫ π

0

dφI (φ) S (φ) sin φ

]
.
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