目錄

中文摘要
英文摘要
誌謝III
目錄IV
表目錄VI
圖目錄VII
第一章 序論1
第二章 實驗原理 2.1 引言
2.2 氮化鎵之結構與磊晶特性.1996

2.3	氮化鎵側向成長之磊晶特性8
2.4	氮化鎵之化學蝕刻原理與蝕刻特性10
2.5	氮化鎵ELOG結構之蝕刻15

第三章 實驗儀器與樣品製備

3.1	引言	18
3.2	氮化鎵厚膜之製備	18
3.3	化學蝕刻流程簡介	20
3.4	量测分析儀器簡介	27

第四章 實驗結果分析與討論

4.1	引言	31
4.2	蝕刻隧道之形成與基本特性	31
4.3	蝕刻隧道深度與溫度調變分析	49
4.4	蝕刻隧道深度與時間調變分析	56
4.5	磷酸-硫酸混合液對蝕刻隧道的作用	60
4.6	Pendeo 結構之蝕刻	63
4.7	點狀 ELO 結構之蝕刻	67
4.8	蝕刻隧道在分離氮化鎵厚膜之應用	69

表目錄

第二章

表2-4-1	各種蝕刻溶液在75°C左右對GaN與A1N之蝕刻速率	11
表2-4-2	各種蝕刻液對GaN之蝕刻情形	12

第三章

表 3-3-1 各種材料對 Molten	KOH 的抵抗特性	23

第四章

表 4-3-1	蝕刻溫度與隧道深度之數據	50
表 4-3-2	蝕刻溫度與隧道擴大數據	54
表 4-4-1	蝕刻時間與隧道擴大數據	58

圖目錄

第一章

圖	l-1	氮化鎵薄膜在蝕刻後側面之 SEM 圖形	4
圖]	l-2	氮化鎵蝕刻後之表面 AFM 圖形	4

第二章

圖2-2-1 氮化鎵之Wurtzite結構	6
圖2-2-2 氮化鎵之各晶軸關係	7
圖2-3-1 氮化鎵侧向成長示意圖	8
圖2-3-2 ELOG區域缺陷的延伸情形	9
圖2-4-1 GaN之鍵結結構	10
圖2-4-2 N-face經過2. 2M KOH溶液蝕後,顯露出{1011}面之角錐	13
圖2-4-3 經Molten KOH蝕刻之GaN,在邊緣處呈現{1011}面	13
圖 2-4-4 氮化鎵經 KOH 蝕刻後,在表面形成許多蝕刻孔洞	13
圖 2-4-5 氮化鎵經過磷酸蝕刻後所留下的孔洞分佈	13
圖 2-5-1 GaN ELOG 區域蝕刻示意圖	16
圖2-5-2 側向蝕刻隧道之外觀	17

第三章

圖3-2-1 HV	VPE GaN結構圖	18
圖3-2-2 HV	VPE GaN之SEM圖	19
圖3-3-1 實	實驗裝置示意圖	20
圖3-3-2 鍏	戴氟龍載具之設計	24
圖3-3-3 實	實驗流程示意圖	26
圖3-4-1 霍	電子束撞擊試片時,各種訊號產生範圍與空間解析度示意圖	27
圖 3-4-2 人	原子力顯微鏡探針偏移訊號取得示意圖	29

第四章

圖4-2-1 蝕刻隧道之形成過程	32
圖 4-2-2 Molten KOH 230°C 1min 蝕刻後之 EDX 分析	34
圖4-2-3 Molten KOH 230°C 10min	35
圖4-2-4 隧道斜邊與底邊呈58°夾角	36
圖4-2-5 ELOG磊晶呈現之晶格面	36
圖4-2-6 {10-1-1}六角錐結構示意圖	37
圖4-2-7 蝕刻隧道與特殊面之關係	38
圖4-2-8 Pattern方向與隧道斜面之關係	39
圖4-2-9 分離後之GaN背面	39
圖4-2-10 條紋為<1120>方向之樣品,其Mask方向與穩定面之關係圖	39
圖4-2-11 <1120>方向之蝕刻隧道	40
圖4-2-12 A-plane所見隧道斜面之夾角	40
圖4-2-13 隧道內部的蝕刻情形	41
圖4-2-14 接合後的隧道表面	41
圖4-2-15 隧道表面接合處之六角錐結構 B96	42
圖4-2-16 230°C 6小時Molten KOH蝕刻後之隧道內側(T060504)	43
圖 4-2-17 蝕刻隧道之內側圖形(T060504)	44
圖4-2-18 蝕刻隧道之底面(T060504)	45
圖4-2-19 隧道寬度隨蝕刻深度的變化關係(T060504)	46
圖4-2-20 Dislocation的延伸區域與蝕刻隧道的位置關係	47
圖4-2-21 蝕刻隧道之內壁	48
圖4-2-22 隧道底部的Etching Pit	48
圖4-3-1 經超過250℃,Molten KOH蝕刻30分鐘之顯微鏡圖形	49
圖4-3-2 蝕刻深度-溫度關係圖	51
圖4-3-3 170°C Molten KOH 30 min	52
圖4-3-4 蝕刻深度-溫度關係圖(對數處理)	53
圖4-3-5 170°C 30 min	55
圖4-3-6 190°C 30 min	55

圖4-3-7 210°C 30 min	55
圖4-3-8 230°C 30 min	55
圖4-3-9 250°C 30 min	55
圖4-4-1 蝕刻深度-溫度-反應時間關係圖	56
圖4-4-2 250°C 10 min	59
圖4-4-3 250°C 30 min	59
圖4-4-4 250°C 60 min	59
圖4-4-5 250°C 90 min	59
圖4-5-1 由左而右依序為磷酸-硫酸蝕刻前、1hr、2hr之SEM圖形	60
圖4-5-2 210°C磷酸-硫酸混合液蝕刻1hr的情形	61
圖4-5-3 <i>2002 Sumitomo ELOG Epi</i> .	61
圖4-5-4 210°C磷酸-硫酸混合液蝕刻2hr的情形	62
圖4-6-1 Pendeo 結構示意圖	63
圖4-6-2 蝕刻前的Pendeo結構	64
圖4-6-3 蝕刻後的Pendeo結構 E	64
圖4-6-4 Wide void Pendeo 結構示意圖	65
圖4-6-5 Wide void Pendeo 結構之SEM圖 ⁹⁹⁶	65
圖4-6-6 蝕刻後之Wide void Pendeo結構	66
圖4-7-1 點狀結構示意圖	67
圖4-7-2 蝕刻前之點狀結構側面圖	67
圖4-6-3 蝕刻後之Spot Pattern結構	67
圖 4-6-4 點狀結構經過分離後背面的圖形	68
圖4-8-1 化學蝕刻分離後之GaN厚膜	69