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Modeling of Quantum Mechanical Effects for Nanoscale MOS Devices with
Correction Theory

Student : Wei-Hsin Chen Advisors : Dr. Tien-Sheng Chao

Department of Electrophysics
National Chiao Tung University

ABSTRACT

By the Moore's Law, chips manufactured on-a wafer have approached sub-45 nm regime
of gate length for metal-oxide-semiconductor-field-effect-transistors (MOSFETS). Quantum
mechanics effects become significant and ‘inevitable. Thus, the transport models used in
semiconductors should be corrected by quantum correction models. In this thesis, explicit
and implicit quantum correction models are introduced and reviewed completely. There are
Van Dort's, Hinsch's, Li’s, modified local density approximation and effective potential
models in explicit forms; density-gradient, modified density-gradient, thermodynamic
effective potential models are in implicit forms. We compare these models with each other in
terms of theoretical and numerical ways respectively. To find the relationship between the
effective mass which is treated as fitting parameters in the models with varied physical
settings is benefit for industry applications, especially the explicit models, they are simple to
be implanted in the simulator. In application, C-V characteristics of a MOS structure and 1V
curves of a 20 nm double-gate MOSFET are numerically investigated in the work.
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Chapter 1

Introduction

he semiconductor industries haye beenithe major part of today’s technology de-

velopment. With the ptediction of Moore’s LLaw, for the purpose of getting better
electrical properties of transistors‘and a lower costs.of very-large-scale integration (VLSI),
device scaling is necessary and essential for semiconductor devices in the wafer, especially,
metal-oxide-semiconductor field effect transistors (MOSFETSs). There are many ways to
study electrical characteristics of semiconductor devices. Besides measuring the electrical
properties of manufactured chips on wafers in laboratory, there is still another quick and
benefit way to analyze semiconductor devices, i.e., simulation and modelling. Simulation
of semiconductors is divided into several kinds of ranks, as shown in Fig. 1.1. Many small

units of device construct together to be a circuit, and then many circuits make a system. In
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this thesis, we concentrate on the device simulation. Simulation with good enough mod-
els and computation algorithms will give us precise predictions and trend of the physical
features, without tremendous cost of fabrication process and save a lot of time simultane-
ously. Cost and time are the two most important issues if the industries can win in present
keen competitions. Therefore, device simulation plays an important role in semiconductor
industries. By the scaling of a semiconductor device, quantum mechanical effects become
significantly influence on the performance of transistors. Thus, models introduced in sim-
ulation must consider quantum effects to obtain a correct predictions. Schrodinger coupled
Poisson’s equations describes the electron behavior as a wave and particle duality and can
predict the electrical properties very well compared with experiment data. However, it is
time-consuming and difficult to solve in the point of view.of numerical methods. Therefore,
semi-classical equations with quantum-correction models are wildly studied to substitute
for Schrodinger Equation. The semi-classical models have the most important purposes of
speed and accuracy. In the thesis, effective quantum models are studied and compared with
each other for nowadays advanced transistors.

This chapter is organized as follows. First of all, the motivation of this work is introduced,
then a literature review of quantum correction models in semiconductor device is seated.

Finally, outline of the thesis is described in detail.
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Figure 1.1: Hierarchy-of semiconductor device simulation. Many small
units of device constructtogether to be a circuit, and then

many circuits‘make a system:
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1.1 Motivation

With the continuous scaling down of the semiconductor devices. For example, gate ox-
ide thickness less than 1 nanometer (nm) results in a large electric field in the interface
between oxide and silicon and make the quantum well deep and narrow. The energy of
electron wave functions in the inversion layer are quantized and limit the transport of elec-
trons from source to drain. Therefore, the classical transport and other physical models are
not accurate enough to obtain correct simulation results. Replacing the classical models by
quantum ones are indispensable to consider the quantum effects, which are significant in
today’s nanoscale semiconductor devices. Nevertheless, it takes much time for a general
computer in a lab when dealing with full quantum model, for example, the Schrodinger
equation, and therefore loses the benefit of fast speed. Simulation with classical models
but importing an effective quantum term to approximate fully considered quantum models
can keep the merits of fast and accuracy. However, the approximations of quantum effect
proposed previously will lead to results which are not accurate enough or introduce some
mathematical parameters which have no physical meanings. How to choose between ac-
curacy and speed when using quantum correction models is what we concern about. In
the thesis, we compare these quantum correction models in the point of view of theory and

numerical simulation.
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1.2 Literature Review

The importance of quantum effects in inversion layers of MOSFETs was recognized in the
late 1950s by Schrieffer [1]. The initial research of quantum mechanical confinement in
inversion layers was by Stern and Howard [2]. Later, Stern calculated energy levels, charge
distribution, and electrostatic potential self-consistently in inverted p-type semiconductors
[3]. Since the oxide thickness is continually reduced in order to maintain good control of
the gate in nano-scale channel length regime, quantum mechanics become more signifi-
cant. And a number of additional theoretical studies have been undertaken, such as Van
Dort’s model [4], the density-gradient approach [5], the modified local density approxima-
tion method, and the effective potential-method. [6]:[10]. Specifically, in the late 1980’s,
Hansch studies carrier transport at the interface between gate oxide and semiconductor,
then developed a formula that allows an approximate incorporation of quantum mechani-
cal boundary effects on the carrier distribution [11]. In the early 1990’s, Van Dort used a
simple method to model the silicon bandgap under the inversion condition [4]. He treated
the quantum effects associated with the confinement of minority carriers in the inversion
layer [12]. Although his model can predict the capacitance for a wide range of different
doping levels, it fails to describe the quantum effect on the spatial distribution of elec-
trons near the boundary layer, i.e. the pick value of electron distribution will away from

the interface od Si/SiO,. The density-gradient method is another approximation quantum
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treatment.It is a macroscopic approach to the quantum confinement problem. In the early
1980’s, M. G. Ancona and H. F. Tiersten generalized the equation of describing the elec-
tron gas state to include density-gradient dependence [13]-[15]. Later it was extended to
characterize the quantum- mechanical behavior of electrons distributed in strong inversion
layers. Recently, Ancona and coworkers made further progress on this physically based
approach and pointed out that the density-gradient approximation is an effective tool for
engineering-oriented analysis of electronic devices in which quantum confinement and tun-
nelling phenomena are obvious [16]. The modified local density approximation (MLDA)
approach was first used by Paasch and H. Ubensee in 1982 [17]. Using this method, they
studied the electron density in an inversion layer in‘the semiconductor-insulator interface,
which is approached with a triangular potentiall Recently, an IBM semiconductor device
simulation group developed a computationally efficient algorithm based on the MLDA.
This model predicts the spatial distribution of the quantized carriers which the previously
proposed simple models failed to do so. In the recent years, a effective potential (EP) ap-
proach has been proposed, which has the advantages of easy numerical implementation
and almost guaranteed convergence [18][19]. The effective conduction-band edge equa-
tion which wants to improve the problem for density-gradient equation of a differential of
a high order electron density is introduced [20]. In 2003, an improved Van Dort model is

proposed, which is more to the results of Schrodinger-Poisson Equations. However, the
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fitting parameters have to be extracted by the optimization theory [21]. And then, a ther-
modynamic effective potential removes the disadvantage that fitting parameter has to be
modified in different physical setting in Ferry’s effective potential theory. Alternatively,

the size of an electron is decided by its energy [22].

1.3 Outline

Physical models in semiconductor are shown in Chap. 2 and then basic descriptions of ex-
plicit and implicit quantum mechanical approximation models in Chap. 3 and Chap. 4, the
new quantum potential correction,models.are investigated there. In Chap. 5, the application
and comparison for MOS Structures by quantum correction models are displayed. Chap. 6

includes a summary of this work:and suggestion for possible future work.



Chapter 2

Physical Models in Semiconductor

he electrical properties in semiconductor devices ate the most important factors

when judging if they are suitable for the applications,for example, high frequency
or microwave devices. The main concepts of ‘semiconductor device simulation have two
components [23], which must be solved self-consistently with each other, i.e. the transport
equations governing charge flow and the fields driving charge flow, as shown in Fig. 2.1.
We can calculate the effective mass of electrons and potential between lattice. The data is
loaded into the transport equation and then the electromagnetic field will upgrade current
and charge density until the transport equation and electromagnetic field are solved con-
sistently. After that, density, velocity and temperature of carriers, potential, electric field,

I-V curve and C-V curve can be extracted [23]. To include the quantum mechanics, the
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Figure 2.1: A schematic description of the device simulation sequence.
The effective mass of electrons and potential between
lattice are calculated. The data is loaded into the transport
equation and then theelectromagnetic field will upgrade
current and charge density:until-the transport equation and
electromagnetic field are solved consistently. After that,
density, velocity andtemperature of carriers, potential,
electric field, I-V.curve'and C-V curve can be extracted.

direct solution of many-body time-dependant Schrodinger equations are only suitable for
few number of particles, so it’s not a possible way to be used in semiconductor. Alterna-
tively, approximation methods are often adopted for simulation, as shown in Fig. 2.2. The
arrows in the bottom mean more accurate but costs more time; the upper ones mean more
approximate, fast and easy. The selection of models depends on the compromise between

accuracy and speed. These models are described in detail in the next sections.
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2.1 Maxwell’s Equations

The fields for the charge and current density are obtained from solving Maxwell’s equations

[24][25]
. - 9D
H = - 2.1
V X J + 5 (2.1
q OB
E = 2= 2.2
V x BT (2.2)
V-D = p, (2.3)
and
V-B =18, (2.4)

where E and D are the electric field and displacement vector. H and B are the magnetic
field and induction vector. .J denotes the conduction current density and p is the electric
charge density. Under appropriate conditions [26], only the quasi-static electric fields aris-
ing from the solutions of Poisson’s equation are necessary. Poisson’s equation is essentially

derived from V - D = p. By substituted for some basic physical formulas, given by

D = ¢-E, (2.5)

=
I

-VV, (2.6)
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and

p = qlp—n+Nj—Np), (2.7)

where ¢ is the permittivity tensor and V' is the potential. ¢ denotes the electron charge.
p, N, NX and N, are densities of hole, electron, ionized acceptors and ionized donors,

respectively. Then a Poisson’s equation has the form of

M

(n—p+ Np — Ni). (2.8)

The continuity equation can be derived from Maxwell’s equation or Boltzmann equation.

oD
t

In this section, deviation form V x H = J¥  TEA.. J, = j;, + J, with assumptions of

unchanged donors and acceptors with respect to time is shown as
> o 5}
V-(Jp—l-Jn)—FQ'a(p—n):O. (2.9)

Considering the generation and recombination term, R, and then Eq. (2.9) becomes

- on
(Py—a. . 2.1
V- (Jn) —¢q 5 q- R, (2.10)
and
. )
v-(Jp)+q-a—f ~ —¢-R, 2.11)

in terms of electron and hole respectively.
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2.2 Classical Transport Models in Semiconductor Device

In the numerical analysis, the current are characterized by either classical or quantum trans-
port equations. Before the gate lengths of MOSFETS are scaled down to less than 100 nm
by the rule of Moore’s Law [27], the transport properties is sufficient to be described by
classical transport equations. Semiconductor equations, derived from the Boltzmann trans-
port equation, are the basis of the majority of current device models, where the dimensions
of the device geometry are greater than a de Broglie wavelength of electrons. The classical
transport equations are introduced in the next sections.

The transport equation used in semiconductor in classical regime is based on Boltzmann
equation and its simplified models;i.e. hydrodynamic, thermodynamic and drift-diffusion

models.

2.2.1 Boltzmann Equation

The Boltzmann transport equation describes the temporal evolution of the single-particle
distribution function f(r,p,t) in the phase space [28]. The coordinates of particles in
space, r, and momentum, p, at a certain time can be characterized well. Assume there are

scattering effects , the distribution function is given by [28]

df (r,p,t) _ Of

= = 2.12
dt ot collision7 ( )
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which expands to yield [26],

0 f or
ot 8

(91? of

825 collision ‘

Vf+

V,f = (2.13)

oF
The rate of change of momentum 1s equal to the applied force F' = qE(r t) and 37 is

equal to the group velocity, (l;) p'is substituted by kh. Then Eq. (2.12) can be written as

Of (k1) | = LAGT) v Tkt

ot collision

In Boltzmann equation, carriers are treated as classical particles which are uncorrelated
with position 77~ and momentum k at time {. A many-particle system of carriers and be ex-
pressed as single-particle distribution [29].

The Boltzmann euqation is the most accurate in the classieal limit and a statistical Monte
Carlo method is used to find the distribution function.- However, it consumes the compu-
tation a lot. Therefore, some simplified-equations, for -example, hydrodynamic equations,
are adopted to replace Boltzmann equation for-the purpose of compromise between accu-
racy and simulation time. Before preforming the deviation, some equations are defined as

follows, n(7, 1) is the electron concentration:

=/ (7, K, t)dk; 2.15)
van (7, t) is the electron average velocity;
G en((0) = [ @RI ) 216
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wy (7, t) is the electron average energy:

*

(7 0) = 30 a2 (7 R ) @.17)

T.,(7,t) is the electron temperature tensor:

%n(ﬁ Dl To((F. 1)) = ”;;3 / TR — van(7 V(7 R )dR: and (2.18)
@n(ﬁ t) is the heat flow vector:

2.2.2 Hydrodynamic Equations

If we multiply a X(E) in Eq. (2.14) and integrate from minus infinity to infinity, Eq. (2.14)

becomes [30]

[ @O [T @i v Eaa s [ =EEY

o ot - - i
Vif (7 k t)dk = / MO g’tk x dk. (2.20)
— 50 collision

Then balance equations are decided through assumptions [30][31]. If X(E) is defined as 1,

i.e. the Oth order approximation, then Eq. (2.20) is derived to the carrier balance equation,
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given by

L) 9,0l )7 1) = G 1) — RO ). 221

If x (k) is defined as m(k), i.e. the 1st order approximation, then Eq. (2.20) is derived to

the momentum balance equation, given by

A(n(7, t)Uan (7, 1)) n(7, t)kgT, (7, t) o o qE
5 +V, me + V. (n(7 )0 (7,1)7) + m;n(r,t)
_ A(n (7, t)vgn (1, 1)) ' (2.22)
8t collision

If (k) is defined as %m;ﬁ(E)Q, i.e. the 2nd order approximation, then Eq. (2.20) is derived

to the energy balance equation, given by

A(n(r, )&, (7, 1)) S =

5 VY, [T (7 )1, ) (Fit) £ T (Fst) - (7, ) kp T (7, 1) + (7 )]
4 qn(F ) im(F ) - B a<”<7"at()9;dn(ﬁt)) | 023
collision

The hydrodynamic equations for electron is composed by these three parts shown above.
Therefore, we need to solve seven partial differential equations for using the hydrodynamic
model when considering electron, hole, and Poisson equations. The model can reproduce
hot carrier effects as velocity overshoot and accurate impact ionization generation rates

which drift-diffusion model lacks [32].
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2.2.3 Energy Transport Equations

The energy transport equations only consider particle conservation, Eq. (2.21), and en-

ergy conservation, Eq. (2.23) [33], which lacks momentum conservation compared with

hydrodynamic model. It accounts for electrothermal effects, under the assumption that

charge carriers are in thermal equilibrium with the lattice [34]. Under approximations [35],

particle conservation relation becomes:

on 1 -
—=-V-J,—R,
ot ¢

where J; is the electron current density, shown as

fn = —qu.nN o), Vn + pu,kgnV'T,.

Energy balance equation becomes:

O(nwn,)
ot

Wnp — Wo
an(Tn) ’

:—V-§n+L-E—n

where S, is the electron energy flux, shown'as

LT J, .
Sn = —wn+ _kBTn + Qn
—q —q

wy, 18 the average carrier energy and Qn is the heat flux, given by

3 1,
Wy, = ik:BTn—i—imnvsn,

and

, k
Q, = —2Tn(?B)2nqunVTn.

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)
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Therefore, including electron, hole and Poisson equations, we have to solve five partial

differential equations when considering energy transport equations.

2.2.4 Drift-Diffusion Equations

The drift-diffusion equations are widely used for the simulation of carrier transport in semi-
conductors by its simple and fast properties in simulation [36]. It should be considered
carefully because some properties such as heat effects, are neglected in the model. We only

use the carrier balance equation, Eq. (2.21), to have, for eléctron [36],

on %1 -
A NG 2.30
BT qV I =R ( )
where
J, = —quanVeo + ¢D,Vn. (2.31)

Accordingly, only three partial differential equations need to be solved when considering

electron, hole and Poisson’s equations.
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2.3 Quantum Approaches in Semiconductor Device

The sizes of MOSFETs fabricated on silicon substrate for VLSI have been scaled in order
to attain better performance and higher integration. The gate length of a MOSFET (multi-
gates) keeps shrinking even over 10 nm [37]. With the size reduction of the horizontal
direction, i.e. direction from source to drain, the vertical direction such as gate oxide thick-
ness and depletion layer thickness scale down.at the same time to lead to a strong quantum
confinement effects [38].

Accordingly, two significant quantum effects appear,-for example, a shift in the threshold
voltage due to a rise of the lowest.occupied subband above the minimum conduction band
energy and a reduction in the gate capacitance because of the setback of the maximum in
the inverted electron density away from Si/SiO- interface. These quantized effects can be
integrated into the classical models though some kinds of quantum approximation which
has explicit or implicit forms. However, if the lateral quantization becomes important, then
a full quantum mechanical model is required to deal with the device. In this section, a brief

description for quantum approximations is given.
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2.3.1 Time-independent Schrodinger Equation

The direct solution of many-body Schrodinger equation can be solved only for small num-
ber of particles, so it’s not possible to be applied into the whole device simulation. Thus, we
approximate the quantum effects into single-state and time-independent Schrodinger Equa-
tion and then coupled with the Poisson equation. Classical transport models are adopted
when current calculation is needed. We consider a MOS structure, where the metal part
is replaced by polycrystal silicon with a p-type silicon as substrate. Two assumptions
are adopted [39]. The first, Fermi-Dirac distribution is employed and the second, stan-
dard electron and hole effective-mass approximations in a parabolic shaped band are as-
sumed. Fig. 2.4 shows the energy band diagram of a MOS structure. The flow chart of
the self-consistent Schrodinger and Poisson/systém is'shown in Fig. 2.5 [40]. We must
first give the initial guesses of potential and:electron density to start the first iteration of
self-consistent system. We can get a upgraded-potential from Poisson equation, Eq. (2.8),
and renew the potential term in Schrodinger equation simultaneously. The nest step is to
solve Schrodinger equation, which is shown below,

h?  d?

 2myy, do?

Gr(z) + Ec(2)Gr(r) = Ejr(z), (2.32)

where m,, is the effective mass normal to the interface in the kth valley, £, is the energy
levels of the jth subband in the kth valley, and (j;, is the wave function of the jth subband

in the kth valley. A zero wave function boundary condition is used at the quantum system
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boundary. Because the silicon crystal has a six-folds ellipse-shape band energy diagram,
there are two different effective mass (1m ;) when dealing with different kth valley. It should
be chosen carefully.

After the Schrodinger equation is solved, wave function and eigen-energy are known. And
then charge density can be calculated.

Region 1, i.e. the silicon bulk region, where the electron energy is continuous and therefore
all energy levels above the conduction band minimum edge (£/¢) are permissible. Electron

density in the classical region is calculated by [41]

ne = Neel[1 — cre” + cpe]. (2.33)
where,
Er—E Er —(—
(z) = > C(w): F—( Q@b(ﬂf))’
kT kgT
ci = 0.3530,
and
c, = 0.1290.

And electrons in the inversion region near the surface of Si/SiO- in silicon substrate (region
2) are treated as a two dimensional electron gas (2DEG) with a splitting of energy levels
into subbands. Where the electrons are divided into two parts: (1) One of them is calculated

as 2DEG where the potential is sufficiently narrow to quantize the motion in the inversion
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layer, and (2) the others whose energies are above FEj;,, behave like classical particles. As
shown below,

n=ng+ng. (2.34)

If the first eight subbands are considered, n, is given by [42]

ny() = kBTZ m Zln Hep( ’“B?k)ﬂc i (2.35)
q 7_(_7;1[2 gk dk 1 T ex — Elzm) 7k .
where, (. is the envelope function of the jth subband in the kth valley, gy, is the degeneracy

factor of the kth valley, and mgy, is the parallel effective mass in the kth valley. And the

electrons behave classically as

2 e
ne(z) = NC% &o(x) ok, — /7($)’ (230
where,

kT

The hole has no quantum confinement and'the-density p.can be calculated by the classical

Boltzmann distribution,

Ev<£lj'> — EF

) (2.37)

p = Ny exp(
Therefore, the charge density in the inversion layer is calculated by
p=qlp—n+ N} —Ny). (2.38)

We get the new n. and n,. If the system has not converge, the charge density term in

Poisson equation is renovated again to begin the second time of iteration. The process
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carries on until convergence criterion is achieved. The total inversion layer charge < @ >

is obtained by the integration over electron density, which is defined as

<Q>= /n(r)dr, (2.39)
0

where n(r) is electron density. The average inversion charge depth < X > is defined as

B fo rn(r)dr

<X == Jon(r)dr

(2.40)

The Schrodinger-Poisson system is the most accurate way of steady-state to treat the quan-
tum confinement problems in the inversion layer at the Si/SiO, interface. But it has the
fatal disadvantages of taking too much time and consuming the computer efficiency seri-
ously when dealing with the eigen=value problemsof Schrodinger equations. However, the
quantum effect is a very important phenomenon that can’t be neglected in such small scale
dimension of transistors. Therefore, not-onky-for the: applications of industries but also for
the research of academics, the quantum approximation models (quantum correction mod-
els) are developed for the purpose of replacing the Schrodinger equations by approximation
of mathematical forms to get a much fast simulation speed and accurate enough results in
the past years. In brief, these models have the explicit and implicit types and are summa-

rized in the next chapters.
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Cut-line

Substrate

Figure 2.3: Single-gate MOS structure. We can draw the band diagram
as Fig. 2.4. along the direction of red-dashed cut-line.
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Poly-Si  Oxide bulk-Si
y e ple
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X=ATp4T,,)  X=Ty X=0 X=

lim

Figure 2.4: Energy band diagram of a MOS structure. T ,, is oxide
thickness, T ,,;, 1s poly-silicon thickness, X;,,, corresponds
to the eighth subband and L is the length od substrate; Eq; is
the first subband, E;5 is the second subband, E,; is the third
subband and Ey;,, is the eighth subband.
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Figure 2.5: Schrodinger-Poisson flow chart. Give the initial guesses of
potential and electron density first to start the first iteration
of self-consistent system. Then the potential from Poisson
equation is upgraded, and renew the potential term in
Schrodinger equation simultaneously. If the stop criterion is
reached, the self-consistent procedure is done, or the latest
potential and electron density have to be upgraded again
until the error is small enough [40].
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2.3.2 Quantum Transport Theory

If a system containing a large number of particles is not completely known, we usually
use the statistical physics of concept of statistical ensemble. Classical transport physics is
based on the concept of probability distribution function which describe the phase space of
carriers. However, in quantum mechanics, obtaining details about position and momentum
simultaneously contradicts the Heisenberg’s Uncertainty Principle. Therefore, it is given
by a probability density matrix in terms of quantum mechanics. The rate of change of the
probability density matrix p with time is determined by Lioville-von Neumann equation,
given by [43][26]

zh% =[H, |, (2.41)

where the density matrix, p, is defined as

p =" il (2.42)
=0

This is the quantum analogue of the Liouville equation in classical transport equation,

shown as

% (1.}
op " OH 0p _ O0pOH
ot Z<8Qz’ opi  Og; apz-)

=1

N (2.43)

There is another alternative approach. Draw an analogy to classical concept of a phase-

space distribution function, the quantum mechanics use a Wigner distribution function. It
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is very similar to Boltzmann equation with the constraints of the uncertainty principle but
has no simple interpretation in the concept of probability theory since it is not definitely
positive definite. Wigner function extends the concept of distribution to the quantum case
and it constitutes the more direct link between the quantum density matrix and the classical
description of the evolution of the system in phase space though a distribution function

f (7, p,t), defined by [22]

oL _ . h _ h .
FERD = @0 [ o+ Gn7 = Snea(in: fdn (.44)
R3

By analogy with Boltzmann transport equation, the Wigner transport equation has a similar

form, given by

1 . 0
atf + m* VT ' (pf) - ee[v]f = (a_{)collisiona (245)
where 0[V] is a pseudodifferentail operator, shownas
O] = LV + ) — VGV, (2.46)
TRV Ty e g Yok '
And the action of A[V] is given by
- 3 b B L h L o
VI (7, 7.) = (27) LV 5m) = V= Sl (77 Oexplin - (57— @)dadn.
R3 JR?

(2.47)
Quantum transport theory is used to explain and support confidence limits for the classical

Boltzmann transport theory.
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2.3.3 Quantum Correction Models

Without solving Schrodinger equation and using the quantum transport theory, there is an-
other way to consider quantum mechanical effects into device simulation. It is a semiclas-
sical method to treat the quantum effects by replacing a classical potential by a corrected
potential or a classical carrier concentration by corrected carrier one. This kind of quantum
correction methods are not as accuracy as what has been discussed in the previous sections,
they are compromises between precision and calculating time. Fast speed in simulation is
the most beneficial in semiclassical transport equations with quantum correction models. It
is easy to upgrade the potential or carrier concentration term in classical transport equations
and there are two types of such quantum correction models, i.e. explicit and implicit mod-
els. They are introduced by detail in Chap. 3 and Chap. 4. In the commercial simulation
tools, drift-diffusion transport equations‘'with quantum corrected models are wildly adopted
because of properties of simple and fast: Similatly, the hydrodynamic and Boltzmann equa-
tions can also transformed to semiclassical form by renewing the correction term. Which
sort of transport models is chosen just depends on what physical phenomenons need to be

considered in simulation process.
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Explicit Quantum Corrections

I n the chapter, the explicit quantum corrections; d.e., the Van Dort’s model, Hansch
model, Li’s model, MLDA model and effective potential model, are discussed in terms

of theoretical viewpoint.

3.1 The Van Dort’s Model

The Van Dort’s model considers the quantum effect at the interface of Si/Si0O, as a effective
rise of the minimum conduction band edge as a widened bandgap. The model proposes that
the quantum corrected surface potential 1% is larger than the conventional potential 1™
by [4]

AE
P = + - £, AT, 3.1)

S

30
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where AF is the energy level difference between the minimum conduction band edge and
the first allowed energy level E;; in the quantized region at the interface, € is the surface
electric field, and Az is the difference of the average displacement of electrons from inter-
face of Si/Si0, between classical and quantum solutions. If the bandgap is larger enough,
we can approximate the quantum corrected intrinsic carrier concentration n?, which is
shown as

Q
Ep — ETQ)
inT
Eg
EF — 7)€x ( AEl
el P\,

EQ — Fjconwv
9 9 32
2kpT ) (3-2)

n;exp(

=L

)

= nzexp(

conv

— 0™ exp

where n{°" is the classical model for the intrinsic carrier concentration, E;? is quantum
corrected bandgap, and E¢”"" is the original bandgap.-£ is the difference between EgQ and
E°™. Since the quantum effect’is only significant near the interface, a weighting factor

W (x) can be introduced approximately as

_ 2exp(—a?)
Wiz) = 1+ exp(—2a2)’

(3.3)

to model the potential distribution in the direction perpendicular to the interface of Si/SiOs.
Where a = ﬁ and .y is a reference distance (2,.; ~ 25 nm). Thus, the upgraded and

quantum corrected intrinsic carrier concentration n; is given by

n; = nf™[1 — W (x)] + W (x)n?. (3.4)

(2
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Although the Van Dort’s Model has a simple mathematical form to implement to the classi-
cal solver, it has the drawbacks that it is not accurate because of triangular well approxima-
tion and it cannot predict the condition that the peak electron density value has a distance
away from the Si/Si0, interface. The electron density will still has the largest value at
the interface like the behavior of classical electrons. The method can only describe the

decreasing electron density accounting for a reduced effective bandgap.

3.2 The Hansch’s Model

The Hansch’s Model approximates the electron €oncentration density with quantum cor-

rection as [11]

q¥(x). — q¢ z°
n(z) = Neexp(~ DBy ) (3.5)
B th
where )\, is the thermal wavelength shown as
K2
e = e —
h \/ 2my kT
my = T (3.6)

9.11 x 10-31kg"

A, 1s @ measure of how fast the quantum effect decreases away from the interface, m), is an

effective electron mass, N¢ is the conduction band effective density-of-states, ¢ = %,
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and Er is fermi level. This model is smoothed to have a classical electron density when

the position is far away from the interface of Si/SiO,, shown as

q(z) — qbr
kT

nclassical (33)

= N¢exp(— ). (3.7)

It is a classical model of electron density which is corrected by an additional term, 1 —
emp(—%). The electron concentration changes rapidly in the boundary layer (Si/SiO4
interface), it is difficult to evaluate an accurate value from Poisson equation. Generally,
we can assume the electron concentration is proportional to (z — Zipser face)Q at interface

and this assumption is valid for electron concentration for Hansch’s, modified local density

approximation and density gradient approximation models, it can be written as
n® =lconstmxalan— x,-nterface)Q. (3.8)

Therefore, some assumptions are exhibited-as follows. The sheet charge density N in the

boundary has the form of

N, = /0 o) = n(@) + NE(@) — N5 (2)da, (3.9)

where dr; = x; — xo, which means the difference between first and second mesh in nu-
merical simulation and N} (z) — N (z) & —Na(z). p(x) and N4(z) are the hole density
and substrate doping concentration, respectively, which can be treated as constants equal

to po and N 4 in the dxy. If dxy < A\, Eq. 3.9 becomes

1 %dazl
Ny = (po — NAo)§d$1 + / n(z)dz. (3.10)
0
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The potential within dx; is regarded as constant because dx; is very small. By these ap-

proximations, n% in the boundary is proportional to 22, given by

Q _ qr —qv,  a*
nbounary - NC eXp(_ l{BT ) ' ()\_fh) (311)
And Eq. (3.7) can be modified by Fermi-Dirac statics, shown as
2
—qu(z x
nQ(z) = NCFl/z(—‘WF—W())u — exp(——5)]. (3.12)
kgT A,

The Hansch’s model has more physical meanings than Van Dort’s model described above,
but it has the shortcoming that the adjustable mathematical parameter m, is very sensitive
by different cases, for example, different substrate doping, gate oxide thickness and applied
gate voltage may all need exclusive m, to have accurate enough results compared with the
Schrodinger-Poisson self-consistent ones. It is not so.convenient for real applications but
may be treated as the initial guesses for other quantum.correction models which are dis-

cussed as follows.

3.3 The Li’s Model

This model [21] improves Hansch’s model to have a more accurate electron distribution and
the peak value of electron. It has a very close results compared with Schrodinfer-Poisson’s.

However, the difficulty is how to extract three parameters shown below. In the paper [21],
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they are extracted by the optimization theory. The model is shown as

nol) = auncu(a) - (1= eapl-(1 = 5(S) — €D, G.1Y

where ncy (z) is the classical electron density solved with the Poisson equation, £ = /Ay,
and ), is the thermal wavelength. For the double-gate case, £y = T’s; /2, Where Ty; is the
thickness of silicon body. ag, a; and a, are optimized and calibrated with the Schrodinger-

Poisson solutions by optimization theory.

3.4 The Modified Local Density Approximation Model

Paasch and Ubensee firstly proposed a quantum correction model called modified local den-
sity approximation model which 1s applicable even if there is a abrupt variance in potential
[17]. In the case of interface of Si/SiO,, the quantum corrected electron density is approx-
imated by adding an additional correction term into the classical model in an integration

form, given by

an _ d§ 505
(@) f/ T exp(E — k(@)

dg - £ 6 (256\/§/A2)
f/ [T oxp(E — k(a)) =

) g - €07 ; <2xf/m
= Ve [ e iyl T L 6
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where,
£ - E—-E,)
- kgT
E
k(x) = %ﬁ(@, and
. h2

x is the distance counted from the interface, N¢ is conduction band effective density-of-
state, jo is the zeroth-order spherical Bessel function, E is fermi level, and ), is the
thermal wavelength as described above.

The effective mass is usually considered to take an average value between longitudinal and
transverse ones because the six-fold ellipse-shape symmetry of valleys when calculating
the spherical Bessel function j,. Note that the model smooths the curve behavior between
quantum and classical regimes. For region whichis far from the Si/SiO, interface, Eq.

(3.14) becomes

df 505
o) = Nz [ e —w

At z = 0, Eq. (3.16) gives n(xz) = 0, which is consistent with the assumption that

(3.16)

wave function vanishes at the boundary. The thermal wavelength )\, is a characteristic
length which depends on the temperature and the effective mass m; can been seem to be
a adjustable parameter to fit Schrodinger-Poisson solutions. MLDA model is much more
efficient to solve a numerical integration than a Schrodinger-Poisson solver which need

to solve an eignevalue problem. Besides, the fitting parameter m; is less sensitive than
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Hdansch model. It is the advantage when implanted into the device simulators.

3.5 The Ferry’s Effective Potential Model

In analogy to the smoothed potential representations for the quantum hydrodynamic model
(density-gradient model), David K. Ferry suggested an effective potential model that emerges
from the wave packet description of particle motion, where the extent of the wave packet
spread is obtained from the range of wave vectors in the thermal distribution function
[18][19]. This form for the effective potential allows one to build in certain quantum ef-
fects that arise from the non-zero,size of_the electron wave packet. It can be derived from

potential part of the Hamiltonian, given by
g, /dTV(r)n(T). (3.17)

Using the wavepacket description leads to
H, = / drv(r) Y n(r) (3.18)
= [av dr’ =y s o,
— r (r)z r'exp(— " )o(r' — ;)

| 2

— Xi:/dré(r’—n)/dr’V(r')e:cp(—|T ;;/ ).

The primed integration is defined as effective potential, V@, and the finite size of the elec-

tron size is replaced by smoothing the Hatree potential with a Gaussian integration shown
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as

Ve (r) = /V(x + 6)G(E, a)d, (3.19)
where G is a Gaussian with the standard deviation ag. ag is defined as ag = h/ V8m*kgT.
In three dimensions, it becomes

VQ(x,y,z) = 27T15%ayaz///‘/x y', 2

x—2x) 2z —2')?
exp(— ( 52 2a2 —( 2a2) Ydo'dy'dz',  (3.20)
x y

z

where V' (2/, v/, 2’) is the classical potential and a,, , are the standard deviations of Gaussian
integration. This model is easy to integrate into the classical models. The effective poten-
tial V@ is related to the self-consistent potential obtained from Poisson equation. We just
need to perform an integral-smoothing transformation:to original potential with gaussian

function. We can expand Eq. (3.19) in Taylor series. The one-dimensional case becomes

Vo) = o [ Vi TR e

I

1 oo oV 52 82 52
T | W)+ g el
2

L2V
= V(@) + a5+ (3.21)

In nondegenerate semiconductors, V' can be described by (In;-)/(—5), Eq. (3.21) be-

comes

0 _ _2_a%821n(\/n/no)
V) = Vi)~ gyt (3.22)
B 2a3 0*\/n
= V(z)— NG +
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Therefore, Ferry’s effective potential is related to the relation of gradient of density term,
which is usually known as Bohm potential. Although the effective potential model has the
advantage that it is a convenient way to produce a first-order result, drawbacks such as
solution is overestimated and peak location is further setback from the material interfaces

are inevitable.
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Implicit Quantum Corrections

I n the chapter, the implicit quantum corrections, i.e. . The density-gradient model, ef-
fective conduction band edge model and thermodynamic approximation model, are

discussed in terms of theoretical viewpoint.

4.1 The Density-Gradient Model

The quantum potential originates from hydrodynamic formulation of quantum mechanics
by Bohm and is developed by Ancona is called density-gradient model [13]-[15]. Begin

from the one-particle Schrodinger equation, of the form

G
zha = —%V W+ V(). 4.1)

40
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The wave function is written in complex form in terms of its amplitude R(r,¢) and phase

S(r,t) as

iS(r,t)

W(r,t) = R(r,t) exp( 4.2)

Then substituted back into the Schrodinger equation, one arrives at the following coupled

equations for the density and phase given as

OR(r,t 1
Ul LR OV2S (1) + 29 R(1) - VS(r, 1), 43)
and
as(r,t)y  [VS(rt)? h? V2R(r,t)
g - oy Vo) )

We can write p(r,t) = R(r,t)?, where p(it).is the probability density and obtain

Ip(r, 1) 1 _
i HV e H= VIS (r,1)] = 0, (4.5)

and

IS (r, t) T NS (1, )
ot 2m

+V(r,t)+ Ve, (4.6)

In the classical limit, the above equation are subject to a very simple interpretation. The
function S(r, t) is a solution of the Hamiltonian-Jacobi equation. If we consider an ensem-
ble of particle trajectories which are solutions of the equations of motion, if all these tra-

jectories are normal to any given surface of constant S, then they are normal to all sureface

VS(ryt)

of constant S. And TM means the velocity vector. Eq. 4.5 can be written as

dp(r, )
ot

+ V- [p(r,t)v] = 0. 4.7)
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Since p(r, t) is the probability density, pv isthe mean current of particles in this ensemble,
and Eq. (4.7) expresses continuity equation. Eq. (4.5) and Eq. (4.6) have the form of clas-
sical hydrodynamic equations with a additional potential, often referred to as the quantum

potential (Bohm potential) [44], shown as

W 2p _ o 0*/n

Ve — _ ___r _gvn
2mR 2m~/n 0x? "’

(4.8)

where the density n is related to the probability density as n(r,t) = Np(r,t) = NR(r,t)?,
N is the total number of particles in the ensemble. Nevertheless, an extra term is intro-
duced in the carrier flux by making the equation of state for the electron desity-gradient

dependance. The current density is corrected as

2
Qbm

T = —qnii, Vb + gDp¥n = i V(205 Tn

), (4.9)

where b, is the density-gradient coefficient which determines the strength of the gradient
effect in the electron gas. The last term in the right hand side of Eq. (4.9) is referred
to as “quantum diffusion”, which makes the electron continuity equation has a fourth-
order partial differential equation. Therefore, such an approach is highly sensitive to noise
in the local carrier density, and the methodology is highly important in cases of strong
quantization. However, advantages of not so sensitive parameter b,, compared with other
quantum approximation models and results close to Schrodinger-Poisson solutions make

the density-gradient model is commonly used in commercial semiconductor simulators for
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quantum correction.
The density-gradient equation may be simplified to a simpler form, say modified density-
gradient equation. We note that a similar idea has been proposed [20]. Eq. (4.8) can be

represented by

Vir) = V) = Ve,

n? V2
- Vi) - g T
2
= Ver) - ;n T[v2lnn(r)+%(wnn(r))2], (4.10)

where V* is the effective total potentidl ehergy and V¢ is the classical potential. 7 is
chosen between 1 and 3. For obtaining the effective conduction-band edge equation, we
propose that in the equilibrium Boltzmann distribution, after quantum correction, (nn(r) is
proportional to —V*(r)/kgT andnot.to —V (r)/kgT. Thus, Eq. (4.10) becomes

ey = L
4mrkBT 2/{ZBT

V*(r) = Ve(r) + (VV*(1))?). (4.11)
The effective conduction-band edge equation has the improvement that no serious request
for a very well defined mesh, as used in general density-gradient equation because the high-

order differential of carrier density is replaced by effective total potential energy.
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4.2 Thermodynamic Approached Effective Potential Model

There is an alternative to the approach outlined above. The mean idea of a thermodynamic
approached effective potential model is essentially a perturbation theory around thermal
equilibrium [22][45]. We seek a semiclassical transport equation with a quantum corrected
potential whose classical commutator, [Eef Fof |ctassicar Will produce the same thermal equi-
librium state as Wigner commutator [e, f]y, where f is a distribution function evaluated

from Weyl quantization [46]. The process is detailed in the next sections.

4.2.1 Classical and Quantum Collisionless Boltzmann Equations

We start from transforming the many-body Schrodinger-Poisson system to a analog of the
collisionless Boltzmann-Poisson equations which assumes mean field theories and effective

mass approximations for ensemble by use of Wigner transformation, given by [46][47]

h h
flz,p,t) = (2m)? /R3 p(x + 31T = 577)611319(@'77 -p)dn, (4.12)

where

p(x,y,t) = SAF(N)a(z) " ¥a(y). 4.13)
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p(x,y,t) means the density matrix of mixed state and v/, is wave function with eigen energy

A. The Wigner function satisfies the Wigner, or collisionless quantum Boltzmann equation

_
© 9m*

Ouf + e, flw =0, +eV(x, 1)

7 wh 1wh
= @f + % vzzil U€(£L’ + Tvp,p — TVm)f =0

and

e h h
= 0, Vi (pf) = 7 V(2 + 5-Vy) = V(e = 5-V,)l =0,
which can be taken as a pseudodifferentail operators 6[V] by
1
Of 5= Vam(pf) ~ed[V1f =0,
where
1 h h
V] = + (gl = V(@ — 3:V,)
And the action of 6[V] is given by
h
oWV fpt) = @07 [ [ Vit G-V T
R3 Rs 2

f(x,q,t)explin - (p — q)]dqdn.

(4.14)

(4.15)

(4.16)

4.17)

In the effective potential approach, one replaces the quantum Boltzmann equation by a cor-

responding semiclassical equation with a modified potential. Thus, Wigner commutator
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le, flw is replaced by the classical commutator [é‘ef ! fletassicar> the semiclassical Boltz-

mann equation is given by

2
atf + [8eff7 f]classical = 07 £ = % + €Veff(l',t),
m

= Of +V, eV, f =V, .V, f =0,
and
1
= Of + —Vu (0f) = Vp - (VaVI f) = 0. (4.18)

Therefore, all quantum effects are taken inté account:by the force acting on the elec-
tron. The quantum corrections through-the semiclassical transport equations are Wigner-

Boltzmann-Poisson system shown below,

0f + —Ve- (of) = eBVIf = QL)
V.-eVV =e(n— D),

n(z,t) = . f(z,p,t)dp, (4.19)

where Q)( f) denotes the collision operator when considering collision process and it’s zero
when modelling collisionless one. e denotes the electron charge, D is the doping concen-

tration and n(x,t) means the density of electrons.
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4.2.2 Approximations to Thermal Equilibrium

The effective potential is based on the perturbation theory around thermal equilibrium. We
want to find a semiclassical transport equation with a quantum corrected potential whose
classical commutator, [eef 7 fletassicar Will produce the same thermal equilibrium state as
Wigner commutator [¢, f]ys when applying to a quantum system. Our purpose is to make
the two operators shown above equal to each other and then extract the effective potential
to be used in semiclassical transport equations [22].

First, starting from the Wigner-Boltzmann-Poisson system, Eq. (4.19) and transform it to

center-of-mass coordinates. The mean velocity u(x,t) of the ensemble is defined as

/ pf (2, p, 8)dp DM uniagtle e, ) = | f(z,p,t)dp, (4.20)
R3 R3

and then choose m*u to be the origin of the center-of-mass coordinates in momentum

space. Make the Lagrangian transformation to Wigner equation, shown as [22]

1
Of*+ — Vo [(ptm*u) f1] =V fHIm"Opu + (p + m*u) - Vo )u] —e0[VIf* = QX(fY),
(4.21)
where f*(z,p,t) = f(z,p +m*u(z,t),t) and Q*(f*)(z, p,1) = Q(f)(z,p + m*u,1).
The thermal equilibrium in classical case have the form of
fet = h-%eap(—pe?),

2
= fEx,p,t) = [z, p,t) = emp[—% — ﬂeVQ(x,p, B)]. (4.22)



48 Chapter 4 : Implicit Quantum Corrections

On the other hand, in the quantum mechanics, the thermal equilibrium state is defined as a

density matrix as [48][49]

p™ = exp(—(GH), (4.23)

where H is the Hamiltonian operator and 3 is 1/kgT. Taking use of the definition of

Wigner function, i.e. Weyl quantization,

| h |
[z, p,t) = (2m) 3/ Pz + ST = 577)69619(@77 - p)dn,
RS

P y) = Y explB(e — NIY5(2) U5 (y),

A

2
WA eVt = ause. (4.24)

2m*

(_

Therefore, the effective potential can be derived approximately from substituting exp(—3%//)
for Weyl quantization of exp(—(H) [50]. Now"we already have a description for classi-
cal case in thermal equilibrium, and then the next step is to get an analytical solution of

quantum state of thermal equilibrium. The procedure is shown in the following section.

4.2.3 Thermodynamic Effective Potential

We need to find a explicit expression in quantum distribution function in thermal equi-
librium, f¢9, in order to get a formula of effective potential V¢//. Of course, it is not

possible to obtain a analytical expression of V¢//, so the approximations are introduced
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[48][49][51]. The Bloch equation is a formal way to replace the computation of the expo-

nential of a density matrix by the solution of a parabolic differential equation.

In Eq. (4.24), we have the expression of density matrix by thermal equilibrium state is

defined as a density matrix as

P y) = explB(6 — N (@) ¢ (y), (4.25)

then differentiate p° with respect to /3, which gives

0ap*(z,y. B) = Y _explB(¢ — N)](¢ — N5 (z) ¢S (y), (4.26)

A

and make the Hamiltonian /1 to density matrix ol gives

Hpt =y eup[3lo= N (@) v (y) = o H. (427)
A

Rearrange Eq. (4.26) and Eq. (4.27), the'equilibrium density matrix p°¢ satisfies an initial

value problem

1
0 (2., 0) = —5 (Hp™ + g H) + 6p, p(,9,0) = S(e —y),  (428)

or

2

Dpp™(z,y,8) = (A +Ay)p“— S[V(ﬂc) +V(W)lp*+¢p, p*(x,y,0) = d(x—y).

4dm*

(4.29)
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Eq. (4.29) is called the Bloch equation for density matrix p® which is symmetrized to
be real and self adjoint. The next step, use the Weyl quantization, Eq. (4.24), to get the

expression of f°? from p®¢. An initial value problem is given by

2

2
Mgt — P e v g, Fea(ey,0) = B, (430)
Sm* 2m*

aﬁfeq(xayvﬁ) =

with the pseudodifferential operator w given by

1 h h
V] =3V (o + 59,) + Ve = 2:V,)) @31)

and the action of w[V] is given by

1 _ h h .
VIS wp) = 5@ [ [ W g+ Vie = ol aelin: (v - o)dads,
2 r3 JR3 2 2
(4.32)
Eq. (4.30) is solved by Borm approximation! [48][49] which assume that the Laplacian
in Eq. (4.30) dominates the potential term. We set V' = <V, expanding the solution of Eq.
(4.30) in powers of € and setting f“1 = W 2(fo + efi4++1.) ~ (fo +cf1), where e is a
formal parameter. Therefore, Eq. (4.30) becomes [22]

2
0514, B) = b £ — P04 el VAP 4 6, [, 0) =

Ip|?
2m*

= @;h’?’fo -+ h*?’a@ﬁfl = OzhigAwfo + OéhigAxfl —

2
Wy - P,
—eeh ™ fow[VZ] — ee?h? frw[Ve] + oh ™ fo + oh ™ e f1, (4.33)

where « denotes i%/8m*. Eq. 4.33 can be divided into two terms of [22]

aﬁfﬂ(xay7ﬁ) = aAa:fO -

2
2’p‘*fo+¢fo,fo($72% 0) =1, (4.34)
m
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and

aﬂfl(x7yaﬁ) = aAa:fl -

2
2|]:T|L* fi —eelVelfo+ o1, fi(z,p,0) = 0. (4.35)

Eq. (4.34) can be solved easily and obtain

_ ol®

fo = eaplBo— 51

| (4.36)

We deal with Eq. (4.35) by Fourier transforming in space and make f; acted by a pseudodif-

ferential operator on V. Define [22]

g(&,p, ) = (27T)_3/Rs filzsp, B)exp(—i€ - x)dx,

V(e AR e (—ic - ) @37
and obtain
0,0(6.0.) = ~aleg - g~ cR(€.p. OV + 00.0(ep0) =0, @39
where
REP AV = x| wlVdfap Beap(—i-a)de,  @39)
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Use the definition of pseudodifferential operator w[V.] to obtain

R AV = em5em [ [ [ Wiat G+ Vila = Folh
-exp[—i§ +n(p — ¢)ldgdndz,

o Rep ) = om) Leen() [ capli| Lo+ 2y - 1)

A 2
serpliy/ D (o ) - Wy,
g

= R(&,p.0) = geap(39)[exp(~ 2) o+ eapl— g <lp — e @40)
Eq. (4.40) is substituted into Eq. (4.38) to yield
0p0(6.0.8) = —alelg— g e(Leap(3o)iean(— 5 1p+ Mep)
+eap(— 4 2512)])‘7 + 04,,9(¢,p,0) =0, (4.41)
The ordinary differential equation is solved o give
0(6.0.5) = ~eBV(©capl-adbl? ~ Phkegilll | cooh(Qmp- r. (@42

Reversing the Fourier transforms, we obtain f; as

e ) =—esteny [ [ [ vigeat-asier - 22 + o

cosh(1%p - E)eaplit - (x — y))drdyde.  (@43)

f1 can be expressed by a pseudodifferential operator .S acting on V_, shown as
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where S is given by

! h
SEnd) = G [ eonladr? ~ DI - sl + Gl
h
b eapla(y? ~ DIeP ~ 5lp— el 445)

Combining Eq. (4.36) and Eq. (4.44) regarding f* = h 3(fy + ef1) and V = eV, we

obtain

W22 fUz,p, B) = fo+efi,

2
= W[, B) e erplBo — O

) — eeap(B9)S(=iVa, p, H)Vz,

Blpl?
2m*

2
= K[z, p, B) ~ eap(Bd)lerp (%

= R[4z, p, B) ~ exp(B9)|exp — (5——) — eS(—iVa,p, B)VL,

) = S(=iVa,p, B)V]. (4.46)

Now the approximative formula, Eq. (4.46); for quantum state of thermal equilibrium is
derived. We just only need to let:the semiclassical state in thermal equilibrium equal to the

quantum one, then the form of effective potential is extracted, which is shown as

Blp|?
2m*

W2, p,B) = exp(Bo)[exp — (5—) — S(=iVa, p, B)V ()]

= caplpo— DL pevesi(a.p. ).
2
= VI (@,p. ) = %e p(@'ﬁ) S(=iVa,p, BV (2), (4.47)

where S is defined as Eq. (4.45) and can be simplified to give

2 1 )
S(6.p.0) = edeap — (0~ adleP) [ cosh(TE Sy, aay
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Combining Eq. (4.47) and Eq. (4.48), V¢// is given by

VeI (z,p, ) —emp(aﬂ\VzF)ws;*V sinh(iﬂZZ*Vm)V(x), (4.49)
or
h2 2 * B -
VR 8 = em /Rs /Rd oo (_ﬁgng ) @Z’:. gsmh(ﬁ%if)‘/(y)@w[ii (z—y)]dyds,

with a pseudodifferential operator expression. Note that if we approximate sinh( %) to
%, the classical potential is smoothed by a Gaussian-type integral. Therefore, the ther-
modynamic effective potential has the smoothing effect of potential just like what Ferry’s
effective potential does.

We summarize the derivation procedure of thermodynamic*approach described above in
Fig. 4.1. We start from the Wigner equation-Poisson system, then note that the pseudodif-
ferential operator #[V'| has different appearances in the case of classical and quantum
cases. We seek a semiclassical transport equation with a quantum corrected potential whose
classical commutator, [eef !, fletassicar Will produce the same thermal equilibrium state as
Wigner commutator [e, f]y, so we want to find an analytical form of quantum and classi-
cal distribution function in order to derive an explicit quantum potential by transposition.
First, we transfer Wigner equation to center-of-mass coordinates and then introduce the

thermal equilibrium expression. By Born approximation, distribution function of Wigner

equation is simplified to an explicit form. Make the distribution function of quantum and
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classical cases equal to each. Finally, the thermodynamic effective potential is extracted.
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Figure 4.1: The flow chart of thermodynamic approach.
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4.2.4 Quantum Barrier Field

Eq. (4.49) shows the expression of the thermodynamic effective potential successfully.
VeI and V in Eq. (4.49) can be divided into two terms [51], V'Y + V&// and Vi 4 V4,

respectively. given by

2m* . ifhp -V,
eff — - _—
Ve (z,p, B) = exp(af| V.| >2ﬂhp ~. sinh( e WVa(x), (4.51)
and
2m* . ifhp -V,
eff — 77 -
Vi (x,p, B) = exp(af|V,] )iﬁhp ~. sinh( - W (z). (4.52)

Vs models the discontinuous barrier accounting for the interface between silicon and sil-
icon dioxide in a MOSFET. Not that_Vp: is only one-dimensional along the direction or-
thogonal to the interface. And the V} is evaluated from Poisson’s equation, which is two-
dimensional and time dependant. But since in many applications the quantum action of
the Coulomb potential is negligible [SI'1[52], or, only the concentration of the channel dop-
ing is higher than 5el8, i.e. heavily channel doping, the quantum effect accounting for
Coulomb potential will make the potential curve various greater than 4 percent comparing
with the classical potential. Thus, quantum effect of Coulomb potential computed from
Poisson’s equation can be neglected when channel is lightly doped. Adopting the classical
Coulomb potential for analysis of advanced device is sufficient because channels of devices
nowadays have the trend to be lightly doped for improving electrical characteristics. In the

section, we concentrate on the quantum barrier field, V5. Use the property of a barrier



58 Chapter 4 : Implicit Quantum Corrections

potential, shown as [51]

eVVg(x) = B(1,0,0)75(y), (4.53)

where B is the barrier height and y refers to growth direction, i.e. along depth. Fourier

transforming of Eq. (4.53) becomes
_— B .

Combining Eq. (4.51), Eq. (4.53) and Eq. (4.54) to give

) BZEp(Z'Sy ’ y)dgy :

(4.55)

h2‘€y|2 2m* ﬁhpy : Sy

: B |
€VVBff<yap> = %(1,O,O)T/Rexp(—ﬁ e )ﬁhp s sinh(
y " Sy

After solving partial differential equation Eq. (4.55), we'can successfully obtain the "Quan-
tum Barrier Field” corrections. Basically, the thermodynamic effective potential is particle-
based simulation, i.e. Monte Carlo method [S1];because the distribution of momentum

along growth direction has to be known.



Chapter 5

Application to Nanoscale MOS

Structures

A mong the quantum correction models described above, Van Dort model is the most

inaccurate, thermodynamigc: effective potential is a particle based model (Monte
Carlo simulation), and modified density-gradient model, doesn’t have so much benefits in
the low-dimensional simulation. So in this chapter, we used the Hansch, Li, MLDA, effec-
tive potential, and density-gradient models for applications on Nanoscale MOS structures.

The properties of models described above are shown in Fig. 5.1.

59
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Model Expression Implementation

Van Dort | explicit - simple to implement

-simple to implement

Li explicit -difficult extraction pf
parameters
Hansch | explicit - Simple to implement

- involves an extra

MLDA | explicit : .
Integration

- a convenient way to

EP explicit produce a firstorder
result

TEP | 1PDEsto be solved | Paticle based
simulation

- has numerical
convergence troubles

DG 1 PDE to be solved - needs special setting
on boundary
conditions

- - needs special setting
M(;;lgled 1 PDE to be solved on boundary

conditions

Figure 5.1: Properties of the quantum correction models for simulation.
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5.1 Effective Mass Calculation for Quantum Correction

Models

The effective mass included in the quantum corrected models are often treated as fitting pa-
rameters, which are compared with Schrodinger-Poisson results to find the optimal value.
One of the disadvantage of quantum correction models is that this fitting parameters change
by case. Different values are chosen in varied physical conditions, for example, gate volt-
age, gate oxide thickness, channel doping concentration and so on. A single-gate MOSFET
is shown in Fig. 5.2 and the red cut-line in the center of a 1-D MOS capacitor, is the sim-
ulation domain. Fig. 5.3 to Fig. 5.6 show the proper effective potential, my, versus varied
surface electric field in the case.of single-gate MOS structure for Hansch, MLDA, EP and
DG models. The verified ranges of physical settings are 115 to 5¢18cm 2 for substrate
doping, 1 to 5 nm for oxide thickness and 0.5.t6 2 for gate voltage. The surface electric
field integrate all the physical parameters mentioned above into consideration. We can see
that each different surface electric filed corresponds to an unique my. We note that effective
mass m, is originally defined as

1 B 1 d%¢
m*  h2dk?’

n

S.D

where € is band energy. However, the effective masses we use here are not derived from Eq.

(5.1). They are seen to be pure fitting parameters, thus, the value of the fitting parameters
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Source

Cut-line

Substrate

1L

1

5 hq_‘.fé]d—dashed cut-line is

Figure 5.2: Single-gate MOS structu vh
the simulation dom%:ig}.

if they are larger or smaller than one don’t have much physical meanings [53].
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Na=1e17 cm ~

Na=3e17 cm ~

Na =5e17 cm ~

Na=7e17 cm ~
¥
=

0.0 0.5 1.0 1.5 2.0 25 3.0
Es (mVicm)

Figure 5.3: Effective mass, My, versus surface electric field, E, for
Hansch model by different substrate doping.
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0.50

0.45

0.40
¥
=
0.35 Na=1e17 cm ~
Na=3e17 cm ~
Na=5e17 cm ~
0.30

Na=7e17 cm ~

0.0 05 1.0 15 2.0 25 3.0
E. (mV/cm)

Figure 5.4: Effective mass, My, versus surface electric field, E, for
MLDA model by different substrate doping.



5.1 : Effective Mass Calculation for Quantum Correction Models

65

Na=1e17 cm

Na=3e17 cm *

Na=5e17 cm *

Na=7e17 cm °

0.0 05 1.0 15 2.0 25 3.0
E. (mV/cm)

Figure 5.5: Effective mass, My, versus surface electric field, E;, for EP
model by different substrate doping.
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0.32

0.30

0.28
x
=
0.26 Na=1e16 cm ~
Na=1e17 cm ~
Na=5e17 cm ~
0.24

Na=7e17 cm ~

0.0 0.5 1.0 1.5 2.0 25 3.0
Eg (mV/cm)

Figure 5.6: Effective mass, My, versus surface electric field, E;, for DG
model by different substrate doping.
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5.2 Computation of Electron Density of MOS Structure

under Inversion Condition

Classical and quantum simulation results are studied and then we compare the Hansch,
MLDA, effective potential, and density-gradient models with each other on a MOS capac-

itor.

5.2.1 Single-Gate MOS Structure

Fig. 5.7 shows the Schrodinger-Poisson and classical results in different gate oxide thick-
ness. The gate voltage is 1 V and substrate doping is:1e18cm 3. We can observe that the
average displacement of the electric density in quantum case is far from the interface of
Si/Si0,, which means no electrons are at the surface because of a finite size of electron.
And the peak value is lower than classical results. By increasing of gate oxide thickness,
the induced electrons in the inversion layer decrease rapidly because the ability of gate
control is reduced. We compare the Hansch, MLDA, EP and DG models with each other
on the single-gate MOS structure. Density-gradient model fits the Schrodinger-Poisson re-
sults best, the second is MLDA model. Hansch model has a wrong average displacement

position and electron density. Effective potential model overestimates the peak value of
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SchT ox=1 nm

SchT ox=2 nm

SchT ,,=3nm
CLT ,=1nm
CLT ,x=2nm
CLT ,,=3nm

Distance(nm)

Figure 5.7: Comparison of electronidensity between Schrodinger and
classical results for'single*gate MOS structure, where gate
voltage is 1 V and channel.doping is 1e18cm 3 [40].

electron density and a further distance away from gate oxide.
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Sch
Hansch
MLDA
EP

DG

-_
O N

Electron density (x10 Yem '3)
N B OO @

Distance(nm)

Figure 5.8: Comparison of electron density for Schrodinger results with
verified quantum models for single-gate MOS structure,
where gate oxide thickness is 1 nm, gate voltage is 1 V and
channel doping is 1e18cm 3. ”Sch” means solutions of
Schrodinger equation and ”CL” means classical results.
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5.2.2 Double-Gate MOS Structure

The same models are used for double-gate MOS structure investigation. Fig. 5.9 shows a
double-gate MOSFET structure. The red cut-line denotes the simulation domain, where top
gate (gate 1) voltage is the same as bottom gate (gate 2) as 1 V, silicon body thickness is 15
nm and channel doping is 1e17c¢m 3. The same physical phenomenons are observed again,
i.e. the electric density distribution in quantum case is far from the interface of Si/SiO, and
the peak value is lower than classical results. comparing these models on double-gate MOS
capacitor with each other, density-gradient model fits the Schrodinger-Poisson results very
well. Hansch and MLDA models have rise trends of electron density in the center of silicon
body, but there are no physical meanings. Effective potential model overestimates the peak

value of electron density and a further distance away'from gate oxide [21].

The conclusions of the quantum models are listed in"Fig. 5.12. The Hansh model has
the most sensitive effective mass, my. Effective potential model results in a overestimated
solution and peak location is further setback from the material interfaces. Density-gradient
model is the most accurate when applied in the single-gate and double-gate cases. We note
that Hansh and MLDA models lead to a raise of electron density in the center of silicon

body which has no physical meanings when applied in double-gate MOSFETs [21].
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Figure 5.9: Double-gate MOS structure, where the red-dashed cut-line
is the simulation domain [21].
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Figure 5.10: Comparison of electron density between Schrodinger and
classical results for double-gate MOS structure, where
gate oxide thickness is 1 nm, top gate voltage is equal to
top gate voltage as 1 V and silicon body thickness is 15
nm [21].
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Figure 5.11: Comparison of electron density for Schrodinger results
with verified quantum models for double-gate MOS
structure, where gate oxide thickness is 1 nm, top gate
voltage is equal to top gate voltage as 1 V and channel
doping is 1e17cm 3.
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Figure 5.12: Comparison of quantum correction models applied on
single-gate and double-gate MOSFETs.
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5.3 Terminal Characteristics Simulation Using Quantum

Correction Models

Although effective potential model overestimate the peak quantity of electron density and a
further distance away from gate oxide, it has the advantages of fast and easy implantation in
simulation tools. In the single-gate MOS capacitor, Fig. 5.13 shows the ratio of < z >pgp
over < T >g., Where < x > means the average displacement of electron density defined

as

J° en(x)da

IRE (5.2)

We find that effective potential model is more accurate in high gate voltage than low one.
By Fig. 5.8, Fig. 5.11 and Figi 5.13, we conclude that effective potential leads to a shift
electron distribution. However, these inaccuracy -won’t result in a wrong trend of C-V
results compared with Schrodinger and measurement data shown is Fig. 5.14, where the
oxide thickness is 1.6 nm and frequency is fixed at 100 KHz. The measurement data show
a descended trend of capacitance at a high gate voltage because gate tunnelling current
becomes obvious. The simulation results can’t observe the phenomenon because the gate
leakage model is neglected [41]. Finally, we perform the 2-D quantum correction with
effective potential model. Fig. 5.15 shows the electron distribution in a double-gate silicon

body of top gate voltage is the same as the bottom gate of 1 V and drain voltage is 0.5 V.
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The peak values of electron density appear near the boundary of gates and drain because
the electric field is modified to increase by additional drain voltage. Fig 5.16 shows the
diagram of drain current versus gate voltage in the case of top gate voltage is the same as
the bottom gate of 0.7 V, gate length is 20 nm, silicon body thickness is 10 nm and gate
oxide thickness is 2 nm. By the Fig. 5.16, we take use of the improved Hansch’s model

[21]. The model is shown as

n0le) = aame(z) - (1= copl-an(1 - 3(2) —aaf). (53)

where ngy () is the classical electron density solved with the Poisson equation, £ = x/\y,
and )\, is the thermal wavelength. For the double-gate case, £y = T's; /2, where T; is the
thickness of silicon body. ag, a; and a, are optimized-and calibrated with the Schrodinger-
Poisson solutions by optimization theory. “We obtain the result of a 20 nm double-gate
MOSFET that drain current considering quantum effects:is-reduced when compared with

that using classical transport equations [21].
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Figure 5.13: Plot of ratio of < x >g., over < x >pgp versus verified
gate voltage. The substrate doping is assumed to be
uniform distribution of 1e18cm 3.
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Figure 5.14: Comparison of capacitance versus gate voltage between
measurement data, Schrodinger and effective potential
results.
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Figure 5.15: 2-D electron distribution in a double-gate MOSFET biased
at top gate voltage is the same as the bottom gate of 1 V
and drain voltage is 0.5 V [21].
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Figure 5.16: Comparison of drain current versus gate voltage calculated
by classical and quantum corrected transport model, where
we adopt Li’s model. Top gate voltage is the same as the
bottom gate of 0.7 V, gate length is 20 nm, silicon body
thickness is 10 nm and gate oxide thickness is 2 nm [21].



Chapter 6

Conclusions

I n this thesis, explicit and implicit quantum correction models are introduced com-
pletely. We compare these models with ‘each.other in terms of theoretical and numer-
ical viewpoints respectively. Effective masses for varied quantum correction models used

in optional physical settings are extracted.

6.1 Summary

Schrodinger-Poisson model is the most accurate way for calculating quantum effects. How-

ever, it is time-consuming and difficult to solve because of eigenvalue problem. So quantum

81
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correction models are alternative way to consider quantum effects in semiconductor simu-
lation. In this work, explicit and implicit quantum correction models have been introduced
completely. There are Van Dort’s, Hansch’s, Li’s, MLDA and EP models in explicit forms;
DG, modified DG, thermodynamic EP models are implicit form. We compare these models
with each other to determine the properties and accuracy. To find the relationship between
the effective mass which is treated as fitting parameters in the models with varied physical
settings is benefit for industry applications, especially the explicit models, they are simple
to be implanted in the simulator. In application, C-V characteristics of a MOS structure
and IV curves of a 20 nm double-gate MOSFET have been numerically investigated in the

work.

6.2 Future Work

Listed below are a few topics which require further investigation:

1. EP model has the properties of fast calculation and easy implantation into simulation
tools. Therefore, improvement of the model, for example, thermodynamic approxi-
mation, is a potential way to keep accuracy and fast speed at the same time. How-
ever, the momentum distribution the thermodynamic effective potential model needs

to know is extracted by Monte Carlo simulation. The particle-based method takes
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too much time. Therefore, derivation of analytical momentum distribution along the

growth direction will make the thermodynamic effective potential model more adapt-

able;

2. Extend the quantum correction models to more advanced device structures, such
as silicon-on-insulator (SOI), ultra-thin-barrier (UTB) SOI, tri-gate MOSFETs and

surrounding-gate MOSFETs;

3. Extend the quantum correction models by considering strain effect of lattice. Not

only properties of electrons, properties of holes become very important in that case.
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