第一章 緒論

透明導電薄膜意指在可見光範圍內(波長400nm-700nm)具有高透 光率(80%以上),且導電性良好($\rho < 1 \times 10^{-3} \Omega - cm$)之薄膜。由於薄膜 本身具有高濃度(大約在10²⁰ cm⁻³以上)的自由載子,所以不僅是很好 的電的良導體,其在不同的電磁波頻率範圍內亦可因載子濃度的調變 而具有光選擇性(optical selectivity)。隨著半導体技術的成熟發 展,透明導電薄膜已廣泛在半導體、通訊與光電產業等領域。

製造透明導電薄膜的材料大致上可歸納為兩類,一類為金屬薄 膜,另一類為金屬氧化物半導體薄膜,以下對這二薄膜材料作簡單的 介绍:

(一)金屬薄膜

金屬薄膜(如:金、銀、銅等薄膜)是具有極為優異的導電性,其 自由載子的濃度約為10²³ cm⁻³,使得金屬的電漿頻率落在紫外光區, 所以在可見光區是不透明的。為了增加在可見光區的透明度,必須將 金屬製成厚度小於100Å的薄膜。然而當薄膜厚度低於100Å時,會形 成島狀不連續膜,而薄膜電阻增加。當島狀結構變大時,會散射入射 光,使可見光穿透率降低。若為了提高導電度而增加膜厚,則會造成 光吸收。另外薄膜導電率會受到表面效應(surface effect)及雜質影 響。表面效應是指傳導電子受薄膜表面散射,因此基板表面和薄膜的 平整性密切地影響到薄膜的導電率。且當薄膜厚度低於電子的平均自 由路徑(mean free path)時,電阻隨薄膜表面平整度的降低而急劇增 加。另一方面,金屬薄膜中含有金屬性或氧化物等雜質,電阻率將會 升高許多,因此,想製備高透光率、導電性好與穩定的金屬薄膜難度 較高。

(二)金屬氧化物半導體薄膜

為了得到良好的透明導電薄膜,學者試著研究氧化物、氮化物等透明導電薄膜來取代金屬薄膜。由金屬氧化物所組成的透明導電氧化物(transparent conducting oxide,簡稱為TCO),導電度雖略低於金屬薄膜,但在可見光範圍內卻有較高的透光率(能隙大於3eV以上)。

自從 1968 年荷蘭 Philips 公司之 Boort 和 Groth[1]在銦化物表 面上噴灑氯化錫液體,而得到 3 × 10⁻⁴Ω-cm以下之低電阻係數的透 明導電薄膜後, ITO(Indium Tin Oxide)薄膜之研究就一直被熱烈的 討論著。

銦錫氧化物(ITO)薄膜,由於其極佳的導電特性(電阻係數可 至 2×10⁻⁴Ω-cm下,約為最佳導體銀金屬之100倍),及高可見光之 透過性及高紅外光之反射性,一直是學術界及工業界積極探討之對 象。透明導電薄膜可以應用於許多包括透明加熱元件(transparent heating element)、抗靜電(anti-static)膜、電磁波防護 (electromagnetic-shield) 膜、太陽能電池之透明電極、防反光 塗佈(anti-reflection)及熱反射鏡(heat reflecting mirror)等 電子、光學及光電裝置上。

目前 ITO 薄膜主要被使用於液晶顯示器(Liquid Crystal Display, LCD)之透明導電電極材料上;其產量隨著 LCD 的成長,未 來隨著 LCD 及其他顯示器(如 electroluminescent display)之持 續成長,以及熱線反射玻璃之應用,其發展潛力及重要性將不容忽視。

大部分的光電產品如平面顯示器,需要使用 TCO 半導體薄膜當電 極。雖然由磁控濺鍍沈積的 ITO 薄膜目前一直被使用在透明電極的應 用上,但近年來有許多不同相或組成的 TCO 半導體,以及沈積方法陸 續被發展出來[2-8]。

近年來對於廣大光電元件市場,由於 ITO 主要材料元素"銦"為 稀有元素和價格昂貴,ITO 要達到穩定的供應越來越困難。除此之外, 光電元件的發展一直不斷的要求薄膜電極擁有特別的性質。最近關於 使用 TCO 半導體薄膜透明電極的研究專注在解決這些問題。例如,以 摻雜 ZnO 或在特別應用上有穩定性質的多元化合物氧化物薄膜取代 ITO[5,9,10]。

過去由二元化合物組成的 TCO 薄膜如 SnO2和 In2O3都可由化學或

物理沈積法製作[11-13]。 摻雜 SnO₂(如 SnO₂:Sb 或 SnO₂:F)和

In₂O₃:Sn(indium tin oxide, ITO)都已有實際的應用。除了二元化合物外,三元化合物如 Cd₂SnO₄、CdSnO₃和 CdIn₂O₄早在 1980 年前,就已有研究,但這些 TCO 薄膜尚未廣泛地被使用。

為了得到比 ITO 和掺雜 SnO₂ 更低電阻率的薄膜,其它 TCO 材料被 研究試圖取代之。在 1980 年代,掺雜 ZnO(不貴而且擁有大量的二元 化合物材料)被研究。最近 ZnO:A1 和 ZnO:Ga 薄膜作為太陽能電池的 透明電極吸引許多人注意;以不同沈積法製作的膜大約有 1×10⁻⁴Ωcm 電阻率。

傳統二元化合物 TCO 材料的優點在於薄膜化學組成比三元化合物 物或多元化合物 TCO 薄膜容易控制。在 1990 年代,新的多元化合物 氧化物 TCO 薄膜已經被發展研究中,例如二元化合物 ZnO、CdO、In20s 和 SnO2相互搭配化合。在這些材料系統中,新的三元化合物例如 Zn2SnO4、MgIn204、CdSb2O6:Y、ZnSnO3,GaInO3、Zn2In205和 In4Sn3O12 TCO 材料和由這些三元化合物化合成的多元化合物也已被研究。多元化合 物材料的使用促成適合特別應用的 TCO 膜的設計,因為其電性、光 性、化性和物性都可改變材料的化學組成而受到控制。近年來二元化 合物、三元化合物和多元化合物 TCO 材料的研究正方興未艾[14](如 圖 1-1 所示)ZnO 和 SnO2在氣體感測器和太陽能電池領域都已被廣泛 被應用。ZnO 不僅有很高的透光率,而且在活化氫環境下比 ITO 和 SnO₂ 更穩定 [15-19] 。SnO₂在酸溶液、一般溶液或高溫氧化環境中都有 極高的穩定性[20]。因此,ZnO-SnO₂膜結合了 ZnO 和 SnO₂的優點將會 是不錯的 TCO 材料。

ZnO-SnO2系統中,已提出有 Zn2SnO4和 ZnSnO3二種相存在。Zn2SnO4為 尖晶石(spinel)結構且可以由 ZnO 和 SnO₂相當容易從固態合成得 到。Zn2SnO4有一很好的熱穩定性且結構和化性都已經了解知道。相對 之下 ZnSnO3仍然還是含糊不清。文獻 [21] 第一次用離子交換法以低溫 固態 Li₂SnO3和熔態 ZnCl₂·KCl 在 350℃48 小時得到多晶 ZnSnO3。在 文獻[22],從 X-ray diffraction 資料知所得到的結晶像有一鈦鐵礦 (ilmenite)結構(圖 1-2 所示),雖然文獻[23] 宣稱為一鈦鈣礦 (perovskite)結構,但由於 Zn^{2t} 的離子半徑(0.74Å)太小,所以不可 能為鈦鈣礦結構。ZnO-SnO₂系統由岩相和化學份析在高溫(>1000℃) 的穩定相為 Zn₂SnO₄、ZnO 和 SnO₂。如果存在結晶的 ZnSnO₃,應該會在 相當低溫(<600℃)穩定存在。而本實驗室是由 PLD 系統鍍出 ZnSnO₃。 最近已有人以 one-step thermal evaporation method 成功合成出 ZnSnO3 奈米線 [24] 且 ZnSnO3 奈米線擁有晶界和異像邊界的核殼結 構。本論文將就 ZnO-SnO2作相關實驗和討論。

The structure of ZnSnO3

圖 1-2 鈦鐵礦結構

第二章 鍍膜製程

本章將介紹材料靶材的製作及樣品的製備。其中 2-1 為靶材的製備。2-2 為 Sapphire 基板在薄膜樣品製備前的預處理、薄膜樣品製備系統的介紹及薄膜樣品製備的方法與過程。

2-1 靶材的製作

靶材的製作非常重要,其步驟如下:

- I. ZnO和 SnO₂ 二種藥粉以 600℃、6 小時預烤,目的將藥粉內的水 氣烤乾。預烤完後,將 ZnO和 SnO₂ 二種藥粉依照莫耳比率 1:1 調 配。
- 放入研缽小心研磨且攪拌均匀,約磨 30~40 分鐘即可。研磨好的
 混合粉末小心的放在氧化鋁板上。
- 3. 放入高溫爐內燒烤至1100℃、6小時。
- 将烤好的粉末取出後,重覆步驟 2→步驟 3→步驟 2→步驟 3→步
 驟2。
- 5. 將磨好的粉末均匀的放入壓靶的模具中,模具放在壓靶機上,加 壓使壓力在 120kg/cm²,加壓時間約一分鐘,洩壓並小心的取出壓 好的靶材放在氧化鋁板上。

- 6. 放入高溫爐內燒烤至 1100℃、6 小時。
- 利取已燒結好的靶材,取一些粉末,並以研缽磨細。以 XRD 量測 粉末所形成的相,確定靶材是正確的組成和相。

2-2 雷射鍍膜步驟與鍍膜條件

真空鍍膜系統如圖 2-1 所示。在本論文中共嘗試使用二種基板 (Glass、Sapphire)來進行 ZnSnO₃ 透明導電薄膜的製作。雷射鍍膜 步驟如下:

- 清洗基板:為確保薄膜成長的品質,在鍍製 ZnSnO3透明導電薄膜 之前必須先將基板清洗乾淨。基板必須清洗的非常乾淨,其步驟 如下:
 - 1. 以丙酮在超音波震盪器下震盪 5 分鐘。
 - 2. 以去離子水在超音波震盪器下震盪5分鐘。
 - 3. 以丙酮在超音波震盪器下震盪 5 分鐘。
 - 4. 以去離子水在超音波震盪器下震盪 5 分鐘。
 - 5. 以丙酮在超音波震盪器下震盪 5 分鐘。
 - 6. 以甲醇在超音波震盪器下震盪 5 分鐘。
 - 7. 以去離子水在超音波震盪器下震盪 5 分鐘。

- 2. 研磨加熱基座:為避免前次鍍膜後殘留於加熱基座上的蒸鍍痕跡 影響鍍膜品質,於本次鍍膜之前先將加熱基座上的蒸鍍痕跡細細 磨去。研磨方式為以400、600、1000、2000 號砂紙依序研磨去加 熱基座的表層,研磨至可見新的加熱面為止,再以棉花棒分別沾 取丙酮和甲醇將研磨細屑擦拭乾淨。
- 3. 黏貼基板:洗淨的基板以銀膠黏於研磨好的加熱基座上,銀膠除 了可使基板附著於加熱基座上外,亦因為良好的熱傳導體,可將 加熱基座上的溫度較均勻地傳導至基板上。將銀膠仔細地在加熱 基座上描繪出基板的形狀後(且在中間留個空窗,方便之後透光率 量測),再將基板蓋上,以牙籤輕壓基板四周,使加熱基座和基板 間藏於銀膠內的空氣擠壓出,避免銀膠內的氣泡影響熱傳播,並 將黏貼好的基板置於加熱器上加熱至40℃左右烘烤5分鐘(加熱 溫度過高將使銀膠內的殘存空氣過度膨脹而影響熱傳播,烘烤時 間過短則銀膠的黏著效果不佳,基板有於鍍膜過程中掉落),以除 去銀膠內的有機溶劑,避免在鍍膜過程中污染基板,並增加銀膠 的黏著效果,最後再以氮氣槍吹去表面細塵。
- 4. 置放加熱器與抽真空前置工作:將已處理好的加熱基座放入真空 腔內,接著將熱電偶插入加熱器內,打開控溫器,確定熱電偶正 常工作,然後打開 Nd-YAG Laser 綠光校準光路,確定雷射光點能 打在靶材上,並初步檢查電射打在靶材上的位置是否可以使火焰 對應到基板上,最後調整氧氣噴嘴的位置,一切都確定好之後, 再將真空腔封閉,準備進行抽真空的工作。
- 5. 抽真空:先確定機械幫浦 (rotary pump) 及渦輪分子幫浦 (turbo

10

pump)間的閥門已關閉,打開機械幫浦閥門,以機械幫浦抽至 2×10⁻² torr 以下,再關閉機械幫浦閥門並打開機械幫浦及渦輪分子 幫浦間的閥門,最後開啟渦輪分子幫浦的電源並打開渦輪分子幫 浦的閥門,將真空腔抽至 10⁻⁶ torr 以下。

- 6. 加熱:分為二階段升溫,第一階段以15℃/min 的速率升溫,直至 120℃後持溫約1~2分鐘,第二階段以30℃/min 的速率升溫,直至 鍍膜溫度Ts後持溫至鍍膜工作結束。分為二階段升溫的用意主要 為避免升溫過快,造成銀膠內的殘餘有機溶劑急速揮發而使基板 脫落。
- 2. 進氧氣:將渦輪分子幫浦閥門關至半轉,關閉高真空計,打開氧 閥門,通入所要鍍膜條件的氧氣後,開啟靶材旋轉馬達。
- 8. 鍵膜:當加熱器溫度在鍍膜溫度 T、穩定,真空腔內氧氣壓力穩定後,開始進行雷射鍍膜工作,雷射輸出能量、重複率及打擊次數於後列表之,在鍍膜過程中,需小心調整雷射入射位置,使火焰能儘量涵蓋整個基板,再小心調整靶材旋轉馬達,使靶材旋轉頻率、雷射輸出頻率及靶材傾斜角間能有較好的匹配,讓雷射脈衝均勻地落在基板周圍,增加鍍膜均勻度。
- 9. 降溫:薄膜蒸膜完後,迅速將渦輪分子幫浦關閉,通入大量氧氣,並迅速將溫控器關閉,以上動作儘量能在一瞬間完成,使薄膜能達到淬冷(quench)的效果,待溫度降至接近室溫後,將加熱基座取出,以刀片小心地將樣品卸下,即完成收取樣品的動作。

11

圖 2-1 真空鍍膜系統

第三章 薄膜基本特性量測原理及流程

3-1 X-ray 繞射 (X-ray diffraction)

利用 X 光绕射儀的量測,可以檢視薄膜的結構與晶格軸向。使用 REGAKU 二環式薄膜绕射儀 X-ray 绕設儀做掃描時。首先,挖一些黏 土置於待測基版上,再將薄膜樣品蓋在黏土上,用載玻片隔一層紙輕 壓,將樣品放置平整,並輕晃之以確保樣品不會掉,將其放入測試座, 開啟直流馬達,讓基版垂直作三百六十度的旋轉,其放置樣品固定座 之垂直軸與 X 光入射線夾角 θ 是可以改變,且偵測器也可隨著 θ 角 的轉動而作 2θ 角的變動。當 X-ray 入射樣品時,會產生繞射,由布 1896

$$2d\sin\theta = n\lambda\tag{3-1}$$

其中d為晶格平面間的距離; θ為入射光與樣品之間的夾角; λ為入 射光的波長; n為正整數。

當入射光與樣品之間角度移動 θ 時,則偵測器需在相對移動 2θ 之處,才可量到此建設性干涉的峰值。再依據所偵測到的強度(I)對 角度(2θ)的關係圖,便可由查表得知此薄膜的軸向為何。

3-2 電阻-溫度(R-T)特性量測系統

3-2-1 電阻-溫度(R-T)特性量測原理

我們採用傳統的四點量測法(four-probe method)來量取樣品的 電阻-溫度(R-T)關係曲線。四點量測跟一般的兩點量測比起來,具有 較多的優點,可以讀出更精準的電阻值,適合使用在小電阻的樣品 上。四點量測方法是量測樣品基本電性相當普遍之方法,其量測之基 本理論敘述如下:

四點量測法

等效電路圖如圖 3-1(a) ,在樣品上接出四點,A、B、C、D 四 點分別接 I⁺、V⁺、V⁻、I⁻。B、C 之間是接伏特計,相當於一個很大的 電阻跨在 B、C 之間,所以由 A 點輸入的電流 I 會完全經過樣品本身, 而由 D 點流出,所量到的電阻 Rm 為薄膜本身的值 R,其公式為(3-2(a)) 所示。

二點量測法

相較於傳統的兩點量測,等效電路圖如圖 3-1(b),在樣品上接 出A、B兩點,A、B兩點分別接 I⁺、I⁻,且A、B之間亦接伏特計,所 以,由A 點輸入的電流 I 會經過兩條電線與樣品,所以量到的電阻 Rm 又包括兩條電線的電阻與電線和薄膜之間的接觸電阻,即為 R+2r,其公式如(3-2(b))所示。

$$Rm = \frac{V}{I} = \frac{IR}{I} = R \quad \dots \quad (3-2 \ (a) \)$$
$$Rm = \frac{V}{I} = \frac{I(R+2r)}{I} = R+2r \quad \dots \quad (3-2 \ (b) \)$$

本論文以四點量測法來量測樣品的電阻值,為取得電阻值對溫度 的變化,系統裝置如圖 3-2,包括低溫、真空、電性量測、控溫及電

腦五大系統:

- 低溫系統:閉路液氦冷凍機(Closed Cycle Liquid Helium Refrigerator)
- 2. 真空系統:真空室機械幫浦
- 電性量測系統:電流供應器(KEITHLEY 220 PROGRAMMABLE CURRENT SOURCE)、多功能電錶(HEWLETT PACKARD 34401A MULTIMETER)。
- 4. 控溫系統:二極體溫度計 (Silicon Diode Thermometer)、控溫

器 (LAKE SHORE DRC-91CA CONTROLLER)。

5. 電腦系統:GPIB卡、LabVIEW 軟體及電腦。

四點量測電路接點示意圖如圖 3-3,實驗步驟如下:

- 接線:剪裁四條長度適當且相同的銅線,用銲槍加熱銲錫後,去 銅線首尾部份銅漆,再將銅線一端用銀膠黏在待測樣品上,並將 此四條銅線依序平行地黏在待測樣品上,加熱讓銀膠烤乾。
- 黏貼樣品:以雙面膠將已接線妥當的基板黏貼於銅製量測基座
 上,將黏於基板上的四條接線以銲槍接著於銅製量測基座上的接
 點,外側兩條接線輸送電流,內側兩條接線為量測電壓之用。
- 測試:在正式量測之前,先輸送適當的正電流,再輸送負電流, 觀察所量測到的電阻值是否數值相同,方向相反,並觀察是否有 電阻值過大的情形,以確保測試接線狀況良好。
- 4. 量測:以電腦設定量測溫度範圍在100-290K間,並設定一最大電 壓限制設定為100V,避免在量測過程中因阻值過大而燒毀樣品, 完成電腦參數設定後,便可開始自動進行降溫量測。

3-3 The van der Pauw Technique

本章節主要描述如何以 van der Pauw 量測法,求得電阻率 ρ (resisitivity)、載子濃度 n(carrier concentration)和遷移率 μ (mobility)。為了量測出遷移率和載子片濃度 ns(sheet density), 需要電阻率量測和霍爾量測,以下將介紹電阻率量測和霍爾量測,包 括基本原理、儀器和實驗步驟。

電阻率量測的目的是為了求得片電阻 Rs(sheet resistance)。van der Pauw 證明如圖所示,相對應的電極之間有二個特徵電阻 Ra和 Rв。 經由 van der Pauw 方程式,特徵電阻 Ra和 Rв與片電阻 Rs 互相有關聯。

為了得到二個特徵電阻,外加一直流電流源由接點1輸入,接點 2流出,定義為I12;量測電壓由接點4到接點3,定義為V43。同理, 外加一直流電流I23,量測電壓V14。特徵電阻Ra和RB可以被計算,由 下列式子:

$$R_A = \frac{V_{43}}{I_{12}}$$
 and $R_B = \frac{V_{14}}{I_{23}}$ (3-3)

藉由 van der Pauw 方程式:

$$\exp(-\pi \frac{R_A}{R_S}) + \exp(-\pi \frac{R_B}{R_S}) = 1$$
 (3-4)

半導體的片電阻可以很方便使用 van der Pauw 電阻率量測求得,由 式(3-4)可以由數值解解出 Rso 而電阻率 ρ 也可以被計算出由: $\rho = R_s d$ (3-5)

(d: 膜厚)

圖 3-4 (a) 電阻率特徵電阻量測

3-3-1-2 霍爾量測原理

由電磁學知帶電粒子通過電場或磁場中會受作用力影響而偏 折。在導體中,我們並不易直接觀察導體內傳導載子的運動,是故導 體內傳導載子的極性與濃度便不易得知。在1879年,霍爾(Edwin H. Hall)利用於導體中導入電流,將導體置於外加磁場中量測其感應 霍爾電壓(Hall Voltage)來判斷傳導載子的極性與濃度,稱為霍爾效 應(Hall effect)。此方式廣泛的被利用於半導體中參雜載子性質與 濃度的量測上。

寬度為 W 的導體載有 + X 方向的電流,若此導體中的傳導載子為電子,其漂移方向(-X)與電流方向相反,假設漂移速率為 Va;此時於導體上加入一 + Z 方向磁場,電子因受磁力作用向導體上方

$$\vec{F}_B = -q\vec{V}_d \times \vec{B} \tag{3-6}$$

 $(q=1.602 \times 10^{-19} \text{ C})$

電子將向導體上方堆積(如圖 3-5)。

電子並不會無限的向上方堆積,因為在導體上方因電子的堆積產 生較低的電位,進而生成一個 -Ŷ 方向的電場(如圖 3-5),此電場對

$$\bar{F}_E = -q\bar{E} \tag{3-7}$$

當磁場(\bar{F}_{B})與電場(\bar{F}_{E})作用力平衡時,導體中的傳導電子不在向上堆 積,感應的電場也不再增加,此時方向不會有靜電流產生。此時 \hat{Y} 方 向不會有靜電流產生。

$$|\bar{F}_E \models \bar{F}_B|$$
 ; $|-q\bar{E} \models -qV_d \times \bar{B}|$ (3-8)
又漂移速率 V_d 為

$$J = -nqV_d \implies V_d = -\frac{J}{nq} = -\frac{I}{nqA}$$
(3-9)

(J:電流密度;A:導體截面積;n:載子濃度)

當平衡時所量得霍爾電壓VH

$$|V_{H}| = EW$$

(3-10)

將(3-8)、(3-9)與(3-10)重新整理得

$$E = \frac{J}{nq}B = R_H \cdot J \cdot B \quad ; \quad R_H = \frac{1}{nq} \quad R_H : \overline{a} \overline{a} \overline{k}$$
(3-11)

$$|V_{H}| = \frac{J}{nq} B \cdot w = \frac{(I/A) \cdot w}{nq} B$$
(3-12)

$$n = \frac{1}{qR_{H}} = \frac{JB}{qE} = \frac{(I/A) \cdot B}{q(V_{H}/W)} = \frac{IBW}{q|V_{H}|A} = \frac{IB}{q|V_{H}|d}$$
(3-13)

(d 為導體厚度)

有些情形下,使用片載子濃度比 ns比載子濃度 n 還方便。

而載子移動率(mobility)定義為

$$\mu = \frac{V_d}{E} = \frac{|V_H|}{R_s IB} = \frac{1}{qn_s R_s}$$
(3-16)

反之,當導體內的傳導載子為電洞,其漂移方向為+Â,電洞因 受磁力作用向導體上方,電洞將向導體上方堆積(如圖 3-6);電洞並 不會無限的向上方堆積,因為在導體上方因電洞的堆積產生較高的電 位,進而生成一個+Ŷ方向的電場(如圖 3-6),此電場對傳導電洞產生 向導體下方的拉力。

因此,利用所量得霍爾電壓的正負值得以判斷導體中載子的極性;並可利用(3-13)及(3-16)求得載子濃度及移動率。

圖 3-6 電洞載子於導體內受力方向和傳輸行為

3-3-2 van der Pauw 實驗步驟

在量測電阻率量測和霍爾量測前,首先是樣品的幾何形狀的選擇 是很重要。接點的平均直徑(D)和樣品厚度(d)必須比接點與接點間的 距離(L)還要小。非零值的平均直徑(D)造成的相對誤差大約是 D/L。 如圖所示,選擇採用一適合的幾何形狀。Clover leaf 形狀設計由於 有比較小的有效接點,所以有最低的誤差,但在製作上卻比方形或長 方形基板更難製作。在本實驗中是採用圖 3-7(b),剪裁四條長度適 當且相同的銅線,用銲槍加熱銲錫後,去銅線首尾部份銅漆,再將銅 線一端用銀膠黏在待測樣品上,並將此四條銅線依序在待測樣品的四 個端點角落黏上,加熱讓銀膠烤乾5,此幾何形狀很方便製作。

在量測電阻率量測和霍爾量測時,必需考慮可能影響實驗結果的 外在因素,主要外在因素(1)接點的大小、(2)樣品的均勻性和正確 的厚度測定、(3)由於樣品周遭不均勻的溫度造成的熱磁效應 (thermomagnetic effect)、(4)光電導效應(photoconductive effect)和光伏效應(photovoltaic effect),減少外在因素所造成量 測上的誤差的影響是需要的,最後需正確的量測磁場強度。

量測電阻率量測和霍爾量測所需要的儀器和設備包括: 1. 永久強力磁鐵(平均大約是 4450 gauss) 電性量測系統:電流供應器(KEITHLEY 220 PROGRAMMABLE CURRENT SOURCE)、多功能電錶(HEWLETT PACKARD 34401A MULTIMETER)。
 以下將對電阻率量測和霍爾量測作簡單的實驗步驟流程介紹。

3-3-2-1 電阻率量測實驗步驟

首先定義以下參數(圖 3-4):

ρ=樣品電阻率(單位:Ω·cm)
d =樣品薄膜厚度(單位:cm) E5
I12=從接點1輸入,接點2流出的正電流。同理,I23、I34、I41、I21、
I14、I43、I32。(單位:A)
V12=接點1和接點2間量測到的直流電壓(V1- V2)。同理,V23、V34、
V41、V21、V14、V43、V32。(單位:V)

電阻率量測接點示意圖如圖 3-3,實驗步驟如下:

- 1. 外加電流 I21,量測 V34。
- 2. 外加電流 I12, 量測 V43。
- 重覆步驟1和步驟2,量測其餘六個電壓值(V41、V14、V12、V21、V23、 V32)

八個電壓值量測完後,可以計算出如下八個電阻值,且全為正電阻。 (若為負電阻,可能極性接反了)

$$R_{21,34} = \frac{V_{34}}{I_{21}} , \quad R_{12,43} = \frac{V_{43}}{I_{12}} ,$$

$$R_{32,41} = \frac{V_{41}}{I_{32}} , \quad R_{23,14} = \frac{V_{14}}{I_{23}} ,$$

$$R_{43,12} = \frac{V_{12}}{I_{43}} , \quad R_{34,21} = \frac{V_{21}}{I_{34}} ,$$

$$R_{14,23} = \frac{V_{23}}{I_{14}} , \quad R_{41,32} = \frac{V_{32}}{I_{41}} \square$$
(3-17)

$$R_{21,34} = R_{12,43} \qquad R_{43,12} = R_{34,21} R_{32,41} = R_{23,14} \qquad R_{14,23} = R_{41,32}$$
(3-18)

由 reciprocity 理論知:

$$R_{21,34} + R_{12,43} = R_{43,12} + R_{34,21}$$

$$R_{32,41} + R_{23,14} = R_{14,23} + R_{41,32}$$
(3-19)

式(3-18)和式(3-19)量測到的誤差需低於 5%以下。誤差太大有可能

是接點太大或樣品膜厚不均造成。 從式(3-17)可以計算出特徵電阻:

$$R_{A} = \frac{R_{21,34} + R_{12,43} + R_{43,12} + R_{34,21}}{4}$$

$$R_{B} = \frac{R_{32,41} + R_{23,14} + R_{14,23} + R_{41,32}}{4}$$
(3-20)

將式(3-20)特徵電阻代入 van der Pauw equation 式(3-4),求得片 電阻 Rs。如果膜厚 d 已知,電阻率 p 即可從式(3-5)計算出。

3-3-2-2 霍爾量測實驗步驟

將導體置於外加磁場中量測其感應霍爾電壓(Hall Voltage)來 判斷傳導載子的極性與載子濃度(如果樣品厚度已知),稱為霍爾效應 (Hall effect)。量測正確數據的困難度除了霍爾電壓數值很小外, 最艱難的問題在於非對稱的接點位置、樣品形狀和不均勻的環境溫度 所造成的偏移電壓(offset voltage)。解決偏移電壓一般是得到兩組 霍爾電壓,一組是以正磁場方向,另一組是以負磁場方向量測。相關 定義參數如下:

I₁₃=直流電壓從接點1輸入,接點3流出。同理I₃₁,I₄₂、I₂₄、。
 B =外加一平行Z軸的固定且均匀的磁場強度(如圖 3-8)。當磁場B

指向+Z方向,表示磁場B是正的。反之,表示磁場B是負的。

V24P=外加一+Z方向磁場,接點2和接點4間量測到的直流電壓(V2 V4)。同理,V42P、V13P和V31P。反之,當外加一-Z方向磁場,V24N、V42N、
 V13N和V31N也是同理。

霍爾量測接點示意圖如圖 3-8,實驗步驟如下:

1. 外加一正 Z 方向磁場。

- 輸入電流 I13,量測電壓 V24P;輸入電流 I31,量測電壓 V42P。同理, 分別輸入電流 I42和 I24,量測電壓 V13P和 V31P。
- 3. 將磁場反向(-Z方向磁場)
- 6. 同樣地,分別輸入電流 I13、I31×I42和 I24,量測電壓 V24N、V42N、V13N
 和 V31N。

量測完以上八個霍爾電壓 V24P、V42P、V13P、V31P、V24N、V42N、V13N和 V31N,可以決定薄膜樣品為n型或p型半導體,還可以計算出片載子 濃度 ns。而霍爾遷移率 µ將可以從片載子濃度 ns和片電阻 Rs計算出。 以下將利用八個霍爾電壓一步一步計算出載子濃度和遷移率,步驟如 下:

1. 計算出:

$$V_{C} = V_{24P} - V_{24N} , \quad V_{D} = V_{42P} - V_{42N} V_{E} = V_{13P} - V_{13N} , \quad V_{F} = V_{31P} - V_{31N}$$
(3-21)

藉由電壓和 $V_{C} + V_{D} + V_{E} + V_{F}$,可以決定薄膜樣品為 n 型或 p 型半導

體。如果電壓和為正值,則薄膜為p型半導體。反之,則為n型 半導體。

2. 片載子濃度可以由下式(3-22)被計算出

$$n_{S} = \frac{8 \times 10^{-8} IB}{q(V_{C} + V_{D} + V_{E} + V_{F})}$$
(3-22)

如果薄膜厚度d已知,則載子濃度和霍爾遷移率µ分別可以由下式(3-14)和(3-16)計算出來:

$$n = \frac{n_s}{d}$$
(3-14)
$$\mu = \frac{1}{qn_s R_s}$$
(3-16)

圖 3-7 樣品幾何形狀的選擇

圖 3-8 霍爾量測接線視示圖

3-4 光學性質

透明導電薄膜意指在可見光範圍內(波長 400nm-700nm)具有高透 光率(80%以上)。準備的樣品是 ZnSn03 和 ZnSn03:Al 鍍在 Sapphire 基板上,利用單光儀(如圖 3-9)量測樣品透光率,同時扣除 Sapphire 基板的背景值,而得到薄膜材料透光率。透光率的量測是將不同波長 的光照射樣品,受到樣品在不同波段的不同折射率(refractive index)、吸收係數(absorption coefficient)、消光係數(extinction coefficient)及樣品薄膜厚度的影響。

透光率定義為穿透光強度除於入射光強度的比值。光在薄膜內的 多重反射(如圖 3-10)所示,得到透光率表示式如下[25]: $I=(1-R)^{2}I_{o}e^{-\alpha d} + R^{2}(1-R)^{2}I_{o}e^{-3\alpha d} + R^{4}(1-R)^{2}I_{o}e^{-5\alpha d} + \dots + R^{2(n-1)}(1-R)^{2}I_{o}e^{-(2n-1)\alpha d}$ $= \frac{(1-R)^{2}e^{-\alpha d}}{1-R^{2}e^{-2\alpha d}}I_{o}$ $T = \frac{I}{I_{o}} = \frac{(1-R)^{2}e^{-\alpha d}}{1-R^{2}e^{-2\alpha d}}$ (3-23)

透光率:T

薄膜:d

吸收係數:α

反射率:R

當反射率 R 夠小且 α d 很大時,可將透光率近似為如下式:

光吸收係數在靠近吸收限(near the absorption edge)時,表示式如下:

$$(\alpha h\nu)^n = A(h\nu - Eg) \tag{3-25}$$

 $E^{t} = Eg \quad \text{for direct types}$ $n=2 \Rightarrow \text{allowed direct types}$ $n=\frac{2}{3} \Rightarrow \text{forbidden direct types}$ $E^{t} = Eg \pm Ep \qquad \text{Ep : energy phonon}$ $+Ep \rightarrow \text{phonon emission}$ $-Ep \rightarrow \text{phonon absorption}$ $n=\frac{1}{2} \Rightarrow \text{allowed indirect types}$

其中A為常數, $h\nu$ 為光子能量,Eg為 transition band gap。將(α $h\nu$)ⁿ對 $h\nu$ 作圖,再以線性作法估計出 Eg 大小。

透光的範圍在短波長邊界線是由能隙所決定,而在長波長邊界線 則是由電漿頻率所決定。電漿頻率與載子的振動有關,當載子濃度增 加時,電漿頻率也會隨之上昇。載子濃度變大時,自由電子會吸收振 動頻率比電漿頻率低的光而影響透光率。由下式可知,隨著載子密度 n的增加,電漿頻率ω也變大,光吸收的範也由近紅外線擴展到可見 光。

$$\omega = \left(\frac{n\varepsilon^2}{\varepsilon_o \varepsilon_\infty m_c^*}\right)^{\frac{1}{2}} \tag{3-26}$$

ω:電漿頻率

n:載子密度

e:電子電荷

 ε_o :真空中的介電係數

 ε_{α} :高頻介電係數,

m^{*}:傳導有效質量。

自由電子對透光性的影響,出現在紫外光區的稱為Burstein-Moss shift (BM-shift)效應,出現在紅外光區的被稱為自由電子吸收效 應。BM-shift 可由下式表示: 1995

 $E_g = E_{go} + \Box E_g$ (3-27) E_g : optical band gap E_{go} : intrinsic band gap

□*Eg* : BM-shift

BM-shift 是吸收端的能量朝高能量移動的現象。因為生成的載 子會佔據導帶的底部,使得原來帶有能量 Ego 的光無法將價帶的電子 激發到導帶的底部,必須有更高的能量 Eg 才能將電子激發到導帶。 Model SP-2355 Monochromator

圖 3-10 光在薄膜内的多重反射

3-5 AFM 原理

AFM 的探針是由針尖附在懸臂樑前端所組成,當探針尖端與樣品表面 接觸時,由於懸臂樑的彈性係數與原子間的作用力常數相當,因此針 尖原子與樣品表面原子的作用力便會使探針在垂直方向移動,也就是 說樣品表面的高低起伏使探針作上下偏移,而藉著調整探針與樣品距 離,便可在掃描過程中維持固定的原子力,此垂直微調距離,或簡稱 為高度,便可當成二維函數儲存起來,也就是掃描區域的等原子力圖 像,這通常對應於樣品的表面地形,一般稱為高度影像。由於利用原 子力,因此樣品亦可為絕緣材料。

第四章 結果與討論

4-1 靶材和薄膜結構分析: X-ray 繞射量測結果

Zn0和 Sn0² 二種粉末依照莫耳比率 1:1 調配製作的靶材[22],將 其粉末作 X-ray 繞射量測。如圖 4-1 所示,靶材內含有 ZnSn0₃、Zn₂Sn0₄ 和 Sn0² 三種結晶相。在文獻[22]中提到,當溫度在 600℃以上,ZnSn0₃ 會慢慢分解為 Zn₂Sn0₄和 Sn0² 是一致的。ZnSn0₃可參考的文獻很少且 X-ray database 並沒有資料標示軸向,在文獻[21]中有晶格常數和 軸向數據,經由式(3-1)將晶格常數換算成角度 2θ,即可完成 ZnSn0₃ XRD 圖(表 4-1)。

圖 4-2 為在玻璃和 Sapphire(0001)基板上蒸鍍 ZnSnO₃ 薄膜。由 於當初希望能在室溫或低溫成長條件下,在玻璃上成長出有結晶相 ZnSnO₃。從圖 4-2(a)上可以了解溫度提高到 600°C,由於玻璃並沒有 晶格,所以依然還是非晶相,即使薄膜能導電,也不能確定是 ZnSnO₃ 薄膜導電,還是 ZnO 或 SnO₂ 薄膜導電。若是 ZnO 和 SnO₂ 薄膜,這將 不是我們所希望,因為 ZnO 和 SnO₂ 已經被證實是透明導電薄膜。圖 4-2(b)為在 Sapphire(0001)基板成長,在低溫下依然還是長不出有 結晶相的薄膜。當溫度升高到 600°C時,在 2 θ =37.72°和 80.66°成 長出一結晶相,查 X-ray database 知(圖 4-3)這並不是 Zn₂SnO₄、ZnO 或 SnO₂ 的結晶相。從 Sapphire(0001)的晶格常數 a=b=4.765Å, c=12.982Å 和 ZnSnO₃的晶格常數 a=b=5.2835Å, c=14.0913Å(表 4-1) 可知,薄膜成長的晶格匹配度將達到 10.9%,利於薄膜成長。由於在 Sapphire(0001)可成長出 ZnSnO₃薄膜,之後的實驗我們將薄膜成長在 Sapphire(0001),改變氧壓和鍍膜溫度為條件,製備出高品質薄膜。

XRD pattern of ZnSnO3									
No.	d(obs)(Å)	θ	20	h k l	No.	d(obs)(Å)	θ	20	hkl
1	4 <i>.6</i> 9	9.4533	18.9065	003	18	1.396	33.4900	66.9800	208
2	4.36	10.1761	20.3522	101	19	1.347	34.8803	69.7606	1 1 9,1 0 10
3	3.84	11.5720	23.1440	102	20	1.321	35.6702	71.3405	220
4	2.79	16.0272	32.0544	104	21	1.279	37.0325	74.0650	306
5	2.64	16.9646	33.9292	110	22	1.234	38.6257	77.2515	218
6	2.4	18.7209	37.4418	105	23	1.1998	39.9429	79.8858	2010
7	2.349	19.1430	38.2860	006	24	1.1939	40.1804	80,3609	314
8	2.303	19.5407	39.0815	113	25	1.1513	41.9953	83.9907	226
9	2.176	20.7321	41.4641	202	26	1.0924	44.8413	89.6825	2110,309
10	1.918	23.6793	47.3586	204	27	1.088	45.0722	90.1443	404
11	1.842	24.7202	49.4404	107	28	1.0547	46.9158	93.8315	1013
12	1.755	26.0348	52.0697	116	29	1.0296	48.4308	96.8616	318
13	1.679	27.3088	54.6175	212	30	1.0096	49.7273	99.4545	229
14	1.643	27.9589	55.9178	108	31	1.006	49.9699	99.9397	324
15	1.553	29.7362	59.4725	214	32	0.9984	50.4919	100.9838	410
16	1.526	30.3170	<i>6</i> 0. <i>6</i> 340	300	33	0.9831	51.5861	103.1721	1014
Sec. 13	1 451	32 0646	64 1203	303	34	0.9767	52.0620	104.1240	413

表 4-1 XRD pattern of ZnSnO3

表 4-2 是薄膜製備條件,改變鍍膜溫度條件由 400℃、500℃、 600℃和 750℃蒸鍍在 Sapphire(0001)。圖 4-4 中發現隨著溫度的上 升,繞射峰和半高寬(FWHM)都有明顯的增加,顯示升高鍍膜溫度有助 於改善薄膜的結晶性。然而我們也發現隨著溫度有高,繞射峰由 2 θ =37.32°移動到 38.66°,可知晶格常數隨鍍膜溫度升高有變小的趨 勢。查 Zn0、Sn02和 Zn2Sn04的 X-ray database(圖 4-3)的最強繞射峰 分別為在 2 θ =36.206°、51.776°和 34.356°,並不在 38°附近,確定 XRD 圖並不是由這三個成分組成。所以隨著溫度提升,峰值 2 θ 些微 變大,化學成份依然還是 ZnSn03。鍍膜溫度 500°C,繞射峰 2 θ =37.32 °和 79.59°,由表 4-1 分別可知(hk1)=(105)和(2010)。鍍膜溫度 750 °C,繞射峰 2 θ =38.66°和 82.85°,由表 4-1 分別可知(hk1)=(113) 和(226)。但鍍膜溫度 600°C,由於雨繞射峰 2 θ =38.42°和 81.93°分 別介於(hk1)=(105)和(113)與(hk1)=(2010)和(226),所以沒有辨法 很清楚的標示出(hk1)。不過為何溫度升高會改變 ZnSn0a的晶格常 數,現階段並無法了解。

雷射輸出能量	雷射重複率	雷射打擊次數	鍍膜氧壓
(mJ)	(Hz)	(pulse)	(Torr)
350	5	1000	10^{-4}

表 4-2 不同溫度下製備 ZnSnO3 薄膜

表 4-3 是薄膜製備條件,改變鍍膜氧壓條件由 10⁻² torr、10⁻³ torr 和

10⁻⁴ torr。圖 4-5 顯示低氧壓下,繞射峰強度越強,結晶性越好,有 助於製備高品質薄膜。

雷射輸出能量	雷射重複率	雷射打擊次數	鍍膜溫度
(mJ)	(Hz)	(pulse)	(°C)
350	5	1000	750

表 4-3 不同氧壓下製備 ZnSnO3 薄膜

CONTRACTOR OF

1980年代,製備透明導電 ZnO 薄膜掺雜物以三族元素如:B, A1, Ga, In 和四族元素如:Si, Ge, Ti, Zr, Hf 取代 Zn 原子,或七族元素 如:F 取代 0 原子。表 4-4總合了 doped-ZnO 各類掺雜物,其中掺 Ga(又稱 GZO)和 A1(又稱 AZO)都能有很低的電阻率[26]。為了提高 ZnSnO3 導電率,我們嘗試分別以莫耳比 0.1:0.9 的 Ga 和 A1 取代 Zn。 圖 4-6 為 Zno.9Gao.1SnO3 在不同氧壓下成長在 Sapphire(0001)基板上, 並以高溫 750℃提高薄膜結晶性。由圖 4-6 知道掺雜 Ga 並沒有破壞 原來的晶體結構。但在 750℃高溫下,從峰值強度和半高寬了解結晶 性並不是很好,或許因為結晶性很差,導致薄膜並不導電(早期嘗試 提高 ZnO 結晶性,改善電性和光性[27])。尤於掺雜 Ga 的 ZnSnO3 薄 膜並不如預期 GZO 有不錯的電性,改以嘗試掺 A1。圖 4-7 和圖 4-8 分別為不同溫度下和氧壓下在 Sapphire(0001)基板成長 Zno.9A10.1SnO3 薄膜,從圖中可知摻雜 Al 在不同氧壓和溫度下,晶體結構並沒有破 壞,且薄膜有導電性,將在下節以 van der Pauw 的方法量測電阻率、 載子濃度和載子遷移率。

在 Sapphire(0001)成長 ZnSnO3,隨著溫度升高,繞射峰角度將 往大角度移動,顯示晶格常數變小。且溫度越高,薄膜結晶性越好。 分別摻雜 Al 和 Ga 後,薄膜晶體結構並沒有被破壞,但結晶性變差。 從 XRD 圖了解,溫度比氧壓更能提高薄膜結晶性。

	Resistivities, Carrier Concentrations, and Dopant Content for ZnO Films Doped with Various Impurities.				
Dopant	Doping Content (at.%)	Resistivity (10 ⁻⁴ Ω cm)	Carrier Concentration (10 ²⁰ cm ⁻³)		
AI	1.6-3.2	1.3	15.0		
Ga	1.7-6.1	1.2	14.5		
В	4.6	2.0	5.4		
Y	2.2	7.9	5.8		
In	1.2	8.1	3.9		
Sc	2.5	3.1	6.7		
Si	8.0	4.8	8.8		
Ge	1.6	7.4	8.8		
Ti	2.0	5.6	6.2		
Zr	5.4	5.2	5.5		
Hf	4.1	5.5	3.5		
F	0.5	4.0	5.0		

表 4-4 doped-ZnO 各類摻雜物

圖 4-1 ZnSnO3 靶的 XRD 圖

(b)

圖 4-2 ZnSnO₃薄膜以不同溫度成長在 (a)玻璃, (b)Sapphire(0001)

XRD 圖

圖 4-3 Zn₂SnO₄、ZnO 和 SnO₂的 XRD 圖

圖 4-4 以氧壓 10⁻⁴ torr 不同溫度下在 Sapphire(0001) 基板成長

ZnSnO3 薄膜的 XRD 圖

圖 4-5 以 750℃不同氧壓下在 Sapphire(0001)基板成長 ZnSnO3 薄膜

的 XRD 圖

圖 4-6 不同氧壓下在 Sapphire(0001)基板成長 Zno. 9Gao. 1SnO3 薄膜的

XRD 圖

圖 4-7 以氧壓 10⁻⁴ torr 不同溫度下在 Sapphire(0001)基板成長

Zn0.9A10.1SnO3 薄膜的 XRD 圖

圖 4-8 以750℃不同氧壓下在Sapphire(0001)基板成長Zn0.9A10.1SnO3

薄膜的 XRD 圖

4-2 Van der Pauw 方法量測實驗結果

4-2-1 Van der Pauw 方法量測遭遇到的問題

以 Van der Pauw 量測霍爾電壓,理論上若為 n 型半導體,(圖 3-8)量測 V24P、V42P、V13P和 V31P應為負值,V24N、V42N、V13N和 V31N為正值。 反之若為 p 型半導體,量測量測 V24P、V42P、V13P和 V31P應為正值,V24N、 V42N、V13N和 V31N為負值。實際上量測,卻是 V24N和 V42N為負值,V13P和 V31P 為正值,這樣的結果似乎不符合霍爾效應。為了解決此一問題,以鍵 在玻璃上的 ZnO 當標準片。首先未加磁場下量測八個電壓後,在外加 磁場下量測八個霍爾電壓。理論上,在無外加磁場下,量測到的 V24、 V42、V13、V31、V24、V42、V13和 V31應為零,但在實際量測上卻有背景值 電壓。表 4-5 說明真正的霍爾電壓,表示式如下

(量測的電壓值)=(無磁場時量測到的背景電壓值) + (Hall effect 影響下的 Hall voltage) (4-1)

Zn0為n型半導體,由(4-1)式可以得知 Hall effect 影響下的 Hall voltage 真的是有附合物理意義,由於未加磁場下量測到的背景電壓 比霍爾電壓大,造成在外加磁場下量測到的電壓並不是霍爾電壓。故 此過去遇到的量測問題已獲得解決。

Hall Volta	age Measuren	nent			
Temperat	ture (°C or K)	18			20
+B Field ((G)	4450			
	(A)		(V)		Ś
I ₁₃	0.001	V _{24P}	-1.2614E-02	V24	-1.2513E-02
I ₃₁		V ₄₂ P	-1.2626E-02	V42	-1.2522E-02
I42		V _{13P}	1.2458E-02	V ₁₃	1.2523E-02
I ₂₄		V _{31P}	1.2458E-02	V31	1.2522E-02
-B Field (G)			5 5	
I ₁₃		V _{24N}	-1.2445E-02		
I ₃₁		V _{42N}	-1.2447E-02		
I42		V _{13N}	1.2612E-02		
I ₂₄		V _{31N}	1.2610E-02	a.	4 175
Temperat	ture				
Vc	$v = V_{24P} - $	$V_{24N} =$	<u>-0.0001<i>6</i>9</u>		
$\mathtt{V}_{\mathtt{D}} = \mathtt{V}_{\mathtt{42P}} - \mathtt{V}_{\mathtt{42N}} =$			<u>-0.000179</u>	_	
$\mathtt{V}_{E} = \mathtt{V}_{13P} - \mathtt{V}_{13N} =$			<u>-0.000154</u>		
VF	$v = V_{31P} - v$	$V_{31N} =$	-0.000152		
ΣV_j	$= v_c + v_r$	$+ v_{E} + v_{f}$	F =	-0.000654	4

表 4-1 ZnO/Glass 的霍爾電壓量測

4-2-2 電阻率、載子濃度和遷移率量測結果

表 4-5 為 ZnSnO₃薄膜電阻率、載子濃度和遷移率量測結果。由 Hall effect,可知 ZnSnO₃為n型半導體。當鍍膜氧壓在 10⁻⁴torr 溫 度低於 600℃時,薄膜不導電。為了提高 TCO 的導電性,通常會掺入 一些雜質,掺雜質的方式有兩種:(1)掺入比原化合物的陽離子多一 價的金屬離子或比其陰離子少一價的非金屬離子,(2)製造非計量比 的半導體化合物(non-stoichiometric),意指使半導體內含有陰離子 空缺。這兩種方式皆能有效提高 TCO 的導電性。氧壓在 10⁻² torr 時, 電阻率升高到 1.847 Ω-cm,有可能在高氧壓下填補氧空缺(oxygen vacancy),每填補一個氧空缺會與二個自由電子形成離子鍵,造成電 阻率上升。為了証實此一想法,我們將 750℃、10⁻⁴ torr 的薄膜樣品 於滿氧退火 750℃、2 小時後,發現該薄膜的電阻率升高到 3.33 Ωcm 且載子濃子也減少到 9.29×10¹⁶ cm⁻³。顯示氧空缺確實對薄膜傳輸 特性有極關鍵的影響。

鍍膜條件	750°C	750°C 189	750°C	600°C	750°C 10 ⁻⁴ torr
	10^{-2} torr	10 ⁻³ torr	10 ⁻⁴ torr	10^{-4} torr	满氧退火2 小時
d (μm)	4.95	2.33	1.59	×	1.59
ρ (Ω -cm)	1.85	0.27	0.26	х	3.33
n (cm ⁻³)	3. 2×10 ¹⁷	1. 2×10 ¹⁸	1.4×10^{18}	×	9. 3×10 ¹⁶
μ (cm ² V ⁻¹ s ⁻¹)	10.54	19.07	17.20	×	20.18

x:不導電

表 4-5 ZnSnO3薄膜電阻率、載子濃度和遷移率量測結果

為了提高 ZnSnO₃ 的導電率,以莫耳比 0.1 的 A1 取代 Zn 製備 Zno.9A10.1SnO₃ 薄膜。每一個三價的 A1 取代二價的 Zn,將會多貢獻一個 自由電子。由 Hall effect,可知 Zno.9A10.1SnO₃ 為 n 型半導體。表 4-6 Zno.9A10.1SnO₃ 薄膜電阻率、載子濃度和遷移率量測結果。製備導電薄 膜的鍍膜溫度降低到 600℃,但鍍膜氧壓在 10⁻⁴torr 溫度低於 500℃ 時,薄膜不導電。且鍍膜溫度 750℃氧壓 10⁻²torr 的高氧壓,電阻率 獲得改善。

鍍膜條件	750°C	750°C	750°C	600°C
	10 ⁻² torr	10 ⁻³ torr	10 ⁻⁴ torr	10^{-4} torr
d (μm)	2. 72 🚺	1. 29 1896	2. 27	2.98
ρ (Ω -cm)	0. 38	0.52	0.30	0.67
$n (cm^{-3})$	8. 7×10 ¹⁷	7. 1×10 ¹⁷	1. 1×10^{18}	5. 1×10 ¹⁷
μ (cm ² V ⁻¹ s ⁻¹)	19.04	17.15	19.33	18.29

表 4-6 Zno.9A10.1SnO3薄膜電阻率、載子濃度和遷移率量測結果

4-2-3 ZnSno.9A10.103 薄膜製備

ZnSnO₈ 由 Hall effect 知為 n 型半導體。為了提高導電率,以三價的 Al 取代二價的 Zn。理論上,若將三價的 Al 取代四價的 Sn,每取代 一 個 Sn 會少一個自由電子,將有可能能製作出 p 型半導體。 圖 4-9 為不同氧壓下在 Sapphire(0001)基板成長 ZnSn0.8 Al 0.108 薄膜。 隨著氧壓變大,結晶性越好,這樣的趨勢和 ZnSnO3氧壓越低結晶性越 好的趨勢相反,所以預期物理性質方面會有不一樣的表現。由 Hall measurement 知 ZnSn0.8 Al 0.103 卻是 n 型。所以將鍍膜氧壓升高,藉由 填補氧空缺得到 p 型。不過當氧壓為 10^{-2} torr 時,量測到的數據非 常的不穩定。當氧壓升高到 10^{-1} torr,薄膜已呈現不導電。由於製 備的薄膜不是 p 型,所以摻雜 Al 取代 Sn 成為 p 型是不可行的。

鍍膜條件	750℃	750°C	750°C	600°C
	10^{-2} torr	10^{-3} torr	10^{-4} torr	10^{-4} torr
d (μm)		1.46	2.16	1.28
ρ (Ω -cm)	\bigtriangleup	0.57	1.71	1.25
n (cm ⁻³)	\bigtriangleup	1. 0×10 ¹⁸	3. 2×10 ¹⁷	6. 2×10 ¹⁷
μ (cm ² V ⁻¹ s ⁻¹)	\triangle	10.79	11.62	8.02

1896

△:導電,但量測不穩定。

表 4-7 ZnSno.9 Alo.103 薄膜電阻率、載子濃度和遷移率量測結果

當溫度升高至 750℃,將可使 ZnSnO³薄膜由不導電變為導電。隨著氧 壓減小,電阻率有變小的趨勢。且由於鍍膜氧壓減少,造成薄膜氧原 子含量減少,則載子濃度變大。掺雜三價 Ga,即使在鍍膜條件 750 ℃,10⁻⁴torr,薄膜依然不導電。原本在 600℃成長 ZnSnO³薄膜不導電, 經由掺雜三價的 A1 後變為可導電且導電率和其他鍍膜條件下的薄膜 都有數量級 10⁻¹Ω-cm,且載子遷移率明顯有增加的趨勢。從鍍膜條 件看來,溫度對薄膜導電性影響很大。

圖 4-9 以 750℃不同氧壓下在 Sapphire(0001)基板成長 ZnSno.9

Alo.103 薄膜 XRD 圖

4-3 透光率量测

透明導電薄膜意指在可見光範圍內(波長400nm-700nm)具有高透 光率(80%以上)。當入射光的能量大於薄膜的電隙時,處於價帶的電 子會因吸收光子能量而激發至導電帶,由於光子能量的吸收,穿透率 會隨光子能量增加而急速下降,從這頻譜特徵得到能隙大小。

圖 4-10 為不同溫度下在 Sapphire(0001)基板成長 ZnSnO₃薄膜的 透光率。鍍膜溫度在 400℃時,薄膜顏色為黃褐色,且透光率在波長 550 以下時,透光率變差。鍍溫度在 500℃以上時,薄膜顏色會獲得 改善,且具有 80%以上的透光率。圖 4-11 不同氧壓下在 Sapphire(0001) 基板成長 ZnSnO₃薄膜的透光率,氧壓的大小對透光率影響不大。

圖 4-12 為不同溫度下在 Sapphire(0001)基板成長 Zno.9A10.1SnO3 薄膜的透光率和圖 4-13 為不同氧壓下在 Sapphire(0001)基板成長 Zno.9A10.1SnO3 薄膜的透光率, 掺雜 A1 後的透光率明顯都有獲得改善。 除了 400℃, 10⁻⁴torr 的薄膜透光率還是很差外, 其他鍍膜條件的薄膜 透光率平均都有 90%以上。

由於 ZnSnO₃的能隙很大,波長低到 300nm 還是沒辦法將價帶電子 激發至導電帶,只能知道能隙大於 4.1eV。

圖 4-10 以 750℃不同溫度下在 Sapphire(0001)基板成長 ZnSnO3薄

膜 XRD 圖

圖 4-11 不同氧壓下在 Sapphire(0001)基板成長 ZnSnO₃薄膜的透光

率

圖 4-12 不同溫度下在 Sapphire(0001)基板成長 Zn0.9A10.1SnO3 薄膜的

透光率

圖 4-13 不同氧壓下在 Sapphire(0001)基板成長 Zn0.9A10.1SnO3 薄膜的

透光率

第五章 總結與未來展望

5-1 總結

- 在 Sapphire(0001)成長 ZnSn03,隨著溫度升高,繞射峰角度將 往大角度移動,顯示晶格常數變小,不過為何溫度升高會改變 ZnSnO3的晶格常數,現階段並無法了解。
- 2. 鍍在 Sapphire(0001)的 ZnSnO₃薄膜在高溫低氧壓的鍍膜條件下,結晶性很好。溫度越高有助於改善薄膜透光率,由黃褐色變為透明薄膜,由穿透頻譜不僅可以知道可見光區的透光率且可知能隙值大於 4.1eV。隨著鍍膜溫度由 400℃提到至 750℃,導電率也由不導電變為導電薄膜。氧壓越低造成氧空缺增加,則電阻率減小,載子濃度變高。
- 為了增加導電性, 掺雜三價 Ga 取代二價 Zn,反而造成薄膜不導電。掺雜三價 Al 取代二價 Zn, 稍為改善 mobility 且透光率由平均 85%增加到 90%以上。
- 製作p型ZnSn03,以三價的Al取代四價的Sn,發現依然還是n型且電性很差,增加氧壓填補氧空缺,實驗結果還是不可行。

5-2 未來工作

由於 ZnO 和 SnO2都是很好的透明薄膜電晶體,未來將可嘗試以 ZnSnO3 製作 TTFT 研究元件特性。

参考文獻

[1]H. J. J. van Boort, and R. Groth, Philips Tech. Rev. (1968),29 17.

- [2] A. L. Dawar, J. C. Joshi, and J. Mater. Sci. (1984), 19 1.
- [3] K. L. Chopra, S. Major, and D. K. Pandya, Thin Solid Films (1983), 102 1.

[4] H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish,
Semiconducting Transparent Thin Films (1995) (Philadelphia, PA: Institute of Physics Publishing).
[5] T. Minami, MRS Bull. (2000), 25 38.

[6] A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Channg, and T. J. Marks, MRS Bull. (2000), 25 45.

[7] R. G. Gordon, MRS Bull. (2000), 25 52.

[8] T. J. Coutts, D. L. Young, and X. Li, MRS Bull. (2000), 25 58.

[9] T. Minami, H. Nanto, and S. Takata, Appl. Phys. Lett. (1982),41 958.

[10] T. Minami, H. Nanto, and S. Takata, Japan. J. Appl. Phys. (1984), 23 L280.

64

[11] K. L. Chopra, S. Major, and D. K. Pandya, Thin Solid Films (1983), 102 1.

[12] A. L. Dawar, and J. C. Joshi, J. Mater. Sci. (1984), 19 1.
[13] H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish,
Semiconducting Transparent Thin Films (1995) (Iop Institute
of Physics (November 1995) publishing).

[14]A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Chang, and T. J. Marks, MRS Bulletin, August 2000.

[15]S. Major, S. Kumar, M. Bhatnanger, and K. L. Chopra, Appl. Phys. Lett. (1986), 49 394.

[16]T. Minami, H. Sato, H. Nanto, and S. Takata, Thin Solid Films (1989), 176 277.

[17]Z. C. Jin, I. Hamberg, and C. G. Granqvist, J. Appl. Phys.(1988), 64 5117.

[18]J. Hu, and R. G. Gordon, J. Appl. Phys. (1992), 71 880.
[19]R. J. Cava, J. M. Phillips, J. Kwo, G. A. Thomas, R. B. van Dover, S. A. Carter, J. Krajewski, W. F. Peck, Jr., J. H. Marshall, and D. H. Rapkine, Appl. Phys. Lett. (1994), 64 2071.
[20]K. L. Chopra, S. Major, and D. K. Pandya, Thin Solid Films

(1983), 102 1.

[21]D. Kovacheva*, and K. Petrov, Solid State Ionics (1998), 109 327-332.

[22]N. C. Wilson, J. Muscat, D. Mkhonto, P. E. Ngoepe, and N.
M. Harrison, Physical Review B (2005), 71 075202.
[21]T. J. Coutts, D. L. Young, and X, Li, MRS Bulletin, August

2000.

[22]M. Inagaki, T. Kuroishi, Y. Yamashita, M. Urata, and Z. Anorg Allg, Chem. (1985), 527 193.
[23]S. Y. Shen, and T. S. Zhang, Sensors Actuators B (1993), 12(1) 5.

[24]X. Y. Xue, Y. J. Chen, Q. H. Li, C. Wang, Y. G. Wang, andT. H. Wang, Appl. Phys. Lett. (2006), 88 182102.

[25]J. I. Pankove, Optical Processes in Semiconductions (Dover publish).

[26]T. Minami, MRS Bulletin, August 2000.

[27]A. Ohtomo, and A. Tsukazaki, semicond. Sci. Technol.(2005), 20 S1-S12.