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摘 要       

 
　 Mixing Time 是一個描述馬可夫鏈收歛到平衡狀態的重要量。已經有許多關

於估計 Mixing Time 的方法，譬如 Coupling 與 Hilbert 空間中分析技巧的應用。

過去十五年，L. Goldgerg 與 M. Jerrum 兩位計算機專家提出一個重要的馬可夫

過程，稱為 Burnside 過程，作為計算 Polya cycle index polynomial 的一個重

要數值方法。特別的 D. Aldous 與 P. Diaconis 估計了 Bose-Einstein 這個特殊

的Burnside過程的Mixing Time。本文探討更一般的Burnside過程及它的Mixing 

Time。 
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Mixing Times for Burnside Processes

Student: Wei-Kuo Chen Advisor: Yuan-Chung Sheu

Department of Applied Mathematics

National Chiao Tung University

Hsinchu, Taiwan, R.O.C.

ABSTRACT

Mixing time is the crucial time for a Markov chain converging to its equilibrium.

Several tools have been developed to analyze this important quantity, such as an-

alytic techniques in Hilbert space, and coupling methodology. In the last decade,

computer theorists Goldberg and Jerrum purposed a special Markov chain, called

Burnside process which is an important probability model for counting Pólya’s cy-

cle index polynomial. In particular, D. Aldous 2001 and P. Diaconis 2005 discuss

the mixing time of Bose-Einstein Markov chain. However, we still know little about

the Burnside process. Hence, in this article we want to discuss mixing times for

general Burnside processes. processes..
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1 Introduction

The use of Markov chain in Monte Carlo (MCMC) simulations has been a widespread

and accepted tool in scientific computing. The popularity of MCMC is primarily due

to its ability to approximate the target distribution by the simulation of Markov chains.

In order to be relevant to applied work, theoretical results must concern not only the

quantitative but also yield the bounds that are close to be sharp. If the bounds are not

sharp enough, the user seems to disregard them as unreasonably conservative, and too

expensive in time. However, only few works have been done on the rate of convergence

for any of these algorithms.

Based on the backgrounds above, the aim of my thesis is to study techniques for

analyzing the rate of convergence. The main tools are relied on L. Saloff-Coste 1997

and D. Aldous 2001. The former deals with such kind of problems by using the analytic

tools in Hilbert space. While the later developed an inspired method, called the coupling

methodology, to do that. Both of the their tools are fundamental and important toward

the estimation of rate of convergence. Hence, the first part of this article is to explain

their idea. The second part will focus on a special Markov chain and intend to investigate

its convergent behavior.

Here, I briefly sketch this chain as follows. For a given finite state space X and a

group action G on X , suppose that the current state is x, choose uniformly at random

among g ∈ G with xg = x, and then for fixed g, choose uniformly at random among

y ∈ X with yg = y. Such a process specifies a reversible Markov chain with a stationary

distribution,

K(x, y) =
1

|Gx|
∑

g∈Gx∩Gy

1

|Xg|
, π(x) =

1

z|Ox|

where z is the number of disjoint orbits, Ox is the orbit of x, Gx is the stabilizer of x, and

Xg = {x : xg = x} . This is called ”Burnside process” purposed by computer theorists,

Mark Jerrum and Lesile Goldberg (1993, 2002). Up to the present, general convergence

results of this chain are few, but successful analyses of some special cases are possible.

For example, let [k] = {1, 2 · · · , k} and X = [k]n . The symmetry group Sn acts on

X by permutating its coordinates. D. Aldous 2001 and P. Diaconis 2005 are two totally

different point of views for analyzing this special problem. In spite of their works, we
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still know little about this example. Hence, the second part of this article, we will use

the tools developed in the first part to discuss the rate of convergence of the Burnside

process.

2 Preliminaries

A discrete-time homogeneous Markov chain on a finite state space X can be specified by

a kernel K : X × X → R which satisfies

K(x, y) ≥ 0 for all x, y ∈ X and
∑
y∈X

K(x, y) = 1 for all x ∈ X .

By the Chapman-Kolmogorov equations, we define the iterated kernel

Kn(x, y) =
∑
z∈X

K(x, z)Kn−1(z, y).

A probability measure π defined on X is stationary if
∑

x π(x)K(x, y) = π(y) for all y ∈ X .
Throughout, we assume that the Markov chain is ireducible, that is, for every x, y ∈ X ,
there exists some n = n(x, y) > 0 such that Kn(x, y) > 0. Under this assumption K has

a unique stationary distribution π with minx π(x) > 0.

The Markov operator associated with K is defined by

Kf(x) =
∑
y∈X

K(x, y)f(y),

and similarly the iterated Markov operator is formulated as

Knf(x) =
∑
y∈X

Kn(x, y)f(y).

The chain is reversible if K satisfies the detail balance condition

π(x)K(x, y) = π(y)K(y, x) for every x, y.

A state x ∈ X is aperiodic if Kn(x, x) > 0 for all sufficiently large n, and the chain is

aperiodic if every state is aperiodic. For irreducible chains, aperiodicity of a single state

implies aperiodicity of every state.

Given a kernel K we can then have a discrete-time Markov chain. With the kernel

K, we can also consider the continuous-time Markov chain identifying by the kernel H t
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which waits an exponential time before moving. Precisely, let Xn be a given Markov

chain. Suppose that Nt is the Poisson distribution with rate 1 and Nt is independent of

{Xn} . Define Yt = XNt , then

H t(x, y) ≡ E
[
1{Yt=y}|Y0 = x

]
= e−t

∞∑
n=0

tn

n!
Kn(x, y)

is called the transition kernel of the continuous time Markov chain associated with the

kernel K. Consequently, the operator is defined by

H tf(x) = e−t

∞∑
n=0

tn

n!
Knf(x).

If we define u(t, x) = H tf(x), then it solves the heat equation{
(∂t + (I −K))u(t, x) = 0 on (0,∞)×X ,

u(0, x) = f(x).

Proposition 1. Let (K, π) be an irreducible Markov chain on a finite state space X with

stationary distribution π. Then

lim
n→∞

H t(x, y) = π(y) for all x, y.

Furthermore, if we assume that K is aperiodic, then

lim
n→∞

Kn(x, y) = π(y) for all x, y.

With the weak conditions on K, we obtain that the Markov chain converges to its

stationary distribution. However, this classic result does not tell us any information about

the rate of convergence. Hence, the aim of this thesis is to present the general techniques

for analyzing the behavior of convergence and several examples will be involved.

In order to quantify the distance between the chain and its stationary distribution,

we firstly need to introduce a metric. The most natural and useful one is the total variation

distance.

Definition 1. The total variation distance between two probability distributions µ and

ν on X is defined as

‖µ− ν‖TV = max
A⊂X

|µ(A)− ν(A)|.

3



Proposition 2. Let µ and ν be two probability distributions defined on X , then

‖µ− ν‖TV =
1

2

∑
x∈X

|µ(x)− ν(x)|.

Proof: Let S = {x ∈ X : µ(x) > ν(x)} . For any A ⊂ X ,

µ(A)− ν(A) =µ(A ∩ S)− ν(A ∩ S)− (ν(A ∩ Sc)− µ(A ∩ Sc))

=
∑

x∈A∩S

(µ(x)− ν(x))−
∑

x∈A∩Sc

(ν(x)− µ(x)).

Since µ− ν is positive on S and ν − µ is nonnegative on Sc, it follows that

µ(A)− ν(A) ≤ µ(S)− ν(S).

Similarly,

ν(A)− µ(A) ≤ ν(Sc)− µ(Sc).

Since µ and ν are probability measures, µ(S)− ν(S) = ν(Sc)− µ(Sc). Thus,

‖µ− ν‖TV =
1

2
[µ(S)− ν(S) + ν(Sc)− µ(Sc)]

=
1

2

[∑
x∈S

(µ(x)− ν(x)) +
∑
x∈Sc

(ν(x)− µ(x))

]
=

1

2

∑
x∈X

|µ(x)− ν(x)|.

This completes our proof.

�

The techniques in Hilbert space will be very useful in our analysis. Hence, we define

the Lp distance.

Definition 2. For any two measures µ and ν with densities f(x) = µ(x)/π(x) and

g(x) = ν(x)/π(x) with respect to the positive measure π, their Lp(π) distance is

dπ, p(µ, ν) = ‖f − g‖Lp(π) for 1 ≤ p ≤ ∞.

From proposition 2, we could see that dπ, 1(µ, π) = 2‖µ − π‖TV . By Jensen’s in-

equality, the function p 7−→ dπ, p(µ, ν) is non-decreasing.

Next, we want to define the mixing time which measures the time that the chain

needs to go to its equilibrium.

4



Definition 3. The total variation mixing time is given by

T (K) = inf

{
n > 0 : sup

x
‖Kn(x, ·)− π(·)‖TV ≤ 1/e

}
.

Definition 4. The Lp mixing time is given by

Tp(K) = inf

{
n > 0 : sup

x
dπ, p(K

n(x, ·), π) ≤ 1/e

}
.

Analogous definitions can extend to the continuous time Markov chain Ht and we

use the notations T and Tp to denote the mixing times of total variance distance and the

Lp distance, respectively. We should note that because of the following proposition, the

constant 1/e in the definition is chosen for convention.

Proposition 3. For 1 ≤ p ≤ ∞, then n 7−→ supx∈X dπ, p(K
n(x, ·), π) is a nonincreasing

sub-additive function. In particular, if

sup
x∈X

dπ, p(K
m(x, ·), π) ≤ β

for some fixed integer m and some β ∈ (0, 1) then

sup
x∈X

dπ, p(K
n(x, ·), π) ≤ βbn/mc,

where buc = max {z ∈ Z : z ≤ u} .

Proof: Use Jensen’s inequality, we have

dπ, p(K
n+1(x, ·), π)p =

∑
y∈X

∣∣∣∣∣∑
z∈X

K(x, z)

(
Kn(z, y)

π(y)
− 1

)∣∣∣∣∣
p

π(y)

≤
∑
y∈X

∑
z∈X

K(x, z)

∣∣∣∣Kn(z, y)

π(y)
− 1

∣∣∣∣p π(y) =
∑
z∈X

dπ, p(K
n(z, ·), π)pK(x, z),

and

dπ, p(K
n+m(x, ·), π)p =

∑
y∈X

∣∣∣∣∣∑
z∈X

(
Kn(x, z)

π(z)
− 1

)(
Km(z, y)

π(y)
− 1

)
π(z)

∣∣∣∣∣
p

π(y)

≤
∑
z∈X

∣∣∣∣Kn(x, z)

π(z)
− 1

∣∣∣∣p dπ, p(K
m(z, ·), π)pπ(z).
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Now, taking the supremum, we prove that dπ, p(K
n(x, ·), π)p is nonincreasing and subad-

ditive. Next, suppose that n is any nonnegative integer then there exists some k such

that km ≤ n < (k + 1)m. So

sup
x∈X

dπ, p(K
n(x, ·), π) ≤ sup

x∈X
dπ, p(K

km(x, ·), π) ≤ sup
x∈X

dπ, p(K
m(x, ·), π)k ≤ βk = βbn/mc.

Hence, we prove our assertion.

�

Assume that K is an irreducible and aperiodic Markov chain on a finite state space

X . We say that K satisfies the so-called Doeblin condition if there exists an integer n0

and a positive constant c such that

Kn0(x, y) ≥ cπ(y) for all x, y.

The first result of the rate of convergence is stated in the following which is involving with

the Doeblin’s condition.

Theorem 1. If (K, π) is an irreducible and aperiodic Markov chain, then

sup
x∈X

‖Kn(x, ·)− π(·)‖TV ≤ (1− c)
b n

n0
c

where n0 is a nonnegative integer such that Kn0(x, y) > 0 for every x, y and c =

minx, y

{
Kn0 (x,y)

π(y)

}
.

Proof: From the aperiodicity, we have that Kn0(x, y) > 0 for every x, y and some n0.

Define a square matrix M with each row equal to the stationary distribution π. Then it

is clear that MK = KM = M. Take c = minx, y∈X

{
Kn0 (x,y)
M(x,y)

}
> 0 and define

N =


Kn0−cM

1−c
, if 0 < c < 1,

0, if c = 1.

If c = 1, then M(x, y) ≤ Kn0(x, y) for each x, y. If M(x, y) < Kn0(x, y) for some x, y,

then 1 =
∑

y M(x, y) <
∑

y K
n0(x, y) = 1 which is a contradiction. Hence, M = Kn0 and

we are done.
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If 0 < c < 1, it is easy to check that N is a Markov kernel and MN = NM = M

such that

(N −M)n =
n∑

l=0

(−1)l

(
n

l

)
Nn−lM l =

n∑
l=1

(−1)l

(
n

l

)
Nn−lM l +Nn

=
n∑

l=1

(−1)l

(
n

l

)
M +Nn = (1− 1)lM −M +Nn = (N −M)Nn−1

and

Kn0n −M =
n∑

l=1

(
n

l

)
Kn0lMn−n0l = (Kn0 −M)n = (1− c)n(N −M)n.

Now, if we set a matrix norm ‖ · ‖ by ‖A‖ = maxx

∑
y |A(x, y)| for any matrix A and

recall that ‖AB‖ ≤ ‖A‖‖B‖, then

‖Kn0n −M‖ ≤ (1− c)n‖N −M‖‖N‖n−1 = (1− c)n‖N −M‖ ≤ 2(1− c)n.

Finally, for every m ≥ 1, there exists some n ≥ 0 such that n0n ≤ m < n0(n+ 1), and it

follows that

‖Km −M‖ = ‖Km−n0n(Kn0n −M)‖ ≤ ‖Kn0n −M‖ ≤ 2(1− c)n = 2(1− c)
b m

n0
c
.

So from the definition of the total variance distance, we prove the announced result.

�

We can get an upper bound of the total variance distance via the constant c in

theorem 1. Usually, it is easy to apply theorem 1. Nonetheless, the estimation is always

not sharp enough. From the elementary result in the matrix analysis, we can express our

Markov kernel by using its eigenvalues and eigenfunctions. It turns out the bounds for

eigenvalues is related with our convergent rates.

Lemma 1. Consider a reversible Markov kernel K with stationary distribution π. Let

{λi : i = 0, . . . , |X | − 1} be the set of all eigenvalues of K and {φi|i = 0, . . . , |X | − 1}
be the corresponding orthonormal basis and eigenfunctions in L2(π). Without loss of

generality, we assume that λ0 = 1 and φ0 = 1. Then the eigenvalues of K are all real and

Kn(x, y)

π(y)
=

|X |−1∑
i=0

λn
i ψi(x)ψi(y), (1)

7



dπ,2 (Kn(x, ·), π)2 =
∑
y∈X

∣∣∣∣Kn(x, y)

π(y)
− 1

∣∣∣∣2 π(y) =

|X |−1∑
i=1

|λi|2n|ψi(x)|2, (2)

and

H t(x, y)

π(y)
=

|X |−1∑
i=0

e−t(1−λi)ψi(x)ψi(y), (3)

dπ,2

(
H t(x, ·), π

)2
=
∑
y∈X

∣∣∣∣H t(x, y)

π(y)
− 1

∣∣∣∣2 π(y) =

|X |−1∑
i=1

e−2tRe(1−λi)|ψi(x)|2. (4)

3 Spectral gap

Now, we introduce the L2 techniques to bound eigenvalues.

Definition 5. For a Markov chain (K, π) on X . The Dirichlet form is given by

E(f, g) = 〈(I −K)f, g〉π

where 〈f, g〉π =
∑

x∈X f(x)g(x)π(x).

Proposition 4. A simple calculation yields that

(1)

E(f, f) =

〈(
I − 1

2
(K +K∗)

)
f, f

〉
=

1

2

∑
x,y∈X

|f(x)− f(y)|2K(x, y)π(x). (5)

(2) For a fixed f ∈ L2(π). As a function of t, the derivative of ‖H tf‖2
2 is given by

d

dt
‖H tf‖2

2 = −2E
(
H tf,H tf

)
(6)

where ‖f‖p =
∑

y∈X |f(y)|pπ(y)
1
p .

The spectral gap is defined in terms of Dirichlet form.

Definition 6. The spectral gap λ associated with K is given by the formula

λ = λ(K) = inf

{
E(f, f)

V ar(f)
: V ar(f) 6= 0

}
.

Here V ar(f) =
∑

x∈X |f(x)− Eπ[f ]|2π(x) and Eπ[f ] =
∑

x∈X f(x)π(x).

8



We emphasize some facts on the spectral gaps. Recall that the adjoint operator K∗

of K on L2(π) is defined by K∗(x, y) = π(y)K(y,x)
π(x)

and has the same stationary distribution

as K. Hence, from the definition of spectral gap, it follows that λ(K) = λ(K∗). More

important,

Proposition 5. If K is reversible, then λ is the smallest non-zero eigenvalue of I −K.

In general, λ is the smallest non-zero eigenvalue of I − 1
2
(K +K∗).

Proof: We only prove for K being reversible. Assume that K is reversible and let λi be

the eigenvalues of K with

−1 ≤ λ|X |−1 ≤ · · · ≤ λ1 < λ0 = 1,

and φi be the corresponding orthonormal basis and eigenfunctions of λi in L2(π). For

any f ∈ L2(π), V arπ(f) 6= 0, f can be expressed as f(x) =
∑|X |−1

i=0 ciψi(x) where

c0, · · · , c|X |−1 ∈ C. So

E(f, f)

V arπ(f)
=
E(f − c0, f − c0)

V arπ(f − c0)
=

∑|X |−1
i=1 |ci|2(1− λi)∑|X |−1

i=1 |ci|2 − ‖f − c0‖2
1

≥
∑|X |−1

i=1 |ci|2(1− λ1)∑|X |−1
i=1 |ci|2

= 1− λ1.

Hence, λ ≥ 1 − λ1. Now, let W be the subspace generated by {φ0, φ1} and for any

element f ∈ W, ‖f‖2 = 1 and π(f) = 0. Again, any f ∈ W can be expressed as f(x) =

c0ψ0(x) + c1ψ1(x). Therefore,

λ ≤ inf {E(φ, φ) : φ ∈ W} ≤ E(f, f) =
1∑

i=0

|ci|2(1− λi) = |c1|2(1− λ1) ≤ 1− λ1.

Thus, λ = 1− λ1 and this completes our proof.

�

The following theorem establishes the relationship between the rate of convergence

and the spectral gap.

Theorem 2. For every vector f in C|X |, we have

‖H tf − π(f)‖2
2 ≤ e−2λtV ar(f).

9



Proof: Let u(t) = ‖H tf − π(f)‖2
2 = ‖H t(f − π(f))‖2

2. Hence we have, by (6),

u′(t) = −2E(H t
(
f − π(f)), H t(f − π(f))

)
≤ −2λV ar

(
H t(f − π(f)

)
= −2λu(t).

This implies that u(t) ≤ e−2λtu(0). Hence, we are done. �

Proposition 6. Let K be a Markov kernel with the spectral gap λ. Then we have

dπ,2(H
t(x, ·), π) =

∥∥ht(x, ·)− 1
∥∥

2
≤ e−λt√

π(x)
(7)

and ∣∣H t(x, y)− π(y)
∣∣ ≤√π(y)

π(x)
e−λt. (8)

Proof: Due to the fact (K∗)n(x, y) = π(y)Kn(y,x)
π(x)

, the associated semigroup H̃ t = e−t(I−K∗)

has kernel

H̃ t(x, y) =
π(y)H t(y, x)

π(x)
= (H t)∗(x, y).

Consider the densities of H t(x, y) and H̃ t(x, y) with respect to π,

ht(x, y) =
H t(x, y)

π(y)
and h̃t(x, y) =

H̃ t(x, y)

π(y)
= ht(y, x).

Note that ht(x, y) =
eHt(y,x)
π(x)

= H̃ tf(y), where f(z) = 1
π(x)

δx(z). Hence, use the fact

λ(K) = λ(K∗),

∥∥ht(x, ·)− 1
∥∥

2
=
∥∥∥H̃ tf − π(f)

∥∥∥
2
≤ e−λt

√
V ar(f) = e−λt

√
1− π(x)

π(x)
≤ e−λt√

π(x)
.

Moreover, we have

∣∣ht(x, y)− 1
∣∣ =

∣∣∣∣∣∑
z

(
ht/2(x, z)− 1

) (
ht/2(z, y)− 1

)
π(z)

∣∣∣∣∣
≤
∥∥ht/2(x, ·)− 1

∥∥
2

∥∥∥ht/2∗(y, ·)− 1
∥∥∥

2
≤ e−λt√

π(x)π(y)
.

Hence, we finish our proof.

�

Proposition 6 is one of the fundamental results of finite Markov chain theory. In

particular, it tells us

10



Theorem 3. Let K be an irreducible Markov chain and

ω = min {Re(ξ) : ξ 6= 0 is an eigenvalue of I −K} .

Then

∀1 ≤ p ≤ ∞, lim
t→∞

−1

t
log

(
max
x∈X

dπ,p

(
H t(x, ·), π

))
= ω. (9)

For 1 ≤ p ≤ 2, we have
1

ω
≤ Tp ≤

1

2λ

(
2 + log

1

π∗

)
, (10)

whereas, for 2 < p ≤ ∞,
1

ω
≤ Tp ≤

1

λ

(
1 + log

1

π∗

)
, (11)

where π∗ = minx∈X π(x).

Proof: We may prove (10) and (11) easily by using inequalities (7) and (8) and Jensen

inequality. To prove (9), we need a fact in real analysis. Suppose that 1 ≤ p, q ≤ ∞ with

1
p

+ 1
q

= 1, then

‖H t − Π‖q→∞ = max
x∈X

dπ,p

(
H t(x, ·), π

)
,

where the matrixH t−Π with Π(x, y) = π(y) is regarded as a linear operator from Lq(π) to

L∞(π) and ‖H t−Π‖q→∞ ≡ sup {‖(H t − Π)f‖∞ : ‖f‖q ≤ 1} is the corresponding operator

norm. Hence, the left hand side of (10) and (11) are obtained by noting that the spectral

radius of operator H t − Π is e−ωt and the fact

‖H t − Π‖q→∞ ≥
‖(H t − Π)ν‖Lq(π)

‖ν‖Lq(π)

= e−ωt‖ν‖Lq(π)

‖ν‖Lq(π)

= e−ωt,

where ν is the eigenvector associated to e−tω.

Now, we turn to prove (9). Note first that the limit can be rewritten as

lim
t→∞

−1

t
log
(
‖H t − Π‖q→∞

)
= ω,

where p−1 + q−1 = 1. Again the previous fact, ‖H t − Π‖q→∞ ≥ e−ωt, shows that

lim sup
t→∞

−1

t
log
(
‖H t − Π‖q→∞

)
≤ ω.

It remains to show that

lim inf
t→∞

−1

t
log
(
‖H t − Π‖q→∞

)
≥ ω.

11



We recall the following fact in matrix analysis: for any ε > 0 and any matrix A, there

exists a submultiplicative matrix norm ‖ · ‖ such that ‖A‖ ≤ ρ(A) + ε, where ρ(A) =

max{|ξ| : ξ is an eigenvalue of A}. Let A = H1 − Π, then we have

‖H1 − Π‖ ≤ ρ(H1 − Π) + ε.

Then

‖H t − Π‖ ≤ ‖Hbtc − Π‖‖H t−btc‖ ≤ C‖(H − Π)btc‖ ≤ C (ρ(H − Π) + ε)btc ,

where C = maxs∈[0,1] ‖Hs‖. Note C indeed exists because ‖H t‖ is a continuous function.

Therefore,

lim inf
t→∞

−1

t
log ‖H t − Π‖ ≥ lim inf

t→∞

− logC

t
+
−btc
t

log
(
e−ω + ε

)
≥ − log(e−ω + ε).

Since any two matrix norm are equivalent, the above limit also holds for the operator

norm ‖ · ‖q→∞. At last let ε→ 0, we get (9) and we finish our proof.

�

Remark 1. In general, λ ≤ ω. Furthermore, if K is reversible, then the equality holds.

4 Coupling

In this section, we want to develop the elementary idea and result of coupling method to

bound our total variance distance. Suppose that (Xn)n≥n be a discrete time Markov chain

defined on a finite state space X . Let K and π be its kernel and stationary distribution,

respectively.

Proposition 7. ‖Kn(x, ·)− π‖TV ≤ maxy∈X ‖Kn(x, ·)−Kn(y, ·)‖TV

Proof: Since π is stationary, π(x) =
∑

y∈X π(y)Kn(y, x) for every x ∈ X and n ∈ N,

‖Kn(x, ·)− π‖TV = max
A

∣∣∣∣∣∑
z

π(z) (Kn(x,A)−Kn(z, A))

∣∣∣∣∣
≤
∑
z∈X

π(z) max
y∈X

‖Kn(x, ·)−Kn(y, ·)‖TV = max
y∈X

‖Kn(x, ·)−Kn(y, ·)‖TV .

�
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For any x, y ∈ X , a coupling is a joint process (Xx
1,n, X

y
2,n)n≥0 such that

P (Xn ∈ · |X0 = x) = P(Xx
1,n ∈ · ) and P (Xn ∈ · |X0 = y) = P(Xy

2,n ∈ · )

for every n ≥ 0. If there exists a stopping time Tx,y ≤ ∞, such that

Xx
1,n = Xy

2,n, for Tx,y ≤ n <∞,

then we call that Tx,y is a coupling time.

Proposition 8.

‖P (Xn ∈ ·|X0 = x)− P (Xn ∈ ·|X0 = y)‖TV ≤ P(Tx,y ≥ n+ 1)

Proof: For every A,

P (Xn ∈ A|X0 = x)− P (Xn ∈ A|X0 = y)

=P(Xx
1,n ∈ A)−P(Xy

2,n ∈ A)

=P(Xx
1,n ∈ A, Xx

1,n 6= Xy
2,n)−P(Xx

2,n ∈ A, Xx
1,n 6= Xy

2,n)

≤P(Xx
1,n ∈ A, Xx

1,n 6= Xy
2,n) ≤ P(Tx,y ≥ n+ 1).

Now, similarly,

P (Xn ∈ A|X0 = y)− P (Xn ∈ A|X0 = x) ≤ P(Tx,y ≥ n+ 1).

Thus, by the definition of total variance distance, we are done.

�

In applying coupling methodology there are two issues.

(i) First we need to specify the coupling.

(ii) Second we need to analyze the coupling time.

The most common strategy for constructing coupling is via Markov couplings. We describe

this procedure as follows. Suppose that the underlying chain has state space X , and kernel

K. Let K̃ be a new Markov chain on X ×X satisfying the following conditions. For each

pair (x, y) with x 6= y,

K̃((x, y), (x′, y′)) has marginals K(x, ·) and K(y, ·),

13



in other words
∑

y′ K̃((x, y), (x′, y′)) = K(x, x′) and
∑

x′ K̃((x, y), (x′, y′)) = K(y, y′).

And suppose that

K̃((x, x), (x′, y′)) =


K(x, x′), if x′ = y′,

0, if x′ 6= y′.

Let (Xx
1,n, X

y
2,n) be the Markov chain on X×X associated with Markov kernel K̃ and initial

position (x, y). Then this defines a coupling on K. We can see that if Xx
1,n = Xy

2,n = z,

then Xx
1,m = Xy

2,m for every m ≥ n+ 1. Indeed, for every m ≥ n+ 1,

P
(
(Xx

1,m, X
y
2,m) = (z′, z′)|(Xx

1,n, X
y
2,n) = (z, z)

)
= K̃m−n((z, z), (z′, z′)) = Km−n(z, z′).

Therefore, Tx,y ≡ min
{
n ≥ 0 : Xx

1,n = Xy
2,n

}
is a coupling time. This construction gives

a natural Markov coupling.

5 Mixing Times for Burnside Processes

In this section, we want to introduce a special Markov chain, called Burnsider process,

purposed by computer theorists. Some convergent behaviors will be given by using the

techniques we established above. Firstly, we give a background of this chain.

Assume that we have a cube and want to paint its faces with two colors red and

blue. A natural question to ask is how many distinguishable configurations there are ? In

this case, we can easily check out the answer. However, how about a arbitrary n regular

polyhedron painted with arbitrary k different colors? It seems very hard to figure out,

even for k = 2 and any n. Let G be a permutation group, the cycle index polynomial is

defined by

PG(z1, . . . , z|G|) =
1

|G|
∑
g∈G

z
c1(g)
1 · · · zc|G|(g)

|G| ,

where ci means the number of i-cycles. Pólya’s theory of enumeration says that the

number of distinguishable configurations is equal to

PG(k, . . . , k),

where G is the permutation group induced by the rigid motion of the given n regular

polyhedron. Nevertheless, Goldberg [4], a computer theorist, proved that to calculate the

cycle index polynomial is intractable even when G is an abelian 2-group.

14



Instead Goldberg and Jerrum [5] purposed a Markov chain, called Burnside process,

to sample an orbit uniform at random. Let X be a finite state space and G be a finite

permutation group. Assume that G is a group action on X , that is, there exists a map

(·, ·) : X ×G→ X by

(1) (x, e) = x for every x ∈ X and e the identity of G;

(2) ((x, g), h) = (x, gh) for every g, h ∈ G.

Throughout, for simplicity we denote (x, g) = xg. This action splits X into disjoint orbits,

X = Ox1 ∪ Ox2 ∪ · · · ∪ Oxz ,

where Ox ≡ {xg : g ∈ G} and Oxi
∩ Oxj

= ∅ for every i 6= j. Here, the number is given

by Burnside lemma,

z =
1

|G|
∑
g∈G

|Xg|,

where Xg ≡ {z ∈ X : zg = z} the fix-point set of g. Now, the Burnside process is described

by the following. Let x be the underlying state, we choose g ∈ G with xg = x uniformly

at random and then for this g we choose y with yg = y uniformly at random. Thus, the

chain moves from x to y. Therefore, the transition matrix and its stationary distribution

are formulated by

K(x, y) =
1

|Gx|
∑

g∈Gx∩Gy

1

|Xg|
and π(x) =

1

z|Ox|
, (12)

where Gx ≡ {g ∈ G : xg = x} is called the stabilizer of x. This was the genesis of Burnside

process. Throughout, we assume further

K(x, y) = K(xg, yg) for each x, y ∈ X and g ∈ G.

Iteratively, it implies that

Kn(x, y) = Kn(xg, yg) for each x, y ∈ X and g ∈ G.

Let X be the collection of G-orbits of X . Then we have a corresponding lumped Markov

chain K defined on X × X by setting

K(Ox,Oy) =
∑
z∈Oy

K(x, z)

15



where Ox stands for the the orbits containing the state x. This definition is unambiguous,

since for every x1, x2, ∈ Ox, K(x1, y) = K(xh
1 , y

h) = K(x2, y
h) for some h, and Oy =

Oyh . It is clear that K is a reversible Mavkov chain with uniform stationary distribution

π = 1/z. For simplicity, write Kn
x (y) = Kn(x, y) and K

n

Ox
(O) = Kn(Ox, O) and we

arrange the distinct orbits in order X = {Oi}z
i=1 .

Lemma 2. In general, K
n

Ox
(O) =

∑
z∈OK

n
x (z). Furthermore, if x ∈ X such that

K(x, z) = K(x, zg) for every g ∈ G and z ∈ X , then

K
n

Ox
(O) = |O|Kn

x (y)

some y ∈ O and n > 0.

Proof: Firstly, we prove the first equation. If n = 1, it is just the definition of KOx .

Assume that K
n

Ox
(O) =

∑
y∈OK

n
x (y) for some n ≥ 1, then

K
n+1

Ox
(O) =

z∑
i=1

K
n

Ox
(Oi)K(Oi,O) =

z∑
i=1

[∑
y∈Oi

Kn
x (y)

][∑
z∈O

K(y, z)

]

=
∑
z∈O

[
z∑

i=1

∑
y∈Oi

Kn
x (y)K(y, z)

]
=
∑
z∈O

∑
y∈X

Kn
x (y)K(y, z) =

∑
z∈O

Kn+1
x (z).

By induction we prove the first equation. Now, assume that O = {yg : g ∈ G} . Since

Kn(x, y) = Kn(x, yg) for each g, it follows that

Kn
Ox

(O) =
∑
z∈O

Kn(x, z) = |O|Kn(x, y).

So we are done. �

Proposition 9. Suppose that x ∈ X such that K(x, z) = K(x, zg) for every g ∈ G and

z ∈ X . For any n ∈ N,
‖Kn

x − π‖TV = ‖Kn

Ox
− π‖TV . (13)

Proof. From lemma 2. and the fact that π(·) is constant on every orbit, this proposition

is easy to check. Indeed,

‖Kn

Ox
− π‖TV =

1

2

z∑
j=1

∣∣Kn

Ox
(Oj)− π(Oj)

∣∣ =
1

2

z∑
j=1

∣∣∣∣∣ |Oj|Kn(x, yj)− |Oj|π(yj)

∣∣∣∣∣
=

1

2

z∑
j=1

∑
y∈Oj

|Kn(x, y)− π(y)| = ‖Kn
x − π‖TV .

where yj ∈ Oj. This completes our proof.
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Suppose that X is a finite state space and G is a finite group acting on X . Let (K,π)

be the corresponding Burnside process and (K, π) be the lumped chain defined as before.

Lemma 3 (exercise 9, section 1.8, [6]). For any two subgroups G1, G2 of a finite group G,

|G1G2| =
|G1||G2|
|G1 ∩G2|

where G1G2 = {gh : g ∈ G1, h ∈ G2} and Gx ∩Gy = {z ∈ G : z ∈ Gx, z ∈ Gy} .

Proposition 10. For every n ≥ 1, maxx ‖Kn
x − π‖TV ≤

(
1− 1

|G|

)n

.

Proof: Consider the Doeblin bound, by using Cauchy-Schwarz inequality and lemma 3.,

K(x, y)

π(y)
=

1

|Gx|

 ∑
g∈Gx∩Gy

1

|Xg|

( 1

|G|
∑

g

|Xg|

)(
|G|
|Gy|

)

≥ 1

|Gx||Gy|

|Gx∩Gy |∑
i=1

|Xgi
|

|Gx∩Gy |∑
i=1

1

|Xgi
|


(Cauchy-Schwarz)

≥|Gx ∩Gy|2

|Gx||Gy|
=
|Gx ∩Gy|
|GxGy|

≥ 1

|G|
,

where Gx ∩Gy = {gi}|Gx∩Gy |
1 . Hence, from theorem 1, we have for every n ≥ 1,

max
x

‖Kn
x − π‖TV ≤

(
1− 1

|G|

)n

.

�

Proposition 11.

max
O∈X

‖Kn

O − π‖TV ≤
(

1− 1

|X |

)n

.

Proof: We use the methodology of coupling to prove this. Define

K̃((Oi,Oj), (Oi′ ,Oj′)) =


K(Oi,Oi′)K(Oj,Oj′), if Oi 6= Oj,
K(Oi,Oi′), if Oi = Oj and Oi′ = Oj′ ,
0, otherwise.

In other words, Oi and Oj move independently until they hit and then move together.

It is easy to check that K̃ is a Markovian coupling. Therefore, suppose that (Xn, Yn) =

(Oi,Oj), we may observe that
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(i) if Oi = Oj, Xn+1 = Yn+1.

(ii) if Oi 6= Oj,

P (Xn+1 = Yn+1

∣∣(Xn, Yn) = (Oi,Oj)) =
∑
O

K̃((Oi,Oj), (O,O))

=
∑
O

K(Oi,O)K(Oj,O).

Consequently, we have

Pi,j(X2 6= Y2) =
∑
i′,j′

P (X2 6= Y2

∣∣(X1, Y1) = (Oi′ ,Oj′))Pi,j((X1, Y1) = (Oi′ ,Oj′))

=
∑
i′ 6=j′

P (X2 6= Y2

∣∣(X1, Y1) = (Oi′ ,Oj′))Pi,j((X1, Y1) = (Oi′ ,Oj′))

=
∑
i′ 6=j′

[
1− P (X2 = Y2

∣∣(X1, Y1) = (Oi′ ,Oj′))
]
Pi,j((X1, Y1) = (Oi′ ,Oj′))

≤max
i′ 6=j′

(
1−

∑
O

K(Oi′ ,O)K(Oj′ ,O)

)
.

Inductively, it implies that

Pi,j(Xn 6= Yn) ≤

(
max
i′ 6=j′

(
1−

∑
O

K(Oi′ ,O)K(Oj′ ,O)

))n

.

On the other hand, for x ∈ Oi′ and y ∈ Oj′ ,

K(Oi′ ,Oj′) =
∑

y∈Oj′

1

|Gx|
∑

g∈Gx∩Gy

1

|Xg|
≥
∑

y∈Oj′

|Gx ∩Gy|
|Gx||X |

=
∑

y∈Oj′

|Gx||Gy |
|GxGy |

|Gx||X |
≥ 1

|X |
,

and

1−
∑
O

K(Oi′ ,O)K(Oj′ ,O) =
∑
O

K(Oi′ ,O)(1−K(Oj′ ,O)) ≤ max
Oj′ ,O

(
1−K(Oj′ ,O)

)
then by the proposition 8, it implies

max
O∈X

‖Kn

O − π‖TV ≤
(

1− 1

|X |

)n

.

�
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Assume that G is an abelian group. Since |Gx| = |G|
|Ox| = |G|

|Oxg | = |Gxg | and Gx ⊆ Gxg ,

it follows that Gx = Gxg . Hence,

K(x, y) =
1

|Gx|
∑

g∈Gx∩Gy

1

|Xg|
=

1

|Gxg |
∑

g∈Gxg∩G
yh

1

|Xg|
= K(xg, yh),

and for every n ≥ 1, and x ∈ X ,

‖Kn
x − π‖TV = ‖KOx − π‖TV .

Furthermore, from lemma 2. K is symmetric.

Corollary 1. If G is an abelian group, then

max
x∈X

‖Kn
x − π‖TV ≤

(
1− 1

|X |

)n

.

5.1 Bose-Einstein Markov chain

Suppose that n balls put into k boxes. Put X = {1, . . . , k}n to be the state space. In

other words, if x = (x1, . . . , xn) ∈ X , it means that the i-th ball is put in the xi-th

box. Assume that G = Sn is the symmetric group acting on X by y = xg where yj = xi

whenever j = g(i). Hence, we have a Burnside process defined on X by following eq. (12).

In particular, the stationary distribution of the lumped chain is given by the well-known

Bose-Einstein distribution,

π =
1(

n+k−1
k−1

) ,
which is used to described the distribution of the energy of state in statistical physics. As

we can see that the formula of transition kernel K of Burnside process is very complicated.

It seems hard to calculate every single term ofK exactly. However, it turns out in Diaconis

[3] that Pólya theory of counting prides a crucial bridge for doing that. Based on his idea,

the following presents a formula for the kernel of the lumped chain.

Definition 7. A partition λ of a nonnegative integer n is a sequence (λ1, λ2, . . . , λk) ∈ Nk

so that
∑k

i=1 λi = n and λi ≥ λi+1. Here, we shall write λ ` n to denote that λ is a

partition of n. We use the notation bi(λ) to denote the total number of i appearing in λ.

Precisely, 1b1(λ) + 2b2(λ) + · · ·+ nbn(λ) = n.
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Lemma 4. Suppose that PSn is the cycle index polynomial of the symmetry group Sn,

then

i)

PSn(x1, x2, . . . , xn) =
∑
λ`n

xb1
1 x

b2
2 · · ·xbn

n∏n
i=1 bi!i

bi
. (14)

ii)
∞∑

n=0

PSn(x1, x2, . . . , xn)zn =
∞∏

n=1

exp (znxn/n) . (PS0 ≡ 1) (15)

Proof: These two results are classical and can be found in many textbooks of combina-

torial mathematics, for example, chapter E. ”Pólya theory of counting” in [2]. �

Remark 2. From the equation (15), we can see that if xi = 1
k

for every i, then

∞∑
n=0

PSn(1/k, 1/k, . . . , 1/k)zn =
∞∏

n=1

exp

(
1

k

zn

n

)
= exp

(
1

k

∞∑
n=1

zn

n

)

=
1

k
√

1− z
=

∞∑
n=0

Γ
(

1
k

+ n
)

n!Γ( 1
k
)
zn.

Thus, PSn(1/k, 1/k, . . . , 1/k) =
Γ( 1

k
+n)

n!Γ( 1
k
)
.

Suppose that f : Rk −→ R can be expressed as a Taylor series. We define the

notation

(tx1
1 t

x2
2 · · · txk

k ) [f(t1 , t2, . . . , tk)]

to be the coefficient of tx1
1 t

x2
2 · · · txk

k of f(t1, t2, . . . , tk) where x1, x2, . . . , xk ∈ N ∪ {0} .

Theorem 4. Consider the Burnside random walk with Sn acting on X = [k]n . Let x and

y be two states in X . Suppose that x and y have xi and yi balls in box i, respectively.

More precisely, x1 + x2 + · + xk = y1 + y2 + · · · + yk = n. Then the transition matrix of

its lumped chain can be formulated as the following

K (Ox,Oy) = (tx1
1 t

x2
2 · · · txk

k )

[
PAy

(∑k
j=1 t

1
j

k
,

∑k
j=1 t

2
j

k
, . . . ,

∑k
j=1 t

n
j

k

)]
(16)

where PAy is the cycle index polynomial of Sy1 × Sy2 × · · · × Syk
.
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Proof of Theorem: Recall that the lumped chain is originally defined by

K(Ox, Oy) =
1

|Gx|

∑
z∈Oy

∑
g∈Gx∩Gz

1

|Xg|

 =
1

|Gx|
∑
g∈Gx

∑
z∈Oy

1{zg=z}

 1

|Xg|
.

If zg = z then z is constant on every cycle of g. On the other hand, since z ∈ Oy,

∑
z∈Oy

1{zg=z} =
∑

λi`yi, ∀ i=1, 2, ..., k

n∏
i=1

(
ci(g)

bi(λ1) bi(λ2), . . . , bi(λk)

)
.

Therefore, the transition matrix can be expressed as

∑
λi`yi, ∀ i=1, 2, ..., k

[
1

x1!x2! · · ·xk!

∑
g∈Gx

n∏
i=1

(
ci(g)

bi(λ1) bi(λ2), . . . , bi(λk)

)
1

kc(g)

]
. (17)

To attain our purpose, from ii) in lemma 4, we use the identity,

k∏
j=1

[
∞∑
i=0

tijPSi
(u1, u2, . . . , ui)

]
=

∞∏
i=1

exp

(
ui

i

k∑
j=1

tij

)
. (18)

Now, for each λi ` yi, let λ = (λ1, λ2, . . . , λk), and define the differential operator(
∂

∂u

)λ

=
∂
Pn

i=1

Pk
j=1 bi(λj)

∂u
Pk

j=1 b1(λj)

1 ∂u
Pk

j=1 b2(λj)

2 · · · ∂u
Pk

j=1 bn(λj)
n

.

Thus, on the one hand,(
∂

∂u

)λ

PGx(u1, u2, . . . , un) =
cλ(u)

x1!x2! · · ·xk!

∑
g∈Gx

n∏
i=1

(
ci(g)

bi(λ1) bi(λ2) · · · bi(λk)

)
u

ci(g)
i (19)

where cλ(u) =
∏n

i=1

∏k
j=1 u

−bi(λj)
i bi(λj)!. And on the other hand,

(
∂

∂u

)λ ∞∏
i=1

exp

(
ui

i

k∑
j=1

tij

)
=

[
∞∏
i=1

exp

(
ui

i

k∑
j=1

tij

)] n∏
i=1

(
1

i

k∑
j=1

tij

)Pk
l=1 bi(λk)

 . (20)
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Therefore, combine eqs.(19), (20) together, it follows

1

x1!x2! · · ·xk!

∑
g∈Gx

n∏
i=1

(
ci(g)

bi(λ1) bi(λ2) · · · bi(λk)

)
1

kc(g)

=cλ(1/k, 1/k, . . . , 1/k)−1(tx1
1 t

x2
2 · · · txk

k )

[(
∂

∂u

)λ k∏
i=1

∞∑
j=0

tjiPSj
(1/k, 1/k, . . . , 1/k)

]

=cλ(1/k, 1/k, . . . , 1/k)−1(tx1
1 t

x2
2 · · · txk

k )

[(
∂

∂u

)λ ∞∏
i=1

exp

(∑k
j=1 t

i
j

ik

)]

=cλ(1/k, 1/k, . . . , 1/k)−1(tx1
1 t

x2
2 · · · txk

k )

 n∏
i=1

(
1

i

k∑
j=1

tij

)Pk
l=1 bi(λl)


=(tx1

1 t
x2
2 · · · txk

k )


k∏

i=1

n∏
l=1

(∑k
j=1 t

l
j

k

)bl(λi)
1

bl(λi)!lbl(λi)

 .

Finally, from i) in lemma 4, we are done if we rearrange eq. (16) suitably. �

Remark 3. Particularly, if k = n and xi = 1 for each i, then

K(Ox,Oy) = (t1t2 · · · tn)

[
PAy

(∑n
j=1 t

1
j

n
,

∑n
j=1 t

2
j

n
, . . . ,

∑n
j=1 t

n
j

n

)]
.

Since the degree of
∑k

j=1 t
i
j for i ≥ 2 is large than 1,

K(Ox,Oy) = (t1t2 · · · tn)

[
n∏

i=1

1

yi!

(∑n
j=1 tj

n

)yi
]

=

(
n

y1 . . . yn

)
1

nn
.

For general n and k, suppose x is constant then

K(Ox,Oy) =(tn1 )

[
PAy

(∑k
j=1 t

1
j

k
,

∑k
j=1 t

2
j

k
, . . . ,

∑k
j=1 t

n
j

k

)]

=(tn1 )

 1

y1! · · · yk!

∑
g∈Sy1×···×Syk

(
t1
k

)c1(g)

· · ·
(
tn1
k

)cn(g)


=(tn1 )

 1

y1! · · · yk!

∑
g∈Sy1×···×Syk

tn1
kc1(g)+···+cn(g)


=

 k∏
i=1

1

yi!

∑
gi∈Syi

1

kc1(gi)+···+cn(gi)


=

(
n

y1 y2 · · · yn

)
1

n!

k∏
i=1

Γ
(
yi + 1

k

)
Γ
(

1
k

) .
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Proposition 12. The transition matrix K is symmetric.

Proof: From the representation of K in theorem 4 and eq. (4), this property holds

clearly, indeed,

K(Ox, Oy) =
∑

λi`xi, ∀ i=1, 2, ..., k

 1

y1!y2! · · · yk!

∑
g∈Gy

n∏
i=1

(
ci(g)

bi(λ1) bi(λ2), . . . , bi(λk)

)
1

kc(g)


=K(Oy, Ox).

�

We can easily check that if x is constant, then for every y ∈ X and g ∈ Sn,

K(x, y) = K(x, yg).

By proposition 9, 10 and 11, it follows that

‖K l
x − π‖TV ≤

(
1− 1

min {n!, kn}

)l

. (21)

Diaconis [3] proved that

‖K l
x − π‖TV ≤

(
1− 1

k!

)l

. (22)

If k is large, then (21) is better than (22). Aldous [1] gives a remarkable upper bound of

this chain by using an inspired coupling method. Precisely, he proved that

Theorem 5 (Aldous). For every state x ∈ [k]n ,

‖K l(x, ·)− π(·)‖TV ≤ n

(
1− 1

k

)l

.

In other words, this means that the spectral gap λ of Burnside process is bounded

below by 1
k
. Recall that equation (9) says

λ = lim
t→∞

−1

t
log

(
2 sup

x∈X
‖H t(x, ·)− π(·)‖TV

)
.
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Therefore, for each x,

2‖H t(x, ·)− π(·)‖TV =
∑

y

∣∣H t(x, y)− π(y)
∣∣

=
∑

y

∣∣∣∣∣e−t

∞∑
l=0

tl

l!

[
K l(x, y)− π(y)

]∣∣∣∣∣
≤e−t

∞∑
l=0

tl

l!

∑
y

∣∣K l(x, y)− π(y)
∣∣

≤2ne−t

∞∑
l=0

tl

l!

(
1− 1

k

)l

= 2ne−tet(1−1/k) = 2ne−t/k

Plug this result into eq. (9), we have

−1

t
log

(
2 sup

x
‖H t(x, ·)− π(·)‖TV

)
≥
− log

(
2ne−t/k

)
t

=
− log 2n+ t/k

t
=
− log 2n

t
+

1

k
,

and now, passing to the limit, it follows λ ≥ 1
k
.

Hence, with the upper bounded of the spectral gap, we can immediately get the

mixing time for Lp distance from theorem 3.

Corollary 2. For this Burnside process K, the mixing time has an upper bound,

Tp ≤


k
2
(2 + n log k) , if 1 ≤ p ≤ 2

k (1 + n log k) , if 2 < p ≤ ∞,

where

Tp ≡ inf

{
t > 0 : max

x∈X
dπ,p(H

t(x, ·), π) ≤ 1/e

}
.

5.2 Other Burnside Processes

Suppose that Sn be the symmetry group and G = 〈h〉 where h = (1, 2, . . . , m) and m < n

is a prime. Consider the Burnside process with the group G acting on the state space

X = [k]n . Observe that xg = x for some g in G if and only if x is constant on h, i.e.

x1 = x2 = · · · = xm. This observation is easy to show. Indeed, since |g| = m and

x1 = xg(1) = xg2(1) = · · · = xgi(1) = xgi+1(1) = · · · = xgm(1) = x1,

it follows that x1 = x2 = · · · = xm.
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Lemma 5. Let x = (x1, x2, . . . , xn) ∈ X and g ∈ G, then

Gx =

{
G, if x is constant on h,
{e} , otherwise,

|Ox| =
{

1, if x is constant on h,
m, otherwise,

and

|Xg| =
{
kn−m+1, if g 6= e,
kn, if g = e.

Lemma 6. The transition matrices of Burnside process and its lumped chain are given

respectively by

K(x, y) =
1

mkn


(m− 1)km−1 + 1, if both x and y are constant on h,
1, if x is constant on h and y is not constant on h,
m, if x is not constant on h.

and

K(Ox, Oy) =
1

mkn


(m− 1)km−1 + 1, if both x and y are constant on h,
m, if there is exactly one of x and y be constant on h,
m2, if neither x nor y are constant on h.

Proof: Recall that the transition matrix of the Burnside process is formulated by

K(x, y) =
1

|Gx|
∑

g∈Gx∩Gy

1

|Xg|
.

And the lumped chain is K(Ox,Oy) = |Oy|K(x, y). From lemma 5, we can easily get

what we want.

�

With this transition matrix K, we can calculate several important quantities of this

chain. Let λ be the spectral gap of this Burnside process.

Proposition 13.
1

m
≤ λ ≤ 1

m
+

1

km−1
− 1

mkm−1
.

Proof: Firstly, from proposition 4. we see that

max
x∈X

‖K l
x − π‖TV ≤

(
1− 1

m

)l

.
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Hence, by using 3 and following the same argument as above we could see that the spectral

gap λ of K is bounded below by 1/m. On the other hand, set a test function f : X → R
by

f(x) =

{
1, if x is constant on h,
0, otherwise.

and the number of disjoint orbits is

z =
1

|G|
∑
g∈G

|Xg| =
1

m

[
kn + (m− 1)kn−m+1

]
=
kn

m

[
1 +

m− 1

km−1

]
then it follows that

E(f, f)

Var(f)
=

1
kn

1
kn

m [1+ m−1

km−1 ]

=
1

m
+

1

km−1
− 1

mkm−1
.

From the definition of spectral gap, we get the assertion. �

Next, we turn to calculate the lower bound for the total variation distance.

Proposition 14. If x is constant on h and k ≥ 8, then for each 1 ≤ l ≤ m,(
1− 8

k

)(
1− 1

m

)l

≤
∥∥K l

x − π
∥∥

TV
.

Proof: Define a square matrix A of dimension kn × kn by

Axy =

{
m−1

mkn−m+1 + 1
mkn , if both x and y are constant on h,

0, otherwise.

It is easy to see that K l ≥ Al for every l ≥ 1, and a simple calculation yields

Al
xy = k(n−m+1)(l−1)

[
m− 1

mkn−m+1
+

1

mkn

]l

=
1

kn−m+1

[
1− 1

m

(
1− 1

km−1

)]l

,

whenever both x and y are constant on h. Set A = {x : x is constant on h} . Then

‖K l
x − π‖TV ≥

∑
y∈A

[
K l(x, y)− 1

z

]
≥
∑
y∈A

[
Al

xy −
1

z

]
.
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Assume that l ≤ m, a simple calculation yields that

∑
y∈A

[
Al

xy −
1

z

]
=kn−m+1

[
1

kn−m+1

[
1− 1

m

(
1− 1

km−1

)]l

− m

kn

[
1 +

m− 1

km−1

]−1
]

=

[(
1− 1

m

)
+

1

mkm−1

]l

− 1[
(1− 1

m
) + km−1

m

]
(use binomial formula)

≥
(

1− 1

m

)l

+
l

mkm−1

(
m

m− 1

)(
1− 1

m

)l

− m

km−1

≥
(

1− 1

m

)l

+
l

mkm−1

(
1− 1

m

)l

− m

km−1
.

The last inequality becomes(
4m2 − l

mkm−1
+
mkm−1 + l − 4m2

mkm−1

)(
1− 1

m

)l

+
l

mkm−1

(
1− 1

m

)l

− m

km−1

=

(
mkm−1 + l − 4m2

mkm−1

)(
1− 1

m

)l

+
4m

km−1

(
1− 1

m

)l

− m

km−1

≥
(
mkm−1 + l − 4m2

mkm−1

)(
1− 1

m

)l

+
4m

km−1

(
1− 1

m

)m

− m

km−1

≥
(
mkm−1 + l − 4m2

mkm−1

)(
1− 1

m

)l

+
4m

km−1

(
1− 1

2

)2

− m

km−1

=

(
mkm−1 + l − 4m2

mkm−1

)(
1− 1

m

)l

≥
(

1− 4m

km−1

)(
1− 1

m

)l

≥
(

1− 8

k

)(
1− 1

m

)l

.

We note that
(
1− 1

m

)m
and − 4m

km−1 are increasing in m. Hence, we complete our proof.

�

As a conclusion, if k is large, then from proposition 13, the spectral gap of K

is almost equal to 1
m
. Therefore, theorem 3 tells us that the mixing time of the total

variation distance of the continuous time Markov chain is bounded below by m. While in

proposition 14, the discrete time Markov chain also have the same lower bound m for the

total variation distance.
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