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Mixing Times for Burnside Processes

Student: Wei-Kuo Chen Advisor: Yuan-Chung Sheu

Department of Applied Mathematics
National Chiao Tung University
Hsinchu, Taiwan, R.O.C.

ABSTRACT

Mixing time is the crucial #ime for a"Markov'chain converging to its equilibrium.
Several tools have been developed to analyze this important quantity, such as an-
alytic techniques in Hilbert space; and-coupling methodology. In the last decade,
computer theorists Goldberg’and Jerrum purposed a special Markov chain, called
Burnside process which is an impertant probability model for counting Pélya’s cy-
cle index polynomial. In particular, D. Aldous 2001 and P. Diaconis 2005 discuss
the mixing time of Bose-Einstein Markov chain. However, we still know little about
the Burnside process. Hence, in this article we want to discuss mixing times for

general Burnside processes. processes..
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1 Introduction

The use of Markov chain in Monte Carlo (MCMC) simulations has been a widespread
and accepted tool in scientific computing. The popularity of MCMC is primarily due
to its ability to approximate the target distribution by the simulation of Markov chains.
In order to be relevant to applied work, theoretical results must concern not only the
quantitative but also yield the bounds that are close to be sharp. If the bounds are not
sharp enough, the user seems to disregard them as unreasonably conservative, and too
expensive in time. However, only few works have been done on the rate of convergence
for any of these algorithms.

Based on the backgrounds above, the aim of my thesis is to study techniques for
analyzing the rate of convergence. The main tools are relied on L. Saloff-Coste 1997
and D. Aldous 2001. The former deals with such kind of problems by using the analytic
tools in Hilbert space. While the later developed an inspired method, called the coupling
methodology, to do that. Both of the their tools are fundamental and important toward
the estimation of rate of convergence., Hence, the fizst part of this article is to explain
their idea. The second part will focuson a special Markov chain and intend to investigate
its convergent behavior.

Here, 1 briefly sketch this chain as follows. For a given finite state space X and a
group action GG on X, suppose that the ‘current state is x, choose uniformly at random
among g € G with 29 = x, and then for fixed g, choose uniformly at random among
y € X with y? = y. Such a process specifies a reversible Markov chain with a stationary

distribution,

K=o Y o m@) =

[ANPRREA
where z is the number of disjoint orbits, O, is the orbit of z, GG, is the stabilizer of x, and
X, = {x: 29 =z}. This is called ” Burnside process” purposed by computer theorists,
Mark Jerrum and Lesile Goldberg (1993, 2002). Up to the present, general convergence
results of this chain are few, but successful analyses of some special cases are possible.
For example, let [k] = {1, 2 --- | k} and X = [k]" . The symmetry group S,, acts on
X by permutating its coordinates. D. Aldous 2001 and P. Diaconis 2005 are two totally

different point of views for analyzing this special problem. In spite of their works, we



still know little about this example. Hence, the second part of this article, we will use
the tools developed in the first part to discuss the rate of convergence of the Burnside

process.

2 Preliminaries

A discrete-time homogeneous Markov chain on a finite state space X can be specified by

a kernel K : X x X — R which satisfies

K(z,y) >0 forallz,yc€ X and » K(zr,y)=1 forallzeX.

yex

By the Chapman-Kolmogorov equations, we define the iterated kernel
K"(z,y) = Z K(z,2)K" ' (2,y).
2€X

A probability measure 7 defined on X' is stationary if Y w(z)K(x,y) = n(y) forally € X.
Throughout, we assume that the Markov chain is @reducible, that is, for every z, y € X,
there exists some n = n(z,y) > 0such that K" (z;y) > 0. Under this assumption K has
a unique stationary distribution 7 with minga(z) > 0.

The Markov operator associated with Jis defined by
K f(x) =YKz, y) f (),
yeX
and similarly the iterated Markov operator is formulated as
K"f(z) =Y K"(x.9)f(y).
yeX

The chain is reversible if K satisfies the detail balance condition
m(x)K(z,y) = m(y)K(y,x) for every x, y.

A state z € X is aperiodic if K"(x,z) > 0 for all sufficiently large n, and the chain is
aperiodic if every state is aperiodic. For irreducible chains, aperiodicity of a single state
implies aperiodicity of every state.

Given a kernel K we can then have a discrete-time Markov chain. With the kernel

K, we can also consider the continuous-time Markov chain identifying by the kernel H*

2



which waits an exponential time before moving. Precisely, let X, be a given Markov
chain. Suppose that N; is the Poisson distribution with rate 1 and N; is independent of
{X,}. Define Y; = Xy,, then
H'(z,y) = B [Ly—pYo=a] = ' Y | —K"(,9)
n=0
is called the transition kernel of the continuous time Markov chain associated with the
kernel K. Consequently, the operator is defined by
o0 tn
H'f(z) = e’tz — K" f(x).

n!
n=0

If we define u(t,z) = H'f(x), then it solves the heat equation

{(&—l—([—K))u(t,x = 0Oon (0,00) X X,

f(z).

Proposition 1. Let (K, 7) be an irreduciblé Markov chain on a finite state space X with

~— —

u(0, x

stationary distribution 7. Then

lim HY(z,y) = =(y) forall z, y.

n—oo

Furthermore, if we assume that K 1§ aperiodic, then

lim K"(xz,y) =n(y) forall x, y.

n—oo

With the weak conditions on K, we obtain that the Markov chain converges to its
stationary distribution. However, this classic result does not tell us any information about
the rate of convergence. Hence, the aim of this thesis is to present the general techniques
for analyzing the behavior of convergence and several examples will be involved.

In order to quantify the distance between the chain and its stationary distribution,
we firstly need to introduce a metric. The most natural and useful one is the total variation

distance.

Definition 1. The total variation distance between two probability distributions p and

v on X is defined as

lre = vllzy = max |u(A) — v(A)].



Proposition 2. Let p and v be two probability distributions defined on X, then

= vy = 5 3 ) ~ vl)]

TeEX

Proof: Let S={zr € X : u(x) > v(x)}. For any A C X,

p(A) —v(A) =pu(ANS) —v(ANS) — (W(ANSY) — u(ANS9))
=) () —v(@) = D (@) — ().

r€ANS rEANSC

Since p — v is positive on § and v — p is nonnegative on §¢, it follows that
(A) = v(A) < p(S) —v(S).

Similarly,
V(A) — p(A) < V(S%) — (S°).

Since p and v are probability measuregy u(S) = i(S) = v(S¢) — u(S°). Thus,

I — vy :% (1(S) — v(8) F v(8%) = (S
:% Z(M(x) — ulz)) Z(V(Z’) —pu(z))| = %Z lu(z) — v(z)].
€S reSe TEX

This completes our proof.
OJ
The techniques in Hilbert space will be very useful in our analysis. Hence, we define

the L, distance.

Definition 2. For any two measures p and v with densities f(x) = u(x)/7(x) and

g(x) = v(x)/m(x) with respect to the positive measure 7, their LP(7) distance is

dﬂ,p(ﬂa V) = Hf - gHLp(W) for 1 <p < .

From proposition 2, we could see that d. 1(u, 7) = 2| — 7||7v. By Jensen’s in-
equality, the function p — d, ,(, v) is non-decreasing.
Next, we want to define the mizing time which measures the time that the chain

needs to go to its equilibrium.



Definition 3. The total variation mixing time is given by
T(K) = inf {n >0 :sup||K"™(z,:) —7()||rv < 1/6} :
Definition 4. The L” mixing time is given by

T,(K) = inf {n >0 supde (K" () m) < 1/6} .

Analogous definitions can extend to the continuous time Markov chain H; and we
use the notations 7" and T}, to denote the mixing times of total variance distance and the
L, distance, respectively. We should note that because of the following proposition, the

constant 1/e in the definition is chosen for convention.

Proposition 3. For 1 < p < oo, then n —— sup,cy dr ,(K™(z,-),7) is a nonincreasing

sub-additive function. In particular, if

sup dr, (K™ (@2),7) < 3

rzeX

for some fixed integer m and some:f € (0, 1)-then

sup dmp(Kn(wv ')a 7T) < ﬁLn/mja

TeEX

where |u| =max{z € Z:z < u}.

Proof: Use Jensen’s inequality, we have

b9, 7 = 5 Zﬁm”‘” (K 1) "
<;;K 'K y) ;dw 2, TPK (x, 2),
and y
ey 17057 = 3|5 (S - (s - 1) )
53 BUEZ) 1 (e ()




Now, taking the supremum, we prove that d, ,(K™(z,-),7)? is nonincreasing and subad-
ditive. Next, suppose that n is any nonnegative integer then there exists some k such
that km <n < (k+ 1)m. So

sup dy »(K"(z,-),m) < sup dﬂ,p(Kkm(x, ), m) <supdy (K™ (x, '),W)k < pF= @”/mj.
reX reX rzeX

Hence, we prove our assertion.
O
Assume that K is an irreducible and aperiodic Markov chain on a finite state space
X. We say that K satisfies the so-called Doeblin condition if there exists an integer ng

and a positive constant ¢ such that
K™(z,y) > cn(y) for all z, y.

The first result of the rate of convergence is stated in the following which is involving with

the Doeblin’s condition.

Theorem 1. If (K, ) is an irredneible and aperiodie Markov chain, then
sup [|K7Ga, ) ey < (- c)' %
re

where ng is a nonnegative integer suchsthat- K" (z,y) > 0 for every z,y and ¢ =

ming , {_KT:((;;,;,)} .

Proof: From the aperiodicity, we have that K™ (z,y) > 0 for every z, y and some ny.
Define a square matrix M with each row equal to the stationary distribution 7. Then it

is clear that MK = KM = M. Take ¢ = min, yex {Kno(gc’y)} > (0 and define

M(z,y)
KR=eM - if 0 < c < 1,
N =
0, if c=1.

If ¢ =1, then M(z,y) < K™(x,y) for each z, y. If M(z,y) < K™ (z,y) for some z, v,
then 1 =3 M(z,y) <> K"™(z,y) =1 which is a contradiction. Hence, M = K™ and

we are done.



If 0 < ¢ < 1, it is easy to check that N is a Markov kernel and MN = NM = M
such that

(N — M)" = i(—nl G) N = En:(—nl (7) NI+ N

=0 =1
=3 (=1 <7Z)M +N"=(1-1)M—-M+N"=(N-M)N"*
=1
and .
Knon N — Z (7’) Knoanfnol _ (Kno o M)n _ (1 . C)n(N - M)n
=1

Now, if we set a matrix norm || - [| by [|A]| = max, >, |A(z,y)| for any matrix A and

recall that |AB|| < ||A|||B]|, then
K™ = M| < (1 =) [N = M|[[IN[|"™" = (1 = ¢)"[[N = M| < 2(1 —¢)".

Finally, for every m > 1, there exists some n > 0 such that ngn < m < ng(n + 1), and it

follows that
| = M| = [ on (iren = My SRR | < 201 = o) = 2(1 = ) Fa,

So from the definition of the totalivarianee-distance, we prove the announced result.

O

We can get an upper bound of the total variance distance via the constant ¢ in
theorem 1. Usually, it is easy to apply theorem 1. Nonetheless, the estimation is always
not sharp enough. From the elementary result in the matrix analysis, we can express our
Markov kernel by using its eigenvalues and eigenfunctions. It turns out the bounds for

eigenvalues is related with our convergent rates.

Lemma 1. Consider a reversible Markov kernel K with stationary distribution 7. Let
{Ai:i=0,...,|X| =1} be the set of all eigenvalues of K and {¢;|i =0, ..., |X| —1}
be the corresponding orthonormal basis and eigenfunctions in L?(w). Without loss of

generality, we assume that \j = 1 and ¢y = 1. Then the eigenvalues of K are all real and

Kn(l’,y) _ - b (1 TR



b (7Gx, 77 = S| K00 Z DPl@P, @)
and
) SN vy, ()7 3)
my) e
t(yp 2 |x[—1
dea (1, = | D 1] ay) = 30 @R @

3 Spectral gap

Now, we introduce the L? techniques to bound eigenvalues.

Definition 5. For a Markov chain (K, w) on X. The Dirichlet form is given by
E(fgp= T =K},9).
where (£,g), = Y ()9 ().
Proposition 4. A simple calculation yields that
(1)
e =( (1= 30+ K0) 1.0 =3 X @) - FOPK @) ©6)

2yeX
(2) For a fixed f € L?(m). As a function of ¢, the derivative of ||H!f||3 is given by
S I = ~2€ (11, ') )
where || £l = e [1()Pr(y)7.
The spectral gap is defined in terms of Dirichlet form.

Definition 6. The spectral gap A associated with K is given by the formula

A= \K) = inf{égj(?) :Var(f) # 0} .

Here Var(f) = 3 cx |f(x) = Ex[f]PPn(z) and Ex[f] = 3 e ()7 (2).

8




We emphasize some facts on the spectral gaps. Recall that the adjoint operator K*
of K on L?(7) is defined by K*(x,y) = % and has the same stationary distribution
as K. Hence, from the definition of spectral gap, it follows that A\(K) = A(K*). More

important,

Proposition 5. If K is reversible, then A is the smallest non-zero eigenvalue of I — K.

In general, A is the smallest non-zero eigenvalue of I — %(K + K*).

Proof: We only prove for K being reversible. Assume that K is reversible and let \; be

the eigenvalues of K with
1< Ay S-S <A =1,

and ¢; be the corresponding orthonormal basis and eigenfunctions of )\; in L?(r). For
any f € L%*(w), Varg(f) # 0, f can be expressed as f(x) = Ezg_lciwi(x) where
co, - ,cxl-1 € C. So

Eff) _Ef—cof—c) _ SEFHEPARNY X el - M)

Vare(f) — Var(f —co)) SRl —colp — S el?

:1—)\1

Hence, A > 1 — A\;. Now, let Webe thessubspace generated by {¢o, ¢1} and for any
element f € W, ||fll = 1 and 7(f) = 0. Again,any f € W can be expressed as f(x) =
cotho(x) + c111(x). Therefore,

1
A<inf{&(¢,0): ¢ € WY <E(f, ) =D lal’ (1= X) = |erf(1 = A1) < 1= Ay,
i=0
Thus, A =1 — Ay and this completes our proof.
O

The following theorem establishes the relationship between the rate of convergence

and the spectral gap.

Theorem 2. For every vector f in C!*!, we have

IH'f =7 ()3 < e Var(f).



Proof: Let u(t) = ||H'f — w(f)||3 = ||[H!(f — =(f))||3. Hence we have, by (6),

u'(t) = —26(H" (f —«(f)), H'(f = 7(f)))
< =2\Var (H'(f —7(f)) = —2Xu(t).

This implies that u(t) < e7?*u(0). Hence, we are done. O

Proposition 6. Let K be a Markov kernel with the spectral gap A. Then we have

e—)\t
ot ). m) = 1)~ 1], < s @
and
[ (o) — ()] < | DL e, ®

()

Proof: Due to the fact (K*)"(z,y) = W, the associated semigroup H' = e~ ~K")
has kernel

H'(z,y) = = (H')"(z,y).

Consider the densities of H'(z,y) and H(#,y) with fespect to T,

H'(z,y)
m(y)

~ Ht
and “h'(z,y) = —(m,y)

hi(a,y) = = h'(y, x).

Note that h'(z,y) = % — H'f(y)ywhere f(z) = -L-0,(z). Hence, use the fact
AK) = AK7),

e =1, = [ = m()] < e Far = e L < S

Moreover, we have

0 (2, y) — 1] = > (WP (2, 2) = 1) (W?(z,y) — 1) 7(2)

z

< (|02, ) = 1]l

6—)\15

m(z)m(y)

W2y, ) — 1H2 <

Hence, we finish our proof.
O
Proposition 6 is one of the fundamental results of finite Markov chain theory. In

particular, it tells us

10



Theorem 3. Let K be an irreducible Markov chain and

w=min{Re(§) : £ # 0 is an eigenvalue of [ — K} .

Then

. —1

Vi<p< oo,tlirglo Tlog (r;leag(dﬂ,p (H'(x, -),7?)) = w. 9)

For 1 < p < 2, we have

1 1 1

—<T,<—(2+log— 10

sty g (2mer ), (10
whereas, for 2 < p < oo,

1 1 1

—<T7T,<~<(1+log— 11

Setsg (o). )

where 7, = min,cy 7(z).

Proof: We may prove (10) and (11) easily by using inequalities (7) and (8) and Jensen
inequality. To prove (9), we need a fact in real analysis. Suppose that 1 < p, ¢ < oo with
1,1 _
5 —l— E = 1, then

I~ 11 s e 5 (2, ), 7).

where the matrix H*—1II with TI(z.%) = 7 (y) is regarded as a linear operator from L4(7) to
L (m) and ||H —1I|| j— 0o = sup {|[(H" — IDfloe i || f|]¢< 1} is the corresponding operator
norm. Hence, the left hand side of (10)“and (11) are obtained by noting that the spectral

radius of operator H' — II is e™“! and the fact

[ = 1T » M =DVt _ i Wline) _

11 Lacr) 1l zagm)

where v is the eigenvector associated to e™%.

Now, we turn to prove (9). Note first that the limit can be rewritten as

. —1
Jim = log (1A~ 11],.x) =

1

where p~' + ¢~! = 1. Again the previous fact, |[H" — II||,—o > e~ **, shows that

-1
hmsup —log (|| H" = |—00) < w.
t—o0
It remains to show that

P
hgglleog(HHt — o) > w.

11



We recall the following fact in matrix analysis: for any ¢ > 0 and any matrix A, there
exists a submultiplicative matrix norm || - || such that |A| < p(A) + €, where p(A) =
max{|¢] : € is an eigenvalue of A}. Let A = H' —II, then we have

|H' —1I|| < p(H' —1TI) +e.
Then
|2 =10 < [|HFY — 1) B < ofl(H - W) < C (p(H — 1) + )

where C' = maxejo1) [|H®||. Note C indeed exists because ||H"|| is a continuous function.

Therefore,

—logC —|t
ke leog(e_“’jte)2—10g(e“"+6).

—1
lim inf — log |F* = TI|| > lim inf

Since any two matrix norm are equivalent, the above limit also holds for the operator
norm || - [|;—e0- At last let € — 0, we geti(9)1and, we finish our proof.

O

Remark 1. In general, A < w. Furthermore, if K is reversible, then the equality holds.

4 Coupling

In this section, we want to develop the elementary idea and result of coupling method to
bound our total variance distance. Suppose that (X,,),>, be a discrete time Markov chain
defined on a finite state space X'. Let K and 7 be its kernel and stationary distribution,

respectively.
Proposition 7. ||K"(z, ) — 7||ry < maxyex [|[K"(z, ) — K™(y, ) |lrv

Proof: Since 7 is stationary, m(x) = >° . 7(y) K" (y, ) for every x € X and n € N,

157 () = 7z = max > w(z) (K™(x, A) — K™(2, A))
<> 7(2) max K" (z, ) — K"(y,)lrv = max 1K™ (2, ) — K™(y, ") lrv-

O

12



For any z, y € X, a coupling is a joint process (X7, X3, )n>0 such that

P(X,€-|Xo=2)=P(X{,€-) and P(X, € |Xo=y)=P(X],
for every n > 0. If there exists a stopping time 7T}, < oo, such that

X7, =X5,, forT,,<n<oo,
then we call that T}, , is a coupling time.
Proposition 8.
|P(X, € |Xo=2)— P(X, € |Xo=y)llrv <P(Tpy >n+1)

Proof: For every A,

P(X, € A|lXo=12)— P(X, € Al X, =v)

=P(X{, € A)-P(XJ, A

P(X?, € A, XE, EXY,) —P(XE, € A, XD, £ XY,)
<P(X, € A, X A X0 S P = n + 1),

Now, similarly,

P(X, € AlXo =y) — P(XpiedAXo = 2) <P(T,, >n+1).

Thus, by the definition of total variance distance, we are done.

In applying coupling methodology there are two issues.
(i) First we need to specify the coupling.

(ii) Second we need to analyze the coupling time.

The most common strategy for constructing coupling is via Markov couplings. We describe
this procedure as follows. Suppose that the underlying chain has state space X', and kernel

K. Let K be a new Markov chain on X x X satisfying the following conditions. For each

pair (x,y) with = # y,

K((z,y),(«',y)) has marginals K(z,-) and K(y, ),

13
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in other words Zy,f?((:c,y),(x’,y’)) = K(z,2') and )_, [?((:c,y),(:c’,y’)) = K(y,v).
And suppose that

K(z,2"), ifa’ =9,

K((z,z), («,y)) =
0, if o £/,

Let (X7, XJ,,) be the Markov chain on X' x X" associated with Markov kernel K and initial

1,n

position (z,y). Then this defines a coupling on K. We can see that if XTp = X;’vn = 2z,
then X{, = X4, for every m > n + 1. Indeed, for every m > n + 1,

P ((Xx

1,m>

X3 = (2 (X X)) = (2,2)) = K™ 7"((2,2), (2,2) = K™ 7"(2,2).

Therefore, T, , = min {n >0: X7, = Xgn} is a coupling time. This construction gives

a natural Markov coupling.

5 Mixing Times for Burnside Processes

In this section, we want to introduce a special Markov chain, called Burnsider process,
purposed by computer theorists. Some cotivergent behaviors will be given by using the
techniques we established above. Firstly, we give a background of this chain.

Assume that we have a cuberand want-to paint its faces with two colors red and
blue. A natural question to ask is how many-distinguishable configurations there are ? In
this case, we can easily check out the answer. However, how about a arbitrary n regular
polyhedron painted with arbitrary & different colors? It seems very hard to figure out,

even for k = 2 and any n. Let G be a permutation group, the cycle index polynomial is

defined by
c1(g) i) (9)
Pa(z, .. Z|G\ |G| § : RS |C|?G|‘ ’

geG
where ¢; means the number of i-cycles. Polya’s theory of enumeration says that the

number of distinguishable configurations is equal to

where G is the permutation group induced by the rigid motion of the given n regular
polyhedron. Nevertheless, Goldberg [4], a computer theorist, proved that to calculate the

cycle index polynomial is intractable even when G is an abelian 2-group.

14



Instead Goldberg and Jerrum [5] purposed a Markov chain, called Burnside process,
to sample an orbit uniform at random. Let X be a finite state space and G be a finite

permutation group. Assume that G is a group action on X', that is, there exists a map
(,): X XG— X by

(1) (x,e) =z for every z € X and e the identity of G;

(2) ((x,9),h) = (x, gh) for every g, h € G.

Throughout, for simplicity we denote (x, g) = x9. This action splits X into disjoint orbits,
xX=0,U0,U---U0,_,

where O, = {29 : g € G} and O,, N O,, = () for every i # j. Here, the number is given

ZIX!

gEG

by Burnside lemmoa,

where X, = {z € X' : 29 = z} the fix-peint set of g Now, the Burnside process is described
by the following. Let x be the underlyingstate, we choose g € G with 29 = x uniformly
at random and then for this g we-c¢hoose y with y9 "= v uniformly at random. Thus, the
chain moves from x to y. Therefore, the transition matrix and its stationary distribution

are formulated by

1 1 1
K(IL’,y) = Z 7 and W(I) = Ta (12>
| $| gGGzﬂGy ‘ g| Z| $|

where G, = {g € G : 29 = z} is called the stabilizer of z. This was the genesis of Burnside

process. Throughout, we assume further
K(z,y) = K(29,y?) foreachz,y€ X and g € G.
Iteratively, it implies that
K"(z,y) = K" (2% y?) foreachz,ye€ X and g € G.

Let X be the collection of G-orbits of X. Then we have a corresponding lumped Markov
chain K defined on X x X by setting

K(0,,0,) =Y K(,z2)

2€0y

15



where O, stands for the the orbits containing the state x. This definition is unambiguous,
since for every 1, z9, € O, K(z1, y) = K(2, y") = K(zq, y") for some h, and O, =
Oyn. It is clear that K is a reversible Mavkov chain with uniform stationary distribution
7 = 1/z. For simplicity, write K*(y) = K"(z,y) and Ky (0) = K"(O,, O) and we
arrange the distinct orbits in order X = {O;}7_, .
Lemma 2. In general, Fggp((’)) = > .co KJ(2). Furthermore, if x € A such that
K(z,z) = K(x,29) for every g € G and z € X, then

Ko, (0) = |0|K; (y)
some y € O and n > 0.

Proof: Firstly, we prove the first equation. If n = 1, it is just the definition of Ko,.
Assume that FZT(O) = > _,co K7 (y) for some n > 1, then

Ko, (0) =3 Ko, (00K(0,0) = 3 {Z Ks<y>] [Z K(y. z>]

S S Y ki z>] =SS kn() K0 = K,
2€0 Li=1 yeO; zeO yeX z€O

By induction we prove the first équation.."Now, assume that O = {y9 : g € G} . Since
K"(z,y) = K"(x,y9) for each g, it follows that
K$,(0) = K"(z2) = |O|K"(x,y).
z€0

So we are done. O
Proposition 9. Suppose that x € X such that K(x,z) = K(x, 29) for every g € G and
z € X. For any n € N,

1K} =l = (Ko, —Tlrv. (13)
Proof. From lemma 2. and the fact that 7(-) is constant on every orbit, this proposition

is easy to check. Indeed,

. B 1 z . B 1 z .
1Ko, = Tllzv =5 > Ko, (0) —7(0;)] = 3 > OK™(,y;) — |07 (y;)
j=1 Jj=1
1 - n n
Jj=1 yeO;
where y; € O;. This completes our proof. O
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Suppose that X is a finite state space and G is a finite group acting on X. Let (K, )

be the corresponding Burnside process and (K, 7) be the lumped chain defined as before.

Lemma 3 (exercise 9, section 1.8, [6]). For any two subgroups G, G of a finite group G,

|G1]|Gy|
GGy = 2L
[Gr G| 1G1 NGy

where G1Gy ={gh:9€ G1, h€ G} and G, NGy, ={z€ G:z2€G,, z€ G,}.
Proposition 10. For every n > 1, max, ||K? — 7|y < (1 — ﬁ)
Proof: Consider the Doeblin bound, by using Cauchy-Schwarz inequality and lemma 3.,

K(ry) 1 ERYES €]
x| 2 T (|G|§'Xg')(|ay|>

geGNGy

1 |G=NGy| |G2NGy|

2iamen | 2l 2 &

Zessil i=1

(Cauchy=Schwarz)
|Gz N Gyl2e |G LGy e 1

T GLIGy Ty GG TG
where G, NG, = {g; |1G’”mGy| . Hence, from theoremi I, we have for every n > 1,
T ()
max z TV > — — .
@ |G|

Proposition 11.

W 1 \"
max || K, — 7 <|(1-——1 .
OcX I%o v < < |X|)

Proof: We use the methodology of coupling to prove this. Define
N K(O"’ 0K (0;,0;), if O; # Oy,
K((Oi,Oj),(Oi/,Oj/)) = K((’)Z-,Oi/), if Oz = Oj and Oi/ = Oj/,
0, otherwise.
In other words, O; and O; move independently until they hit and then move together.
It is easy to check that K is a Markovian coupling. Therefore, suppose that (X,,,Y,) =
(0, 0;), we may observe that

17



(1) lf Oz - O], Xn+1 - Yn+1.
(i) if O; # O;,

P(Xn-l-l = Yn—&-l}(XTM Yn) 027 O

Consequently, we have

Pi(Xo #Ys) =Y P(Xy # Ya| (X1, Y1) = (Or, 7)) P i (X1, Y1) = (O, 0yr))

i1l
1 7]

=Y P(Xs # Ya| (X1, Y1) = (O, 03) P 5((X1, Y1) = (05, Oy))
i'#5'

= [1= P(Xs = Y3|(X1, Y1) = (O, 05))] Pj((X1, Y1) = (0w, Oy))
i'#j’

< max (1 — ) K(0mO)K (O, (9)) .
o

i'#5

Inductively, it implies that

On the other hand, for z € Oy and y € Oy,

K(0y,0;) Z

|G [|Gy|

1 IG. NG | [eXem 1
> e 1 5yl o>
2 7 2 el 2 e 7

then by the proposition 8, it implies

. 1\"
mox [~ e < (1= 737 )
OeXx

18



= |G“ = ’qu‘ and Gx g G$97

Assume that G is an abelian group. Since |G| = 0. = O

it follows that G, = GG,+. Hence,

1 Z 1 1 Z 1
= —_— —_ = g h
K<x7y) |G ’Xg‘ K(m 7y )7

.’17| QEGzﬂGy ’ g‘ ’qu| gergﬁGyh

and for every n > 1, and x € X,
1Ky = wllrv = Ko, —7lrv
Furthermore, from lemma 2. K is symmetric.

Corollary 1. If G is an abelian group, then

1 n
mag || Kz = v < (1 m)

5.1 Bose-Einstein Markov chain

Suppose that n balls put into k& boxes. PutX.= {1, ..., k}" to be the state space. In
other words, if z = (zy, ..., z,)=€ X, it means that the i-th ball is put in the x;-th
box. Assume that G = §,, is the symmetri¢ group acting on X by y = 29 where y; = x;
whenever j = g(i). Hence, we have a Burnside process'defined on X’ by following eq. (12).
In particular, the stationary distribution of the lumped chain is given by the well-known

Bose-Finstein distribution,

1
Ty
("¢=0)

m =

which is used to described the distribution of the energy of state in statistical physics. As
we can see that the formula of transition kernel K of Burnside process is very complicated.
It seems hard to calculate every single term of K exactly. However, it turns out in Diaconis
[3] that Pdlya theory of counting prides a crucial bridge for doing that. Based on his idea,

the following presents a formula for the kernel of the lumped chain.

Definition 7. A partition X of a nonnegative integer n is a sequence (A\y, Mg, ..., \) € NF
so that Zle A = n and \; > \;41. Here, we shall write A = n to denote that A is a
partition of n. We use the notation b;(\) to denote the total number of i appearing in \.

Precisely, 1b1(A) + 2ba(\) + - - - +nb,(A) = n.

19



Lemma 4. Suppose that Ps is the cycle index polynomial of the symmetry group S,
then

i)

b1 ,.b2

x x o e
PSn(ajla Zo, ..., Loz n . (14)
; Hz lb'Zb
i)
Zpgn<$1, To, ooy Tp)2" = Hexp (z"xn/n). (Ps, =1) (15)
n=0 n=1

Proof: These two results are classical and can be found in many textbooks of combina-

torial mathematics, for example, chapter E. ”Pélya theory of counting” in [2]. U

Remark 2. From the equation (15), we can see that if x; = % for every 7, then

ZPSn(l/k’, 1k, ..., 1/k)z" :Hexp (%%) = exp (%Z%)

Thus, Ps, (1/k, 1/k, ..., 1/k) = (“)

Suppose that f : R¥ — R can beexpressed as a Taylor series. We define the

notation
(tslvltg2 T tik) [f(tl >t27 ) tk)]

to be the coefficient of t7't5 - - - t;* of f(t1, to, ..., t;) where 1, zo, ..., 2, € NU{0}.

Theorem 4. Consider the Burnside random walk with S, acting on X = [k]". Let 2 and
y be two states in X. Suppose that x and y have x; and y; balls in box i, respectively.
More precisely, x1 + 22 + - + 2 = y1 + Y2 + - - - + yp = n. Then the transition matrix of

its lumped chain can be formulated as the following

P ZJ 1t} Z] 1tj2 Z?:l t;l 16
Ay A ) L PRI T ( )

where Py, is the cycle index polynomial of S, x Sy, x --- xS, .

K(0,,0,) = (t't5* -+ 1)

20



Proof of Theorem: Recall that the lumped chain is originally defined by

Foa0)-g| % 2w ) w2 | S e )

2€0y geGNG, g€Gr \ 2€0y,

If 29 = z then z is constant on every cycle of g. On the other hand, since z € O,,
) _ (g)
Z {z9=2} = Z H bi(M) )
co Ak -5 bi(Aw)
2€0y vi, Vi=1,2,..., k i=1

Therefore, the transition matrix can be expressed as

( ) 1

AiFyi,Vi=1,2,..., gGGI =1
To attain our purpose, from ii) in lemma 4, we use the identity,
k 9] 00 " k
H [Z t:Ps, (uy, dg, - . . u,)j| = Hexp (f Zt;) . (18)
j=1 Li=0 i=1 j=1
Now, for each \; - y;, let A = (A1#7Ag, "o, Ak), and define the differential operator

9\ oo 25z bi()
(%) - au2§:1 bl(kj)au ?:1 bQ()‘j) L. au ?:1 bn()‘j) '
1 2 n

Thus, on the one hand,

(%)Apcz(ul, Us, ) ) = xl'xz =3 H( >---bi()\k))u?(g) 19)

geGy i=1

where ¢y (u) =[], H] LU Oy, (Aj)!. And on the other hand,

i) G ] -

=1 =1 =1
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Therefore, combine eqs.(19), (20) together, it follows

x1|x2 A Z H ( ). --@(M))ﬁ

geG =1
B a A kE oo
_ —1 /w1 42 Ty j
—oU/k b 1R ) | (55) [[> Py 1/ v .
B a A 0O Z t”L
_ —1/421 422 T 17
=cx(1/k, 1k, .., 1/k) 7L (0182 - %) (%) Hexp (Jz—k>]

no 1k =1 bi(N)
=cx(1/k, 1k, ..., 1/k) 7 (52 - ) ] <22t§>

i=1 1=1

k n tl bi(As) 1
__(4T14T2 | 4Tk Jj=1"7
=(t7'13 t") HH ( ) by(\:) 110 O)

Finally, from i) in lemma 4, we are done if we rearrange eq. (16) suitably.

Remark 3. Particularly, if £ = n and x;,= 1, for each 7, then

K(0,,0,) = (titg-- - t,)

3 g ey

n n n

Since the degree of S°%  #¢ for i > 2 is large than 1,

_]_‘7

For general n and k, suppose x is constant then

_ tl #2 koo
K<O;p,0y):(t?) PAy <Z] 1 ]’ Z] 1 j’ o Z] 1 J>]

k k

1 tl 61(9) t’lll Cn(g)
=(t") | —— — R S
Yk

1 t7
(tTll) E -
|... | c T Cn

o Yr: gESy, XX Sy, ker(®) @

- Hyz Z ke gz)+ “+en(9)

9i€Sy;

B n 1 F(yﬂr%)
<yly2 yn>n'g INCI
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Proposition 12. The transition matrix K is symmetric.

Proof: From the representation of K in theorem 4 and eq. (4), this property holds

clearly, indeed,

_ () 1
K(Om Oy) - Z l Z H( ! . bi()\k))m

NiFai, Vi=1,2, .. k yilya!- 9€G, i=1

—K(0,, 0,).

We can easily check that if x is constant, then for every y € X and g € 5,
K(z,y) = K(z,y?).

By proposition 9, 10 and 11, it follows that

1K — 7llrigas (1 - ;})l (21)

min{n!, k»
Diaconis [3] proved that
ey
| KE— < (1 — E) : (22)

If k is large, then (21) is better than{(22). Aldous [1] gives a remarkable upper bound of
this chain by using an inspired coupling method. Precisely, he proved that

Theorem 5 (Aldous). For every state x € [k]",

1K' (@, ) = 7w < (1 . %) |

In other words, this means that the spectral gap A of Burnside process is bounded

below by . Recall that equation (9) says

t—o00

A—hm—llog(%upuﬂt( ) - <~>HTV).

23



Therefore, for each x,

2| H @) =7 (v = [H (2,y) =7 (y)]
-5

<t 3B K ) - 7o)
=0 Y

1 l
<2ne! Z% (1 — %) = 2ne tet0-1/k) — ope=t/k

=0

30 (K ) — ()]

Plug this result into eq. (9), we have

—log (2ne™*)  —log2n+t/k  —log2n N 1

1
~log (2500 ') = 7y ) = — B0 t £ g

and now, passing to the limit, it follows A > %
Hence, with the upper boundediof the spectral gap, we can immediately get the
mixing time for L distance from theorem 3.

Corollary 2. For this Burnside process K the miring time has an upper bound,

§(2+nlogk), fl<p<2
T, <
k(14+nlogk), if2<p< oo,

where

T, = inf {t >0: meaééidmp(Ht(x, D, m) < 1/6} .
5.2 Other Burnside Processes

Suppose that S,, be the symmetry group and G = (h) where h = (1, 2, ..., m) and m <n
is a prime. Consider the Burnside process with the group G acting on the state space
X = [k]". Observe that 29 = z for some g in G if and only if x is constant on h, i.e.

Ty = Ty = -+ = p,. This observation is easy to show. Indeed, since |g| = m and
T1 = Tg(1) = Lg2(1) = =70 = Lgir) = Lgitr(n) = 100 = Lgm(1) = L1,
it follows that r1 = a9 = -+ = z,,.
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Lemma 5. Let x = (21, 22, ..., z,) € X and g € G, then

G, if x is constant on h,
G, = .
{e}, otherwise,

0,] = 1, if z is constant on h,
11 m, otherwise,

and
Ermmtl it g £ e,
‘Xg’{k”, if g=e.

Lemma 6. The transition matrices of Burnside process and its lumped chain are given

respectively by

(m—1)k™ ' +1, if both z and y are constant on h,

1

K(z,y) = o 1, if £ is constant on A and y is not constant on h,
m m, if x is not constant on h.
and
1 (m —1)k™ ! 41, if both.r ahd y are constant on h,

K(O,,0y)) = ——1< m, if there is exactly one of z and y be constant on h,

mkn 2 - -

m-, if neither £ nor y are constant on h.

Proof: Recall that the transition-matrix of the Burnside process is formulated by

Ko) TGRS

geEG NGy | g|

And the lumped chain is K(O,,0,) = |0,|K(z,y). From lemma 5, we can easily get
what we want.

OJ

With this transition matrix K, we can calculate several important quantities of this

chain. Let A\ be the spectral gap of this Burnside process.

Proposition 13.

1<>\<1+ 1 1
m~- —m  kml mkm-l

Proof: Firstly, from proposition 4. we see that

\!
max || K. — 7|y < (1 - —) :
m

reX
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Hence, by using 3 and following the same argument as above we could see that the spectral
gap A of K is bounded below by 1/m. On the other hand, set a test function f: X — R
by

o) = 1, if x is constant on h,
1 0, otherwise.

and the number of disjoint orbits is

1 1 k" m—1
- § X|=_— n -1 n—-m+1] _ 1

geG

z

then it follows that

ELND w1 L1
o 1 T m—1 m—1"
Var(f) = m k mk
From the definition of spectral gap, we get the assertion. [l

Next, we turn to calculate the lower/béund for the total variation distance.

Proposition 14. If = is constant on A and-k.> 8; then for each 1 <[ < m,

(1290 S S Al

Proof: Define a square matrix A of dimension £" x k™ by

mkm?

A Mﬁ’}f_iﬂ + -1 if both = and y are constant on h,
i 0, otherwise.

It is easy to see that K' > A! for every [ > 1, and a simple calculation yields

m—1 17 1 1 1 !
Al _ (n—m+1)(1-1) _ 1—— (1=
oy = K mkn—m+1 + mkn fn—m+1 m km—1 ’

whenever both x and y are constant on h. Set A = {z : x is constant on h}. Then

I =l 2 3 | Ko - 2] = 3 |41, - 2]

yeA
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Assume that [ < m, a simple calculation yields that

1 1 1 1 \1" m m—1]""
l _1.n—m+1
Z [A:vy - ;} =k [knerl [1 m (1 a kml):| ok {1 T fm—1 } ]

yeA

)
1\’ l m 1\’ m
>(1-= 1- =) -
_< m) +mkm—1 (m—l)( m) km—1
(1o L)
- m mkm—1 .

The last inequality becomes

4m2—l+mkm_1+l—4m2 1_l l+ [ 1 l_ m

mkm—1 mkm—1 m mkm—1 m km—1
B mk™ 1+ [ — 4m? . 1 l+ Am . 1 l_ m
N mkm—1 7Y k= m km—1

mk™ ' 1 — 4m? TN 4 I\" m
> 128 | = =) -
> (") (i ) oo

mk™ ' 1 — 4m? 1\ 1\?
> - 1= - -
> (M) (S e ) - o
B mk™ 1+ | — 4m? 1_1 ,
a mkm—1 m

4dm 1 !
>(1— 11— —
= () (1-5)
l

m . . .
We note that (1 — %) and — kf‘nnfl are increasing in m. Hence, we complete our proof.

As a conclusion, if k is large, then from proposition 13, the spectral gap of K

1

is almost equal to --. Therefore, theorem 3 tells us that the mixing time of the total

variation distance of the continuous time Markov chain is bounded below by m. While in

proposition 14, the discrete time Markov chain also have the same lower bound m for the

total variation distance.
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