T
| -
T30l
él
d

- B R e B iE L e

A method for extending object oriented programming to access
semantic web classes

SRR |

R RAEEL RS L

- BHAS EES NGB F R R 2
A method for extending object oriented programming to

access semantic web classes

Borod ek Student : Po-Huan Chiu
dp g T R, AL Advisor: Chi-Chun Lo, Kuo-Ming Chao
IR - 4
T EIEAT
21

A Dissertation
Submitted to' Institute of Information Management
College of Management
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy in Information Management
January 2010

Hsinchu, Taiwan, the Republic of China

SEAREY L -

- BR AR RS WP BB R R e 2

PRI Y A BE R RAEEL ARG

£ &

PREERRFCEFLPREMEF LI L DA e o Ra P2 Ee R LY
Fraq i T FERROME > FREBFTFHISELE B2 Rk 2aiaizie
FRNBFEELERT FF 5 TR RAIIEP 4o R % F 22 2 kFFRDFFR ~ 2
pofedte AR SROFR N2 F LY FEe T AR ER
Foo ¥ H R Eu AT ARFIASGAG] 0 P v R Red) ERDFR S
WRAFRMRE > FL RN ol C R UG RF AT LR G R ERER
MK AR B BATRE e REAT B RS R R R B R R L
A NBE FLP CER R R0 N rEREF e B FAE LM

SR

o AP Y - B 75 TR AR R R T L e B g 2

MétF @ FEESRF FLE KV T REESE

A method for extending object oriented programming to access

semantic web classes

Student: Po-Huan Chiu Advisor: Chi-Chun Lo, Kuo-Ming Chao

Institute of Information Management

National Chiao Tung University

Abstract

Object-oriented programming (OOP) is a mainstream paradigm for engineering design
software tool development. An emerging requirement is the introduction of semantics to achieve
heterogeneous information sharing, but many challenges exist. Examples include using object
methods to manipulate an RDF data, automatically converting data into RDF format, and
supporting various programming languages. In addition, limitations to description capabilities
for relationships among object-oriented classes exceed those of RDF, thus hindering direct
mapping between object-oriented and Semantic Web classes. The proposed semantic object
framework (SOF) combines object-oriented design and Semantic Web features. SOF utilizes
embedded comments in source .code to describe semantic relationships between classes and
attributes. We use a mobile phone design case study to illustrate how the proposed system

operates.

Keywords: Object-Oriented Programming, OOP, RDF, Semantic Web, MVC Design

Pattern

e

<

-1 - A E HAR T ERFTF L L SR T UL E L B W% T A ST
i x BFRY Fauln v 1 (v S 5 & kA5 B Aandp R R
%i%gﬁ,;j‘ﬁ-&rpg-g SR M- e FA A LFEAG P FHEPTF X A FLI Y
3EMBA B FRSAE > HEEER D 0 F B &O T o £ R4 BN AL

EFEADSAF A R- BRAR2IEF L RN PF R E SRS AFE

BM LG S R SRR R - o REEF AT R 9 o B

Soehr A B RISCE R A Pk R R AT RERY

GUEIE R L ErE KR (Fiqes 5 R 1R RN P Y SL RS ch R L o S

it AR F 0 A LA AR o TE AF O TN R renk & PR ey

s EFREE o BT 0P 3§ O R FSL B A L B A 3 N ALY

\\-\

ok

Zd_} Eﬁ*'r;? ,f@‘)’f{@?}é qbg‘j”’)_%—/%irg;,%l}\.g ﬁi&m%’i,*wg ﬁi\‘fa—f@l}’ TJ_

AN

H
4
ﬁ
=%
Bad
?
=
T
s
=
)
e
e
&
\
F_&
28
I\ﬁ.
I
1%
b
_H

ESRARIEE N 3RS R NS

E;%
ful™
’a;
4
4y
=
Ar
73
-
e
ik
B
)
=
VN
}
F)
+
>¢
A

CIRE (RN e) ~ HE (A

Forayk B o M a Bt A BGEF S AR REEF SABAN & c R ALAF

FOTAA LI REARE L E O R LOERI R ORI HCERT T o

BB B e iii
A 013 1 - UoX TSR iv
BB et ettt ettt et et ettt ettt e et et e s et et et en ettt v
LISt OF TADIES. ... s viii
LISE OF FIQUIES. ...ttt bbbt ettt e iX
(O TV (=] o S 011 0o 0 Tox o o PSP 1
1.1 ReSEarch MOTIVALIONcccoiiiiiiiieiei e 1

1.2 RESEAICH GOAIS.......ccviiiiiiiiiiice e 2
Chapter 2. LItEratUure FEVIBWoiiiiieiiiie ettt sttt st see et e seeeneas 4
2.1 SEMANTIC WED ..ot i 4

2.2 OWL JaNQUAGE . tieirieiiee et eise s ss st e e st e st e e e e steesteesreesneesneesneeenseenseenneeas 11

2.3 Semantic web-development t0IS. ... cii .ttt 21

2.3 1 JBNA. ikttt e B 21

2.3.2 ACHVERDE . .l et ettt s nee s 21

2.3.3 D2R e e e bbbt beenree s 22

2.3.4 ECIASS ..o 22

2.4 Model-View-Controller design pattern in OOPccccoceveieiviniinineneneee 22

240 IMOGEI ..o 23

242 VIBW ettt ettt et nae e aenne s 23

243 CONIOMIET ..o 23

2.4.4 Object-Relational Mappingccccceeiieriiniieeiee e seese e 24

2.45 Object-Semantic Mapping........cccooueiririiirenenereeees e 24

2.5 Semantic Web Development Problems ..., 25
Chapter 3. Semantic Object Framework (SOF) ArchiteCtureccocevvvoveienieiceeeeeeen, 28
TS oo [0 T=0 I 1= o o S PSSSOSI 29

311 Data adapler.....ccccvccee e 29

vi

3.2
3.3

3.4

3.5
Chapter 4.
4.1
4.2
4.3
4.4
4.5
4.6
Chapter 5.
5.1
5.2

References

B0 PO e ————— 30

3.1.3 QUEIY BNJINE ..ttt ettt st seeees 31
3.1.4 RDF gENEIALON . .uiiieiiie ittt be s aee e 32
Synchronization between class definitions and semantic descriptions............. 33
Implementation DetailSccoiiiiiiiiee e 35
Hustration USING eXaMPIESccveiiiiiiiie e 40
3.4.1 Defining Address Book Classes Using OWL Syntax.........cccccoceereereenee. 40
3.4.2 Automatically Publishing Address Books in RDF Format.................... 45
3.4.3 Making Queries Across Heterogeneous Address Bookscc........... 46
3.4.4 Querying Data Sets with legal or illegal semantics.........c.cc.cocvreriennnn. 48
DISCUSSTON ...ttt 50
CASE STUAY .. B i st 2B sttt 51
Mobile Phone Assisted Design System (MPADS).........cccocvvvveveieiie v seeiesins 51
MPADS GOIS ..t st e e immss et ensarasmas e en e seeseeaneeseeaseensesseensessesneeseesseeneessens 52
COOPEIALIVE DBSION... Lot eaitraiasabine e e d i ettt sttt 53
Flexibility Evaluation i 57
Efficiency EValuation.. . i i i e 59
Costs and Benefits Evaluationcccoooiiiiiiiniiiicccc 62
Conclusions and FUuture WOTKScooviiiiiiiiisee e 65
SUMMIBEY ettt sttt e st e st e e sb b e e e be e e sbbe e snbe e e nbbeennbeean 65
FULUIE WOTKS ..o 65
... 67

vii

List of Tables

Table 1: The benefits of integrating O-O technology and the Semantic Webcccccoveeeenes 3

Table 2: A comparison of functions for five Semantic Web development schemes. X denotes

“unsolvable” and O “SOIVADIE™.ccoiiiiiiii 25
Table 3: The main implementation tools used by SOF ... 35
Table 4: Cooperative design features 0f MPADS............coiiiiii s 55
Table 5: Multiple roles in mobile phone design ProCeSS........ccocveieeiierieesiee e 56

Table 6: A comparison of Excel, RDBM, and MPADS in terms of conditional query flexibility.

X, UnsoIvable; O, SOIVADIEcviiiiii e 57
Table 7: Query efficiency comparisons between Excel.and MPADScccoceoiiininiienne 60
Table 8: Tasks for which Implementationicosts of MAPDS are larger than a simple Excel file 63

Table 9: Benefits and drawbacks of EXcel and MPADS it 64

viii

List of Figures

Figure 1: Five primary SOF MOCUUIES.........ccoiviiiiiiiciece e 28
Figure 2: SOF data adapter Class diagram.........ccueeeieriereieeie e e 30
Figure 3: SOF parser Class diagramcccveveieiieieieeiee e ste et e e et enbe e ns e ne e 31
Figure 4: SOF query engine Class diagramccooiiiorenieieie e s 32
Figure 5: SOF RDF generator Class diagramccoeierererieininisesie e 33
Figure 6: Jena separates semantic definitions from class definitions..........ccccccvvvviviiecieenenn, 33
Figure 7: SOF one-way SyNChronization PrOCESS..........ocerveieiririeriinresiereesesie s 34
Figure 8: How SOF supports the automatic conversion of data into RDF format...................... 36
Figure 9: SOF SEemMantiC QUETY PrOCESS: . et iimums stee s ererreseeseasessesseasessessessesessessessessessessessesens 38
Figure 10: Primary MPADS MOAUIES i et sttt 53
Figure 11: Search results for speaker components priced below $0.22 USDc..cccccveuvenene. 59
Figure 12: Search results for MIC COMPONENLS .uururruesver ettt 61
Figure 13: Results from defect repOrt.qUETYoive e 62

Chapter 1. Introduction

The research scope of the thesis includes the Semantic Web and the object-oriented programming. In this

chapter, we discuss the research motivation and the research goals.

1.1 Research Motivation

As an evolving extension of the World Wide Web, the Semantic Web [Bemers-Lee, 01] uses semantic
relationships among data to perform automated sharing and processing functions. Applications focus on process
automation, data searches, data integration, and data reuse. Resource description frameworks (RDFs) [Lassila, 99]
are used to represent Semantic Web data models. A basic. RDF document contains statements consisting of a
subject, predicate, and object. Engineers use-this powerful representation tool to design processes and products to
maximize knowledge and information sharing. Most existing engineering design tools are based on an object-
oriented (O-O) paradigm, but the mismatch between O-O and the Semantic Web hinders the seamless integration
of current design tools into Semantic Web based data models. Most software developers utilize the object-
oriented programming (OOP) software design.paradigm, but-OOPR is clearly unsuitable for processing Semantic

Web data [Koide, 05][Koide, 06].

The most widely used function-dividing architecture for designing OOP classes is the model-view-controller
(MVC) [Krasner, 88]. There are several object-relational mapping tools that can convert model objects associated
with model classes into record formats for relational databases. Since RDF utilizes triple-oriented statements for
data formatting, it differs significantly from MVC model classes. Furthermore, object-oriented classes cannot be
used to describe semantic relationships among class attributes, thus making the task of converting model objects
into RDF format for semantic queries more complex. Engineers have learned that the greater the amount of
existing data requiring conversion into triple-oriented format, the greater the challenges in terms of performance

and costs.

1.2 Research Goals

In this thesis we will describe a semantic object framework (SOF) for integrating O-O design with Semantic

Web features. The benefits of integrating O-O technology and the Semantic Web are as follows (Table 1):

Benefits or Drawbacks | Description

Drawbacks of O-O 0-0 technology hides semantic relationships in
without Semantic source code function data. Pure O-O
Web. technologies do not support data reasoning or

inference as lin Semantic Web technology. It is
also hard for O-0O to handle heterogonous data

sources- without Semantic Web technology.

Drawbacks of RDFdata format is tedious with procedure

Semantic Web without | programming:

0-0.
Benefits of O-O + Obiject-oriented programming is mature, and
Semantic Web. many design patterns exist that can help

programmers write reusable source code. The
Semantic Web can publish information to the
Internet as reusable data sources. It is a
powerful means for integrating benefits from O-
O (programmer-friendly coding style) and

Semantic Web technology (machine readable

web pages).

Table 1: The benefits of integrating O-O technology and the Semantic Web

The main goals are simplifying the tasks of (a) publishing model objects in RDF format via object-oriented
design methods, and (b) making heterogeneous data queries in accordance with semantic relationships between

classes and attributes. We use a mobile phone design case study to illustrate how the proposed system operates.

Chapter 2. Literature review

In this chapter, we discuss the background of our research, including concepts of Semantic Web, OWL
language, semantic web development tools (Jena, ActiveRDF, D2R, and EClass), Model-View-Controller design

pattern in OOP, and problems of semantic web development.

2.1 Semantic web

Semantic Web is invented to support a distributed Web at the level of the data rather than the presentation.
Traditionally, one webpage could point to another page. Global references, also called Uniform Resource
Identifiers (URIs), can be used to having one data_item.point to another. The Web infrastructure with semantic
web technology can provide a data model to distribute information about a single entity. Meanwhile, it publishes a
distributable, machine-readable description of the-data, instead of only a human-readable presentation. The
Semantic Web infrastructure uses a data model called the Resource Description Framework (RDF) to represent its

distributed web of data [McBride, 02][Carroll, 04].

In the early 1990s, web resources are immediately and quickly constructed after Tim Berners-Lee developed
World Wide Web (hereafter called WWW), and this is also known as a first-generation WWW. Some scholars
proposed that we need a machine which can understand the resources in web at the time of resources getting
bigger. Hence, Tim Berners-Lee also proposed another idea "Semantic Web" in recent years, and it is also called
as second-generation WWW. Tim Berners-Lee defined this semantic web as "A web may be understood by
machines"”, and it is also a collective of information. Since the goal of semantic web is to accomplish the targets of

machine understanding, and understanding the meanings considerably close to reasoning to context.

In the architecture of semantic web, a layer of metadata is constructed on the WWW in order to descript the

resources on WWW, such as HTML documents, image files, and others. Service functions provided to a user by

the portal of semantic web, such as inquiry, browsing, and service composition and among other things, are

established on this metadata layer.

The resources of WWW are mainly used by human, and only human can understand the connotation of these
resources, such as HTML documents, pictures or animations, and so on. These resources are not easily understood
by computers according to present techniques. One task for computers can do is to visually present these specific
format-based resource files to human for the purpose of interpreting the results, such as pictures and texts in

HTML documents presented through browsers.

For accomplishing the purpose of semantic web, an adopted way utilizes the knowledge (including glossaries
and relationships) used by different domains defined.by-ontology, and ontology is XML-based, and thus the web
resources are easily accessed. Ontology connoted-in_semantic web may be applied to express web information so
that two functions may be accomplished: taxonomy-and reasoning. Taxonomy is a method for distinguishing
different class information, and it may also be viewed as an expression of layer, while reasoning combines a

relationship of both class and layer that may-also discovery the implicit knowledge.

Machine readable

How does a computer read semantics? A computer should first utilize resource description framework (RDF)
and Universal resource identifier (URI) linked to the related web page resources. The HTTP address used by
everybody is an application of URI. Besides metadata, more and more people start using RDF to describe the
knowledge contents connoted in web pages, and this is a big framework so that it is possible for one to search a
specific resource over network. We dictate that everybody uses this method to describe your knowledge resource
content, finds out your desired resources, utilizes ontology to define key terms through hypertext links, and makes

logic reasoning.

A concept behind semantic network, widely speaking, is to use description language to describe any thing
existed over network, and allows computer can "understand™ what it is. For example, an object can be viewed as a
part of car body or a person. If these objects can be identified, users may acquire enormous web data system links
from computers. Owing to the high speed process abilities owned by computers, users may acquire enormous
data, with the result of that the data obtained may be much richer than the ones derived from the results of
human's unique brainstorming thinking. Therefore, scientists may apply this technique to develop new artificial

intelligence (Al).

It is not just that a thinking machine should understand operations and logic rules, wherein much background
knowledge should be involved. Before this, mush knowledge should be entered into machines by human and
specific formats and methods are needed for accessing data.-But now, at the time of fully developed web, robots
may also acquire information and apply .them via_web, and meanwhile, this has a closer relationship to the

development of semantic web.

The present internet is still a human-based,.and tens of thousands. of web pages, texts, pictures, images, and
others are presented and recorded using readable formats. But for a machine to interpret those things, it will not
always be a piece of cake for an existing Al skill to do this. So, we can’t directly ask questions to search engine;
quite the contrary, we have to fuzzily search related information in accordance with search keywords. Because
machines don't understand the contents of web pages, we thus have to compute these search keywords with

statistics and scoring, and then rank these computed results.

In old web pages, miscellaneous tags are still needed to describe web documents, such as font, b, br, and others,
for the purpose of beautification on browser; but in fact, they are nonsense to machines with the result of
interpreting barriers. The idea of web page standard promoted by W3C intentionally separates the expressions
from its contents, uses semantic markups to encapsulate these contents, and also applies CSS to control their

appearance.

Furthermore, enough descriptions should be added into "human format" data, and then they can be read by
machines so we can say that semantic idea exists. A layer of meaningful description added into semantic web in
contents thus may allow machines to understand various data structures and relationships in contents in order that
machines may process these data. Semantic web uses XML, RDF, OWL, or others as a structure, and thus they
give assistance to data readable by machines. Moreover, these formats may not only restrict the application of

web pages, but can also be used to exchange information between machines and understand it.

However, the development of semantic development is still at the very first stage. For web page support, it was
a pretty hard thing to work on the conversion from old HTML to XHTML + CSS, not to mention both RDF and
OWL (more support needed), so various changes will emerge during the evolution of semantics. In recent years, a
new micro formats emerges, and it uses XHTML format and also can be embedded into existing web pages so as
to carry out your site readable by human-and-machines. Machines.may access data from micro formats in web
pages, and know their meanings. Just because micro formats.are small and exquisite, and integrated into web

pages, it has had a high profile around the world, and is called as "' l:owercase Semantic Web".

In any case, semantic web in Al is an important tool. Unlike a complex structure organized in human's brain,
Al may easily be structured, and it may understand data structure, its meanings, and handle it. Using a common
data format agreed among computers, and they then may know each other, and all systems may collaborate

together for doing more things.

Ontology

A literal interpretation of ontology is knowledge of being. Ontology is knowledge to discourse things and
investigate the essential of things. Ontology in computer science means a set of specific domain knowledge, these
terminologies (glossaries) have distinct definition and description, and those may not only describe a certain idea

in domain knowledge, but also elucidate the relationship between concepts.

7

In real world, each domain has a defined ontology, or ontology-based knowledge base. The same
terminologies (glossaries) in different domains, times, and usages have different meanings. You may possibly
acquire large amount of data in case of network search. Computer system doesn't know the domain a glossary
belongs to so that searcher has to define the real meanings of this glossary, and its corresponding domain, and the

relationship between glossaries.

Developing ontology should comprise four steps: define classes in ontology, define the layer-to-layer
relationship between classes, define the attributes in classes, and describe the limitation to attribute values. After

you follow above steps, the correspondingly specific entity for domain ontology can thus be established.

The architecture of currently used ontology is-the extension of extended XML which adopts two ontology-
based languages, such as RDF (Resource«Description Framework) and (Resource Description Framework

Schema), enacted by W3C.

Each web page and each resource must have' its own-defined ontology, i.e. ontology-based knowledge base.
The same glossaries used in different fields, times or usages may represent different meanings so that incorrect
network search may usually occur in this case. Network doesn't know the domain for an glossary used in each
web page, so searcher has to define the real meaning for an glossary, and the domain it belongs to. In any web
page, ontology may tell you about the definition of each glossary, its corresponding knowledge scope, and

architecture.

If any resource in web page has a declaration, and it tells the definition and architecture about the knowledge in

web page to each visiting computer, then all visiting computers may read each web page.

We have mentioned a little about ontology which describes and defines resource knowledge content and
information architecture of a web page. The idea of semantic web is that RDF may be applied to ontology or
documents generated through similar programming language, and may clearly define conceptual relationship and
reasoning logic rules. How to describe complete knowledge? We should tell computers about what we want to
express essential data meaning, and this is for computers but not human so that you have to tell computers about
part concepts and all concepts needed in this web page or this resource. Moreover, how to prosecute logic
reasoning between concepts in computers? We first have to give computers an ontology definition, and then the

logic reasoning could be prosecuted through this ontology.

Knowledge evolution

According to Tim Berners-Lee's spoken words, the evolution of knowledge is most important. Besides the
ontology heavily used in web information, he thought the most important matter is the meaning existed in the
evolution of knowledge, and he also thought:that if the design can properly be taken, the semantic web is helpful

in evolving human's knowledge.

In each knowledge system, we may use URI to describe the relationship between concept and semantics, and
then semantic web may help in doing the communication between concepts and the integration of knowledge
systems. Since each knowledge system has its own architecture existed, the original conflict can thus be solved. If
I tell you about my knowledge system and then you know my semantics and my reasoning obtained from this, the

best communication can thus be well done after you first acquire my knowledge system.

Although the original design is to emphasize that the ontology is provided to computers, the bigger goal is that
it is also to be recommended as a systematized reorganization of human's knowledge, and thus it makes the

ontology readable by human, and also becomes a bridge for human's knowledge communication.

The most key issue the semantic web ideas should face to is: where can you acquire knowledge and its
architecture, and how to construct it? Why each web resource (i.e., each web page) is stipulated in semantic web
is to mark your own ontology in detail, and the starting point you will encounter is the variation and diversity
between language glossaries and knowledge systems. The same things in different languages/dialects/domains
have different names. The same nouns in different language contexts/usages/domains may have different
meanings. An expression of concept can then be precisely interpreted until it knows the knowledge architecture

behind the concept. This is the gap between information and knowledge that we need to stride across it.

RDF data format

RDF (Resource Description Framework) is a general-purpose description language used to describe the
resource of World Wide Web and other related.descriptive.information. Applying simple and unified interface,
you thus may use properties to describe any resource with' URI (Uniform Resource Identifier) and the relationship
between it and other resources. The basic-element in RDF model is.triple structure. Three major elements in this

structure are Subject, Predict, and Object.

RDF has no way to describe what properties a resource should have, and the relationship between these
properties and other resources. RDFS (RDFS Schema) is a meta-data of RDFS, and its content defines basic

glossaries used by RDF to describe resources.

Basic members of RDF architecture are resources and literals, and the relationship between members may be
represented by additional tags with directional line. This looks like directed graph used in math. Resources in
members may be used to represent a resource applied in WWW or an object which has no actual resource, and
literals are used to provide factual data. A resource and another resource or literals and connection lines may be

used to describe a fact, and it is equivalent to spoken sentence in our daily lives.

10

Information layer established based on RDF is a general relational data model that describes the relationship
between resources or literals. These relationships are derived from the definitions of ontology-based knowledge
base. An ontology-based knowledge base may collect entities and concepts in an application field, and classify
them into different classification systems. Furthermore, characteristic for each class are also collected, and each of
them describes types with respect to these characteristic and the relationship between them and other types, or the
value corresponding to each character. In semantic web, XML syntax expression is used in ontology-based

knowledge base, and its standard language used is Web Ontology Language (OWL - http://www.w3.org/TR/owl-

ref/). When receiving a RDF document, the meaning of triple could be understood in accordance with the

ontology-based knowledge base content referred by this document.

In contrast with relational database, ontology-based-knowledge base is equivalent to the schema in relational
database, and the RDF example generated. based-on relational database is equivalent to table data. The strong
program service functions established over relational database should thanks to index of schema. Since reasoning
abilities provided in ontology-based knowledge: base-are promoted to conceptual layer, the service of content-

based retrieval is totally different from the one used in WWW.

Tim Berners-Lee has two ideal dreams about network. First one, he hopes every person may share knowledge
through WWW, and the second one, he hopes computers may understand human languages, and the future
network is a semantic web. The WWW established through URI (Universal Resource Identifier), HTTP
(Hypertext Transform Protocol), and HTML (Hypertext Markup Language) proposed by Tim Berners-Lee has led

to revolutionary change.

2.2 OWL language

W3C enacted OWL langue which is used to define the semantic relationship existed between semantic web

data. However, owing to a large size problem existed in full version OWL Full that is impossible to figure out

11

meaningful values within a limited time, W3C has properly classified it into three versions: OWL Full (full
version OWL), OWL DL (computer has ability to infer the computed semantic relationship in case of high speed
computer operation), and OWL Lite (the simplest semantic relationship in case of low speed computer operation).
Owing to the most important portion, OWL Lite, in OWL langue, you may also understand which part in OWL
you should handle first after understanding OWL Lite. Whereas, you should note that many limitations and
simplifications still exists in semantic expressions of OWL Lite in contrast with OWL DL and OWL Full. Next,

we will start by defining tags with respect to OWL Lite in RDF.

Class

A class equally defines a group of attributes and behaviors that should be included in a class, because of their
common properties. For example, class Teacher.and.class Student are human class, and if we may define a class
Human, because lass Teacher and class Student.are inherited to'class Human, so that we may conclude that
Teacher and Student must have their own relative name. The‘inheritance used here is represented by tag. C1 is a
class declaration, and the available symbol is shown below:

class(cl)

rdfs:subClassOf

This tag represents the inheritance relation. For example, class “computerBook" is a subclass of class "book™,
and it assumed that class Book has the property "bookName", and thus computer book and cook book have the
same property " bookName™ due to both of them inherited to class "book™. This inheritance relation can be viewed
as "a category of" relation, e.g., class "book" -> a category of "book". The c2 is inherited to the c1, and thus an
example of symbol expression is shown below:

rdfs_subClassOf(c2,c1)

rdf:Propoerty

12

This property tag is used to describe data values between individuals, e.g., hasChild, hasSibiling, hasAge.
These properties represent "what children does it have" (a relation linked to the instance of class person), "what
inherited relations does it have" (a relation linked to the instance of class Person) and "about their ages” (a relation

linked to integer value type). p value of property x is y, and it's symbol expression is shown below:

p(Xy)

rdfs:subPropertyOf
This allows you to describe the inheritance between properties, e.g., if hasSibling may inherit to hasRelative,
this means that if a relation hasSibling exists between two persons, they must have hasRelative relation. Its
symbol expression is shown below:
if
subPropertyOf(p2,p1)
p2(X,y)
then

p1(X.y)

rdfs:domain
This tag may restrict a object target of a certain property, and it is also subjected to a class. For example, dog an
animal, so Dog rdfs:subClassOf Animal. If this dog belongs to a child, then this child must subject to the class

Animal, and thus hasChild rdfs:domain Animal. This property value may be limited in a certain class.

13

rdfs:range

This denotes that if an object target of a certain property subjects to a class, then the usage of this tag is similar
to that of rdfs:domain, but rdfs:range may also be additionally assigned. With respect to the range of it's property
values, we, for example, may define the time to get doctor degree for some system, and thus we may assign this

range within 1 ~ 8 years.

Individual
The individual is an instance of a class. For example, an individual called John effectively belongs to an

instance in class Person. Next, we will individually introduce most important tags in OWL L.ite.

owl:equivalentClass
This denotes that two classes are identical, €.9.,-class "student™.and class "studentMentee” may be defined as
the same semantics, and thus if you want to search related data about class "student" in case of deduction, data
about class "studentMentee™ may be also-Searched. For inference engine, this inference of equality relation may
be applied to many identical things found from the source of heterogeneous data. An example of symbol
expression is shown below:
if
owl_equivalentClass(c1,c2)
is(x,cl)
then

is(x,c2)

14

owl:equivalentProperty
This represents whether two properties are identical semantics, e.g., property "hasGirlFriend" and property
"belovedUnmarriedGirl" may have identical in semantics. An example of symbol expression is shown below:
if
owl_equivalentProperty(p1,p2)
p1(x.y)
then

p2(xy)

owl:sameAs
This represents whether two individuals are identical, e.g.,'a person whose English name is called John, and he
has a nick name called Big J, then these two individuals are the same.person, so owl:sameAs can be applied for
the purpose of binding these two individuals. ‘An example of symbol.expression is shown below:
if
owl_sameAs(X,y)
then

X==

owl:differentFrom

This may apply owl:differentFrom to identify whether these two different individuals are not identical in
semantics. For example, if there two instances in class Person, one has property hasName assigned John, and the
other one has property hasName assigned Johnny. Since these two classes Person looks alike, we here may
conclude that they are different, and thus we may apply owl:differentFrom to identify that these two instances are
not identical in semantics. An example of symbol expression is shown below:

if
owl_differentFrom(x,y)

15

then

xl=y

owl:AllDifferent
This tag is used for the purpose of apecifyinig varuous different semantic instance. Exception for verbosely
using owl:differentFrom to specify every two different instances, you may have a simple expression, and thus you
may utilize table to list all different instances, and apply owl:AllDifferent tag to specify a group of every two
different instances. An example of symbol expression is shown below:
if
owl_AlIDifferent(x,y,z)
then
xl=y
x!=z

yl=z

owl:inverseOf
At property level which has various property characteristics may be used to describe the semantic relationship

between properties. We'll introduce them as follows.

There is an existence of opposite relation between these two properties, e.g. let X hasChild Y is an existing fact,
the system may automatically infer an opposite relationship of semantics if we have assigned a relationship
owl:inverseOf to both hasChild and hasParent. For symbols used, if an opposite relation exists between pland p2,
and p1(x,y) is true, then p2(y,x) may be inferred. An example of symbol expression is shown below:

if
owl_inverseOf(pl,p2)

p1(X,y)

16

then

p2(y,X)

owl: TransitiveProperty
A property with TransitiveProperty characteristics may be assigned, e.g., a property blood relationship has
such a feature, John has a blood relationship to Peter, and Peter has a blood relationship to Mary, then a blood
relationship must exist between John and Mary so that such a relationship can be expressed by symbols, and if
both p(x,y) and p(y,z) are true, then p(x,z) may be inferred. An example of symbol expression is shown below:
if

owl_TransitiveProperty(p)

p(x.y)

p(y.2)

then

p(x.2)

owl:SymmetricProperty
This property has two-way relationship, e.g., if p(x,y) expressed using symbols is true, then p(y,x) may be
inferred. For example, a friend relationship belongs to owl:SymmetricProperty, and if y is a friend of x, and thus
we may also infer that x is a friend of y. An example of symbol expression is shown below:
if
owl_SymmetricProperty(p)

p(x,y)

then

p(y,x)

owl:FunctionalProperty

17

This property may only be assigned a single value, e.g., a property hasFather may have only one earthly father,
and it is impossible for a person has two fathers in the real world, and thus we may say that hasFather must have
only one value. By the way, the default value for owl:FunctionalProperty may be set to zero or one, i.e., NULL
value is also permitted in this case. For symbol expression with p(x,y), if a is fixed, then y is unique. An example
of symbol expression is shown below:

if
owl_FunctionalProperty(p)
p(x.y)

then

y is unique

owl: InverseFunctionalProperty
For symbol expression with p(x,y), if pris ewl:InverseFunctionalProperty, then x is unique while y is fixed. We
here take student ID as an example, we may say that studentlD(John,89348123) denotes that John's student ID is
89348123, and if we found a record studentlD(Johnny,89348123) existed in our database, then we may conclude
that John and Johnny must be the same 'person” due to both student IDs has a property
owl:InverseFunctionalProperty. An example of symbol expression is shown below:
if
owl_InverseFunctionalProperty(p)
p(x.y)
then

X is unique

18

owl:allValuesFrom
This may invoke that any of property values is subjected to a certain class, or is limited within a range. For
example, any value used in this property hasParent may be subjected to the one defined in class Human. An
example of symbol expression is shown below:
if
owl_allValuesFrom(p,c)
p(x.y)
then

y canOnlyBe ¢

owl:someValuesFrom
This may invoke that at least one of property values is subjected to a certain class, or is limited within a range.
For example, at least one or more values-used-in this property -hasParent may be subjected to class Teacher. On
the other hand, this means that at least-one or .more parents subject to class Teacher. An example of symbol
expression is shown below:
if
owl_someValuesFrom(p,c)
p(x.y)
then

y canBe ¢

owl:minCardinality

This allows you to restrict number of values you may use for this property. In OWL Lite, the value of
minCardinality can only be set to 0 or 1, and if O is set, it means that this value is selectable, and the occurrence of
it is not required while it is set to 1, the occurrence of it is required. An example of symbol expression is shown
below:

19

owl_minCardinality(p,1)
then

number(p(x,?))>=1

owl:maxCardinality
This allows you to restrict number of values permitted for this property, e.g., each person may has only one
nose, and thus this property may have at most one value. We take hasNose(John,aBigNose) as an example, owing
to aBigNose assigned to John, he may not have another nose. An example of symbol expression is shown below:
if
owl_maxCardinality(p,1)
then

number(p(x,?))<=1

This may restrict it's property value, and.the.number of values is constant. This setting may set minCardinality
and maxCardinality to the same value, but for the/simplicity and it's convenience, owl:cardinality may be used to
specify a constant number. In OWL L.ite, it allows this number to be 0 or 1, and the example of symbol expression
is shown below:

if
owl_cardinality(p,1)
then

number(p(x,?))==1

owl:intersectionOf

20

OWL Lite allows you to get intersection portion of two defined classes, and thus this portion can be given a
new class, e.g., the Person is a class of a person, and EmployedThings is a class of employed things, and thus
EmployedPerson has characteristics of these two classes. An example of symbol expression is shown below:

EmployedPerson==owl_intersectionOf(Person,EmployedThings)

or

Woman==owl_intersectionOf(Human,Female)

2.3 Semantic web development tools

Before providing details of the SOF proposal, we will describe four Semantic Web solutions currently being

used by developers and briefly review their positive and negative features.

2.3.1 Jena

Currently the most popular solution, Jenawuses triple-oriented APIs to read/write and query RDF data. Jena's
main advantages are its full support for low-level RDF operations and the fact that it is already in wide use, thus
simplifying the task of obtaining sample code. Owing to the current. lack of OOP integration, each operational

step must be described in detail during its use phase.

2.3.2 ActiveRDF

This RDF object-oriented API is based on the Ruby language [Oren, 06][Oren, 07]. To perform the task of
abstracting triple-oriented APIs, it uses O-O methods to manipulate RDF documents so as to simplify low-level
API calling. Due to implementation limitations, this solution does not support the use of more than one

programming language.

21

2.3.3 D2R

D2R directly converts relational database records to RDF format in order to facilitate RDF read/write and query
functions [Bizer, 03][Bizer, 04]. Since the manipulated target is a database, D2R can be applied to any
programming language and automatically perform format conversion (relieving programmers of this task) as long
as the mapping relationship between database tables and RDF is clearly specified. Having a database as a
manipulated target means that D2R does not support object-oriented encapsulation, thereby eliminating any

possibility of data manipulation using objects.

2.3.4 EClass

This solution changes Java syntax to embed semantic descriptions into source code. [Liu, 04][Liu, 07]. EClass
allows developers to define semantic relationships ‘between. attributes. However, an obstacle occurs when
changing a widely used programming syntax,.since syntax-definitions affect existing programming tools such as
compilers and virtual machines. Current programming tools need to be rewritten to support new syntaxes.

Furthermore, the EClass solution currentlylacks a.query function for heterogeneous model objects.

2.4 Model-View-Controller design pattern in OOP

In the late 1970s, Model/View/Controller (MVC) concept was developed by the Smalltalk team at Xerox
PARC to separate an application's data from the presentation of the data. In other words, the code to display the

data does not mix with the code to compute the data.

In MVC terms, "model" stands for an application's data while "view" represents its presentation. The model and
view belong to different parts of the code. For a large scale project, programmers with their special expertise
could form corresponding teams to develop the model and the view. One important benefit is that each team only

has to worry about their own problems when handling with issues.

22

The MVC is used to divide program codes into three independent types for the purpose of independent
development, independent test, and code reuse. Because the main purpose of MVC is to achieve the complete

independence of Model, class Model could neither apply any View nor introduce any Controller.

2.4.1 Model

MVC Model denotes data type. Owing to most data stored in database in computer business application, a way
to map Model class in OO design to relational database becomes a very important automatic skill. Such a skill

mapping Model data class to database is called "Object-Relational Mapping".

2.4.2 View

Owing to many presentation styles for the same data, taking Excel as an example, data may be presented by
either using numeric number or by applying graphic charts. Such‘codes existed in a class that have ability to

present original data onto GUI are subjected to class View:

2.4.3 Controller

Actual business operations logic should exists in Controller, such as payroll computation or report computation.
A number of rule-based operations exist in such programs, and thus source code such as logic deductions or

conditional operations and others should be ideally gathered in class Controller.

The dependency relationship of each other's MVC is shown below:

Controller->Model,View

23

View->Model

2.4.4 Object-Relational Mapping

Object-oriented design and relational database combining together has it's advantage for development. Object-
oriented programming languages have many reuse features, and they provide both inheritance and encapsulation.
Owing to these, we may arbitrarily replace any low level data storage modules; and if we use object-based API to
uniformly access data, we don't need to learn different SQL command operations due to different database
supported by providers. For the purpose of thoroughly hiding low-level detailed operation of relational database,
the best way is to directly map objects to data record of relational database in order to reduce the effort of
transformation between them for program designers. ~We: call this design of automatic transformation between

objects and RDBM relational database as Object-Relational Mapping (abbreviated as OR Mapping).

2.4.5 Object-Semantic Mapping

Object-oriented design and semantic web combining together may speed up the development and also facilitate
in the convenience of software development. Because a one-to-one mapping issue still exists between OO design
and semantic web, many papers and discussions remain in this field, and all of these solutions aim at solving the
automatic mapping from objects to semantic web. We finally hope that the appearance of any analogous OR
Mapping tool kits may support this concern in order that program designers may select a suitable one solution

from these, and also apply it to actual business applications or internet applications.

24

2.5 Semantic Web Development Problems

As shown in Table 2, there are at least seven problems associated with the integration of Semantic Web and O-

O design:
Problem Jena | Active | D2R | EClass | SOF
RDF
Use object methods to X @) X o] 0

manipulate RDFs.

Automatically convert data X X 0] 0] @]

into RDF format.

Support various programming X X 0] X O
languages.
Use statements to describe X X X O O

class and attribute semantics.

Maintain semantic description X X X 0] O
files and class definition

synchronization.

Support inheritance queries X X X X O
and heterogeneous data
between classes and

attributes.

Verify consistency in data X X X X @]

and semantics.

Table 2: A comparison of functions for five Semantic Web development schemes. X denotes “unsolvable”
and O “solvable”.

25

Using object methods to manipulate RDFs

Even though low-level RDF APIs provide complete RDF read/write and query functions, developers lack tools
for utilizing objects to manipulate RDF data. As a result, development durations are longer, program codes
relatively larger, and maintenance more difficult. The proposed SOF system uses O-O design to abstract RDF
APIs to support the writing of program codes. Specifically, the system supports the use of O-O APIs for making

queries, with corresponding query results returned in the form of model objects.

Automatically converting data into RDF format

Although some RDF APIs are capable of storing triple-oriented data for semantic query purposes, developers
must convert model objects into triple-oriented format [Carroll, 03]—a detailed and time-consuming task. Thus,
any development architecture capable of automatically converting model objects into RDF format will save
developers significant amounts of time and effort. In addition, we have included an embedded web server that

allows third-party software programs to use HT TP-protocol to read RDF format data.

Supporting various programming languages

Instead of binding SOF syntax to a specific_object-oriented programming language, we adopted a strategy of
utilizing comments that describe class and attribute semantics to support the use of the SOF parser (with
minimum modifications) with multiple programming languages [Kramer, 99][Leslie, 02]. Accordingly,

programmers will only be required to learn SOF in order to develop applications.

Using statements to describe class and attribute semantics

The most straightforward way to combine Semantic Web and O-O design features is to describe class or
attribute semantics, preferably at the same time that classes are defined. However, defining class and attribute
semantics usually requires modifying programming language syntax. To address this modification issue without
adversely affecting the original programming syntax, the proposed SOF system allows for embedded comments

that support the limited use of RDF and OWL [McGuinness, 04] syntaxes.

Maintaining semantic description files and class definition synchronization

26

Some Semantic Web implementation solutions provide independent semantic description files that further
modify relationships in existing data. This requires momentarily maintaining synchronous updates between files
to prevent inconsistencies. Note that program API document and program code files are mutually independent and
description document updates are frequently overlooked, resulting in obsolete and erroneous descriptions.
JavaDoc uses embedded comments to prevent inconsistencies between API documents and program codes, which
makes it easier for programmers to maintain consistency. The SOF solution is to apply similar principles to

maintain program code and semantic description synchronization.

Supporting inheritance queries and heterogeneous data

Inconsistencies in column names across different databases are common (e.g., database A may use the term
"Email" and database B "email"). To perform consistent queries involving all e-mails stored in two databases, the
semantics of both terms must be clearly defined so that computers recognize them as equal. No architecture
currently exists for defining semantic relationships-between classes and attributes in OOP codes that allows a
system to automatically acknowledge different attribute names with identical meanings. Problems also arise when
performing unified queries of heterogeneous data sources.-Madel objects that result from queries may pertain to
different classes, thus requiring a mechanism that _allows OOP codes to distinguish among different classes of
model objects and to manipulate attributes based on diverse classes. The proposed SOF system allows for the
utilization of comments to maintain an inheritance relationship between attributes, and lets developers make

unified queries of heterogeneous model objects.

Verifying consistency in data and semantics

Conflicts can occur between model objects and semantics. For instance, assigning an Email value to one unique
account in an account management system can result in a later conflict when two accounts have the same Email
value. Consistency in data and semantics requires a solution that can be easily applied. The proposed SOF system

provides APIs for querying objects that developers can use to make semantic consistency checks.

27

Chapter 3. Semantic Object Framework (SOF) Architecture

In this chapter, we discuss the designs and components in the Semantic Object Framework (SOF), including

SOF modules introduction, the design of modules, implementation details, and synchronization problems.

The five modules of the SOF architecture that address the above-listed problems are illustrated in Figure 1. The
SOF data adapter reads data sources (i.e., CSV format files [Shafranovich, 05], database records, or proprietary
data APIs) for conversion into model objects. Our system also allows programmers to write data adapters for
other data sources. Model objects that represent SOF data adapter output include all data content (e.g., attribute

values). Those objects later serve as input parameters farithe.SOF query engine and SOF RDF generator.

SOF query |. = Semantic queries
engine
Output
SOF data put = Query
e
adapter *
Model objects
Heterogeneous | SOEwen
data source —————z ——
server
) Model objecis
Cutput =g P 7 +
SOF parser g Ontology objects
O N
Object-oriented Ontology objects
Source code
SOF RDF
generator Access
RDF files -

Figure 1: Five primary SOF modules

As its name implies, the function of the SOF parser is to parse SOF statements from comment lines in source
code for the purpose of generating ontology objects, which include all information about semantic relationships
between classes and attributes. The parser supports several of the most popular O-O languages, using a syntax that

overcomes comment and descriptor variation problems. Module output consists of ontology objects in which

28

semantic class and attribute relationships are represented as objects. Ontology objects also serve as input

parameters for the SOF RDF generator and SOF query engine.

The purpose of the SOF RDF generator module is to output model objects in RDF format so that third-party
software programs can read RDF format data. Semantic relationships among model objects are recorded in the

form of ontology objects that support RDF format file generation.

The SOF query engine module supports unified object-oriented API queries involving multiple heterogeneous
data sources. Query results are presented as unified object arrays. Since returned model objects may be matched
with different classes, APls that are suitable for specific conversion types must be provided to address format

conversion issues.

Finally, the SOF web server module providesan entry point for HTTP protocol so that third party programs can
read RDF documents. Since the proposed SOF system-utilizes dynamic conversion processes, all model object

changes are updated to RDF documents in real time, thus eliminating data consistency concerns.

3.1 Module Design

3.1.1 Data adapter

The input terminal of this adapter is capable of handling several types of data sources. After performing model
object format output conversions, object-oriented APIs are used to read and write model objects. The fthe SOF
data adapters shown in Figure 2 are a DatabaseAdapter for reading records via database APIs, an RdfAdapter for
reading data files in RDF format, a GmailContactAdapter for reading address book data via Gmail APIs, and a
ThunderBirdContactAdapter for reading address books in ThunderBird data file format. Since these adapters are

inherited from the SofDataAdapter class, they share common operation methods. Adapter output format is

29

presented as MVC model objects, which generally provide operation methods for reading and writing object

attributes.
Database API J-/
RdfAdapter
(O
RDF files SofDatafAdapter
& GmailContactidapter T
Gmail &P j
Output
(\/ ThunderBirdContactAdapter
/\
ThunderBird data files
Model obhjects
Figure 2: SOF data adapter class diagram
3.1.2 Parser

We have included three SOF parsers (Figure 3): PythonSofParser for reading Python code [Van Rossum,
03][Vrandecic, 05][Babik, 06], JavaSofParser for reading Java code, and RdfSofParser for reading class semantics
in RDF file format. Since they are all inherited from the SofParser class, program code sharing is supported.
Ontology objects generated by the SOF parser contain semantic relationships between classes and attributes. If
ontology and model objects are used concurrently, heterogeneous data source semantic queries [Prud'Hommeaux,

06][Ying, 07] can be performed.

30

P

PythonSofParser

B

SofParser

Python Code

JavaSofParser

Java Code
Output
& RdfSofParser

Rdf files

i

Ontology objects

Figure 3: SOF parser class diagram

3.1.3 Query engine

Inputs consist of model and ontology objects..Qurs engine is capable of accepting query statements and
outputting results in the form of model .objects. The three SOF.query engines shown in Figure 4 are a
FilterSofQueryEngine for conditionally filtering-semantic:queries, a ValidSofQueryEngine for querying model
objects that coincide with semantic rules; and an InvalidSofQueryEngine for querying model objects associated
with illegal semantics. Since all are inherited from SofQueryEngine, all output results are presented as model

objects.

31

()

Model objects (intput Ontology objects (input)
-] h A
FiltterSofi
ilterSofQueryEngine - fdad
ValidSofQueryEngine SofQueryEngine
—D
InvalidSofQueryEngine oulout

Model objects (query result)

Figure 4: SOF query engine class diagram

For results generated as model objects:by the FilterSofQueryEngine, only those that match query conditions are
listed. During a query, developers can input object arrays for various classes, meaning that query results can also
include different object classes. The proposed ‘SOF system supports the use of APIs to obtain original model
object class types; special processes can be used‘for different model object classes as necessary. For query results
generated by the InvalidSofQueryEngine, model objects also include explanations for illegal objects—a useful

tool for making corrections.

3.1.4 RDF generator

Generator inputs are model and ontology objects. The generator is capable of combining the two and outputting
RDF strings, including semantic relationships between classes and attributes. As shown in Figure 5, final RDF
string output can be stored in file format and accessed by other HTTP applications via the SOF web server. Since
strings are expressed in standard W3C format and include model object data content as well as ontology object

semantic relationships, any RDF format-capable application can be used to query and merge RDF strings.

32

egqd R

.] 4R ad -]
Model objects (intput) Ontology ohjects (input)

SofRdfGenerator

Output

RDF string

Figure 5: SOF RDF generator class diagram

3.2 Synchronization between class definitions and semantic descriptions

We compared Jena and SOF to illustrate why Jena is not a convenient means for maintaining synchronization

between class definitions and semantic descriptions (Figure 6) as follows:

ADjta readt S wiite Semantic web application

Semaniic query

Jjava file: Java data model classes Jena APl RDFS or OV files: Semantic definitions of classes

Ohbiject relational mapping (OR mapping
RDF data files: RDF data in XML format

Database

Figure 6: Jena separates semantic definitions from class definitions

33

A real-world Semantic Web application usually retrieves data from relational databases. The application
accesses the database indirectly via object relation (OR) mapping and treats database records as Java model
classes. The application can transform Java model objects into RDF format and perform semantic query
operations. Before semantic queries can be processed, developers need to define semantic descriptions in
RDFS/OWL format. Because .java files are separated from RDFS/OWL files, it is inconvenient to manually

synchronize Java class definitions (in .java files) and semantic descriptions (in RDFS/OWL files).

Python .py files: class definitions and semantic descriptions are in the same file
SOF parser
One way
synchronjzation
Ontology objects
SOF RDF generator
RDFS/OWL file format

Figure 7: SOF one-way synchronization process

SOF applications allow class definitions and semantic descriptions to be held in the same file—a convenient
feature for developers who want to keep them consistent in a text editor. For developers who want to produce
RDFS/OWL files, the SOF parser and SOF RDF generator automatically read semantic descriptions from .py
source code and output RDFS/OWL files. This one-way synchronization process (Figure 7) maintains consistency

between class definitions and RDFS/OWL.

34

3.3 Implementation Details

The main implementation tools used by SOF are as follows (Table 3):

Tool Version Description

Python 2.4.6 Python language interpreter —and run-time
environment.

Django | 0.96 High-level Python web framework that encourages
rapid development.

Lighttpd | 1.4 Lightweight HTTP web server.

Java JDK 6 Java language compiler and.development tools.

Table 3: The main implementation tools used by SOF

35

Sequence diagram (Figure 8) showing how SOF supports the automatic conversion of data into RDF format.

SofRdfGeneratar

PythonSofP arser GContact GmailContactAdanter | Grmail API " RDF file
T T
! I I ! I I
1| Reguest ontalogy ofjert | | | |
| | | |
| | | |
I | | | |
I I [I [[
2 Read class [3Contact source ¢ and comment		
3 Qe nlogy object		
I [I [[
ﬁ1'Return ontalogy ohject		
D‘	I	
I [I [[
I L [I [[
I I [I [[
[
4: Reguest GCantact ohjgets wl		
	5'	Read Grmail contactsddta
B: Transform cgntacts data into GCgntact objects		
4 6.1: Return GContact ohjects		
I		
I		
) '		
7: Generate ROF file by ontology ohiect and GContact objects -		
u |

Figure 8: How SOF supports the automatic-conversion of data into RDF format

We use a sequence diagram to help readers understand how SOF automatically generates RDF files from a data

source. We use Gmail API as our data source for reading gmail contact information.

Request ontology object: SofRdfGenerator is responsible for initializing the RDF generation process. It sends

initial requests to PythonSofParser and attempts to get ontology objects as return values.

Read class GContact source code and comment: To produce ontology objects, PythonSofParser needs to parse

python source code containing GContact class definitions and semantic descriptions.

36

Create ontology object: Ontology objects are dynamically created by PythonSofParser and preserved in Python
run-time memory. Semantic relationships (represented by ontology objects) are like a directed graph data

structure.

Return ontology object: After transforming embedded comments to ontology objects, PythonSofParser returns

them to SofRdfGenerator.

Request GContact objects: SofRdfGenerator needs two input parameters to generate RDF files—ontology
objects and model objects such as GContact. GmailContactAdapter receives requests from SofRdfGenerator and

tries to return GContact model objects.

Read Gmail contacts data: Google gmail provides a Google data.API to read contact information from its
distributed network storage. GmailContactAdapter needs to call the Google data APl. GmailContactAdapter sends
a user’s account name and password to the Google data API; after authentication, it can read the user’s contact

data.

Transform contact data into GContact objects: GmailContactAdapter transforms data from a Google data API

to a GContact object. Data field names are mapped one-to-one. It is easy to transform data values as strings in

GContact objects.

Return GContact objects: GContact objects are returned to SofRdfGenerator.

Generate RDF file by ontology object and GContact objects: After SofRdfGenerator receives both ontology

and GContact objects, it gets all necessary information for generating RDF schema and RDF data formatting. The

Django framework for our development tool provides a template architecture to dynamically generate files in any

37

format. SofRdfGenerator transforms ontology and GContact objects as string variables in a hashtable data

structure, and then uses the Django template architecture to produce RDF files.

|SOFWebSer\rer| FilterSofQueryEndine Contact || GContact ” TContact
[

I I
1. Query. Contapt.objects.get{"email ke, %nctu.edu. tw™) :
I

2 Find Cnnta&t subclasses: Goonﬁci and TContact

L I

3: Query the "Brnail® field
I
I

I
|
[
|
[
I
[
I
[
.

T oy e ot
| 4 Query the "mail" field, »
T T
I I
I I I
: I T I | I
5: Returp GContact and TContacf ohjects | | |
I I I
I " I I I
6 Loop print al| artdMame of Contact ohjects : : :
I I I
I I [
N o | | |
| 7. Find inheritance of partOfName fields | |
I I
_ I I I
T 8 print GContact_name | |
r|_| |
L 9. print TContact_givenName,TContact_sn,TCDntachn e !

10: GEJnerate HTTF response

Figure 9: SOF semantic query process

We use a sequence diagram (Figure 9) to explain the SOF semantic query process and to show how the SOF
query engine executes a semantic query and retrieves data from two separate sources such as Gmail and

Thunderbird.

38

Query: Contact.objects.get("email like '%nctu.edu.tw™): After semantic query strings are inputted in HTML
format, the SOF web server receives a HTTP POST request from the web GUI and forwards the request strings to

FilterSofQueryEngine.

Find Contact subclasses: GContact and TContact: At first, FilterSofQueryEngine only knows that the user
wants to query all objects belonging to the Contact class and its subclasses; however, FilterSofQueryEngine does
not know subclass names, all of which belong to the Contact class and are found in ontology objects. After
searching Contact ontology objects and identifying the two subclass names GContact and TContact,

FilterSofQueryEngine queries both subclasses and integrates results.

Query the GContact "email” field for matches to“%nctu.edu.tw™.

Query the TContact "mail" field for matches to “%nctu.edu.tw”.

Return GContact and TContact objects: All of these objects are added to a Contact data list and returned to the

SOF web server to be presented on a screen.

Loop print all partOfName of Contact objects: SOF web server receives a Contact objects list and tries to print

all contact names in a loop.

Find inheritance of partOfName fields: The Contact objects list has two subclasses. When the SOF web server

tries to print partOfName fields for all Contact objects, those objects automatically locate all inheritance

relationships by ontology objects.

39

print GContact_name: Contact objects determine that GContact_name matches partOfName fields and prints

them out.

print TContact_givenName, TContact_sn, TContact_cn: Contact objects determine that TContact_givenName,

TContact_sn, and TContact_cn all match partOfName fields and prints them out.

Generate HTTP response: The SOF web server integrates all returned values in HTTP response format and

presents them via a web browser.

3.4 lllustration using examples

The purpose of this section is to illustrate the two primary functions of the proposed SOF system: (a)
automatically converting model objects and publishing them in RDF format, and (b) performing semantic queries
across heterogeneous data sources. The address book data used in the following examples are supported by Gmail
and ThunderBird. Since they use different attribute'names; under-current conditions developers are forced to put a
lot of time into format conversion to support queries involving.both address books. Taking Python language as a
specific example, the SOF approach is to add semantic relationships to classes and attributes when they are

declared. After relationships are established, the two primary functions can take place.

3.4.1 Defining Address Book Classes Using OWL Syntax

Before making a unified query across two address books, a user must first define a class named “Contact” for
sharing common attributes. From a semantics perspective, this class is inherited to GContact (Gmail Contact) and

TContact (ThunderBird Contact).

40

class Contact(Model):
partOfName="
partOfAddress="
#owl:InverseFunctionalProperty Contact_email
email="
phoneNumber="
#Contact_officePhoneNumber rdfs:subClassOf Contact_phoneNumber
officePhoneNumber="
#Contact_homePhoneNumber rdfs:subClassOf Contact_phoneNumber
homePhoneNumber="
#Contact_mobilePhoneNumber rdfs:subClassOf Contact_phoneNumber
mobilePhoneNumber="
#Contact_faxPhoneNumber rdfs:subClassOf Contact_phoneNumber

faxPhoneNumber="

According to the MVC design model, Contact class belongs to the Model data class, therefore class

Contact(Model) is declared as representing a Contact inherited to the Model class.

The presentation meaning of the “partOfName” attribute is a contact person's name, which contains a
surname/middle name/full name/nickname, etc. Here we allow partOfName to represent a full name or any name
segment. If the semantics of any other attribute are inherited to partOfName, the attribute is used to identify one

contact person’s name string.

In Python, the pound sign (#) designates a comment. Since SOF syntax is embedded in comments, any instance
of ‘owl:” or ‘rdfs:’ included in a comment means the statement is SOF-specific. For example,
‘#owl:InverseFunctionalProperty Contact_email’ utilizes OWL syntax to modify its semantics, meaning that

41

Contact_email string values must be unique. This should not occur in cases where two different Contact objects
have the same email attribute value. In situations where they have the same email string, the proposed SOF
system identifies conflicting Contact objects and notifies programmers, who can apply various strategies to
resolve the illegal semantics. OWL statements are helpful for programmers in terms of applying rich syntaxes to

limit relationships between model objects.

E-mail attribute names differ across various applications. Examples in address book software programs include
Email, email, mail, Mail, emailAddress, and EmailAddress—all with identical semantics. In order to display all
attribute values for all emails across heterogeneous address books, all E-mail-related attributes must be inherited

to Contact_email.

The next topic is the process through which GContact is inherited to.well-defined Contact attributes.

#GContact rdfs:subClassOf Contact

class GContact(Model):
#GContact_name rdfs:subClassOf Contact ‘partOfName
name="
#GContact_email rdfs:subClassOf Contact_email
email="
#GContact_phone rdfs:subClassOf Contact_officePhoneNumber
#GContact_phone rdfs:subClassOf Contact_homePhoneNumber
phone="
#GContact_mobile rdfs:subClassOf Contact_ mobilePhoneNumber
mobile="
#GContact_fax rdfs:subClassOf Contact_faxPhoneNumber
fax="

42

company="
title="
#GContact_address rdfs:subClassOf Contact_partOfAddress

address=""

The representative meaning of “#GContact rdfs:subClassOf Contact” is that the GContact class is semantically
inherited to the Contact class, therefore if any object query commands are used to query all Contact model
objects, the GContact object inherited to the Contact class will remain within the scope of the queried targets. In a
later section we will show that TContact is also semantically inherited to Contact. Accordingly, when developers
want to query model objects from two different address books (e.g., Gmail or ThunderBird), SOF automatically
recognizes that both GContact and TContact objects-must be involved within the query scope if Contact class is
the target being queried. In this manner, the goal of querying: heterogeneous address books can be easily

accomplished.

According to the comment line “#GContact. name rdfs:subClassOf Contact_partOfName,” the name attribute
in the GContact class is semantically inherited’ tor the- partOfName attribute of the Contact class. Thus, if
developers specify the string value of the Contact_partOfName attribute that is being queried at a later time, the

SOF system will also automatically query the string value of the GContact_name attribute.

GContact_phone refers to a multiple inheritance relationship. The attribute represented by GContact_phone can
be a business or residence telephone. Since RDF syntax supports multiple inheritance relationships, SOF still
allows for semantic multiple inheritance descriptions for classes or attributes. This is true even if the
programming language (e.g., Java) does not support multiple inheritance relationships. Using GContact_phone as
an example, regardless of whether a developer chooses Contact_officePhoneNumber or
Contact_homePhoneNumber as a query target at a later time, SOF will always automatically query

GContact_phone attributes.

43

The next example shows how TContact is semantically inherited to Contact:

#TContact rdfs:subClassOf Contact
class TContact(Model):
#TContact_mail rdfs:subClassOf Contact_email
mail="
#TContact_givenName rdfs:subClassOf Contact_partOfName
givenName="
#TContact_sn rdfs:subClassOf Contact_partOfName
sn="#first name
#TContact_cn rdfs:subClassOf Contact_partOfName
cn="#full name
#TContact_telephone rdfs:subClassOf Contact_officePhoneNumber
telephone="
#TContact_homePhone rdfs:subClassOf Contact -homePhoneNumber
homePhone="
#TContact_fax rdfs:subClassOf Contact_faxPhoneNumber
fax="
#TContact_mobile rdfs:subClassOf Contact_mobilePhoneNumber
mobile="
#TContact_homeStreet rdfs:subClassOf Contact_partOfAddress
homeStreet="
#TContact_mozillaHLocality rdfs:subClassOf Contact_partOfAddress
mozillaHLocality="
#TContact_mozillaHState rdfs:subClassOf Contact_partOfAddress

44

mozillaHState="

#TContact_mozillaHPostal rdfs:subClassOf Contact_partOfAddress
mozillaHPostal="

#TContact_mozillaHCountry rdfs:subClassOf Contact_partOfAddress
mozillaHCountry="

#TContact_street rdfs:subClassOf Contact_partOfAddress
street=""#street of company

#TContact_I rdfs:subClassOf Contact_partOfAddress

I=" #locality name of company

#TContact_postalCode rdfs:subClassOf Contact_partOfAddress
postalCode=" #postal code of company

#TContact_c rdfs:subClassOf Contact._partOfAddress

c=" #country name of company

The TContact and GContact classes are hoth semantically inherited.to the Contact class. Many engineers know
that this class is more complex than GContact: from-their experiences with various attributes pertaining to
TContact—especially those referenced to addresses. No distinction exists between home and business addresses
or among country, county, or street attributes. GContact only adopts an address attribute to represent all possible
address strings. In TContact, nine attributes are referenced to address, all of them semantically inherited to

Contact_partOfAddress.

3.4.2 Automatically Publishing Address Books in RDF Format

Since HTTP access must be adopted using RDF format data, an SOF Web Server in the proposed system is
responsible for providing a HTTP entry point; the corresponding model object RDF format can be accessed as

long as its URL is appropriately entered (e.g., http://localhost:8080/sof/Contact/, which obtains RDF data

45

pertaining to Contact and its sub-classes). Developers wanting to access RDF for all model objects pertaining to
GContact can visit http://localhost:8080/sof/GContact/; a similar URL can be accessed for TContact. Since the
proposed SOF system uses an implementation technology to dynamically convert model objects to RDF format,

developers have access to the latest data changes.

3.4.3 Making Queries Across Heterogeneous Address Books

The ability to make unified queries across heterogeneous database sources is an exceptionally useful Semantic
Web function. Here we will give an example of code designed to find model objects pertaining to an email
attribute ending with an “nctu.edu.tw” string from subclasses inherited to Contact. As noted in an earlier section,
GContact (“email”) and TContact (“mail™) do not represent E-mail attribute names in the same manner. However,
in the SOF system the unified query function is-not-adversely affected because they are inherited to attributes

pertaining to Contact_email.

IstContact=Contact.objects.get("emaillike '‘%nctu.edu.tw™)
intCounter=0
for contact in IstContact:

intCounter+=1

print '=== Contact %s ==='%intCounter

print 'partOfName:\n %s'%contact.partOfName

print 'email:\n %s'%contact.email

These code segments will locate model objects with Email names ending with “nctu.edu.tw” from all classes
inherited to Contact; the syntax for Contact.objects.get is similar to the SELECT command used in SQL—for

example, “select * from Contact where email like '%nctu.edu.tw'.” Matching model objects may be in GContact

46

or TContact format. A “for loop” is followed, and partOfName and email attributes pertaining to the found model

objects are displayed. The results are:

=== Contact 1 ===

partOfName:
"GContact_name":"Bowen Chiu",

email:
"GContact_email":"bowen@nctu.edu.tw",

=== Contact 2 ===

partOfName:
"TContact_givenName":"Kao",

"TContact_sn":"Gloria",

"TContact_cn":"Gloria Kao",

email:

"TContact_mail":"gloria@nctu.edu.tw*,

In this case, two model object records are displayed. Contact 1 pertains to GContact class model objects; the
string value of contact.partOfName is "GContact_name™:"Bowen Chiu". This leads to a key:value pair with ‘key’
as the GContact_name, which alerts developers that “Bowen Chiu” belongs to GContact_name. Contact 2 model
objects belong to the TContact class, therefore the representative meaning of contact.partOfName is more

complex. Here the value of contact.partOfName corresponds to an array delimited by a comma.

Developers who find it necessary to provide different data display methods for individual classes can use the
SOF system to determine which class an object belongs to in accordance with a key:value pair associated with
returned model objects. Accordingly, during a unified query, display formats for different classes can be adjusted
if necessary.

47

3.4.4 Querying Data Sets with legal or illegal semantics

An RDF file may contain illegal data, thus requiring an effort to distinguish between legal and illegal data in
certain situations. An example is finding non-duplicated mail name lists: since GContact and TContact probably
contain duplicate person contact data, a previously defined SOF statement “#owl:InverseFunctionalProperty
Contact_email” is required. In this statement, the limited Contact_email attribute value must be unique—that is,
any two Contact model objects may not have the same Email value. If the same Email attribute value exists for
more than two Contact model objects, from a semantics perspective they must be viewed as the same Contact
object. Through this limitation, it is possible to utilize getinvalid() API to identify the model objects that violate

this principle and to display them on a screen. For example:

IstContact=Contact.objects.getinvalid()

for contact in IstContact:
print ‘partOfName:%s'%contact.partOfName
print ‘phoneNumber:%s'%contact.phoneNumber

print 'invalid reason:%s'%contact.getInvalidReason()

The first illegal data consists of

partOfName:
"GContact_name":"Bowen Chiu™,
phoneNumber:
"GContact_phone":"+88635727001",
"GContact_mobile™:"+886922387002",

invalid reason:validation fail->owl:InverseFunctionalProperty Contact_email

48

The second illegal data consists of

partOfName:
"TContact_givenName":"Chiu",
"TContact_sn":"Bowen",
"TContact_cn":"Bowen Chiu",

phoneNumber:
"TContact_telephoneNumber":"+88635727001",
"TContact_homePhone™:"+88638885003",
"TContact_mobile":"+886993288002",

invalid reason:validation fail->owl:InverseFunctionalProperty Contact_email

The first illegal model objects record-belongs to-GContact and the.second to TContact. Although they are
considered different model objects, they are.illegal because they have identical Email attribute values. The
proposed SOF system successfully crosses two address-books, therefore it is important that the function for
finding semantically duplicated model objects is used to print a mailing list without duplications. The
contact.getlnvalidReason() command is capable of displaying the reason for a RDF semantic limitation violation;
in response, developers can take such actions as deleting a redundant model object or merging two model objects
into one. If a developer’s intent is to use a command to read all legal model objects, “IstContact =
Contact.objects.getValid()” can be used to add all legal model objects to the IstContact array—Iegal in the sense

of Contact model objects with no duplicate Email attributes.

49

3.5 Discussion

The most significant benefits of embedded semantic comments into source code, is to expand semantic
relationship for OOP classes and member variables without changing compiler or interpreter. Although comment
style may cause typing errors during coding process, SOF parser can capture these errors and warning developer
to correct them. The SOF provides an unified cross language architecture for coding semantic web in OOP

environments.

50

Chapter 4. Case Study

In this chapter, we discuss the source code examples of SOF, and we use a mobile phone design problem to

demonstrate how to implement a heterogeneous data query applications by SOF.

4.1 Mobile Phone Assisted Design System (MPADS)

Mobile phone design and manufacturing managers must work with component suppliers to create new products
and systems. They must address such issues as component costs, compatibility, functionality, and capability. In
this section we will discuss real and potential problems. encountered in mobile phone design, show how the
proposed SOF can be used to develop a mobile phone assisted-design system (MPADS) to address them, and

evaluate MPADS performance.

Mobile phone companies regularly manufacture and market multiple’ products concurrently. Product managers
delay the need to design completely new mobile phones by.-referencing the component combinations of existing
models—in other words, most successful designs can be reused and repackaged to create new phones with
incremental specification changes. However, doing so raises challenges in terms of efficient information
exchanges among independent design teams so as to achieve the greatest benefits from their different knowledge

bases.

Here we will describe the case of a company using Excel files for purposes of documenting and sharing mobile
phone specifications with design teams working in Taiwan, China, and Germany. According to current
limitations, product managers wanting information for a specific component must manually open all Excel files
and combine the required data into a new Excel spreadsheet. To support efficient knowledge sharing, we designed

the proposed MPADS to produce efficient semantic queries without having to manually merge and edit files.

51

4.2 MPADS Goals

A mid-level mobile phone consists of between 50 and 60 components. During the design process, product
managers must repeatedly perform design information queries based on previous experiences and product
success. An efficient query system [Vega-Gorgojo, 08] allows product managers to make quick but informed
decisions about new components and compositions. We therefore designed the proposed MPADS according to six
goals: performing heterogeneous data queries; converting data to RDF format; converting component
measurement units (e.g., speaker component dimensions) to fit query statements; analyzing mobile phone models
and specifications based on required conditions; analyzing individual component specifications; and reviewing

component defect reports.

During the mobile phone design process, a product manager will generally want to use the lowest price
components that are sufficiently compatible. To-accomplish this:they must constantly perform data queries
according to a complex mix of parameters. MPADS can help product managers perform such queries quickly and
more efficiently than Excel files by using SOF development tools to ‘define component classes and attributes in
order to identify semantic relationships [Burger, 08] [Burkard, 08]. [Valkeapaa, 08]. This process requires the
conversion of Excel files (also referred to as comma separated values, or CSV) to model objects so that a
programming language can directly read the information. Our SOF data adapter is capable of performing this

reading/conversion task.

After creating classes and attributes from heterogeneous data sources, MPADS uses SOF syntax to define
semantic relationships for further queries. Examples of component subclasses include Baseband, Display,
Camera, MemoryNor, MemoryNand, MemorySram, MemoryCard, SawFilter, XCvr, Fem, Duplexer, Couplex,
Pa, AnalogSwith, AudioAmp, ChargerlC, Comparators, EmiFilter, HallSensorlc, Ldo, LedDriverlc, Logiclc,

XTal, PcbSingleLayer, PcbBuildUp, Fpc, Led, Mmp, Bluetooth, Gps, Wlan, FmRadio, IrDa, Led, Diode, Mosfet,

52

Mlcc, TanPolymer, Battery, Resistor, Inductor, Thermister, Varistor, EmiFilter, Fuse, Charger, Headset, Cable,

Speaker, Vibrator, Receiver, and Microphone.

Data adapters use Excel CSV records as input and generate model objects as output for semantic queries.
Readable outputs require a Customized Web GUI to convert text strings from SOF Web Server output format to
HTML table format to help product managers compare component attributes. Figure 10 shows modules requiring

developer implementation (grey background) and modules provided by SOF without additional programming

requirements (white background).

MahilePhane [Read]

Mabi [Generate] Custamized Yeh
Excel Files Ad o

[HTTF Protocol]
Excel Files l . Model Objects)& (SOF Weh Ser\rer)

- [Read] [Send Query]
Provider Excel ;
Files ,\ apter
- _/ (SOF Query)
Engine
hiohilePhone [Read]
Class

[Read]

component

[Generate]
Component

Class SOF Parser Homulugy Objects)e

Provider
Class

Figure 10: Primary MPADS modules

4.3 Cooperative Design

Our goal for MPADS is to help mobile phone designers working on a single sign on computer-supported

cooperative system. We integrated MPADS with subversion (open source version control system) and mantis

53

(open source issue tracking system) projects. The following Table 4 presents the cooperative design features of

MPADS:

v

\ 796

Feature Description
1. Knowledge Product managers can perform conditional semantic queries to
sharing and reference previous mobile phone design documents. Product managers

semantic querying.

can upload new designs to MPADS for sharing.

2. Structured
component database

sharing.

Maobile phone component specifications are originally stored in Excel
or Word files without structure. MPADS allows designers to store
structured information on component attributes in databases for spec.

sharing purposes.

3. Design document

co-editing.

Design documents can be uploaded, shared, opened, and edited by

multiple users.

4. Online discussion.

MPADS users can post questions or share opinions online. Replies are

collected in thread form and emailed to participating users.

5. Access control for

user groups.

Users are divided‘into different-groups. Each group has flexible access
control as determined by.an administrator..Design specifications are

categorized to assist with controlling access.

6. Task assignments.

Managers can divide large design tasks into several subtasks and
assign them to different developers. Priorities and task statuses can be

monitored online by team members.

7. Merge
modifications by

version control.

If there are multiple users editing the same document, the version
control feature can be used to solve collision problems via the

automatic or manual merging of modification results.

Table 4: Cooperative design features of MPADS

55

For example, there are multiple roles [Aqqal, 08] in mobile phone design processes. MPADS allows for

collaboration among various roles as shown in the following Table 5:

Role Description Cooperative
Design
Feature

Sales team Collects customer feedback and new feature requirements 457

from mobile phone markets. Posts market feedback on
MAPDS and discusses feedback online with product

manager.

Product Coordinates business and technical teams with help from 1,2,3,4,5,6,7
manager (PM) | MAPDS. Responsible for tracking. progress .for new
design and providing design-specifications. Can. use
MPADS to perform semantic queries for hardware . or

software components.

Man-machine | Responsible for designing © high-level _‘software 1,3,4,5,6,7
interface applications.

(MMI) team

Layer 1 team Provides application programming interface (API) for 1,2,3,45,6,7

MMI team to control hardware functions.

Baseband In charge of mobile phone hardware layout and physical 1,2,3,4,5,6,7
team components. Can upload hardware component images and

specifications to MPADS for users to perform queries.

Table 5: Multiple roles in mobile phone design process

56

4.4 Flexibility Evaluation

We evaluated differences among Excel files, relational database management system (RDBM), and MPADS in
terms of query flexibility (Table 6) and efficiency. Regarding the first parameter, product managers generally
specify component attribute values to perform conditional semantic queries. A drawback of Excel is the tendency
for design teams to use different formats; this is especially true when those teams work in different countries, but
it is not unusual among teams working for the same firm. As stated above, this requires the manual merging of
query results into a new Excel datasheet, a time-consuming task. Developers who use RDBM cannot query
heterogeneous data by simply applying SQL commands, since semantic relationships among database table fields

require definitions.

MPADS allows for the easy processing of -heterogeneous. data by simplifying the task of defining semantic
relationships for a body of data. As a result, product managers are.only required to input single-line query
commands to perform design information searches. MPADS automatically combines and presents search results

in HTML.

Excel RDBM MPADS
Query heterogeneous data. 0 X @]
(manually)
Convert data to RDF format. X] 0]
(D2R)
Convert component measurement O X O
units to fit query statement. (manually)

Table 6: A comparison of Excel, RDBM, and MPADS in terms of conditional query flexibility. X,
unsolvable; O, solvable

57

Regarding RDF format conversion, a D2R system is available for automatically converting database records
stored in RDBM format into RDF. While D2R is a convenient tool, it does not allow developers to manipulate
data in an O-O fashion; lack of integration with OOP programming is its most significant drawback. The absence
of OOP translates into more time required for product development tasks. MPADS lets developers define
semantic relationships between classes and attributes, convert Excel files into model objects, and use an SOF Web
Server to publish output in RDF format for reading by third party applications. It is equipped with OOP to reduce

coding efforts, thereby releasing developers from having to write additional code for conversion tasks.

In the next area of comparison, mobile phone component attributes are frequently expressed in different
measurement units—for example, costs may be expressed in US dollars or Euros, dimensions may be expressed
in millimeters or inches, and chip memory may be expressed in.MB or KB. Data stored in Excel format must be
converted manually; RDBM is also incapable of supporting automatic conversions for measurement units. The
proposed MPADS allows developers to“define conversion formulas prior to performing queries. For example,

Money class can be defined as

class Money:
intAmount

strMoneyType

Here intAmount represents quantity and strMoneyType a chosen currency. Using Usd, Eur or Gbp as Money

subclasses, MPADS allows for value comparisons using a MoneyConverter class:

def getConverted(strSourceType,strTargetType,intAmount)

This method returns a converted currency quantity, strSourceType (representing the original currency type),

intAmount (representing the original quantity), and strTargetType (representing the converted currency type).

58

Once the MoneyConverter class is implemented, MPADS uses a SOF query command to perform a search—for

example:

Speaker.objects.get(*“price < Usd(0.22)”)

This query finds all speaker components costing less than $0.22 US, with prices for components manufactured

in other countries automatically converted into a designated currency.

4.5 Efficiency Evaluation

Locating sources of less expensive components is'a common. product manager responsibility. An example of
HTML query output is shown in Figure ‘11, Product managers.can use this feature to compare component
attributes from various suppliers by reading user-friendly HTML output: Efficiency comparisons for three related
tasks are shown in Table 7. Note that RDBM was not considered, since SQL commands cannot be used to

perform queries based on heterogeneous data.

Function | Speaker e Speaker
Dimension | 16'3.3 | 16°4.1

Vender | PWS | CCA

Mame | 800-L73T1 10-F-FBOT1SMD

PN | ‘23.4GE52.002 '23.4G840.002
Project | J9583 J2838
- =
- 82 0@
NS
Price | EUR 0.125 UsD 0.21

Figure 11: Search results for speaker components priced below $0.22 USD

59

Excel MPADS
Analyze mobile phone models and 1,219.46 37.69
specifications based on required secs secs
conditions.
Analyze single component specifications. 97.94 secs 13.88
secs
Review component defect reports. 46.28 secs 11.42
secs

Table 7: Query efficiency comparisons between Excel and MPADS

Using Excel files to perform manual :queries requires locating strings in existing datasheets and cutting-and-
pasting all matching data to a new datasheet. To'determine the time required to complete this task, we performed
each example query 3 times to obtain an average speed for finding information on 22 existing mobile phones and
140 components. For tests involving Excel, time was measured from the first opening of an Excel file to the
completion of a datasheet. For MPADS, time was measured from the inputting of query strings in a customized

Web GUI to the complete loading of a HTML result page into a browser.

Our tests were based on the knowledge that product managers are frequently required to perform conditional
queries and to check component attributes. For example, in order to design a mobile phone that highlights
multimedia functionalities, a product manager will likely perform at least three conditional queries regarding

display size, camera resolution, and memory size. An example of a MPADS query command is

60

MobilePhone.objects.get(‘'display.size > Pixels(120,160) and camera.megaPixels > MegaPixels(3) and

internalMemory.size > MegaBytes(64)")

For designing and manufacturing a very slim mobile phone, an example of a MPADS query for MIC

components is

Mic.objects.get(‘dimension < DimensionInMm(6.5,2.3)’)

An example of results for such a query is shown in Figure 12.

Function MIC
Dimension 4*1.0 with rubber boot
Vender CIN
Name BMG10BT
PIN 2C42030:022
Project J2738

Picture

Note rubber boot with coil spring

Figure 12: Search results for MIC components

Another common product manager function is checking defect reports as a means of avoiding unreliable
components. In this case study, a defect was found in the handwriting display—it was incapable of capturing the
correct coordination following a penDown event. To perform a MPADS query for defective component reports, a

project manager would write

61

DefectReport.objects.get('component=Display")

An example of query results is shown in Figure 13.

Mobile Phone Model |J9882

Component Model PSID283.4738.H
Defect Report Date 20081311

Issues Display compeonent cannot capture the
right coordinate when a penDown event is
triggered.

Provider TTC

Figure 13: Results from defect report query

46 Costs and Benefits Evaluation

Table 8 addresses tasks for which implementation costs of MPADS are larger than a simple Excel file. The two
cost types are () static (one-time efforts during development-cycle);-and (b) dynamic (to integrate a new data

source format into MPADS, developers must implement-new:classes).

Task Description Cost Type

SOF adapter New data sources need new SOF adapters for Dynamic

reading and parsing into model objects.

Model class definition New data formats need to define new model Dynamic

classes to represent them.

Semantic definition New data sources need new semantic Dynamic

definitions in source code.

Customized web GUI Web GUI differs according to the application Dynamic

62

being used.

SOF parser Individual programming languages need Static
specific SOF parsers to process semantic
definitions in source code. Once a SOF parser is

implemented, it can be reused in all projects.

SOF query engine Can be reused in all projects. Static

SOF web server Provides HTTP access; can be reused in all Static
projects.

Training Users need to be trained only one time to use Static

SOF-based system.

Server hardware SOF system needs server-hardware.to provide Static

web-based service to-users.

Server maintenance SOF system needs an administrator to' maintain Static

proper function.

Table 8: Tasks for which Implementation.costs of MAPDS are larger than a simple Excel file

63

Excel files and MPADS have their individual benefits and drawbacks as follows (Table 9):

Benefit Favored
Low static and dynamic costs for implementation. Excel
Different departments can use unique data formats without extra Excel

communication, reducing overhead.

Low user-training costs. Excel
No need for a hardware server to provide web-based service. Excel
Ease and efficiency in querying heterogeneous data. MPADS
Provides standard RDF formats for third-party data exchanges. MPADS
Automatically transforms different semantic query-units-(e.g.,,USD, Euro). MPADS
Various cooperative design features. MPADS

Table 9: Benefits and drawbacks of Excel and MPADS

64

Chapter 5. Conclusions and Future Works

51 Summary

The focus of this thesis was on the publication of model objects to RDF documents that provide SOF solutions
for automatic conversion tasks, as opposed to existing methods that require the manual conversion of model
objects to a triple-oriented format. The proposed SOF system can be used to modify class and attribute semantics
embedded in program code as well as to enhance descriptions of relationships between classes and attributes in
object-oriented languages. In addition to preserving the synchronization of relationship descriptions between
classes and program codes, the proposed system may support multiple programming languages. SOF provides a
direct publication flow for the Semantic Web, allowing wusers to conduct queries across heterogeneous data

sources and to incorporate positive features from'both O-O programming and the Semantic Web.

Our main contributions are embedding semantic descriptions in‘source code without changing programming
language syntax. Although EClass can also. put semantic-descriptions in class definitions, it changes the Java
syntax and requires the rewriting of compilers. In.a computer-supported cooperative work environment, it is very
important to use developing tools with interoperability. SOF provides a better solution for developers to extend

semantic features for existing object-oriented compilers or interpreters without rewriting them.

5.2 Future Works

The development tools associated with the SOF are insufficient, especially in terms of automation support for
integrated development environment (IDE). An IDE development environment for various languages is required
to support auto complete, dynamic syntax checking, and mutual synchronization between semantic diagrams and
program codes [Dave, 02]. In cases where illegal SOF statement syntax occurs or where a semantic conflict

between SOF statements emerges, a more powerful tool is needed to automatically analyze the problem and to

65

report results in a form that developers can use. In future projects we will work on IDE development tools to

support the SOF system.

v

\ 796

References

[Aqggal, 08] Aqgal, A., Rensing, C., Steinmetz, R., Elkamoun, N., Berraissoul, A.: Using taxonomies to support
the macro design process for the production of Web Based Trainings, Journal of Universal Computer
Science, (2008)

[Astels, 02] Astels, D.: Refactoring with UML, In Proceedings of 3rd International Conference on eXtreme
Programming and Flexible Processes in Software Engineering (XP2002), (2002) 67-70

[Babik, 06] Babik, M., Hluchy, L.: Deep Integration of Python with Web Ontology Language, 2nd Workshop on
Scripting for the Semantic Web (ESWC 2006), (2006)

[Bemers-Lee, 01] Bemers-Lee, T., Hendler, J., Lassila, O.: The Semantic Web, Scientific American, 284, 5,
(2001) 34-43

[Bizer, 03] Bizer, C.: D2R MAP-A Database to RDF Mapping Language, Proceedings of the 12th International
World Wide Web, (2003)

[Bizer, 04] Bizer, C., Seaborne, A.: D2RQ-Treating Non-RDF Databases as Virtual RDF Graphs, Proceedings of
the 3rd International Semantic Web Conference, (2004)

[Burger, 08] Burger, T.: The need for.formalizing media semantics in the games and entertainment industry,
Journal of Universal Computer Science, (2008)

[Burkard, 08] Burkard, B., Vogeler, G., Gruner, S.:'Informatics for-historians: Tools for medieval document XML
markup, and their impact on the history-sciences,.Journal-of Universal Computer Science, (2008)

[Carroll, 03] Carroll, J.J., Dickinson, 1., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.. Jena:
Implementing the Semantic Web Recommendations, Technical Report HPL-2003-146, HP Laboratories,
(2003)

[Carroll, 04] Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.: Jena:
implementing the semantic web recommendations, Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters, (2004) 74-83

[Koide, 05] Koide, S., Aasman, J., Haflich, S.: OWL vs. Object Oriented Programming, International Workshop
on SemanticWeb Enabled Software Engineering (SWESE), (2005)

[Koide, 06] Koide, S., Takeda, H.: OWL-Full Reasoning from an Object Oriented Perspective, Asian Semantic
Web Conf., ASWC2006, 4185, (2006) 263-277

[Kramer, 99] Kramer, D.: APl documentation from source code comments: a case study of Javadoc, Proceedings

of the 17th annual international conference on Computer documentation, (1999) 147-153

67

[Krasner, 88] Krasner, G.E., Pope, S.T.: A cookbook for using the model-view controller user interface paradigm
in Smalltalk-80, Journal of Object-Oriented Programming, 1, 3, (1988) 26-49

[Lassila, 99] Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Model and Syntax Specification,
W3C Recommendation, (1999)

[Leslie, 02] Leslie, D.M.: Using Javadoc and XML to produce API reference documentation, Proceedings of the
20th annual international conference on Computer documentation, (2002) 104-109

[Liu, 04] Liu, F.F., Wang, J., Dillon, T.S.: An Object-oriented Approach on Web Information Representation and
Derivation, Proceedings of the 2004 IEEE International Conference on e-Technology, e-Commerce and e-
Service, (2004) 309-314

[Liu, 07] Liu, F.F., Wang, J., Dillon, T.S.: Web Information Representation, Extraction, and Reasoning based on
Existing Programming Technology, Web Information Representation, Extraction and Reasoning based on
Existing Programming Technology, Studies in Computational Intelligence, 37, (2007) 147-168

[McBride, 02] McBride, B.: Jena: A Semantic Web Toolkit, IEEE Internet Computing, 6, (2002) 55-59

[McGuinness, 04] McGuinness, D.L., Van Harmelen; Fi . OWL Web Ontology Language Overview, W3C
Recommendation, (2004)
[Oren, 06] Oren, E., Delbru, R.: Object-oriented RDF in_Ruby, Scripting for Semantic Web (ESWC), (2006)
[Oren, 07] Oren, E., Delbru, R., Gerke,"S.,«Haller; A., Decker, S.: ActiveRDF: object-oriented semantic web
programming, Proceedings of the 16th international-conference on-World Wide Web, (2007) 817-824
[Prud'Hommeaux, 06] Prud'Hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF, W3C Working
Draft, (2006)

[Shafranovich, 05] Shafranovich, Y.: Common‘Format and"MIME Type for Comma-Separated Values (CSV)
File, Internet Eng. Task Force draft, (2005)

[Valkeapaa, 08] Valkeapaa, O., Alm, O., Hyvonen, E.: An adaptable framework for ontology-based content
creation on the semantic web, Journal of Universal Computer Science, (2008)

[Van Rossum, 03] Van Rossum, G., Drake Jr, F.L.: Python Language Reference Manual, Network Theory Ltd,
(2003)

[Vega-Gorgojo, 08] Vega-Gorgojo, G., Bote-Lorenzo, M.L., Gomez-Sanchez, E., Asensio-Perez, J.1., Dimitriadis,
Y.A., Jorrin-Abellan, I.M.: Ontoolcole: Supporting educators in the semantic search of CSCL tools, Journal
of Universal Computer Science, 14, 1, (2008) 27-58

[Vrandecic, 05] Vrandecic, D.: Deep integration of scripting language and semantic web technologies, ESWC
Workshop on Scripting for the Semantic Web, (2005)

[Ying, 07] Ying, P., Tianjiang, W., Xueling, J.: Building Intelligent Information Retrieval System Based on
Ontology, Electronic Measurement and Instruments, 2007. ICEMI '07. 8th International Conference, 4,
(2007) 612-615

68

