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摘 要       

 
 

本論文介紹計算有不連續條件的二維 Poisson 方程的一個簡單快速

的數值方法，並應用本方法來解 Stokes 方程和 Navier-Stokes 方程。在

本文中，提供在計算區域上，處理介面的幾何形狀以及在介面上方程的

不連續條件。我們使用三次雲線內插來近似不連續條件所在之介面，以

及使用二階精度的外插公式來處理不連續條件。在效率的考量上，使用

快速的 Poisson 算法。我們給出一些計算數據，來觀察此方法的精度以

及應用。 
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Abstract 
 
 

In this paper, we introduce a simple and efficient second order 
numerical method to solve Poisson equation with jump conditions in 
two-dimension (2-D). We also apply the method to simulate Stokes 
and unsteady Navier-Stokes flow dynamics. One of the essential 
components of the method is to handle the geometric of the 
immersed interface and jump discontinuities along it in the 
computational domain. Cubic spline interpolation is implemented to 
deal with the interface and a second order accurate extrapolation is 
applied to incorporate these jump conditions. We also apply the 
marker-and-cell (MAC) method cooperating with the interface. In 
the matter of efficiency, we can apply some fast Poisson solvers such 
as Fishpack. We verify the accuracy, efficiency of our method by 
showing some numerical experiments. 
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1 Introduction

In problems with interfaces, the unknowns or their derivatives may have jump discontinu-
ities. For example, fluid flow or wave propagation an interface between different regions
exerts a force on the material, or an interface separates regions of different material prop-
erties. The interface may be a fixed obstacle, or be considered as an elastic membrane.
The interface is often embedded in a regular computational domain, and varieties of fast
methods can apply with some modifications. On the other hand, it also need to be
considered that the accuracy, especially near the interface.

There are lots of treatments for the immersed interface problems. Mayo in this paper
[9] used the fundamental solutions of Poisson equations to give some integral formulas
on the interface. These seems to be some relations between Mayo’s treatment and the
boundary element method.

In the 1970-80’s, C. S. Peskin developed the Immersed Boundary Method (IBM) to
simulate the blood flow through heart valves. The valve leaflet (the interface) exerts
some force into the blood (the fluid) and t the same time moves along with the local fluid
velocity simultaneously. The interaction between the fluid and immersed boundary can
be modeled by a well chosen discretized approximation to the Dirac delta function, which
is called a discrete delta function. However, it is also known that generally the IBM is
only first-order accurate for nonsmooth but continuous quantities. Different variations
of IBM have been proposed to improve the accuracy. For example, Lai and Peskin [10]
proposed a new formally second-order IBM with reduced numerical viscosity, and Griffith
and Peskin [11] provided another higher order method for sufficiently smooth problems.

In contrast to the discrete delta function approach, Leveque and Li proposed Immersed
Interface Method (IIM). It translates the jump discontinuities into the local coordinate
system of the interface, and then find the correction terms to modify the system in Carte-
sian grid. They apply this method to solve some fluid problems and obtain second-order
accurate [8]. On the other hand, Jane Wang and her group computed the correction terms
by extrapolation the jump discontinuities from the interface to the Cartesian grid [12].
They also made some applications in fluid mechanics [13].

The Ghost Fluid Method (GFM), which is also a sharp interface method that uses
the jump conditions in the solution and the flux, has been developed by Fedkiw, Liu,
Kang and their group for elliptic interface problems. The GFM is simpler than IIM and
the resulting linear system of equations for the self-adjoint elliptic equations is symmetric
positive definite. The trade-off is that the solution is first-order accurate in the maximum
norm.

In this paper, we implement the extrapolation method in [12] and apply it to Poisson,
Stokes, and full Navier-Stokes equation.
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2 Poisson Equation with Jump Discontinuities

2.1 Introduction

Given a scalar function φ with real spatial variable x, we denote

[φ(x∗)] = φ(x+
∗ )− φ(x−∗ ),

the right limit subtract the left limit at x∗. We call φ has a jump at x∗ if [φ(x∗)] 6= 0.
Our numerical method is based on finite difference method (FDM) with Cartesian

Grid points. We denote the irregular points whose difference stencil crosses the jump,
and the others are called regular points.

Taking an 1-D example. Consider the case that one wants to obtain some approxima-
tion of derivatives of φ at xj with grid size h but there is a jump of φ at x∗ between the
irregular points xj and xj+1. Let xj+1 = x∗ + α, Taylor expansion tells us that

φ(xj+1) = φ(x+
∗ + α)

= φ(x+
∗ ) + φ′(x+

∗ )α+ φ′′(x+
∗ )
α2

2
+O(h3)

= φ(x−∗ ) + φ′(x−∗ )α+ φ′′(x−∗ )
α2

2
+ C

(φ)
j+1 +O(h3)

where

C
(φ)
j+1 = [φ] + [φ′]α+ [φ′′]

α2

2

is the correction term of φ(xj+1) for xj. Hence, for example we can obtain

φ′(xj) =

(
φ(xj+1)− C

(φ)
j+1

)
− φ(xj−1)

2h
+O(h2),

φ′′(xj) =

(
φ(xj+1)− C

(φ)
j+1

)
− 2φ(xj) + φ(xj−1)

h2
+O(h).

2.2 Discontinuous Poisson Problem

We consider the interface problem

∆ψ± = ω± in Ω±, (2.1)

[ψ] = q0 on Γ,[
∂ψ

∂n

]
= q1 on Γ,

ψ = ψb on ∂Ω,

where ω±, ψ± are defined on Ω± and q0, q1 are on Γ; with Γ ⊆ Ω, Ω− = Ω−∪Γ, Ω+ = Ω+∪Γ.
We assume that ω±, q0, q1 and Γ are fairly smooth, with a possible jump in ω± at Γ.

We generate the 2-D Cartesian grid with grid size h = ∆x = ∆y, and overlay an
irregular boundary Γ with known discontinuities in [ψ],

[
∂ψ
∂n

]
. Here we assume that Γ can

be represented by a periodic cubic spline. In our approach we find the foot of perpendicular
on Γ for every irregular point. In some sense this is the most suitable location to be chosen

2



since we know the discontinuities in terms of the normal derivatives. Instead of finding[
∂2ψ
∂n2

]
, we apply the identity of Laplace operator on a curve, i.e.,

ω =
∂2ψ

∂n2
+ κ

∂ψ

∂n
+
∂2ψ

∂s2
,

and the final correction formula is a simple Taylor series expansion

C
(ψ)
4 = [ψ•] + α

[
∂ψ•
∂n

]
+

1

2
α2

[
∂2ψ•
∂n2

]
= [ψ•] + α

[
∂ψ•
∂n

]
+

1

2
α2

(
[ω•]− κ

[
∂ψ•
∂n

]
− ∂2[ψ•]

∂s2

)
where α is the signed distance to the foot of perpendicular and κ is the local curvature
at that point. More specifically, α is positive if the grid point is outside Γ (in Ω+), and
vice versa. The final correction to ω is then

ω♦
update
= ω♦ −

C
(ψ)
4

h2
.

After correcting the right hand side ω, we apply a fast Poisson solver called Fishpack to
solve the Poisson equation ∆ψ = ω and then obtain ψ immediately.

Γ

♦

×

×M

MZZ

bbα s
s

Ω+

Ω−

Figure 1: A 5-point Laplacian at ♦. The two M are irregular points related to the irregular
point ♦.

2.3 Cubic Spline Representation

We interpret the interface Γ by picking some points on Γ, called Lagrangian markers,
and using these markers to generate a parameterized periodic cubic spline. We denote the
cubic spline by X(s) = (X(s), Y (s)) where s, 0 < s < L, is the arc length parameter.
Hence, |∂X/∂s| = 1 and then the local curvature can be expressed by κ = X ′Y ′′−Y ′X ′′.
The foot of perpendicular X(si,j) of the grid point xi,j = (xi, yj) can be found by bisection
method just like root finding since the inner product of tangential and normal vector on
a curve is equal to zero, That is,(

xi −X(si,j)
)
X ′(si,j) +

(
yj − Y (si,j)

)
Y ′(si,j) = 0.

Thus, we have the signed distance

α = ±
√

(xi −X(si,j))2 + (yj − Y (si,j))2, (xi, yj) ∈ Ω±.
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2.3.1 A Brief Introduction to Cubic Spline Representation

The cubic spline interpolation is significant since it yields C2 approximation of curves and
it is sufficiently smooth in the presence of small curvatures. In the construction of the
periodic parametric cubic spline X(s), we give the markers

Xk = (Xk, Yk), k = 1, 2, . . . ,M

in order. We also define that X(sk) = Xk, and impose that XM+1 = X1 for convenience.
For k = 1, 2, . . . ,M , We define the length of each segment by

hk+1 = ‖Xk+1 −Xk‖2

and the accumulated length by

H1 = 0, Hk+1 = Hk + hk+1

at each marker, and then obtain the spline representation

X(s) = Xk + a1(s−Hk) + a2(s−Hk)
2 + a3(s−Hk)

3, s ∈ [Hk, Hk+1]

where

a1 =
(Xk+1 −Xk)

hk+1

− (2Mk + Mk+1)
hk+1

6
,

a2 =
Mk

2
,

a3 =
(Mk+1 −Mk)

6hk+1

.

That is, the spline can be characterized by its moments Mi = X ′′(si). In fact, we
implement the parameterized cubic spline by using the cumulative chord length since the
chord length is approximately equal to the arc length if the markers are close enough. For
more detail, see [3] and [4].

By the continuity of X ′(s) and periodicity of X(s), we have the moment equation

µjMj−1 + 2Mj + λjMj+1 = dj

M0 = MM , MM+1 = M1

for j = 1, 2, . . . ,M , where

λj =
hj+1

hj + hj+1

µj =
hj

hj + hj+1

= 1− λj

dj =
6

hj + hj+1

(
Xj+1 −Xj

hj+1

− Xj −Xj−1

hj

)
The task of calculating these moments is to solve a nonsingular linear system with

a tridiagonal matrix containing two nonzero elements at the right-top and left-bottom
corner.
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Hence, we need to solve the nonsingular linear system

2 λ1 µ1

µ2 2 λ2

µ3
. . . . . .
. . . . . . . . .

. . . 2 λM−1

λM µM 2





m1

m2
...
...
...

mM


=



d1

d2
...
...
...
dM


for each component of X(sj).

2.3.2 Solving the Linear System Ax = b with Specific Matrix A

We introduce Thomas algorithm, a simplified form of Gaussian elimination that can be
used to solve tridiagonal system of equations

cjxj−1 + djxj + ejxj+1 = bj, j = 1, 2, . . . , n,

c1 = 0, en = 0.

in O(n). In this case

A =



d1 e1
c2 d2 e2

c3
. . . . . .
. . . . . . . . .

. . . dn−1 en−1

cn dn


.

Thomas algorithm is given here:

!! Forward elimination phase

do k = 2,n

m = c(k) / d(k-1)

d(k) = d(k) - m*e(k-1)

b(k) = b(k) - m*b(k-1)

end do

!! Backward substitution phase

x(n) = b(n)/d(n)

do k = n-1,1,-1

x(k) = (b(k) - e(k)*x(k+1)) / d(k)

end do

For periodic case, i.e., system of equations gives that

cjxj−1 + djxj + ejxj+1 = bj, j = 1, 2, . . . , n,

x0 = x1, xn+1 = x1

5



and

A =



d1 e1 c1
c2 d2 e2

c3
. . . . . .
. . . . . . . . .

. . . dn−1 en−1

en cn dn


.

We can solve the system by using Thomas algorithm twice.

1. Solve
cjyj−1 + djyj + ejyj+1 = bj, j = 1, 2, . . . , n− 1

with y0 = yn = 0

2. Solve
cjzj−1 + djzj + ejzj+1 = 0, j = 1, 2, . . . , n− 1

with z0 = zn = 1

3. Obtaining

xn =
bn − eny1 − cnyn−1

dn − cnzn−1 − enz1

,

and then we have
xj = yj + xnzj, j = 1, 2, . . . , n− 1.

A subroutine DGLTSL in Linpack can solve this periodic type of linear system in O(N),
where N is the problem size.

2.3.3 Flag Construction

As we construct the spline, we also need to keep track of the irregular points. We allocate
an integer array, called the flag, which denotes the Cartesian grid types. Since we assume
that the interface is closed, the flag should record these types such as regular points
inside/outside the interface and irregular points inside/outside/on the interface. By the
way, the properties of the flag is somewhat like those of a level set function. We find the
irregular point first by finding the neighbor point of the intersection of spline and grid
line. Then, using some filling algorithm, the domain can be distinguished to be inside or
outside. A basic pseudo code of filling algorithm is given here:

recursive subroutine FloodFill(ix, iy, oldColor, newColor)

implicit none; integer, intent(in) :: ix, iy, oldColor, newColor

if(IsOutside(ix,iy)) return

if(iflag(ix,iy) == oldColor) then

iflag(ix,iy) = newColor

call FloodFill(ix+1, iy, oldColor, newColor)

call FloodFill(ix-1, iy, oldColor, newColor)

call FloodFill(ix, iy+1, oldColor, newColor)

call FloodFill(ix, iy-1, oldColor, newColor)

endif

return

end subroutine FloodFill

6



Corresponding to the spline representation, the flag also plays an important role in
the further computation.

2.4 Interpolation from Grid to Interface

Let ψ∗ = ψ(x∗, y∗) be the value on the interface which we want to interpolate. First we
need to find the index (i, j) of grid point which is located on the left-bottom corner of the
cell. Then, let ph = x∗ − xi, qh = y∗ − yj, with grid ratio 0 ≤ p, q ≤ 1. Hence

ψ+ = pψi+1,j+1 + (1− p)ψi,j+1 +O(h2)

ψ× = pui+1,j + (1− p)ψi,j +O(h2)

ψ∗ = qψ+ + (1− q)ψ× +O(h2)

= pqψi+1,j+1 + (1− p)qψi,j+1 + p(1− q)ψi+1,j + (1− p)(1− q)ψi,j +O(h2).

The interpolation of an interface point from neighbor irregular points should be modified
by correction terms. We define

χi,j =

{
1 xi,j ∈ Ω+

0 xi,j ∈ Ω−

and we have

ψ∗
update
= ψ∗+pqχi+1,j+1C

(ψ)
i+1,j+1+(1−p)qχi,j+1C

(ψ)
i,j+1+p(1−q)χi+1,jC

(ψ)
i+1,j+(1−p)(1−q)χi,jC(ψ)

i,j .

t

t

t

t

(i, j) (i+ 1, j)

(i, j + 1) (i+ 1, j + 1)

∗

×

+

dd d

d

d

ph (1− p)h

qh

(1− q)h

Figure 2: Interpolation on point ∗ using the four corner points.

2.5 Numerical Example

We consider three modified Poisson equations with exact solutions on Ω = [−1, 1]× [−1, 1]
with jump discontinuities defined on a ellipse

Γ :
x2

a2
+
y2

b2
= 1.

We show two test cases: a = 0.6, b = 0.4, and a = 0.8, b = 0.2.
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Example. 1 Example. 2 Example. 3

ψ− 1 x2 − y2 sin(x) cos(y)

ψ+ 1 + ln(2
√
x2 + y2) 0 0

ω− 0 0 −2 sin(x) cos(y)
ω+ 0 0 0

Table 1: Three test cases for Eq. (2.1).

N ‖ · ‖∞ ratio ‖ · ‖L2 ratio
Example. 1 16 3.0347E-02 0.0000 9.1019E-03 0.0000

32 5.4561E-03 5.5621 6.4576E-04 14.0949
64 1.7111E-03 3.1887 2.2393E-04 2.8838

128 5.3475E-04 3.1997 1.6647E-04 1.3452
256 8.7802E-05 6.0904 1.6368E-05 10.1703

Example. 2 16 7.2378E-02 0.0000 1.0009E-02 0.0000
32 1.7418E-02 4.1553 1.3929E-03 7.1855
64 2.7228E-03 6.3972 4.1537E-04 3.3535

128 1.0008E-03 2.7206 1.3772E-04 3.0160
256 1.0402E-04 9.6208 1.6698E-05 8.2479

Example. 3 16 4.2294E-02 0.0000 6.2970E-03 0.0000
32 7.7546E-03 5.4540 7.7777E-04 8.0963
64 1.2982E-03 5.9732 1.0272E-04 7.5721

128 5.6115E-04 2.3135 1.1584E-04 0.8867
256 1.4999E-04 3.7413 2.3262E-05 4.9799

Table 2: Test results for a = 0.6, b = 0.4.

In the first case, the convergent rate fluctuates in a wide range. The accuracy may be
affected by how the spline approximates the actual ellipse interface. General speaking, it
has second order accuracy on average.

8



N ‖ · ‖∞ ratio ‖ · ‖L2 ratio
Example. 1 16 2.1539E+00 0.0000 5.7049E-01 0.0000

32 5.4730E-01 3.9355 9.5492E-02 5.9743
64 1.2800E-02 42.7584 6.9241E-04 137.9125

128 2.5374E-03 5.0446 1.9674E-04 3.5193
256 9.1706E-04 2.7668 4.2801E-05 4.5967

Example. 2 16 3.9062E-01 0.0000 4.0670E-02 0.0000
32 2.3950E-01 1.6310 4.0821E-02 0.9963
64 2.1336E-02 11.2252 1.0262E-03 39.7800

128 4.1392E-03 5.1545 3.9887E-04 2.5727
256 1.4158E-03 2.9237 5.4272E-05 7.3495

Example. 2 16 5.6932E-01 0.0000 7.1246E-02 0.0000
32 1.2497E-01 4.5556 1.3391E-02 5.3204
64 8.8370E-03 14.1420 5.5884E-04 23.9622

128 1.5545E-03 5.6848 9.7281E-05 5.7446
256 5.4722E-04 2.8408 3.2040E-05 3.0363

Table 3: Test results for a = 0.8, b = 0.2.

In the second case, the curvature varies severely. In our test, the cartesian grid cannot
fetch the interface behavior as N < 64 in this table. As N exceeds this value, we also
observe second order accuracy on average.
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Figure 3: The results for the above examples, a = 0.6, b = 0.4.
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3 Stokes Flow with Singular Force

3.1 Stokes Equation

The steady Stokes equation is of this form

−∇p+ µ∆u = f ,

∇ · u = 0.

where u =
(
u(x), v(x)

)
is the fluid velocity, p = p(x) is the fluid pressure, and the µ

is the constant fluid viscosity. The force density f(x) = (f1(x), f2(x)) is applied by the
immersed interface Γ into the fluid, which the boundary force is F (s) = (F1(s), F2(s)).
More clearly, the singular force f has support only on Γ and has the form

f(x) =

∫
Γ

F (s)δ(x−X(s)) ds

where δ is the Dirac delta function defined in 2-D. The boundary configuration of Γ is
given by X(s) = (X(s), Y (s)), 0 ≤ s ≤ L, where the are-length parameter s tracks every
material point of the initial configuration.

We write a 2-D vector form of this equation, which yields

−
[
px
py

]
+ µ

[
∆u
∆v

]
=

[
f1

f2

]
,

ux + vy = 0.

One can expect that the velocity and the pressure will not be smooth across the
boundary. In fact the boundary force F plays an important role to the jump condition
of u, p, and their derivatives. In the computational fluid dynamics, we usually impose
the no-slip condition of fluid velocity, i.e., [u] = 0 along the interface. Thus, we have the
following theorem.

Theorem. Let u, p be solution of Stokes’ equation. Then the jump across the interface
satisfies

[p] =
F · n

|∂X/∂s|
, µ

[
∂u

∂n

]
=

−F · τ
|∂X/∂s|

τ ,

[
∂p

∂n

]
=

1∣∣∂X
∂s

∣∣ ∂∂s
(

F · τ
|∂X/∂s|

)
,

where n, τ are unit normal and tangent vector respectively on the interface.

We will give a proof in the next section.

3.2 Marker and Cell Method

We use marker and cell (MAC) method and take the computation domain Ω to be square
(or rectangular) with staggered grid in Cartesian coordinates. For simplicity, we take the
mesh size h = ∆x = ∆y to be equal and let Nx, Ny be the number of mesh in the x-
and y- directions respectively. Usually, we pick the same number of grid points in each
direction, and denote that N = Nx = Ny.
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Figure 4: The computational domain Ω using staggered Grid with mesh size h.

3.3 Numerical Scheme

In the following numerical scheme, we assume s be an approximation of arc-length pa-
rameter such that |∂X/∂s| is nearly equal to 1. For simplicity, we denote Fn = F · n
and Fτ = F · τ . By translating the boundary force F to the jump condition, we have

−∇p+ µ∆u = 0,

∇ · u = 0,

[u] = 0, [p] = Fn, µ

[
∂u

∂n

]
= −Fττ ,

[
∂p

∂n

]
=
∂Fτ

∂s
on Γ,

u
∣∣∣
∂Ω

= ub.

Consequently, by taking divergent to the above equations we have

∆p = 0,

[p] = Fn,

[
∂p

∂n

]
=
∂Fτ

∂s
on Γ.

We need to impose a boundary condition for the above Laplace system. For the test
example, we give the Dirchlet boundary condition with given solution p calculated on the
boundary. In general, we consider the periodic boundary condition. Although any two
solutions of this system may be up to a constant, it is fine since we need only ∇p.

Here we summarize the solution procedures.

1. Solve the Laplace equation
∆hp+ C(p) = 0
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and obtain p, where the correction tern

C(p) =
1

h2

(
[p] + α

[
∂p

∂n

]
+

1

2
α2

(
[∆p]− κ

[
∂p

∂n

]
− ∂2[p]

∂s2

))
=

1

h2

(
Fn + α

∂Fτ

∂s
+

1

2
α2

(
−κ∂Fτ

∂s
− ∂2Fn

∂s2

))
.

2. Compute px, py on the u- and v-grid by center difference (pi+1,j − pi,j)/h, (pi,j+1 −
pi,j)/h respectively. It needs some correction when the p-grid points straddle across
the interface. Let us explain the procedure more clearly by taking an example.
Note that the location of ui,j is the middle point between those of pi,j and pi,j. Let
pi+1,j ∈ Ω− and pi,j, ui,j ∈ Ω+. The key point is to correct the point on the different
side with the middle point. We need to add the correction term if the point is in
Ω−, and vice versa. In this case we need to add the correction term C

(p)
i+1,j of pi+1,j,

which is defined as above. That is, the approximation of px can be expressed by
((pi+1,j + C

(p)
i+1,j)− pi,j)/h. We will discuss the detail in the next section.

3. Compute [∇p] which appears in the correction term C(u) later. Recall that τ =
(τ1, τ2), the unit tangent vector, is equal to (−n2, n1) at each point on Γ, where
n = (n1, n2) is the unit normal vector. Since

∂Fτ

∂s
=

[
∂p

∂n

]
= [px]n1 + [py]n2,

∂Fn

∂s
=
∂ [p]

∂s
= [px] τ1 + [py] τ2,

we have

[∇p] = ([px] , [py]) =

(
τ2
∂Fτ

∂s
+ τ1

∂Fn

∂s
, −τ1

∂Fτ

∂s
+ τ2

∂Fn

∂s

)
.

4. Solve the Poisson equation

µ∆hu + C(u) = ∇hp

where

C(u) =
1

h2

(
µ [u] + αµ

[
∂u

∂n

]
+

1

2
α2

(
µ [∆u]− κµ

[
∂u

∂n

]
− µ

∂2 [u]

∂s2

))
=

1

h2

(
−αFττ +

1

2
α2 ([∇p] + κFττ )

)
.

3.4 Handling the Derivatives with a Crossing Interface

Consider the derivatives approximated by center difference scheme with a crossing inter-
face. In general, there are four cases about locations of grid points and the interface. We
use a table to illustrate how to calculate the first order derivative at a certain point.
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Case Figure Difference formula

(I) r
φL

r
φR

b
φM

Ω+ Ω−

Γ

dφM
dx

' (φR + CR)− φL
h

(II) r
φL

r
φR

b
φM

Ω+ Ω−

Γ

dφM
dx

' φR − (φL − CL)

h

(III) r
φL

r
φR

b
φM

Ω−Ω+

Γ

dφM
dx

' (φR − CR)− φL
h

(IV) r
φL

r
φR

b
φM

Ω−Ω+

Γ

dφM
dx

' φR − (φL + CL)

h

Table 4: The four cases about locations of grid points L,M,R and the interface. h denotes
the length of the interval [L,R], and M is the middle point in [L,R] here. CL, CR are the
correction terms at grid points L,R respectively.

3.5 Numerical Example

Example (1). Normal forces on a circle. Consider a circular boundary of radius
R = 1 parametrized by x(θ) = (cos(θ), sin(θ)) in Ω = [−2, 2]× [−2, 2] and define the force
on the boundary by

f(θ) = 2 sin(3θ)x(θ)

so that the forces are normal to the boundary. The exact solution is given by

p(r, θ) =

{
−r3 sin(3θ), r < 1

r−3 sin(3θ), r > 1

u(r, θ) =

{
3
8
r2 sin(2θ) + 1

16
r4 sin(4θ)− 1

4
r4 sin(2θ), r < 1

1
8
r−2 sin(2θ)− 3

16
r−4 sin(4θ) + 1

4
r−2 sin(4θ), r ≥ 1

v(r, θ) =

{
3
8
r2 cos(2θ)− 1

16
r4 cos(4θ)− 1

4
r4 cos(2θ), r < 1

1
8
r−2 cos(2θ) + 3

16
r−4 cos(4θ)− 1

4
r−2 cos(4θ), r ≥ 1

We note that on the interface R = 1,

[p] = 2 sin(3θ),

[
∂p

∂n

]
= 0, [∆p] = 0,

∂2[p]

∂s2
= −18 sin(3θ)

and

[u] = 0,

[
∂u

∂n

]
= 0, [∆u] =

[
−6 cos(3θ) sin(θ)
6 cos(3θ) cos(θ)

]
,

∂2[u]

∂s2
= 0.
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N ‖uerr‖∞ Ratio ‖verr‖∞ Ratio ‖perr‖∞ Ratio
16 6.31625996E-02 - 5.71511520E-02 - 1.80064548E-01 -
32 1.15154249E-02 5.4850 1.04312328E-02 5.4788 6.70713180E-02 2.6846
64 2.46761660E-03 4.6666 3.44416038E-03 3.0286 2.41626231E-02 2.7758

128 2.31427096E-04 10.6626 6.66326129E-04 5.1688 3.79474345E-03 6.3673

Table 5: A grid refinement analysis of u, v, p for Example(1).

Example (2). Tangential forces on a circle. We consider a similar case. The domain
Ω and the circular boundary are defined as Example(1). Define the force on the boundary
by

f(θ) = 2 sin(3θ)x′(θ)

so that the forces are tangential to the boundary. The exact solution is given by

p(r, θ) =

{
−r3 cos(3θ), r < 1

−r−3 cos(3θ), r > 1

u(r, θ) =

{
1
8
r2 cos(2θ) + 1

16
r4 cos(4θ)− 1

4
r4 cos(2θ), r < 1

−1
8
r−2 cos(2θ) + 5

16
r−4 cos(4θ)− 1

4
r−2 cos(4θ), r ≥ 1

v(r, θ) =

{
−1

8
r2 sin(2θ) + 1

16
r4 sin(4θ) + 1

4
r4 sin(2θ), r < 1

1
8
r−2 sin(2θ) + 5

16
r−4 sin(4θ)− 1

4
r−2 sin(4θ), r ≥ 1

We note that on the interface R = 1,

[p] = 0,

[
∂p

∂n

]
= 6 cos(3θ), [∆p] = 0,

∂2[p]

∂s2
= 0

and

[u] = 0,

[
∂u

∂n

]
=

[
2 sin(3θ) sin(θ)
−2 sin(3θ) cos(θ)

]
, [∆u] =

[
3 cos(2θ) + 3 cos(4θ)
−3 sin(2θ) + 3 sin(4θ)

]
,

∂2[u]

∂s2
= 0.

N ‖uerr‖∞ Ratio ‖verr‖∞ Ratio ‖perr‖∞ Ratio
16 5.56812172E-02 - 1.84446032E-02 - 1.92715009E-01 -
32 9.06017465E-03 6.1457 5.85585435E-03 3.1497 2.08500578E-02 9.2429
64 3.34797871E-03 2.7061 1.43026464E-03 4.0942 5.88284456E-03 3.5442

128 6.04375427E-04 5.5395 3.19944420E-04 4.4703 1.32162086E-03 4.4512

Table 6: A grid refinement analysis of u, v, p for Example(2).

Example (3). Combine the normal and tangential forces on a circle. Since the
Stokes equation is linear, we combine the above two example by taking summation.

15



N ‖uerr‖∞ Ratio ‖verr‖∞ Ratio ‖perr‖∞ Ratio
16 1.17188492E-01 - 6.20299174E-02 - 2.02998893E-01 -
32 1.22218170E-02 9.5884 1.25574945E-02 4.9396 8.55532629E-02 2.3727
64 3.73073530E-03 3.2759 3.67928831E-03 3.4130 2.61792711E-02 3.2679

128 5.23096557E-04 7.1320 7.33869339E-04 5.0135 4.55700360E-03 5.7448

Table 7: A grid refinement analysis of u, v, p for Example(3).

Example (4). A moving interface problem. This example is given in [8]. We consider
a moving interface problem which has uniform density and viscosity. The initial interface
is given by

r(θ) = r0(1 + ε sin(kθ)), 0 ≤ θ ≤ 2π.

The initial velocity and pressure are all set to be zero. The only driven force of the fluid
motion is the surface tension which is proportional to the curvature κ with a constant E,
that is,

Fn = −Eκ, Fτ = 0.

The velocity is smooth but the pressure has a non-constant jump

[p] = Fn,

[
∂p

∂n

]
= 0.

We simply take an interface moving formula which says

Xn+1 = Xn + Un+1∆t.

In our test, we take r0 = 0.5, k = 5, ε = 0.2, E = 0.05 and µ = 1.
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Figure 5: The numerical evolution of the moving interface using the IIM coupled with the
interpolation formula introduced in previous section. Here we pick the number of grid:
Nx = Ny = N = 64, number of interface marker: M = 42, and ∆t = 0.002.

Figure 6: The measure of the bubble area. The geometry of interface eventually converges
to a circle with conserving measure of area.
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4 Navier-Stokes Equation

4.1 Introduction to Navier-Stokes Equation

The Navier Stokes Equation is of this form

ρ

(
∂u

∂t
+ (u · ∇)u

)
+∇p = µ∆u + f + g, (4.2)

∇ · u = 0, (4.3)

where u(x, t), p(x, t), µ,f(x, t) are similar as the above session, and g(x, t) is the external
force defined on the computational domain. Note that the divergent-free condition ∇·u =
0 denotes the fluid is incompressible.

Here we have some important theorems for Navier-Stokes equation, which can also be
applied to time-independent Stokes equation.

Lemma. If [u] = 0, then
[ut] + [∇u] · u = 0.

Proof.

0 =
d

dt
[u] =

[
ut +∇u · ∂X

∂t

]
= [ut +∇u · u] = [ut] + [∇u] · u.

Lemma. If [u] = 0 and ∇ · u = 0, then[
∂u

∂n

]
· n = 0.

Proof. Denoting the unit normal and tangential vector be n = (n1, n2), τ = (−n2, n1),
and imposing ux + vy = 0, we have[

∂u

∂n

]
· n = [uxn1 + uyn2]n1 + [vxn1 + vyn2]n2

= [uxn1 + vxn2]n1 + [uyn1 + vyn2]n2

= [vy(−n1) + vxn2]n1 + [uyn1 + ux(−n2)]n2

= − [vyn1 − vxn2]n1 + [uyn1 − uxn2]n2

= −
[
∂u

∂τ

]
· τ = 0

since [
∂u

∂τ

]
=
∂ [u]

∂τ
= 0.

Theorem. Let u, p be solution of Navier-Stokes equation without the external force g.
Then the jump across the interface satisfies

[p] =
F · n

|∂X/∂s|
, µ

[
∂u

∂n

]
=

−F · τ
|∂X/∂s|

τ ,

[
∂p

∂n

]
=

1∣∣∂X
∂s

∣∣ ∂∂s
(

F · τ
|∂X/∂s|

)
where n, τ are unit normal and tangent vector respectively on the interface Γ.
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Proof. First we choose a banded domain Ωε(t) enclosing the interface Γ(t) with the outer
and inner boundary Γ+

ε (t) and Γ−ε (t). The ε is a small parameter of the distance from Γ(t)
to Γ+

ε (t) and to Γ−ε (t), where Γ(t) = {X(s, t), 0 ≤ s ≤ L} be the parametric curve with
parameter s and dependence on time t. Let φ(x) be any smooth function with compact
support defined on Ωε(t). We multiply φ(x) on both sides of Navier-Stokes equation and
integrate over Ωε(t), which yields∫

Ωε(t)

ρ

(
∂u

∂t
+ u · ∇u

)
φ dx +

∫
Ωε(t)

∇pφ dx

=

∫
Ωε(t)

µ∆uφ dx +

∫
Ωε(t)

∫ L

0

F (s, t)δ(x−X(s, t))ds φ dx.

Using the relation of the transport theorem in the first term of the left hand side, and the
fact of Ωε(t) enclosing Γ(t) and the definition of Dirac delta function in the last term of
right hand side, we have

d

dt

∫
Ωε(t)

ρuφ dx +

∫
Ωε(t)

∇pφ dx =

∫
Ωε(t)

µ∆uφ dx +

∫ L

0

F (s, t)φ(X(s, t)) ds.

Let us consider the first component of the above equation, that is,

d

dt

∫
Ωε(t)

ρuφ dx +

∫
Ωε(t)

pxφ dx =

∫
Ωε(t)

µ∆uφ dx +

∫ L

0

F1(s, t)φ(X(s, t)) ds.

Assume u is smooth enough and bounded, the first term of left hand side tends to zero
as ε→ 0. Moreover∫

Ωε(t)

pxφ dx =

∫
Γ+

ε

pn1φ dσ −
∫

Γ−ε

pn1φ dσ −
∫

Ωε(t)

pφx dx

→
∫

Γ

[p]n1φ dσ =

∫ L

0

[p]n1φ |∂X/∂s| ds

and ∫
Ωε(t)

µ∆uφ dx =

∫
Γ+

ε

µ
∂u

∂n
φ dσ −

∫
Γ−ε

µ
∂u

∂n
φ dσ −

∫
Ωε(t)

µ∇u · ∇φ dx

→
∫

Γ

µ

[
∂u

∂n

]
φ dσ =

∫ L

0

µ

[
∂u

∂n

]
φ |∂X/∂s| ds

as ε→ 0. Therefore, since φ is arbitrary, we have

[p] |∂X/∂s|n1 = µ

[
∂u

∂n

]
|∂X/∂s| + F1.

Similarly, for the second component, we have

[p] |∂X/∂s|n2 = µ

[
∂u

∂n

]
|∂X/∂s| + F2.

Multiplying n1, n2 on both sides of the above equations respectively, summing them, and
by previous lemma, we obtain the first equality

[p] =
F · n

|∂X/∂s|
.
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Now substituting this pressure jump into the above relations, we get

µ

[
∂u

∂n

]
|∂X/∂s| = (F · n)n1 − F1 = (−F1n2 + F2n1)n2 = (−F · τ )(−n2),

µ

[
∂v

∂n

]
|∂X/∂s| = (F · n)n2 − F2 = (F1n2 − F2n1)n1 = (−F · τ )n1,

that is,

µ

[
∂u

∂n

]
=

−F · τ
|∂X/∂s|

τ .

In order to derive the normal derivative jump of the pressure, let us apply the di-
vergence operator to both side of Navier-Stokes equation and use the incompressibility
constraint, we have

∇ ·
(
ρ

(
∂u

∂t
+ (u · ∇)u

))
+ ∆p = ∇ · f .

As before, we multiply φ on both sides and integrate over Ωε, which yields∫
Ωε(t)

∇ ·
(
ρ

(
∂u

∂t
+ (u · ∇)u

))
φ dx +

∫
Ωε(t)

∆pφ dx =

∫
Ωε(t)

∇ · fφ dx.

Observe that∫
Ωε(t)

∇ ·
(
ρ

(
∂u

∂t
+ (u · ∇)u

))
φ dx

=

∫
Ωε(t)

∇ ·
(
ρ

(
∂u

∂t
+ (u · ∇)u

)
φ

)
dx−

∫
Ωε(t)

ρ

(
∂u

∂t
+ (u · ∇)u

)
· ∇φ dx

=

∫
Γ+

ε ∪Γ−ε

ρ

(
∂u

∂t
+ (u · ∇)u

)
φ · n dσ − d

dt

∫
Ωε(t)

ρu · ∇φ dx

→ 0 (as ε→ 0, by previous lemma, and u is bounded.)

and, using twice the Green’s identity,∫
Ωε(t)

∆pφ dx =

∫
Ωε(t)

∆φp dx +

∫
Γ+

ε ∪Γ−ε

φ
∂p

∂n
dσ −

∫
Γ+

ε ∪Γ−ε

p
∂φ

∂n
dσ

→
∫

Γ

[
∂p

∂n

]
φ dσ −

∫
Γ

[p]
∂φ

∂n
dσ (as ε→ 0, and p is bounded.)

=

∫ L

0

[
∂p

∂n

]
|∂X/∂s|φ ds−

∫ L

0

[p] |∂X/∂s| ∂φ
∂n

ds.

Using the definition of the dipole distribution (the generalized derivation of the Dirac
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delta function), we have∫
Ωε(t)

∇ · fφ dx =

∫
Ωε(t)

∫ L

0

(
∇ · (F δ(x−X(s, t))

)
φ dsdx

=

∫ L

0

F (s, t)

(∫
Ωε(t)

(∇ · δ(x−X(s, t)))φ dx

)
ds

= −
∫ L

0

F · ∇φ ds

= −
∫ L

0

F · n∂φ
∂n

ds−
∫ L

0

F · τ ∂φ
∂τ

ds

= −
∫ L

0

F · n∂φ
∂n

ds−
∫ L

0

F · τ
|∂X/∂s|

∂φ

∂s
ds

= −
∫ L

0

[p] |∂X/∂s| ∂φ
∂n

ds+

∫ L

0

∂

∂s

(
F · τ

|∂X/∂s|

)
φ ds.

Since φ is arbitrary, we obtain the normal derivative jump for the pressure[
∂p

∂n

]
=

1∣∣∂X
∂s

∣∣ ∂∂s
(

F · τ
|∂X/∂s|

)
.

Thus, the proof is complete.

Remark. The results can be generalized to the case with additional bounded piecewise
continuous force g across the interface. The proof is straightforward without much effort
needed, and the result of [u] ,

[
∂u
∂n

]
are still valid. However, the normal derivative jump

condition for the pressure should be[
∂p

∂n

]
=

1∣∣∂X
∂s

∣∣ ∂∂s
(

F · τ
|∂X/∂s|

)
+ [g] · n.

We consider the fluid density ρ ≡ 1, and translate the interface force to the jump
conditions. We have

∂u

∂t
+ (u · ∇)u +∇p = µ∆u + g,

∇ · u = 0,

[u] = 0 , µ

[
∂u

∂n

]
=

−F · τ
|∂X/∂s|

τ ,

[p] =
F · n

|∂X/∂s|
,

[
∂p

∂n

]
=

1∣∣∂X
∂s

∣∣ ∂∂s
(

F · τ
|∂X/∂s|

)
.

4.2 Numerical Scheme

There are 3 steps to approximate the solution numerically. Here we consider the scheme
without interfaces first.

1 In the prediction step, we solve u∗ explicitly where

u∗ − un

∆t
+ (u · ∇)un+ 1

2 +∇pn−
1
2 =

µ

2
∆un + gn+ 1

2 , (4.4)
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and ũn+1 by a fast Poisson solver with jump discontinuity,

ũn+1 − u∗

∆t
=
µ

2
∆ũn+1, (4.5)

ũn+1
∣∣∣
∂Ω

= un+1
∣∣∣
∂Ω
,[

ũn+1
]

= 0, µ

[
∂ũn+1

∂n

]
=
−F ∗ · τ
|∂X/∂s|

τ .

Note that the advection term (u · ∇)un+ 1
2 is approximated by the extrapolation

3

2
(u · ∇)un − 1

2
(u · ∇)un−1.

We explain this step in detail. In the first component of the vector field we have
these terms of the space discretization(

u
∂u

∂x
+ v

∂u

∂y

)n+ 1
2

=
3

2

(
uni,j

uni+1,j − uni−1,j

2∆x
+ vnstag

uni,j+1 − uni,j−1

2∆y

)
− 1

2

(
un−1
i,j

un−1
i+1,j − un−1

i−1,j

2∆x
+ vn−1

stag

un−1
i,j+1 − un−1

i,j−1

2∆y

)
,

∂pn−
1
2

∂x
=

p
n− 1

2
i+1,j − p

n− 1
2

i,j

∆x
,

∆un =
uni+1,j − 2uni,j + uni−1,j

∆x2
+
uni,j+1 − 2uni,j + uni,j−1

∆y2
,

and the interpolation

vstag =
1

4
(vi,j + vi,j−1 + vi+1,j + vi+1,j−1)

from v-grid to u-grid. The second component is similar.

2 We perform the projection step to correction the velocity to be divergent free and
update the pressure. According to Helmholtz-Hodge decomposition, we have

ũn+1 = un+1 + ∆t ∇φn+1, (4.6)

∇ · un+1 = 0.

That is, we want to project the vector field ũn+1 to a divergent free one, un+1.
Taking divergent on both sides, we obtain

∇ · ũn+1

∆t
= ∆φn+1,

∂φn+1

∂n

∣∣∣
∂Ω

= 0.

Note that we should calculate the divergent term ∇ · u∗ on the p-grid, solve the
Laplace equation of φ, and then obtain un+1.

3 Finally, the pressure should be corrected. See [6] which says that

∇pn+ 1
2 = ∇pn−

1
2 +∇φn+1 − µ∆t

2
∇(∆φn+1).

Similarly,

pn+ 1
2 = pn−

1
2 + φn+1 − µ

2
∇ · ũn+1.

It can be obtained by substituting (4.6) into the summation of (4.4) and (4.5).
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4.3 Numerical Example

4.3.1 Accuracy Check without Interfaces

Here we introduce some example with exact solutions. In the following examples, we put
the time marching step ∆t = h/2 where h is again the mesh size of the staggered grid.

Example (1). Consider the Navier-Stokes equation on a domain Ω = [0, 1] × [0, 1], and
give the exact solution

u(x, y, t) = − cos(πx) sin(πy) exp(−2π2t/Re),

v(x, y, t) = sin(πx) cos(πy) exp(−2π2t/Re),

p(x, y, t) = −0.25 (cos(2πx) + cos(2πy)) exp(−4π2t/Re).

where Re = 1/µ. We have

∂u

∂x
= sin(πx)π sin(πy) exp(−2π2t/Re),

∂u

∂y
= − cos(πx) cos(πy)π exp(−2π2t/Re),

∂2u

∂x2
= cos(πx)π2 sin(πy) exp(−2π2t/Re),

∂2u

∂y2
= cos(πx)π2 sin(πy) exp(−2π2t/Re),

∂v

∂x
= cos(πx) cos(πy)π exp(−2π2t/Re),

∂v

∂y
= − sin(πx)π sin(πy) exp(−2π2t/Re),

∂2v

∂x2
= − sin(πx)π2 cos(πy) exp(−2π2t/Re),

∂2v

∂y2
= − sin(πx)π2 cos(πy) exp(−2π2t/Re),

∂p

∂x
=

1

2
sin(2πx)π exp(−4π2t/Re),

∂p

∂y
=

1

2
sin(2πy)π exp(−4π2t/Re).

N ‖uerror‖2 Ratio ‖verror‖2 Ratio ‖perror‖2 Ratio
16 2.5618E-05 - 1.7061E-05 - 6.1794E-03 -
32 2.7016E-06 9.4825 1.5956E-06 10.6925 1.2137E-03 5.0913
64 2.8951E-07 9.3316 1.7090E-07 9.3364 2.6025E-04 4.6635

128 3.5376E-08 8.1837 2.0645E-08 8.2780 6.0763E-05 4.2830

Table 8: A grid refinement analysis in L2-Norm for Example(1).

N ‖uerror‖∞ Ratio ‖verror‖∞ Ratio ‖perror‖∞ Ratio
16 8.2522E-05 - 6.6571E-05 - 1.0643E-02 -
32 1.5195E-05 5.4308 9.4561E-06 7.0400 2.1667E-03 4.9120
64 2.4185E-06 6.2828 1.4674E-06 6.4441 4.8205E-04 4.4947

128 4.2419E-07 5.7014 2.4059E-07 6.0991 1.1171E-04 4.3151

Table 9: A grid refinement analysis in L∞-Norm for Example(1).

Example (2). Consider the Navier-Stokes equation with µ = 1 on a domain Ω = [0, 1]×
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[0, 1], and give the exact solution

u(x, y, t) =
1

4
ye−t,

v(x, y, t) = −1

4
x(1− x2)e−t,

p(x, y, t) = (x2 + y2 − 1)2e−t,

g1(x, y, t) = −1

4
ye−t − 1

16
x(1− x2)e−2t + 4(x2 + y2 − 1)e−tx,

g2(x, y, t) =
1

4
x(1− x2)e−t +

1

4
ye−t(−1

4
(1− x2)e−t +

1

2
x2e−t)− 3

2
xe−t + 4(x2 + y2 − 1)e−ty.

Here we have

∂u

∂x
= 0,

∂u

∂y
=

1

4
e−t,

∂2u

∂x2
= 0,

∂2u

∂y2
= 0,

∂v

∂x
=

1

4
e−t(−1 + 3x2),

∂v

∂y
= 0,

∂2v

∂x2
=

3

2
xe−t,

∂2v

∂y2
= 0,

∂p

∂x
= 4(x2 + y2 − 1)e−tx,

∂p

∂y
= 4(x2 + y2 − 1)e−ty.

N ‖uerror‖2 Ratio ‖verror‖2 Ratio ‖perror‖2 Ratio
16 5.3838E-04 - 8.1989E-04 - 1.3604E-02 -
32 1.4644E-04 3.6764 2.2699E-04 3.6120 4.3058E-03 3.1594
64 3.8076E-05 3.8459 5.9219E-05 3.8330 1.4074E-03 3.0594

128 9.6009E-06 3.9658 1.4984E-05 3.9521 3.8226E-04 3.6817

Table 10: A grid refinement analysis in L2-Norm for Example(2).

N ‖uerror‖∞ Ratio ‖verror‖∞ Ratio ‖perror‖∞ Ratio
16 1.3922E-03 - 3.2717E-03 - 8.6817E-02 -
32 4.0255E-04 3.4584 9.6117E-04 3.4038 4.8699E-02 1.7827
64 1.1010E-04 3.6562 2.5788E-04 3.7271 2.6233E-02 1.8564

128 2.8170E-05 3.9084 6.6552E-05 3.8748 1.3360E-02 1.9635

Table 11: A grid refinement analysis in L∞-Norm for Example(2).

4.3.2 Cavity Flow

Example (3). Let Ω = [0, 1]×[0, 1] be computational domain. Assume that flow is driven
by the upper wall. That is, we have the boundary condition

u = 0 on ∂Ω \ ∂Ωlid
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and
u = (u, v) = (1, 0) on Ωlid,

where Ωlid = {(x, y) ∈ ∂Ω, y = 1}. Let N = 128 be the number of partition. We compare
our result with [14].

Figure 7: Figures of velocities u and v on x = 0.5 and y = 0.5 respectively. Re = 1000.

Figure 8: A contour plot of a driven cavity with Re = 1000.
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4.3.3 Circular Flow with a Line Force

Example (4). Let us assume the curve Γ to be a circle x2+y2 = 1
4

within a computational
domain Ω = [−1, 1]× [−1, 1]. That is, the interface can be represented by(

X(s), Y (s)
)

=
(
0.5 cos θ, 0.5 sin θ

)
where θ = 2s, 0 ≤ s ≤ π. Let the pressure and velocity components be

u(x, y, t) =

{
h(t)

(
y
r
− 2y

)
r > 1

2

0 r ≤ 1
2

v(x, y, t) =

{
h(t)

(
−x
r

+ 2x
)

r > 1
2

0 r ≤ 1
2

p(x, y, t) =

{
1 r > 1

2

0 r ≤ 1
2

where r =
√
x2 + y2. It is easy to verify the velocity satisfies the incompressibility

constraint, and it is continuous but has finite jump across the interface. That is,[
∂u

∂n

]
= −2h(t) sin θ,

[
∂v

∂n

]
= 2h(t) cos θ, [p] = 1

and then
Fn = 1, Fτ = −2h(t).

The external force g can be computed to satisfy the Navier-Stokes equation, and yields

g1(x, y, t) =

{
h(t)2 cos θ

(
4− 4r − 1

r

)
+ h(t) sin θ µ

r2
+ h′(t) sin θ(1− 2r) r > 1

2

0 r ≤ 1
2

g2(x, y, t) =

{
h(t)2 sin θ

(
4− 4r − 1

r

)
− h(t) cos θ µ

r2
− h′(t) cos θ(1− 2r) r > 1

2

0 r ≤ 1
2

.

One can verify that on Γ, (r = 1/2),

[g] · n = h(t)2

(
4− 4r − 1

r

)
− 0 = 0.

Some results are given here. In our tests, we assume the boundary force is given. We
observe that the accuracy in u, v is nearly second order.
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N ‖u‖∞ Ratio ‖v‖∞ Ratio ‖p‖∞ Ratio
16 6.2133E-03 0.0000 6.0783E-03 0.0000 1.3309E-01 0.0000
32 2.0049E-03 3.0990 1.9912E-03 3.0526 6.5489E-02 2.0322
64 5.6914E-04 3.5228 5.6695E-04 3.5121 4.4361E-02 1.4762

128 1.4834E-04 3.8367 1.4805E-04 3.8295 1.5033E-02 2.9509
N ‖u‖L2 Ratio ‖v‖L2 Ratio ‖p‖L2 Ratio
16 1.4411E-03 0.0000 1.4221E-03 0.0000 2.5676E-02 0.0000
32 3.8649E-04 3.7287 3.8360E-04 3.7073 1.0012E-02 2.5645
64 1.1245E-04 3.4370 1.1209E-04 3.4223 3.3265E-03 3.0099

128 3.2281E-05 3.4835 3.2235E-05 3.4772 1.2290E-03 2.7066

Table 12: The grid refinement analysis for u, v, and p. h(t) = 1.

N ‖u‖∞ Ratio ‖v‖∞ Ratio ‖p‖∞ Ratio
16 1.8770E-03 0.0000 1.8741E-03 0.0000 3.7830E-02 0.0000
32 6.3666E-04 2.9483 6.4121E-04 2.9227 2.0364E-02 1.8577
64 1.8387E-04 3.4625 1.8356E-04 3.4932 1.4330E-02 1.4211

128 4.8301E-05 3.8068 4.8899E-05 3.7539 4.7389E-03 3.0238
N ‖u‖L2 ratio ‖v‖L2 ratio ‖p‖L2 ratio
16 4.3742E-04 0.0000 4.3582E-04 0.0000 7.8480E-03 0.0000
32 1.2249E-04 3.5712 1.2222E-04 3.5660 3.2169E-03 2.4396
64 3.5968E-05 3.4054 3.5932E-05 3.4013 1.0809E-03 2.9762

128 1.0295E-05 3.4937 1.0291E-05 3.4917 4.1351E-04 2.6139

Table 13: The grid refinement analysis for u, v, and p. h(t) = 1− e−t.
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5 Concluding Remarks

We have introduced a numerical technique for the computation of interface problems.
The result shows the behavior near the immersed interface can be captured well, and in
general second order accuracy can be achieved. Moreover, the method is efficient since
fast solvers can still be applied.

One of the future works is to solve piecewise constant coefficient Poisson equation

∇ · (β±∇ψ±) = ω± on Ω±.

The immersed interface method can also handle this type of equation. Thus, we can
extend this solver to solve piecewise constant coefficient Stokes equation or Navier-Stokes
equation.

It also need to be considered that how the spline we constructed approximates the
actual interface, and how accurate the curvature and the distance to the foot of perpen-
dicular we obtain. The error generated by approximation of an interface by an spline may
lead to the fluctuation of convergent ratio in grid refinement analysis.

It is a challenge that extending this method to three-dimension. Although there are
some fast Poisson solvers in 3-D, constructing the interface of surface and finding foot of
perpendicular seem to be a heavy task. It is important that maintaining the efficiency
and accuracy when extending this method into 3-D.
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