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摘 要       
 

非線性偏微分方程的求解通常是一個重要而困難的問題，但對某些非線性方

程（例如，k-dV 方程和 mK-dV 方程…等，）我們已有多種顯式求解的方法了。

常見的有反散射變換、Bäcklund 變換和 Darboux 變換。在本文中，我們將集中介

紹後兩種方法：Bäcklund 變換和 Darboux 變換；這兩者都是可由已知解出發，利

用 AKNS 系統來討論，從而給出新解的方法。我們將寫下這兩種變換的顯式表

達式，並以此來證明它們其實是等價的。最後，我們也會舉例來說明如何利用這

變換來給出更多我們所考慮的非線性方程的更多解。 
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Abstract 
 
To find solutions of nonlinear partial differential equations is usually a 
important and difficult problem, but for some kinds of nonlinear equation 
(for example, K-dV equation and mK-dV equation etc.), we have haven 
some method to find out their explicit solutions. These familiar methods 
which we often use involves the inverse scattering transformation, 
Bäcklund transformation and Darboux transformation. In this paper, we 
will focus our discussion on the last two method: explicit Bäcklund 
transformation and Darboux transformation. These two method are both 
that starting from a known solution of this nonlinear equation, then applies 
the AKNS system to derive a new solution. We shall write their explicit 
expressions down, and then prove that these two transformation are 
equivalence. Finally, we also illustrate how to use the transformation to 
find more solutions of the considered nonlinear equation. 
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1 Introduction

1.1 The Introduction of Solitary Waves and KdV Equation

Solitons are a special kind of an essential nonlinear wave.
A ”soliton” is not precise defined, but is used to describe any solution of a nonlinear

equation or system which (i) represents a wave of permanent form; (ii) is localized, de-
caying or becoming constant at infinity; (iii) may interact strongly with other solitons so
that after the interaction it retains its form, almost as if the principle of superposition
were valid. The word ”soliton” was coined by Zabusky and Kruskal (1965) after ”pho-
ton”, ”proton”, etc. to emphasize that a soliton is a localized entity which may keep its
identity after an interaction (see Fig. 1).

Figure 1: The interaction of two solitary wave

A solitary wave is the first and most celebrated example of a soliton to have been
discovered. To realize the definition of a soliton, it is useful to study solitary waves on
shallow water. Let us begin at the begging, and relate a little history.

The solitary wave was first observed on the Edinburgh to Glasgow canal in 1834 by
J. Scott Russell. He also did some laboratory experiments, generating solitary waves by
dropping a weight at one end of a water channel. He deduced empirically that the volume
of water in the wave is equal to the volume displaced by the weight and that the steady
velocity c of the wave is given by c2 = g(h + A), where A is the amplitude of the wave
and h is the height of the undisturbed water (see Fig. 2). Note that a taller solitary wave
travels faster than a smaller one (see Fig. 1).

Boussinesq (1871) and Rayleigh (1876) independently showed essentially that the wa-
ter wave height ζ about the mean level h is given by

ζ(x, t) = A sech2 x− ct

b
,

where b2 =
4h2(h+ A)

3A for any positive amplitude A.
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Figure 2: solitary wave

In 1895 Korteweg and de Vries developed this theory, and found an equation governing
the one-dimensional motion of nonlinear long waves:

∂ζ

∂t
=

3

2

√
g

h
(ζ
∂ζ

∂x
+

3

2
α
∂ζ

∂x
+

1

3
σ
∂3ζ

∂x3
),

where α is a small constant, σ = 1
3h

3 − Th
gρ , and T is the surface tension of liquid of

density ρ. This is essentially the original form of the Korteweg-dv Vries equation; we
shall call it the KdV equation.

Note that by translations and magnifications of the dependent and independent vari-
ables,

u = k1ζ + k0, X = k3x+ k2, T = k4t+ k5,

we can write the KdV equation in many equivalent forms by choice of the constants k0

to k5. For example:

∂u

∂T
+ (1 + u)

∂u

∂X
+
∂3u

∂X3
= 0.

We can transform the above equation under

1 + u→ αu, T → βt, X → γx,

where α, β and γ are real (non-zero) constants, to yield

ut +
αβ

γ
uux +

β

γ3
uxxx = 0.

This is a general form of the KdV equation, and a convenient choice, which we shall often
use, is

ut − 6uux + uxxx = 0. (1.1)

We now briefly discuss the solitary-wave solution of the KdV equation. To solve it,
first seek wave of permanent shape and size by trying the travelling-wave solutions of this
equation such that u(x, t) = f(ξ), where ξ = x − ct for some function f and constant
wave velocity c. Thus the equation (1.1) becomes

−cf ′ − 6ff ′ + f ′′′ = 0,
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which may be integrated once to yield

d1
2
(f ′)2

df
= f ′′ = 3f 2 + cf + A,

where A is a constant of integration. If we use f ′ as an integrating factor, we may integrate
once more to get

1

2
(f ′)2 = f 3 +

1

2
cf 2 + Af +B,

where B is a second constant of integration.
If we want to seek a solitary wave, we may add the boundary conditions f , f ′, f ′′ → 0

as ξ → ±∞. Thus A and B are both zero,

(f ′)2 = f 2 · (2f + c),

and we can see immediately that a real solution exists only if (f ′)2 ≥ 0 i.e. if 2f + c ≥ 0.
The above equation can be integrated as follows:

±
∫
dξ =

∫
df

f ′
=

∫
df

f
√

2f + c
,

Then

ξ − ξ0 = ±
∫

df

f
√

2f + c
= ± 1√

c
ln |
√

2f + c−
√
c√

2f + c+
√
c
|

= ∓ 2√
c

1

2
ln |

1 +
√

2f+c√
c

1−
√

2f+c√
c

| = ∓ 2√
c

tanh−1

√
2f + c√
c

,

√
2f + c√
c

= ∓ tanh(

√
c

2
(ξ − ξ1)),

2f + c = c · tanh2(

√
c

2
(ξ − ξ1)),

f =
c

2
(tanh2(

√
c

2
(ξ − ξ1))− 1).

Hence, we shall obtain

u(x, t) = f(ξ) = −1

2
c sech2[

1

2

√
c(x− ct− x0)], (1.2)

where x0 is an arbitrary constant of integration. The solitary-wave solution (1.2) of
equation (1.1) forms a one-parameter family (ignoring x0), and in fact the solution exists
for all c ≥ 0 no matter how large or small the wave may be.

The most important thing that we usually need to do is the solution of the general
initial-value problem for the KdV equation. That is, finding the solution u(x, t) of

ut − 6uux + uxxx = 0

for all t > 0 and −∞ < x <∞, where

u(x, 0) = g(x)

3



for a given function g.
It can be proved that the method of finding the solution u(x, t) will require a connection

to a scattering problem, in fact the classical scattering problem of quantum mechanics.
this idea is usually called inverse scattering transform (IST). (ref [1, 2, 6]) The method of
inverse scattering or the inverse scattering transform will be used to solve the initial-value
problem. (see Fig. 4)

Figure 3: Flow diagram of the method of inverse scattering.

And it will be able to be explained by a deeper and more general argument due to
Lax (1968). This abstract argument (the Lex method) will show that the method may
be applied to many, through not most, nonlinear initial-value problem. Now, We simply
describe the Lax theory as follows.

If the evolution equation

ut = S(u), (1.3)

where S is a nonlinear operator which is independent of t, can be expressed as the Lax
equation

Lt = BL− LB, (1.4)

where L and B are some linear operators in x and may depend on u(x, t),(By Lt, we mean
the derivative w.r.t. the parameter t as it appears explicitly in the operator; for example,

if L = − ∂2

∂x2 + u(x, t), then Lt = ut.) and if

Lψ = λψ, (1.5)

then λt = 0 and ψ evolves according to

ψt = Bψ.

For example, let us suppose that

L = − ∂2

∂x2
+ u and B = −4

∂3

∂x3
+ 6u

∂

∂x
+ 3ux.

Therefore, Lt = BL− LB if and only if ut = −uxxx + 6uux. Hence, we can find that the
K-dV equation

ut + uxxx − 6uux = 0 (1.6)
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is the integrability condition of (1.5).
The integrability condition means: consider the linear equation system{

−ψxx + uψ = λψ,
ψt = −4ψxxx + 6uψx + 3uxψ

(1.7)

(which is the Lax pair of K-dV equation), where u and ψ are both functions of x and t.
For the first equation of (1.7), we derive the ψxx = (u−λ)ψ and then compute the (ψxx)t.
And, for the second equation of (1.7), we compute the (ψt)xx. Then the sufficient and
necessary condition of (ψxx)t = (ψt)xx is that u satisfies the K-dV equation (1.6).

It can be seen that we get an eigenvalue problem (1.5) for any nonlinear equation
which can be put into the form (1.4) although deriving the form (1.4) from the form (1.3)
is not always easy. Hence the scattering and inverse scattering theories appropriate to the
eigenvalue problem (1.5) may be used to solve an initial-value problem for the nonlinear
system (1.3).

1.2 AKNS System and Its Integrability Condition

In order to generalize the KdV equation to more cases of nonlinear partial equation, V.E.
Zakharov, A.B. Shabat, M.J. and M.J. Ablowwitz, D.J. Kaup, A.C. Newell, H. Segur
introduce to a more general linear equation pair which in general we call it by AKNS
system.

If we want to consider a partial differential equation (system)

F (u, ux, ut, uxx, · · · ) = 0, (1.8)

we shall be able to apply the AKNS form :

Φx = UΦ [= (−iλJ +Q)Φ]

Φt = V Φ [=
n∑

j=0

Vjλ
n−jΦ]. (1.9)

where

J =

(
1 0
0 −1

)
, Q =

(
0 q
r 0

)
, and V =

(
A B
C −A

)
.

where Φ = Φ(x, t;λ) is a 2-column vector (or 2× 2 matrix) and λ is a complex parameter
which we call it by spectrum parameter in general. q and r are λ-independent functions
of u and its derivatives (hence also are functions of x, and t).

And the entries of matrix V have the below form

A =
n∑

j=0

aj(x, t)λ
n−j,

B =
n∑

j=0

bj(x, t)λ
n−j,

and C =
n∑

j=0

cj(x, t)λ
n−j,
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where aj, bj and cj are some real or complex functions of x, t.
The integrability condition of (1.9) means that when Q is a suitable differential polyno-

mial of u, then (1.8) is exactly the sufficient and necessary condition which the equation
Φxt = Φtx holds for all different powers in λ. It is easy to check that the integrable
condition is

Ut − Vx + [U, V ] = 0, where [U, V ] = UV − V U . (1.10)

Thus, we can find that the integrability condition (1.10) of the equation system (1.9)
requires

Ax = qC − rB,

Bx = qt − 2iλB − 2qA, (1.11)

and Cx = rt + 2iλC + 2rA

which shall become the nonlinear equation (1.8) when we choose the suitable q, r, A, B
and C.

Hence, we can discuss the nonlinear partial differential equations of u (equation (1.8))
through the AKNS system (1.9). This class of equations includes the following :

(i) K-dV equation:

ut + uxxx ∓ 6uux = 0,

with

q = u, r = ±1,

A = ±ux ∓ 2iλu− 4iλ3, B = −uxx ± 2u2 + 2iλux + 4λ2u, C = 2u± 4λ2.

(ii) mK-dV equation:

ut + uxxx ∓ 6u2ux = 0,

with

q = u, r = ±u,

A = ∓2iλu2 − 4iλ3,B = −uxx ± 2u3 + 2iλux + 4λ2u,C = ∓uxx + 2u3 ∓ 2iλux ± 4λ2u.

(iii) nonlinear Schrödinger equation:

iut + uxx ∓ 2|u|2u = 0,

with

q = u, r = ±u∗,

A = ∓i|u|2 − 2iλ2, B = iux + 2λu, C = ∓iu∗x ± 2λu∗.

(iv) sine-Gordon equation:

uxt = sinu,

6



with

q = −r =
1

2
ux, A =

i

4λ
cosu, B = C =

−i
4λ

sinu.

(v) Liouville equation:

uxt = 2eu,

with

q = r =
1

2
ux, A = −B = C =

i

2λ
eu.

For example, consider the K-dV equation

ut + uxxx ∓ 6uux = 0

and the mK-dV equation

ut + uxxx ∓ 6u2ux = 0

by applying the AKNS system

Φx =

(
−iλ q
r iλ

)
Φ, and Φt =

(
A B
C −A

)
Φ.

If we choose that A, B and C as follows

A = rqx − qrx − 2iλqr − 4iλ3

B = −qxx + 2rq2 + 2iλqx + 4λ2q (1.12)

and C = −rxx + 2qr2 − 2iλrx + 4λ2r

Now, applying the integrability condition of AKNS system (i.e. (1.11))

Ax = qC − rB, Bx = qt − 2iλB − 2qA, and Cx = rt + 2iλC + 2rA,

we shall find that the integrable condition for all order of λ is

qt + qxxx − 6rqqx = 0, and rt + rxxx − 6qrrx = 0. (1.13)

Suppose we choose r = ±1 again, the above equations shall be exactly the K-dV
equation

qt + qxxx ∓ 6qqx = 0.

Note that if we choose r = ±q, (1.13) becomes the mK-dV equation

qt + qxxx ∓ 6q2qx = 0.

7



2 Bäcklund Transformations

In this section, we will introduce another method to find a solution of a nonlinear partial
differential equation : the Bäcklund transformation. If we have a solution of a nonlinear
differential equation, we shall derivative a integrable partial differential equation system.
And we can get a new solution from the differential equation system.

The Bäcklund transformations were devised in the 1880s for use in the theories of
differential geometry and of differential equations. They arose as a generalization of
contact transformations.

2.1 Introductory Ideas

A Bäcklund transformation is essentially defined as a pair of partial differential relations
involving two independent variables and their derivatives which together imply that each
one of the dependent variables satisfies separately a partial differential equations. Thus,
for example, the transformation

R1(u, v, ux, uy, . . . ;x, y) = 0 and R2(u, v, ux, uy, . . . ;x, y) = 0 (2.14)

would imply that two functions u and v satisfy partial differential equations of the oper-
ational form,

P (u) = 0 and Q(v) = 0 (2.15)

where P and Q are two operators which are in general nonlinear. Then Ri = 0 is a
Bäcklund transformation if it is integrable for v when P (u) = 0 and if the resulting v is
a solution of Q(v) = 0, and vice versa. Of course, this approach to the solution of the
equations P (u) = 0 and Q(v) = 0 is normally only useful if the relations Ri = 0 are, in
some sense, simpler than the original equations (2.15)

One of the simplest Bäcklund transformations is the pair (written with y rather than
t)

ux = vy , uy = −vx,

the Cauchy-Riemann relations for Laplace’s equation

uxx + uyy = 0 ; vxx + vyy = 0.

Thus, if v(x, y) = xy (a simple solution of Laplace’s equation), then u(x, y) can be deter-
mined form

ux = x and uy = −y,

and so u(x, y) = 1
2
(x2 − y2) is another solution of Laplace’s equation.

Another simple example is the Liouville’s equation,

uxt = eu. (2.16)

First, we introduce a auxiliary variable, v, which satisfies

vxt = 0. (2.17)

8



Now, if we consider the pair of first-order equations

ux + vx =
√

2e(u−v)/2 and ut − vt =
√

2e(u+v)/2, (2.18)

then we can cross-differentiate to obtain

uxt + vxt = eu and utx − vtx = eu. (2.19)

It is immediately clear that the two equations (2.19) imply equations (2.16) and (2.17);
thus the pair of equations (2.18) constitute a Bäcklund transformation for Liouville’s
equation and the equation vxt = 0. Since this latter equation is easily solved and so, from
the Bäcklund transformation (2.18), we shall be able to generate the general solutions of
Liouville’s equation (cf. [1], p.109-110).

2.2 Bäcklund Transformation for KdV Equation

Next, we shall introduce the Bäcklund transformation for the KdV equation

ut − 6uux + uxxx = 0. (2.20)

in following.
There is a more convenient transformation was developed by Wahlquist and Estabrook

(1973), which we shall now describe. We first transform the dependent variable of the
KdV equation and then use a Bäcklund transformation. So we define a new dependent
variable w by

wx = u (2.21)

and the operator Q by Q(w) = wt − 3w2
x + wxxx. It follows that

[Q(w)]x = ut − 6uux + uxxx.

Hence we find that if u satisfies the KdV equation (2.20) then

Q(w) = 0 (which is called the potential K-dV equation). (2.22)

Now consider the Bäcklund transformation,

w(0)
x + w(1)

x = 2λ+
1

2
(w(0) − w(1))2 (2.23)

and

w
(0)
t + w

(1)
t = −(w(0) − w(1))(w(0)

xx − w(1)
xx ) + 2(w(0)2

x + w(0)
x w(1)

x + w(1)2
x ), (2.24)

where w(0) and w(1) correspond to u(0) and u(1) respectively, i.e. where w
(0)
x = u(0) and

w
(1)
x = u(1), and λ is a real parameter. On assuming the transformation, we may take
∂2(2.23)
∂x2 + (2.24) to deduce that

Q(w(0)) +Q(w(1)) = 0,

and may take
∂(2.24)
∂x

− ∂(2.23)
∂t

together with
∂(2.23)
∂x

to deduce that

(w(0) − w(1))[Q(w(0))−Q(w(1))] = 0.
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Therefore equations (2.23) and (2.24) shall imply that Q(w(0)) = 0 and Q(w(1)) = 0. i.e.
w(0) and w(1) each satisfy equation (2.22) and thence that u(0) and u(1) each satisfy the
KdV equation (2.20).

To give an example of the use of equations (2.23) and (2.24), we shall be able to
start from the trivial solution u(0)(x, t) = 0 of the KdV equation for all x and t. This
corresponds to the solution w(0)(x, t) = 0 of equation (2.22). Then the transformation
gives

w(1)
x = 2λ+

1

2
w(1)2

and

w
(1)
t = −w(1)w(1)

xx + 2w(1)2
x .

The first of these equations may be integrated directly to yield

w(1)(x, t) = −2κ tanh[κx− f(t)] (2.25)

where λ = −κ2(< 0) and f is an arbitrary function. From the first equation, we can also

find w
(1)
xx = w(1)w

(1)
x . Therefore the second equation of the transformation gives

w
(1)
t = −w(1)w(1)

xx + 2w(1)2
x = 2w(1)

x (w(1)
x − 1

2
w(1)2) = 4λw(1)

x .

Therefore

f ′(t) = −4λκ = 4κ3,

for consistency with equation (2.25), we have

f(t) = 4κ3t+ κx0,

where x0 is an arbitrary constant. Thus the Bäcklund transformation yields the solution

w(1)(x, t) = −2κ tanh[κ(x− x0 − 4κ2t)] (2.26)

and so, from equation (2.21), we obtain

u(1)(x, t) = −2κ2sech2[κ(x− x0 − 4κ2t)],

the solitary-wave solution of the KdV equation. (Note that solution (2.25) is valid if
|w(1)| < 2κ, but if |w(1)| > 2κ, then

w(1)(x, t) = −2κ coth[κ(x− x0 − 4κ3t)],

a singular solution.)

2.3 Soliton-generating Bäcklund Transformation for Some Non-
linear Equations

When we consider a nonlinear partial differential equation, in general, the Bäcklund trans-
formation pair R1(u, v, ux, uy, . . . ;x, y) and R2(u, v, ux, uy, . . . ;x, y) (in equation system
(2.14)) is not easy to find. In this section we will use a more general method to derive a
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soliton-generating Bäcklund transformation for a class of nonlinear equations associated
with the AKNS system which we have introduced in Sec 1.2 :

Φx =

(
−iλ q
r iλ

)
Φ, Φt =

(
A B
C −A

)
Φ, (2.27)

where Φ = Φ(x, t;λ) is a 2× 2 matrix here. Now, We will use the AKNS system to begin
our discussion.

To find a soliton-generating Bäcklund transformation for each of the above nonlinear
equations, we will look for a pair of matrix functions ϕ(x, t;λ) and ψ(x, t;λ) such that
ϕψ = I. We may assume [3]

ϕ(x, t;λ) = J [I − λ1 − λ2

λ− λ2

P (x, t)], ψ(x, t;λ) = [I +
λ1 − λ2

λ− λ1

P (x, t)]J . (2.28)

where λ1 and λ2 are two distinct complex numbers, J =

(
1 0
0 −1

)
and P is an undteter-

mined 2× 2 projection matrix (P 2 = P ).
Suppose u(0) and u(1) are two solutions of the nonlinear equations under consideration.

Let Φ(1) is a new solution, and Φ(0) is a solution of (2.27) which we have known, they

satisfy Φ(0) = ϕΦ(1), where Φ(1) satisfies the equation system Φ
(1)
x =

(
−iλ q(1)

r(1) iλ

)
Φ(1)

and Φ
(1)
t =

(
A(1) B(1)

C(1) −A(1)

)
Φ(1). Therefore, ϕ will satisfy

ϕx =

(
−iλ q(0)

r(0) iλ

)
ϕ− ϕ

(
−iλ q(1)

r(1) iλ

)
, (2.29)

ϕt =

(
A(0) B(0)

C(0) −A(0)

)
ϕ− ϕ

(
A(1) B(1)

C(1) −A(1)

)
, (2.30)

where q(1), r(1), A(1), B(1), C(1) are obtained from q(0), r(0), A(0), B(0), C(0) respectively
by replacing u(0) with u(1). Now, we shall use equations (2.28), (2.29) and (2.30) to derive
the Bäcklund transformation equations.

First, substituting (2.28) into (2.29), we shall have

−J λ1 − λ2

λ− λ2

Px =

(
−iλ q(0)

r(0) iλ

)
J(I − λ1 − λ2

λ− λ2

P )− J(I − λ1 − λ2

λ− λ2

P )

(
−iλ q(1)

r(1) iλ

)
.

Product (λ− λ2) on two sides, then

−J(λ1 − λ2)Px =

(
−iλ q(0)

r(0) iλ

)
J(λ− λ2 − (λ1 − λ2)P )

−J(λ− λ2 − (λ1 − λ2)P )

(
−iλ q(1)

r(1) iλ

)
.

Let us compare the coefficients of different powers in λ:
(i) For λ1 :

0 =

(
−iλ 0
0 iλ

)
J(−λ2 − (λ1 − λ2)P )− J(−λ2 − (λ1 − λ2)P )

(
−iλ 0
0 iλ

)
+

(
0 q(0)

r(0) 0

)
Jλ− Jλ

(
0 q(1)

r(1) 0

)
.
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Cancel λ on two sides,

0 = iλ2 + i(λ1 − λ2)P

−J(iλ2 + i(λ1 − λ2)P )J +

(
0 q(0)

r(0) 0

)
J − J

(
0 q(1)

r(1) 0

)
0 = i(λ1 − λ2)(P − JPJ) +

(
0 q(0)

r(0) 0

)
J − J

(
0 q(1)

r(1) 0

)
.

Product J on two sides, then we have the equation

0 = i(λ1 − λ2)[J, P ]−
(

0 q(0) + q(1)

r(0) + r(1) 0

)
. (2.31)

(ii) For λ0:

J(λ1 − λ2)Px =

(
0 q(0)

r(0) 0

)
J(−λ2 − (λ1 − λ2)P )

−J(−λ2 − (λ1 − λ2)P )

(
0 q(1)

r(1) 0

)
.

Product J on two sides and apply J2 = I, then we can get the other equation

−(λ1 − λ2)Px =

(
0 q(0)

r(0) 0

)
(λ2 + (λ1 − λ2)P )

+(λ2 + (λ1 − λ2)P )

(
0 q(1)

r(1) 0

)
. (2.32)

Now we can assume the 2× 2 projection matrix to be

P =

(
a b
c 1− a

)
with a(1− a) = bc, (2.33)

where a, b and c are to be determined in terms of q(0), r(0), q(1) and r(1). Hence the
equation (2.31) becomes(

0 q(0) + q(1)

r(0) + r(1) 0

)
= 2i(λ1 − λ2)

(
0 b
c 0

)
. (2.34)

Hence we know that

b =
q(0) + q(1)

2i(λ1 − λ2)
, c =

r(0) + r(1)

−2i(λ1 − λ2)
, (2.35)

and

a(1− a) = bc

=
(q(0) + q(1))(r(0) + r(1))

4(λ1 − λ2)2
. (2.36)

Since we can use equation (2.36) to solve a,

a =
1

2
±
√

(λ1 − λ2)2 − (q(0) + q(1))(r(0) + r(1))

2(λ1 − λ2)
. (2.37)
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Substituting (2.33) into (2.32), then we can get the equation:

−(λ1 − λ2)

(
ax bx
cx −ax

)
=

(
0 λ2q
λ2r 0

)
+ (λ1 − λ2)

(
cq(0) q(0)(1− a)
ar(0) br(0)

)
+

(
0 λ2q

(1)

λ2r
(1) 0

)
+ (λ1 − λ2)

(
br(1) aq(1)

(1− a)r(1) cq(1)

)
=

(
0 λ2(q

(0) + q(1))
λ2(r

(0) + r(1)) 0

)
+(λ1 − λ2)

(
cq(0) + br(1) q(0)(1− a) + aq(1)

ar(0) + r(1)(1− a) br(0) + cq(1))

)
Hence(
ax bx
cx −ax

)
=

(
0 − λ2

λ1−λ2
(q(0) + q(1))

− λ2

λ1−λ2
(r(0) + r(1)) 0

)
+

(
−(cq(0) + br(1)) a(q(0) − q(1))− q(0)

−a(r(0) − r(1))− r(1) −(br(0) + cq(1))

)
=

(
− r(0)+r(1)

−2i(λ1−λ2)
q(0) − q(0)+q(1)

2i(λ1−λ2)
r(1) −1

2
2(λ1q(0)+λ2q(1))

λ1−λ2
+ a(q(0) − q(1))

−1
2

2(λ2r(0)+λ1r(1))
λ1−λ2

− a(r(0) − r(1)) − q(0)+q(1)

2i(λ1−λ2)
r(0) − r(0)+r(1)

−2i(λ1−λ2)
q(1)

)

=

(
r(0)q(0)−q(1)r(1)

2i(λ1−λ2)
−i(λ1 + λ2)b+ (a− 1

2
)(q(0) − q(1))

i(λ1 + λ2)c− (a− 1
2
)(r(0) − r(1)) − q(0)r(0)−r(1)q(1)

2i(λ1−λ2)

)

So, equation (2.32) can be then reduced to

bx = −i(λ1 + λ2)b+ (a− 1

2
)(q(0) − q(1)), (2.38)

cx = i(λ1 + λ2)c− (a− 1

2
)(r(0) − r(1)), (2.39)

ax =
q(0)r(0) − q(1)r(1)

2i(λ1 + λ2)
. (2.40)

Now we need to consider restrictions imposed on λ1 and λ2. If we want to get real
solutions, we will choose the values of λ1 and λ2 as follows:

1. For K-dV, mK-dV, s-G and Liouville, to get soliton-type solutions, we have

λ2 = −λ1 ≡
i

2
k (imaginary); (2.41)

2. For NLS, to get soliton-type solutions, we have

λ2 = λ1 ≡
1

2
l +

i

2
k (complex). (2.42)

We now return to the problem of deriving the Bäcklund transformations. Taking the
value of λ1 and λ2 in (2.41) and (2.42), and the relations r=const. , r = ±q or r = ±q∗,
we can finally reduce (2.38)-(2.40) to a single equation

(q(0) + q(1))x + il(q(0) + q(1)) = ±(q(0) + q(1))
√
k2 + (q(0) + q(1))(r(0) + r(1)), (2.43)
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where

l = 2Reλ2 and k = 2Imλ2 (l 6= 0 only for NLS),

and the ± sign in (2.43) is chosen according to equation (2.37)

a− 1

2
= ± 1

2k

√
k2 + (q(0) + q(1))(r(0) + r(1)). (2.44)

So, the equation (2.43) shall be one half of the desired Bäcklund transformation equations.
And, the other half shall come from the equation (2.30). That is,

ϕt =

(
A(0) B(0)

C(0) −A(0)

)
ϕ− ϕ

(
A(1) B(1)

C(1) −A(1)

)
.

Let us substitute (2.28) and (2.33) into (2.30), then

−λ1 − λ2

λ− λ2

J

(
at bt
ct −at

)
=

(
A(0) B(0)

C(0) −A(0)

)
J [1− λ1 − λ2

λ− λ2

(
a b
c 1− a

)
]

−J [1− λ1 − λ2

λ− λ2

(
a b
c 1− a

)
]

(
A(1) B(1)

C(1) −A(1)

)
,

−(λ1 − λ2)

(
at bt
ct −at

)
= J

(
A(0) B(0)

C(0) −A(0)

)
J [λ− λ2 − (λ1 − λ2)

(
a b
c 1− a

)
]

−[λ− λ2 − (λ1 − λ2)

(
a b
c 1− a

)
]

(
A(1) B(1)

C(1) −A(1)

)
,

(
at bt
ct −at

)
=

(
A(0) −B(0)

−C(0) −A(0)

)
[− λ− λ2

λ1 − λ2

+

(
a b
c 1− a

)
]

+[
λ− λ2

λ1 − λ2

−
(
a b
c 1− a

)
]

(
A(1) B(1)

C(1) −A(1)

)
= − λ− λ2

λ1 − λ2

[

(
A(0) −B(0)

−C(0) −A(0)

)
−
(
A(1) B(1)

C(1) −A(1)

)
]

+

(
A(0) −B(0)

−C(0) −A(0)

)(
a b
c 1− a

)
−
(
a b
c 1− a

)(
A(1) B(1)

C(1) −A(1)

)
.

Then use (2.41) and (2.42), we shall have

bt =
λ− λ2

λ1 − λ2

(B(0) +B(1)) + (bA(0) − (1− a)B(0))− (aB(1) − bA(1))

=
λ− l

2
− ik

2

−ik
(B(0) +B(1)) + b(A(0) + A(1))−B(0)

+a(B(0) −B(1)) +
1

2
(B(0) −B(1))− 1

2
(B(0) −B(1))

= i
2λ− l

2k
(B(0) +B(1)) + b(A(0) + A(1)) + (a− 1

2
)(B(0) −B(1)), (2.45)
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ct =
λ− λ2

λ1 − λ2

(C(0) − C(1)) + (−aC(0) − cA(0))− (cA(1) + (1− a)C(1))

=
λ− l

2
− ik

2

−ik
(C(0) + C(1))− c(A(0) + A(1))− C(0) − a(C(0) − C(1))

−1

2
(C(0) − C(1)) +

1

2
(C(0) − C(1))

= i
2λ− l

2k
(C(0) + C(1))− c(A(0) + A(1))− (a− 1

2
)(C(0) − C(1)), (2.46)

and

at = − λ− λ2

λ1 − λ2

(A(0) − A(1)) + (aA(0) − cB(0))− (aA(1) + bC(1)), (2.47)

−at = − λ− λ2

λ1 − λ2

(−A(0) + A(1))− (bC(0) − (1− a)A(0))− (cB(1) − (1− a)A(1)). (2.48)

Let (2.47) + (2.48), then

0 = −b(C(0) + C(1))− c(B(0) +B(1)) + 2a(A(0) − A(1))− (A(0) − A(1))

= 2(a− 1

2
)(A(0) − A(1))− c(B(0) +B(1))− b(C(0) + C(1)). (2.49)

And, let [(2.47)− (2.48)]/2, we can get

at = − λ− λ2

λ1 − λ2

(A(0) − A(1)) +
1

2
(A(0) − A(1))− c

2
(B(0) −B(1)) +

b

2
(C(0) − C(1))

= −
λ− l

2
− ik

2

−ik
(A(0) − A(1)) +

1

2
(A(0) − A(1))− c

2
(B(0) −B(1)) +

b

2
(C(0) − C(1))

= −i2λ− l

2k
(A(0) − A(1))− c

2
(B(0) −B(1)) +

b

2
(C(0) − C(1)). (2.50)

Note that from the above equations (2.45), (2.46), (2.49) and (2.50), a simple equation
can be derived, namely,

∂t[bc− a(1− a)] = 0, (2.51)

which is automatically satisfied because of (2.33). Therefore, we can drop one equation
(2.50), and we choose the three equations to be (2.45), (2.46) and (2.49).

Now we can simply state the final results of this section: After case by case analysis,
we can find that equations (2.46) and (2.49) are already contained in (2.45) and (2.43),
and hence can be dropped also. Thus we choose the equations (2.43) and (2.45) to be our
final Bäcklund transformation equations.

Notice that the apparent λ-dependence in (2.45) is only spurious, because all λ-
dependent terms will cancel out on account of (2.43).

We now illustrate all these by explicitly examining the Bäcklund transformation equa-
tions (2.43) and (2.45) for K-dV equation.
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The K-dV equation is ut + uxxx − 6uux = 0. We shall choose that

q = u

r = 1

A = ux − 2iλu− 4iλ3

B = −uxx + 2u2 + 2iλux + 4λ2u

C = 2u+ 4λ2

l = 0

b =
q(0) + q(1)

2i(λ0 − µ0)
=
q(0) + q(1)

2i(−ik)
=
q(0) + q(1)

2k

c =
r(0) + r(1)

−2i(λ0 − µ0)
=

1 + 1

−2i(−ik)
= −1

k
.

For equation (2.43),

(q(0) + q(1))x + il(q(0) + q(1)) = ±(q(0) + q(1))
√
k2 + (q(0) + q(1))(r(0) + r(1)),

we can apply (2.35) and (2.44). Hence we will get

0 =
(q(0) + q(1))x

2k
∓ (q(0) − q(1))

1

2k

√
k2 + (q(0) + q(1))(r(0) + r(1))

= bx − (q(0) − q(1))(a− 1

2
). (2.52)

For (2.46),

ct =
i(2λ− l)

2k
(C(0) + C(1))− c(A(0) + A(1))− (a− 1

2
)(C(0) − C(1)),

(
−2

2k
)t =

i(2λ− 0)

2k
(2q(0) + 4λ2 + 2q(1) + 4λ2)

+
2

2k
(q(0)

x − 2iλ(0)q − 4iλ3 + q(1)
x − 2iλq(1) − 4iλ3)

−(a− 1

2
)(2q(0) + 4λ2 − 2q(1) − 4λ2)

=
2i

2k
λ[2(q(0) + q(1)) + 8λ2]

+
2

2k
[(q(0) + q(1))x − 2i(q(0) + q(1))λ− 8iλ3]

−2(a− 1

2
)(q(0) − q(1)),

0 = (
16i

2k
− 16i

2k
)λ3

+[
4i

2k
(q(0) + q(1))− 4i

2k
(q(0) + q(1))]λ

+[
2

2k
(q(0) + q(1))x − 2(a− 1

2
)(q(0) − q(1))]

= 2[
(q(0) + q(1))x

2k
− (a− 1

2
)(q(0) − q(1))],

0 = 2[bx − (a− 1

2
)(q(0) − q(1))].
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For (2.49),

0 = 2(a− 1

2
)(A(0) − A(1))− c(B(0) +B(1))− b(C(0) + C(1))

= 2(a− 1

2
)(q(0)

x − 2iλq(0) − 4iλ3 − q(1)
x + 2iλq(1) + 4iλ3)

+
2

2k
(−q(0)

xx + 2q(0)2 + 2iλq(0)
x + 4λ2q(0) − q(1)

xx + 2q(1)2 + 2iλq(1)
x + 4λ2q(1))

−q
(0) + q(1)

2k
(2q(0) + 4λ2 + 2q(1) + 4λ2)

= 2(a− 1

2
)[(q(0) − q(1))x − 2i(q(0) − q(1))λ]

+
2

2k
[−(q(0) + q(1))xx + 2(q(0)2 + q(1)2) + 2i(q(0) + q(1))xλ+ 4(q(0) + q(1))λ2]

−q
(0) + q(1)

2k
[2(q(0) + q(1)) + 8λ2]

= [
8

2k
(q(0) + q(1))− 8

2k
(q(0) + q(1))]λ2

+[−4i(a− 1

2
)(q(0) − q(1)) +

4i

2k
(q(0) + q(1))x]λ

+[2(a− 1

2
)(q(0) − q(1))x −

2

2k
(q(0) + q(1))xx

+
4

2k
(q(0)2 + q(1)2)− 2

2k
(q(0) + q(1))2]

= 4iλ[
(q(0) + q(1))x

2k
− (a− 1

2
)(q(0) − q(1))]

−2[
(q(0) + q(1))xx

2k
− 1

2k
(q(0) − q(1))2 − (a− 1

2
)(q(0) − q(1))x].

Since (2.44) and (2.43), we have

[(a− 1

2
)(q(0) − q(1))]x = (a− 1

2
)x(q

(0) − q(1)) + (a− 1

2
)(q(0) − q(1))x

= ± 1

2k

(q(0) + q(1))x

[k2 + 2(q(0) + q(1))]
1
2

(q(0) − q(1))

+(a− 1

2
)(q(0) − q(1))x

=
1

2k

q(0) − q(1)

(q(0) + q(1))x

(q(0) + q(1))x(q
(0) − q(1))

+(a− 1

2
)(q(0) − q(1))x

=
1

2k
(q(0) − q(1))2 + (a− 1

2
)(q(0) − q(1))x.

Hence

0 = 4iλ[bx − (a− 1

2
)(q(0) − q(1))]− 2[bxx − [(a− 1

2
)(q(0) − q(1))]x]

= 4iλ[bx − (a− 1

2
)(q(0) − q(1))]− 2[bx − (a− 1

2
)(q(0) − q(1))]x.
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For (2.45), that is,

bt = i
2λ− l

2k
(B(0) +B(1)) + b(A(0) + A(1)) + (a− 1

2
)(B(0) −B(1)).

Substitute the above terms into it, then the equation (2.45) becomes

bt = i
2λ− 0

2k
(−q(0)

xx + 2q(0)2 + 2iλq(0)
x + 4λ2q(0) − q(1)

xx + 2q(1)2 + 2iλq(1)
x + 4λ2q(1))

+
q(0) + q(1)

2k
(q(0)

x − 2iλq(0) − 4iλ3 + q(1)
x − 2iλq(1) − 4iλ3)

+(a− 1

2
)(−q(0)

xx + 2q(0)2 + 2iλq(0)
x + 4λ2q(0) + q(1)

xx − 2q(1)2 − 2iλq(1)
x − 4λ2q(1))

=
2iλ

2k
[−(q(0) + q(1))xx + 2(q(0)2 + q(0)2) + 2i(q(0) + q(1))xλ+ 4(q(0) + q(1))λ2]

+
q(0) + q(1)

2k
[(q(0) + q(1))x − 2i(q(0) + q(1))λ− 8iλ3]

+(a− 1

2
)[−(q(0) − q(1))xx + 2(q(0)2 − q(1)2) + 2i(q(0) − q(1))xλ+ 4(q(0) − q(1))λ2]

= [
8i

2k
(q(0) + q(1))− 8i

2k
(q(0) + q(1))]λ3

+[− 4

2k
(q(0) + q(1))x + 4(a− 1

2
)(q(0) − q(1))]λ2

+[− 2i

2k
(q(0) + q(1))xx +

4i

2k
(q(0)2 + q(1)2)

− 2i

2k
(q(0) + q(1))2 + 2i(a− 1

2
)(q(0) − q(1))x]λ

+[
q(0) + q(1)

2k
(q(0) + q(1))x − (a− 1

2
)(q(0) − q(1))xx + 2(a− 1

2
)(q(0)2 − q(1)2)]

= −4λ2[bx − (a− 1

2
)(q(0) − q(1))]

−2iλ[bxx − [
1

2k
(q(0) − q(1))2 + (a− 1

2
)(q(0) − q(1))x]]

−(a− 1

2
)(q(0) − q(1))xx + (q(0) + q(1))[

(q(0) + q(1))x

2k
+ 2(a− 1

2
)(q(0) − q(1))]

bt = −4λ2[bx − (a− 1

2
)(q(0) − q(1))]− 2iλ[bx − (a− 1

2
)(q(0) − q(1))]x

−(a− 1

2
)(q(0) − q(1))xx + (q(0) + q(1))[bx − (a− 1

2
)(q(0) − q(1))

+3(a− 1

2
)(q(0) − q(1))],

which, on account of (2.52), reduces to

bt = −4λ2 · 0− 2iλ · 0

−(a− 1

2
)(q(0) − q(1))xx + (q(0) + q(1))[0 + 3(a− 1

2
)(q(0) − q(1))]

= (a− 1

2
)[−(q(0) − q(1))xx + 3(q(0)2 − q(1)2)], (2.53)
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which is a λ-independent expression. Therefore, we can write down the equations (2.52)
and (2.53) to be our Bäcklund transformation equations for the K-dV equation.

To summarize this subsection, we have derived a general expression for the soliton-
generating Bäcklund transformation for the class of nonlinear equations whose linear
systems can be written as (2.27). The general expression for the Bäcklund transformation
equations is

(q(0) + q(1))x + il(q(0) + q(1)) = (sign) · (q(0) − q(1))
√
k2 + (q(0) + q(1))(r(0) + r(1)), (2.54)

(q(0) + q(1))t = i(2λ− l)(B(0) +B(1)) + (q(0) + q(1))(A(0) + A(1))

+(sign) · (B(0) −B(1))
√
k2 + (q(0) + q(1))(r(0) + r(1)), (2.55)

where (sign) denotes the ± sign appearing in the expression

a− 1

2
= ± 1

2k

√
k2 + (q(0) + q(1))(r(0) + r(1)), (2.56)

where k and l are two real parameters of Bäcklund transformation (l 6= 0 only for the
NLS equation).

2.4 Explicit Bäcklund Transformation

In last section, we know that the Bäcklund transformations are useful for generating
soliton solutions of some nonlinear equations. However, the Bäcklund transformation
equations in their usual form, of which a example is

(u(0) + u(1))x = (u(0) − u(1))
√
k2 ± 2(u(0) + u(1)),

(u(0) + u(1))t =
√
k2 ± 2(u(0) + u(1))[−(u(0) − u(1))xx ± 3(u(0)2 − u(1)2)],

(i.e. (2.52) and (2.53), for the K-dV equation ut + uxxx ∓ 6uux = 0), are difficult to solve
in general, and hence become of limited use in practice for the purpose of constructing a
new soliton solutions.

In Section 1.2, we have stated that the class of some nonlinear equations that can
be successfully treated by our method includes those which can be represented as the
integrability condition of the AKNS linear systems of the following type:

Φx(x, t;λ) = U(x, t;λ)Φ(x, t;λ),

Φt(x, t;λ) = V (x, t;λ)Φ(x, t;λ), (2.57)

where

U =

(
−iλ q(x, t)
r(x, t) iλ

)
, V =

(
A(x, t;λ) B(x, t;λ)
C(x, t;λ) −A(x, t;λ)

)
. (2.58)

In this section, we will state that: for the particular class of systems described in (2.57)-
(2.58), there shall be a systematic way to derive an explicit Bäcklund transformation which
adds one soliton onto a given solution to make a new solution.
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Suppose u(0) is the known solution of the nonlinear equations under consideration and
Φ(0) is a solution of (2.57) which is put u(0) into q(x, t) and r(x, t), that is,

Φ(0)
x = U (0)Φ(0) [=

(
−iλ q(0)

r(0) iλ

)
Φ(0)],

Φ
(0)
t = V (0)Φ(0) [=

(
A(0) B(0)

C(0) −A(0)

)
Φ(0)]. (2.59)

Then we now hope to find a 2 × 2 matrix function ψ = ψ(x, t;λ) such that they satisfy
the condition

Φ(1) = ψΦ(0), (2.60)

where Φ(1) satisfies the equation system which has the same form with the above equation
system:

Φ(1)
x = U (1)Φ(1) [=

(
−iλ q(1)

r(1) iλ

)
Φ(1)],

Φ
(1)
t = V (1)Φ(1) [=

(
A(1) B(1)

C(1) −A(1)

)
Φ(1)].

We first can observe that

Φ(1)
x = U (1)Φ(1) = U (1)ψΦ(0).

On the other hand, we also have

Φ(1)
x = (ψΦ(0))x = ψxΦ

(0) + ψΦ(0)
x = ψxΦ

(0) + ψU (0)Φ(0).

Since the equation should hold for all solution Φ(0), the following equation must hold:

U (1)ψ = ψx + ψU (0).

Hence, we have found that there is a equation as follows:

U (1) = ψU (0)ψ−1 + ψxψ
−1. (2.61)

Similarly, we have the same conclusion for V (1) ,

V (1) = ψV (0)ψ−1 + ψxψ
−1. (2.62)

To derive such Bäcklund transformations, it is sufficient to ensure that U (1), V (1) have
the correct λ structure. As in last section, the transformation function ψ(x, t;λ) in (2.60)
shall be assumed by

ψ(x, t;λ) = [I +
λ1 − λ2

λ− λ1

P (x, t)]J , (2.63)

where λ1 and λ2 are two arbitrary complex numbers, P in an undtetermined 2 × 2 pro-
jection matrix (P 2 = P ) and

J =

(
1 0
0 −1

)
.
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Note that ψ−1 is given by

ψ−1(x, t;λ) = J [I − λ1 − λ2

λ− λ2

P (x, t)]. (2.64)

It is exactly the matrix ϕ in last section.
Thus if substitute (2.63) and (2.64) into (2.61) and (2.62), they shall impose the

following conditions on P :

Px = (I − P )JU (0)(λ2)JP − PJU (0)(λ1)J(I − P )

Pt = (I − P )JV (0)(λ2)JP − PJV (0)(λ1)J(I − P ). (2.65)

Now, if we want to get the expression of U (1), we must find out the explicit form of
the matrix P . Fortunately, the projector P in (2.65) can be solved explicitly in terms of
calculable matrix function

Φ(0)(x, t;λj) =

(
hj11 hj12

hj21 hj22

)
2×2

,

which is the solution to the linear system (2.59) corresponding to the given solution q(0),
r(0) and λj, where j = 1, 2.

First, let us define a 2× 2 matrix M (1) by

M (1) ≡ Φ(0)(x, t;λ2)

(
m1

1
n1

n1
1

m1

)
Φ(0)(x, t;λ1)

−1,

where m1 and n1 are two arbitrary complex constants.
Hence

M (1) =

(
h211 h212

h221 h222

)(
m1

1
n1

n1
1

m1

)
Φ(0)(x, t;λ1)

−1

=

(
m1h211 + n1h212

1
n1
h211 + 1

m1
h212

m1h221 + n1h222
1
n1
h221 + 1

m1
h222

)(
h122 −h112

−h121 h111

)
× 1

det(Φ(0)(x, t;λ1))

=
1

det(Φ(0)(x, t;λ1))
×
(
M11 M12

M21 M22

)
,

where 
M11 = m1h122h211 + n1h122h212 − 1

n1
h121h211 − 1

m1
h121h212

M12 = −m1h112h211 − n1h112h212 + 1
n1
h111h211 + 1

m1
h111h212

M21 = m1h122h221 + n1h122h222 − 1
n1
h121h221 − 1

m1
h121h222

M22 = −m1h112h221 − n1h112h222 + 1
n1
h111h221 + 1

m1
h111h222

,

and

trM (1) =
1

det(Φ(0)(x, t;λ1))
× (M11 +M22).

Then (2.65) shall be able to be solved by (ref [4, 7, 8])

P = JP̃J ,
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where

P̃ =
M (1)

trM (1)

=
1

M11 +M22

×
(
M11 M12

M21 M22

)
.

Now substitute (2.63) and (2.65) into (2.61) and (2.62), then we shall find

U (1)(λ) = JU (0)(λ)J + (λ1 − λ2)PJ [
U (0)(λ)− U (0)(λ1)

λ− λ1

]J(I − P )

−(λ1 − λ2)(I − P )J [
U (0)(λ)− U (0)(λ2)

λ− λ2

]JP , (2.66)

and a similar equation for V (1)(λ).
Now since

U (0)(λ) =

(
−iλ q(0)

r(0) iλ

)
and P = JP̃J , the above equation (2.66) can be simplified to be

U (1)(λ) =

(
−iλ −q(0)

−r(0) iλ

)
− 2i(λ1 − λ2)

(
0 P̃12

−P̃21 0

)
,

manifestly showing that U (1)(λ) has the correct λ structure, as desired.

Now, we can first compute P̃12 and P̃21 as follows:

P̃12 =
M12

M11 +M22

= (−m1h112h211 − n1h112h212 +
1

n1

h111h211 +
1

m1

h111h212)

/(m1h122h211 + n1h122h212 −
1

n1

h121h211 −
1

m1

h121h212

−m1h112h221 − n1h112h222 +
1

n1

h111h221 +
1

m1

h111h222),

P̃21 =
M21

M11 +M22

= (m1h122h221 + n1h122h222 −
1

n1

h121h221 −
1

m1

h121h222)

/(m1h122h211 + n1h122h212 −
1

n1

h121h211 −
1

m1

h121h212

−m1h112h221 − n1h112h222 +
1

n1

h111h221 +
1

m1

h111h222).
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Thus we got the explicit Bäcklunk transformation as follows:

q(1) = −q(0) − 2i(λ1 − λ2)P̃12

= −q(0) − 2i(λ1 − λ2)

×(−m1h112h211 − n1h112h212 +
1

n1

h111h211 +
1

m1

h111h212)/

(m1h122h211 + n1h122h212 −
1

n1

h121h211 −
1

m1

h121h212

−m1h112h221 − n1h112h222 +
1

n1

h111h221 +
1

m1

h111h222), (2.67)

r(1) = −r(0) + 2i(λ1 − λ2)P̃21

= −r(0) − 2i(λ1 − λ2)

×(−m1h122h221 − n1h122h222 +
1

n1

h121h221 +
1

m1

h121h222)/

(m1h122h211 + n1h122h212 −
1

n1

h121h211 −
1

m1

h121h212

−m1h112h221 − n1h112h222 +
1

n1

h111h221 +
1

m1

h111h222). (2.68)

Note that the transformation function ψ is so a important term for the Bäcklunk
transformation, we shall also write down the explicit form of ψ:

First, the projection matrix P can be written as

P = JP̃J

=
1

M11 +M22

×
(

1 0
0 −1

)(
M11 M12

M21 M22

)(
1 0
0 −1

)
=

1

M11 +M22

×
(

M11 −M12

−M21 M22

)
.

Then

ψ = (I +
λ1 − λ2

λ− λ1

P )J

=
1

λ− λ1

[

(
λ− λ1 0

0 λ− λ1

)
+

(λ1 − λ2)

M11 +M22

(
M11 −M12

−M21 M22

)
]J

=
1

λ− λ1

(
λ− λ1 + (λ1 − λ2)

M11

M11+M22
−(λ1 − λ2)

M12

M11+M22

−(λ1 − λ2)
M21

M11+M22
λ− λ1 + (λ1 − λ2)

M22

M11+M22

)(
1 0
0 −1

)
=

1

λ− λ1

(
λ− λ1 + (λ1 − λ2)

M11

M11+M22
(λ1 − λ2)

M12

M11+M22

−(λ1 − λ2)
M21

M11+M22
−λ+ λ1 − (λ1 − λ2)

M22

M11+M22

)
=

1

λ− λ1

(
ψ

′
11 ψ

′
12

ψ
′
21 ψ

′
22

)
, (2.69)
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where

ψ
′

11 = λ− λ1 + (λ1 − λ2)
M11

M11 +M22

= λ− λ1 + (λ1 − λ2)
m1h122h211 + n1h122h212 − 1

n1
h121h211 − 1

m1
h121h212

M11 +M22

= λ− λ1 + λ1

m1h122h211 + n1h122h212 − 1
n1
h121h211 − 1

m1
h121h212

M11 +M22

−λ2

m1h122h211 + n1h122h212 − 1
n1
h121h211 − 1

m1
h121h212

M11 +M22

= λ− λ1

(M11 +M22)− (m1h122h211 + n1h122h212 − 1
n1
h121h211 − 1

m1
h121h212)

M11 +M22

+λ2

1
n1
h121h211 + 1

m1
h121h212 −m1h122h211 − n1h122h212

M11 +M22

= λ− λ1

M11 +M22

[(m1h122h211 + n1h122h212 −
1

n1

h121h211 −
1

m1

h121h212

−m1h112h221 − n1h112h222 +
1

n1

h111h221 +
1

m1

h111h222)

−(m1h122h211 + n1h122h212 −
1

n1

h121h211 −
1

m1

h121h212)]

+λ2

1
n1
h121h211 + 1

m1
h121h212 −m1h122h211 − n1h122h212

M11 +M22

= λ− λ1

1
n1
h111h221 + 1

m1
h111h222 −m1h112h221 − n1h112h222

M11 +M22

+λ2

1
n1
h121h211 + 1

m1
h121h212 −m1h122h211 − n1h122h212

M11 +M22

= λ− 1

M11 +M22

[λ1(
1

n1

h111h221 +
1

m1

h111h222 −m1h112h221 − n1h112h222)

+λ2(
1

n1

h121h211 +
1

m1

h121h212 −m1h122h211 − n1h122h212)],

ψ
′

12 = (λ1 − λ2)
M12

M11 +M22

=
λ1 − λ2

M11 +M22

(−m1h112h211 − n1h112h212 +
1

n1

h111h211 +
1

m1

h111h212),

ψ
′

21 = −(λ1 − λ2)
M21

M11 +M22

= − λ1 − λ2

M11 +M22

(m1h122h221 + n1h122h222 −
1

n1

h121h221 −
1

m1

h121h222),
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and

ψ
′

22 = −λ+ λ1 − (λ1 − λ2)
M22

M11 +M22

= −λ+ λ1 − (λ1 − λ2)
−m1h112h221 − n1h112h222 + 1

n1
h111h221 + 1

m1
h111h222

M11 +M22

= −λ+ λ1 − λ1

−m1h112h221 − n1h112h222 + 1
n1
h111h221 + 1

m1
h111h222

M11 +M22

+λ2

−m1h112h221 − n1h112h222 + 1
n1
h111h221 + 1

m1
h111h222

M11 +M22

= −λ+ λ1

(M11 +M22)− (−m1h112h221 − n1h112h222 + 1
n1
h111h221 + 1

m1
h111h222)

M11 +M22

+λ2

−m1h112h221 − n1h112h222 + 1
n1
h111h221 + 1

m1
h111h222

M11 +M22

= −λ+
λ1

M11 +M22

[(m1h122h211 + n1h122h212 −
1

n1

h121h211 −
1

m1

h121h212

−m1h112h221 − n1h112h222 +
1

n1

h111h221 +
1

m1

h111h222)

−(−m1h112h221 − n1h112h222 +
1

n1

h111h221 +
1

m1

h111h222)]

+λ2

−m1h112h221 − n1h112h222 + 1
n1
h111h221 + 1

m1
h111h222

M11 +M22

= −λ+ λ1

m1h122h211 + n1h122h212 − 1
n1
h121h211 − 1

m1
h121h212

M11 +M22

+λ2

−m1h112h221 − n1h112h222 + 1
n1
h111h221 + 1

m1
h111h222

M11 +M22

= −λ+
1

M11 +M22

[−λ1(
1

n1

h121h211 +
1

m1

h121h212 −m1h122h211 − n1h122h212)

+λ2(
1

n1

h111h221 +
1

m1

h111h222 −m1h112h221 − n1h112h222)].
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3 Darboux Transformations

In this chapter, we shall introduce the Darboux transformation in matrix form, and how
to construct the Darboux matrix. And in final, we will prove that the fact: we shall be
able to get the same solution of the nonlinear equation which we consider from a known
solution through the Bäcklund transformation and Darboux transformation.

3.1 Introduction of Darboux Transformation

In Sec 1.2, we have introduce the AKNS system. Hence, we can discuss the nonlinear
partial differential equations of u

F (u, ux, ut, uxx, · · · ) = 0 (3.70)

through the AKNS system

Φx = UΦ [= (−iλJ +Q)Φ]

Φt = V Φ [=
n∑

j=0

Vjλ
n−jΦ]. (3.71)

when we choose the suitable q, r, A, B and C.
The following topics is that in order to know that how to apply AKNS system to get

a new solution of the nonlinear differential equation which we consider form the known
solutions, we now introduce the Darboux transformation as follows.

First, we introduce what is the Darboux transformation and the Darboux matrix :

Definition 1. (Darboux transformation and Darboux matrix)

For any given matrix Q(0) =

(
0 q(0)

r(0) 0

)
and 2-column vector Φ(0) =

(
α(0)

β(0)

)
which satisfy (3.71), if the 2 × 2 matrix D(x, t;λ) and the 2-column vector

(
α(1)

β(1)

)
=

Φ(1) = DΦ(0) can also satisfy the linear differential equation system which have the same
form with (3.71) :

Φ(1)
x = U (1)Φ(1) [= (−iλJ +Q(1))Φ(1)]

Φ
(1)
t = V (1)Φ(1) [=

n∑
j=0

V
(1)
j λn−jΦ(1)], (3.72)

where Q(1) =

(
0 q(1)

r(1) 0

)
is a matrix function with zero diagonal.

Then we call the transformation (Q(0),Φ(0))
D→ (Q(1),Φ(1)) be the Darboux transforma-

tion of the AKNS system, and D(x, t;λ) be a Darboux matrix. �

3.2 Construct a Darboux Matrix in Explicit Purely Algebraic

From the above definition, we can first find that the explicit Bäcklund transformation is
also one kind of Darboux transformation.
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Next, the focal point is how to find the matrix D. Before constructing the matrix D,
we can first observe that what properties does it have.

Let us consider the linear differential equation system (3.71):

Φx = U (0)Φ(0) [= (−iλJ +Q(0))Φ(0)]

Φt = V (0)Φ(0) [=
n∑

j=0

V
(0)
j λn−jΦ(0)]

First, we can suppose that

Φ(1) = DΦ

can satisfies the following equation system (3.72) which has the same form with the above
equations:

Φ(1)
x = U (1)Φ(1) [= (−iλJ +Q(1))Φ(1)]

Φ
(1)
t = V (1)Φ(1) [=

n∑
j=0

V
(1)
j λn−jΦ(1)]

As the discussion of the equations (2.61) and (2.62) in Section 2.4, we shall also have
the same equations as follows:

U (1) = DU (0)D−1 +DxD
−1 (3.73)

and

V (1) = DV (0)D−1 +DxD
−1 (3.74)

Now, we are concerned with about the Darboux matrix which λ is of order 1. Without
losing of generality, we assume that the Darboux matrix D has the following form

D = J(λI − S),

where S is a suitable 2× 2 matrix, and I is the identity matrix. And we then discuss how
to find the Darboux matrix.

3.2.1 Some Properties of The Matrix S

First, we begin our discussion form the first equation of (3.72)

Φ(1)
x = (−iλJ +Q(1))Φ(1)

and

Φ(1) = DΦ(0).

Hance we will have the following formulas :

Φ(1)
x = (DΦ(0))x

= [J(λI − S)Φ(0)]x

= (λJ − JS)xΦ
(0) + (λJ − JS)Φ(0)

x

= −JSxΦ
(0) + (λJ − JS)(−iλJ +Q(0))Φ(0)

= −JSxΦ
(0) + (−iλ2I + λJQ(0) + iλJSJ − JSQ(0))Φ(0)
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and

(−iλJ +Q(1))Φ(1) = (−iλJ +Q(1))(DΦ(0))

= (−iλJ +Q(1))(J(λI − S))Φ(0)

= [(−iλJ)(JλI) + (−iλJ)(−JS) +Q(1)(JλI) +Q(1)(−JS)]Φ(0)

= (−iλ2I + iλS + λQ(1)J −Q(1)JS)Φ(0).

Since the above equation must hold for all solution Φ(0) of (3.71), we know that

−iIλ2 + (JQ(0) + iJSJ)λ+ (−JSx − JSQ(0))

= −iIλ2 + (iS +Q(1)J)λ+ (−Q(1)JS). (3.75)

Since the definitions of the symbols

J =

(
1 0
0 −1

)
= J−1 and Q =

(
0 q
r 0

)
,

we can find the equation

JQJ = −Q.

Hence, the equation for the coefficient of λ1 in the equation (3.75) is

JQ(0) + iJSJ = iS +Q(1)J ,

JQ(0)J + iJS = iSJ +Q(1),

so we shall find

Q(1) = JQ(0)J + iJS − iSJ

= −Q(0) + i[J, S]. (3.76)

And, the equation of the coefficient of λ0 in the equation (3.75) is

−JSx − JSQ(0) = −Q(1)JS,

Sx + SQ(0) = JQ(1)JS.

Hence, we can also get

0 = Sx + SQ(0) + (−JQ(1)JS)

= Sx + SQ(0) +Q(1)S

= Sx + SQ(0) + (−Q(0) + i[J, S])S

= Sx + SQ(0) + (−Q(0) + iJS − iSJ)S

= Sx + SQ(0) −Q(0)S + iJSS − iSJS

= Sx + [S,−iJS +Q(0)]. (3.77)

Next, in order to find the equations about St, we will proceed to observe the second
equation of (3.72):

Φ
(1)
t = (

n∑
j=0

V
(1)
j λn−j)Φ(1).
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Then we shall get the equation :

LHS = (DΦ(0))t

= [J(λI − S)Φ(0)]t

= (λJ − JS)tΦ
(0) + (λJ − JS)Φ

(0)
t

= −JStΦ
(0) + (λJ − JS)(

n∑
j=0

V
(0)
j λn−j)Φ(0)

= [(λJ − JS)V
(0)
0 λn + (λJ − JS)V

(0)
1 λn−1 + · · ·

+(λJ − JS)V
(0)
n−1λ+ (λJ − JS)V (0)

n − JSt]Φ

= [λn+1JV
(0)
0 + λnJV

(0)
1 + · · ·+ λ2JV

(0)
n−1 + λJV (0)

n

−λnJSV
(0)
0 − λn−1JSV

(0)
1 − · · · − λJSV

(0)
n−1 − JSV (0)

n − JSt]Φ (3.78)

and

RHS = (
n∑

j=0

V
(1)
j λn−j)(J(λI − S)Φ)

= [V
(1)
0 λn(λJ − JS) + V

(1)
1 λn−1(λJ − JS) + · · ·+ V

(1)
n−1λ(λJ − JS) + V (1)

n (λJ − JS)]Φ

= [λn+1V
(1)
0 J + λnV

(1)
1 J + · · ·+ λ2V

(1)
n−1J + λV (1)

n J

−λnV
(1)
0 JS − λn−1V

(1)
1 JS − · · · − λV

(1)
n−1JS − V (1)

n JS]Φ. (3.79)

Similarly, the above formulas must also equal for all solutions Φ(0) of (3.71). So we
know that the coefficient for λ0 is,

−V (1)
n JS = −JSV (0)

n − JSt

JSt = V (1)
n JS − JSV (0)

n

St = JV (1)
n JS − SV (0)

n , (3.80)

and for the coefficient of λn+1, we have

V
(1)
0 J = JV

(0)
0 .

And from the equations (3.78) and (3.79), for λj, where j = 1, · · · , n,

λn : V
(1)
1 J − V

(1)
0 JS = JV

(0)
1 − JSV

(0)
0 ,

...

λ1 : V (1)
n J − V

(1)
n−1JS = JV (0)

n − JSV
(0)
n−1.

From the above relations, we can therefore get the equations

V
(1)
j+1J = JV

(0)
j+1 + V

(1)
j JS − JSV

(0)
j .

That is,

V
(1)
j+1 = JV

(0)
j+1J + V

(1)
j JSJ − JSV

(0)
j J , (3.81)

where j = 0, · · · , n− 1.
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Now, let us observe the equation (3.80), then we shall get

V
(1)
0 = JV

(0)
0 J ,

V
(1)
1 = JV

(0)
1 J + V

(1)
0 JSJ − JSV

(0)
0 J

= JV
(0)
1 J + JV

(0)
0 JJSJ − JSV

(0)
0 J

= JV
(0)
1 J + JV

(0)
0 SJ − JSV

(0)
0 J

= JV
(0)
1 J + J [V

(0)
0 , S]J ,

V
(1)
2 = JV

(0)
2 J + V

(1)
1 JSJ − JSV

(0)
1 J

= JV
(0)
2 J + (JV

(0)
1 J + JV

(0)
0 SJ − JSV

(0)
0 J)JSJ − JSV

(0)
1 J

= JV
(0)
2 J + JV

(0)
1 SJ + JV

(0)
0 S2J − JSV

(0)
0 SJ − JSV

(0)
1 J

= JV
(0)
2 J + J [V

(0)
1 , S]J + J [V

(0)
0 , S]SJ

....

Hence we have

V
(1)
j+1 = JV

(0)
j+1J + J(

j+1∑
k=1

[V
(0)
j+1−k, S]Sk−1)J , (3.82)

where j = 0, · · · , n− 1.
In particular, for the term of order j = n− 1 of λ, we find that

V (1)
n = JV (0)

n J + J(
n∑

k=1

[V
(0)
n−k, S]Sk−1)J .

So, if we apply the above equation and equation (3.80), we can get

St = JV (1)
n JS − SV (0)

n

= J(JV (0)
n J + J(

n∑
k=1

[V
(0)
n−k, S]Sk−1)J)JS − SV (0)

n

= V (0)
n S − SV (0)

n +
n∑

k=1

[V
(0)
n−k, S]Sk

= V (0)
n S − SV (0)

n + (V
(0)
n−1S

2 − SV
(0)
n−1S + V

(0)
n−2S

3 − SV
(0)
n−2S

2 + · · ·
− · · ·+ V

(0)
1 Sn − SV

(0)
1 Sn−1 + V

(0)
0 Sn+1 − SV

(0)
0 Sn)

= [V (0)
n + V

(0)
n−1S + V

(0)
n−2S

2 + · · ·+ V
(0)
1 Sn−1 + V

(0)
0 Sn, S]

= [
n∑

k=0

V
(0)
n−kS

k, S].

So

St + [S,
n∑

k=0

V
(0)
n−kS

k] = 0. (3.83)

From the above discussions, we can conclude that if the matrix J(λI−S) is a Darboux
matrix of the equation system (3.71)

Φ(0)
x = U (0)Φ(0) [= (−iλJ +Q(0))Φ(0)]

Φ
(0)
t = V (0)Φ(0) [=

n∑
j=0

V
(0)
j λn−jΦ(0)],
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then the matrix S must satisfy the following nonlinear partial differential equation system

Sx + [S,−iJS +Q(0)] = 0

and St + [S,
n∑

k=0

V
(0)
n−kS

k] = 0. (3.84)

Now, we shall state and prove this fact in the following theorem :

Theorem 1 (1).
The matrix J(λI − S) is a Darboux matrix of the equation system (3.71)

Φ(0)
x = U (0)Φ(0) [= (−iλJ +Q(0))Φ(0)]

Φ
(0)
t = V (0)Φ(0) [=

n∑
j=0

V
(0)
j λn−jΦ(0)],

if and only if the matrix S satisfies the nonlinear partial differential equation system

Sx + [S,−iJS +Q(0)] = 0

St + [S,
n∑

k=0

V
(0)
n−kS

k] = 0.

Proof.
(⇒)
If the matrix J(λI − S) is a Darboux matrix of equation (3.71),
then (3.84) is exactly the equation (3.77) and (3.83) which we got from the above discus-
sion.
(⇐)
Suppose that the equations (3.84) (i.e. (3.77) and (3.83) ) hold.
Then for any solution Φ of (3.71) , the equations (3.75) and (3.78) = (3.79) shall also
hold.
Therefore, The P (1) which be determined by (3.76), and the {V (1)

j } which determined by
(3.81) will imply that the equation (3.72) holds.
Hence this matrix D = J(λI − S) will satisfy the definition of the Darboux matrix.

3.2.2 How to Find The Matrix S

The last subsection say that in order to find the Darboux matrix, we must firstly find
the solutions S of the nonlinear partial differential equation (3.80). Next, the following
theorem shall provide us a method to constructing a Darboux matrix.

Theorem 2 (2).
Let λ1 and λ2 be two distinct complex numbers.

First, we define a matrix Λ =

(
λ1 0
0 λ2

)
.

Suppose that hj are the 2-column vector solution of (3.71) with λ = λj, where j = 1, 2.

Let H =
(
h1 h2

)
=

(
h11 h21

h12 h22

)
be a 2× 2 matrix.

If detH 6= 0, we can define

S = HΛH−1
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and consequently get the matrix

D(x, t;λ) = J(λI − S) = λJ − JHΛH−1. (3.85)

Then the matrix D shall be a Darboux matrix of (3.71) .

Proof.
Suppose that hj are the solutions of (3.71) with λ = λj ,that is,

hj,x = −iλjJhj +Q(0)hj

hj,t =
n∑

k=0

V
(0)
k λn−khj, (3.86)

where j = 1,2.
From (3.86), we can compute that Hx [=

(
h1 h2

)
x
] and Ht.

Hence we have that

Hx = −iJHΛ +QH(0)

Ht =
n∑

k=0

V
(0)
k HΛn−k. (3.87)

First, we can compute (H−1)x as follows:

I = HH−1,

0 = (HH−1)x

= HxH
−1 +H(H−1)x,

H(H−1)x = −HxH
−1,

(H−1)x = −H−1HxH
−1.

Similarly,

(H−1)t = −H−1HtH
−1.

Since S ≡ HΛH−1,

Sx = HxΛH
−1 +HΛ(H−1)x

= HxΛH
−1 +HΛ(−H−1HxH

−1)

= HxH
−1HΛH−1 −HΛH−1HxH

−1

= HxH
−1S − SHxH

−1

= [HxH
−1, S].

Employing (3.87), then the above equation becomes

Sx = [(−iJHΛ +Q(0)H)H−1, S]

= [−iJHΛH−1 +Q(0), S]

= [−iJS +Q(0), S].
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Similarly,

St = HtΛH
−1 +HΛ(H−1)t

= HtΛH
−1 +HΛ(−H−1HtH

−1)

= HtH
−1HΛH−1 −HΛH−1HtH

−1

= HtH
−1S − SHtH

−1

= [HtH
−1, S].

We can further get the following equation by using (3.87) again:

St = [(
n∑

k=0

V
(0)
k HΛn−k)H−1, S]

= [
n∑

k=0

V
(0)
k (HΛH−1) · · · (HΛH−1)︸ ︷︷ ︸

n−k

, S]

= [
n∑

k=0

V
(0)
n−kS

k, S].

Hence that says that the matrix S which be defined in (3.85) is a solution of (3.84).

Finally applying Theorem(1), we completes the proof that D = J(λI−S) is a Darboux
matrix of (3.71).

3.3 General Form of The Darboux Matrix which Be Given in
theorems

Now, we shall be able to deduce the general form of a Darboux matrix from the statements
which be given in the above theorems.

First, we can choose

Λ =

(
λ1 0
0 λ2

)
and H =

(
h1 h2

)
=

(
h11 h21

h12 h22

)
,

where λ1 and λ2 be two distinct complex numbers, and hj are the 2-column vector solution
Φ(0)(x, t;λj) of the equation system (3.71)

Φ(0)
x = U (0)Φ(0) [= (−iλJ +Q(0))Φ(0)]

Φ
(0)
t = V (0)Φ(0) [=

n∑
j=0

V
(0)
j λn−jΦ(0)]

with λ = λi, where j = 1, 2.
Then the inverse of the matrix H is

H−1 =
1

det(H)

(
h22 −h21

−h12 h11

)
.
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Hence the matrix S of the Darboux is

S ≡ HΛH−1

=

(
h11 h21

h12 h22

)(
λ1 0
0 λ2

)
H−1

=

(
λ1h11 λ2h21

λ1h12 λ2h22

)(
h22 −h21

−h12 h11

)
× 1

det(H)

=
1

det(H)
×
(
λ1h11h22 − λ2h12h21 −λ1h11h21 + λ2h11h21

λ1h12h22 − λ2h12h22 −λ1h12h21 + λ2h11h22

)
=

1

det(H)
×
(
S

′
11 S

′
12

S
′
21 S

′
22

)
where the entries of the matrix S are

S
′

11 = λ1h11h22 − λ2h12h21,

S
′

12 = −λ1h11h21 + λ2h11h21,

S
′

21 = λ1h12h22 − λ2h12h22,

S
′

22 = −λ1h12h21 + λ2h11h22.

Apply the equation (3.76), we will get the new Q(1) as follows:

Q(1) = −Q(0) + i[J, S]

= −Q(0) + i

(
1 0
0 −1

)
S − iS

(
1 0
0 −1

)
= −Q(0) +

i

det(H)
[

(
S

′
11 S

′
12

−S ′
21 −S ′

22

)
−
(
S

′
11 −S ′

12

S
′
21 −S ′

22

)
]

= −Q(0) +
2i

det(H)

(
0 S

′
12

−S ′
21 0

)
Therefore, let us simplify the above equation as follows:(
0 q(1)

r(1) 0

)
= Q(1)

= −Q(0) +
2i

det(H)

(
0 −λ1h11h21 + λ2h11h21

−λ1h12h22 + λ2h12h22 0

)
= −Q(0) − 2i

det(H)
(λ1 − λ2)

(
0 h11h21

h12h22 0

)
=

(
0 −q(0)

−r(0) 0

)
− 2i(λ1 − λ2)

h11h22 − h12h21

(
0 h11h21

h12h22 0

)
That is,

q(1) = −q(0) − 2i(λ1 − λ2)
h11h21

h11h22 − h12h21

and r(1) = −r(0) − 2i(λ1 − λ2)
h12h22

h11h22 − h12h21

(3.88)

shall be also a new solution of the partial differential equation F (u, ux, ut, uxx, · · · ) = 0
which we consider by choosing some suitable q and r.
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3.4 The Equivalence of Darboux Transform. and Explicit Bäcklund
Transform.

Next, we shall choose the parameters and observe the relation of the Darboux transforma-
tion and the explicit Bäcklund transformation which we discuss in last chapter (Sec 2.4).
Finally, we shall prove that the equivalence between the two kind of the transformations.

Now, let us suppose that the entries of the matrix H have the following form :
h11 = l1h111 + l2h112

h12 = l1h121 + l2h122

h21 = l3h211 + l4h212

h22 = l3h221 + l4h222

.

where

(
hj11 hj12

hj21 hj22

)
2×2

= Φ(0)(x, t;λj) is the solution of the linear differential equation

system (3.71) which given a solution q(x, t), r(x, t) of the nonlinear equation (3.70) and
corresponds to λj, and l1, l2, l3, l4 are complex constants.

First, we compute some terms as follows:

h11h21 = l1l3h111h211 + l1l4h111h212 + l2l3h112h211 + l2l4h112h212,

h12h22 = l1l3h121h221 + l1l4h121h222 + l2l3h122h221 + l2l4h122h222

and

det(H) = h11h22 − h12h21

= (l1l3h111h221 + l1l4h111h222 + l2l3h112h221 + l2l4h112h222)

−(l1l3h121h211 + l1l4h121h212 + l2l3h122h211 + l2l4h122h212).

Then the equations (3.88) become

q(1) = −q0 − 2i(λ1 − λ2)
h11h21

h11h22 − h12h21

= −q0 − 2i(λ1 − λ2)× (l1l3h111h211 + l1l4h111h212 + l2l3h112h211 + l2l4h112h212)

/[(l1l3h111h221 + l1l4h111h222 + l2l3h112h221 + l2l4h112h222)

−(l1l3h121h211 + l1l4h121h212 + l2l3h122h211 + l2l4h122h212)],

r(1) = −r0 − 2i(λ1 − λ2)
h12h22

h11h22 − h12h21

= −r0 − 2i(λ1 − λ2)× (l1l3h121h221 + l1l4h121h222 + l2l3h122h221 + l2l4h122h222)

/[(l1l3h111h221 + l1l4h111h222 + l2l3h112h221 + l2l4h112h222)

−(l1l3h121h211 + l1l4h121h212 + l2l3h122h211 + l2l4h122h212)].

In order to compare the above result with the contents in Section 2.4, we found that
the following relations must satisfy:

l1l3 = 1
n1

l1l4 = 1
m1

l2l3 = −m1

l2l4 = −n1

.
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Hence, if we choose the coefficients to be
l1 = 1
l2 = −m1n1

l3 = 1
n1

l4 = 1
m1

,

then the above two functions shall become

q(1) = −q0 − 2i(λ1 − λ2)× (l1l3h111h211 + l1l4h111h212 + l2l3h112h211 + l2l4h112h212)

/[(l1l3h111h221 + l1l4h111h222 + l2l3h112h221 + l2l4h112h222)

−(l1l3h121h211 + l1l4h121h212 + l2l3h122h211 + l2l4h122h212)]

= −q0 − 2i(λ1 − λ2)× (
1

n1

h111h211 +
1

m1

h111h212 −m1h112h211 − n1h112h212)

/[(
1

n1

h111h221 +
1

m1

h111h222 −m1h112h221 − n1h112h222)

−(
1

n1

h121h211 +
1

m1

h121h212 −m1h122h211 − n1h122h212)] (3.89)

and

r(1) = −r0 − 2i(λ1 − λ2)× (l1l3h121h221 + l1l4h121h222 + l2l3h122h221 + l2l4h122h222)

/[(l1l3h111h221 + l1l4h111h222 + l2l3h112h221 + l2l4h112h222)

−(l1l3h121h211 + l1l4h121h212 + l2l3h122h211 + l2l4h122h212)]

= −r0 − 2i(λ1 − λ2)× (
1

n1

h121h221 +
1

m1

h121h222 −m1h122h221 − n1h122h222)

/[(
1

n1

h111h221 +
1

m1

h111h222 −m1h112h221 − n1h112h222)

−(
1

n1

h121h211 +
1

m1

h121h212 −m1h122h211 − n1h122h212)] (3.90)

So, we can observe the fact that the expressions (equations (3.89) and (3.90)) of q(1)

and r(1) which we got from Darboux transformation is the same with the expressions
(equations (2.67) and (2.68)) which be derived by Bäcklund transformation.

Next,we will write down the Darboux matrix here, and compare it with the matrix
ψ(x, t;λ) (i.e. (2.69)) which we have gotten in the Section 2.4.

Before writing down the explicit expression of the Darboux matrix, we first compute
the determinant of matrix H:

det(H) = h11h22 − h12h21

= (h111 −m1n1h112)(
1

n1

h221 +
1

m1

h222)− (h121 −m1n1h122)(
1

n1

h211 +
1

m1

h212)

= (
1

n1

h111h221 +
1

m1

h111h222 −m1h112h221 − n1h112h222)

−(
1

n1

h121h211 +
1

m1

h121h212 −m1h122h211 − n1h122h212)

= (m1h122h211 + n1h122h212 −
1

n1

h121h211 −
1

m1

h121h212)

+(−m1h112h221 − n1h112h222 +
1

n1

h111h221 +
1

m1

h111h222)

= M11 +M22 (which is in the Sec 2.4).
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Therefore, the explicit expression of this Darboux matrix shall be :

D(x, t;λ) = J(λI − S)

=

(
1 0
0 −1

) λ− S
′
11

det(H)
− S

′
12

det(H)

− S
′
21

det(H)
λ− S

′
22

det(H)


=

 λ− S
′
11

det(H)
− S

′
12

det(H)

S
′
21

det(H)
−λ+

S
′
22

det(H)


=

(
D11 D12

D21 D22

)
(3.91)

where the entries of the matrix are

D11 = λ− S
′
11

det(H)

= λ− λ1h11h22 − λ2h12h21

det(H)

= λ− 1

det(H)
[λ1(h111 −m1n1h112)(

1

n1

h221 +
1

m1

h222)

−λ2(h121 −m1n1h122)(
1

n1

h211 +
1

m1

h212)]

= λ− 1

det(H)
[λ1(

1

n1

h111h221 +
1

m1

h111h222 −m1h112h221 − n1h112h222)

−λ2(
1

n1

h121h211 +
1

m1

h121h212 −m1h122h211 − n1h122h212)]

= ψ
′

11 ,

D12 = − S
′
12

det(H)

= −−λ1h11h21 + λ2h11h21

det(H)

=
λ1 − λ2

det(H)
h11h21

=
λ1 − λ2

det(H)
(h111 −m1n1h112)(

1

n1

h211 +
1

m1

h212)

=
λ1 − λ2

det(H)
(

1

n1

h111h211 +
1

m1

h111h212 −m1h112h211 − n1h112h212)

= ψ
′

12 ,
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D21 =
S

′
21

det(H)

=
λ1h12h22 − λ2h12h22

det(H)

=
λ1 − λ2

det(H)
h12h22

=
λ1 − λ2

det(H)
(h121 −m1n1h122)(

1

n1

h221 +
1

m1

h222)

=
λ1 − λ2

det(H)
(

1

n1

h121h221 +
1

m1

h121h222 −m1h122h221 − n1h122h222)

= ψ
′

21

and

D22 = −λ+
S

′
22

det(H)

= −λ+
−λ1h12h21 + λ2h11h22

det(H)

= −λ+
1

det(H)
[−λ1(h121 −m1n1h122)(

1

n1

h211 +
1

m1

h212)

+λ2(h111 −m1n1h112)(
1

n1

h221 +
1

m1

h222)]

= −λ+
1

det(H)
[−λ1(

1

n1

h121h211 +
1

m1

h121h212 −m1h122h211 − n1h122h212)

+λ2(
1

n1

h111h221 +
1

m1

h111h222 −m1h112h221 − n1h112h222)]

= ψ
′

22 .

So, the expression of the Darboux matrix is

D(x, t;λ) =

(
D11 D12

D21 D22

)
=

(
ψ

′
11 ψ

′
12

ψ
′
21 ψ

′
22

)
= (λ− λ1)[

1

λ− λ1

(
ψ

′
11 ψ

′
12

ψ
′
21 ψ

′
22

)
]

= (λ− λ1)[(I +
λ1 − λ2

λ− λ1

P )J ]

= (λ− λ1)ψ(x, t;λ)

Note that the terms ψ
′
ij, where i, j = 1, 2, exactly are the entries of the matrix ψ in

(2.69) which we haven gotten in the Section 2.4.
Therefore, we have proved that the two transformation of the AKNS system will

provide us the same result even though they are derived by distinct ways (in complex
analysis and in algebraic).
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4 Example: Darboux Transformation of mK-dV Equa-

tion

In this section, we will illustrate how to use the Darboux transformation to get another
solution from the known solution of the nonlinear partial equation which we consider.

Recall that the AKNS system which we have introduced in Sec 1.2 is

Φx(x, t;λ) =

(
−iλ q(x, t)
r(x, t) iλ

)
Φ(x, t;λ),

Φt(x, t;λ) =

(
A(x, t;λ) B(x, t;λ)
C(x, t;λ) −A(x, t;λ)

)
Φ(x, t;λ). (4.92)

For the mK-dV equation

ut + uxxx − 6u2ux = 0,

if we take r = q, and A, B, C to be

A = rqx − qrx − 2iλqr − 4iλ3,

B = −qxx + 2rq2 + 2iλqx + 4λ2q, (4.93)

C = −rxx + 2qr2 − 2iλrx + 4λ2r,

then the integrability conditions for all λ will be exactly the mK-dV equation

qt + qxxx − 6q2qx = 0. (4.94)

4.1 The Explicit Form of the Darboux Transformation of mK-
dV Equation

First, we observe the first equation of equation (4.92) which we choose q(0) = r(0) = u,
where u is a known solution of the mK-dV equation. Then

Φ(0)
x = U (0)Φ(0) =

(
−iλ u
u iλ

)
Φ(0). (4.95)

Suppose that Φ(0) =

[
α
β

]
is a solution of (4.95) w.r.t. λ = λ0,(

α
β

)
x

=

(
−iλ0 u
u iλ0

)(
α
β

)
. (4.96)

Then it is easy to directly check that Φ(0) =

[
β
α

]
shall be a solution of (4.95) w.r.t.

λ = −λ0, that is, (
β
α

)
x

=

(
iλ0 u
u −iλ0

)(
β
α

)
.

Apply Theorem[2], let us choose that

Λ =

(
λ0 0
0 −λ0

)
, H =

(
α β
β α

)
.
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Then we first compute that

H−1 =
1

α2 − β2

(
α −β
−β α

)
,

and therefore

S = HΛH−1

=
λ0

1 + ( iβ
α

)2

[
1− ( iβ

α
)2 2i( iβ

α
)

−2i( iβ
α

) −(1− ( iβ
α

)2)

]
=

λ0

1 + σ2

[
1− σ2 2iσ
−2iσ −(1− σ2)

]
= λ0

[
cos θ i sin θ
−i sin θ − cos θ

]
where

σ ≡ iβ

α
and tan

θ

2
≡ σ.

Then the Darboux transformation is

D = J(λI − S)

=

(
λ− λ0 cos θ −iλ0 sin θ
−iλ0 sin θ −(λ+ λ0 cos θ)

)
,

and the inverse of D is

D−1 =
1

−λ2 + λ2
0

(
−(λ+ λ0 cos θ) iλ0 sin θ

iλ0 sin θ λ− λ0 cos θ

)
.

Now, we shall apply the equation (3.73), that is,

U (1) = DU (0)D−1 +DxD
−1

to get U (1).
For later convenience, we can first simplify the term DU (0)D−1 as follows:

DU (0)D−1 =

(
λ− λ0 cos θ −iλ0 sin θ
−iλ0 sin θ −(λ+ λ0 cos θ)

)(
−iλ u
u iλ

)
D−1

=

(
−iλ2 + iλλ0 cos θ − iλ0u sin θ λu− λ0u cos θ + λλ0 sin θ
−λλ0 sin θ − λu− λ0u cos θ −iλ0u sin θ − iλ2 − iλλ0 cos θ

)
· 1

−λ2 + λ2
0

(
−(λ+ λ0 cos θ) iλ0 sin θ

iλ0 sin θ λ− λ0 cos θ

)
=

1

−λ2 + λ2
0

(
a11 a12

a21 a22

)
where

a11 = iλ3 + 2iλλ0u sin θ + iλλ2
0 sin2 θ − iλλ2

0 cos2 θ

a12 = 2λ2λ0 sin θ − 2λλ2
0 sin θ cos θ + λ2

0u+ λ2u− 2λλ0u cos θ

a21 = 2λ2λ0 sin θ + 2λλ2
0 sin θ cos θ + λ2

0u+ λ2u+ 2λλ0u cos θ

and a22 = −iλ3 − 2iλλ0u sin θ − iλλ2
0 sin2 θ + iλλ2

0 cos2 θ
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In order to get Dx, we can first compute θx. Since

σx = (
iβ

α
)x

= i
αβx − αxβ

α2

= i
α(uα + iλ0β)− (−iλ0α+ uβ)β

α2

=
i

α2
(uα2 + iλ0αβ + iλ0αβ − uβ2)

= i(u+ 2λ0(
iβ

α
) + u(

iβ

α
)2)

= i(u+ 2λ0σ + uσ2)

= iu(1 + σ2) + 2iλ0σ,

and therefore

θx = (2 tan−1 σ)x

= 2
σx

1 + σ2

=
2

1 + σ2
(iu(1 + σ2) + 2iλ0σ)

= 2iu+ 2iλ0
2σ

1 + σ2

= 2iu+ 2iλ0 sin θ.

Hence

Dx =

(
λ− λ0 cos θ −iλ0 sin θ
−iλ0 sin θ −λ− λ0θx cos θ

)
x

=

(
λ0θx sin θ −iλ0θx cos θ
−iλ0θx cos θ λ0θx sin θ

)
= λ0θx

(
sin θ −i cos θ
−i cos θ sin θ

)
.

Then we compute the term DxD
−1 as follows:

DxD
−1 = λ0(2iu+ 2iλ0 sin θ)

(
sin θ −i cos θ
−i cos θ sin θ

)
· 1

−λ2 + λ2
0

(
−(λ+ λ0 cos θ) iλ0 sin θ

iλ0 sin θ λ− λ0 cos θ

)
=

1

−λ2 + λ2
0

(
2iλ0u sin θ + 2iλ2

0 sin2 θ 2λ0u cos θ + 2λ2
0 sin θ cos θ

2λ0u cos θ + 2λ2
0 sin θ cos θ 2iλ0u sin θ + 2iλ2

0 sin2 θ

)
·
(
−λ− λ0 cos θ iλ0 sin θ
iλ0 sin θ λ− λ0 cos θ

)
=

1

−λ2 + λ2
0

(
b11 b12

b21 b22

)
,
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where

b11 = −2iλλ0u sin θ − 2iλλ2
0 sin2 θ

b12 = −2λ2
0u− 2λ3

0 sin θ + 2λλ2
0 sin θ cos θ + 2λλ0u cos θ

b21 = −2λ2
0u− 2λ3

0 sin θ − 2λλ2
0 sin θ cos θ − 2λλ0u cos θ

b22 = 2iλλ0u sin θ + 2iλλ2
0 sin2 θ

Finally, from the equation (3.73), we shall get(
−iλ u(1)

u(1) iλ

)
= U (1)

= DU (0)D−1 +DxD
−1

=
1

−λ2 + λ2
0

(
a11 + b11 a12 + b12
a21 + b21 a22 + b22

)
=

(
c11 c12
c21 c22

)
,

where

c11 =
1

−λ2 + λ2
0

(iλ3 + 2iλλ0u sin θ + iλλ2
0 sin2 θ − iλλ2

0 cos2 θ

−2iλλ0u sin θ − 2iλλ2
0 sin2 θ)

=
1

−λ2 + λ2
0

(iλ3 − iλλ2
0)

=
−iλ

−λ2 + λ2
0

(−λ2 + λ2
0)

= −iλ,

c12 =
1

−λ2 + λ2
0

(2λ2λ0 sin θ − 2λλ2
0 sin θ cos θ + λ2

0u+ λ2u− 2λλ0u cos θ

+2λλ2
0 sin θ cos θ − 2λ2

0u+ 2λλ0u cos θ − 2λ3
0 sin θ)

=
1

−λ2 + λ2
0

(−u(−λ2 + λ2
0)− 2λ0 sin θ(−λ2 + λ2

0))

= −u− 2λ0 sin θ,

c21 =
1

−λ2 + λ2
0

(2λ2λ0 sin θ + 2λλ2
0 sin θ cos θ + λ2

0u+ λ2u+ 2λλ0u cos θ

−2λλ2
0 sin θ cos θ − 2λ2

0u− 2λλ0u cos θ − 2λ3
0 sin θ)

=
1

−λ2 + λ2
0

(−u(−λ2 + λ2
0)− 2λ0 sin θ(−λ2 + λ2

0))

= −u− 2λ0 sin θ
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and

c22 =
1

−λ2 + λ2
0

(−iλ3 − 2iλλ0u sin θ − iλλ2
0 sin2 θ + iλλ2

0 cos2 θ

+2iλλ0u sin θ + 2iλλ2
0 sin2 θ)

=
1

−λ2 + λ2
0

(−iλ3 + iλλ2
0)

=
iλ

−λ2 + λ2
0

(−λ2 + λ2
0)

= iλ.

Thus we shall get the new solution u(1) form the known solution of the mK-dV equa-
tion:

u(1) = −u− 2λ0 sin θ

= −u− 2λ0
2σ

1 + σ2

= −u− 2λ0
2iαβ

α2 − β2

= −u− 4iλ0
αβ

α2 − β2
.

4.2 Apply This Darboux Transformation to Get A New Solution

Now, we take the known solution q(0), r(0) to be trivial solution

q(0) = r(0) = c 6= 0

which is a real constant. Then we can find the fact from (4.93) and (4.94) to be

V (0)(λ) = (2c2 + 4λ2)U (0)(λ).

This shall imply that Φ(0)(λ) to be the following form:

Φ(0)(λ) = Φ(0)[x+ (2c2 + 4λ2)t;λ)]. (4.97)

First, we need to solve the equation as follows:(
α
β

)
x

=

(
−iλ c
c iλ

)(
α
β

)
,

that is, we will solve the equation system
αx = −iλα + cβ

βx = cα + iλβ
.

Therefore, it will have two linear independent solutions, and so

Φ(0)(x;λ) =

(
α
β

)
=

(
l1 · ek(x−x0) +l2 · e−k(x−x0)

l1 · iλ+k
c
ek(x−x0) +l2 · iλ−k

c
e−k(x−x0)

)
,

where k ≡
√
c2 − λ2 , and x0 is a constant which in general may depend on λ and c.
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Let us choose that l1 = 1 and l2 = −ik + iλ
|c| . Then we can compute α and β as

follows:

α(x;λ) = ek(x−x0) + (−ik + iλ

|c|
)e−k(x−x0),

β(x;λ) =
k + iλ

c
ek(x−x0) + (−ik + iλ

|c|
)
−k + iλ

c
e−k(x−x0)

=
k + iλ

c
ek(x−x0) + i

|c|
c
e−k(x−x0).

Before computing the new solution, note that the three equation
k2 = c2 − λ2

λ2 = c2 − k2

k2 + λ2 = c2

and first simplify the term which we will use

c2 − (k + iλ)2 = c2 − k2 − 2ikλ+ λ2

= λ2 − 2ikλ+ λ2

= −2iλ(k + iλ)

Now if let k1 > 0 be an arbitrary constant, and so λ1 =
√
c2 − k2

1.
Hence we have

k =
√
c2 − λ2

1 = k1 .
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Thus, we can begin to compute q(1) as follows:

q(1)(x;λ1) = −q(0)(x)− 4iλ1
α(x;λ1)β(x;λ1)

α2(x;λ1)− β2(x;λ1)

= −c− 4iλ1[
k1 + iλ1

c
e2k1(x−x0) + (−ik1 + iλ1

|c|
)(i
|c|
c

)e−2k1(x−x0)

+(i
|c|
c
− i

k1 + iλ1

|c|
k1 + iλ1

c
)]/[(1− (

k1 + iλ1

c
)2)e2k1(x−x0)

+((−ik1 + iλ1

|c|
)2 − (i

|c|
c

)2)e−2k1(x−x0) + 2((−ik1 + iλ1

|c|
)− (

k1 + iλ1

c
)(i
|c|
c

))]

= −c− 4iλ1

k1+iλ1

c
e2k1(x−x0) + k1+iλ1

c
e−2k1(x−x0) + i c

2−(k1+iλ1)2

|c|c

( c2−(k1+iλ1)2

c2
)e2k1(x−x0) + ( c2−(k1+iλ1)2

c2
)e−2k1(x−x0) + (−4ik1+iλ1

|c| )

= −c− 4iλ1

k1+iλ1

c
e2k1(x−x0) + k1+iλ1

c
e−2k1(x−x0) + i−2iλ1(k1+iλ1)

|c|c

(−2iλ1(k1+iλ1)
c2

)e2k1(x−x0) + (−2iλ1(k1+iλ1)
c2

)e−2k1(x−x0) + (−4ik1+iλ1

|c| )

= −c− 4iλ1

1
c
(e2k1(x−x0) + e−2k1(x−x0) + 2λ1

|c| )

−2i 1
c2

(λ1e2k1(x−x0) + λ1e−2k1(x−x0) + 2|c|)

= −c+ 2c
λ1e

2k1(x−x0) + λ1e
−2k1(x−x0) + 2 c2

|c| − 2
k2
1

|c|

λ1e2k1(x−x0) + λ1e−2k1(x−x0) + 2|c|

= −c+ 2c− 2c
2k2

1/|c|
λ1(e2k1(x−x0) + e−2k1(x−x0)) + 2|c|

= c− 2k2
1c/|c|

λ1 cosh 2k1(x− x0) + |c|

= c− 2k2
1c/|c|

|c|+
√
c2 − k2

1 cosh 2k1(x− x0)
.

Figure 4: Sketch of the graph of soliton solution q(1) for c = 10, k1 = 5, t = 0, x0 = 0.

So, for |c| > k1,

q(1)(x, t;λ1) = r(1)(x, t;λ1) = c− 2k2
1c/|c|

|c|+
√
c2 − k2

1 cosh 2k1[x− x0 + (6c2 − 4k2
1)t]

, (4.98)
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which shall be a soliton solution again. (see Fig. 4)
However, if we choose x0(λ, c) to be

x0(λ, c) = x1 +
1

4
√
c2 − λ2

ln
|c|+

√
c2 − λ2

|c| −
√
c2 − λ2

,

where x1 is a constant, and if we choose λ1 as before, then the solution (4.98) will take
the form

q(1)(x, t;λ1) = r(1)(x, t;λ1) = c− (k2
1c/|c|)/{|c| cosh2 k1[x− x1 + (6c2 − 4k2

1)t]

−k1

2
sinh 2k1[x− x1 + (6c2 − 4k2

1)t]}. (4.99)

Now for ±c > 0, we take the limit k1 → ±c again. Hence, (4.99) shall become

q(1)(x, t;λ1) = r(1)(x, t;λ1) = ∓c tanh c[x− x1 + 2c2t], (4.100)

which is a kink solution. (see Fig. 5)

Figure 5: Sketch of the graph of kink solution q(1) for c = 10, t = 0, x1 = 0.

In summary, we have generated a soliton solution (4.98) and a kink solution (4.100)
from a trivial solution of the mK-dV equation.

Note that if we observe q(1) and r(1) (i.e. (3.89) and (3.90)), we shall find these two
expressions also depends on a pair of parameters (l1, l2) (as the pair of parameters (m1, n1)
in the explicit Bäcklund transformation). On practice of the Darboux transformation
(or the explicit Bäcklund transformation), we must take care the choice of this pair of
parameters (l1, l2). Otherwise, the two functions q(1) and r(1) may not be real functions.
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For example, if we choose l1 = l2 = 1 in above process which we compute the new
solution of mK-dV equation, then we have

α(x;λ) = 1 · h111 + 1 · h112

= ek(x−x0) + e−k(x−x0) ,

β(x;λ) = 1 · h121 + 1 · h122

=
k + iλ

c
ek(x−x0) +

−k + iλ

c
e−k(x−x0) .

Hence,

q(1) = −q(0)(x;λ)− 4iλ1
α(x;λ)β(x;λ)

α2(x;λ)− β2(x;λ)
= −c

−4iλ1

k1+iλ1

c
e2k1(x−x0) + −k1+iλ1

c
e−2k1(x−x0) + (k1+iλ1

c
+ −k1+iλ1

c
)

(1− (k1+iλ1)2

c2
)e2k1(x−x0) + (1− (−k1+iλ1)2

c2
)e−2k1(x−x0) + (2− 2 (k1+iλ1)(−k1+iλ1)

c2
)

= −c

−4i
1
c
1
c2

· [(k1λ1 + i(c2 − k2
1))e

2k1(x−x0) + (−k1λ1 + i(c2 − k2
1))e

−2k1(x−x0) + 2i(c2 − k2
1)]

/[(c2 − k2
1 − 2ik1λ1 + (c2 − k2

1))e
2k1(x−x0) + (c2 − k2

1 + 2ik1λ1 + (c2 − k2
1))e

−2k1(x−x0)

+(2c2 + 2(k2
1 + c2 − k2

1))]

= −c+ 2c
(c2 − k2

1 − ik1λ1)e
2k1(x−x0) + (c2 − k2

1 + ik1λ1)e
−2k1(x−x0) + 2(c2 − k2

1)

(c2 − k2
1 − ik1λ1)e2k1(x−x0) + (c2 − k2

1 + ik1λ1)e−2k1(x−x0) + 2c2

= −c+ 2c− 2c
2k2

1

(c2 − k2
1 − ik1λ1)e2k1(x−x0) + (c2 − k2

1 + ik1λ1)e−2k1(x−x0) + 2c2

= c− 2k2
1c

(c2 − k2
1) cosh 2k1(x− x0)− ik1λ1 sinh 2k1(x− x0) + c2

= c− 2k2
1c

|c|
√
c2 − k2

1(

√
c2−k2

1

|c| cosh 2k1(x− x0) + −ik1

|c| sinh 2k1(x− x0)) + c2
.

For simplifying this expression, we need to define that{ √
c2−k2

1

|c| ≡ cosh 2k1xc
−ik1

|c| ≡ sinh 2k1xc

.

Note that, xc is not a real number.
Therefore,

q(1) = c− 2k2
1c

|c|
√
c2 − k2

1(cosh 2k1xc cosh 2k1(x− x0) + sinh 2k1xc sinh 2k1(x− x0)) + c2

= c− 2k2
1c/|c|√

c2 − k2
1 cosh 2k1(x− x0 − xc) + |c|

,

which is not a real function!!

47



5 Conclusion

We have introduced the explicit Bäcklund transformation (in Section 2.4) and the Darboux
transformation (in Chapter 3). Form the definition of the Darboux transformation stated
in Sec 3.1, we can find that the explicit Bäcklund transformation which stated in Sec 2.4
is also one kind of Darboux transformation. And, we have proved that these two kind of
Darboux transformations in AKNS system are equivalence in Sec 3.4 even though they are
derived by distinct ways (in complex analysis and in algebraic). Hence, we shall be able
to use the alternative of these two transformations to get more solutions of the considered
equation.

This transformation shall provide us a method to find new solutions explicitly from the
known solution of the nonlinear partial differential equation which we consider. Further,
we shall be able to make successively the transformations from a given initial solution u
to get more soliton-solutions. Once we get q(1), r(1) from the input solution q(0), r(0), we
can of course repeat the same procedure to obtain another new solution q(2), r(2), using
q(1), r(1) as the input solution this time.

That is, if we want to get a new solution u(1)(x, t) from a given solution u(0)(x, t) of
the nonlinear equation which we consider, we only need to input u(0)(x, t) into Q(0)(x, t)
in the AKNS system (which is linear) and solve the solution Φ(0)(x, t;λ) out. Then we
can choose a parameter λ1 to get Q(1)(x, t;λ1) which consists u(1)(x, t) = u(1)(x, t;λ1) and
construct the Darboux matrix D(1)(x, t;λ1, λ). Hence we shall get a new solution u(1)(x, t)
of the nonlinear equation.

Since we can directly get Φ(1)(x, t;λ1, λ) = D(1)(x, t;λ1, λ)Φ(0)(x, t;λ) which we do not
need to solve the AKNS system again. Hence, we can repeat the above procedure to obtain
the next solution u(2)(x, t) which consists in Q(2)(x, t;λ1, λ2, λ) and construct the Darboux
matrix D(2)(x, t;λ1, λ2, λ) to get Φ(2)(x, t;λ1, λ2, λ). Therefore, this transformation is
really a powerful method of providing us more solutions of some nonlinear equation as
follows:

(u(0),Φ(0))
λ1,D(1)

→ (u(1),Φ(1))
λ2,D(2)

→ (u(2),Φ(2))
λ3,D(3)

→ · · · .
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