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The Equivalence between Two Kinds of
Darboux Transformations in AKNS Systems

Student : Chuan-Her Yang Advisor : Dr. Jiin-Chang Shaw

Department (Institute) of Applied Mathematics

National Chiao Tung University

Abstract

To find solutions of nonlinear partial differential equations is usually a
important and difficult problem,.but for.some:kinds of nonlinear equation
(for example, K-dV equation and mK-dV equation etc.), we have haven
some method to find out their explicit solutions: These familiar methods
which we often use involves the inverse'scattering transformation,
Backlund transformation and Darbeux transformation. In this paper, we
will focus our discussion on the last two method: explicit Backlund
transformation and Darboux transformation. These two method are both
that starting from a known solution of this nonlinear equation, then applies
the AKNS system to derive a new solution. We shall write their explicit
expressions down, and then prove that these two transformation are
equivalence. Finally, we also illustrate how to use the transformation to
find more solutions of the considered nonlinear equation.



Eﬁﬁﬁwm%ﬁwFﬁma@%ﬁwﬁﬁﬁ¥WTW%$E&§°&ﬂmﬁﬁ@%ﬂﬁﬁﬁ
D E‘ﬂj\ﬁﬁiﬁal%?%?ﬂum{u rﬁjfr’[ q‘ixyiw[i@g% Elrﬁ ﬁﬁjﬁ »|LJE#*LI',FJ%£31;{
lLﬂ PORRSEE: AT EER - R u;fFle‘ﬂ (AR #’J%'EJV"‘E 1Rl B

H Ko ﬁfﬁ’?ﬁﬁuﬁ“ﬁ" SIS ﬁ;[gluj{i |[5TUJ [ﬁéﬁrf MR o RESEF !
(Ee H ORI ™ o BURL T ot TR 5 fﬁ?ﬁ%ﬁﬁﬁl%lﬂf@ o i
FISTAE IR 52 st -

DI+ R Tl SR R TR TS 0 1 F R e
%@%ﬁ»%ﬂ@@*%ﬁwwmﬁ@.U$&"$P%i%W”W¢ R
SRS T wsk)@:gz FFy BRI B ot - Eﬁ Tu?i’ PN — et
IR e i T RTINS E (s 7 E'?"Tﬁ PR o -

D A T #@@%ﬂ%jmﬁ@%@’@W§ﬂﬁ%%

f IR IR VORI BI85 » 290
e b%%% 2 %Pwﬁwﬁﬁww’r%ﬁ%ﬁ~ﬂﬁaﬁ%’

W»pwmaﬁ ﬁ\lim BRI i ™ FE - S5 H Y

N IH;LFLth’Lg/, Lj ) ngz,\mﬁj[ﬂ([g,iy u_&ﬂﬁ;‘[ o =t s QJE[#{HJ@
e g PR TR zﬁ? e ST et u%i/ﬂiﬁﬁ‘%‘“ R
UEBRETI F?‘W%Q?f FORIE M RIS 7 »&%ﬁﬁﬁwiww
wp s EF] W Hﬁ“ g7 TFIH‘ sﬁxguﬁr DJTE.J% ;vFlel

[:Hlﬁﬁélj\ i WJIZI“ ﬁﬁﬁg e 1% Fupw EHACH > TG E’ﬁ’éﬁ%
ﬁﬂl’@uﬁ» Vmﬁi&E'i%’uiﬁ@%~w% RN RS S
T+ e ,ﬁ%? TepulE R - g%‘ﬁ?iﬁgfggfjw rf b;@ﬁug lif;;;f]?Fb%w

U@ﬂi% e [SENITANE

i o - CRIBSEOF AT R R BN L R
SIEES & ﬁﬁﬁﬂ”ﬁw’ﬁﬂf@ﬂ%i%f4 Uﬁibw e
[ 2R o 2 e IO o R T ORI S RITE b 7\
FIREP e

PRI 37 (TR R S N 0 SRR
P |



P2 B R ettt e
e
SEHE e s e
Ej 5— ........................................................................
— S IHtI‘OdUCtiOH ...................................................
1.1 The Introduction of Solitary Waves
and KAV EQUAation --eeeeeeeeeeermmmmmmmmmmmmmeneeeeee
1.2 AKNS System and Its Integrability Condition :-----
- Backlund TranSfOrmations ««---e-ceeeeeeseeemeusmnemnenn.
21 INtroductory 1deas «+-e-eeeeeereremmmmmmmmmmnanneneenen
2.2 Backlund Transformation for KdV Equation =-«-------
2.3 Soliton-generating Backlund Transformation
for Some Nonlinear EQUATion -----s--seeeeeeeeeeereeemennn.
2.4 Explicit Backlund Transformation ceeeeeeceeeeeeeeeeees
= . Darboux TranSfOrMALtIONS — ceeceererererernseosaseneeneanens
3.1 Introduction of Darboux Tranmsformation -«e--«-----
3.2 Construct a Darboux Matrix' in
Explicit Purely AlGebraic f--:e waeeeeeeemeessareneennn
3.2.1 Some Properties of The Matrix S::--eceeeeeerereeeennens
3.2.9  How to Find The MAtrix S +reestaterreererierieueuennnn.
3.3 General Form of The Darboux Matrix
which Be Given in The Theorems «:-eeeeeeereeeeeeeeenn..
3.4 The Equivalence of Darboux Transformation
and Explicit Backlund Transformation -e«eeeeeeeee---
T~ Example: Darboux Transformation
of MK—dAV Equation «-eeeeeereerrmremmemmmnin..
4.1 The Explicit Form of the Darboux
Transformation of mK-dV Equation ««eeeeeeeeeeeeeeeeens
4.2 Apply This Darboux Transformation
10 Get A NeW SOLULION «w-rrrrrrrrrsrnreneasmnemmenneneanenne
T - CONCLUSION  +rerrerrrrrsrrrnsesenemnsenmuererieeeeaeeneeneaens
REFEIEIICE  +vrerreecrsrneamentmorueeneieueineaeneisraeensiemeinsmensensnesnes

© 0 o o1 B



1 Introduction

1.1 The Introduction of Solitary Waves and KdV Equation

Solitons are a special kind of an essential nonlinear wave.

A 7soliton” is not precise defined, but is used to describe any solution of a nonlinear
equation or system which (i) represents a wave of permanent form; (ii) is localized, de-
caying or becoming constant at infinity; (iii) may interact strongly with other solitons so
that after the interaction it retains its form, almost as if the principle of superposition
were valid. The word ”soliton” was coined by Zabusky and Kruskal (1965) after ”pho-
ton”, "proton”, etc. to emphasize that a soliton is a localized entity which may keep its
identity after an interaction (see Fig. 1).
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Figure 1: The interaction of two solitary wave

A solitary wave is the first and most celebrated example of a soliton to have been
discovered. To realize the definition of a soliton, it is useful to study solitary waves on
shallow water. Let us begin at the begging, and relate a little history.

The solitary wave was first observed on the Edinburgh to Glasgow canal in 1834 by
J. Scott Russell. He also did some laboratory experiments, generating solitary waves by
dropping a weight at one end of a water channel. He deduced empirically that the volume
of water in the wave is equal to the volume displaced by the weight and that the steady
velocity ¢ of the wave is given by ¢? = g(h + A), where A is the amplitude of the wave
and h is the height of the undisturbed water (see Fig. 2). Note that a taller solitary wave
travels faster than a smaller one (see Fig. 1).

Boussinesq (1871) and Rayleigh (1876) independently showed essentially that the wa-
ter wave height ¢ about the mean level A is given by
T —ct

b )

((x,t) = A sech?

2
where b? = M—%hj_—m for any positive amplitude A.



Figure 2: solitary wave

In 1895 Korteweg and de Vries developed this theory, and found an equation governing
the one-dimensional motion of nonlinear long waves:

o _3 [g,.0C 3 0C 1 9%
ot 2\/;( o 2% T30

1 h3 Th

where « is a small constant, o = — == and T is the surface tension of liquid of

density p. This is essentially the original form of the Korteweg-dv Vries equation; we
shall call it the KdV equation.

Note that by translations and maghifications’of the dependent and independent vari-
ables,

w =k + koo XK= hosw kg, T= Kt + ks,

we can write the KdV equation in many equivalent forms by choice of the constants kg
to ks. For example:

We can transform the above equation under
l+u—au, T-—p0t, X — vz,

where «, [ and ~ are real (non-zero) constants, to yield

«
Up + —ﬁuur + ﬁgumm = 0.
Y Y

This is a general form of the KdV equation, and a convenient choice, which we shall often
use, is

Uy — OUUy + Upgy = 0. (1.1)

We now briefly discuss the solitary-wave solution of the KdV equation. To solve it,
first seek wave of permanent shape and size by trying the travelling-wave solutions of this
equation such that u(z,t) = f(£), where £ = x — ct for some function f and constant
wave velocity ¢. Thus the equation (1.1) becomes

_Cf,_6ff/+f”/:0,

2



which may be integrated once to yield
d3(f")?
df

where A is a constant of integration. If we use [’ as an integrating factor, we may integrate
once more to get

= ' =3+ cf + A

S =P el Y AT+ B,

where B is a second constant of integration.
If we want to seek a solitary wave, we may add the boundary conditions f, f/, f” — 0
as & — f+o00. Thus A and B are both zero,

(f)=r*-2f +o),

and we can see immediately that a real solution exists only if (f/)* > 0 i.e. if 2f + ¢ > 0.
The above equation can be integrated as follows:

o [ f e

Then
df mma, T, V2T +c—/C
oo i/W S arrer Ve
21 1+% 2 V2 +¢
= :':76§1n|1_—%| = IFTCtanh 17,
R !
2 e = etan®(L(e—e)
f o= S (e g - ).
Hence, we shall obtain
() = F(€) = —%c sechQ[%\/E(x et — )], (1.2)

where z is an arbitrary constant of integration. The solitary-wave solution (1.2) of
equation (1.1) forms a one-parameter family (ignoring xy), and in fact the solution exists
for all ¢ > 0 no matter how large or small the wave may be.

The most important thing that we usually need to do is the solution of the general
initial-value problem for the KdV equation. That is, finding the solution wu(z,t) of

U — 6UUL + Ugypy = 0
for all t > 0 and —o0 < & < oo, where
u(z,0) = g(z)

3



for a given function g.

It can be proved that the method of finding the solution u(z, t) will require a connection
to a scattering problem, in fact the classical scattering problem of quantum mechanics.
this idea is usually called inverse scattering transform (IST). (ref [1, 2, 6]) The method of
inverse scattering or the inverse scattering transform will be used to solve the initial-value
problem. (see Fig. 4)

; " i _ - : e
nemlingar partial difterential direct linfar SC tering
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[ni) = 200 ] e v, equation
: fire
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¥ ¥
solotion 3 nonlinear : : . :
system for 10 - InVErsE sCtErng linear scatiering data
[ nfet] for t=0

Figure 3: Flow diagram of the method of inverse scattering.

And it will be able to be explained by a deeper and more general argument due to
Lax (1968). This abstract argument (the-Lexmethod) will show that the method may
be applied to many, through not most, nonlinear imitial-value problem. Now, We simply
describe the Lax theory as follows:

If the evolution equation

U =S (1.3)

where S is a nonlinear operator which is independent of ¢, can be expressed as the Lax
equation

L,=BL - LB, (1.4)

where L and B are some linear operators in x and may depend on u(x,t),(By L;, we mean
the derivative w.r.t. the parameter ¢ as it appears explicitly in the operator; for example,

2
if L = —%Z + u(z,t), then L, = w,;.) and if

Lip = \ip, (1.5)
then A\; = 0 and 1 evolves according to
Yy = Bi.
For example, let us suppose that
2 03 0

Therefore, L; = BL — LB if and only if u; = —u,, + 6uu,. Hence, we can find that the
K-dV equation

Up + Uggy — OUU, = 0 (1.6)

4



is the integrability condition of (1.5).
The integrability condition means: consider the linear equation system

Uy = =4 + 6UL, + Suz1) (1.7)

(which is the Lax pair of K-dV equation), where u and v are both functions of x and t.
For the first equation of (1.7), we derive the v, = (u— X)) and then compute the (¢, );.
And, for the second equation of (1.7), we compute the (¢;),,. Then the sufficient and
necessary condition of (¢,,)r = (1), is that u satisfies the K-dV equation (1.6).

It can be seen that we get an eigenvalue problem (1.5) for any nonlinear equation
which can be put into the form (1.4) although deriving the form (1.4) from the form (1.3)
is not always easy. Hence the scattering and inverse scattering theories appropriate to the
eigenvalue problem (1.5) may be used to solve an initial-value problem for the nonlinear
system (1.3).

1.2 AKNS System and Its Integrability Condition

In order to generalize the KdV equation to more cases of nonlinear partial equation, V.E.
Zakharov, A.B. Shabat, M.J. and M.J. Ablowwitz, D.J. Kaup, A.C. Newell, H. Segur
introduce to a more general linear equation pair which in general we call it by AKNS
system.

If we want to consider a partial'differential-équation (system)

F(uvuzautauxma"') :O, (18)
we shall be able to apply the AKNS form :
¢, = UPI[= (=N +Q)D]

O = VO [=) VAl (1.9)
7=0

where

1 0 0 ¢ A B
J:(O —1)’Q:<r 0),and V:(C —A)'

where & = &(x,t; \) is a 2-column vector (or 2 X 2 matrix) and A is a complex parameter
which we call it by spectrum parameter in general. ¢ and r are A-independent functions
of u and its derivatives (hence also are functions of z, and t).

And the entries of matrix V' have the below form

A = Z a;j(z, )N,
=0

B = Y bz, )\,
j=0

n

and C = ch(x,t))\”*j,

§=0



where a;, b; and ¢; are some real or complex functions of z, t.

The integrability condition of (1.9) means that when @) is a suitable differential polyno-
mial of u, then (1.8) is exactly the sufficient and necessary condition which the equation
®,, = P, holds for all different powers in A. It is easy to check that the integrable
condition is

U —Ve.+[U, V] =0, where [UV]=UV —-VU. (1.10)

Thus, we can find that the integrability condition (1.10) of the equation system (1.9)
requires

A, = ¢qC—rB,
B, = q —2\B — 2qA, (1.11)
and C, = r;+2iAC +2rA

which shall become the nonlinear equation (1.8) when we choose the suitable ¢, r, A, B
and C'.

Hence, we can discuss the nonlinear partial differential equations of u (equation (1.8))
through the AKNS system (1.9). This class of equations includes the following :

(i) K-dV equation:

Up + Ugg? F O — 07
with

[ =, P

A= Fu, F 2idu — 4iX%, B =y, £ 2u” £ 20w, + 4\, C = 2u £ 4)°
(il) mK-dV equation:
Up + Ugpw F 6U U, = 0,
with

q=u, r==tu,

A = F2i u? — 4iX3 B = —uy, £ 20° + 2i0uy, + 40%0,C = Tug, + 2u® T 2 u, + 40%u.
(iii) nonlinear Schrédinger equation:
iy + Ugy F 2|ul?u =0,
with

qg=mu, r==+u",
A = Filu|* = 2iN*, B =iu, + 2 \u, C = Fiul + 2"

(iv) sine-Gordon equation:

Uye = SIN U,

6



with

1 _
q=-—r §u$, A:icogu7 B:C=4—;Sinu.
(v) Liouville equation:
Ugt = 2€u,
with
1 i
TR 22"

For example, consider the K-dV equation
U + Uggy F 6uu, =0
and the mK-dV equation
Up + Ugpy F 60 Uy =0

by applying the AKNS system

A 2 ] (A B
o (0 et &( 4 2

If we choose that A, B and (C-as follows

A Z oy Sgre = uyr — 4303
B = S@mb2rq®+ 2iMq, + 4\°g (1.12)
and C = —ry + 2qr2 — 2idr, +4\°r

Now, applying the integrability condition of AKNS system (i.e. (1.11))
A, =qC —rB, B, =q —2i\B —2gA, and C, =1, + 2I\C + 2rA,
we shall find that the integrable condition for all order of X is
Gt + Quaz — 679q, = 0, and 7, + 740 — 6grr, = 0. (1.13)

Suppose we choose r = +1 again, the above equations shall be exactly the K-dV
equation

Note that if we choose r = +¢, (1.13) becomes the mK-dV equation



2 Backlund Transformations

In this section, we will introduce another method to find a solution of a nonlinear partial
differential equation : the Backlund transformation. If we have a solution of a nonlinear
differential equation, we shall derivative a integrable partial differential equation system.
And we can get a new solution from the differential equation system.

The Backlund transformations were devised in the 1880s for use in the theories of
differential geometry and of differential equations. They arose as a generalization of
contact transformations.

2.1 Introductory Ideas

A Bécklund transformation is essentially defined as a pair of partial differential relations
involving two independent variables and their derivatives which together imply that each
one of the dependent variables satisfies separately a partial differential equations. Thus,
for example, the transformation

Ry(u,v,up, uy,...;z,y) =0 and  Ro(u,v,ug, uy,...;2,y) =0 (2.14)

would imply that two functions v and v satisfy partial differential equations of the oper-
ational form,

P(u) =0 and...Q@) =0 (2.15)

where P and () are two operatots which are’in general nonlinear. Then R; = 0 is a
Bécklund transformation if it is integrablefor v when P(u) = 0 and if the resulting v is
a solution of Q(v) = 0, and vice versa. Of course, this approach to the solution of the
equations P(u) = 0 and Q(v) = 0 18 mormally only useful if the relations R; = 0 are, in
some sense, simpler than the original equations (2.15)

One of the simplest Bécklund transformations is the pair (written with y rather than
£

Uy =Vy , Uy = =g,
the Cauchy-Riemann relations for Laplace’s equation
Upg + Uy =0 5 Uy + vy = 0.

Thus, if v(x,y) = xy (a simple solution of Laplace’s equation), then u(x,y) can be deter-
mined form

uy =2 and  u, = -y,

and so u(z,y) = 1(2? — y?) is another solution of Laplace’s equation.

Another simple example is the Liouville’s equation,

2

Uy = €% (2.16)
First, we introduce a auxiliary variable, v, which satisfies



Now, if we consider the pair of first-order equations
Uy + vy = V2eW 2 and oy — v, = V2e4HV/2 (2.18)
then we can cross-differentiate to obtain
Ugt + U = €¥  and U — Uiy = €% (2.19)

It is immediately clear that the two equations (2.19) imply equations (2.16) and (2.17);
thus the pair of equations (2.18) constitute a Bécklund transformation for Liouville’s
equation and the equation v,; = 0. Since this latter equation is easily solved and so, from
the Bécklund transformation (2.18), we shall be able to generate the general solutions of
Liouville’s equation (cf. [1], p.109-110).

2.2 Backlund Transformation for KAV Equation

Next, we shall introduce the Béacklund transformation for the KdV equation
Uy — OUUy + Upgy = 0. (2.20)

in following.

There is a more convenient transformation was developed by Wahlquist and Estabrook
(1973), which we shall now describe. ,Wé/fitstr transform the dependent variable of the
KdV equation and then use a Backlund transformation. So we define a new dependent
variable w by

il (2.21)
and the operator Q by Q(w) = w; = 3w+ w,,;. It follows that
[Q(w)]x = 1w = 6utt; + gy
Hence we find that if u satisfies the KdV equation (2.20) then
Q(w) =0 (which is called the potential K-dV equation). (2.22)

Now consider the Backlund transformation,

1
w® 4wl =2\ + E(w(O) —w)? (2.23)

and

w” g = —(w® — ) () —wl)) + 2w +wPul) +wl?), (224
where w(© and w® correspond to u® and u® respectively, i.e. where vl = u(© and
wél) = uW, and ) is a real parameter. On assuming the transformation, we may take

2
%'223) + (2.24) to deduce that
ox
Q) + Qw™) =0,

and may take 8%x24) — 8(2&23) together with % to deduce that

(@ — o M)[Qw®) - Q)] = 0.

9



Therefore equations (2.23) and (2.24) shall imply that Q(w®) = 0 and Q(w) = 0. i.e.
w® and w) each satisfy equation (2.22) and thence that u(®) and u") each satisfy the
KdV equation (2.20).

To give an example of the use of equations (2.23) and (2.24), we shall be able to
start from the trivial solution u(”)(z,t) = 0 of the KAV equation for all # and ¢. This
corresponds to the solution w(®(z,t) = 0 of equation (2.22). Then the transformation
gives

w =2\ + %w(m

and
wt(l) = —w(l)wg} + 2w§:1)2.
The first of these equations may be integrated directly to yield
wW(z,t) = =2k tanh[kz — f(t)] (2.25)

where A = —k?(< 0) and f is an arbitrary function. From the first equation, we can also
find w'y = w®w'). Therefore the second equation of the transformation gives

w = —wWwl) 4+ 20 H2%229h 0D — %w(m) = 4w,
Therefore
@) = =88 = 44°,
for consistency with equation (2.25), we have
f(t) = 4kt + Ko,

where x( is an arbitrary constant. Thus the Backlund transformation yields the solution

wW(x,t) = =2k tanh[k(z — 29 — 4k%t)) (2.26)
and so, from equation (2.21), we obtain

uM (z,t) = —2r%sech?[k(z — 2o — 4K71)],

the solitary-wave solution of the KdV equation. (Note that solution (2.25) is valid if
lw| < 2k, but if [wV] > 2k, then

wW (z,t) = =2k coth[k(z — zo — 4k5t))],

a singular solution.)

2.3 Soliton-generating Backlund Transformation for Some Non-
linear Equations

When we consider a nonlinear partial differential equation, in general, the Backlund trans-
formation pair Ri(u,v,uy,uy,...;z,y) and Ro(u, v, Uy, 4y, ...;2,y) (in equation system
(2.14)) is not easy to find. In this section we will use a more general method to derive a

10



soliton-generating Backlund transformation for a class of nonlinear equations associated
with the AKNS system which we have introduced in Sec 1.2 :

A 2 ] (A B
o (8 )a w4 ) oo

where & = &(x,t; \) is a 2 X 2 matrix here. Now, We will use the AKNS system to begin
our discussion.

To find a soliton-generating Backlund transformation for each of the above nonlinear
equations, we will look for a pair of matrix functions (z,¢; A) and ¥ (x,t; \) such that
ey = I. We may assume [3]

A1 — Ao
A— Ao

AL — A2
A=\

1 0
0 —1

olx, t; \) = J[I — P(z,t)], ¥(z,t;\) = 1[I+ P(z,t)]J. (2.28)

where \; and Ay are two distinct complex numbers, J = ( ) and P is an undteter-

mined 2 X 2 projection matrix (P? = P).
Suppose u® and u™) are two solutions of the nonlinear equations under consideration.
Let &) is a new solution, and ®(© is a solution of (2.27) which we have known, they

—q 1)
satisfy ®© = d1) where &) satisfies the equation system ®Y) = < 74(21?\ qz.)\ > oM

1) 1)
and @'V = ( A(l) B ) ®W) . Therefore, v will satisfy

ct —AM
—ix= q¥ iy ¢
o ( r(© qm )90—90< N (2.29)
A0 B) A B
P = ( C0)  _ A0 > e 90( cm AWM ) ; (2.30)

where ¢, r, A®O BO M) are obtained from ¢©, r©@, A©® BO) O respectively
by replacing u(?) with uY). Now, we shall use equations (2.28), (2.29) and (2.30) to derive
the Backlund transformation equations.

First, substituting (2.28) into (2.29), we shall have

_ Lix q© _ - —ix ¢
g :( i )J(I—Al Nop) - AzP)( g >

A=)y ° rO 4\ A— o A — o g\
Product (A — A\y) on two sides, then

—ix o
—J(A =X — (A1 — \2)P) ( ) qM ) .

Let us compare the coefficients of different powers in A:
(i) For A :

—iA 0 —iA 0
0 ¢ 0 qW
+ ( o o )= w )

11



Cancel A on two sides,
0 q(O) q(l)
J(Z)\Q +1 ()\1 )\Q)P)J + 7”(0) J—-J 7” 1)
0

' 0 q(O) ql

Product J on two sides, then we have the equation

) 0 ©) 4@
= Z()\]_ — )\2)[J, P] — ( 7”(0) + ’]"(1) q 0 q ) . (231)
(ii) For A%
0 ¢
I =2)Pe = (o Y )T = (= A)P)

0 (1)
—J(=A2 = (A1 — A2)P) ( () qO ) ~

Product J on two sides and apply J? = I, then we can get the other equation

(0)

—()\1—)\2)]33: = (T%) qo )()\2“—()\1—)\2)]3)

0 qW
+(Ao + (A1 — ) P) RO (2.32)
Now we can assume the 2 x 2 projection matrix.to be
a b .
P_(c 1_@) with a(l —a) = be, (2.33)

where a, b and ¢ are to be determined in terms of ¢@, 7@ ¢M and ™. Hence the
equation (2.31) becomes

0 ¢ + ¢ . 0 b
< 7O 4 ) 0 =2 =X)L ) (2.34)

Hence we know that

b q(o) + q(l) 7’(0) + 74(1) (2 35)
2i(A1 — Ag)’ —2i(A1 — Ao)’
and
a(l—a) = be
(0) W)Y ((0) (1)
4(A1 — A2)?
Since we can use equation (2.36) to solve a,
2 _ (g(0) MY ((0) 1)

2(A1 — A\2)

12



Substituting (2.33) into (2.32), then we can get the equation:
e b\ _ [0 Ao ¢ ¢ (1= a)
—(A =) < Cp —Qy ) N ( Ao 0 ) + (A= 2) ( ar® br(©)
0 AagM) br() aq
+ ( Aor 0 (= A) (1—a)r® cqM
0y M)

( Ao (r(®@ + (V) 0

(0) (1) 0)(1 _ 1)
cq\V + br ¢ (1 —a)+aq

+(A = A2) ( ar® 401 —a)  br® 4 gy

Hence

— 2 (¢ + q)
(r® 4+ r) 0

+ q(o) + brr- ) a(q(o) — q(l)) — q(o)
( ) — (1)) r@® _<br(0) + cq(l))
(0) ,,,(1) (0) 4¢(D) (0) (1)
o j2z ,\t (0) 2qz(A1+q,\2)7"(1) _%—2@1(1,\1:12(1 ) + a(q(o) - C](l))
1 2 )\QT(O)+)\1T(1)) (7”(0) . 7’( )) - q(® ¢ (0) r(0) (1) (1)

2i(M —Aa) | 302
<o> (0 g(0) 2ty

o e —i(A + Ag)b(J)r<(a _( )%)(()q(t)) — ¢M)
0)-(0) _ (1) 51
)\1 + )\2 C - (CL = %)(r( i 7”(1)) _4q 21.(}\17)\2)‘1

So, equation (2.32) can be then reduced to

. 1
by = —i(AEA2)b + (@ 5)(q(0) —qY), (2.38)
1
e = (A +A)e—(a— 5)(7“(0) — )y, (2.39)
(0)4-(0) — (1)p(1)
g, = L 97 (2.40)
2@()\1 + )\2)

Now we need to consider restrictions imposed on A\; and Ay. If we want to get real
solutions, we will choose the values of A\; and Ay as follows:

1. For K-dV, mK-dV, s-G and Liouville, to get soliton-type solutions, we have

Ao = =\ = -k (imaginary); (2.41)

2. For NLS, to get soliton-type solutions, we have

Ay =X\ = §l + %k (complex). (2.42)

We now return to the problem of deriving the Backlund transformations. Taking the

value of A\; and A in (2.41) and (2.42), and the relations r=const. , r = £q or r = +¢*,
we can finally reduce (2.38)-(2.40) to a single equation

(@@ + gD, +il(q® + gD = +(g© + ¢ \/k2 0) 4 g)(r® 470, (2.43)

13



where
[ =2Re)y and k=2ImXy (I # 0 only for NLS),

and the £ sign in (2.43) is chosen according to equation (2.37)

1
. 2 D)(rO) 1+ (1
a-3 i%\/k 0 4 ¢0)(r© + (), (2.44)

So, the equation (2.43) shall be one half of the desired Bécklund transformation equations.
And, the other half shall come from the equation (2.30). That is,

A0 O AL pO
Pr= < 0 _ A0 )90—‘P ( cm A0 ) :
Let us substitute (2.28) and (2.33) into (2.30), then
_)\1 — )\QJ Qy bt i A(U) B(O) J[l . )\1 — AQ a b ]
A — )y G —ay - cO  —A© A—X \Cc 1—a

I A1 — Aa a b A(l) B(l)
i CA—-M \c 1—a ] cl —AW )

a, b A __B0) b
—(>\1—)\2)<Ct —at> = J(C(O) 2154(0) A =0 — (A = Ay) c 1—a ]

a b AL B
—[/\—M—()\l—)\z)(c 1_a>](c(1) _A(l))’

a; by A© B0 A= a b
(Ct _at) = (_C(o) _A(0)>[ N /\2+(C 1—a>]
A=\ a b A® W)
+[)\1—)\2_(c 1—a)](0(1) —A(l))
A— Xy A0 _B(O) AL g
= TN AJ( _CO) 40 ) - < Cm AW )]
A —B(O) a
+ ( -0 — ) ( c 1—a )
a AL g@)
_(c 1—a)(C’1) —A(l))'

Then use (2.41) and (2.42), we shall have

by = %(3@ +BW) + (bA® — (1 — a)BY) — (aBWY — pAW)
17— A2
N— L gk
= —2__2(BO 4 BW) 4 (4O 4 A0y _ BO
—ik
1 1
BO _ gy Z(pO® _ gy _ Z(g) _ g
+a )+ 5 ) - 5 )
= i%(B( )+ BWY £ 5(A© + AW ¢ (a — %)(B(O) — BWy, (2.45)
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G = oo, (C(O) CY) 4 (—aC® — CA(O)) — (AW + (1 - a)0<1))
A= Lk
— _2% ‘3 (CO 1+ W) — ¢(A© 4+ ADY — CO) _ 4(C© — o)
1 1
_5(0(0) — W) + 5(C(O) — C(l))
2A=1 ), ~0) ©0) o () Ly oo _ oo
= i=5—(C0+ CW) = (A0 + AV) — (a — )(C - CW), (2.46)
and
A= d 0 4 ©) _ .go W 4 po®
a = =+ )\(A — A 4+ (@AY — eB"Y) — (aAYY +bCY), (2.47)
1= A2
—aq, = A=A (A 1 A — bC© — (1 — a)AD) — (¢BY — (1 —a)AW). (2.48)

Yy
Let (2.47) + (2.48), then

0 = —b(CO + W) —¢(BO + BW) 4+ 2a(A® — AD) — (4@ — A1)
= 2(a— %)(A(O) — AWy — (B o+ BY) — p(C© 1 ¢, (2.49)

And, let [(2.47) — (2.48)]/2, we cail get

A= ) a0y 2 4@ a0 - Cep0) _ pOny 4 2 a0 _ A
o =~ (A - AD) ESADZAD) - 5B - BY) + 5(C0 - C)
- _M(A(O) — A Y 1(14(0) _ ALY _ E(B(O) BW) + 9(0(0) — M)
ik 9 2 2
I\ — 1 b
= —i A% (A — AWy %(B(O) - BW) 4 5(0(‘” —CcW). (2.50)

Note that from the above equations (2.45), (2.46), (2.49) and (2.50), a simple equation
can be derived, namely,

Olbc — a(l —a)] =0, (2.51)

which is automatically satisfied because of (2.33). Therefore, we can drop one equation
(2.50), and we choose the three equations to be (2.45), (2.46) and (2.49).

Now we can simply state the final results of this section: After case by case analysis,
we can find that equations (2.46) and (2.49) are already contained in (2.45) and (2.43),
and hence can be dropped also. Thus we choose the equations (2.43) and (2.45) to be our
final Backlund transformation equations.

Notice that the apparent A-dependence in (2.45) is only spurious, because all A-
dependent terms will cancel out on account of (2.43).

We now illustrate all these by explicitly examining the Béacklund transformation equa-
tions (2.43) and (2.45) for K-dV equation.
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The K-dV equation is u; + Uz — 6uu, = 0. We shall choose that

q = u

r = 1
A = uy — 2 u — 4i\3
B = —ug, + 2u®+ 2idu, + 4)%u
C = 2u+4)\?

I =0

L S L E e S LR

2i(Xo — o) 2i(—ik) 2k
r 4 @ 1+1 1

C = =

—2i(Xo — po)  —2i(—ik) Kk’
For equation (2.43),

(@ + D) +il(g® + V) = £(g@ + ¢ D) /B 4 (¢ + qO)(rO + ),

we can apply (2.35) and (2.44). Hence we will get

0 — (¢ ‘gk‘l(l)% - (qm) \//@ (q© + ¢gM)(rO) + 1)
= by — (¢ — ¢W)(@— %). , (2.52)
For (2.46),
.o — %(C(m S ERED a0 _ (4 %)(C(O) cy,
(;_/3>t = %(zq@ + 427 2¢W 40
+22k( — 20O — 4iX3 + ¢V — 2i0gM) — 4i)?)
—(a— %)(Qq + 02— 290 — 1))

= 2kA[( ) 4+ qW) 4+ 8)\7]

2 ‘ |
+o-[(q” 4+ ¢W)e = 2i(g" + ¢MV)A — 8N

2%k
1
“2(a— g — ),
160 160, ,
AT T T
4i 4i
A0y oy Ao )y
Hgp @™ +a7) = 5@ +47)]
2 1
g (@ + aM)e = 2(a = )@ = ¢V)]
0 4 ¢V
7 +4q") 1
= e o g0 )
1
0 = 2o ) ~ )



0 = 2(a—§)(A(°)—A(1))—c(B()+B ) —b(C + cW)
1
= 2a— 2)(% — 2iAq D — 4i)® — ¢+ 2iNgV) 4 4i)3)
9
+2k( ¢'9 4+ 2¢O2 4 2ixg'Y + 4220 — gD 4 24M2 L 2\ gV 4 4N2¢D)
40 4+ gV
—Q—kq(zq + AN+ 20 4 40?)
1 .
= 2(a— )¢ —¢") = 2i(g" = ")
9
o=@ + a0 + 2000 + ¢%) + 2i(¢ + ¢M)ed + 4" + ¢
© o )
g +q
—T[Q(q(o’ +qW) + 8\
= (g +¢) = (g + g2
2%k 2k
. 1 43
H=4ila = 5)(@® = g™ + 5 + ¢
1 9
9(a— LY(g© _ 0y _ 2 @) (1)
+[2(a 2)(q q")e 2k(q +14.) )ee
A
A o2 @2y 2 o) JaNE
+2k(q +¢?) 2k(q E= 1)
(g9 4 g, 1
IPINAC Al o = Lo (e
N7 (e 55) (@ 0=aR)]
(@ 40w 1 ey ) Lo _
0 AR AL e () _8 - — M.,
[ ok 2k(q q'"’)" =(a 2)(q q")a]
Since (2.44) and (2.43), we have
Ly o _ Lo _ o Ly o _
[(a—§)(q —q ). = (a—§)x(q —q )+(a—§)(q —q"Y),
0 1
T S U X A (g — )
2k [k2 + 2((](0) + q(U)]E
1
+Ha—= )" = "),
L g9 =" oy o )
= %m(q +q )x(q —q )
1
+(a—2)(q" — M),
9
1 1
_ Loy Lo o
2k(q ")+ (a 2)((1 ")z
Hence
Ly o o Ly o o
0 = 4iA[b —(a—§)(q —q")] = 2[bgs [(a—§)(q —q'7)a]
1 1
= 4, — (0 )@ — )]~ 20, — (@~ )(a” — V).
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For (2.45), that is,

2N -1
be=i—;

1
(B® + BW) 4 5(AQ + AW 4 (a — 5)(B@ — BW).

Substitute the above terms into it, then the equation (2.45) becomes

2\ —
T 0 (—q'9 +2¢©2 £ 2i0g(O + 4N — gD 1 242 1 2\g(D) 4 4)2q(D)
) 4 4
+%(q§£> —2iAg Y — 4iX3 + ¢V — 2iAg™M) — 4iN?)
1
+a = ) (=0l + 207 + 20l + 4070 + ¢f) — 2002 — 2iagf) — 4X% )
2i\
= S0 0 4207 + 40 + 2000 + ¢ V)A + 40 + D)V
ORE
¢ +q . ‘
+ 1@+ V)e = 2i(0"” + ¢)A = 8iN]
1
+a = =0 = ¢W)ar + 2" = ¢"%) +2i(q"” = ¢M)aX + 4(g"” = )N
8i 8i
B gy B0 4 ()3
5@ +¢7) = 5@ +a7)]
4 1
=5 (0 + a0 + 4la -GG =N’
2i 4
_ 200 4y A |
=5 (@7 + ¢ e + g ERGEE)
2i o
—op (@ + ")+ 2i(0 20 @V a0
@@ +4Y 0, L)@ Ly g2 _ 2
(67 + 47 — (@@= 0 )ew + 2(a = )@ — 7))
1
= —4N[be = (a = 5)(¢" = ¢")]
, 1 1
—2iA[byy — [ﬁ(q(o) - q(l))z + (a — 5)((](0) - Q(l))x]]
1 (¢ + ¢M). 1
—(a=5)(q” =) + (@7 + ) F— "+ 2(a = )0 = ¢)]
2 Ly @ _ Wy _ o L@ _ o
b = —AN[be = (a = )¢ —¢")] = 2iAlb. — (@ = 5)(@” — ¢V
1 1
—(a =)@ = ¢M)ae + (@@ + ¢ — (0= ) = ¢")
1
+3(a = )@ = V)],
which, on account of (2.52), reduces to
by = —4X*-0—2i\-0
1 1
—(a =)@ = ¢)ax + (¢ + g0+ 3(a = 5)(¢® — ¢
1
= (0= =" = ¢ + 3¢ = ")), (2.53)
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which is a A-independent expression. Therefore, we can write down the equations (2.52)
and (2.53) to be our Bécklund transformation equations for the K-dV equation.

To summarize this subsection, we have derived a general expression for the soliton-
generating Backlund transformation for the class of nonlinear equations whose linear
systems can be written as (2.27). The general expression for the Bécklund transformation
equations is

(@ +¢M)e +il(q” + ¢) = (sign) - (¢ — \/k‘z D) (r® + D), (2.54)
07+ 8% = 2= 5007 q<1>><A<°> +AW)
T(sign) - (BO — BO)y/k2 + (¢© + q0)(r® + 7)), (2.55)

where (sign) denotes the + sign appearing in the expression

5= iQk\/kQ W) (7O 4 (1), (2.56)

where k and [ are two real parameters of Backlund transformation (I # 0 only for the
NLS equation).

2.4 Explicit Backlund Transformation

In last section, we know that the Backlund transformations are useful for generating
soliton solutions of some nonlinear equations. However, the Backlund transformation
equations in their usual form, of whichia example is

(u® +uW), = (u® - u(l))\/kQ F2(w® + yM),

(u® + ), = \/k2 + 2(u® 4 uM)[—(u® — uW),, £ 3(u®? — M),

(i.e. (2.52) and (2.53), for the K-dV equation u; + g, F 6uu, = 0), are difficult to solve
in general, and hence become of limited use in practice for the purpose of constructing a
new soliton solutions.

In Section 1.2, we have stated that the class of some nonlinear equations that can
be successfully treated by our method includes those which can be represented as the
integrability condition of the AKNS linear systems of the following type:

(e, 10) = Ul ), 1)),
Oz, t;N) = V(z,t; \)P(z,t; N), (2.57)

where

- ( r(_;,i) q(ix;\t) ) V= ( AEx,ta)\) B(x,t;‘A) ) (2.58)

In this section, we will state that: for the particular class of systems described in (2.57)-
(2.58), there shall be a systematic way to derive an explicit Backlund transformation which
adds one soliton onto a given solution to make a new solution.
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Suppose u(? is the known solution of the nonlinear equations under consideration and
@ is a solution of (2.57) which is put u® into ¢(x,t) and r(x,t), that is,

o0 = U0 [= ( ;(ZO/)\ q© )(b(O)L

iA
A0 BO)
o) = VOO [= ( O _A© )cb(o)]' (2:59)

Then we now hope to find a 2 x 2 matrix function ¢ = ¢ (x,t; A) such that they satisfy
the condition

W = o) (2.60)

where ®() satisfies the equation system which has the same form with the above equation
system:

o) = Yo [= ( —ix qW )(D@)]’

r g\
. A BO
o = VoW [Z(Cu) )2

We first can observe that
@;1) =UPeE = W e
On the other hand, we also have
q)gsl) — (wq)(O))x = ;O % 1/1(13530) — 40y @O + U0 O,
Since the equation should hold for all solution' ®© the following equation must hold:
U = g + U0,
Hence, we have found that there is a equation as follows:
UWD = Uyt 4 oppt. (2.61)
Similarly, we have the same conclusion for V1) |
VO =V Oyt 4yt (2.62)

To derive such Bécklund transformations, it is sufficient to ensure that UM, V() have
the correct A structure. As in last section, the transformation function ¥ (z,¢; A) in (2.60)
shall be assumed by

A1 — Ao

Yl B A) = [T+ 3

P(z, )], (2.63)

where A; and Ay are two arbitrary complex numbers, P in an undtetermined 2 x 2 pro-

jection matrix (P? = P) and
1 0
()
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Note that 1! is given by

A1 — Ao

—1 . . .
w (:Cata)‘)_’][[ )\_)\2

P(z,1)]. (2.64)

It is exactly the matrix ¢ in last section.
Thus if substitute (2.63) and (2.64) into (2.61) and (2.62), they shall impose the
following conditions on P:

P, = (I —P)JUY(\)JP —PJUO(\)J(I — P)
P,=(I—P)JVON)JP - PJVO(N)J(I - P). (2.65)

Now, if we want to get the expression of UM, we must find out the explicit form of
the matrix P. Fortunately, the projector P in (2.65) can be solved explicitly in terms of
calculable matrix function

OO (1,1, ),) = ( hjin hjiz ) ’
2x2

hjor hjoo

which is the solution to the linear system (2.59) corresponding to the given solution ¢®,
r® and );, where j = 1,2.
First, let us define a 2 x 2 matrix M by

L
MY = 00 (o T ) a0t )
Ry m_1
where m; and n; are two arbitraty complex constants.
Hence
houi R m; = _
MO = 21 22 w30 (22 A) 7!
hao1  hogo ni m% ( 1)
_ myhai1 + nyhara nllhzn + m%hzlz hisa  —hiia
myhaat + nyhags nllhzm + m%hzzz —hiar hin
1
X
det(®O)(z, t; \y))
_ 1 y My My
det(®O) (z,t; A1) My My )7
where
M1 = mihigehoir + nihigehais — n%hlthn — m%hulhmz
My = —myhiiohorr — nihiiahors + n%hlnhzn + m%hulhzlz
My = myhigohaor + nihizahase — %h121h2z1 — m%h121h222
My = —myhi1ohaar — nihiiahags + n%hlnhzm + lehlllh222
and

tT’M(l) X (MH + MQQ).

1
~ det(PO)(z, ;)
Then (2.65) shall be able to be solved by (ref [4, 7, §])
P=JPJ,
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where

MO

trM ™)
_ 1 « My My
M11 + M22 M21 M22 )
Now substitute (2.63) and (2.65) into (2.61) and (2.62), then we shall find

U0 — U0

UDN) = JUON)JT + (A — X)) PJ| S |J(I —P)
(0) — o
R Y

and a similar equation for V1 ()).

Now since
— (0)
(0) o A q
UP() = ( r@ g\ )
and P = JPJ, the above equation (2.66) can be simplified to be

L —iX =9 : 0 Py
U( )()\) = ( —7"(0) i = 22()\1 — /\2) —Pgl 0 ,

manifestly showing that U™ ()\) has the cortect A structure, as desired.

Now, we can first compute Pjo-and ﬁ21 as-follows:

- M
Py = _ iz
My + Mo
1 1
= (—myhii2ho11 — n1hiiohore + —hiirhor + —hii1hoio)
ni ma
1 1
/(myhiashory + nihisshors — —hiarhorr — —hia1horo
ny mq
1 1
—myhi12haor — nihiiahase + —hi11haor + —hii1hass),
1 ma
- M
Py = — 2
My + M,
1 1
= (myhiaohaor + nihiaohase — —hio1hoor — —hia1haoo)
sl ma
1 1
J(myhiaohory + nihiashors — —hiathorr — —hia1horo
ny mq
1 1
—myhi12hoor — nihiiohase + —hi11heor + —hii1hags).
Al ma

22
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Thus we got the explicit Backlunk transformation as follows:

q(l) = —q( 2i(Ar — )\2)]512
—q 9 —2i(A; = \y)
1 1
X (—=myhiiohorr — nihiighoiz + —hiinhon + —hiihais)/
1 mi
1 1
(m1hisohoir + nihigshory — —histhorr — —hiaihoto
nq mi
1 1
—mihiiahasr — nihiiahase + —hiiihaoy + —hii1hags), (2.67)
m my
T‘(l) = —’I"(O) + 2@()\1 — )\Q)pgl

= —7”(0) — 2Z(>\1 — >\2)

1 1
X(_m1h122h221 - n1h122h222 + n_h121h221 + Eh121h222)/

1 1
1 1
(m1h122h211 + n1h122h212 - _h121h211 - _h121h212
ny mq
1 1
_m1h112h221 - n1h112h222 + n_h111h221 + m_h111h222)' (268>
1 1

Note that the transformation function 1/ _is so a important term for the Backlunk
transformation, we shall also write down the explicit form of :
First, the projection matrix P ¢an be, wiitten as’.

P = JPJ
_ 1 - Ll Mg M, 1 0
My + Moy g Mz Mao 0 —1
IR SRR £ "
My + Mo —Msyr My '
Then

b = (I+A1_A2

> ()\1 — )\2) ( M11 —M12 )]J
M11 + M22 1M21 fuﬂ

= A= )\1 + /\1 /\Q)Mljl\{i—l]lwzz _(/\1 . /\Q)Mljl\il?\/[ﬁ ! 0
Ao ) et A=A+ (A= A) 0 -1

My1+Mao M11+M22

A — )\1+ /\1 Ap) (AL — Ag) 22 )

M11+Mao My1+Maz

D) vt A+ A= (A = Ag) ke

My1+Maz My1+Maa

¢11 77b12
¢21 77D22> (269)
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where

P1

’
V1o

Vo

My,

My + Moy

myhigahar + nihigahars — %hulhml - m%h121h212
M1 + Moy

mihigahort + nihigohois — n%h121h211 - m%h121h212
My + Moy

myhigahar + nihisohars — n—llh121h211 - m%hlzlfmm
My + Mo

(M1 + May) — (mihigahoiy + nihigahois — nllh121h211 - m%h121h212)

A=A+ (A —Ag)

A=A+ (A —A2)

A=A+ XN

— A2

— A1
M1 + Moy

n%h121h211 + m%h121h212 — myhiaghair — nihiahaie
My + My,
A 1 1

- m[(mlhmzhzn + nyhigehora — n_1h121h211 - m_1h121h212

2

A

1 1
—myhi12haor — nihii2hese + —hi11heor + —hi11hags)
ni my
1 1
—(m1h122h211 + ”1h122h212 —"'—hizlhzll - —h121h212)]
h T . mi

1 1 N
n—1h121h211 + m—1h12'1h212 =3 ml,h122h211' — n1hiazhara
- My + Moy
1 1
n_1h111h221 + m——lh111h2221— m1h112h221 — n1hi12haz
My + My,
1 1 : ;
n—1h121h211 + m—1h121h212 — M1 hygahan — nihizehore

My + Moo

1 1 1
A m[/\l(n—lhmhzm + m—1h111h222 — myhiiahosr — nihiiahogs)

+A2

_)\1

+A2

1 1
+/\2(_h121h211 + _h121h212 - m1h122h211 - n1h122h212>]7
sl ma

M,
= (M=)
(s 2)M11+M22

= —M: n ]\;22 (=myhiiohorr — nahainhor + n_1h111h211 + Eh111h212)7

My,
= (M=)t
(1 2>M11+M22
A1 — Ao 1 1

_m(mlh122h221 + nyhigghoos — n_1h121h221 - m_1h121h222)’
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and

P2

My,
“A+A = (AN — X)) —TF—
A= 2)]\/[11‘1‘]\/[22
—mihiiahaor — nihiiahag + nih111h221 + mLh111h222
A+ A1 — (A —A9) 1 !
My, + My,
—myhiiahaor — nihiiahoss + nilh111h221 + m%h111h222
A+ A=\
M1 + Mo
.\ —mihii2haor — nihiiahage + n—llh111h221 + m%h111h222
? My + My,
Y (Myy + Mag) — (—myihii2haor — nihiiohass + nllh111h221 + m%h111h222)
! My + Mo
.\ —mihii2hagr — nihiiahage + n—llhnlhzm + m%h111h222
2 My1 + My,
A2 [(m1hgahan + nahisoh L ik L ik
My + My 1h122h211 1h122h212 - 121211 - 1211212

1 1
—myhi12haor — nyhi12hase + —hi11heor + —hi11hag)
nq mq

1 1
—(=myhi12ha — n1hiiahos +‘T'L—h1'11h221 + m—h111h222)]

1 , 1
Y —myhi12haor — nihisahogs —Frrﬂil;hn'lrhzéi + lehlllh222
Moot oo

a4 A1m1h122h211 + 77/1h122h2172i— nllhl?lhﬂfl - m%hmlhzm

: My + My
o —myhiiohoor — nihi1algss n%hlnhzil + lehlllh222

My + My
—A+ M[—)\l(%h121h211 + milh121h212 — mihighor — nihigshae)

1 1
+/\2(_h111h221 + _h111h222 - m1h112h221 - n1h112h222>]-
sl mq
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3 Darboux Transformations

In this chapter, we shall introduce the Darboux transformation in matrix form, and how
to construct the Darboux matrix. And in final, we will prove that the fact: we shall be
able to get the same solution of the nonlinear equation which we consider from a known
solution through the Bécklund transformation and Darboux transformation.

3.1 Introduction of Darboux Transformation

In Sec 1.2, we have introduce the AKNS system. Hence, we can discuss the nonlinear
partial differential equations of u

F(u, Uy Ugy Uy -+ ) = 0 (3.70)
through the AKNS system
¢, = U [=(—iN] +Q)D]
O o= VO [=) VAl (3.71)
j=0
when we choose the suitable ¢, r, A, B and, (.
The following topics is that in order to know that how to apply AKNS system to get
a new solution of the nonlinear differential equation: which we consider form the known

solutions, we now introduce the Darboux transformation as follows.
First, we introduce what is the Darboux transformation and the Darboux matrix :

Definition 1. (Darboux transformation.and Darbour matriz)

(0)
?0) q ) and 2-column vector ®© = <
T 0

(0)
0)

For any given matriz Q°) = < «

(
(1)
which satisfy (3.71), if the 2 x 2 matriz D(z,t; \) and the 2-column vector ( g(l) ) =

M) = DOO) can also satisfy the linear differential equation system which have the same
form with (3.71) :
o) — el [: (—i)\J—{— Q(l))q)(l)]
o) = v =3 yanieW), (3.72)
=0
0 q¢W

where QN = RE I 18 a matriz function with zero diagonal.

Then we call the transformation (Q©,®©) 2 (QW, M) be the Darboux transforma-
tion of the AKNS system, and D(x,t;\) be a Darbouz matriz. O

3.2 Construct a Darboux Matrix in Explicit Purely Algebraic

From the above definition, we can first find that the explicit Backlund transformation is
also one kind of Darboux transformation.
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Next, the focal point is how to find the matrix D. Before constructing the matrix D,
we can first observe that what properties does it have.
Let us consider the linear differential equation system (3.71):

b, = UO @0 [: (—i/\J+Q(O)) (0)]

o, = VOp® ZV A0

First, we can suppose that
oM = Do

can satisfies the following equation system (3.72) which has the same form with the above
equations:

(I)(xl) — WM [: (—MJ—}-Q(I)) (1)]
o) = vWeW | Zv gl

As the discussion of the equations (2.61) and (2.62) in Section 2.4, we shall also have
the same equations as follows:

vW =pr9p-t £ DDt (3.73)
and
vW= YWDty D, D! (3.74)

Now, we are concerned with about:the Darboux matrix which X is of order 1. Without
losing of generality, we assume that the Darboux matrix D has the following form

D= J\ - 9),
where S is a suitable 2 x 2 matrix, and [ is the identity matrix. And we then discuss how
to find the Darboux matrix.
3.2.1 Some Properties of The Matrix S
First, we begin our discussion form the first equation of (3.72)
oM = (—ixJ + QW)eW
and
dV — DPO
Hance we will have the following formulas :

o) = (Do),
= [J(A - 5)2Y],
= (M —=J8), 00 + (\J - JS)o®
= —JS, 00 + (AT = JS)(—ir] + Q)
= —JS, O 4+ (=X T+ XJQV +ixJST — JSQ©)3O®
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and

(=N + QM)W = (—ixJ + QW) (D)

= (- MJ+Q NI = S))d©®
[(—iAT)(JAI) + (=iAT)(=JS) + QW (JAI) + QW (-] S)|@"
(=i +iXS + QW T — QW JS)d©).

Since the above equation must hold for all solution ®©® of (3.71), we know that

—iIN? + (JQO 4+ iJSI)A + (=JS, — JSQ©)
= il 4 (iS + QWA+ (—QWJS). (3.75)

Since the definitions of the symbols

. 1 0 o1 o Oq
J—(0_1>—J and Q_<r0)’

we can find the equation
JQJ = —Q.
Hence, the equation for the coefficientiof XY in the equation (3.75) is

JQON 7SR S QW
JQO ek id S =484 £ Q.

so we shall find

QW =W 4TS —iSJ
= QU +i[J,5]. (3.76)

And, the equation of the coefficient of \° in the equation (3.75) is

—JS, —JSQY = —QWJs,
S, +5Q0 = JWJSs.

Hence, we can also get

0 = S+ 5QY + (—JQWJS)
= 5, +5Q0 +QWMs
= Sp +5QU + (- +i[J, S])S
= S, +5QY +(—QY +iJS —iSJ)S
= 5, +5Q0 —QWSs4+4J5S —iSJS
= S, +[S,—iJS + Q). (3.77)

Next, in order to find the equations about S;, we will proceed to observe the second
equation of (3.72):

(I)l(tl) _ (Z ‘/j(l))\nfj)q)(l).

=0

28



Then we shall get the equation :

LHS = (Do),
= [J(\ - S)0],
= (A = J9), 20 + (AJ — IS

= —JS0O + (A = JS) (Y VN )

j=0
= [\ = ISV ON + (AT — IS V0Nt
+(M = JSVO N+ (A — JSVO — ]S, )
= IV AT e 2TV 4+ ATV
NSV — L gsy @ o agsv) — Jsv©O — g8)e (3.78)

and

RHS = (Xn: VXTI (I — S)®)

j=0
= [VINT = J8) + VONTI AT = JS) + -+ VAT — JS) + V(AT — JS)]@
= WYOT AT A v g

AV g8 — Aty g mmeaw (s — v 796, (3.79)

Similarly, the above formulassmust also.equal for-all solutions ®© of (3.71). So we
know that the coefficient for \° is;

~VWJISi= —Jsu@_ js,
JS, = vWjs - sy
S, = JVWJS - sy, (3.80)

and for the coefficient of A»*!, we have
Vo(l)J _ JVO(O).
And from the equations (3.78) and (3.79), for M, where j =1,--- ,n,

A" ‘/1(1)J . ‘/E)(l)JS _ JV'I(O) _ JSVE)(O),

A v - vgs = gvO — gsy.
From the above relations, we can therefore get the equations
1 7 _ (0) ) (0)
Vigd = JVia+ V7 JS = JSV.
That is,
vih = Jvig+vViss - svOy, (3.81)

where j =0,---,n — 1.
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Now, let us observe the equation (3.80), then we shall get

v — gy

ViV = v s +viNass — gsvO
= VO 4+ vO05187 - ISV
= VO U0+ 0vO0s7 - g5V
= VU 4+ v, s,

vV = v 4+ vass —asviO
= JVOU+ vO 7+ v 087 - Jsv O IS8T — ISV
= JVOU+ vO85 4+ 0v0s%) — gsv9s) — g5V
= JVO0 + VO 81T+ JV?, 88T

Hence we have
j+1
1 0 0 _
Vs = IV + IV S1SE (3.82)
k=1
where j =0,--- ,n — 1.
In particular, for the term of order j=n'=1%.0of A\, we find that

VO = JvOT £ IV, 855 T,
k=1
So, if we apply the above equation and equation (3.80), we can get

S, = JvuWgs - sy

= JIVOT+ I VO 8IS IS - sv©

k=1

= VOS5 - 8V + > v, 5)sk
k=1

= VOS5 svO 4 (v 5% - sV 54188 — 51624 ..
— ‘/I(O)Sn _ S‘/l(o)sn—l + ‘/()(O)Sn+1 . S‘/O(O)Sn)
= WO +vOs4+vOs .y 05t Ly g

= D 9.8t sl
k=0
So

S+ 15,3 v sk = o. (3.83)
k=0
From the above discussions, we can conclude that if the matrix J(AI —.5) is a Darboux
matrix of the equation system (3.71)

@;0) — e [= (—iX] + Q(O))(I)(O)]

o) = VOO [=3"yOr\-igo),



then the matrix S must satisfy the following nonlinear partial differential equation system

S, + S, —iJS+ QY] = 0
and S, +[8,> Vs = o (3.84)
k=0

Now, we shall state and prove this fact in the following theorem :

Theorem 1 (1).
The matriz J(A — S) is a Darbouz matriz of the equation system (3.71)

q)(xO) = Uy0g0) [= (=i + Q(O))q)(())]

o) = VOO =3 v O\,
§=0

if and only if the matrix S satisfies the nonlinear partial differential equation system
S, +1[8,—iJS+ QY] = 0

Si+18,> Vs = o
k=0

Proof.

(=)

If the matrix J(A — S) is a Darboux matrix: of equation (3.71),

then (3.84) is exactly the equation (3.77) and {3.83) which we got from the above discus-
sion.

(<)

Suppose that the equations (3.84) (1ie:(3.77) and (3.83) ) hold.

Then for any solution ® of (3.71) , the equations (3.75) and (3.78) = (3.79) shall also
hold.

Therefore, The P(") which be determined by (3.76), and the {V;-(l)} which determined by
(3.81) will imply that the equation (3.72) holds.

Hence this matrix D = J(AI — S) will satisfy the definition of the Darboux matrix. [

3.2.2 How to Find The Matrix S

The last subsection say that in order to find the Darboux matrix, we must firstly find
the solutions S of the nonlinear partial differential equation (3.80). Next, the following
theorem shall provide us a method to constructing a Darboux matrix.

Theorem 2 (2).
Let A1 and Xy be two distinct complex numbers.

First, we define a matriz A = A0 .
0 X
Suppose that h; are the 2-column vector solution of (3.71) with A = \;, where j =1, 2.
hi1 ho
Let H=( hy hy )=
ctH =(m ) ( his o
If detH # 0, we can define

) be a 2 X 2 matriz.

S=HAH!
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and consequently get the matriz
D(x,t;\) = JN —S) =\ — JHAH . (3.85)

Then the matriz D shall be a Darbour matriz of (3.71) .

Proof.
Suppose that h; are the solutions of (3.71) with A = \; ,that is,
hiw = —idJh;+QOh,
hie = Y VONER, (3.86)
k=0

where j = 1,2.
From (3.86), we can compute that H, [= (b1 hy )_| and Hy.
Hence we have that

H, = —iJHA+QHWY
H = Y vOHA* (3.87)
k=0

First, we can compute (H 1), asifollows:

=ity
0= (HH):
= WHCH+H(H ),
HH Y, "= —HHY
(HY, = “H'H,H

Similarly,
(HY),=-H 'HH"
Since S = HAH™',

S, = HAH '+ HAHM),
= HAH '+ HA-H 'H,H™)
= H,H'HAH '— HAH'H,H™!
= H,H'S—SHH!
= [H.H, 9]

Employing (3.87), then the above equation becomes

Sy = [(—iJHA+QOH)H™,S]
= [—iJHAH ' +Q©, 5]
= [—iJS+ Q5]
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Similarly,

S, = HAH '+ HAH™),
= HAH '+ HAN-H 'H,H™")
= HH'HAH ' — HAH 'H,H™
= HH'S—-SHH!
= [HH',S].

We can further get the following equation by using (3.87) again:

Si = (O VPHAMHE S

k=0

= [zn: VO (HAH™Y - (HAH™Y), 5]
k=0 k

= D v9sk ]
k=0

Hence that says that the matrix S which be defined in (3.85) is a solution of (3.84).

Finally applying Theorem(1), weicompletes the proof that D = J(AI —S5) is a Darboux
matrix of (3.71).
0

3.3 General Form of The Darboux Matrix which Be Given in
theorems

Now, we shall be able to deduce the general form of a Darboux matrix from the statements
which be given in the above theorems.

First, we can choose
B A 0O
v ()

and H = (I h2):<ZE Z)

where \; and A be two distinct complex numbers, and h; are the 2-column vector solution
®O(x,t; \;) of the equation system (3.71)

(I)io) — g0 [: (—Z')\J—I—Q(O))CI)(O)]
o) = VOO [=3 " yO\igO)
§=0

with A = \;, where j =1, 2.
Then the inverse of the matrix H 1is

g1 1 hoa  —hax
det(H) \ —hiz hii )~
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Hence the matrix S of the Darboux is

S HAH™!

hir o A1 0 -1
= H
( hia  hoo ) ( 0 A )

_ )\lhll )\2h21
)\1 h12 >\2h22

_ 1 % /\1h11h22 - /\2h12h21
)\1h12h22 - )\2h12h22

det(H)
1

1

(

where the entries of the matrix S are

511 -

h22
_h12

= X Sil Si2
det(H) Sy S

—h21 % 1
h11 det(H)

Athithay — Aahiaho,
—Athithor + Aghaihar,
Athiahas — Aghizhas,
—Athighor + Aghiihas.

Apply the equation (3.76), we will get the new QM) as follows:

QU = —Q© +ilJ, 8]

_ QO

_ g0, %

0
=

det(H)

det(H)

[( T ) >_<5i1 5
_SQ]. _522 521 _522

( 0
— Sy

: 1 0
—zS(O _1>
S
0

Therefore, let us simplify the above equation as follows:

0 ¢
(r“) 0 = Qv

—A1hithar + Aghiiho
—A1highar + Aahi1hoo

)

_ —Q(O) n 2i 0 —A1hithar + Aghiihoy
det(H) \ —A1hizhaa + Aahizhao 0
2 0 hi1h
_ ) _ A — )\ 11121
@ det(H)( 1) ( hizhae 0 )
_ 0 —q(o) B 2i(A — A2) 0 hi1hoy
—r©® 0 hi1hag — highay hiahas 0
That is,
hi1h
(1) _ (0)_22. )\ _)\ 117621
! L Sy
hish
and rM = —r@ _ 2\, — ) L 3.88
2 s — s (3:55)
shall be also a new solution of the partial differential equation F'(u, s, U, Ugz, -+ ) = 0

which we consider by choosing some suitable ¢ and r.
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3.4 The Equivalence of Darboux Transform. and Explicit Backlund
Transform.

Next, we shall choose the parameters and observe the relation of the Darboux transforma-

tion and the explicit Béacklund transformation which we discuss in last chapter (Sec 2.4).

Finally, we shall prove that the equivalence between the two kind of the transformations.
Now, let us suppose that the entries of the matrix H have the following form :

hi1 = liha1y + lohaio
hiz = l1hi21 + l2hi22
ho1 = l3ha11 + l4ho1o
hog = l3haay + l4hag

where fji Do = ®O) (g, ¢; A;) is the solution of the linear differential equation
hjor Dy /.,

system (3.71) which given a solution ¢(z,t), r(x,t) of the nonlinear equation (3.70) and

corresponds to A;, and [y, I3, I3, l4 are complex constants.

First, we compute some terms as follows:

hithor = lLlshiiihain + Lilshaiihaie + lalshiiohorn + lalshii2hoe,
hishae = lLilshigihoor + Lilshigihooo + lalshigahoot + lalshigahoos

and

det(H) = hithyy — highy
(l1l3h111h221 R l1l4h111h222 + l2l3h112h221 + 1214h112h222)
_(l1l3h121h211 B l1l4h121h212 A l2l3h122h211 + l2l4h122h212)'

Then the equations (3.88) become

hi1ho

hi1hay — hizho

= —¢" —2i(A — X2) x (lLilzhaiiharn + lilshaiihats + balzhiiahart + balahiiahars)
J1(Lilshatihaor + Lilshaiihase + lalshiiohaor + lalyhi12haos)
—(lilshaa1hort + lilshagihars + lalshigohort + lalahiashar2)],

h h
(1) 0 . 127622
T = —7r° —=2i(A{ — A
( ! 2) hllhgg — hlghgl

= —1r" —2i(\ — A2) X (Lilshiorhoo + Lilahioihagy + lalshiaghogt + lolyhigahags)
J1(lilshii1haor + lilahiiihase + lalshiioheor + lalyhi12hoos)
—(lilshiarhory + Lilahaorhato + lalshisaharr + lalshiaahas)].

¢V = —¢" =2\ — )

In order to compare the above result with the contents in Section 2.4, we found that
the following relations must satisfy:

iz = -
bl = -+
laly = —my
laly = —ny
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Hence, if we choose the coefficients to be

h=1

ly = —miny

l3 — L ’
ny

l4 = m—l

then the above two functions shall become

¢V =

—q° — 2i(A1 — A2) X (Iylshi11horn + Lilshairhais + lalshiiahor + lalyhyiahoro)
J1(lilshi11haor + lilahiiihose + lalshiiahoor + lalahi12hoos)
—(lilshaa1harr + Lilshaarhota + lalshisahorn + lalyhisahors)]

. 1 1
—qo - 21()\1 - )\2) X (n—h111h211 + m—h111h212 — myhi12hor — n1h112h212)
1

1
1 1
/[(—h111h2z1 + —hi11haas — mihiiahoo — n1h112h222)
nq my

1 1
—(—h121h211 + —hia1hora — mihiaahor — n1h122h212)] (3-89)
nq mi

—r® — 2i(A1 — A2) X (Lilshi21haor + Lilshaoihass + lalshisahoor + lalyhiaahas)
[[(lilshi11hoot + lilgha11hoga H balshiyahost + lolyhy12haos)

—(lil3hia1horr + Lilshyoghers + lalghyse hogi.+ lalyhigahors)]

) ! 1
—r% — 2Z<)\1 - )\2) X (n—h121h221 B m—h121h222 — myhiahog — n1h122h222)
1 1

1 1
/[(n—hnlhzm + Ehlnhmz —mihiiahogi n1h112h222)

1 1

1 1
_<_h121h211 + h121h212 - m1h122h211 - n1h122h212>] (390)

nq mq

So, we can observe the fact that the expressions (equations (3.89) and (3.90)) of ¢!
and ) which we got from Darboux transformation is the same with the expressions
(equations (2.67) and (2.68)) which be derived by Bécklund transformation.

Next,we will write down the Darboux matrix here, and compare it with the matrix
W(z,t;A) (ie. (2.69)) which we have gotten in the Section 2.4.

Before writing down the explicit expression of the Darboux matrix, we first compute
the determinant of matrix H:

det(H)

h11h22 - h12h21

1 1 1 1
(h111 — manihii)(—heor + —hase) — (h121 — manihiss)(—hoin + —hoi2)
ny mq n my

1 1
(—h111h221 + —hi11hazs — mihiiahoo — n1h112h222)
nq mq
1
—(n—h121h211 + m—h121h212 — myhioghor — n1h122h212)

1 1
1 1
(m1h122h211 + nyhigshors — —hiorhonn — —h121h212)
n, mq
1 1
+(—myhi12hoor — nihiiahase + —hii1haor + —hi11hage)
nq mq

M1 + My, (which is in the Sec 2.4).
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Therefore, the explicit expression of this Darboux matrix shall be :
D(z,t;\) = JA—=S)

S S
_ ( 1 0 ) A= deté}{) _detéill)

0 _1 . S;l A_ 522
det(H) det(H)
Si Sis
_ A= det(H) _det(H)
521
det(H) —A+ det(H)
Dy Do
- 3.91
(D21 D22) (3:91)
where the entries of the matrix are
S/
Dy = N— —11
" det(H)
— Ahiihas — Aghighoy
det(H)
W hiro) (ot + —— o)
= det(H) 1\ 111 — Many 11? " 221 my 222
P 1
—A2(h121 — mynyhigg)(—hao11 + —ho12)]
_ ! [A(lhh e, — muhiishan — niPaiahons)
= e t(H) 1 11110221 o 1111222 11112221 11112222
1 1
—>\2( hig1hot1 + Ehulhzm =m lypohor — n1h122h212)]
ny 1
= 1/’11 )
S/
D - _ 12
2 det(H)
_ _—/\1h11h21+/\2h11h21
det(H)
Al — Aa
= ——hy1h
de t( ) 11121
A — A 1 1
= diat(H; (h111 - m1n1h112>(n_1h211 + Ehzu)
. )\Z(hh + L hihots — muhuish — nyhi1ohos)
= det(H) - 1111211 - 1111212 111121211 111121212
= %2 )
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/

Soy
det(H)
Athighag — Ashizhoo
det(H)
AL — Ao
= ————hpsh
det(H) 12722
A=A 1 1
= dlet(H)Q (P11 — m1n1h122)(n—1h221 + m_1h222)
A=A 1

= det(H) (n—1h121h221 + EhlgthQQ — myhiaohoar — nihisohags)

!
= %1

and

/

Soo
det(H)

—A1highar + A2hi1hog
det(H)

D22 - —)\ +

— A+

1 1
= -+ — A1 (hagti= minghage) (== hot1 + —hai2)
Ty mi

L
det(H)
1 1
+A2(h111 — minghy ) (m—hagy +—hs2s)]
nq ma

1 1 1
det(H) [_Al(n_1h121h211 + Ehmhzlz — myhigghair — nihizahas)

— A+

1 1
+A2(—hi11hoor + —hi11hoss = Myhii2hosr — nyihi12hags)]
nq my
= Yy

So, the expression of the Darboux matrix is
Dy Dy
D(z,t; \) =
wen = (o0 52
()
(DS
1 w/ /éZ), )
— (A=A ST
( 1)[A—A1<wﬂ v, )

AL — Ay
= (A=)
(A=A + 5=

= ()‘ - )\1)¢(ZL’, U )‘)

P)J]

Note that the terms w;j, where 7,5 = 1,2, exactly are the entries of the matrix ) in
(2.69) which we haven gotten in the Section 2.4.

Therefore, we have proved that the two transformation of the AKNS system will
provide us the same result even though they are derived by distinct ways (in complex
analysis and in algebraic).
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4 Example: Darboux Transformation of mK-dV Equa-
tion

In this section, we will illustrate how to use the Darboux transformation to get another
solution from the known solution of the nonlinear partial equation which we consider.
Recall that the AKNS system which we have introduced in Sec 1.2 is

vy = (Lo TG0 ) e,

v = (o) SGEN) ) e, (1.92)

For the mK-dV equation
Ut + Uggy — 6U2U,x = 07
if we take r = ¢, and A, B, C to be

A =rq, — qry — 2i\gr — 4i)\3,
B = —qu + 2rq® + 2iAq, + 4N, (4.93)
C = —1yp + 2q12 — 201, + 4N°r,

then the integrability conditions foriall A\ will. be exactly the mK-dV equation
G+ Qezz — 6QQQx =0. (494)

4.1 The Explicit Form of the Darboux Transformation of mK-
dV Equation

First, we observe the first equation of equation (4.92) which we choose ¢* = r©) = 4,
where u is a known solution of the mK-dV equation. Then

0 — 00 ( —iA )@w), (4.95)

u o IA

Suppose that &) = { g

(g)w:(—?o KO)(%) (4.96)

Then it is easy to directly check that ®© = [ g } shall be a solution of (4.95) w.r.t.

A = —)g, that is,
BY _ [ ith wu B
a ). S\ u =i a )’

Apply Theorem|2], let us choose that

(X 0 _(a B
(55 =0l
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Then we first compute that

and therefore

where

Then the Darboux transformation is

D = JO-S)
B A =g cosb —j\gsin f
N —iXosinf (AN FA\gcosb) )’

and the inverse of D is

Dl o_ 1 “~(ArtAgcosl)  idgsind
A2+ 8 iAo Sing A —Xgcost |-

Now, we shall apply the equation (3.73), that is,
vY =pu®pt+ DD

to get UM,
For later convenience, we can first simplify the term DU® D! as follows:

A — Mgcosf —iXgSin @ —iA u
0)pH-1 _ 0 0 -1
bumD— = ( —iXgsind  —(A+ Agcos0) ) ( (VPN ) b

B —iA2 + Mg cosf —idousind  Au — Agucos + Mgsin @
- —AM\osind — M — Nucosf  —idgusind — iA? — id\g cos 6

1L —(A+ AgcosB)  iAgsind
_>\2 + /\8 Z)\O sin 8 A\ — )\0 cos @

_ 1 ail a2
A2+ A2\ aa ax

where
apr = A+ 2idgusin @ 4 AN} sin® 6 — AN cos® 0
ayy = 2X\*Ngsin® — 2XA\2sin 0 cos @ + Nu + N u — 2XA\gu cos d
ag = 2X*Xgsinf + 2A\3 sin 0 cos 6 + \ju + Au + 2A\gu cos §
and @y = —i)® — 2iA\gusing — iAN3 sin® 0 + A2 cos? 0
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In order to get D,, we can first compute 6,. Since

and therefore

Hence

Ox

=

i
o

.aﬁz B awﬁ
Z—O(2

Z,oz(uoz +iXoB) — (=i + uf3) [

a2

i(u+ 2)@%) + u(g

i(u 4 2X0 + uc?)
iu(1 4 0?) + 2i\o,

é(ua2 +idoa 3 + idga — uB?)

)%)

= (2tan"'o),
Oy
= 2
1402
= T3 (ju(lo 0%) + 2iNg0)
: : o
= 220ul+ 2iAg R
= 2iu + 2i\gsin b.

A — X cosb —iApsind
—iXgsingd —A — Agf, cosb .
Aobysin@  —iAg0, cos b

—iXofycosO  N\gO,sinf

sinf  —icosé
Aoba ( —icosf  sinfd > '

Then we compute the term D, D~ as follows:

D,D™!

. A sinf  —icosé
Ao (2iu + 21 sin 0) ( Cicosf  sing )
1 —(A+ Xogcosf)  i\gsind

—A2+ A2 1N sin 0 A — Agcosb

1 2idgusin @ + 2iA2sin® 0 2\gucosf + 2M\%sin 0 cos 0
—X2 4+ A2 \ 2Xgucosf + 2\ sinfcosf  2idgusinf + 2iA3 sin* 0
[ A= cos  iXgsinf

iAo sin @ A — Xgcosb

1 bui bio

X2+ N\ bar b )7
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where

bii = —2iX\ousinf — 22’)\)\(2) sin” @
bio = —2X\2u — 2\)sin @ + 2A\2 sin 6 cos 6 + 2\ \gu cos 6
boy = —2X\au — 2\ sinf — 2A\] sin 6 cos § — 2A\gu cos 0

bas = 2iAAqusinf + 22’)\)\3 sin? 6
Finally, from the equation (3.73), we shall get

(u(l) (2 ) = u®

DUOYD™' 4+ D, D!

_ 1 ain +bi1 a2 + bio
—A2+ A2\ ag1 +ba1 ag + by

. Ci1 Ci12
- )
Ca1  C22

where
il = w(m + 2iA\owsin 0 + iAN sin? 6 — iANG cos® 6
- 0
—2iA\ou sin fe= 21\ g sin’0)
1 . i
— _)\2——'_)\3(7,>\3 = 'L)\)\g)
—iA
— _)\2 )\2
= —1IA,
1
cla = w(m% sin @ — 2AA\g sin @ cos 6 + A\gu + A*u — 22\ \gu cos 0
- 0
+2AAg sin 0 cos @ — 2 3u + 2A\gu cos  — 2] sin 6)
1
0
= —u—2)\ysind,
1
Co = w@)\?)\o sin @ 4 23 sin 6 cos 6 + Aau 4+ A\*u + 2\ \gu cos 6
- 0

—2MA2sin 0 cos O — 2)\3u — 2X\\ou cos § — 2\ sin )
1 .
- _Az—Jrkg(—u(—A2 +A2) — 22sin (=22 + 2\2))

= —u—2\gsiné
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and

Cop = ﬁ(_m — 2iA\gusin 6 — iAN; sin® 6 + iANS cos® 0
+2iANgusin @ + 26\ sin® 6)

ﬁ(_m +iANG)
i\
SRR

= i\

—A2 4+ A2)

Thus we shall get the new solution u(!) form the known solution of the mK-dV equa-
tion:

u = —u—2)\ysind
20
= —u-— 2)\01 + =
= —u-—2\ azu_yﬂﬁ2
- —u- 4M0a20‘ﬂ 7

4.2 Apply This Darboux Transformation to Get A New Solution

Now, we take the known solutionzg(®, r(®) to-be trivial solution
qQ =rO=TZ g
which is a real constant. Then we can‘find-the fact from (4.93) and (4.94) to be
VOO = (22 + 40U ().
This shall imply that ®©()) to be the following form:
PO(N) = ¢z + (2¢2 + 4\H)t; V). (4.97)
First, we need to solve the equation as follows:
(5).-(252)0)
B, c A g )’
that is, we will solve the equation system
oy, = —iAa + cf3

By = ca+ i3

Therefore, it will have two linear independent solutions, and so
0 ‘ a ll X ek‘(x—xo) +l2 . e—k(x—mo)
where k = v/c? — A2 | and x is a constant which in general may depend on A and c.
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Let us choose that [; = 1 and [, = ik IA  Then we can compute o and (3 as

c|
follows:
ki)
alz;\) = ek(x—xo)+<_i T|Z )—k(a?—:co)’
c
B ) = PR kema | FEA TR ke
¢ |c| c
c c

Before computing the new solution, note that the three equation

k2_02 )\2
)\2262—162
k?2+/\2—02

and first simplify the term which we will use

A —(k+i\? = & —k*—2ikA+ )\
= A —2ikA+ N2
= 20Nk + i)

Now if let k1 > 0 be an arbitrary constantjand so A\, = /% — k3.

Hence we have
= \/02—)\%:/’{;1 /
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Thus, we can begin to compute ¢V as follows:

(1)(1,; )\1)

042@ /\ 1) — 52@ A1)
. k +idi el ok (e—n
—C—4Z/\1[Te ! % 1)(1%)6 2k1(z—=0)
o]y 4 id k4 i ki 4 i\
P — 1_
I <—C

—|—(i )2)62k1(x—x0)

k‘l + Z/\l kl + Z)\l |C|
. : S IT)
ki1+i)1 62k1($—1‘0) _|_ ki+in e—2k1(z 270) + Zc _(kl"l‘l)\l)

Y c c |ele
C 42)\1(02_(k1+i>\1)2)62k1(x_z0) + (c —(k1+2)\1) ) —2k; (z—0) +( 42k1+z)\1)

c? c? |c]

k1+i/\162k1(x—wo)_|_k1+1/\1 —2k1(z— :C())_i_l 2i1 (k1+iA1)

e — 4 c cle
c 42)\1(M21+M1))62k1(x—w0) + (M)G—le(z—xo) +(—4i k1-|1-2|>\1)

l(62k1(xfx0) + 672]61(937:1?0) + 2)\1)

c lc|

—2i25 (A e2h(@=20) 4 ) e=2ki(z—20) 4 2\0\)

)\162’61(I—Z‘0) 4 )\16—2k1(az z0) + 2‘0_‘ _ 2| ‘
)\162k1(m—:v0);+ >\16_2k1(z’_,1j0) + 2|C|
25 kel
2N (il b =B, 1 2]c]
2k2c/le|
A1 cosh 2k (.73 = 1170) . IC1 256 |
2kic/lel

- lc| + 1/ — k2 cosh 2ki (2~ )

—C — 42/\1

—c+ 2c¢

—c+ 2¢c —

Figure 4: Sketch of the graph of soliton solution ¢(*) for ¢ = 10, ky = =0,20 = 0.

So, for |c| > ki,

q(l) (xa tv )\1) =

2k2c/|c|
le| + /¢ — k? cosh 2k; [z — zo + (6¢% — 4/{%)15]’
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which shall be a soliton solution again. (see Fig. 4)
However, if we choose zg(A, ¢) to be

N 1 1 le| + Ve — A2
T n )
N lc] — V2 — A2

where 7 is a constant, and if we choose A; as before, then the solution (4.98) will take
the form

zo(A, €)

¢V iz, t;0) =rD(z,t;N) = c— (k¥¢/|c|)/{|c| cosh? ki[z — 21 + (6¢% — 4K2)t]
k
—51 sinh 2k; [z — x1 + (6¢2 — 4k2)t]}. (4.99)
Now for ¢ > 0, we take the limit k; — 4c again. Hence, (4.99) shall become
qV(x, t;: \) = rY(z, ;M) = Fe tanh e[z — 2, + 26%], (4.100)

which is a kink solution. (see Fig. 5)

7 08 06 0.4 02 L 0.2 04 06 08 1

Figure 5: Sketch of the graph of kink solution ¢() for ¢ = 10,¢ = 0,2, = 0.

In summary, we have generated a soliton solution (4.98) and a kink solution (4.100)
from a trivial solution of the mK-dV equation.

Note that if we observe ¢ and (V) (i.e. (3.89) and (3.90)), we shall find these two
expressions also depends on a pair of parameters (I1, l2) (as the pair of parameters (mq,n;)
in the explicit Béacklund transformation). On practice of the Darboux transformation
(or the explicit Backlund transformation), we must take care the choice of this pair of
parameters (I1,ly). Otherwise, the two functions ¢/ and () may not be real functions.
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For example, if we choose I; = [ = 1 in above process which we compute the new
solution of mK-dV equation, then we have

Oé(I; )\) = 1 . h111 + 1 . h112

ek(x*ito) _i_efk(xfxo)

Blz;A) = 1-hior+1-hix

Mek(ximo) + ﬂeik(xfxo) .
C &

Y

afz; A)B(z; A)
a*(z; A) — B*(x; A)

iy kl—l;i/\1 e2k1(:c—wo) 4 —klj—i)\l €—2k1(:c—a:0) 4 (krf(—:i)\l + _klji>q>
1 (1 - (liré)\l)?)erl(;r—a:o) + (1 _ (*klt’i/\l)2>6_2kl(z_m0) + (2 . 2(k1+z‘A1)(—k1+z‘>\1))

c2

¢V = =) — 4in

= —c

= —C

—dif - [(kad 40P = kD)eMETT) o (—hhy 4i(F — k7))em P 424(c? — k)
/U =k — 2iki Ay + (¢ — k))e2h(zomo) + (2 — k2 4 2iki My + (2 — E2))e 2Ra(z=a0)
+(2¢% + 2(k + & — k7))] o e,

(2 — K2 — ik Ay )21 =20) - (2 r—k + ik A )e 2FEmr) 49 — k)

= —c+2c @k — Zkl)\l)e%l(m 20) % (2 =k2 + ik Ay e~ 2k (E—w0) 4 22
= —c+2c—2 <) ;

( k — Zkl)\l)€2k1(w xo) oy (02 k2 + Zlﬁ)\l) —2k1(z—z0) —+ 202
_ p
- (2 — k?) cosh 2k (x — x0) — thy A sinh 2k (z — o) + ¢2
o 23

M cosh 2k (z — zo) + Tclfl sinh 2k (z — 20)) + ¢

le|/ 2 k2

For simplifying this expression, we need to define that

{ ek cosh 2k, x.

lc]
]T = sinh 2k z,

Note that, z. is not a real number.
Therefore,
2kic
|c|\/c? — k#(cosh 2k x. cosh 2k (z — xg) + sinh 2k; z. sinh 2k (z — x¢)) + 2
2k3c/|c|

V2 — k2 cosh 2k (x — xg — @) + |¢]

which is not a real function!!

MOR

= C —
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5 Conclusion

We have introduced the explicit Backlund transformation (in Section 2.4) and the Darboux
transformation (in Chapter 3). Form the definition of the Darboux transformation stated
in Sec 3.1, we can find that the explicit Backlund transformation which stated in Sec 2.4
is also one kind of Darboux transformation. And, we have proved that these two kind of
Darboux transformations in AKNS system are equivalence in Sec 3.4 even though they are
derived by distinct ways (in complex analysis and in algebraic). Hence, we shall be able
to use the alternative of these two transformations to get more solutions of the considered
equation.

This transformation shall provide us a method to find new solutions explicitly from the
known solution of the nonlinear partial differential equation which we consider. Further,
we shall be able to make successively the transformations from a given initial solution u
to get more soliton-solutions. Once we get ¢V, r() from the input solution ¢(©, r©) we
can of course repeat the same procedure to obtain another new solution ¢®, v, using
¢, M as the input solution this time.

That is, if we want to get a new solution u"(x,t) from a given solution u(®(z,t) of
the nonlinear equation which we consider, we only need to input u(¥(z,¢) into Q©(z,t)
in the AKNS system (which is linear) and solve the solution ®©(z,#; \) out. Then we
can choose a parameter \; to get Q) (z,; \;) which consists u™" (z,t) = uM(x,t; A;) and
construct the Darboux matrix DM (x, t; AgX).s Hence we shall get a new solution u™ (x, t)
of the nonlinear equation.

Since we can directly get @M (z3#; A, A= DW (@24, A1, )@@ (2, ¢; \) which we do not
need to solve the AKNS system again..Hence, we can repeat the above procedure to obtain
the next solution u® (z,t) which consists in-@®(x,t; M, X2, ) and construct the Darboux
matrix D@ (x,t; A1, A2, \) to get @2 (@, &hmAg; \).w Therefore, this transformation is
really a powerful method of providing us more selutions of some nonlinear equation as
follows:

(u®, o) M.B% (ut), &) 2B (u@, ®@) 0% .

Y
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