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Coupled Derivatives Compact Schemes

for One-Dimensional KdV Equation

student : Ya-Ling Li Advisor : Dr. Ming-Chih Lai

Department (Institute) of Applied Mathematics
National Chiao Tung University

ABSTRACT

The primary objective of this thesis Is to use coupled derivatives
compact schemes (CD) for solving one-dimensional KDV equation. First,
we review the coupled first and second derivatives scheme and then we
study the coupled first and third derivatives scheme. Next, we introduce
roughly the Runge-Kutta methods. Finally, we give some examples and
show numerical results, and the conclusion follows.
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Coupled Derivatives Compact Schemes for
One-Dimensional KdV Equation

Student : Ya-Ling Li Advisor : Ming-Chih Lai

1 Introduction

The KdV (Korteweg-de Vries) equation is a nonlinear partial differential equation. Two
Dutch mathematicians D. J. Korteweg and G. deVries discovered this famous KdV equa-
tion

Up + Uy + Uggy = 0
when they derived the shallow water wave, and they only considered dispersion but ignored
the dissipation of the energy.

The KdV equation appears in a great number of physical situations. The reason for
the ubiquitous incident of KdV equatientis @trleast twofold. First, it associates simple
dispersion with weak nonlinearity. «Second, using-the asymptotic method of manifold
scales it can be shown that it deseribes!(on:suitable scales) the Riemann invariants of
any hyperbolic system with weak nonlinearity and dispersion. The KdV equation is
integrable [1], i.e. it can be written ag the compatibility condition of a pair of linear
eigenvalue equations, called the Lax pair([2].-In many physical situations, KdV appears
in the form of an initial-boundary walue problem .on the semi-infinite line. This is for
example the case of a certain laboratory: study of water waves [3]. However, the solution
of initial-boundary value problems for integrable equations was until recently open.

The KdV equation is the original of integrable equations. Initially presented as an
equation with a solitary wave-type solution, it turned out (much) later to hold solutions
with an arbitrary number of flexibly scattering solitary waves. The latter were observed
numerically by Kruskal and Zabusky, who decided to call this type of solitary waves ’soli-
tons’. In the years that followed this discovery, Kruskal and his collaborators went on
to show that the KdV equation held an infinite number of conservation laws and, as the
eventual explanation of these properties, they produced a linear differential system the
compatibility of which is just the KdV equation. This linear system is traditionally called
the Lax pair and allows the efficient linearization of the nonlinear equation. Using tech-
niques developed in the theory of the inverse scattering problems in quantum mechanics
(reconstruction of the potential from the scattering data) one can reduce the solution of
the KdV equation to that of a linear integrodifferential one. This was the final proof
of the integrability of KdV. The discovery of an integrable PDE and the techniques for
its integration opened a whole new domain that is still the center of extreme activity a
quarter-century later.

This paper presents a family of finite difference schemes for the first and third deriva-
tives of smooth functions. The schemes are Hermitian and symmetric. The objective of
this paper is to develop this family of schemes and to assess their potential for computa-
tions of the KdV equation. The schemes will be referred to as the “coupled-derivative,”
or “C-D” schemes.



2 The Coupled First and Second Derivatives Scheme

First, we review a family of finite schemes for the first and second derivatives of smooth
functions [5]. The schemes are Hermitian and symmetric. When defined on a uniform
mesh, the schemes are of the form

arfioy + aof; +asfip b fo + bof] +bafi)
%(lei2 +cafic1 +cofi + cafirr + cafir). (1)
Throughout this paper, h denotes the uniform mesh spacing. The interior scheme is of
the form given by Eq.(1). Simultaneous solving for f; and f; implies that the number
of unknowns is equal to 2M. A total of 2M equations are therefore needed to close the
system. Equation(1) may be used to derive two linearly independent equations at each
node. This is done as follow. Both sides of Eq.(1) are first expanded in a Taylor series.
The resulting coefficients are then matched, such that Eq.(1) maintains a certain order
of accuracy. Note that Eq.(1) has 11 coefficients, of which one is arbitrary; i.e., Eq.(1)
may be divided through by one of the constants without loss of generality. A convenient
choice of the normalization constant is either of ag or by. It will be seen that the equation
obtained by setting ag equal to 1 is linearly independent of the equation obtained when
by is set equal to 1. The two equations may therefore be applied at each node, and
the resulting system of 2M equations, solved for the nodal values of the first and second
derivative. The process of obtaining the tweequations is outlined in Sections 2.1 and 2.2.

TABLE I
Taylor Tablefor ag—= 1
LHS RHS

fi 0 Co

fi 1+2a, 2(2c4+cs)

1 bo 0

1 2h%(ay /204 by)  2h2(23¢y + c3) /3!

iw 0 0

Fro 20 (an AN+ by/3)) 20 (2es + c3) /5!
f 0 0
F 2h0(ay /6! 4+ ba/51)  2h8(27e, + c5)/T!
fpzzz 0 0

FiT 28 (a0 /8! + bo/TY)  2h5(2%4 + c3) /9!




2.1 First Equation(ay = 1) for First and Second Derivatives

Consider first the case where ay = 1. The symmetry of the schemes requires that a; = ao,
by = —bs, ¢; = —c4, and 3 = —c3. Equation(1) therefore reduces to

arfiy i aufi (e fly + bof; + bafi)
1
= E[Cofi +e3(fivr — fim1) + ea(fire — fiz2)]- (2)
Expanding both sides of Eq.(2) in a Taylor series and collecting terms of the same order

yields Table I. Note that “LHS” and “RHS” denote the coefficients of f¥ on the left- and
right-hand sides, respectively, of Eq.(2).

The Taylor table shows that by = ¢y = 0. This leaves four undetermined constants(a;,
by, c3, and ¢4). Expressions for these constants may be obtained by matching the terms
in the Taylor table.

When ag =1, by = O:

Matching terms up to f; yields

1
a, = —3 + c3 + 2¢4, by arbitrary .

Matching terms up to f/ yields

1 i
ay = 3 +i63 +2¢4, by = 5[3 = 4(cs — cd)].

Matching terms up to f7 yields

7 15 1 15 23
a] = E — IC4, bg 16( 1 + 3604) C3 = E — IC4.

Matching terms up to f yields

A ST L UG o
M=36 27 T BT 108" T T 108
1T, 17 1, 1. 1.107
fz 1 + f + fz—l—l (12f7,—1 - Efi—i—l) h[108 (f’H—l fi—l) 108 (fl+2 fi—?)]'
1.e.
) 107 Fiva — fis
51fiy +108f; +51fi4 + 9h(fiLy = fina) = = (finn — fim) = =5



2.2  Second Equation(by = 1) for First and Second Derivatives

Consider the case where by = 1. Note that a tilde is used above the constants to indicate

their difference from the constants obtained when ay = 1; e.g., b is replaced by b;.
Symmetry requires that by = by, & = ¢4, é3 = é3, and d; = —dy. Equation(1) therefore
becomes

dof; + a~2(fi/+1 — fi) +hMufi + f + glle:rl)
= %[51(fi—2 + fize) + G(fio1 + fiyr) + o fil- (3)

Expanding both sides of the above equation in a Taylor series and collecting terms of the
same order yields the Taylor Table II.

Table IT shows that ag is required to be zero if by is equal to one. The resulting equa-
tion may therefore be considered an expression for the second derivative. We have five
unknown constants(cy, ¢, Ca, da, and b~1) These constants may be obtained by matching
the terms in the above Taylor table and solving the resulting equations.

TABLE II
Taylor Table for by = 1
LHS RHS
fi 0 C~0 —+ 2C~1 —+ 252
/: Z !
[ h2aghZbi L) 20226 + G3) /2!
I 0 ’
i 2h°(dpf3! WhRTIRAR', + &) /4!
? 0 ’
£ 2h5 (/5! F AN 2R (256, + ) /6!
£ 0 ’
fr 2R ()T 4+ b1 /61)  2h7(28¢1 + ) /8!
fir 0 ’

T 2h9(dy/9! + by /8!)  2h°(2'9¢, 4 &) /10!




When by =1, ag = 0:
Matching terms up to f; yields
1
Co = —2(01 + Cg), a9 = 5(—1 — 2b1 + 461 + CQ).

Matching terms up to f/¥ yields

3 5 1 c
co = —2(c1 + ¢2), ap=—7+a+go, by = 14—01—@2
Matching terms up to f7 yields
9 33 1 9
COI—6+5401, 02:3—2861, a2:§—301, bl —§+§C1.
Matching terms up to f* yields
13 1 88 23 b 1
Cchn = —— Cl = —— Co = — Ao = — = ——.
0 2 , C1 1087 2 277 2 187 1 6
2 1., Lok hiLe, 1 88 13
= 1_8(fi+1_fi71>+h( 6fz 1+f ferl) E[ 108(fz o+ five)+ (fi71+fi+1)_?fi]-
i.e.
/ _ Sk + fio 702
138(fz+1 fi—l) (18f 1 108f - 18fz+1) S5 S ECLaC h (fz+1 fi—l) - sz‘-



3 The Coupled First and Third Derivatives Scheme

Now, we present a family of finite difference schemes for the first and third derivatives of
smooth functions. The schemes are also Hermitian and symmetric. When defined on a
uniform mesh, the schemes are of the form

"

Glfi/_l + Gof; + Cb2f¢/+1 + hz(blfilil + bOfiW + b2 fii1)

= %(inz +eafi1 +cofi +cafiyr +cafira). (4)

The interior scheme is of the form given by Eq.(4). Simultaneous solving for f; and
f;" implies that the number of unknowns is equal to 2M. A total of 2M equations are
therefore needed to close the system. Equation(4) may be used to derive two linearly
independent equations at each node. This is done as follow. Both sides of Eq.(4) are first
expanded in a Taylor series. The resulting coefficients are then matched, such that Eq.(4)
maintains a certain order of accuracy. Note that Eq.(4) has 11 coefficients, of which one
is arbitrary; i.e., Eq(4) may be divided through by one of the constants without loss of
generality. A convenient choice of the normalization constant is either of ag or by. It will
be seen that the equation obtained by setting ay equal to 1 is linearly independent of the
equation obtained when by is set equal to 1. The two equations may therefore be applied
at each node, and the resulting system of 2M equations solved for the nodal values of
the first and third derivative. The process of obtaining the two equations is outlined in
Sections 2.3 and 2.4.

TABLE IIT
Taylor Table for ag= 1
LHS RHS

fi 0 Co

fi/ ao+2a, 2(2¢c4+c3)
f; 0 0
i 2h%(ar/2'+by)  2h3(2%cy +c3)/3)
i 0 0

iv 2h4(a1/4' +b2/2') 2h4(25C4 —|—03>/5'

v 0 0

I 2%(a1/6! + by/AY)  2h8(27cq + c3) /T




3.1 First Equation(ay = 1) for First and Third Derivatives

Consider first the case where ay = 1. The symmetry of the schemes requires that a; = ao,
by = by, ¢y = —c4, and o = —c3. Equation(1) therefore reduces to

1"

alf@ 1t f + alfz+1 + h2(52fz 1+ bof + 02 fi1)
= %[COfi + es3(fivr — fi1) + ca(fiva — fiz2)] (5)

Expanding both sides of Eq.(5) in a Taylor series and collecting terms of the same order
yields Table III. Note that “LHS” and “RHS” denote the coefficients of f¥ on the left-
and right-hand sides, respectively, of Eq.(5).

The Taylor table shows that ¢y = 0. This leaves four undetermined constants(ay, be, cs,
and c4). Expressions for these constants may be obtained by matching the terms in the
Taylor table.

When ag =1, by = O:

Matching terms up to fi/ yields
1 .
ay = 5(—1 + 2¢3 + 4cy), by arbitrary .
Matching terms up to fim yields

1
a; = 5(—1 —+ 203 + 404), bg = E(3 — 463 + 464).
Matching terms up to f yields

1 1 1
a; = 32 (9 + 6004) b2 = %(—1 i 3604), C3 = 3—2(25 — 404).

Matching terms up to f* yields

o, -1 13 -1
M=R 2T R BT T 36
11 1 1o 113
B2 1y N Y
fz 1 f 48fz+1+ (48 fz 1 48f1+1) h(36fZ 4fl 1+ 144f’b+1 fl+2)
1.e.

" "

! ! ’ 1
11f; +48f; +11f, , + R (—fii — fiy1) = @(4,}2‘—2 — 113 fio1 + 113 fip1 — 4fite).



3.2 Third Equation(by = 1) for First and Third Derivatives
When by =1, ag = 0:

Matching terms up to fim yields
1
a; = c3 + 204, b2 = 6(—3 — 263 -+ 204).

Matching terms up to f yields

—15 1 -1
a; = T(l — 64), bQ = g(l + 304)7 C3 = ?(15 + 64)'

Matching terms up to f* yields

a_—35b_gc_—1856 5

YT 320 T 320 T g6 T T 12
-35 35 9 . T 1 -5 185 185 5
39 Jic1 32f1+1+ (32fz—1+fz +32f1+1) h(12f 2+ 96f 1706 f+1+12f+2)
1.e.

/ ! 1" 15 1t 1
—35f,_1 — 35 fis1 + R (9fiy +32f5 + Ofiiy) = ﬁ(—mﬁ_z +185f;_1 — 185 f;41 +40fi2).

3.3 The Scheme

The interior scheme involves applying the equations derived in section 2.3 and 2.4 at each

node. The resulting system of 2M equationsiis‘then solved to obtain fi/ and f; .

Schemes:
/ / / n n 1
W fiy +48f; + 11 fiy + P2 (= fiy — fi) = ﬁ(‘lfifz — 13fi1 + 113 fi41 — 4fita).
/ / " 1 mr 1
=35 f;1 = 35fipa FH2(9fisy +32f; +9fi1) = %(—4012'—2 +185fi-1 — 185 fi11 + 40 fir2).
Note that the first and third derivatives are coupled in the C-D schemes. The vector
of unknowns is therefore equal to [- -, f;,---, f; ,---]7.

We can rewrite the C-D schemes to the form

Ay = b,

where the vector y is of length 2M and is equal to [f1, fo's - fas f1 s fa > fag)--
The schemes are presented in matrix from below. Both periodic and nonperiodic

domains are considered.



Sixzth-Order Scheme:Periodic

The sixth-order scheme on a

48 11 0
11 48 11 0
0 11 48 11 0

0
11 0 0
0 =35 0
=35 0 =35 0
0 -3 0 =35 0
0 -
| -3 0 -~ - 0
- T
fi
ful o
| 3h
h
filll
|

| —40fp—2 + 185 fp—1 — 1851 +40f> |

periodic domain is given by

0 11 | 0 —h* 0 .-
0 | =n2 0 -—m2 0
0 | 0 —m2 0 -—h
S .
0 |
1 | o0

11 48 | —h® 0

0 —35 | 3212 9h* 0
0 | 9r2 3202 9K 0
0 | 0 9n2 3202 9R?
S
0 |

.o=35 |0

—35  Oupeads. 902 0

fprer = W13 farst 113f2 — 4 f3
Af; =113 i1 F 113 fiy1 — 4 firo

dfpr—o — 113 far—1 + 11311 — 4 f5

—40far—1 + 185 fpr — 185 f5 + 40 f3

—40f;—o +185f;_1 — 185 f;41 + 40 fito

0

0

9h?

9h?
32h2 |




Sizth-Order Scheme:Nonperiodic

The sixth-order scheme on a nonperiodic domain is given by

48
11

—35

11
48
11

11
48

11

0 R
| —R2 0 —h2
| —R2 0 —R?
|
11

11 48 |
| 32n2 On2
| 9h? 32h2 9K2
| 9h?  32h% 9Oh?
|

o-35 |

35 0 |

Af_ ) —b13fork 113f> — 45

Afo =113 fiy + 113 fi1 — 4fiso

Adfavr—o =113 frr—1 + 13 f a1 — 4f g2

—40f_1 + 185f, — 185f, + 40 f;

—40fi—o + 185 f;i_1 — 185 fix1 + 40 fiya

—40frr—2 + 185 far—1 — 185 far1 + 40 fars2 |

10

9h?

32h? |

— f{ -

"

1

"

L S



4 Runge-Kutta Methods

Let us review the Runge-Kutta methods [13].

4.1 FEuler’s Method
The Taylor-series method with n =1 is called Euler’s method. It looks like this:

z(t+ h) = x(t) + hf(t, x).

This formula has the obvious advantage of not requiring any differentiation of f. This
advantage is offset by the necessity of taking small values for h to gain acceptable precision.
Still, the method serves as a useful example and is of great importance theoretically
because existence theorems can be based on it.

4.2 Second-Order Runge-Kutta Method
Let us begin with the Taylor series for z(t + h) :

h? h?
570 (0) + o (8) + - (6)

z(t + h) = x(t) + ha'(t) + i

From the differential equation, we have

d(t) = f
ZE”(t) = ft+fx$l = ft+facf
ZEW(t) — ftt+ft:cf+(ft+fxf)fx+f(fmt+fwwf)

Here subscripts denote partial derivatives, and the chain rule of differentiation is used
repeatedly. The first three terms in Equation(6) can be written now in the form

W+ h) = ahf o+ SR L)+ O0F)
_ a:+%thr%h[f+hft+hff$]+(’)(h3). (1)

where x means z(t), f means f(t,z), and so on. We are able to eliminate the partial
derivatives with the aid of the first few terms in the Taylor series in two variables:

ft+h,x+nhf)=f+hfi+hff. +O(R?).

Equation(7) can be rewritten as
1 1 \
z(t + h) :x+§hf+§hf(t+h,x+hf)+0(h ).
Hence, the formula for advancing the solution is

x(t+h)=x(t)+ gf(t,x) + gf(t—i-h,:c—i-hf(t,m)),

11



or equivalently,

o+ h) = o(0) + 5(Fy + ) ®)
where
Fl = hf(t, .Z')

This formula can be used repeatedly to advance the solution one step at a time. It is
called a second-order Runge-Kutta method. It is also known as Heun’s method.
In general, second-order Runge-Kutta formulas are of the form

x(t +h) =z +whf +whf(t+ah,z+ Bhf)+ O(R?), 9)

where wy, we, o, and 3 are parameters at our disposal. Equation(9) can be rewritten with
the aid of the Taylor series in two variables as

z(t+h) = x + wihf +wsh[f + ahf, + Bhf f,] + O(h?). (10)

Comparing Equations(7) and (10), we see that we should impose these conditions:

Wy +we = 1
Wa = 2 (11)
wy P & %

One solution is w; = wy = %, at= =1, which is the one corresponding to Heun’s

method in Equation(8). The system-of Equation(11):has solutions other than this one,
such as the one obtained by letting w; = 0;ws = 1,& = 3 = 1. The resulting formula

2
from(9) is called the modified Euler method::
z(t k)= z(@)+ Fo,

where

Fl = hf(t,f)

Compare this to the standard Euler method, described in Section 3.1.

4.3 Fourth-Order Runge-Kutta Method

The higher-order Runge-Kutta formulas are very tedious to derive, and we shall not do so.
The formulas are rather elegant, however, and are easily programmed once they have been
derived. Here are the formulas for the classical fourth-order Runge-Kutta method :

1
w(t+h) = a(t) + (Fy +2F, + 2F3 + ), (12)

where

F1 - hf( z)
hf(t+ $h,x+ 1F)
hf(t+ 3 1h T+ 1FQ)
hf(t+h x+F3)

This is called a fourth-order method because it reproduces the terms in the Taylor series
up to and including the one involving h*. The error is therefore O(h%). Exact expressions
for the h® error term are available.

12



5 The Numerical Examples

5.1 Example 1

Consider the equation,
u = cosdx, x € [0,27].

To compute v’ & u” and compare the absolutely errors with the exact ones,

u = —4sin4x
u” = 64 sin 4x

| Mesh | cond(A) |  Maxnorm-Error | order |

16 215.965244021860 | 3.442540136851857E-003 -

32 799.575261801726 | 7.867157863383767E-006 | 8.7734
64 3134.01533292119 | 2.683871747066746E-008 | 8.1954
128 | 12471.7756173990 | 1.013642503266965E-010 | 8.0486

Table IV : The error for u .

| Mesh | cond(A) |  Maxnorm-Error | order |

16 215.965244021860 0:356972051819817 -
32 799.575261801726 | 4.292639448863156E-003 | 6.3778
64 3134.01533292119 | 6.327597368027682E-005 | 6.0841
128 | 12471.7756173990 | 9.748273868126489E-007 | 6.0204

Table V. & Theertor for v .

| Mesh | cond(A) |-y ‘eond(A)/(Mesh?) |
16 215.965244021860 0.843614234460390625
32 799.575261801726 | 0.780835216603248046875
64 3134.01533292119 | 0.76514046213896240234375
128 | 12471.7756173990 | 0.76121677352288818359375

Table VI : The relation between cond(A) and Mesh.

From the Table III, we can know that the order of the scheme is equal to ninth order.
So the order of the first derivative should be eighth order, and the order of the third
derivative should be sixth order.

Note that the condition number is large, so A is ill conditioned and any numerical
solution of Az = b must be accepted with a great deal of skepticism.

13



5.2 Example 2

Consider the linear equation,

Up + Uy + Ugps =0
u(z,0) = sin2z, z € [0, 27|

with the exact solution of uezaet(,t) = sin(2(z + 3t)) when T = 1.

u& Yexact

Figure 1: u andte,q¢ for RK3 (when M=16).

u& Yexact

Figure 2: u and tezqet for RK3 (when M=32).

14



u& Yexact

Figure 3: u and tegae for RK4 (when M=16).

ug Yexact

Figure 4: u and tegaet for RK4 (when M=32).

15



’ Mesh | Time step | Maxnorm-Error | order ‘

16 132 unstable -
32 1056 unstable -
64 8454 unstable -
128 67636 unstable -

Table VII : The error for RK1(When T=1 (At ~ Az?)).

’ Mesh | Time step | Maxnorm-Error | order ‘

16 132 unstable -
32 1056 unstable -
64 8454 unstable -
128 67636 unstable -

Table VIII : The error for RK2(When T=1 (At ~ Az?)).

’ Mesh | Time step | Maxnorm-Error | order ‘
16 132 5.028345551417179E-004 -
32 1056 7.851200683139936E-006 | 6.0010
64 8454 1.213175020303714E-007 | 6.0161
128 67636 1.896873163750867E-009 | 5.9990

Table IX : The eitor for RK3(When T=1 (At ~ Az?)).

’ Mesh | Time step | Maxnorm-Error | order ‘
16 132 5:104998880844369E-004 -
32 1056 7.846674022080058E-006 | 6.0237
64 8454 1.213253499471323E-007 | 6.0151
128 67636 1.896881306542864E-009 | 5.9991

Table X : The error for RK4(When T=1 (At ~ Az?)).

In order to be stable, it is necessary to assume that u = (

At
Az)3

< % So we take At ~ (B2

3
8

Note that T'= n - At, where n is the time step, so n depends on At when we set T' = 1.
From the above tables, we know that it is about sixth order. This is because it is time
dependence, so the order of the error depends on the order of the third derivative.
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’ Mesh | Time step |

Maxnorm-Error

|order‘

16 10000 0.1835957083217821E-02 -
32 10000 unstable -
64 10000 unstable -
128 10000 unstable -

Table XI : The error for RK1(When T=1 (At = 0.0001)).

’ Mesh | Time step | Maxnorm-Error | order ‘
16 10000 0.5110460338352829E-03 -
32 10000 0.7490918246130795E-05 | 6.0922
64 10000 unstable -
128 10000 unstable -

Table XII : The error for RK2(When T=1 (At = 0.0001)).

’ Mesh | Time step | Maxnorm-Error | order ‘
16 10000 0.5113914889436910E-03 -
32 10000 0.7848784020964006E-05 | 6.0258
64 10000 0.1213325657306585E-06 | 6.0154
128 10000 unstable -

Table XIIT : The error for RK3(WhenT=1 (At = 0.0001)).

’ Mesh | Time step | Maxnorm-Error | order ‘
16 10000 0:5113915040849681E-03 -
32 10000 0.7848778151214875E-05 | 6.0258
64 10000 0:1213372820135783E-06 | 6.0154
128 10000 unstable -

Table XIV : The error for RK4(When T=1 (At = 0.0001)).

From the previous page, we know that At ~ (Az)3. Besides, since Az = QH’T, so Ax ~ %,

then we can get At ~ (55)%. Since At = 0.0001, so when M is getting larger, the error
becomes unstable. From these tables above, we can conclude that RK4 is the most stable
method and its solution is the most accurate one.
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5.3 Example 3

Consider the non-linear equation,

U + U Uy + Uppy = 0
u(z,0) = 3 - (sech(z/2))?, = € [0,27]

with the exact solution of Uezqet(z,t) = 3 - (sech((z — t)/2))* when T = 1.

Figure 6: u and tezqe for RK3 (when M=32).
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Figure 8: u and tegae for RK4 (when M=32).
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’ Mesh | Time step | Maxnorm-Error | order ‘

16 158 unstable -
32 1159 unstable -
64 8857 unstable -
128 69234 unstable -

Table XV : The error for RK1(When T=1 (At ~ Az?)).

’ Mesh | Time step | Maxnorm-Error | order ‘

16 158 unstable -
32 1159 unstable -
64 8857 unstable -
128 69234 unstable -

Table XVI : The error for RK2(When T=1 (At ~ Az?)).

’ Mesh | Time step | Maxnorm-Error | order ‘
16 158 2.583180630577608E-005 -
32 1159 5.098193027186504E-007 | 5.6630
64 8857 8.033804399509847E-009 | 5.9878
128 69234 1.079924483171624E-010 | 6.2171

Table XVII : The érror for RK3(Wheh T=1 (At ~ Az?)).

’ Mesh | Time step | Maxnorm-Error | order ‘
16 158 2:524653262514498E-005 -
32 1159 5:132999952306427E-007 | 5.6201
64 8857 8.047767008356743E-009 | 5.9951
128 69234 1.079270006698607E-010 | 6.2205

Table XVIII : The error for RK4(When T=1 (At ~ Az?)).

Observe this non-linear case, we can get that it is about sixth order. This is because it is
time dependence, so the order of the error depends on the order of the third derivative.
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6 Conclusions

A family of finite difference schemes for the first and third derivatives of smooth functions
were derived. We have extended it to the KdV equation. The schemes are Hermitian and
symmetric. They are different from the schemes in that the first and third derivatives are
simultaneously evaluated.

Consider that the KdV equation requires both first and third derivatives of the vari-
ables, the proposed schemes appear to be attractive alternatives to the schemes which
the first and third derivatives are simultaneously evaluated for computations of the KdV
equation.
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