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Student: Jing-Guo Chuang Advisor: Yuan-Chung Sheu
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Abstract

This article uses the NIG GARCH model, the GARCH model with Normal inverse
Gaussian innovation, to model the financial asset return. Under this model, we can
pricing derivatives via Conditional Esscher transform. The pricing result can be justified
by dynamic power utility framework.
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1 Introduction

GARCH is the widely used model to describe the time changed volatility in financial mar-
ket. It successfully catch the volatility clustering, but the conditional normal distribution for
the innovation still has poor performance to fit the high kurtosis, fat tailed and skewness
of the real data. The normal inverse Gaussian , a special subclass of generalized hyper-
bolic distribution, has been found the out-performance of fitting the financial return. [2]
Barndorff-Nielsen(1997) propose the NIG stochastic volatility model, which is the ARCH
type time series for the normal inverse Gaussian innovation. [1] Andersson(2001) extended
the idea to GARCH type model with more flexible properties. [9] L. Forsberg using different
type of parameterization to model the financial data.

For the purpose of pricing derivatives, we must find a equivalent martingale measure and
then take the expectaion of payoff function under such probability measure. In the incom-
plete market we have infinitely many equivalent martingale measure, so [11] Gerber (1994)
propose a attractive approach to find a reasonable equivalent martingale measure. Using
this method, we can find a martingale measure via Esscher transform under the independent
increment model. under Garch or other conditional modeling, we can follow the [16] Tak
Kuen Siu’s approach via the conditional Esscher transform.

2 Generalized hyperbolic distribution

2.1 Generalized hyperbolic distribution

Distributions that have tails heavier than the normal distribution are ubiquitous in finance.
For purposes such as risk management and-derivative prieing it is important to use relatively
simple models that can capture the heayytailsand other relevant features of financial data.
A class of distributions that is very often able to fit"the distributions of financial data is
the class of generalized hyperbolic distributions. This has been established in numerous
investigations. In this paper, the generalized hyperbolic distribution has two different kind
of parameter representation. Each representation has good properties in some aspect, and
there is a one to one correspondence between two parameterization.

We say X ~ GH(\, o, 3,0, 1), if it has the density
3 Evgplay/@+@-—w?) o o
— e?\ T 2.1
V2TEA(8Y) (/07 + (z — p)2/a) s 2

where the parameters satisfies

fx(x)

§>0,a0>0,02> 3% if A>0.
§>0,a>0,a2>03 ifA=0.
§>0,a>0,a2>03 ifA<0.

Let v = v/a? = B2, 7. = /a2 — (B - 2)?

Then we can compute the moment generating function

A
YK (072)
M(z) =et*rL—22 127

(=) V2K ()



after calculating first and second moments the mean and variance are easily obtained

OBKx\11(07)
X _—
YK\ (67)
VarX 5K/\+1(57) 5252 K/\+2(57) /\+1(5’7)

e 2 CRaey) K3(57) )

We focus on the special subclass of GH for A = 1/2 called Normal Inverse Gaussian distri-
bution. A random variable X ~ NIG(«, 3,0, 1) if the pdf is represented as

fx(x) = %e(‘s\/ a?—(2=fu) i;—'lé (2.2)

The corresponding moment generating function is:

M(z) = et=H(V/@?=F=/a>—(5+2)?) (2.3)
Mean and variance:
1)
EX = u+ ﬁ; (2.4)
5o

IF X; ~ NIG(a, 3,64, pi) © = 1,2, the we have Xi 4 Xo ~ NIG(a, 3,1 + 02, 11 + p2).

2.2 Generalized inverse Gaussian distribution

Now, we consider the Inverse Gaussian distribution. X ~ IG(d,7), where v = \/a? — 32,
if it has the following density:

frw) = Lo
X\ \Tr) = (& 2z
V2omx3

which has mean and variance as:

EX:é Vaeri3
Yy Y

2.3 Alternative parameterization of NIG

In order to have scale invariant properties for parameters except the scaling and location
parameters, we use another parameterization for NIG distribution suggested by [9] Lars



Forsberg (2002) and [10] Lars Forsberg (2002) with

o = ad

g = Bla
o= p

§ = §/a

<~

a = oy
B o= Voo
po=

§ o8

The density of the result parameterization,which we shall denote X ~ NIG(d/, 3,1/, ¢")

can be written with density
K, (0/\/ 1+ (x/f;/)2>
Fye) = VO @ T ) i
/o 1+ (z—p)?

a’o’

(2.6)

where 0 < o/, p € R, |#| < 1 and 0 < ¢’. Under this parameterization the moment
generating function becomes

M (z) = exp (u’z + o/ — 32 — \/a’2 — (/B + mz)2> (2.7)

According to the moment generating funetion for+the new, parameterization, we can see that

Lemma 2.1. The scaling properties.of the-NTG(el, 5, i, 0") parameterization are given by
the following. Let Z1 ~ NIG(o!, B s pils 0y then-eZy +d ~ NIG(d!, B, cp’ +d, c?8"), i.e o
and 3’ does not change under scaling and.shifting.

The first four central moments can be obtained by the cumulant generating function
In(M ()

o'’

_ o, VYO oy
kK = EX = wo+ mﬁ
6/
K/Q - V(ITX — m
13/2 31
ks — 30"/

\@(1 _ 5/2)5/2
36" (46% 4+ 1)
0/(1 _ ﬂ/2)7/2

Here, we have the skewness and kurtosis are given by

K3 3,3/

skewness = (@)3/2 = \/&(1 — 5’2)1/4
3(462 +1
kurtosis = fa_ (487 + )

H% o /1— 372



2.4 The GARCH NIG model

Assume X; is the conditional return on its variance Z; is normally distributed

Xi|Zy ~ Ny + o' [68' 2y, Zy) (2.8)
where pj = E(X|Z;) is the conditonal mean, and the variance Z; is inverse Gaussian

distributed given F;_1
OC,
Z1Fi1 ~ GG, [ 50— 52) (2.9)
o

with E(Zt‘ft_1> == \/TW

Now, the X; conditionally on F;_; are normal inverse Gaussian distributed

Xi|Fio1 ~ NIG(', B, py, &) (2.10)
then the conditional variance of X is given by hy = Var(Xy|Fi—1) = % which follows
the GARCH type

q p
he=po+ Y pi(Ximi — EXei)2 + > mihi_j (2.11)
i=1 j=1
we have the GARCH-NIG(1,1)
he = po + p1(Xpmpee BX; 1) + T1h (2.12)

3 Pricing Derivative Under NIG GRACH Model

After constructing the sotck price model! *We may be interesting in pricing the derivative.
[11] Gerber and Shiu (1994) and [12]‘Gerber andShiu(1996) provide a method to pricing
options or derivative securities by Esscher transform, which is an efficient tool for pricing
many option and contingent claims if the logarithms of the price of the primary securities
are certain stochastic process with stationary and independent increment, more generally,
the condition of stationarity and independence can be drop, then we can apply this method
to GARCH models.

3.1 Conditional Esscher Transform

Our next step is to pricing option under GARCH model, then we need to consider the
process without stationarity and independence. Instead of Esscher transform, we need a
further tool to obtain the proper equivalent martingale by the so called conditional Esscher
transform.

We consider discrete time financial model consisting of one risk-free interest rate r and one
risky stock S. For generality, we assume that the innovations process of the underlying
stock S is infinitely divisible and that the moment generating function of its distribution
exits.

Suppose the filtered probability space (2, F, F;,P) and 7 be the time index set 0,1,2,...,7T.
The stock price process follows

St = St_leXt terT



where X;|F;_1 is normal inverse Gaussian distributed ,we denote it by X¢|F—1 ~ NIG(d/,0, 1/, 6")
as our second parameterization of NIG we have{d; }+c, a conditional variance process of the
underlying stock. We suppose that d; € F;_1 Vt € 7\{0}. Now, assume that { X}, follows

a GARCH(1,1) process. So under P

vt € 7\ {0} 2
8 = po + p1(Xi—1 — p')* + M. (3.1)

where pp >0, a; > 0,and my >0V :i=1,2

For the covariance stationarity of the GARCH model, we further impose the condition
that
p1+m <1 (3.2)

[6] Duan (1995) introduced the LRNVR for pricing and assumed that the martingale
measure Q with the LRNVR satisfies some conditions. [16] Tak Kuen Siu (2004) extend
the condition for Normal innovation to infinitely divisible distribution. Normal inverse
Gaussian is indeed infinitely divisible, and the distribution is invariant under conditional
Esscher transform, we also relax the invariant variance condition, we get

1. Q~P

2. In Sfil is normal inverse Gaussian distributed.

3. Bql2-|Fi1] = " ass.

In the sequel, we construct conditiénal Esseher transforms for the GARCH process { X }er
associated with a sequence of conditional Esscher parameter {6;}ic.
Suppose {0; }1e-\ {0} is a stochastic processwith 0, € F; 1, for all t € 7\{0}. Let Mx,|7,_,(2)
be the moment generating function of the conditional distribution X;|F;_1 under P, where
z € R. That is

My, 7, ,(2) = Ep[e**!| Fii] (3.3)

For all t € 7\{0}. Let Mx, r,_, () exists, we define a sequence {A¢}er with Ag = 1 and

erXk

A= 1| 7
k=1 MXt|~7:t71 (Hk’)

t e 7\{0} (3.4)

[16] Tak K. S. (2004)

Lemma 3.1. {A;}ier is a martingale.

Here we give a proof that omit in Tak(2004)



Proof.

_ t %k Xk
E[A{Fi1] =E Hk:l My, 170, O) ftl}
. Htil Ok Xk edtYt F (3-5)
= k=1 Mxk‘}-kfl(ek) MYtl}-tfl(et) t—1
= At
O

Let Py := P|F: V t € 7\{0}, and Py = P. We define a family of probability measure
{P¢ A, }ter\{oy Dy the following conditional Esscher transform:

thXt

Ep, (" Xt|Fi 1)

Py, (AlFi 1) — B, <IA

ft_1> Ae Fi (36)

[16] Tak (2004)
Lemma 3.2. Py, =Py, |F V€ 7\{0}

Proof. By the martingale property of Ayer, ifA € Fy

0141 X¢41
Pt+1,At+1 [A\}—t] i ]Ept-kl (IA E ¢

B, (&)

et t 3.7
i IAE]I”t+1 < FuXt41 ‘ft> ( )

Be, | (eflr1Xe+1]7,)

take Ep, both side, we get Py z,(A) = Pry1,4,,,(A) O

The associated parameter 6; is called the conditional Esscher parameter given F;_i.
Write F'(x;0¢|F;—1) for Py A, (X; < x|F;—1) we have

fi’oo T dF (x)

o) = @)
t|/St—1

(3.8)

where F(z) is the cdf of NIG(d/,0,4/,¢").

Let Mx,|,_,(#;6:) denote the moment generating function of F'(z,0;|F;_1), that is

MX1|Ft71 (2: + et)
My, 7,_,(0:)

For pricing a derivative V', we construct a martingale measure Q equivalent to P by adopt-
ing Esscher Transforms.

First, choose a sequence of conditional Esscher parameters {6} }ter\fo} by solving the fol-
lowing equation

MXt‘ft—l(Z; gt) = (3'9)

r=n[My, £ (1;00)], teT\{0} (3.10)

7



then we can define a family of probability measure {P; ya },¢-\ {0y associated with {07} 1er\ f0}-
Again, according to above result,

Py as =Py aa|F s,ter witht <s (3.11)
Lemma 3.3. Let Q = PT,A‘IT the disounted stock price process {e "' Si}ier is a martingale
under Q
Proof.
EQ[G_TtSt’ft_ﬂ :e_rtE@[Sﬂft_l]
q
_ -t Xt X7
=e ke [5“6 Wyirr @ | tl}
q
= e_TtSt—lE]P’t et % Fi—1
Xt|]'_t—1( t) (312)
. M (1+69)
_ Tt Xl Fy—1 t
=e "5 Mx, 7, (0]
— e—rtstiler
_ e_T(t_l)St_l_
O

Then by risk-neutral pricing formula, ltheprice of the derivative V at time ¢ € 7 is:
v, 2By [e—T(T—ﬂVT( ft] (3.13)

we call Q a conditional risk neutralized Esscher pricing measure.
We can justify the pricing result by solving a dynamic utility maximization problem.
First, consider the sequence of power utility functions {u;}tc, with parameter {v; }¢er

tL iy A
u = (3.14)
Inz ifyy=1

We assume that V; is the agent’s price of the derivative V at time t with YA/; = Vp, such
that it is optimal for the agent not to buy or sell any unit of derivative V' at time ¢.

Proposition 3.1. Forallt €t ,172 =V

Proof. consider one stock .S and one risk-free interest rate r. The agent owns m shares of
the stock bases his decision on a risk-averse utility function u;(z). Condider a derivative
security V pays V; at time t. We have

¢(n) = E[us(mSe1 +n[Visr — €"Vi])| 7] (3.15)



is maximal for n = 0. From

¢/(0)=0
/ 7“~ / rN (316)
= ¢'(n) = E |(Vir — e Vui(mSees +nlVies — V)| ]
we obtain E[V ,( g )|}_]
V, = e Lot L 3.17
t B[ (mSee1)| 7 (3.17)
note that _ _
¢" (1) = E[(Viss — € V)2l (mSei1 + nVias — € Vi])|Fi] < 0 (3.18)

if u}/(x) < 0.

In the particular case of a power utility function with parameter 7 > 0, we have
uy(z) = 277, Then

~  _LEVipi(mSe) T F] L EVia (Sig) T F
CE T TR S A ElSg) A (3.19)

since Vi1 = Si41, we get 17,5 = 5%, So

= LE[(Se)" ) o e EleY 0|
S =V, =e " =g 3.20
t t ¢ E[(St+1)—7t ‘ft] & i E[eYtH(*%) ‘}—t] ( )

this implies
et = MYt+1|.7"t(13 ) (3.21)

we see that the value of v, is —67, |, and.by iteration we have v, is —07,; Vs > t. We have

q
04V

‘Z _ e*T(Tft)]EQ %

— | F (3.22)
Myz 77, ]

O

3.2 Change of measure for the NIG GARCH(1,1) model

It has been see that from [16] Tak(2004) the conditional Esscher transform perform the
same result as [6] Duan (1995).

Now, we apply the conditional Esscher transform to the NIG GARCH(1,1) model. Sup-
pose the log return In(S;/S;—1) = {X; }er follows a GARCH(1,1) process and X;|F;—q1 ~
NIG(d, 3, i}, 8;) under P.more explicitly,

Xi = r4+MWhi+ Va8 (1 =84 b+ Ve
where et~ NIG(, 3, —\/aﬂ/(l - 5/2)1/47 (1- 5/2)3/2>

where h; follow a GARCH(1,1) process as defined in (2.12), A is the risk premium and r is
the risk free interest rate. we can also claim that the residual ¢; is with zero mean and unit



variance

/ \/67 / ,
E(s) = —Va/B'(1- 2)1/4+W6 /(1 —B2)3/2 =0

1_ 32)3/2
Var(e) = El — g’2§3/2 =1

the above specification implies that X; ~ NIG(«/, 8,7 4+ Mk, (1 — 3'2)3/2h;), the condi-
tional mean and variance of X; are

EXy = r+W\+VaB 01— h
VCLTXt = ht

we can see X + Vo' (1 — 32)1/4 as total risk premium. Then we want to find the Esscher
parameter 6] for this model by solving the following equation

M(0: +1)

o= MO LD (3.23)
=7 = r4+ A+ \/a’2 — /B + \/ — B2)3/2 )2 (3.24)
- \/ [a/B" + \/a — ("2)3/2 1y (0, + 1)]? (3.25)

(3.26)

This equation can be solve explicitly by a quadratic.form, the solution must satisfies |3’ 4+

L 2,00 <1

Corollary 3.1. Under our assumption if-X¢|Frtis NIG(o/, 3,1 + MWy, (1 — 3'2)3/2hy)

distribution under physical measure P, then under the risk neutral measure Q with Ess-
cher parameters 0}, the distribution of Xi|Fi—1 becomes NIG(a/, 3’ + 1/ (lfi#whteg,r +
MWhi, (1= 87%)*?hy)

Proof. the moment generating function My, |r, , (2; 07) is given by

Mthft,1(2592)q (3.27)
- S o
— oxp(r+ MW + \/ o — [/ + \ [l (1 — B2)32h,6,%) (3.29)
x exp(—\/ [/ + ol (L= 32)32h (6, + 2)]2) (3.30)
= exp(r+ Ahe + o/\/l — 6+ (1_55)3/2’”942) (3.31)

% exp(—\/o/2 — o/ (B + M@) + \/0/(1 — 32)3/2h,2]2)  (3.32)

«

10



therefore under Q

1 _ /
Y| Fio1 ~ NIG(o!, ' + ( ﬁ) L 0+ M\ he, (1= 3%)321y) (3.33)
O

Corollary 3.2. We have under original probability measure P the NIG GARCH model is:

X, = r+A\/h7+Wﬂ’ — B 1/4\f+v7t
n = \/h:é—t ~ NIG ﬁ; \/>ﬁ /2 1/4\/> h /2 3/2)

he = po+pini_y +mihi

After Esscher transform(with Esscher parameters {0]}), under Q the model becomes:

X; = r+ MWh+ Va3 (1 -8 b+ 7
_ [312)3/2
o~ NIG(o/,ﬁ’—i- %W& \ﬁﬂ /2 1/4\fh /2 3/2)

he = po+ Py + mihio

4 Estimation

The parameters w = (¢, 8/, po, p1, p2, 71, A) € O, where o/ >0, || <1, po > 0, p1,m >0,
p1+m <1land A € R

Then we can estimate the parameters by maximizing’the log likelihood function

I
L(O/75/7P()7P177T1a)\) = ZLt<al,ﬂ/,p0’p1,ﬂ'1,)\> = (41)
t=1
n 1 T T
§lno/ —nlnw — 3 Zlné,ﬁ +n(a/v/1—32) + B'Z Vol /8 (xy — up) (4.2)
=1
( Tt — Mt)2

where p; = r + A/hy, 8 = hy(1 — 5'2)3/2
he = po + p1(2e—1 — me—1)* + Ty (4.4)
where my =7 + (A +Va/# (1 — 3"%)/*)/h; All parameters with the following constraint
>0, |#<1, po>0, ppandm >0, po+m <1, NAER (4.5)

The gradient is in the appendix.

5 Numerical Examples

We present numerical results of our NIG GARCH pricing model using the colse values of
S&P 500 daily index series from Jan 3,2000 to Apr 6,2006, a total of 1578 observation of

11



log return.
We estimate the parameters of NIG GARCH model via maximum likelihood estimation,
the following are the estimated parameters.

o I A Po p1 m

7.4820 | —0.1302 | 0.3832 | 2 x 1079 | 0.0884 | 0.8947

After estimating the parameters, we applying the estimated parameters to simulate the op-
tion price by Monte Carlo simulation. In order to find the risk neutral Esscher parameter,
solving a nonlinear equation is necessary. So the simulation is time consuming, and we use
the basic Monte Carlo simulation without any variate reduction technique. For each option
price, we produce 100,000 paths to calculate it by the soft ware MATLAB 7.1. The fol-
lowing tables show the comparison for the option pricing of NIG GARCH model and Black
Schole pricing formula.(Assuming the risk free interest rate » = 0 and the initial conditional

volatility hg is equal to the variance of the whole sample)

Maturity S/K B-S NIG GARCH
30 1300/1000 | 300.0004 300.0725
30 1300/1100 | 200.1114 200.1037
30 1300/1200 | 104.0798 104.7615
30 1300/1300 | 33.2843 32.0355
30 1300/1400 | 5.3272 4.9065
30 1300/1500 | 0.4026 0.5229
30 1300/1600 | 0.0151 0.0707
Maturity S/K B-S NIG GARCH
60 1300/1000 | 300.0579 300.0500
60 1300/1100 | 201.3983 202.1829
60 1300/1200 | 111.7655 111.2655
60 1300/1300 | 47.0631 44.3521
60 1300/1400 | 14.2924 12.7812
60 1300/1500 | 3.1118 3.0055
60 1300/1600 | 0.4970 0.7438
Maturity S/K B-S NIG GARCH
90 1300/1000 | 300.0579 300.9501
90 1300/1100 | 201.3983 204.6041
90 1300/1200 | 111.7655 117.8821
90 1300/1300 | 47.0631 53.5759
90 1300/1400 | 14.2924 19.5506
90 1300/1500 | 7.2563 6.2298
90 1300/1600 | 1.9249 2.0444

Comparing with the NIG GARCH option prices, the Black Scholes model always underprices
deep out of the money options and it can under price for over price an out of the money
options depending on the level of the initial conditional volatility.

12



6 Conclusion and Further Work

Empirical evidence shows that NIG GARCH model is more flexible to fit the real financial
return than the GARCH model with Normal innovation. We can modeling the skewness
Jhigher Kurtosis for the conditional return. The Esscher transform provide a simple method
to find a proper equivalent martingale measure via finding a Esscher parameters 6.

We can find that the Monte Carlo simulation is time consuming, so finding a good method
to control variate of the simulation is important task. Since every time step of simulation,
we have to solving a nonlinear equation to find the Esscher parameters. Reduce the number
of simulation will reduce the simulation time.

7 Appendix

7.1 Modified Bessel Functions

The modified Bessel function of the third kind with order A, denoted by K)(-). Here are
some properties useful.

e Integral representation

Kale) = 5 [0 oples ey Ny >0 (7.1

e Basic properties
R ) (7.2)
K (x) SRR ) + K (2) (7.3)

e Relation of K)(z) and I)(z), asymptotic properties.
Let I)(x) be the modified Bessel function of the first kind.

Kale) = Garsla@) — @) (7.4
Ky(z) ~ T(\W)2M 1A asx |0 (7.5)
Ko(z) ~ —Inz asx | 0 6)

13



e Derivatives w.r.t ©

Kjl) = —Ki(@)
Ko@) = 3 (Krnr(@) + Kya(e)) =~ Ka(a) — Ko (o)
(In K)(x))" = % — Ry(z)
@) = S - DA
where
_ K@)
Ry(x) := I)g\rizﬂf) x>0
_ Eypa(x)Ki(z) — K3, (2) .
S)\(:U) = K;(.CC) >0
e Properties of Ry and §)
1
) = B
R)\(.%') = % + R_)\(I')
(@ = B g
R_ypp(z) = 1, 4Ry)(x) =T é, R_3)5(x) = - i 1

7.2 Moment structure of Generalized Inverse Gaussian

(7.9)
(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)
(7.17)

(7.18)

If we say Z ~ GIG(\6,v). Theprobability density function of Generalized Inverse

Gaussian distribution is denoted by
A—1

9= (3) gy o (4 +29)

The moments of Z are given by

51 (7 Eags(97)
B2 = (3) D)

and this formula holds for negative values of s, i.e. for inverse moments, too.

Em 7] = 222
0s |s_o
here
i PELZ) _ (7, (5) Bowal) | (2y 10 e
ds 5 v) Kx(0y) " \6) Kai(0y)0s
using

Koeal0) 2 (A +5)

0
7K}\+S(57) = s

Js

and setting s = 0, gives

0
A+ s)

E[lnZ] = In (i) + K)\z&y)aa)\K)‘((SV)

14
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(7.23)

(7.24)



7.3 Gradients of the GARCH NIG models.

In order to find the maximum likelihood estimator, we must derive the gradients of our
likelihood function for the numerical method.
Consider the GARCH-NIG models in section 4, the log likelihood for one observation is

given by

Lt(a/7)‘76/71007p117r1) = (725)

1 1

ilno/—lnﬂ'— ilnéé—i—a/\/l—ﬁﬂ—i—ﬂ/ o )8 (zy — pay) (7.26)
1 (21 — pue)? / (z¢ — pe)?

R N (R iy 7 RSN | T 7 2
5 n < + S0 +InK |« + 5ol (7.27)

where p; = r + My, 6 = hy(1 — 32)%/2
hi = po + p1(we—1 — my—1)? + m1he1 (7.28)

where m; = r + (A +Va/8/(1 — )Y /.

AL (! ,6',A,p0,p1,p2,71)
oa’

th(a,a ﬁ,a )\7 0, P1, 7‘-1) =

aLt (O/,,B/,A,po,m P2 ,71'1)
’

Im 6x1
[ OLi(a’ B pt,0t) ]
oo’
OLe(a B’ pt,0t)
_ o7
0
- O -
_ 0 0 _
06+ (B ,h
0 % ‘9ht(0‘/»5lv)\,P07917P2:7T1)
oo’
+ Oue(a’ B\ ht) + : O (O‘sg/’A’ht) a5t(££vht>
Gpt\&x P A ) 0 : ; -
66\/ 0 8ht(a/,ﬁ/7/\,p0,p1,p2,7r1) 1x2
!
omy 6x1
- 0 0 46x2
[ OLi(a’,B' pt,0t)
8/14
X
OLi(a 3", p,0¢)
L 96y 2x1
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where

Ohi (o', A\, p0,p1,p2,71) Ohi (o, A\,p0,p1,02,71,he—1)
oa’ oa’
8ht(a’,ﬁ’7/\7‘po,p17pz,7r1) 8ht(a’ﬂ’7>\,po;p1,pz,7r1,htq)
o] 6x1 omy 6x1
8ht—1(O/:ﬂ/»/\:PO:PhPQJ"l)
6 !
+ aht(aluﬂlvA7p07p1)p27ﬂ-17h’t—1) a
Oht—1 Ohi—1(a/,8",\,p0,p1,02,71)
oy 6x1
Each components can be written down as
OLi (!, 3, s, 0 1 _ — 11)? — 11z)?
t(OMﬁ;,U«ta t) = —+ 1—ﬁ’2+ﬁ(m fit) + i + (24 /Mt) _ (ze — pe)*)
oo’ 2c 2v/al Oy o/ by 20/81/1 + (ze—pt)?
t o’ o
+ (UCt - Mt)2
(xr—p)?
2a25:(1 + %)
aLt(a/7ﬁ/7ﬂt75t> o /ﬁ ( ) g,
a5 = ﬁ — ﬁ’Q Ty — Kt 5
OLy(o/, ', e, 61) g — pt
Opg P (xt ut /5t %)
oL/, B, e, 01) 1 BVl (v — ) (2 — pu)? (2 — pue)?
86 T2, R t o (@1—1)?
t © 2o o/iG B 201621+ ol
where

Ko(o/ (/T4 L ust) ) 1

Ji=— -
Ki(a/4/1+4 7(%&_,(’;:) ) a1+ 7(“0;(’;:)2

a,ut(0/7 6/7 )‘,7 ht)
N = Vh
8Ht(a/75/7)‘/7ht) )\

Ohy 2w

W — *Bht /17@25/

90¢(B' he) 1 amvage
o, = (1-5%)
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8ht(0€l,ﬂ/, >‘a P05 P15 P2, T1, htfl) ($t—1 - mt-l)ﬁ/(l - ﬁ/2)1/4\/ht—1

oo - Jal
8ht(0/7 5/7 )‘7 P0, P1, P2, 71, ht—l) \/a(l - 2/8/2) V htfl
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o 2(1 _ ﬁ/2)3/4
ah al? /7 )\7 b ) 77r ) h -
t( B Pg)\p/l P2, 71, N 1) _ —2,01(337&—1 _ mtq)\/ﬁ
8ht(a,)ﬂ,))‘7p07p17p2)ﬂ-laht—l) - 1
dpo
1ol
aht(a 7ﬁ 7>\a pg»p[l)lvp%ﬂ-la htfl) — (xt—l o mt—l)2
8h’t 0/7 ﬁ/7 )\7 P0, P1, P2, 71, ht—l
( ap2 ) = (xtfl - mt*1)2I{It71—mt71<0}
8ht(0/,ﬁ,,)\uP07plaP2,7Tlaht—l) o
= Iy
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