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Eigencurve Problems For A Class Of
Perturbed Block Circulant Matrices

Student: Jing-Wei Chang Advisor: Jonq Juang

Department of Applied Mathematics
National Chiao Tung University
Hsinchu, Taiwan, R.O.C.

ABSTRACT

Of concern is the eigencurve problems for'a class of "perturbed” block circulant
matrices C(«, ) with § arbitrary fixed- Here v > 0is a (wavelet) scalar factor and
0 € R represents a mixed boundary<constant. C{(«/; 5) is a block circulant matrix
only if § = 1. It is well-known thatfor each-e the eigenvalues of C(a, 1) consists
of eigenvalues of a certain linear combinations of its block matrices. Such results
are called the reduced eigenvalue problem for C(a,1). In this thesis, we obtain
two main results. First, the reduced eigenvalue problem for C(a,0) is completely
solved. Some partial results for the reduced eigenvalue problem of C'(a, 3) are also
obtained. Second, the second eigencurve problem, which plays essential role for
wavelet method for controlling chaos, for C(a,0) and C(a, 1) are discussed.
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1. INTRODUCTION

Of concern here is the eigencurve problem for a class of ”perturbed” block circulant

matrices.
C(a, B)b = Ao, B)b. (1.1a)

Here C(«, 3) is an n x n block matrix of the following form.

Ci(a,8) Cy(a,l) 0 e 0 C¥(a,B)
C2T(O‘7 1) Ol(av 1) 02(a7 1) e 0 0
Clo, B) =
0 0 Cl(a,1) Ci(a,1)  Ca(ay1)
Cy(a, ) 0 0 CT (1) ICy(e,B)I )
(1.1b)
Here
—1-05 « 0 0
1 -2 0
0 oo -2 1 .50
Ci(e B) = : Ly, S, : —WeeT
0 0 1 -2 1
0 0 1 2 ) o
=: Ay(3,27) — W%T, (1.1¢)

where e = (1,1,...,1)T, j is a positive integer, a > 0 is a (wavelet) scalar factor and
[ € R represents a mixed boundary constant. Moreover,

0 0 0
_ : : af  p
Ca(a, B) = 0 0 + @ee
6 0 0
=: A3(8,2)) + —ee (1.1d)



0 0 0 1
0 0 0 1 0
o1 0 -~ 00
1 0 - 0 0

C(a, B) is a block circulant matrix (see e.g., [1]) only if 8 = 1. It is well-known,
see e.g., Theorem 5.6.4 of [1], that for each « the eigenvalues of C'(«, 1) consists
of eigenvalues of a certain linear combinations of its block matrices. Such results
are called the reduced eigenvalue problem for C(«,1). In this thesis, we obtain
two main results. First, the reduced eigenvalue problem for C(«a,0) is completely
solved. Some partial results for the reduced eigenvalue problem of C'(a, 3) are also
obtained. The second problem in question is to describe the second eigencurve
A2(a), which plays essential role for wavelet: method for controlling chaos, of (1.1a)
for fixed 5. By the second largest eigencurve Ag(e) of C(«, 3) for fixed 3, we mean
that for given o > 0, A2(av, §):i8 the-second largest eigenvalue of C(a, 3). We re-
mark that 0 is the largest eigenvalue of Gy, 8) forany o > 0 and 8 € R. This is
to say for fixed (3, 0 is the first eigencurveof C'(a, 3)« A nontrivial upper bound is
conjuctured for the second eigencurveXo(er;0) (resp:, A2(a, 1)) when « is large is
obtained for any j and n € N.The remainder-of thisintroductory section is devoted
to a brief description about how this.eigencurveproblem arises and its related work.

This problem arises in the wavelet method for chaotic control ([4]). It is found
there that the modification of a tiny fraction of wavelet subspaces of a coupling
matrix could lead to a dramatic change in chaos synchronizing properties. We
begin with describing their work. Let there be N nodes (oscillators). Assume u;
is the m-dimensional vector of dynamical variables of the ith node. Let the iso-
lated (uncoupling) dynamics be 1; = f(u;) for each node. Used in the coupling,
h: R™ — R™ is an arbitrary function of each node’s variables. Thus, the dynamics
of the ith node are

N
W = f(w)+eY aih(u;),i=1,2,..,N, (1.2a)
j=1
N
where € is a coupling strength. The sum Zaij = 0. Let u = (uj,uy,...,uy)?,
j=1

F(u) = (f(uy), f(ug), ..., f(ux)T, H(u) = (h(uy),h(uy),...,h(uy))?, and A =
(ai;). We may write (1.1a) as

it = F(u) + eA x H(u). (1.2b)
2



Here x is the direct product of two matrices B and C defined as follows. Let
B = (bij)k, xk, be a ki x ko matrix and C = (Cjj)k, xks be a ko x k3 block matrix,
where each of Cjj, 1 <i < ko, 1 < j < ks, isaky X ks matrix. Then

ko
BxC = (Z bitCij )k x ks -
=1

Many coupling schemes are covered by Equation(1.2b). For example, if the Lorenz
system is used and the coupling is through its three components x, y, and z, then
the function h is just the matrix

(1.3)

o = O
= o O

The choice of A will provide the connectivity of nodes. For instance, the nearest
neighbor coupling with periodic, Neumann boundary conditions and mixed bound-
ary conditions are, respectively;given asud=A(1;N)+ Ax(1,N)+ AT (1,N), A =
A1(0,N)+ Aa(1, N)I and A = Ay (B, N4 Ao (o) + AT (8, N) + (1 - B) Ao (1, N1,
where those A’s are defined in !(1.1¢,d).

Mathematical speaking ([2])ythe second largest eigenvalue Ay of A is dominant in
controlling the stability of chaoticsynchronization, and the critical strength ¢, for
synchronization can be determined in term of Aoy

L
. = —maz 1.4
o= (14)

The eigenvalues of A = A;(1,N) are given by \; = —4sin? #, i=1,2,...,N. In
general, a larger number of nodes gives a smaller nonzero eigenvalue A, in magni-
tude and, hence, a larger €.. In controlling a given system, it is desirable to reduce
the critical coupling strength e.. The wavelet method in [4] would transform A
into C(a, ). Consequently, it is of great interest to study the second eigencurve of
C(a, B) for each B. A numerical simulation of a coupled system of N = 512 Lorenz
oscillators in [4] shows that with h = I3 and A = A(1, N), the critical coupling
strength €. decreases linearly with respect to the increase of a up to a critical value
a.. The smallest €. is about 6, which is about 103 times smaller than the original
critical coupling strength, indicating the efficiency of the proposed approach.

The mathematical verification of such phenomena is first achieved by Shieh, Wei,
Wang and Lai [3]. Specifically, they solved the second eigencurve problem for
C(a,1) with n being a multiple of 4 and j being any positive integer. Subse-
quently, in [5], the second eigencurve problem for C'(«,0) and C(a, 1) with n being
any positive integer and j = 1 is solved.



2. REDUCED EIGENVALUE PROBLEMS

Writing the eigenvalue problem C(a,3)b = Ab, where b = (b1, by, yby)T and
b; € C%, in block component form, we get

CT(a,1)b;_1 + Ci(a,1)b; + Cy(a,1)b; 1 = Ab;, 1<i<n. (2.1a)
Mixed boundary conditions would yield that
CT (o, 1)bo+Ci(a, 1)b1+Ca(a, 1)by = Aby = Cy(a, )b14+Cs(a, 1)ba+C7 (av, §)by,,
and
CT (0, 1)by_1+C1(a, 1)by+Ca(a, 1)byy1 = Ab,, = Ca(a, B)b1+CY (a, 1)by_1+1Cy (v, B)Ib,,,
or, equivalently,

C3 (a, 1)bg = (Calev, B) = Ci (e, 1))b1 + C3 (v, B)by,

1-4 0 -~ 0 0 0 g
0 0 01 =a( =g I 0 - 00 aB o
= : SR +—22j—ee b1 + + ga5ee b,
0 0 0 0 0 0
= (1 - ﬁ)CQT(av 1)jb1 + ﬂCQT(av ]-)bna (21b)
and
Ca(a, )by 1 = (IC1 (o, B)T = Ci(, 1)) by, + Ca(av, B)by
= (1— B)Cy(e,1)Ib,, + fCs(a,1)by. (2.1c)
To study the block difference equation (2.1), we set
b; = ¢’ v, (2.2)

where v € C% and § € C.



Substituting (2.2) into (2.1a), we have

[CT (o, 1) + 6(Ch (v, 1) — M) + 6°Cy(a, 1)]v = 0. (2.3)
To have a nontrivial solution v satisfying (2.3), we need to have

det[CT (a, 1) + 6(Cy(a, 1) — M) + 82Co (e, 1)] = 0. (2.4)

Definition 2.1. Equation (2.4) is to be called the characteristic equation of the
block difference equation (2.1a). Let 0 = dx(A) # 0 and v, = v (A) # 0 be complex
numbers and vectors, respectively, satisfying (2.3). Here k = 1,2,...,m and m < 27.
Assume that there exists a A € C, such that b; = Z’k”:lck(% (Mo (), j=0,1,...,n+1,
satisfy equation (2.1b,c), where ¢; € C. If, in addition, b;, j = 1,2, ...,n, are not
all zero vectors. then such 0 (\) is called the characteristic value of equation (2.1)
or (1.1a) with respect to A and v () its corresponding characteristic vector.

Remark 2.1. Clearly, for eachyaeand §, A in‘the.Definition of 2.1 is an eigenvalue
of C(a, B).

Should no ambiguity arises; we will write €4 (a,1y = CT, Ci(a,1) = C; and
Ca(a, 1) = Cy. Likewise, we will write As(,27) = A3(8) and A1(3,27) = A1(B).

Proposition 2.1. Let p(A) =40, (X) " 0;(X) is:awoot of equation (2.4)}, and let
PN = {ﬁ :0;(X\) is a root of equation (24)}+ Then p(N\) = p'(N). Let 6; and 0y

Vi1
be in p(N\). We further assume that §; and v; = : satisfy (2.3). Suppose
V424
V424
V2 -1
0; -0, = 1. Then 6;, and v, = =: v} also satisfy (2.3). Conversely, if
Vi2
Vi1
0;i - 0 # 1, then vy # vi.
Proof. To proof p(A) = p/(\), we see that
1 1
det[CT + 6(Cy — N) + 62Cs) = 52det[6—202T +5(CL = AD) + C)]
2 I o 1 T _ 2 v, 1 1
=4 det[ECQ + 5(01 - )\I) + CQ] =0 det[02 + 3(01 - /\I) + ECQ]

Thus, if ¢ is a root of equation (2.4), then so is %. To see the last assertion of the
5



proposition, we write equation (2.3) with § = §; and v = v; in component form.

27
Z [(CQT)lmvim + 6i(él>lmvim + 6?(Cg)lmvim] =0,1=1,2,..., 27, (2.5)

m=1

Here C; = C; — M. Now the right hand side of (2.5) becomes

1

27
(5)2{ Z [(C2)12i+1-m)Vi(2i+1-m) + Ok(C1)1(2 +1—m)Vi(2i +1—m)
m=1

+07(CF ) 123 +1-m)Vi(2i +1—m))}

2.7

1 _

= (a)Q{Z [(C;F)(2-7+1—l)mvi(2-7+1—m) + 5k(01)(2.7‘+1—1)mvi(2.7‘+1—m)
m=1

+5]% (CQ)(2_j+1_l)mvi(2j+1_m)]}, = ].7 27 ceey 2‘7 (26)
We have used the fact that
(A) a1 = (AN it —m) (2.7)

where A = CI or C; or Cy to justify the equality in (2.6). However, (2.7) follows
from (1.1c) and (1.1d). Letting v;(2i41-m) = Vkm, we have that the pair (0, vx)
satisfies (2.3). Suppose v, = v}, we see, similarly, that the pair (5%_, vy ) also satisfy
(2.3). Thus 3 = &

O

Definition 2.2. We shall call v* and —v*°, the symmetric vector and antisymmetric
vector of v, respectively. A vector v is symmetric (resp., antisymmetric) if v = v*
(resp., v = —v°).

Theorem 2.1. Let 6y = e%”, k is an integer and i = \/—1, then dop, k=0,1,...,n-1,
are characteristic values of equation (2.1) with 3 = 1. For each «, if A € C satisfies

det[CT + 521, (Cy — M) + 62,C5] = 0,

for some k € Z, 0 < k <n—1, then X is an eigenvalue of C(«,1).

Proof. Let A be as assumed. Then there exists a v € (CQj, v # 0 such that

[CT 4 691 (Cy — NI) + 62,C2]v = 0.
6



Let b; = 6§kv, 0 <j <n+ 1. Then such bls satisfy (2.1a), (2.1b), and (2.1c). We
just proved the assertion of the theorem. O

Corollary 2.1. Set

I'n=0C1 + 52n_kC§T + 6,C5. (28)

Then the eigenvalues of C(a, 1), for each «, consists of eigenvalues of Ty, k =
n—1

0,2,4,...,2(n —1). That is p(C(a, 1)) = U p(Tak). Here p(A) = the spectrum of
k=0

the matriz A.

Remark 2.2. C(a,1) is a block circulant matrix. The assertion of Corollary 2.1
is not new (see e.g., Theorem 5.6.4 of [3]). Here we mere gave a different proof.

To study the eigenvalue of C(«, 0) for each «, we begin with considering the eigen-
values and eigenvectors of CJ + C; + Cy and C — C; + Cs.

Proposition 2.2. Let T1(C) 4(resp., To(C)) berthe set of linearly independent
eigenvectors of the matriz G- that are-symmetric (resp., antisymmetric). Then
T2 (C3 +C1+C2)| = |T2(C3 £CwCa)| = [ TACT ~ Ci+Cs)| = |To(C3 —Ci+Co)| =
271, Here |A| denote the cardinality of the set A.

Proof. We will only illustrate the case for 0 <€, + Cy =: C. We first ob-
serve that |T3(C)| is less than<or.equal to 2971.%So is |T»(C)|. We also remark
the cardinality of the set of all linearlyrindependent eigenvectors of C is 27. If
0 < |T1(C)] < 2971, there must exist an eigenvector v for which v # v*, v # —v°
and v ¢ span{T1(C),T>(C)}, the span of the vectors in T7(C) and T»(C). It then
follows from Proposition 2.1 that v+ v®°, a symmetric vector, is in the span{T1(C)}.
Moreover, v — v° is in span{T2(C)}. Hence v € span{T1(C),T>(C)}, a contradic-
tion. Hence, |T1(C)| = 277!, Similarly, we conclude that |[T5(C)| = 2971, O

Theorem 2.2. Let 0y = ent, k is an integer, i = \/—1. For each o, if A\ € C
satisfies

det[CT + 6,(C1 — AI) + 62C5] = 0,

for some k € Z, 1 < k < n—1, then X\ is an eigenvalue of C(,0). Let A be
the eigenvalue of CT + Cy + Cy (resp., —CT + Cy — Cy) for which its associated
eigenvector v satisfies Iv = v (resp., Iv = —v), then X is also an eigenvalue of
C(a,0).

Proof. For any 1 < k < n — 1, let §; be as assumed. Let \; and v; be a number

and a nonzero vector, respectively, satisfying

[CT 4+ 6,.(Cy — M) + 62C5]vy, = 0. (2.9)
7



Using Proposition 2.1, we see that \j satisfies
det[CT + 69 _1(Cr — M) + 62, ,.Cs] = 0. (2.10)

Let 2, be a nonzero vector satisfying [C% +02,—k(C1—Ae)+02, _; Ca]va,—i = 0.
Letting

b, = 62% + 5k6§n_kv2n—k7i =0,1,...,n+1,
we conclude, via (2.9) and (2.10), that b; satisfy (2.1a) with A = A\g. Moreover,
jbl = §kka + j’vgn,k = 0pVopn_k + vp = bg.

We have used Proposition 2.1 to justify the second equality above. Similarly,
b, = Ib,,. To see \ = A, 1 < h€n— i, isrindeed an eigenvalue of C(«,0) for
each «, it remains to show thatyb; # 0_for some 4, Using Proposition 2.1, we have
that there exists an m, 1 < m: <27 such that vy, = V(2n—k)(2i—m+1) 7 0. We first
show that by # 0. Let m beltherindex for which vy, # 0. Suppose by = 0. Then

Vgon oF- OV 2n=kym = 0O
and
V(29 —m+1) T OkV(@n—k) (29 —m+1) = V2n—k)m T OkVkm = 0.

And so, Vg = 0iUkm, a contradiction. Let A and v be as assumed in the last
assertion of theorem. Letting b; = v (resp., b; = (—1)%v), we conclude that A is an

by
b,
eigenvalue of C'(«, 0) with corresponding eigenvector
by,
Thus, A\ is an eigenvalue of C(«, 0) for each a. O

Tk
n

Corollary 2.2. Let §;, = e=?, k is an integer, i = \/—1. Then, for each «,

n—

p(C(0,0)) = |J pT) | p5(Co) U 5 (L), where p5(A4) (resp., p*9(4)) the set

k=1
of eigenvalues of A for which their corresponding eigenvectors are symmetric (resp.,

antisymmetric).

We next consider the eigenvalues of C'(a, 3).
8



Theorem 2.3. Let 6 = e%ki, k is an integer, 1 = \/—1. Then, for each «,

Here [§] is the greatest integer that is less than or equal to %.

U »(Tar) 0% (T0), n is odd,

U p(Tar) U p° (L) U pA%(T,), n is even.
k=1

n
2

Proof. We illustrate only the case that n is even. Let k be such that 1 <k < 5 —1.
Let b; = 04, vor, + 02k05,, o V2n—2k, We see clearly that such b;, i = 0,1,n,n + 1,
satisfy both Neumann and periodic boundary conditions, respectively. And so

and

by = (1 — )by + by = (1 — B)Iby + (b,

bui1 = (1 — B)b,wt1Bbaia = (1 — B)Ib, + Bb1.

Here, 6o, 1 < k < § — 1, are characteristic values:of equation of (2.1). Thus, if
X € p(Tyk), then X is an eigenvalue of C(a;#3). The assertions for 'y and T, can

be done similarly.

O

Remark 2.3. If n is an everi.number, for-each a‘and [, half of the eigenvalues of
C(a, B) are independent of the‘cheice of 3. The:other characteristic values of (1)
seem to depend on 3. It is of interest to find them.

3. THE SECOND EIGENCURVE OF C(a,0) AND C(a, 1)

We begin with considering the eigencurves of ', as given in (2.8). Clearly,

10 - o Gopp
-2 1 0 0
r -2 1 - 0 (2 — 2cos )
. ————— " ’ce

mxXm

where m = 27. We next find a unitary matrix to diagonalize D1 (k).

Remark 3.1. Let (A(k), v(k)) be the eigenpair of Dy (k). If eZv(k) = 0, then A(k)
is also an eigenvalue of I'y.



Proposition 3.1. Let

Ar  k
o= — + = 1=0,1,..,m— 1, (3.2a)
m nm
6191,)@
ei20l1k
pi(k) = : (3.2b)
eimel,k
and
_( B PmoaR) )
P(k) = (B 1)) (3.2¢)

(i) Then P(k) is a unitary matriz and PH(k)Dy(k)P(k) = Diag(Aok * Am—1.%),
where P is the conjugate transpose of P, and

ALk =2co80, —2,0=0i1,..,m— 1. (3.2d)

(i) Moreover, for 0 < k < 2n, the eigenvalues of Dy(k) are distinct if and only if
k#0,n or 2n.

Proof. Let b = (by, ..., by,) ™. Writing theleigenvalue problem D, (k)b = Ab in com-
ponent form, we get

bj,1 —(2+)\)bj+bj+1 :0,_] :2,3,...,m—17 (338.)
—(2 + )\)bl + by + b2y b = 0, (3.3b)
Orbr + b1 — (2 + /\)bm =0. (330)

Set b; = &7, where 4 satisfies the characteristic equation 1 — (2+ )4 +62 = 0 of the
system Dj (k)b = Ab. Then the boundary conditions (3.3b) and (3.3c) are reduced
to

O™ = Oj. (3.4)

Thus, the solutions e | = 0,1,....m — 1, of (3.4) are the candidates for the

characteristic values of (3.3). Substituting e+ into (3.3a) and solving for \,

we see that A\ = )\, are the candidates for the eigenvalues of D;(k). Clearly,

(A, b) = (A1k, p(k)) satisfies D1(k)b = Ab and b = p;(k) # 0. To complete the
10



proof of the proposition, it suffices to show that P(k) is unitary. To this end, we
have that

- mt ={ 7Y

B

Clearly, pf (k) - p,(k) = m. Now, let [ # I, we have that

1_ m
pH pl/ Zelj(elk 91/ k) _Z 7,](2(l l)ﬂ.) :w :07

1—r
j=1

;201" . e .
where r = ¢/*%2™) . The last assertion of the proposition is obvious. ([

Remark 3.2. The eigenvalues and eigenvectors of Dj(k) were first given in the
Proposition 2.3 of [3]. For completeness, we give an easier proof above.

To prove the main results in this section, we also need the following proposition.

Proposition 3.2. Suppose D = diag(diilad,,) € R™*™ and that the diagonal
entries satisfy dy > -+ > dp,. Lety # 0 and 2221, ..., 2m)T € R". Assume that
(Ni(7), vi(7)) are the eigenpairs of D #yzzh with X (7) > A7) > ... > M (7). (i)
Let A={k:1<k<m,z =0} A ={1, . am}— A Ifkec A, then d = \;. (i)
Assume v > 0. Then the following interlacing relations hold M1 () > di > Aa(7y) >
dy > ... 2 An(y) = dim. Moreouery the strict inequality holds for these indexes
i€ A°. (i) Let i € A, \;(y).are"strictly increasing in v and 'yh—>Holo Xi(y) = N for
2

all i, where \; are the roots of g(\) = Z pi i

;y with N\; € (d;,d;_1). In case that
. —
k€A«

1EAC,d0:OO

Proof. The proof of interlacing relations in (i¢) and the assertion in () can be found
in Theorem 8.6.2 of [4]. We only prove the remaining assertions of the propo-
sition. Rearranging z so that z7 = (0,0,...,0,2;,,...,z;,) =: (0,...,0,27), where
i1 <2 < .. <iyand i; € A% j = 1,...,k. The diagonal matrix D is rearranged
accordingly. Let D = diag(D1, D2), where Dy = diag(d;,, ...,d;, ). Following The-
orem 8.6.2 of [4], we see that A;, () are the roots of the scalar equation f, (), where

Sy, (7)) =1+ VZ N0 =0. (3.5)
j=1 ] 15
Differentiate the equation above with respect to -y, we get

k 2 k 2
ST A .
s ey I LD DY ray vyl

J "J j:l

Thus,
11



2

d\; 1<
- > 0.
2 Z _ J ,-)/))2

J:1

Clearly, the limit of \;, () as v — oo exists, say Xij. Since, for d;; < \i; < d;;—1,

2

k 1
Zd —Az] O

j=1

Taking the limit as v — oo on both side of the equation above, we get

k 22
— Y9 =9 3.6
Zdi Y (3.6)

j=1 "% 15
as desired. 0O

We are now in the position to state the_following theorems.

Theorem 3.1. For each k and@; denote by Ajr(e) 1 =0,1,..., 29 —1=:m—1, the
eigenvalues of Ty. For k = 1:2,.../n =1, let (N st 1) be the eigenpairs of Dy (k),
as defined in (3.1), then there ewist Ay, such that aan;O Ark(a) = A . Moreover,
k(A ) = 0, where

3.7
;)\lm )\l1k+>\) (87)

Proof. Let k be as assumed. Set, for [ =0,1,...,m — 1,

—49[ k —i’le k —’L'QZ k —ikZ
H ij6 ek (l—e k) eTE(l—emn)
zi1 = pp (ke = Z eVt = 1 _ ek = 1 — e~k
Then
2 — 2cosmb 2(;08%”—2
2412141 = = = 0. 3.8
s 2 —2cost ALk 7 (3.8)

Let P(k) be as given in (3.2c). Then
—PH(k) - Ty - P(k) = Diag(—=Xok, -, —Am—1.%) + (k)P (k)e(PH (k)e) ™.

Note that if k is as assumed, it follows from Proposition 3.1-(ii) that Az, | =

0,...,m — 1, are distinct. Thus, we are in the position to apply Proposition 3.2.
12



Specifically, by noting A¢ = ¢, we see that A/ satisfies gr(\) = 0, where

; Ai—1,k) /\l 1k +A)

Conjecture 3.1. We conjecture that

Aok < Ao k=1,2,..,n—1. (3.9
The calculation via computer seems to confirm that (3.9) holds. Note that if
gx(—Ao.n) <0, then (3.9) holds true.
Remark 3.3. For m = 2, we have that

Aox+ A,

—_— 3.10
Aok + Ak (3.10)

)‘O,k =

Treating k as a real parameter, and_differentiating (3.9) with respect to k, we get

dX;, Aok Aok | ALk

2 %10,k Ak
k9 . :
ok +A0,0)° —2 = 20006 e AR+ 1) — (A + AT (T2 + =)
)‘Ok )\1k )\ )\1)]C
=Nk ik + A% T +()‘0k)\1k)()\0kﬁ+)\1 7 <0,

Consequently Ag , < Aj ;. A direct computation would yield that Aj; < Aon.

13



REFERENCES

[1] P.J. Davis, Circulant Matrices, John Wiley, New York, 1979.

[2] L.M. Pecora and T.L. Carroll, Master stability Functions for Synchronized Coupled Systems,
Physical Review Letters 80(1998), 2109-2112.

[3] S.F. Shieh, G.W. Wei, Y.Q. Wang, and C.-H. Lai, Mathematical proof for wavelet method of
chaos control, Journal of Mathematical Physics, J. Math. Phy., to appear.

[4] G.W. Wei, M. Zhan and C.-H. Lai, Tailoring wavelets for chaos control, Physical Review
Letters 89(2002), 284103.

[5] Jong Juang and Chin-Lung Li, FEigenvalue problem aand their application to the wavelet
method of chaotic control, J. Math. Phy., to appear.

14



	pp.pdf
	p.pdf
	中文摘要.pdf
	jkfdgjg.pdf
	致謝.pdf
	目錄.pdf
	eigenvalues.pdf

