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GA-QP Model to Optimize Sewer System Design
Tze-Chin Pan1 and Jehng-Jung Kao, M.ASCE2

Abstract: Sanitary sewer systems are fundamental and expensive facilities for controlling water pollution. Optimizing sewer design is a
difficult task due to its associated hydraulic and mathematical complexities. Therefore, a genetic algorithm �GA� based approach has been
developed. A set of diameters for all pipe segments in a sewer system is regarded as a chromosome for the proposed GA model. Hydraulic
and topographical constraints are adopted in order to eliminate inappropriate chromosomes, thereby improving computational efficiency.
To improve the solvability of the proposed model, the nonlinear cost optimization model is approximated and transformed into a quadratic
programming �QP� model. The system cost, pipe slopes, and pipe buried depths of each generated chromosome are determined using the
QP model. A sewer design problem cited in literature has been solved using the GA-QP model. The solution obtained from the GA model
is comparable to that produced by the discrete differential dynamic programming approach. Finally, several near-optimum designs
produced using the modeling to generate alternative approach are discussed and compared for improving the final design decision.
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Introduction

Sanitary sewer systems are essential for the protection of water
quality and the improvement of sanitation. The construction of a
new sewer system in a city is quite an expensive task, especially
in a highly populated city. However, the cost of establishing a
sewer system can be significantly reduced if the system configu-
ration �e.g., pipe diameters, pipe slopes, pipe buried depths, etc.�
can be effectively optimized �Mays et al. 1976; Li and Matthew
1990�. Unfortunately, an optimal design is difficult to obtain be-
cause a design optimization process offers numerous alternative
solutions �Liebman 1967� and involves many complex hydraulic
and engineering constraints �Argaman et al. 1973; Kulkarni and
Khanna 1985; Swamee 2001�. Typical constraints include main-
taining a minimum velocity for self-cleaning capability, prevent-
ing pipes from scouring with maximum velocity, placing
upstream pipes at elevations higher than those downstream, main-
taining a maximum water depth to prevent the flow exceeding the
design capacity, accommodating the diameters of commercially
available pipes, maintaining a minimum buried depth, and ensur-
ing that the diameters of downstream pipes are greater than or
equal to those of upstream ones. These constraints are often non-
linear or discrete and the size of a sewer network is generally
large; therefore, these complexities make this design optimization
problem difficult to solve.

Several optimization approaches �Walsh and Brown 1973;
Elimam et al. 1989; Liang et al. 2004� have been developed to
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solve sewer design problems. Unfortunately, these approaches
generally require excessive computational time to solve and this
makes them impractical. Although the discrete differential dy-
namic programming �DDDP� approach provides a significant im-
provement �Heidari et al. 1971; Mays and Yen 1975; Mays and
Wenzel 1976; Mays et al. 1976; Li and Mathew 1990�, it restricts
the search space and reduces the number of opportunities to lo-
cate the global optimum. The DDDP stages must be manually
divided for each individual problem and this reduces its practica-
bility. Furthermore, the computer program needed to implement
DDDP is not widely available.

The genetic algorithm �GA�, a search algorithm based on
natural selection and the mechanisms of population genetics
�Goldberg 1989�, has been widely applied to civil and environ-
mental problems �Goldberg and Kuo 1987; Simpson et al. 1994;
Lippai et al. 1999; Dandy and Engelhardt 2001; Liang et al. 2004;
Babayan et al. 2005; Afshar et al. 2006�. Since this algorithm uses
a code of model parameters instead of the parameters themselves
and searches from multiple points instead of a single point, it is
efficient for finding good solutions.

Although the GA has many advantages in solving a difficult
optimization problem, randomly generated GA variables may re-
duce its efficiency, even for solving a simple linear programming
model. If a problem is large or involves many variables, the solv-
ing efficiency of the GA will be reduced because the increased
number of variables also increases the number of alternatives. The
other major reason is that many of the randomly produced alter-
natives are unreasonable or inappropriate. Therefore, some re-
searchers have tried to combine the GA with linear programming
�LP� in order to improve the solving efficiency of a GA-based
model. For instance, in solving a nonlinear water management
model, Cai et al. �2001� chose some complex variables as the GA
variables. When the values of these complex variables are gener-
ated from a GA model, the nonlinear model becomes linear and
easier to solve using LP. A GA-LP model can significantly avoid
many unreasonable solutions being produced randomly. Berry
et al. �1999� also combined a GA with a LP to solve the optimi-

zation problem for a communication network design, and El-
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Araby et al. �2003� combined a GA with a successive LP to solve
a flexible alternating-current transmission allocation problem.
However, one point should be noted. Unlike with the traditional
formulation of LP, there is no guarantee of global optimality for
the result obtained from the proposed GA-LP.

Although the integration of a GA and LP is an attractive
method, the transformation of nonlinear functions into linear ones
by piecewise linearization is complex. Moreover, the resulting
piecewise linear functions may be significantly different from the
original nonlinear functions. Although increasing the number of
pieces can reduce the difference, it would also make the model
more complicated. Therefore, instead of piecewise linearization,
this study has transformed nonlinear functions into quadratic
forms and solved the problem by using quadratic programming
�QP�. A nonlinear programming model generally has multiple
local optima and the global optimum is difficult to find. By con-
trast, a QP model, although nonlinear, is unimodal and has only
one optimum, like a LP model, and the necessary algorithms are
available to find its global optimum. Furthermore, a quadratic
function maintains nonlinearity and is more appropriate than a
piecewise linear function for the representation of a nonlinear cost
function. Hence, this study has combined GA with QP, instead of
LP, to solve a sewer design model.

Some important design factors �for example, construction, ge-
ology, and traffic impact during construction� and unquantifiable
issues �for example, public preference, not in my backyard
�NIMBY� consensus, and land availability� are not included
within the scope of this study because they are not easily formu-
lated mathematically into the proposed model. Thus, the solution
obtained from existing sewer design models may not be the best
one or even feasible when unmodeled factors or issues are simul-
taneously evaluated. Generating near-optimum alternatives, there-
fore, is desirable in the exploration of a good alternative design.
Modeling to generate alternatives �MGAs� �Chang and Brill
1982; Chang and Liaw 1985; Gupta et al. 2005� is an effective
approach developed to generate alternatives that are good and
different. In this study, a special MGA function has been devel-
oped to evaluate the differences among the designs generated by
the GA-QP and DDDP models. As a result, several MGA alterna-
tives are generated and illustrated.

In the following sections, the chromosome and the fitness
function of the proposed sewer GA model are discussed first.
Next, the descriptions of the cost function and constraints of the
proposed QP model and then the transformations of the nonlinear
constraints into linear constraints follow. Finally, the applicability
and efficiency of the GA-QP model is demonstrated using the
example cited in Li and Matthew �1990�. The results, including
the MGA alternatives, are discussed and compared with that ob-
tained using DDDP.

GA Model

The GA model developed for the sewer design optimization prob-
lem utilizes a GA search algorithm simulating natural genetic
evolution �Goldberg 1989�. In the search algorithm, each decision
variable is taken as a gene, and a set of all decision variables is
treated as a chromosome. With the reproduction mechanisms in-
cluding selection, crossover, and mutation, the unfit chromo-
somes, determined by a fitness function, are eliminated, and the
other chromosomes survive and continue to the next generation

until an acceptable solution is obtained. The details concerning
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chromosomes, fitness, and the three operators are described
below.

Chromosome

Each set of decision variables is coded as a chromosome in the
proposed GA model. Each chromosome represents one design,
and the associated decision variables are coded as genes. The
diameters of all the pipes and the locations of the pumping sta-
tions are expressed by genes with binary codes. A chromosome
consists of the genes of the pipe diameters and pumping station
locations which represent a design layout of the sewer system
studied.

The values of the genes are randomly produced and thus the
generated chromosomes sometimes may be obviously unaccept-
able. For the sewer design problem, it is not easy to repair an
unacceptable chromosome automatically because upstream and
downstream pipes are strongly correlated, and changing one of
the pipes requires simultaneous changes of other related pipes.
Therefore, this study eliminates those unacceptable chromo-
somes, instead of repairing them, and generates another new chro-
mosome. To eliminate some of the unacceptable chromosomes
and enhance computational efficiency, this study adopts two
simple constraints: �1� the diameter must be large enough to trans-
port the accumulated flow from the upstream pipes; and �2� the
diameter of a downstream pipe must be larger than or equal to the
diameter of its upstream counterpart. The first constraint assures
that a pipe has enough flow capacity and is expressed by the
following equation:

Qi

Vmax
� � A

A0
�

�h/D�max

� �Di
2

4
� �� �1�

where Qi=flow rate of pipe i; Vmax=maximum velocity;
�h /D�max=maximum water depth ratio; �A /A0��h / D�max
=cross-sectional area ratio of the flow to the pipe at maximum
water depth; and Di=diameter of pipe i. On the left hand side of
Eq. �1� is the minimum cross-sectional area required to transport
the desired inflow and on the right hand side is the available flow
cross-sectional area given the constraint of maximum allowable
water depth ratio. Finally, the available cross-sectional flow area
of the sewer must be larger than the minimum cross-sectional
area.

The second constraint is used to maintain flow continuity by
assuring that the diameter of a pipe is larger than that of the
corresponding pipe upstream. The model checks all the diameters
of pipes selected in each generation. In order to reduce the pos-
sibility of generating too many unacceptable chromosomes, the
diameter of the outlet pipe is determined first, according to total
design flow rate, and this measurement serves as the maximum
diameter for the pipes upstream of the outlet pipe in order to
avoid choosing obviously unreasonable diameters. Once the di-
ameter of a pipe upstream to the outlet pipe is determined, it
becomes the maximum limit for the diameters of the correspond-
ing pipes upstream. This process is repeated until the diameters of
all the pipes are determined.

Other than the diameter, each candidate pumping station loca-
tion is also coded as a gene. If the code value is 1, a pumping
station is installed at the upstream end of the corresponding pipe.
Since a pumping station is quite expensive, a sewer system gen-
erally does not install it. Therefore, in order to improve the effi-
ciency of the search, all pumping station code values for the

pumps for all manholes were initially set at 0.
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Fitness Function

The fitness function of the GA model is used to evaluate the
fitness of a chromosome. In general, a chromosome with a high
fitness value is superior to a chromosome with a low fitness value.
In this study, fitness value is defined by the reciprocal construc-
tion cost of a sewer network

fn =
1

Cn
�2�

where fn=fitness of chromosome n; and Cn=cost of chromosome
n. The cost of each chromosome is computed by using the same
cost function as that used by Li and Matthew �1990�.

Selection, Crossover, and Mutation

Three processes of reproduction, crossover, and mutation are ap-
plied to generate new chromosomes in the GA model. In the
reproduction process, the probability of a chromosome being se-
lected for the crossover pool is determined based on its fitness
value. The selection process adopted in this study, as described in
Simpson et al. �1994�, is similar to playing a roulette wheel in that
the greater the area the higher the probability of being chosen.
The associated probability of each chromosome is determined by
the following equation:

pn =
fn

�n=1
N fn

�3�

where pn=selection probability of chromosome n, and N�num-
ber of chromosomes. In each generation, the selection probability
of a chromosome depends on its fitness value. As the construction
cost decreases, the fitness and associated area on the wheel both
increase. The ratio of the wheel area for each chromosome indi-
cates the probability of the chromosome being selected for the
crossover pool.

In the crossover process, two chromosomes in a mother gen-
eration are selected from the crossover pool to exchange their
binary �gene� information. This process randomly selects parts of
genes from two chromosomes and makes up a new chromosome.
In this study, the crossover process exchanges the diameters and
pumping station locations of two mother chromosomes to gener-
ate two child chromosomes.

The mutation process randomly selects the mutation point in
the chromosome and changes its binary information. The prob-
ability of a mutation is set by the user to indicate the frequency of
mutations that may happen in the GA model. The mutation pro-
cess changes the pipe diameters and pumping station locations in
order to increase the search range and to avoid being trapped at a
local optimum.

QP Model

To improve solving efficiency, this study has established a QP
model to determine the fitness value of a chromosome. The deci-
sion variables associated with the QP model are the slopes and
buried depths at the downstream ends of pipes. The objective
function and constraints of the QP model are listed below

Min Cn = �
NL

�Cn_Li + Cn_Pi� + �
NM

Cn_Mk �4�

i=1 k=1

JOURNAL O
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Cn_Li�Dn_i,hn_i,Li� = ��n_1i + �n_2i · Dn_i
2 + �n_3i · Dn_i · hn_i

+ �n_4i · hn_i
2 � · Li �5�

hn_i = GDi − bn_i �6�

Cn_Mk�Dn_k,hn_k� = ��n_1k + �n_2k · Dn_k
2 + �n_3k · Dn_k · hn_k

+ �n_4k · hn_k
2 � �7�

hn_k = GUk − �bn_k + sn_k · Lk� �8�

CPi�Pn_i,Qi� = Pn_i · ��1 + �2 · Qi + �3 · Qi
2� �9�

subject to

Sn_i_min � sn_i � Sn_i_max �10�

bn_i + sn_i · Li � bn_j �no pumping station at pipe i� �11�

bn_i + Dn_i + sn_i · Li � bn_j + Dn_j

�a pumping station exists at pipe i�

�12�

GUi − �bn_i + sn_i · Li + Dn_i� � ACmin �13�

GDi − �bn_i + Dn_i� � ACmin �14�

where Cn=cost of chromosome n; NL=number of pipes; NM
=number of manholes; Cn_Li=construction cost of pipe i; Cn_Mk

=construction cost of manhole k; Cn_Pi=construction cost of
the pumping station located at the upstream end of pipe i; hn_i

and Li=buried depth and length of pipe i, respectively; the values
of pipe cost function coefficients �n_1i, �n_2i, and �n_3i vary de-
pending on the diameter and buried depth of pipe i; GDi and
bn_i=respectively, ground surface elevation and bottom elevation
of the downstream end of pipe i; Dn_k and hn_k=diameter and
depth of manhole k, respectively; the values of manhole cost
function coefficients �n_1k, �n_2k, and �n_3k are set according to
the depth of manhole k and the diameter of its outlet pipe; GUk,
bn_k, sn_k, and Lk=respectively, ground surface elevation of
the upstream end, bottom elevation of the downstream end,
slope, and length of the pipe connected to the outlet of manhole
k; Pn_i=0–1 binary variable indicating if a pumping station
exists and located at the upstream end of pipe i; �1, �2, and
�3=pumping station cost function coefficients; sn_i=slope of pipe
i; Sn_i_min and Sn_i_max=minimum and maximum allowed slopes of
pipe i, respectively; bn_j and Dn_j =respectively, bottom elevation
and diameter of the downstream end of pipe j �pipe j is immedi-
ate upstream to pipe i�; GUi=ground surface elevations of up-
stream ends of pipe i; and ACmin=minimum buried depth.

Eq. �4� is the total cost function, as proposed by Li and Mat-
thew �1990�, which is used as the objective function of the QP
model. The construction cost of a sewer system includes all the
costs of its components, including pipes, manholes, and pumping
stations. This objective function is quadratic. Eq. �5� is the com-
puted construction cost of a pipe based on the diameter, buried
depth, and length of a pipe. Eq. �6� is used to determine the buried
depth of a pipe which is the difference between the bottom eleva-
tion �bn_i� and ground surface elevation �GDi� of its downstream
end. Eq. �7� estimates the construction cost of a manhole. The
cost of a manhole is computed based on the buried depth of a
manhole and the diameter of its outflow pipe. In Eq. �8�, the

buried depth of a manhole is computed based on the elevations of
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the upstream pipe it connects and the outlet of a manhole. Eq. �9�
is used to calculate the construction cost of a pumping station,
mainly depending on the volume of flow. A pumping station is
assumed to be located at the manhole of the upstream end of the
pipe.

In designing a sewer system, the flow velocity and water depth
in a pipe are important hydraulic constraints. However, the rela-
tionship among flow velocity, water depth, slope, and diameter is
nonlinear. If the flow velocity, water depth, and slope were deci-
sion variables in the model, the model would be too complex to
solve. When the diameter and flow volume are both determined,
the primary factor that influences the flow velocity and ratio is the
pipe slope. Therefore, as can be seen from Eq. �10�, this study
constrains the flow velocities and water depths in the pipes by
limiting the pipe slope range. Transformation of the constraints of
maximum and minimum flow velocities into the constraints of
maximum and minimum slopes is explained as follows:
1. Determine the flow cross-sectional area �A� by the following

equation for the maximum or minimun flow velocity �V�
under a specific flow �Qi� of pipe i:

cross-section area: A = Qi/V �15�

2. After the diameter �Di� of a pipe is set in the GA model, the
pipe cross-sectional area �A0� is known. When both the pipe
cross-sectional area and flow are known, the central angle
�	� from the center of the pipe circle to the water surface can
be theoretically obtained using the following equation:

area ratio:
A

A0
=

	 − sin 	

2�
�16�

However, Eq. �16� is difficult to solve for 	. To improve
solving efficiency, this study has developed a compatible re-
gression function

	 = f� A

A0
� = 92.88 · � A

A0
�5

− 232.13 · � A

A0
�4

+ 214.73 · � A

A0
�3

− 90.026 · � A

A0
�2

+ 20.044 · � A

A0
�

+ 0.39 �17�

The R-squared value for Eq. �17� is 0.9961;
3. When 	 is known, the hydraulic radius �R� can be deter-

Table 1. Design Parameters for Case Studied �Li and Matthew 1990,
ASCE�

Parameter name Parameter value

Maximum velocity 5.0 m /s

Minimum velocity 0.7 m /s �if Dn_i
0.5 m, Qi�15 L /s�

0.8 m /s �if Dn_i�0.5 m, Qi�15 L /s�

Minimum slope 0.003 �if Qi
15 m�

Maximum proportional
water depth

0.60 �if Dn_i
0.30 m�

0.70 �if Dn_i=0.35–0.45 m�

0.75 �if Dn_i=0.50–0.90 m�

0.80 �if Dn_i�1.0 m�

Minimum
cover depth

1 m
mined using Eq. �18�

20 / JOURNAL OF ENVIRONMENTAL ENGINEERING © ASCE / JANUARY
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hydraulic radius: R =
Di

4
·

	 − sin 	

	
�18�

Then, the maximum and minimum slopes can be obtained by
substituting V in the following Manning equation with the
maximum and minimum flow velocities, respectively;

Manning ’ s equation: V =
1

n
· R2/3 · S1/2 �19�

Maximal proportional water depth, �h /D�max, is an important
sewer design constraint. However, the water depth �h� of a pipe is
not an appropriate decision variable because the relationship
among water depth, diameter, and slope is too complex to be
formulated into the QP model. Therefore, the minimum pipe slope
is computed by using the following procedure in the QP model
instead:
1. The diameter of each pipe is determined during the applica-

tion of the QP model, and thus the �h /D�max for each pipe
can be determined by using the associated value listed in
Table 1;

2. Then, the central angle, 	, for each pipe is determined using
the following equation:

maximum proportional water depth:

�h/D�max =
1

2
· �1 − cos

	

2
� �20�

3. Then by substituting 	 into Eqs. �18� and �19�, the minimum
pipe slope can be computed.

In this study, the minimum flow velocity and maximum pro-
portional water depth are transferred to two separate limits on the
possible pipe slopes. The larger one of these limits is used as the
minimum slope constraint in the QP model.

The wastewater in a sewer system is generally collected using
gravity rather than a pumping station. Therefore, the bottom and
top elevations of the downstream end of a pipe should be higher
than or equal to those of the upstream end of the corresponding
downstream pipe. These two constraints can be expressed by the
following two equations:

ubn_i � bn_j �21�

ubn_i + Dn_i � bn_j + Dn_j �22�

where ubn_i=bottom elevation of the upstream end of pipe i; and
Dn_j =diameter of pipe j, located immediately upstream to pipe i.
The ubn_i in Eqs. �21� and �22� can then be replaced by the fol-
lowing equation to obtain Eqs. �11� and �12�:

ubn_i = bn_i + sn_i · Li �23�

In practice, sewer pipes need to be buried to a certain depth, in
order to connect the household waste flow with the sewer system
and also to avoid damage to the pipeline caused by such things as
heavy trucks. Eqs. �13� and �14� indicate that the buried depths of
both ends of a pipe must be deeper than a prespecified minimum
buried depth.

As a consequence of the constraint simplification procedure
described above, the proposed QP model contains only two deci-
sion variables: pipe slope and buried depth. In this way, the prob-

lem becomes easier to solve.
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MGA Function

Since some decision-making factors or issues, which are either
hard to quantify or difficult to formulate into the proposed model,
have been excluded the optimal solution obtained may not be the
true best. To facilitate the analysis for the selection of an appro-
priate alternative, various near-optimum design alternatives were
generated by applying the MGA method �Chang and Brill 1982;
Chang and Liaw 1985; Gupta et al. 2005�. The purpose of the
MGA is to identify maximally different solutions which can still
be regarded as good alternatives when compared to the math-
ematically optimal solution. The following procedure was applied
in this study to generate MGA alternatives from chromosomes
obtained by using the GA-QP model:
1. During the GA-QP search, all feasible solutions or chromo-

somes, with a cost less than 120% of the cost for the DDDP
solution, were saved;

2. Define a cost relaxation for good alternatives. In this study, a
10% relaxation to the least cost solution is set, i.e., any so-
lution saved in Step 1 with a cost difference of less than 10%
to the least cost solution is regarded as a good alternative;

3. Form an MGA alternative set with the least cost solution as
the first alternative;

4. Compute the MGA difference �MD� of each good alternative
to each alternative in the MGA alternative set by using the
following equation:

MDn = �
m

M �wD · �
i

NL

�Dn_i − Dm_i� + wB · �
k

NM

�Bn_k − Bm_k��
+ wp · �Min�PDn,1, . . . . . . . PDn,m�� �24�

where MDn=MGA difference of alternative n; M =number

Fig. 1. System layout of case studied �Li and Matthew 1990, ASCE�
of alternatives in the MGA alternative set; and m=one alter-

JOURNAL O
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native in the MGA alternative set; wD, wB, and wP=weights
of diameter, buried depth, and pumping station, respectively;
Dn_i and Dm_i=diameters of pipe i of good alternative n and
alternative m in the MGA alternative set, respectively; Bn_k

and Bm_k=buried depths of manhole k of alternatives n and
m, respectively; PDn,m=distance between the pumping sta-
tion in alternative n and the pumping station in alternative m,
and if one of the two compared alternative has no pumping
station, the distance is set to be that from the pumping station
in the other alternative to the outfall of the sewer system
studied. The MGA difference computed by using the pro-
posed MGA function is the sum of the differences of diam-
eter, manhole buried depth, and location of pumping station
between a good alternative, n, and all alternatives in the
MGA alternative set;

5. Incorporate the best alternative with the largest MDn and into
the MGA alternative set; and

6. Repeat Steps 4 and 5 until a desired number of alternatives
are generated or until the MGA difference is insignificant.

Case Study

The applicability of the proposed GA-QP model is demonstrated
by addressing the problem cited in Li and Matthew �1990�. The
problem is to design a sewer system for a residential area with a
total drainage area of 260 ha, 56 nodes, and 79 links, as illustrated
in Fig. 1. Designing such a system requires several major design
parameters, including Manning coefficient, maximum and mini-
mum velocities, maximum water depth, and minimum buried
depth. The values of these parameters for this problem are listed
in Table 1. The parameters of the cost function, �n_1i, �n_2i, �n_3i,
�n_1k, �n_2k, �n_3k, �1, �2, and �3 can be found from Li and Mat-
thews �1990�. There are 24 available commercial pipe diameters
�in meters�: 0.2, 0.25, 0.30, 0.35, 0.38, 0.40, 0.45, 0.50, 0.53,
0.60, 0.70, 0.80, 0.90, 1.00, 1.05, 1.20, 1.35, 1.40, 1.50, 1.60,
1.80, 2.00, 2.20, and 2.40. These diameters are represented by
binary codes in the GA model. The diameter, buried depth, and
pumping station weights of Eq. �24� are 200, 2, and 1, respec-
tively. For designing such a sewer system, several other essential
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Fig. 2. Best design cost among alternatives generated in each GA-QP
generation
issues such as the system topology �or layout� and the estimation
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Fig. 3. MGA versus DDDP/GS-QP results: �a� DDDP; �b� GA-QP; �c� MGA1; and �d� MGA2
22 / JOURNAL OF ENVIRONMENTAL ENGINEERING © ASCE / JANUARY 2009

J. Environ. Eng. 2009.135:17-24.



D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 o

n 
04

/2
5/

14
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.
of nodal demands should be considered as well; however, they are
beyond the scope of this study. In this study, the layout and the
demands used by Li and Matthew �1990� were adopted for com-
paring our results with their DDDP solution.

Result and Discussion

The Perl GA module developed by Kamphausen �2003� is used to
solve the GA portion of the proposed model and CPLEX �ILOG
2002� is applied to solve the QP model. The parameters of popu-
lation size and mutation probability are set to be 300 and 0.01,
respectively. Fig. 2 shows the least cost for all designs examined
in each GA generation, and the total generation is 1,903. In the
first ten generations, the cost reduces from about $87 million to
$10 million. The reproduction and crossover processes of the GA
model rapidly reduce costs. With respect to the subsequent gen-
erations, the crossover and mutation processes are implemented in
order to search for a better solution, and the cost finally declines
to $17 million, which is close to the cost �$1.67 million� obtained
using the DDDP model �Li and Matthew 1990�. The computa-
tional time for solving the GA-QP model is about 299 min CPU
time on a PC with an Intel Pentium 4 2.0 GHz CPU. This is an
acceptable amount of time for solving such a complex problem on
a low-cost personal computer. The proposed method was imple-
mented again by setting the DDDP solution to be the initial chro-
mosome, and a slightly improved solution with a cost equal to
$1.668 million was generated. Although it may be possible to
increase the population size or the number of applications for
obtaining a better solution from a typical initial solution, it will
require significant additional computational time.

Fig. 3 shows the DDDP, GA, and two typical MGA de-
sign alternatives. The DDDP alternative �Li and Matthew 1990�
�Fig. 3�a�� has one pump station in the upstream portion with
deep buried depth in the downstream portion. The GA alternative
�Fig. 3�b�� is a design with deeply buried manholes in the middle
and shallowly buried ones in the downstream portion. The MGA1
alternative, �Fig. 3�c��, has no pump station, and the diameters
for the pipes in the middle and downstream portions are smaller
than for those in the other alternatives. The MGA2 alternative
�Fig. 3�d�� has one pump station in the upstream portion, a
shallow-average buried depth, and a small diameter pipe in the
middle portion.

Some excluded factors or issues may be essential and should
be evaluated. For example, due to geological characteristics or
anticipated construction difficulties, some locations may not pro-
vide suitable buried depths or accommodate large diameter pipes.
Furthermore, a pumping station usually requires more space than
does a manhole, and a design alternative may not be able to place
a pumping station at a suitable location. In such situations, the
mathematically optimal solution may become less attractive or
even infeasible; here, the MGA alternatives can be helpful in
exploring a good design alternative. For example, the MGA1 al-
ternative, although its cost is slightly higher than that of others,
has no pumping station and this fact may make it an attractive and
energy-saving alternative; and when the locations suggested for
installing a pumping station indicated by the DDDP or GA alter-
natives are not appropriate, the location suggested in the MGA2
alternative may be a good substitute.

Conclusions

The design of an efficient sewer collection system is important in

order to save construction cost. However, finding the optimal de-

JOURNAL O
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sign solution from among numerous alternatives is a difficult task.
Several approaches such as piecewise linearization or dynamic
programming, although available for solving this design optimi-
zation problem, may either eliminate good alternatives or require
long computational time. Therefore, an efficient model based on
the genetic algorithm and quadratic programming is proposed.
The GA model uses coded parameters and searches from multiple
points to enhance the probability of finding the global optimum.
In this study, discrete variables in pipe diameters and pumping
station locations are selected as decision variables to enhance
model solvability. Two simple constraints are applied to the GA
model in order to eliminate unacceptable chromosomes in a pro-
cess designed to increase solving efficiency. To increase solving
efficiency for the model while preserving the nonlinear character-
istic of the original cost functions, a QP model is proposed and
integrated into the GA model. The proposed GA-QP model has
been demonstrated in a case study and various good design alter-
natives were obtained within an acceptable computational time.
Furthermore, several MGA alternatives were generated, illus-
trated, and compared to the GA-QP and DPPP alternatives. While
an excluded factor or issue may be essential, the GA-QP and
DPPP alternatives may be inappropriate or infeasible. For this
situation, good MGA alternatives which are significantly different
can be evaluated to find a good substitute.
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