Bt BF

L #m o~

TR AEE H Rt

Affine Processes and Applications

R4 LT E

Ui



b AR E H Rt

Affine Processes and Applications

MogoA Epa Student : Ming-Yao Tsai
hERR I FAF Advisor : Dr. Yuan-Chung Sheu
Bz o2~ F
st BBV,

A L i

A Thesis
Submitted to Department of Applied Mathematics
College of Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Applied Mathematics
June 2006

Hsinchu, Taiwan, Republic of China

PEARA LT ERD



FetiEAzE H R

g4 g I ERR A

MU 4

E]
B B85 (P74

3 £

FEEAEEPE DB AR EE D BR EE DS T AR D DS EARD
PRI i R L ed P4 33 b R A e Duffie v Filipovic ~ Schachermeyer
R BN O S E AR & P P O SRR oA R ATE AL DR The © AREE
Foo BAOTpE BN PR EHL F 0 EAE R IR AT R A



Affine Processes and Applications

Student: Ming-Yao Tsai Advisor: Yuan-Chung Sheu

Department of Applied Mathematics
National Chiao Tung University
Hsinchu, Taiwan, R.O.C.

ABSTRACT

Affine processes is a class=of Markoyv: processes taking values in R7* x R". The
rich variety of alternative types of randém behavior(e.g., mean reversion, stochas-
tic volatility, and jumps) and analytically-tractable for affine processes make them
ideal models for financial applications. Duffie, Filipovic and Schachermayer[ DFS03]
characterized all regular affine processes. Connections between regular affine pro-
cesses and superprocesses with a finite base space were also established. Based on
this observation, we construct more general affine processes and investigate sample

path properties and financial applications of these processes..
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1. INTENSITY MODEL
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There are two reasons why intensity model are important in the study of default
risk. First,intensity models ¢learly seém to'be the.most elegant way of bridging the
gap between credit scoringror default/ prediction models and the models for pricing
default risk. Second,the mathematical machinery~of intensity models brings into

play the entire machinery of default-freé term-struc¢ture model.

A process X of state variables with valuesimR? is.defined on the probability space
(2, F,Q). Let \: R? — R+¢be nonnegative function . We want to construct a
jump process Ny with with the'property that“A(X;) is the Fi-intensity of N. Let
Fy = GV Hy , where Gy = 0{X, : 0<'s <t} and H; = o{N; : 0 < s < t}, ie Fy
contains the information in both X and jump process. Let J; be an exponential

random variable with mean 1 , which is independent of (G¢)¢>o. Define

r=ingit: [ A = 1),
0

Consider a zero-coupon bond issued by a risky firm at time 0. Suppose the maturity
of the bond is T" and under the risk-neutral probability measure @, the default time
7 of the issuing firm has an intensity A(X,), where the setup is precisely as above.
Assume that there is a short-rate process r(X,) such that default free zero-coupon

bond prices can be computed as

p(t, T) = Eleap(— / r(X,)ds)|F),

1
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where T is the maturity date of the bond .On the other hand, the price of the risky
bond with zero recovery at time 0 is

T
v(0,t) = E[eo:p(f/() T(Xs)ds)l{T>T}]
—  E[E[ezp(- / F(X)ds)Lrory|Gr]
T
= Efeap( / F(X.)d)E[Ly 51y |Grl]
= Eleap(- / r(X.))exp(— / A(X.)ds)]

T
= E[exp(—/o (r+ \)(Xs)ds)].

In general, we want to compute the price Sy of default claim having the expression

T
(L.1) E(eap(— / r(X,)ds) f(X7)1 (oo | ).

Lemma 1.1
Let Y be a Fj;-measurable random variable , where F; = H; V GG; , then

E(lirssy - Y|F) = L BAELGerplo “Y(Gy), Vs > ¢

According to Lemma(1.1) , we obtaim
T
E ( exp( / r(X.)dsYf (Rt
T .
= 1psnE(erp(~ / Ao ST / N(XaYs) F(X1) 1o |G)
T & T
— 1penElep(— / r(X.)deupl / A(X.)ds) f(Xp)eap(— / A(X,)ds)[Gy)
T
= 1psnEleap(— / (r + N)(X2)ds) f(X7)|Gl.

2. AFFINE PROCESSES

A Markov transition function in a measurable space (E, B) is a function p(r, z;t, B),r <
t € R,z € F, B € B which is B-measurable in z and which is a measure in B subject
to the conditions:
(A) [pp(razit,dy)p(t,y;u, B) = p(r,z;u,B) for all r < t < u,x € E and all
BeB.
(B) p(r,z;t, E) <1 for all r,z,t.
To every Markov transition function p there corresponds a family of linear operator
T} acting on functions by the formula

T7 f(z) = /E p(r. 2, dy) £ (y).

It follows from (B) that 7777 = 17 for all r < s <t € R. We call T' the Markov
semigroup corresponding to the transition function p.
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We assume that (E, B) is a measurable Luzin space. To every Markov transition
function p there corresponds a Markov process & = (&, F(I),1I, ;) such that

Hr,z{gt S B} :p(T‘,.’IJ;t,B),

I, .{&, € B1, -+ ,&, € By} =/ p(r,z;ty, dyn)p(ty, yiste, dy2) - p(tn—1,Yn—1; tn, dyn)
By x---X By,

forn > 2t <ty <--- <ty
If the transition function p(r,x;t, dy) satisfies a condition

p(r,x;t, B) = p(r + s,x;t, B)

for all r,s,t,B, then & = (&, F(I),I1, ) is time homogeneous. In this case we
consider only process & = (&, F;,1I,;) where II, = Iy, F; = F|0,t], and & is
defined for all t > 0.

From this point on we consider £ = R" x R" and write d = m + n.

Definition 2.1 We say that & = (&, F(I),1l,,) is affine if for every r < t € R
and \ € R?, there exists ¢(r,t,\) € C and 1(r,t,\) € C¢ such that

(2.1) II, ,[exp{i < A, & >}] = exp{o(r, t, )+ < ¥(r, t,A),z >}

for all x+ € E. Here < z,y >= Zlemiyi for = (x1,z9,...,24) and y
(Y1,Y2, -, ya) in C4 Clearly if ¢ istimer homogeneous, then we have (r,t,\) =
Yt —r,A) and p(r,t, \) = p(t27N).

Example 1 (Ornstein-Uhlenbeck|process)
Consider an Ornstein-Uhlenbeck process

d¢, = ol — &)dt + odw,

where w is a standard Brownian and «, [ and gare positive constants. Through an
application of Ito’s formula, we/get

t
G=e "+ 1)+ a/ e dws].
0

Clearly, X is normally distributed. Because e®* is continuous in [o,t], >, an €% (W, s:

converge to fg e**dWy in probability , where A™ is subdivisions of [o,t]. Therefore,
t
(2.2) E| Z e (W, ., — Ws,)] converge to E[/ e dW s,
s;EA™ 0

as s —t, E[fg e®dWs| = 0. Hence E[&] = e[z + [(e*" — 1)] and Varé,
=E[& — ez + (e —1)]]> =02 efzo‘tE[fOt e®*dW;]%. By the calculus

(2.3) eatth . eatth — €2atdt,

we have
t 0_2

(24) Varft = 0-26720415 . / eZast — 7(1 _ 6720415).
0 2c

Consequently, & is normally distributed with mean

& = e [z +1(e® —1)]
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and variance
2

Varé = ;—a(l — et

This implies that
e = exp{v(t,\) + u(t, \)z}

with
A2a?

v(t,A) = ide (e — 1) o

(1 _ 672at)

and
u(t,\) = ide .
Here, we provide different way.
Consider for ¢t > 0

(2.5) dXs = (a—bXy)ds + odW,, wherea,b,o > 0

(2.6) v = EY[eM], wherev(s,y) : [0,t) x [0,00) — R

We want to claim v(s, y) has the form e~ 150N =¥2(60y et v* (s, y) 1= e~ #1 ()= v2(st)y
where

A A2g2
(27) 301(37t7 >‘) = 7?(1617(3715) + Tlo)-e2b(87t) + ka
k is constant
(2.8) 0o (s, = e?Ert)
Applying the Feynman-Kae Thm to
- ov* * * — >‘202 s— s—
() = S (5,) = Ay (5, ol SRR D[E-2070 — (o — b)),

Aa + \2o?
b
satisfying the polynomial growth condition . Hence v*(s,y) = E*Y[e*X¢]

(it)v* (t,y) = e, (df)matocs<¢|v* (s, y)| <

Example 2 (Feller’s diffusions)
Feller considered a class of processes that includes the square-root diffusions

dé, = a(l — &)dt + o~/Edw,

where w is a standard Brownian. We consider the case that «, and ¢ are positive
constants. Based on results of Feller[Fe51], Cox, Ingersoll and Ross[CIR85] noted
that the probability density of the interest rate at time s, conditional on its value
at the current time t, is given by f(£(t),t;€(u),u) = ce™*Y(£)3 1, (2(wy)?)
where

c= 2«

ST —e-at=T)
w = c&(u)e” =)
y = (1)
q=35-1

igm

(2.9) Iq(2)2672

- Jq(iz)



where
=
(2.10) Ja(2) = (3) Z:jm

and I'(y) = fooo e~®.x¥~ldx . Hence, the distribution of & given &, for some u < t,
is distributed as 02(1 — e~ *(=%))/4a times a noncentral chi-square distribution
X2 ()\) with degree of freedom

e
V= ?
and noncentrality
40[6701(1571/,)

A= w
0-2(1 _ e—a(t—u))§

Therefore the Laplace transform of &; is given by
1 Acf

L, —A& _
€ (2)\C+1)21a/02 emp{ 2)\C+1}

with ¢ = 02/4a(1 — e~ and f = dza/(0? (e - 1)).
Here, we supply distinct method.

Consider
(2.11) dX, = (a — bX,)ds + o/ X, dW,
(2.12) ¥(s, y) = B4 X

where v(s,y) : [0,¢) x RT = R*
We want to claim v(s, y) has the forme=#O)=8(DY Tet v*(s,y) := e PN —¥(s:0y
where ¢(s,t),1(s,t) staisfying

(213) 90’(57t) B ‘_ad)(s’t)

(2.14) P (s, t) =bplsst) + 1/}2(257 2 o?

where @(t,t) = 0,9(t,t) = A.

2bhe bt
—02Xe bt 4 2bebs 4 e=bsg2 )\

(2.15) P(s,t) =

2 2
(2.16) (s, t) = ;§<b5 +log(—a?Ae P + (2b + o2\ )eb%)) — ;‘; - log2b

Applying to Feynman-Kac Thm to

(2.17)
. ov* ” " yo? 2
(i) — g(s, y) = Asv*(s,y) where Av*(s,y) = 7902(8,15) — (a—by)pa(s,t)
(2.18) (id)v*(t,y) = e

(2.19) (i5i)v* (s, y) satisfying the polynomial growth condition.
Hence,we obtain v*(s,y) = E%¥[e*X¢]

Example 3 (Heston’s Model)
An important two-dimensional affine model was used by Heston to model option
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prices in settings with stochastic volatility . Here, one supposes that the underlying
price process U of an asset satisfies

dU; = Ui(vo + 1 Vi)dt + Up\/ Vid By,

where 79 and 7; are constants and V' is a stochastic -volatility process, which is a
Feller diffusion satisfying

(2.20) AV, = k(T — V)dt + e/ V,dZ,

for constant coefficients k,v, and ¢ , where Z = pBy + /1 — p2Bs is a Brownian
motion that is constructed as a linear combination of independent standard Brow-
nian motions B; and Bs.Letting Y = logU, a calculation based on Ito’s Formula
yields

1
(2.21) dY; = (yo + (1 — 5 Va))dt + /VidBy

which implies that the two-dimensional process X = (V,Y) is affine, with state
space D =R, xR

Now We have the main characterization results from Duffie et al.(2003a). First, we
state an analytic characterization result for regular affine processes.

Definition 2.2 The Markov process (X, (Px)xecp) , and (P;) , is called stochas-
tically continuous if ps(x, 95— py(w,:) weaklyson D , for s — ¢ , for every
(t,x) e Rx D

Definition 2.3 The Markov process{X, (Px)xep) , and (P;) , is called regular if
it is stochastically continuous and the tight-hand derivative

(2.22) Aful®)i= 0/ Pefu(®)e=o

exists for all (z,u) € D x U , and is continuous at u = 0 for all z € D.

Theorem 2.1 Suppose X is regular affine . Then X is a Feller process . Let A
be its infinitesimal generator. Then C°(D) is a core of A, C2(D) C D(A) , and
there exist admissible parameters (a,a, b, 3,¢,7,m, i) such that , for f € C?(D),

d 2
Af(x) = Z(akl+<aykl,y >)g f(g )

k=1

+ <b+ Bz, Vf(z) > —(ct+ < v,y >)

(2.23) + /D\{O}Gfo(x,ﬁ)m(df)

+

E G(}l x L,ut d
Where

(2.24) Gfo(x, &) = flz +&) — f(x)— < V. f(2),x=(£) >,
(2'25) Gfl(‘r7f) = f(.’l? + 5) - f(.’L')— < vz(z)f(‘r)7 Xz(z)(f) >,
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Moreover,(2.1) holds for all (t,u) € Ry x U where o(t,u) and ¥(t,u) solve the
generalized Riccati equations,

t
(2.26) pltn) = [ F(o(s.w)ds
0
(2.27) — OV (t,u) = RY(t, Y (t,u), elt A7 Odsy) yv(T T u) = v
(2.28) WV (tu) = e Tw
with

F(u) =— < au,u > — <bu>
_ / (€<% — 1= < uy, xs(€) >)m(de)
D\0
RY(u) =— < aju,u > — < 3 (u) >
—/ (e<"t> —1- < Wiy, X (i) (&) >)pi(d€)
D\ (0)

and
ﬁiy ::(6T)i{1,...,d} eR%ie
ﬁZ Z:(,@T)JJ = Rnxn

Conversely,let (a,a,b, B, c,v,4 1) be admissible parameters .Then there exists a
unique regular affine semigroup (Pr) with infinitésimal generator (2.23) and (2.1)
holds for all (t,u) € R x U.where o(t,u) and @h(t,u) are give by (2.26), (2.27), and
(2.28).

3. TRANSFORM ANALYSIS-AND ASSET PRICING -FOR AFFINE JUMP-DIFFUSION

We fix a probability space:(Q,F, P) , and+an information filtration(Fi), and
suppose that X is a Markov process in some state space D C R", solving the
stochastic differential equation

(31) dXt = /L(Xt)dt + O'(Xt)th + dZt,

W is an (F})-standard Brownian motion in R™ ; y: D — R™ | ¢ : D — R", and
Z is a pure jump process whose jumps have a fixed probability distribution v on
R™ and arrive with intensity {A\(X;) : t > 0}, for some A : D — [0, 00). We impose

n "affine” structure on pu, o0 ", and A, in that all of these functions are assumed
to be affine on D. We fix an affine discount-rate function R : D — R. The affine
dependence of p,o00 ", \and R are determined by coefficient (K, H, 1, p) defined by

1)u(x) Ko+ Kz, for K = (Kp, K1) € R" x R"*™.
i) (o(x)o(z) )i = (Ho)ij + (Hi)ij - x, for H = (Ho, Hy) € R™X™ x RXnxn,
111))\ x)=1o+ 11 z, for L = (lp, 1) € R x R™.
JR(z) = po + p1 -z, for p = (po, p1) € R x R™.

Let 0(c fRn exp(c - z)dv(z). The jump transform 6 determines the jump-size
dlStrlbuthIl The coefficients (K, H,1,0) of X completely determine its distribution
its distribution, given an initial condition X (0). A characteristic x = (K, H,[,0,p)
captures both the distribution of X as well as the effects of any discounting, and
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determines a transform ¢X : C" x D x Ry x Ry — C of X7 conditional on F; when
well defined at ¢t < T, by

T
(3.2) WX (1, X0, 8, T) = EX[eap(— / R(X4)ds)e" X7 |,

t
where EX denotes expectation under the distribution of X determined by x.

Definition 3.1
A characteristic (K, H, 1,0, p) is well-behaved at (u,T) € C™ x [0,00) if (2.5)-(2.6)
are solved uniquely by B and «; and if

T
(1) E / aldt < oo, where 7 = pu(B(3(1)) — DA(XL),

T
2) E/o (nrm)% < 00 where n; = ¢ B(t) o (Xy),

and

¢
(3) Elpr| < 0o, where ¢ = e:rp(—/ R(X,)ds)e*®+A0)-X )
0

Proposition 3.1
Suppose (K, H,1,0,p) is well behaved | at (u, T Then the transform ¥X of X defined
by (3.2) has the form e*OFPOTywhere ai-and B satzsfy the complex-valued ODEs.

(3-3) B(t) = p1 — KB(t) & —5T(t)H1,6’( = hL0((1) - 1),

(34) /()= po— Ko~ B(t) DSBTHA() ~ lo(0(3(1) — 1),

with boundary conditions B(T) = u and a(T) =0

4. CONNECTION OF INTENSITY MODELING AND AFFINE PROCESSES

From now on, we suppose that X is conservative regular affine with with pa-
rameters (a,a,b,3,0,0,m, ). Let I € R, A = (AY,\%) € R™ x R™ and define the
affine function L(x) := [+ < A,z > on R?%. In many applications L(z) is a model
for short rates. The price of a claim of the form f(X;), where f € bD, is given by
the expectation

Q:f(x) := E$[exp(—/0 L(X)ds) f( X))

Suppose that, for fixed z € D and t € Ry, we have E,[exp(— fo ] < o0.
Then R? — Q; fzq( ) is the characteristic function of X; with respect to the bounded
measure exp(— fo s)ds)P,. Hence, if one knows Q:f,(z) for all uw € 9U, the
integral can be calculated via Fourier inversion. We use the martingale methods
and is more general. But it requires an enlargement of state space and an analytic
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extension of the exponents ¢ (£,.)¢ (t,.) of some (d+1)- dimensional regular affine
process X " For r € R write

(4.1) R =r+ /t L(X,)ds.
0

It can be shown that (X, R") is a Markov process on (2, F, (F}),P,) for every x € D
and r € R. In fact,we enlarge the state space D — DxR and U — U x iR, and write
accordingly (x,r) = (y, z,7),(u,q) = (v,w,q) € U xiR. Let X' = (Y/, z', R,) be the
regular affine process with state space D x R given by the admissible parameters

T a 0 T OZZ'O .
a—[o 0],041-—[0 0],162

and

m' (d¢, dp) = m(d€) x o (dp),

po(d, dp) = pui(dg) x do(dp), i € T.
Let X be defined on the canenital spage (Q/,F', (Ft/), ]P)/(a:,'r)erR)- The corre-
sponding mappings F and R = (R'y, RZ, R’R) satisfy

F (45¢) = E(u) kg,
RY (u, q) =R (u) + Nt
RZ(ubq)y = R=(u) + A%,

R (uq) ='0;

Let Lp/7 w/ = (w/y,w,z,z//n) be the solution of the corresponding generalized
Riccati equations ,ie

t
(4.2) &t q) = / P (5,u, 0), 9% (s,u, ))ds + g,
, t
(4.3) 6 (6, q) = / RV (5,1, 0), 0 (5,0, 9)) + tAVg.
, t
(4.4) Y E(tu,q) = tw+q / PN ds
0
(4.5) O R(t,u,q) = q.
with
F(u) =< au,u >+ < b,u > —c—l—/ (e<%t> —1— < uy,xs(&) >)m(df),
D\{0}

RY (u) =< ayu,u > + < BY,u > —r; +/ (e<"8 — 1— < uygy, X0 (&) >)pi(dE)
D\{0}
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Proposition 4.1 Let (x,r)€ D x R.We have P, o (X, R")™1 = P/(x "

Bl fu(X0] = B[ fu(Y7, 2)

(4.6) — esﬂ,(t7u7q)+<1/1/y(t,u7Q)7y>+<w/Z(t,u7q)72>+qr

x,r)

for all (t,u,q) € Ry x U x iR.
The proof can be found in Duffie,D., Filipovic,D., Schachermayer,W.,2003a. We
have to ask where has a meaning for ¢ = —1.

Proposition 4.2 Let X; be the conservative regular affine process ,t € Ry. Let
U be an open convex neighborhood of 0 in C. Assume o(t,.) and v (t,.) have an
analytic extension on U.Then

E, [e<q,Xt>} < 00,

Vg € UNRYYx € D and (2.2) holds Yu € U with Reu € U NRY,
Lemma 4.3 Let V C R? be open. If

(4.7 / eSLETm(de) < oo
DA\Q(0)

(4.8) / eS95 4, (dE), < oo,
DA\Q(0)

where Q(z) :={¢ € D : |§ — zix| <Ll <k < d}land Vg € V. Then F and RY
are analytic on the open strip.S = W& CHReu'€ V}

Lemma 4.4 Suppose that F and RY-are-analytic on some open set U in C?. Let
T < oo such that for each u € U , there exists U-valued location solution ¥(t,u) of
(6.1),5t € [0, T] Then @, have a unique analytic extension of (0,T) x U.

Example 4.5
We fix a conservative regular affine process X with semigroup (P;), and a ”dis-
counting” semigroup (Q¢):cr, based on a short-rate process L(X).

Example 4.5.1The term structure of interest rates.

A central object of study in finance is the term structure ¢ — @;1 of prices of
"bonds,” assets that pay one unit of account at a given maturity ¢. In general
because 1 = e<%*> the bond price

(49) Qtl(ﬂf) — eA(t)+<B(t),z>
is easily calculated from the generalized Riccati equations for a broad range of affine

processes. Indeed, A(t) := 0 (¢,0,—1), B(t) := (z/)/y(t,O, —1),1/)/2(1&,0, -1))

Example 4.5.2 Default risk.
In order to model the timing of default of financial contracts,we assume that N is a
nonexplosive counting process that is doubly stochastic driven by X, with intensity
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{A(X;—) : t > 0}, where + — A(x) > 0 is affine. For the doubly stochastic property
of N, the survival probability is

Po(r > t) = Eu[eap(— /0 AX,)ds)].

which is of the same form as the bond-price calculation . For a model of the default
times 7y, ....,7x of k > 1 different financial contracts, an approach is to suppose
that 7; is the first jump time of a nonexplosive counting process N; with intensity
{Ai(X:-) : t > 0}, for affine x — A;(x) > 0, where Ny, ...., Nj are doubly stochastic
driven by X, and moreover are independent conditional on X. Hence, for any
increasing sequence of times t1,to, ..., t, in Ry

123

(L10)  Pu(m >ty > t) = Ex[exp(—/ A(X,, )ds)],
0

where

(4.11) Az, s) = Bpis<eyNi().

By the law of iterated expectations, the joint distribution of default times is equal
to

(4.12) Po(m1 > t1, ..., T > tg) = ePoT<voe>

where ¢;, ¥; are defined inductively by ¢ = 0,9, = 0, and
tigets
P B feap(— [ ACX, & dner st Ve S,
b ‘

taking tg = 0. Because thescoefficients &; and ;-are easily calculated recursively
from the associated generalized Riccati equations. ™

Example 4.5.3 Option pricing.

Assume that the price of the underlying asset at titne t is of the form f(X;), for some
non-negative f € C(D). The payoff of put-option g(X;) = maz{K — f(X;),0},and
the initial price

Qu@) = Erlerp(~ [ L(X,)ds)g(X)
(4.13) = KlEz[exp(—/O L(X)ds)Lis(x)<k)]
(4.14) - Ew[ea:p(—/o L(Xs)ds) f(Xe)1px,)<xh]-

One can exploit the affine modeling approach computational advantage provided
f(z) = ke<t*> where k > 0 in R and b € RY. In this case, both terms in the
calculation above of Q:g(x) are of the form

t
Gun(4) = Esleap(~ / L(X.)ds)e<X > 1oy x5 <]

for some (a,b,q) € RY x R? x R. Clearly, G,(.) is the distribution function of
< b, X; > with respect to the measure

t
(4.15) exp(—/ L(X,)ds)e<"%X>P,.
0
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According to Fourier inversion , we only need to compute the transform

+oo
(4.16) guse) = [ €¥1Guu(da).
One can see that
¢
Gan(z) = Em[exp(—/ L(X,)ds)e<®Xt>eiz<b:Xe>
0
¢
(4.17) — Eleap(— / L(XJ)ds) fu (X)),
0

where v = a + i2b, and the generalized Riccati equations give the solution under
nonnegativity of L(X).

5. SOLVING RICCATI EQUATION

Solving
(5.1) y = ylay® + By +7)
9 a’ﬂ?’y E R
Case 1. a #0
(5.2) y/ = ay(y? +ay+b)

a=8p=2
Subcase 1. a® — 4b < 0, y(0) £ 0

’

-y (é By4C )‘,
(y(y* +ay +0)) y | Preay+b)
A By+9H+oc-8e
= (—+ Y f) 2 )y
y W+ +b—%
B B a
= Ayt 2+ 92 (0= 2 tan () =
2 2 2 A
vy
WhereA:%:%B:—g’C:_%:_ﬁ
Y Y Y
Subcase 2. a2 —4b =10
Syt tay+b=(y+5)* y(0) #0
yl A By+C’ ’
_yv ___ A, ByrC
y-(y+35)? (y (y+5)2)y
B (é B(y+%)+0—%),
Y (y+35)2 !
B a (C—@)
= (A 2. e W5y
( lny+2 ln(y+2) + yie ) =«

A=A =19 B=-4%C=—Aa=-4

B2 B

e



13

Subcase 3. a274b>0y2+ay+b: (y —01)(y — 62)
Y A, B c

=+ +
Y- (y—01)(y —02) (y y— 6 yfﬂz)y
= (A-lny+B-In(y—61)+C-In(y—62)) =a

where A = 0,604,B = 0301 C = 036>

0,—05" 0>—01

91 _ 7a+\/2a274b 02 _ 70,7\/21127412.
Case 2. a =0
(5.3) y =B-y*+vy=Byly+a)
,a = 1
Subcase 1. y # —a,y(0) # 0

' A B _. ,
(5.4) Yy __—(Z+ Y =(A-lny+B-Inly +a) =8

yly+a) 'y y+a
WhereA:é:ﬁyB:_ﬁ
vy

2

6. THE BAsic THREE-FIRM MODEL

Let p = (p1,p2,p3),d = (¢1542,q3) € I':=+{0,1}3.We now consider the affine
jump-diffusion process X =X, ..., X%)iid R With generator

3 3
i=0 i=0
(6.1) + > (f@ Epaci# pses Froea)— f(2)(pt+ < Ap,z >)

pel

where «;, b; > 0751’ € R” with 5”‘ >0, V] 7é 7, lp >0, )\p € RZF

X0 denotes the short rate process. The pair (X¢, X3T%) represents the credit state
of firm i, i =1,2,3. We let XS’“ = 0 for i= 1,2,3. Then the first jump time
Ti=inf{t| X?T" > 0} of X3 models the default time of firm i. The generate im-
plies a rich interdependence structure between the components X*:

(i) The interest rates ,X°, influence all credit risk relate variables, X!,....X5 by
Bio(mean-reversion level of X*) and the respective Ap,o(jump intensity of X37%).

(ii) The credit index of firm i,X*, i=1,2,3, drives the intensities for (joint) de-
faults of firms 1,2,and 3 by the respective Ap ;.

X' also influences the mean reversion level for X7 by S;;, j=0,...,3

(iii) The counting process for firm i , X3+%i=1,2,3, influence the intensities for
(joint) defaults of firms 1,2 and 3 by the respective Ap 34;. Note that this intro-
duces ”infectious defaults”’and see example 2 below. The following is the main
result.
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Proposition
Fort<Tw € R”,6>0p eI we have

(T 0. . L 4 5 6
E[e 6ft X5d5€<U’XT>l2mk~>ooe k(p4XT+pXT+pXT)|Ft]

(62) Lp(T tvtS)—i—ZLGO ...... 3U Jo(p) i (T—t,v,6;p) X H 1{X]_O}

Jj€Ji(p)
where Jy(p) := {4 < j < 6|p; = 0},J1(p) := {4 < j < 6]p; = 1} and the R_-
valued functions ¢ = p(t,v,d; p) and ¥; = ¢;(t,v; d; p) satisty

3
(6.3) 5't<,0:zbk1/}k+ Z lq(eqw4+q5w5+q6w6—1), Z lgs

k=0 qelo(p) q€li(p)
©(0,v;0;p) =0,

04

0411/} + Zﬁkﬂ/’k + Z )\ eQ41/J4+qo1/Jo+%¢6 _ 1)

q€lo(p)
— ) Aqi—dlizo
q€li(p)

¥;(0,v;6;p) = v

RIS Zﬁkﬂpk‘f“*‘ Z eq4¢4+qs¢s+qewe -1) - Z Aaj
q€1o(p) q€Ii(p)
$;(0,0:3:p) = v =
for i=0,1,2,3 and j € Jo(p)-where Io(p):={q € Ilg; = 0,Vj € Ji(p)} and I;(p) :=
N\o(p) = {q € Ilg; = 1,j &L(p)} ‘

Example 6.1 Let ¢t < T. TheF;— condition Laplace transform of Xt with re-
spect to T—forward measure condition on {T' < 71 A 72} is
E[e_ftT X‘E‘)dse<v’XT>1{T<Tl/\T2}‘Ft]
Ble= /i X0dso<v,Xp> | F]
— [T x% X
E [ € jt s Se<U7 T>1{T<T1/\T2}|Ft]

T 30 . _ 4 5
— E[efft Xsd86<v,XT>llmk_)ooe k(XTJrXT)‘Ft]

,v € R” where

(Tt LI+ (o, 5.6 %i(T—10:131,1,0) X]

t 1{X4 X“‘—O}

With the above discussion , we now discuss the dependence structure of the default
time 71 and 7. Fix s > 0. For the Fy— condition joint distribution of (71, 72) we have

F(t,T) = Pln <t 7 <T|F
= 1= E[ljpcr|Fs] = Elir<r} |1 Fs] = E[lir<r} 1< y | F]
for t,T > sThe terms involved are
Ellgery|F) = Ewmme*’“ﬁm

_ ega(t—s,O;O;l,OD)-i—Z i€q0,....,3,5,6) Vi (t—s,0;0;1,0,0) X} 1{X4 0
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E[limkﬂooe_kX’i5r |Fs]

_ ew(T_s7O;O;O71’O)+ZiE{O,....,SA,G) i (T—s,0;0;0,1,0) X ; 1{X5:0}

Elir<ryy | Fs]

and, for t <T,
. x4 . L5
E[l{T<‘r2}1{t<Tl}|Fs] = E[llmk—»ooe kX E[llmk:eooe kX |Ft]|FS]
_ e“"(T*t’O;O;O’1’0)E[limkﬁwe’k(xf+xfs)ez7"€{0»---v314w6} ¥ (T—1,0;0;0,1,0) X/ |F]
eW(T7t10;0;011’O)+w(t75$21‘,6{0 .....

(t— . _ .0 .0 J
% eXjeto.. a0y Yilt=5. ict0 a0 ¥i(T t,O,O,O,l,O)ez,O,l,l,O)XSl{X{l:

3,6} ; (T'—t,0;0;0,1,0)e;3;0;1,1,0)

X5=0}
and similarly for ¢t > T,

; —kX} s —kX5
El{rernlppary|Fs] = Ellimgoe™ "t Ellimy_ooe™ " T |F]| Fy]
. 4 5 (t— -0 @
_ eap(t—T,O,O,O,l,O)E[limk_)ooe—k(Xt +X7) X icqo,...,3,4,6) ¥ilt T,O,O,O,l,O)Xt|FS]
eap(t—T,0,0;O,l,O)+<,9(T—s,2ie{o _____ 3,6} 1, (t—T,0;0;0,1,0)e;;0;1,1,0)

% eXieto, sy ¥ilT=5cq0, 3,6y ¥i(t=T:0;051,0,0)e:;0:1,1,0)X]

s

Lixa=xz=0}

Below we illustrate the three cases where (i) f is only piecewise continuous (Ex-
ample 2.2),(ii)the density function does not exist (Example 2.3), and (iii) a jointly
continuous density function (Example 2.4)-

Example 6.2 Let [ := (1 0,0y-> 0 andsAui=A(0,15),4 = 0 and all the other parame-
ters be zero .Then the generator is of form

Af(z) = (f (@ + ea) — [P = (f(@ + e5) = f(@)) Az

This is , firm 1 defaults with a constant intensity [ and the default intensity of
firm 2 is zero first , jumps t0'\ at.the-default-time-of firm 1(infectious default) and
increases by the amount of A at any further jump time of X* Hence ,

Oro(t,v;0;1,0,0) =0pe(t;v;0;1,1,0) = —I
Ovp(t,v;0;0,1,0) = I(e" ™ — 1)
Orha(t,v;0;1,0,0) = A(e” — 1)
Oph4(t,v;0;0,1,0) = Optha(t,v;0;1,1,0) = —A

Opi(t,v;0;p) =0
for all ¢ # 4 so that
@(t,v;0;1,0,0) = p(t,v;0;1,1,0) = —It

evs

o(t,v;0;0,1,0) = 1(7(1 _ efAt) — 1)
a(t,0;0;1,0,0) = vy + A(e™ — 1)t

Pa(t,0;0;0,1,0) = y(t,v;0;1,1,0) = vg — At

and v;(t,v,0,p) = v; for all i # 4.
Because G(t,T) = E[lyi<s Lir<s,}]s
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e%(l—efk(Tft))—lT, t<T
G(t,T) =
et t>T.

)

A straightforward calculation show that %t(:)_t) =IA#0

Example 6.3 Consider the generator Af(z) = f(x + es + e5) — f(x), namely,
we let (1,1,0) = 1 and all other parameters are zero.

We get F(t,T) =1 — e \T)
Clearly,the distribution has no density.

Example 6.4We now consider an example where 71 and 7o are conditionally in-
dependent given the information G = (X7, ..., X} |t > 0) generated by X°...X3.Let
the generator be of the form

Af(z) = aowod? oo f (T) + (bO‘f'ﬂooﬂUo) Ozo f ()
+ Zalxza f(z +Z b + Bioxo + Biixi) 0z, f(2)

+ (f(iﬁ +eq) — (33))()\(1 0,0),0%0 + A(1,0,0),171) + A(1,0,0),272)
+  (f(z+es) — f(2))Aa,0),0T0 + A0,1,0),171) + A0,1,0),272)

with the symmetric structure
a1 = agyb1 = b3, Bio = Bao, 11 = oo,

A(1,0,0).0 = A0,1,05:05 A(1,0,0).1 = A(0,1.0).25 A(1,0,0),2 = A(0,1,0),1

Since we have P[ry < ¢,% < @lgl-=_Plr </#{G] - P[ro < T|G] and both of
the g-condition distribution-functions‘on the right hand side have a g-measurable
continuous density,it is obviousithat F'(t, L)'= E[P[r1 < t,72 < T|G]] admits a
continuous density.

Although the joint distribution function contain all the information about the de-
pendence of the default times 7 andrs ,it is interesting to think of the correlation
of the events {ry < T}Hr < T} —=2ow2@)

Covij: = Ellrcrylir;<ny] = E[lir.<my| Bll(7; <1
= Bllgrn<n] — (Bllinen))i=1
= F(T,T) = Ell{r,<ny|E[lr,<my),i # J
According to above discussion,we have

E[lngT} —-1— E[limk_,ooe_kX;H] -1 eW(T70;0;P(i))+Z?=o ¥;(T,0;0;p(3)) X

where p(1) := (1,0,0) and p(2) := (0,1, 0).

Example 6.5(Valuing Credit Default Swaps)

Consider the valuation of a plain vanilla credit default swap (CDS) with notional
principal 1. The seller (firm3) of a CDS contract provides the buyer(firm2) insur-
ance against the risk of default of a third party called the reference entity (firml).
In return, the buyer makes periodic payments to the seller. T is the start date of
CDS and the payment dates by T1,...,1,,. and T, — T 1= A forall k =1,...,n
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Cash flows take place at dates Tj only , given the events that happened in the
preceding periods (T;_1,Tj], j=1,....k. At time Tj:

(i) if no default has occurred yet(T) < 71 A 72 A 73) then the buyer pays to the
seller a fixed rate c;

(ii)if the reference entity has defaulted in period (Tj—1,7%](Tk—1 < 7 < Tj)and
the seller has not defaulted yet (7, < 73) and the buyer has not defaulted by
Ti—1(Tp—1 < T2) then the seller payer pays 1 — G(Xr,) and the contract terminates
, where

G(z) = e t<r"> <1
denotes the recovery rate for the bond issued by the reference entity , for some
reR_and p e R”;

(iii)in all other cases there is no payment and the contract terminates.

The value at time t < T of the buyer’s payments accordingly is ¢B;, where
_ n — ka XY%ds
By = B[t PP ALg crnrary | F]

Tk 30 . - 4 5 6
— A2221E[6 Jt, X'gdsl'bml_,oo(i l(XTk+XTk+XTk)|Ft}

_ n D (Th —t,0;150, 1,122 Wi, —¢,0;1;1,1,1) X
= AZk:le ) =0 Wi( : tl{X?:X$:X?:O}

The value at time ¢ < T *of the seller’s payment is

" _ Tk o ] ‘ . ,
Sy = E[Ze Je XSds(l_G(XTk))1{Tk—1<TISTk‘}l{Tk—1<T2}1{Tk<7'3}|Ft}
k=1 | ]

n |

T _v4 x5 _ 6
E E[e‘fﬁ g ngs(l < G(XT7,)) X limpm=ioo(e Xn_y _ eimX%k )e R - mka]
k=1

N ‘
= D S-St oSt st
k=1
where,

[Tk x04s,. —I(X% X5 —-mX$§
Stlk — E[e Ji Xsdslzml,m—»ooe (X7 + X1 ) Tk|Ft]
_ e<I>(A70;1;0;071)+<I>(Tk71—t,Z?:o‘I'i(A70;1;0;071)e«i;1;171,1)

3 ) _ 3 . .1-0- - J
X e =0 \I’j(Tk—l t)Zi:() \I’l(A,O,l,o,o,l)el,1,1,1,1)Xt I{Xf:X?:XEZO]W

T
S = Bl I Xisgre<pn,

— er+‘i’(A,p;1;0;071)+¢’(Tk71—t,2f=0‘1'i(A7p;1;0;071)e¢;1;171,1)

. —U(X7,  +X5 —mX$
>llml,m—>ooe ( Ty 1 kal) Tk‘Ft]

3 3 J
? \II-(Tk,l t,g ; ‘Ili(A,p;1;0;0,1)ei;1;1,1,1)X 1
X e~=i=0 "/ =0 ¢ {Xf:Xf:Xf’:H}v

Tk x046;. —IX5 —m(X3 +X8
Sf’k = Ele Je Xsdslzmhm_}ooe Ty Xy Tk)|Ft]

20110, 1)+ (T 1,570 Wi (A,0:1;1;0,1)eis131,1,1)

3 3 j
S o Vi (Th—1—t,3 5o Ui (A,051;1;0,1)e;31;1,1,1) X7
X emI=0 =0 tlixa=xp=x5=0}
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iy 5 4 6
Stk = gl it Xidsgre<pXn, Xy (X X))

>liml,m4>ooe
er+<I>(A,p;1;1;O,1)+<I>(Tk_17t,2_?:0\I/i(A,p;l;l;O,l)ei;l;l,l,l)

Y W (T =, 00 T (D,p515150,1)es51;1,1,1) X/

X e Lixs=xp=x5=0},

7. TIME-INHOMOGENEOUS AFFINE PROCESSES

Throughout we assume that f,(z) := e<%*> for u € C? and U := C™ x iR",
oU :=iRY YO :=U\OU = C™_ x iR"™ . Note that f, € Cp(E) if and only if u € U.
Definition 7.1. We call (P.r) affine if for every 0 < ¢t < T and u € OU there
exists o(t, T,u) € C and (t, T,u) = (VY (t,T,u),v=(t,T,u)) € C™ x C" such that
(7.1) Pirfu(z) = ew(t’T’“)+<w(t’T’“)’x>, Vx € D.
Definition 7.2. We say p(r, x;t,dy) is stochastically continuous if p(s,x; S, dy) —
p(t,z; T, dy) weakly on E for (s,S) — (¢t,T), ,for every 0 < t < T and x € E.

Hence P(r,x,;t;dy) is stochastically continuous if and only if T} f(x) is continuous
in (r,t) for allz € E and f € Cy(E).

Definition 7.3. We call p(r, z;t, dy) weakly regqular if it is stochastically continuous
and the left-hand derivative A(t) fu(@)n== —~0; Ps 1 fu(T)|s=¢ exists for all (t,z,u)e
Ryt x ExU and is continuous at u = 0 forall (t,x)e Ry, x E.

Example 7.1. Let f : Ry = E lbe d measurable function such that f(r)— f(t) € E
for all0 < r <t. Then

P £ dy) =0 fr) - () (Lly)
is an affine transition funclion. with
o(r,t, A) =< N =L@) > ¢(r, ¢, A) = A

Some Notation. For o, € CF ¢ write < o, 8 >:= a151 + .... + a3, We
letSem” be the convex cone of symmetric positive semi-definite k& x k matrices.

Definition 7.4. The t-dependent parameters
(a,0,b,8,¢,7,m, ) = (a(t), a(t), b(t), B(t), c(t),v(t), m(t), u(t)), t € Ry

are called weakly admissible if for each fivred t € R, ,they are admissible in the sense
of that

e a(t) € Sem? with ary = 0;

o b(t) € E;

o c(t) e Ry;

o at) = (a1(t), aa(t), ..., m(t)) with a;(t) € Sem? and (a;)rr = o 4 (t)1d(3)

where Id(i)kl = 6ik§kl;

B(t) € R¥*? sych that Br;(t) =0 and Bir)(t) € Ri“l forallieI;

o u(t) = (p1(t), ua(t), ..., um(t)) where every p;(t) is a Borel measure on
E\{0} satisfying

/ (< G101 > Hlino P s(dy) < oo
E\{0}
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o v(t) is a Borel measure on E\{0} satisfying
[ (<> Pt dy) < o
E\{0}

They are called strongly admissible if in addition they satisfy the following con-
tinuous conditions:

(D) (a(t), alt), b(t), B(t), c(t), y(t), m(t), u(t))are continuous in t\ R+

(2)M (t,d€)and M;(t,d€) are weakly continuous on D\0 int € R

Theorem 7.1. Assume p(r,z;t,dy) weakly regular affine. Then there exist some
weakly admissible parameters (a,a,b, 5,c,v,m,u) such that, for all t > Ou =
(v,w) eUw=(y,2) € E,

A(t) fu(z) =(F(t,u)+ < Ri(t,u),y > + < Ray(t,u), z >) fulz)

with
F(t,u) = < a(t)u,u >+ < b(t),u > —c(t)
[ (e (O >mtde)
D\O
Ry;i(t,u) = < oy (8, u > F LB, u) > —i(t)
+/ (55% == < gy, X (i) (€) >)mi(t, dE)
D\(0) !
Ry (t,u) =fw,
and
BY () =B )1, .y €R
B () :=(BT(1)).0s € R™™

Definition 7.5. We call p(r,z;t,dy) strongly regular affine if it is weakly regu-
lar affine and the parameters (a,c, b, B,c,vy,m,u) from theorem (7.1) are strongly
admussible .

We give an example showing that there are weakly regular affine processes that
are not strongly regular affine.

Example 7.2. Let (m,n) = (1,0),R(t,u) =0, and

1 euz(t) 1
Pt u) = / (@115 () = 1
R\(0) 2 ") z(t)
where x is continuous at 0 , x(0) =0, F(0,u) = lim;—oF(t,u) = u.Hence

b(t)_{ 1, t=0

0, otherwise

does not satisfy the continuity conditions.
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Theorem 7.2. Suppose p(r, x;t,dy) is strongly regular affine and (a, o, b, B, ¢,y, m, p)
the corresponding strongly admissible parameters. Then
(i) (©,X) is a Feller process.

(ii) C°(R, x D)is a core of A

(iii) for f € CH2(Ry x D),we have
where A(t)is defined on the the function f(t,-) as follows

0%f(t,x)

d
AW ftz): = Y (ana()+ < arm(t),y>) 0,02,

k,l=1
= (c)+ <(t),y>)f(t.2)

+ / (F(ta+ &) — ft,0)— < Vi f(t,a)xs(E) >)mlt, de))
D\{0}

+ < b(t) + B(t)z, Vo f(t, x) >

+ ; /D\{O} (f(t,l’ + 5) - f(tﬂl?)— < VJ(i)f(t,LL’), XJ(z)(g) >)m(t,d§))

(iv)(7.1)holds for all 0 <t < T and u € U where o(t,T,u), and (t,T,u) solve the
generalized Riccati equations

c,o(t,T,u):/lt F(s59(s,T5u))ds

—0p¥ (¢, T, u) =RV (b, Lo ele " 0 w), oV (T, T,u) = v
O* ([t L) = o B,
with F,RY ,and B* are given by Thm 7.1.
Conversely,let(a, a, b, B, ¢, v, m ) =be_strongly -admissible parameters. Then there
exists a unique , strongly regular affine “Markov process (P;r) whose associated

space-time process (©, X) has the infinitesimal generator A and (7.1) holds for all
0<t<T andu €U where p(t,T,u) and ¥(t,T,u) are given by above.

8. CHARACTERIZATIONS OF AFFINE PROCESSES

When m = 1 and n = 0, the affine process £ takes values in Ry and is also
called a continuous- state process with immigration. It was first studied by Kawazu
and Watanabe[KWT71] as a continuous limit of Galton-Watson branchinh processes
with immigration. Kawazu and Watanabe[KW71] showed that if £ is a stocastically
continuous affine process in Ry, then for every A > 0,¢ > 0 and « € R, we have

¢
e o = exp{—usx —/ ¢(us)ds}
0

where u; = u(t, \) satisfies

d

= =) ,u(0) =
with

o(u) = aw? — fu— + / [ — 1+ u(l A y)](dy)
R



21

and
o(u) =c+bu+ /RJr(l — e "u(dy).

[ Here we assume that
a>0,720,b>0,c>0,eR

and p, v are two measures on (0, co) satisfying

/000(1 Ay)pu(dy) < oo
and
/0 (1A y)u(dy) < oo

For general m and n, we write I = {1,2,...,m},J = {m+1,m+2,...,m+n}. Set
U=C" xiR" I(i) =I\{i} and J(i) = JU{i} for 1 <i < m. (a,b,c,a, 3,7, 1, V)
is called admissible if:

a € Sem® with a;; = 0;

be FE;

ceRy;

a = (a1,az, ..., a) with o, €pSemd and (o) 11 = o ;:1d(i) where Id(i)k =
0ikOki;

3 € R4*4 such that 877 = 0 and Bitu) € Rffl for all i € I;

1= (141, 42, ey [ JoWWheTe-every i, is'a Borel measure on F\{0} satisfying

| s il i) < oo
B\{0} ‘
e v is a Borel measureson F\{0} satisfying
[ (< TSR 2 wdy) < oo
E\{0}

Duffie, Filipovic and Schachermayer[DFS03] characterized all regular affine pro-
cesses. In particular they obtained that if ¢ is regular affine, then for all t, A € U
and x € E, we have

t
Ha:€<)\’mt> = 6Ip{< U(t7 >\)7:Z" > +/ ¢(U(S, A))ds}
0

with uy(t,\) = e#tx; and u(t) = u(t, A) satisfies the generalize Riccati equations
(@)1 = (V(w);

with u7(0) = A; where, for 1 <i < m,

T (u)(i) =< aju,u >+ < B, u> —%‘+/ (eS"YZ —1— < uygy, G > pi(dy),
E\{0}

and

é(u) =< au,u > + < b,u > —c+/ (eS™¥” —1— <y, >)v(dy).
E\{0}
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In addition, the parameters (a,b, a, 3, j1;, v) satisfies for each f € C?(D)

0%f(z)
6£Ck817[

d
Af = Z (ar+ < arp,y >) + <b+pz,Vf(zx) >
k=1

+ / G fo(, €)m(de)
D\{0}

S| Gfia, Qyipi(de)

i=17D\0

_|_

where

Gfo(r,8) = flz+&) — f(x)— < Vsf(z),xs(§) >
Gfi(z,§) = fx +&) — f(@)— < Vyu) f(), xs0)(§) >

Conversely,if (a, b, ¢, o, 8, v, i, V) is some admissible parameters, then exists a unique,
regular affine II, , such that (1.1) holds for all (¢£,\) € RT x E, where v(¢, \), u(t, \)
are given by

REMARK :
(i) for n = 0, we have for every (&, X) € R X R, there exists @(t, \) € R’ such that

.t
e~ < > Ser— i N > —/ S(i(s, \))ds}
Jo
where 4(t) = u(t, A) is a solution of thé-initial value problem

Al ==L (1)
@(0) =A

with

B(2)(i) = anz? — 3 Bz — i+ / (79> — 1+ )il dy),
r 7\ {0}

and

d(z) =< b,z > +c +/ (1 —e <Y\ (dy).
R\{0}

(ii)if A = (w,0)
Hw€<(w’0)’£> — ev(t,u;,0)+<u(t,w,0),y>

Hence, if & is regular affine, then (£Y,11,) is a regular affine process with state
space R

It is worth noting that @ solves the differential log-Laplace equation correspond-
ing to some superprocess with a finite base space (see, eg, [Dy94]). Based on
this observation, we construct more general affine processes through general su-
perprocesses. We also study sample path properties for general affine processes.
The rich variety of alternative types of random behavior(e.g., mean reversion, sto-
chastic volatility, and jumps) and analytically tractable for affine processes make
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them ideal models for financial applications(see, e.g., Duffie, Filipovic and Schacher-
mayer[DFS03] and references therein.)
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