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摘 要       

 
　仿射過程是種取值於 m個正實數值及 n 個實數值的馬可夫過程，而仿射過程的

特殊性質能廣泛的處理財務上的問題。Duffie、 Filipovic、 Schachermeyer

完整刻劃出仿射過程的主要特徵，再者仿射過程和超擴散過程的關係也已被建

立。基於這些觀察我們能建構更多仿射過程來處理財務上的問題。 
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Affine Processes and Applications

Student: Ming-Yao Tsai Advisor: Yuan-Chung Sheu

Department of Applied Mathematics

National Chiao Tung University

Hsinchu, Taiwan, R.O.C.

ABSTRACT

Affine processes is a class of Markov processes taking values in Rm
+ × Rn. The

rich variety of alternative types of random behavior(e.g., mean reversion, stochas-

tic volatility, and jumps) and analytically tractable for affine processes make them

ideal models for financial applications. Duffie, Filipovic and Schachermayer[DFS03]

characterized all regular affine processes. Connections between regular affine pro-

cesses and superprocesses with a finite base space were also established. Based on

this observation, we construct more general affine processes and investigate sample

path properties and financial applications of these processes..
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1. Intensity Model

There are two reasons why intensity model are important in the study of default
risk. First,intensity models clearly seem to be the most elegant way of bridging the
gap between credit scoring or default prediction models and the models for pricing
default risk. Second,the mathematical machinery of intensity models brings into
play the entire machinery of default-free term-structure model.
A process X of state variables with values in Rd is defined on the probability space
(Ω, F, Q). Let λ: Rd → R be nonnegative function . We want to construct a
jump process Nt with with the property that λ(Xt) is the Ft-intensity of N . Let
Ft = Gt ∨Ht , where Gt = σ{Xs : 0 ≤ s ≤ t} and Ht = σ{Ns : 0 ≤ s ≤ t}, ie Ft

contains the information in both X and jump process. Let J1 be an exponential
random variable with mean 1 , which is independent of (Gt)t≥0. Define

τ = inf{t :
∫ t

0

λ(Xs)ds ≥ J1}.

Consider a zero-coupon bond issued by a risky firm at time 0. Suppose the maturity
of the bond is T and under the risk-neutral probability measure Q, the default time
τ of the issuing firm has an intensity λ(Xt), where the setup is precisely as above.
Assume that there is a short-rate process r(Xs) such that default free zero-coupon
bond prices can be computed as

p(t, T ) = E[exp(−
∫ T

t

r(Xs)ds)|Ft],

1
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where T is the maturity date of the bond .On the other hand, the price of the risky
bond with zero recovery at time 0 is

v(0, t) = E[exp(−
∫ T

0

r(Xs)ds)1{τ>T}]

= E[E[exp(−
∫ T

0

r(Xs)ds)1{τ>T}|GT ]]

= E[exp(−
∫ T

0

r(Xs)ds)E[1{τ>T}|GT ]]

= E[exp(−
∫ T

0

r(Xs))exp(−
∫ T

0

λ(Xs)ds)]

= E[exp(−
∫ T

0

(r + λ)(Xs)ds)].

In general, we want to compute the price St of default claim having the expression

E(exp(−
∫ T

t

r(Xs)ds)f(XT )1{τ>T}|Ft).(1.1)

Lemma 1.1
Let Y be a Ft-measurable random variable , where Ft = Ht ∨Gt , then

E(1{τ>s} · Y |Ft) = 1{τ>t}E(1{τ>s}exp
∫ t
0 dsY |Gt),∀s > t.

According to Lemma(1.1) , we obtain

E ( exp(−
∫ T

t

r(Xs)ds)f(XT )1{τ>T}|Ft)

= 1{τ>t}E(exp(−
∫ T

t

r(Xs)ds)exp(
∫ t

0

λ(Xs)ds)f(XT )1{τ>T}|Gt)

= 1{τ>t}E(exp(−
∫ T

t

r(Xs)ds)exp(
∫ t

0

λ(Xs)ds)f(XT )exp(−
∫ T

0

λ(Xs)ds)|Gt)

= 1{τ>t}E[exp(−
∫ T

t

(r + λ)(Xs)ds)f(XT )|Gt].

2. Affine Processes

A Markov transition function in a measurable space (E,B) is a function p(r, x; t, B), r <
t ∈ R, x ∈ E, B ∈ B which is B-measurable in x and which is a measure in B subject
to the conditions:

(A)
∫

E
p(r, x; t, dy)p(t, y; u,B) = p(r, x; u,B) for all r < t < u, x ∈ E and all

B ∈ B.
(B) p(r, x; t, E) ≤ 1 for all r, x, t.

To every Markov transition function p there corresponds a family of linear operator
T r

t acting on functions by the formula

T r
t f(x) =

∫

E

p(r, x; t, dy)f(y).

It follows from (B) that T r
s T s

t = T r
t for all r < s < t ∈ R. We call T the Markov

semigroup corresponding to the transition function p.



3

We assume that (E,B) is a measurable Luzin space. To every Markov transition
function p there corresponds a Markov process ξ = (ξt,F(I), Πr,x) such that

Πr,x{ξt ∈ B} = p(r, x; t, B),

Πr,x{ξt1 ∈ B1, · · · , ξtn ∈ Bn} =
∫

B1×···×Bn

p(r, x; t1, dy1)p(t1, y1; t2, dy2) · · · p(tn−1, yn−1; tn, dyn)

for n ≥ 2, t1 < t2 < · · · < tn.
If the transition function p(r, x; t, dy) satisfies a condition

p(r, x; t, B) = p(r + s, x; t, B)

for all r, s, t, B, then ξ = (ξt,F(I),Πr,x) is time homogeneous. In this case we
consider only process ξ = (ξt,Ft, Πx) where Πx = Π0,x,Ft = F [0, t], and ξt is
defined for all t ≥ 0.

From this point on we consider E = Rm
+ × Rn and write d = m + n.

Definition 2.1 We say that ξ = (ξt,F(I),Πr,x) is affine if for every r < t ∈ R
and λ ∈ Rd, there exists ϕ(r, t, λ) ∈ C and ψ(r, t, λ) ∈ Cd such that

(2.1) Πr,x[exp{i < λ, ξt >}] = exp{ϕ(r, t, λ)+ < ψ(r, t, λ), x >}
for all x ∈ E. Here < x, y >=

∑d
i=1 xiyi for x = (x1, x2, ..., xd) and y =

(y1, y2, ..., yd) in Cd. Clearly if ξ is time homogeneous, then we have ψ(r, t, λ) =
ψ(t− r, λ) and ϕ(r, t, λ) = ϕ(t− r, λ).

Example 1 (Ornstein-Uhlenbeck process)
Consider an Ornstein-Uhlenbeck process

dξt = α(l − ξt)dt + σdwt

where w is a standard Brownian and α, l and σ are positive constants. Through an
application of Ito’s formula, we get

ξt = e−αt[ξ0 + l(eαt − 1) + σ

∫ t

0

eαsdws].

Clearly, Xt is normally distributed. Because eαs is continuous in [o,t],
∑

si∈∆n eαsi(Wsi+1 −Wsi
)

converge to
∫ t

0
eαsdWs in probability , where ∆n is subdivisions of [o,t]. Therefore,

E[
∑

si∈∆n

eαsi(Wsi+1 −Wsi)] converge to E[
∫ t

0

eαsdWs],(2.2)

as s → t , E[
∫ t

0
eαsdWs] = 0. Hence E[ξt] = e−αt[x + l(eαt − 1)] and V arξt

= E[ξt − e−αt[x + l(eαt − 1)]]2 = σ2 · e−2αtE[
∫ t

0
eαsdWs]2. By the calculus

eαtdWt · eαtdWt = e2αtdt,(2.3)

we have

V arξt = σ2e−2αt ·
∫ t

0

e2αsds =
σ2

2α
(1− e−2αt).(2.4)

Consequently, ξt is normally distributed with mean

Πxξt = e−αt[x + l(eαt − 1)]
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and variance

V arξt =
σ2

2α
(1− e−2αt).

This implies that
Πxeiλξt = exp{v(t, λ) + u(t, λ)x}

with

v(t, λ) = iλe−αtl(eαt − 1)− λ2α2

4α
(1− e−2αt)

and
u(t, λ) = iλe−αt.

Here, we provide different way.
Consider for t > 0

(2.5) dXs = (a− bXs)ds + σdW̃s, wherea, b, σ > 0

(2.6) v := Es,y[eλXt ], wherev(s, y) : [0, t)× [0,∞) → R

We want to claim v(s, y) has the form e−ϕ1(s,t,λ)−ψ2(s,t,λ)y. Let v∗(s, y) := e−ϕ1(s,t)−ψ2(s,t)y

where

(2.7) ϕ1(s, t, λ) = −λa

b
eb(s−t) +

λ2σ2

4b
e2b(s−t) + k,

k is constant

(2.8) ϕ2(s, t, λ) = λeb(s−t)

Applying the Feynman-Kac Thm to

(i)− ∂v∗

∂s
(s, y) = Asv

∗(s, y), Asv
∗(s, y) = eb(s−t)[

λ2σ2

2
e2b(s−t) − (λa− by)eb(s−t)],

(ii)v∗(t, y) = eλy, (iii)max0≤s≤t|v∗(s, y)| ≤ λa + λ2σ2

b

satisfying the polynomial growth condition . Hence v∗(s, y) = Es,y[eλXt ]

Example 2 (Feller’s diffusions)
Feller considered a class of processes that includes the square-root diffusions

dξt = α(l − ξt)dt + σ
√

ξtdwt

where w is a standard Brownian. We consider the case that α, l and σ are positive
constants. Based on results of Feller[Fe51], Cox, Ingersoll and Ross[CIR85] noted
that the probability density of the interest rate at time s, conditional on its value
at the current time t, is given by f(ξ(t), t; ξ(u), u) = ce−w−y( y

w )
q
2 Iq(2(wy)

1
2 )

where
c = 2α

σ2(1−e−α(t−u))

w = cξ(u)e−α(t−u)

y = cξ(t)
q = 2αl

σ2 − 1
and Iq(·) is the modified Bessel function of the first kind of order q

(2.9) Iq(z) = e
−iqπ

2 · Jq(iz)
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where

(2.10) Jq(z) = (
z

2
)q ·

∞∑

k=0

(−1)k( z
2 )2k

k!Γ(q + k + 1)

and Γ(y) =
∫∞
0

e−x ·xy−1dx . Hence, the distribution of ξt given ξu for some u < t,
is distributed as σ2(1 − e−α(t−u))/4α times a noncentral chi-square distribution
χ2

ν(λ) with degree of freedom

ν =
4lα

σ2

and noncentrality

λ =
4αe−α(t−u)

σ2(1− e−α(t−u))
ξu.

Therefore the Laplace transform of ξt is given by

Πxe−λξt =
1

(2λc + 1)2lα/σ2 exp{− λcf

2λc + 1
}

with c = σ2/4α(1− e−αt) and f = 4xα/(σ2(eαt − 1)).
Here, we supply distinct method.
Consider

(2.11) dXs = (a− bXs)ds + σ
√

XsdW̃s

(2.12) v(s, y) := Ẽs,y[eλXt ]

where v(s, y) : [0, t)×R+ → R+

We want to claim v(s, y) has the forme−ϕ(s,t)−ψ(s,t)y. Let v∗(s, y) := e−ϕ(s,t)−ψ(s,t)y

where ϕ(s, t), ψ(s, t) staisfying

(2.13) ϕ,(s, t) = −aψ(s, t)

(2.14) ψ,(s, t) = bψ(s, t) +
ψ2(s, t)

2
σ2

where ϕ(t, t) = 0,ψ(t, t) = λ.

ψ(s, t) =
2bλe−bt

−σ2λe−bt + 2be−bs + e−bsσ2λ
(2.15)

ϕ(s, t) =
2a

σ2
(bs + log(−σ2λe−bt + (2b + σ2λ)e−bs))− 2a

σ2
· log2b(2.16)

Applying to Feynman-Kac Thm to
(2.17)

(i)− ∂v∗

∂s
(s, y) = Asv

∗(s, y) where Asv
∗(s, y) =

yσ2

2
ϕ2

2(s, t)− (a− by)ϕ2(s, t)

(ii)v∗(t, y) = eλy(2.18)

(iii)v∗(s, y) satisfying the polynomial growth condition.(2.19)

Hence,we obtain v∗(s, y) = Ẽs,y[eλXt ]

Example 3 (Heston’s Model)
An important two-dimensional affine model was used by Heston to model option
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prices in settings with stochastic volatility . Here, one supposes that the underlying
price process U of an asset satisfies

dUt = Ut(γ0 + γ1Vt)dt + Ut

√
VtdB1t,

where γ0 and γ1 are constants and V is a stochastic -volatility process, which is a
Feller diffusion satisfying

dVt = κ(v − Vt)dt + c
√

VtdZt(2.20)

for constant coefficients κ, v, and c , where Z = ρB1 +
√

1− ρ2B2 is a Brownian
motion that is constructed as a linear combination of independent standard Brow-
nian motions B1 and B2.Letting Y = logU , a calculation based on Ito’s Formula
yields

dYt = (γ0 + (γ1 − 1
2
Vt))dt +

√
VtdB1t(2.21)

which implies that the two-dimensional process X = (V, Y ) is affine, with state
space D = R+ × R

Now We have the main characterization results from Duffie et al.(2003a). First, we
state an analytic characterization result for regular affine processes.

Definition 2.2 The Markov process (X, (PX)X∈D) , and (Pt) , is called stochas-
tically continuous if ps(x, ·) → pt(x, ·) weakly on D , for s → t , for every
(t, x) ∈ R×D

Definition 2.3 The Markov process (X, (PX)X∈D) , and (Pt) , is called regular if
it is stochastically continuous and the right-hand derivative

Afu(x) := ∂+
t Ptfu(x)|t=0(2.22)

exists for all (x, u) ∈ D × U , and is continuous at u = 0 for all x ∈ D.

Theorem 2.1 Suppose X is regular affine . Then X is a Feller process . Let A
be its infinitesimal generator. Then C∞c (D) is a core of A , C2

c (D) ⊂ D(A) , and
there exist admissible parameters (a, α, b, β, c, γ, m, µ) such that , for f ∈ C2

c (D),

Af(x) =
d∑

k,l=1

(ak,l+ < αy,kl, y >)
∂2f(x)
∂xk∂xl

+ < b + βx,∇f(x) > −(c+ < γ, y >)

+
∫

D\{0}
Gf0(x, ξ)m(dξ)(2.23)

+
m∑

i=1

∫

D\{0}
Gfi(x, ξ)yiµi(dξ)

where

Gf0(x, ξ) = f(x + ξ)− f(x)− < ∇zf(x), χz(ξ) >,(2.24)

Gfi(x, ξ) = f(x + ξ)− f(x)− < ∇z(i)f(x), χz(i)(ξ) >,(2.25)
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Moreover,(2.1) holds for all (t, u) ∈ R+ × U where ϕ(t, u) and ψ(t, u) solve the
generalized Riccati equations,

(2.26) ϕ(t, u) =
∫ t

0

F (ψ(s, u))ds

(2.27) −∂tψ
y(t, u) = Ry(t, ψy(t, u), e

∫ T
t

βZ(s)dsw), ψy(T, T, u) = v

(2.28) ψz(t, u) = eβZ tw

with

F (u) =− < au, u > − < b, u >

−
∫

D\0
(e<u,ξ> − 1− < uJ , χJ(ξ) >)m(dξ)

Ry
i (u) =− < αiu, u > − < βYi (u) >

−
∫

D\(0)
(e<u,ξ> − 1− < uJ(i), χJ(i)(ξ) >)µi(dξ)

and

βYi :=(βT )i{1,...,d} ∈ Rd, i ∈ y

βZ :=(βT )JJ ∈ Rn×n

Conversely,let (a, α, b, β, c, γ, m, µ) be admissible parameters .Then there exists a
unique regular affine semigroup (Pt) with infinitesimal generator (2.23) and (2.1)
holds for all (t, u) ∈ R×U where ϕ(t, u) and ψ(t, u) are give by (2.26), (2.27), and
(2.28).

3. Transform Analysis And Asset Pricing For Affine Jump-Diffusion

We fix a probability space (Ω, F, P ) , and an information filtration(Ft), and
suppose that X is a Markov process in some state space D ⊂ Rn, solving the
stochastic differential equation

dXt = µ(Xt)dt + σ(Xt)dWt + dZt,(3.1)

W is an (Ft)-standard Brownian motion in Rn ; µ : D → Rn , σ : D → Rn, and
Z is a pure jump process whose jumps have a fixed probability distribution ν on
Rn and arrive with intensity {λ(Xt) : t ≥ 0}, for some λ : D → [0,∞). We impose
an ”affine” structure on µ, σσ>, and λ, in that all of these functions are assumed
to be affine on D. We fix an affine discount-rate function R : D → R. The affine
dependence of µ, σσ>, λ,and R are determined by coefficient (K, H, l, ρ) defined by
:
(i)µ(x) = K0 + K1x , for K = (K0,K1) ∈ Rn × Rn×n.
(ii) (σ(x)σ(x)>)ij = (H0)ij + (H1)ij · x, for H = (H0,H1) ∈ Rn×n × Rn×n×n.
(iii)λ(x) = l0 + l1 · x, for l = (l0, l1) ∈ R× Rn.
(iv)R(x) = ρ0 + ρ1 · x, for ρ = (ρ0, ρ1) ∈ R× Rn.

Let θ(c) =
∫
Rn exp(c · z)dv(z). The jump transform θ determines the jump-size

distribution. The coefficients (K, H, l, θ) of X completely determine its distribution
its distribution, given an initial condition X(0). A characteristic χ = (K,H, l, θ, ρ)
captures both the distribution of X as well as the effects of any discounting, and
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determines a transform ψχ : Cn×D×R+×R+ → C of XT conditional on Ft when
well defined at t ≤ T , by

ψχ(u, Xt, t, T ) = Eχ[exp(−
∫ T

t

R(Xs)ds)eu·XT |Ft],(3.2)

where Eχ denotes expectation under the distribution of X determined by χ.

Definition 3.1
A characteristic (K,H, l, θ, ρ) is well-behaved at (u, T ) ∈ Cn × [0,∞) if (2.5)-(2.6)
are solved uniquely by β and α; and if

(1) E

∫ T

0

|γt|dt < ∞, where γt = ϕt(θ(β(t))− 1)λ(Xt),

(2) E

∫ T

0

(ηt · ηt)
1
2 < ∞ where ηt = ϕtβ(t)>σ(Xt),

and

(3) E|ϕT | < ∞, where ϕt = exp(−
∫ t

0

R(Xs)ds)eα(t)+β(t)·X(t).

Proposition 3.1
Suppose (K,H, l, θ, ρ) is well-behaved at (u, T ).Then the transform ψχ of X defined
by (3.2) has the form eα(t)+β(t)·xwhere α and β satisfy the complex-valued ODEs.

β
′
(t) = ρ1 −K>

1 β(t)− 1
2
β>(t)H1β(t)− l1(θ(β(t))− 1),(3.3)

α
′
(t) = ρ0 −K0 · β(t)− 1

2
β>H0β(t)− l0(θ(β(t))− 1),(3.4)

with boundary conditions β(T ) = u and α(T ) = 0

4. Connection of Intensity Modeling and affine processes

From now on, we suppose that X is conservative regular affine with with pa-
rameters (a, α, b, β, 0, 0, m, µ). Let l ∈ R, λ = (λy, λz) ∈ Rm × Rn and define the
affine function L(x) := l+ < λ, x > on Rd. In many applications L(x) is a model
for short rates. The price of a claim of the form f(Xt), where f ∈ bD, is given by
the expectation

Qtf(x) := Ex[exp(−
∫ t

0

L(Xs)ds)f(Xt)].

Suppose that, for fixed x ∈ D and t ∈ R+, we have Ex[exp(− ∫ t

0
L(Xs)ds)] < ∞.

Then Rd → Qtfiq(x) is the characteristic function of Xt with respect to the bounded
measure exp(− ∫ t

0
L(Xs)ds)Px. Hence, if one knows Qtfu(x) for all u ∈ ∂U, the

integral can be calculated via Fourier inversion. We use the martingale methods
and is more general. But it requires an enlargement of state space and an analytic
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extension of the exponents ϕ
′
(t, .)ψ

′
(t, .) of some (d+1)- dimensional regular affine

process X
′
For r ∈ R write

Rr
t := r +

∫ t

0

L(Xs)ds.(4.1)

It can be shown that (X,Rr) is a Markov process on (Ω, F, (Ft),Px) for every x ∈ D
and r ∈ R. In fact,we enlarge the state space D → D×R and U → U×iR, and write
accordingly (x, r) = (y, z, r),(u, q) = (v, w, q) ∈ U×iR. Let X

′
= (Y

′
, Z

′
, R

′
) be the

regular affine process with state space D × R given by the admissible parameters

a
′
=

[
a 0
0 0

]
, α

′
i =

[
αi 0
0 0

]
, i ∈ I

b
′
= (b, l), β

′
i =

[
βi 0
0 0

]

c
′
= c = 0, γ

′
= γ = 0

and

m
′
(dξ, dρ) = m(dξ)× δ0(dρ),

µ
′
i(dξ, dρ) = µi(dξ)× δ0(dρ), i ∈ I.

Let X
′

be defined on the canonical space (Ω
′
, F

′
, (F

′
t ),P

′
(x,r)∈D×R). The corre-

sponding mappings F
′
and R

′
= (R

′Y , R
′Z , R

′R) satisfy

F
′
(u, q) = F (u) + lq,

R
′Y(u, q) = RY(u) + λyq,

R
′Z(u, q) = RZ(u) + λzq,

R
′R(u, q) = 0;

Let ϕ
′
, ψ

′
= (ψ

′Y , ψ
′Z , ψ

′R) be the solution of the corresponding generalized
Riccati equations ,ie

ϕ
′
(t, u, q) =

∫ t

0

F (ψY(s, u, q), ψZ(s, u, q))ds + tlq,(4.2)

ψ
′Y(t, u, q) =

∫ t

0

Ry(ψY(s, u, q), ψZ(s, u, q)) + tλyq.(4.3)

ψ
′Z(t, u, q) = eβztw + q

∫ t

0

eβzλz

ds(4.4)

ψ
′R(t, u, q) = q.(4.5)

with

F (u) =< au, u > + < b, u > −c +
∫

D\{0}
(e<u,ξ> − 1− < uJ , χJ(ξ) >)m(dξ),

RYi (u) =< αiu, u > + < βy
i , u > −ri +

∫

D\{0}
(e<u,ξ> − 1− < uJ(i), χJ(i)(ξ) >)µi(dξ)
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for i ∈ I

Proposition 4.1 Let (x, r)∈ D × R.We have Px ◦ (X, Rr)−1 = P′(x,r)

Ex[eqRr
t fu(Xt)] = E

′
(x,r)[e

qR
′
tfu(Y ,

t , Z ,
t)]

= eϕ
′
(t,u,q)+<ψ

′Y(t,u,q),y>+<ψ
′Z(t,u,q),z>+qr(4.6)

for all (t, u, q) ∈ R+ × U × iR.
The proof can be found in Duffie,D., Filipovic,D., Schachermayer,W.,2003a. We
have to ask where has a meaning for q = −1.

Proposition 4.2 Let Xt be the conservative regular affine process ,t ∈ R+. Let
U be an open convex neighborhood of 0 in Cd. Assume ϕ(t, .) and ψ(t, .) have an
analytic extension on U .Then

Ex[e<q,Xt>] < ∞,

∀q ∈ U ∩ Rd,∀x ∈ D and (2.2) holds ,∀u ∈ U with Reu ∈ U ∩ Rd.

Lemma 4.3 Let V ⊂ Rd be open. If
∫

D\Q(0)

e<q,ξ>m(dξ) < ∞(4.7)

∫

D\Q(0)

e<q,ξ>µi(dξ) < ∞,(4.8)

where Q(x) := {ξ ∈ D : |ξk − xk| ≤ 1, 1 ≤ k ≤ d} and ∀q ∈ V . Then F and Ry
i

are analytic on the open strip S = {u ∈ Cd|Reu ∈ V }

Lemma 4.4 Suppose that F and Ry are analytic on some open set U in Cd. Let
T ≤ ∞ such that for each u ∈ U , there exists U -valued location solution ψ(t, u) of
(6.1),∀t ∈ [0, T ] Then ϕ, ψ have a unique analytic extension of (0, T )× U.

Example 4.5
We fix a conservative regular affine process X with semigroup (Pt), and a ”dis-
counting” semigroup (Qt)t∈R+ based on a short-rate process L(X).

Example 4.5.1The term structure of interest rates.
A central object of study in finance is the term structure t → Qt1 of prices of
”bonds,” assets that pay one unit of account at a given maturity t. In general
because 1 = e<0,x>, the bond price

Qt1(x) = eA(t)+<B(t),x>(4.9)

is easily calculated from the generalized Riccati equations for a broad range of affine
processes. Indeed, A(t) := ϕ

′
(t, 0,−1), B(t) := (ψ

′Y(t, 0,−1), ψ
′Z(t, 0,−1))

Example 4.5.2 Default risk.
In order to model the timing of default of financial contracts,we assume that N is a
nonexplosive counting process that is doubly stochastic driven by X, with intensity
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{Λ(Xt−) : t ≥ 0}, where x → Λ(x) ≥ 0 is affine. For the doubly stochastic property
of N , the survival probability is

Px(τ > t) = Ex[exp(−
∫ t

0

Λ(Xs)ds)].

which is of the same form as the bond-price calculation . For a model of the default
times τ1, ...., τk of k > 1 different financial contracts, an approach is to suppose
that τi is the first jump time of a nonexplosive counting process Ni with intensity
{Λi(Xt−) : t ≥ 0}, for affine x → Λi(x) ≥ 0, where N1, ...., Nk are doubly stochastic
driven by X, and moreover are independent conditional on X. Hence, for any
increasing sequence of times t1, t2, ..., tk in R+

Px(τ1 ≥ t1, ..., τk ≥ tk) = Ex[exp(−
∫ tk

0

Λ(Xs, s)ds)],(4.10)

where

Λ(x, s) = Σ{i:s≤ti}Λi(x).(4.11)

By the law of iterated expectations, the joint distribution of default times is equal
to

Px(τ1 ≥ t1, ..., τk ≥ tk) = eϕ0+<ψ0,x>,(4.12)

where ϕi, ψi are defined inductively by ϕk = 0,ψk = 0, and

eϕi+<ψi,x> = Ex[exp(−
∫ ti+1−ti

0

Λ(Xt, ti + t)dt)eϕi+1+<ψi+1,Xti+1−ti
>],

taking t0 = 0. Because the coefficients ϕi and ψi are easily calculated recursively
from the associated generalized Riccati equations.

Example 4.5.3 Option pricing.
Assume that the price of the underlying asset at time t is of the form f(Xt), for some
non-negative f ∈ C(D). The payoff of put option g(Xt) = max{K − f(Xt), 0},and
the initial price

Qtg(x) = Ex[exp(−
∫ t

0

L(Xs)ds)g(Xt)]

= KEx[exp(−
∫ t

0

L(Xs)ds)1{f(Xt)≤K}](4.13)

− Ex[exp(−
∫ t

0

L(Xs)ds)f(Xt)1{f(Xt)≤K}].(4.14)

One can exploit the affine modeling approach computational advantage provided
f(x) = ke<b,x>,where k > 0 in R and b ∈ Rd. In this case, both terms in the
calculation above of Qtg(x) are of the form

Ga,b(q) = Ex[exp(−
∫ t

0

L(Xs)ds)e<a,Xt>1{<b,Xt>≤q}]

for some (a, b, q) ∈ Rd × Rd × R. Clearly, Ga,b(.) is the distribution function of
< b, Xt > with respect to the measure

exp(−
∫ t

0

L(Xs)ds)e<a,Xt>Px.(4.15)
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According to Fourier inversion , we only need to compute the transform

ga,b(z) =
∫ +∞

−∞
eizqGa,b(dq).(4.16)

One can see that

ga,b(z) = Ex[exp(−
∫ t

0

L(Xs)ds)e<a,Xt>eiz<b,Xt>]

= Ex[exp(−
∫ t

0

L(Xs)ds)fu(Xt)],(4.17)

where u = a + izb, and the generalized Riccati equations give the solution under
nonnegativity of L(X).

5. Solving Riccati Equation

Solving

y
′
= y(αy2 + βy + γ)(5.1)

, α,β,γ ∈ R
Case 1. α 6= 0

y
′
= αy(y2 + ay + b)(5.2)

a = β
α ,b = γ

α

Subcase 1. a2 − 4b < 0, y(0) 6= 0

y
′

(y(y2 + ay + b))
= (

A

y
+

By + C

y2 + ay + b
)y
′

= (
A

y
+

B(y + a
2 ) + C − Ba

2

(y + a
2 )2 + b− a2

4

)y
′

= (A · lny +
B

2
· ln(y +

a

2
)2 + (C − Ba

2
) · tan−1(

y + a
2√

b− a2

4

)) = α

where A = 1
b = α

γ , B = −α
γ , C = −a

b = −β
γ

Subcase 2. a2 − 4b = 0
∴ y2 + ay + b = (y + a

2 )2 y(0) 6= 0

y
′

y · (y + a
2 )2

= (
A

y
+

By + C

(y + a
2 )2

)y
′

= (
A

y
+

B(y + a
2 ) + C − Ba

2

(y + a
2 )2

)y
′

= (A · lny +
B

2
· ln(y +

a

2
)2 +

(C − Ba
2 )

y + a
2

), = α

A = 4
a2 = 4α2

β2 , B = −4α2

β2 ,C = −Aa = −4α
β
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Subcase 3. a2 − 4b > 0 y2 + ay + b = (y − θ1)(y − θ2)

y
′

y · (y − θ1)(y − θ2)
= (

A

y
+

B

y − θ1
+

C

y − θ2
)y
′

= (A · lny + B · ln(y − θ1) + C · ln(y − θ2))
′
= α

where A = θ1θ2,B = θ2
2θ1

θ1−θ2
, C = θ2

1θ2
θ2−θ1

θ1 = −a+
√

a2−4b
2 θ2 = −a−√a2−4b

2 .

Case 2. α = 0

y
′
= β · y2 + γy = βy(y + a)(5.3)

,a = γ
β

Subcase 1. y 6= −a,y(0) 6= 0

y
′

y(y + a)
= (

A

y
+

B

y + a
)y
′
= (A · lny + B · ln(y + a))

′
= β(5.4)

where A = 1
a = β

γ , B = −β
γ

6. The Basic Three-Firm Model

Let p = (p1, p2, p3),q = (q1, q2, q3) ∈ I := {0, 1}3.We now consider the affine
jump-diffusion process X = (X0, ...., X6) in R7

+with generator

Af =
3∑

i=0

αixi∂
2
xi

f(x) +
3∑

i=0

(bi+ < βi, x >)∂xi
f(x)

+
∑

p∈I

(f(x + p4e4 + p5e5 + p6e5)− f(x))(lp+ < λp, x >)(6.1)

where αi, bi ≥ 0, βi ∈ R7 with βij ≥ 0, ∀j 6= i, lp ≥ 0, λp ∈ R7
+

X0 denotes the short rate process. The pair (Xi, X3+i) represents the credit state
of firm i, i =1,2,3. We let X3+i

0 = 0 for i= 1,2,3. Then the first jump time
τi:=inf{t|X3+i

t > 0} of X3+i models the default time of firm i. The generate im-
plies a rich interdependence structure between the components Xi:

(i) The interest rates ,X0, influence all credit risk relate variables, X1, ....X6,by
βi0(mean-reversion level of Xi) and the respective λp,0(jump intensity of X3+i).

(ii) The credit index of firm i,Xi, i=1,2,3, drives the intensities for (joint) de-
faults of firms 1,2,and 3 by the respective λp,i.

Xi also influences the mean reversion level for Xj by βji, j=0,...,3

(iii) The counting process for firm i , X3+i,i=1,2,3, influence the intensities for
(joint) defaults of firms 1,2 and 3 by the respective λp,3+i. Note that this intro-
duces ”infectious defaults”and see example 2 below. The following is the main
result.
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Proposition
For t ≤ T ,v ∈ R7

−, δ ≥ 0 p ∈ I we have

E[e−δ
∫ T

t
X0

s dse<v,XT >limk→∞e−k(p4X4
T +pX5

T +pX6
T )|Ft]

= eϕ(T−t,v;δ)+
∑

i∈0,....,3
⋃

J0(p) ψi(T−t,v,δ;p)Xi
t

∏

j∈J1(p)

1{Xj
t =0}(6.2)

where J0(p) := {4 ≤ j ≤ 6|pj = 0},J1(p) := {4 ≤ j ≤ 6|pj = 1} and the R−-
valued functions ϕ = ϕ(t, v, δ;p) and ψi = ψi(t, v; δ;p) satisfy

(6.3) ∂tϕ =
3∑

k=0

bkψk +
∑

q∈I0(p)

lq(eq4ψ4+q5ψ5+q6ψ6−1)−
∑

q∈I1(p)

lq,

ϕ(0, v; δ;p) = 0,

∂tψi = αiψ
2
i +

3∑

k=0

βkiψk +
∑

q∈I0(p)

λq,i(eq4ψ4+q5ψ5+q6ψ6 − 1)

−
∑

q∈I1(p)

λq,i − δ1i=0

ψi(0, v; δ;p) = vi

∂tψj =
3∑

k=0

βkjψk + +
∑

q∈I0(p)

λq,j(eq4ψ4+q5ψ5+q6ψ6 − 1)−
∑

q∈I1(p)

λq,j

ψj(0, v; δ;p) = vj

for i=0,1,2,3 and j ∈ J0(p) where I0(p):={q ∈ I|qj = 0, ∀j ∈ J1(p)} and I1(p) :=
I\I0(p) = {q ∈ I|qj = 1, j ∈ J1(p)}

Example 6.1 Let t ≤ T . TheFt− condition Laplace transform of XT with re-
spect to T−forward measure condition on {T < τ1 ∧ τ2} is
E[e−

∫ T
t X0

s dse<v,XT >1{T <τ1∧τ2}|Ft]

E[e−
∫ T
t X0

s dse<v,XT >|Ft]
, v ∈ R7

− where

E [ e−
∫ T

t
X0

s dse<v,XT >1{T<τ1∧τ2}|Ft]

= E[e−
∫ T

t
X0

s dse<v,XT >limk→∞e−k(X4
T +X5

T )|Ft]

= eϕ(T−t,v;1;1,1,0)+
∑

i∈{0,...3,6} ψi(T−t,v;1;1,1,0)Xi
t 1{X4

t =X5
t =0}

With the above discussion , we now discuss the dependence structure of the default
time τ1 and τ2. Fix s ≥ 0. For the Fs− condition joint distribution of (τ1, τ2) we have

F (t, T ) = P [τ1 ≤ t, τ ≤ T |Fs]
= 1− E[1{t<τ1}|Fs]− E[1{T<τ1}|Fs]− E[1{T<τ2}1{t<τ1}|Fs]

for t, T ≥ sThe terms involved are

E[1{t<τ1}|Fs] = E[limk→∞e−kX4
t |Fs]

= eϕ(t−s,0;0;1,0,0)+
∑

i∈{0,....,3,5,6} ψi(t−s,0;0;1,0,0)Xi
s1{X4

s =0}



15

E[1{T<τ2}|Fs] = E[limk→∞e−kX5
T |Fs]

= eϕ(T−s,0;0;0,1,0)+
∑

i∈{0,....,3,4,6} ψi(T−s,0;0;0,1,0)Xi
s1{X5

s =0}

and, for t ≤ T ,

E[1{T<τ2}1{t<τ1}|Fs] = E[limk→∞e−kX4
t E[limk→∞e−kX5

T |Ft]|Fs]

= eϕ(T−t,0;0;0,1,0)E[limk→∞e−k(X4
t +X5

t )e
∑

i∈{0,...,3,4,6} ψi(T−t,0;0;0,1,0)Xi
t |Fs]

= eϕ(T−t,0;0;0,1,0)+ϕ(t−s,
∑

i∈{0,...,3,6} ψi(T−t,0;0;0,1,0)ei;0;1,1,0)

× e
∑

j∈{0,...,3,6} ψi(t−s,
∑

i∈{0,...,3,6} ψi(T−t,0;0;0,1,0)ei;0;1,1,0)Xj
s 1{X4

s =X5
s=0}

and similarly for t ≥ T ,

E[1{T<τ2}1{t<τ1}|Fs] = E[limk→∞e−kX4
t E[limk→∞e−kX5

T |Ft]|Fs]

= eϕ(t−T,0,0;0,1,0)E[limk→∞e−k(X4
t +X5

t )e
∑

i∈{0,...,3,4,6} ψi(t−T,0;0;0,1,0)Xi
t |Fs]

= eϕ(t−T,0,0;0,1,0)+ϕ(T−s,
∑

i∈{0,...,3,6} ψi(t−T,0;0;0,1,0)ei;0;1,1,0)

× e
∑

j∈{0,...,3,6} ψi(T−s,
∑

i∈{0,...,3,6} ψi(t−T,0;0;1,0,0)ei;0;1,1,0)Xj
s 1{X4

s =X5
s =0}

Below we illustrate the three cases where (i) f is only piecewise continuous (Ex-
ample 2.2),(ii)the density function does not exist (Example 2.3), and (iii) a jointly
continuous density function (Example 2.4) .
Example 6.2 Let l := l(1,0,0) > 0 and λ := λ(0,1,0),4 ≥ 0 and all the other parame-
ters be zero .Then the generator is of form
Af(x) = (f(x + e4)− f(x))l + (f(x + e5)− f(x))λx4.
This is , firm 1 defaults with a constant intensity l and the default intensity of
firm 2 is zero first , jumps to λ at the default time of firm 1(infectious default) and
increases by the amount of λ at any further jump time of X4.Hence ,

∂tϕ(t, v; 0; 1, 0, 0) = ∂tϕ(t, v; 0; 1, 1, 0) = −l

∂tϕ(t, v; 0; 0, 1, 0) = l(ev4−λt − 1)

∂tψ4(t, v; 0; 1, 0, 0) = λ(ev5 − 1)

∂tψ4(t, v; 0; 0, 1, 0) = ∂tψ4(t, v; 0; 1, 1, 0) = −λ

∂tψi(t, v; 0;p) ≡ 0

for all i 6= 4 so that

ϕ(t, v; 0; 1, 0, 0) = ϕ(t, v; 0; 1, 1, 0) = −lt

ϕ(t, v; 0; 0, 1, 0) = l(
ev4

λ
(1− e−λt)− t)

ψ4(t, v; 0; 1, 0, 0) = v4 + λ(ev5 − 1)t

ψ4(t, v; 0; 0, 1, 0) = ψ4(t, v; 0; 1, 1, 0) = v4 − λt

and ψi(t, v, 0,p) ≡ vi for all i 6= 4.
Because G(t, T ) = E[1{t≤τ11{T≤τ2}],
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G(t, T ) =





e
l
λ (1−e−λ(T−t))−lT , t ≤ T

e−lt, t ≥ T.

A straightforward calculation show that ∂t∂T G(t−,t)
G(t,t) = lλ 6= 0

Example 6.3 Consider the generator Af(x) = f(x + e4 + e5) − f(x), namely,
we let l(1,1,0) = 1 and all other parameters are zero.
We get F (t, T ) = 1− e−(t∧T ) .
Clearly,the distribution has no density.

Example 6.4We now consider an example where τ1 and τ2 are conditionally in-
dependent given the information G = (X0

t , ..., X3
t |t ≥ 0) generated by X0...X3.Let

the generator be of the form

Af(x) = α0x0∂
2
x0

f(x) + (b0 + β00x0)∂x0f(x)

+
2∑

i=1

αixi∂
2
xi

f(x) +
2∑

i=1

(bi + βi0x0 + βiixi)∂xi
f(x)

+ (f(x + e4)− f(x))(λ(1,0,0),0x0 + λ(1,0,0),1x1) + λ(1,0,0),2x2)
+ (f(x + e5)− f(x))(λ(0,1,0),0x0 + λ(0,1,0),1x1) + λ(0,1,0),2x2)

with the symmetric structure

α1 = α2, b1 = b2, β10 = β20, β11 = β22,

λ(1,0,0),0 = λ(0,1,0),0, λ(1,0,0),1 = λ(0,1,0),2, λ(1,0,0),2 = λ(0,1,0),1

Since we have P [τ1 ≤ t, τ2 ≤ T |g] = P [τ1 ≤ t|G] · P [τ2 ≤ T |G] and both of
the g-condition distribution functions on the right hand side have a g-measurable
continuous density,it is obvious that F (t, T ) = E[P [τ1 ≤ t, τ2 ≤ T |G]] admits a
continuous density.
Although the joint distribution function contain all the information about the de-
pendence of the default times τ1andτ2 ,it is interesting to think of the correlation
of the events {τ1 ≤ T}{τ2 ≤ T} Cov12(T )√

Cov11Cov22(T )

Covij : = E[1{τi≤T}1{τj≤T}]− E[1{τi≤T}]E[1{τj≤T}]

= E[1{τi≤T}]− (E[1{τi≤T}])2, i = j

= F (T, T )− E[1{τi≤T}]E[1{τj≤T}], i 6= j

According to above discussion,we have

E[1τi≤T ] = 1− E[limk→∞e−kX3+i
T ] = 1− eϕ(T,0;0;p(i))+

∑3
j=0 ψj(T,0;0;p(i))Xj

0

where p(1) := (1, 0, 0) and p(2) := (0, 1, 0).

Example 6.5(Valuing Credit Default Swaps)
Consider the valuation of a plain vanilla credit default swap (CDS) with notional
principal 1. The seller (firm3) of a CDS contract provides the buyer(firm2) insur-
ance against the risk of default of a third party called the reference entity (firm1).
In return, the buyer makes periodic payments to the seller. T0 is the start date of
CDS and the payment dates by T1,...,Tn. and Tk − Tk−1≡ 4 for all k = 1, ..., n.
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Cash flows take place at dates Tk only , given the events that happened in the
preceding periods (Tj−1, Tj ], j=1,...,k. At time Tk:

(i) if no default has occurred yet(Tk < τ1 ∧ τ2 ∧ τ3) then the buyer pays to the
seller a fixed rate c;

(ii)if the reference entity has defaulted in period (Tk−1, Tk](Tk−1 < τ ≤ Tk)and
the seller has not defaulted yet (Tk < τ3) and the buyer has not defaulted by
Tk−1(Tk−1 < τ2) then the seller payer pays 1−G(XTk

) and the contract terminates
, where

G(x) = er+<ρ,x> ≤ 1

denotes the recovery rate for the bond issued by the reference entity , for some
r ∈ R− and ρ ∈ R7

−;

(iii)in all other cases there is no payment and the contract terminates.

The value at time t ≤ T0 of the buyer’s payments accordingly is cBt, where

Bt = E[Σn
k=1e

− ∫ Tk
t X0

s ds41{Tk<τ1∧τ2∧τ3}|Ft]

= 4Σn
k=1E[e−

∫ Tk
t X0

s dsliml→∞e−l(X4
Tk

+X5
Tk

+X6
Tk

)|Ft]

= 4Σn
k=1e

Φ(Tk−t,0;1;1,1,1)+Σ3
i=0Ψi(Tk−t,0;1;1,1,1)Xi

t 1{X4
t =X5

t =X6
t =0}

The value at time t ≤ T0 of the seller’s payment is

St = E[
n∑

k=1

e−
∫ Tk

t X0
s ds(1−G(XTk

))1{Tk−1<τ1≤Tk}1{Tk−1<τ2}1{Tk<τ3}|Ft]

=
n∑

k=1

E[e−
∫ Tk

t X0
s ds(1−G(XTk

))× liml,m→∞(e−lX4
Tk−1 − e−mX4

Tk )e−lX5
Tk−1

−mX6
Tk ]

=
n∑

k=1

S1k
t − S2k

t − S3k
t + S4k

t ,

where,

S1k
t = E[e−

∫ Tk
t X0

s dsliml,m→∞e
−l(X4

Tk−1
+X5

Tk−1
)−mX6

Tk |Ft]

= eΦ(4,0;1;0;0,1)+Φ(Tk−1−t,Σ3
i=0Ψi(4,0;1;0;0,1)ei;1;1,1,1)

× e
∑3

j=0 Ψj(Tk−1−t,
∑3

i=0 Ψi(4,0;1;0;0,1)ei;1;1,1,1)Xj
t 1{X4

t =X5
t =X6

t =0},

S2k
t = E[e−

∫ Tk
t X0

s dser+<ρ,XTk
>liml,m→∞e

−l(X4
Tk−1

+X5
Tk−1

)−mX6
Tk |Ft]

= er+Φ(4,ρ;1;0;0,1)+Φ(Tk−1−t,Σ3
i=0Ψi(4,ρ;1;0;0,1)ei;1;1,1,1)

× e
∑3

j=0 Ψj(Tk−1−t,
∑3

i=0 Ψi(4,ρ;1;0;0,1)ei;1;1,1,1)Xj
t 1{X4

t =X5
t =X6

t =0},

S3k
t = E[e−

∫ Tk
t X0

s dsliml,m→∞e
−lX5

Tk−1
−m(X4

Tk
+X6

Tk
)|Ft]

= eΦ(4,0;1;1;0,1)+Φ(Tk−1−t,Σ3
i=0Ψi(4,0;1;1;0,1)ei;1;1,1,1)

× e
∑3

j=0 Ψj(Tk−1−t,
∑3

i=0 Ψi(4,0;1;1;0,1)ei;1;1,1,1)Xj
t 1{X4

t =X5
t =X6

t =0},
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S4k
t = E[e−

∫ Tk
t X0

s dser+<ρ,XTk
>liml,m→∞e

−lX5
Tk−1

−m(X4
Tk

+X6
Tk

)|Ft]

= er+Φ(4,ρ;1;1;0,1)+Φ(Tk−1−t,Σ3
j=0Ψi(4,ρ;1;1;0,1)ei;1;1,1,1)

× e
∑3

j=0 Ψj(Tk−1−t,
∑3

i=0 Ψi(4,ρ;1;1;0,1)ei;1;1,1,1)Xj
t 1{X4

t =X5
t =X6

t =0},

7. Time-Inhomogeneous Affine Processes

Throughout we assume that fu(x) := e<u,x> for u ∈ Cd and U := Cm
− × iRn,

∂U := iRd, U0 := U\∂U = Cm
−−× iRn . Note that fu ∈ Cb(E) if and only if u ∈ U .

Definition 7.1. We call (Pt,T ) affine if for every 0 ≤ t ≤ T and u ∈ ∂U there
exists ϕ(t, T, u) ∈ C and ψ(t, T, u) = (ψY(t, T, u), ψZ(t, T, u)) ∈ Cm ×Cn such that

Pt,T fu(x) = eϕ(t,T,u)+<ψ(t,T,u),x>, ∀x ∈ D.(7.1)

Definition 7.2. We say p(r, x; t, dy) is stochastically continuous if p(s, x;S, dy) →
p(t, x;T, dy) weakly on E for (s, S) → (t, T ), ,for every 0 ≤ t ≤ T and x ∈ E.
Hence P(r,x,;t;dy) is stochastically continuous if and only if T r

t f(x) is continuous
in (r, t) for all x ∈ E and f ∈ Cb(E).

Definition 7.3. We call p(r, x; t, dy) weakly regular if it is stochastically continuous
and the left-hand derivative Ã(t)fu(x) := −∂−s Ps,tfu(x)|s=t exists for all (t,x,u)∈
R++ × E × U and is continuous at u = 0 for all (t,x)∈ R++ × E.

Example 7.1. Let f : R+ → E be a measurable function such that f(r)−f(t) ∈ E
for all 0 ≤ r ≤ t. Then

p(r, x; t; dy) := δx+f(t)−f(r)(dy)

is an affine transition function with

ϕ(r, t, λ) =< λ, f(t)− f(r) >,ψ(r, t, λ) = λ.

Some Notation. For α, β ∈ Ck e write < α, β >:= α1β1 + .... + αkβk.We
letSemk be the convex cone of symmetric positive semi-definite k × k matrices.

Definition 7.4. The t-dependent parameters

(a, α, b, β, c, γ, m, µ) = (a(t), α(t), b(t), β(t), c(t), γ(t),m(t), µ(t)), t ∈ R+

are called weakly admissible if for each fixed t ∈ R+,they are admissible in the sense
of that

• a(t) ∈ Semd with aII = 0;
• b(t) ∈ E;
• c(t) ∈ R+;
• α(t) = (α1(t), α2(t), ..., αm(t)) with αi(t) ∈ Semd and (αi)II = αi,ii(t)Id(i)

where Id(i)kl = δikδkl;
• β(t) ∈ Rd×d such that βIJ (t) = 0 and βiI(i)(t) ∈ Rm−1

+ for all i ∈ I;
• µ(t) = (µ1(t), µ2(t), ..., µm(t)) where every µi(t) is a Borel measure on

E\{0} satisfying
∫

E\{0}
(< ỹI(i), 1 > +‖ỹJ(i)‖2)µi(dy) < ∞;
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• ν(t) is a Borel measure on E\{0} satisfying
∫

E\{0}
(< ỹI , 1 > +‖ỹJ‖2)ν(t, dy) < ∞;

They are called strongly admissible if in addition they satisfy the following con-
tinuous conditions:
(1)(a(t), α(t), b(t), β(t), c(t), γ(t),m(t), µ(t))are continuous in t\R+

(2)M(t, dξ)and Mi(t, dξ) are weakly continuous on D\0 int ∈ R+

Theorem 7.1. Assume p(r, x; t, dy) weakly regular affine. Then there exist some
weakly admissible parameters (a, α, b, β, c, γ, m, µ) such that, for all t > 0,u =
(v, w) ∈ U ,x = (y, z) ∈ E,

Ã(t)fu(x) =(F (t, u)+ < R1(t, u), y > + < R2(t, u), z >)fu(x)

with

F (t, u) = < a(t)u, u > + < b(t), u > −c(t)

+
∫

D\0
(e<u,ξ> − 1− < uJ , χJ(ξ) >)m(t, dξ)

R1i(t, u) = < αi(t)u, u > + < βy
i (t, u) > −γi(t)

+
∫

D\(0)
(e<u,ξ> − 1− < uJ(i), χJ(i)(ξ) >)µi(t, dξ)

R2(t, u) =βzw,

and

βy
i (t) :=(βT (t))i{1,...,d} ∈ R

βz(t) :=(βT (t))JJ ∈ Rn×n

Definition 7.5. We call p(r, x; t, dy) strongly regular affine if it is weakly regu-
lar affine and the parameters (a, α, b, β, c, γ,m, µ) from theorem (7.1) are strongly
admissible .

We give an example showing that there are weakly regular affine processes that
are not strongly regular affine.

Example 7.2. Let (m, n) = (1, 0),R(t, u) = 0, and

F (t, u) =
∫

R\(0)
(euz−1)

1
z
δx(t)(dz) =

eux(t) − 1
x(t)

,

where x is continuous at 0 , x(0) = 0 , F (0, u) = limt→0F (t, u) = u.Hence

b(t) =
{

1, t = 0
0, otherwise

does not satisfy the continuity conditions.
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Theorem 7.2. Suppose p(r, x; t, dy) is strongly regular affine and (a, α, b, β, c, γ, m, µ)
the corresponding strongly admissible parameters.Then
(i) (Θ, X) is a Feller process.

(ii) C∞c (R+ ×D)is a core of Ã

(iii) for f ∈ C1,2
c (R+ ×D),we have

Af(t, x) = ∂tf(t, x) + A(t)f(t, x),

where A(t)is defined on the the function f(t, ·) as follows

A(t)f(t, x) : =
d∑

k,l=1

(ak,l(t)+ < αI,kl(t), y >)
∂2f(t, x)
∂xk∂xl

+ < b(t) + β(t)x,∇xf(t, x) >

− (c(t)+ < γ(t), y >)f(t, x)

+
∫

D\{0}
(f(t, x + ξ)− f(t, x)− < ∇Jf(t, x), χJ (ξ) >)m(t, dξ))

+
m∑

i=1

∫

D\{0}
(f(t, x + ξ)− f(t, x)− < ∇J(i)f(t, x), χJ(i)(ξ) >)m(t, dξ))

(iv)(7.1)holds for all 0 ≤ t ≤ T and u ∈ U where ϕ(t, T, u), and ψ(t, T, u) solve the
generalized Riccati equations

ϕ(t, T, u) =
∫ T

t

F (s, ψ(s, T, u))ds

−∂tψ
y(t, T, u) = Ry(t, ψy(t, T, u), e

∫ T
t

βz(s)dsw), ψy(T, T, u) = v

ψz(t, T, u) = e
∫ T

t
βz(s)w

with F ,Ry,and βz are given by Thm 7.1.
Conversely,let(a, α, b, β, c, γ, m, µ) be strongly admissible parameters. Then there
exists a unique , strongly regular affine Markov process (Pt,T ) whose associated
space-time process (Θ, X) has the infinitesimal generator A and (7.1) holds for all
0 ≤ t ≤ T and u ∈ U where ϕ(t, T, u) and ψ(t, T, u) are given by above.

8. Characterizations of affine processes

When m = 1 and n = 0, the affine process ξ takes values in R+ and is also
called a continuous- state process with immigration. It was first studied by Kawazu
and Watanabe[KW71] as a continuous limit of Galton-Watson branchinh processes
with immigration. Kawazu and Watanabe[KW71] showed that if ξ is a stocastically
continuous affine process in R+, then for every λ > 0, t > 0 and x ∈ R+, we have

Πxe−λξt = exp{−utx−
∫ t

0

φ(us)ds}

where ut = u(t, λ) satisfies
du

dt
= −ϕ(u) , u(0) = λ

with
ϕ(u) = αu2 − βu− γ +

∫

R+

[e−uy − 1 + u(1 ∧ y)]µ(dy)
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and

φ(u) = c + bu +
∫

R+

(1− e−uy)ν(dy).

[ Here we assume that

α ≥ 0, γ ≥ 0, b ≥ 0, c ≥ 0, β ∈ R
and µ, ν are two measures on (0,∞) satisfying

∫ ∞

0

(1 ∧ y)µ(dy) < ∞

and ∫ ∞

0

(1 ∧ y)ν(dy) < ∞.]

For general m and n, we write I = {1, 2, ..., m}, J = {m+1,m+2, ...,m+n}. Set
U = Cm

− × iRn, I(i) = I\{i} and J(i) = J
⋃{i} for 1 ≤ i ≤ m. (a, b, c, α, β, γ, µ, ν)

is called admissible if:

• a ∈ Semd with aII = 0;
• b ∈ E;
• c ∈ R+;
• α = (α1, α2, ..., αm) with αi ∈ Semd and (αi)II = αi,iiId(i) where Id(i)kl =

δikδkl;
• β ∈ Rd×d such that βIJ = 0 and βiI(i) ∈ Rm−1

+ for all i ∈ I;
• µ = (µ1, µ2, ..., µm) where every µi is a Borel measure on E\{0} satisfying

∫

E\{0}
(< ỹI(i), 1 > +‖ỹJ(i)‖2)µi(dy) < ∞;

• ν is a Borel measure on E\{0} satisfying
∫

E\{0}
(< ỹI , 1 > +‖ỹJ‖2)ν(dy) < ∞;

Duffie, Filipovic and Schachermayer[DFS03] characterized all regular affine pro-
cesses. In particular they obtained that if ξ is regular affine, then for all t, λ ∈ U
and x ∈ E, we have

Πxe<λ,xt> = exp{< u(t, λ), x > +
∫ t

0

φ(u(s, λ))ds}

with uJ(t, λ) = eβJ tλJ and u(t) = u(t, λ) satisfies the generalize Riccati equations

(∂tu)I = (Ψ(u))I

with uI(0) = λI where, for 1 ≤ i ≤ m,

Ψ(u)(i) =< αiu, u > + < βI
i , u > −γi +

∫

E\{0}
(e<u,y>−1− < uJ(i), ỹJ(i) > µi(dy),

and

φ(u) =< au, u > + < b, u > −c +
∫

E\{0}
(e<u,y> − 1− < uJ , ỹJ >)ν(dy).
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In addition, the parameters (a, b, α, β, µi, ν) satisfies for each f ∈ C2
c (D)

Af =
d∑

k,l=1

(ak,l+ < αI,kl,, y >)
∂2f(x)
∂xk∂xl

+ < b + βx,∇f(x) >

+
∫

D\{0}
Gf0(x, ξ)m(dξ)

+
m∑

i=1

∫

D\0
Gfi(x, ξ)yiµi(dξ)

where

Gf0(x, ξ) = f(x + ξ)− f(x)− < ∇Jf(x), χJ(ξ) >

Gfi(x, ξ) = f(x + ξ)− f(x)− < ∇J(i)f(x), χJ(i)(ξ) >

Conversely,if (a, b, c, α, β, γ, µ, ν) is some admissible parameters, then exists a unique,
regular affine Πr,x such that (1.1) holds for all (t, λ) ∈ R+×E, where v(t, λ), u(t, λ)
are given by

REMARK :
(i) for n = 0, we have for every (t, λ) ∈ R×Rm

+ , there exists ũ(t, λ) ∈ Rm
+ such that

Πxe−<λ,xt> = exp{− < ũ(t, λ), x > −
∫ t

0

φ̃(ũ(s, λ))ds}

where ũ(t) = ũ(t, λ) is a solution of the initial value problem
{

∂tũ = −Ψ̃(ũ)
ũ(0) = λ

with

Ψ̃(z)(i) = αiiz
2
i −

∑

j

βijzj − γi +
∫

Rm
+ \{0}

(e−<z,y> − 1 + ziỹi)µi(dy),

and

φ̃(z) =< b, z > +c +
∫

Rm
+ \{0}

(1− e−<z,y>)ν(dy).

(ii)if λ = (w, 0)
Πxe<(w,0),ξ> = ev(t,w,0)+<u(t,w,0),y>

Hence, if ξt is regular affine, then (ξy
t , Πx) is a regular affine process with state

space Rm
+

It is worth noting that ũ solves the differential log-Laplace equation correspond-
ing to some superprocess with a finite base space (see, eg, [Dy94]). Based on
this observation, we construct more general affine processes through general su-
perprocesses. We also study sample path properties for general affine processes.
The rich variety of alternative types of random behavior(e.g., mean reversion, sto-
chastic volatility, and jumps) and analytically tractable for affine processes make
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them ideal models for financial applications(see, e.g., Duffie, Filipovic and Schacher-
mayer[DFS03] and references therein.)
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