
1 Introduction

In this paper, we use the new way to evaluate the entropy of the L-shaped patterns or

estimate the lower bounded of entropy. First, the cellular neural network(CNN), as designed

by Chua and Yang [1988a, 1988b], is an array of an identical system of cells that are locally

coupled. This work investigates the complexity of stable binary patterns of two-dimensional

CNN. The state equation of a cell Cij is the set of coupled O.D.E’s

·
xij(t) = −xij(t) +

∑

|k|,|l|≤d

aklyi+k,j+l(t) + z , i, j ∈ Z. (1)

with output yi,j(t) = f(xi,j(t)). Here y = f(·) is a piecewise-linear function expressed as

f(x) =
1

2
(|x + 1| − |x− 1|) (2)

The parameter z is a time-invariant bias and d is a positive integer. The coupling parameters

akl’s are assumed to be space-invariant, which is arranged in a (2d + 1) × (2d + 1) matrix A

called a template. The stationary solution x = (xij) of (1) are prerequisite for understanding

the CNN dynamics. The stationary solutions x = (xij) of (1) satisfy

dxij

dt
(t) = z +

∑

|k|,|l|≤d

aklf(xi+k,j+l), i, j ∈ Z (3)

A stationary x solution is called a mosaic solution if |xij| > 1 ∀i, j ∈ Z. The corresponding

output y = (f(xij(t))) is called a mosaic pattern. Among all stationary solutions, the stable

mosaic solutions,which have been studied before [Juang,Lin,1997], are the most fundamental

and important applications (finite cells) in image-processing [Chua,1988b,1988]. The com-

plexity of mosaic solutions can be examined according to its entropy. For completeness, the

following discussion introduces some definitions and results concerning spatial entropy. Further

details can be found in [Chow et al.,1996a]. Denote by {−1, 1}Z2
the set of all y : Z2 → {−1, 1}

i.e. the set of all mosaic patterns. Let U be a translation invariant subset of {−1, 1}Z2
and

Zmn = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. The number of distinct patterns observed among the

elements of U when observation is restricted to subset Zmn, is denoted by Γmn(U). The spatial

entropy h(U) of U is defined by

h(U) = lim
m,n→∞

ln Γmn(U)

mn
(4)
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U is called spatial chaos if the spatial entropy h(U) is positive. Otherwise, U is called

pattern formation.

In this paper, we concentrate the simplest two-dimensional template, L-shaped liked

, i.e. A=




0 r 0

0 a s

0 0 0


 The state equation is

dxij

dt
(t) = ryi,j+1(t) + syi+1,j(t) + ayij(t) + z − 1 (5)

We partition the parameter space in the section-2, then we have the eight regions of r-s

plane and twenty-five regions of (a-1)-z plane. For the [µ, ν]d , we can know the basic set of

admissible local L-shaped patterns. In the section-3, we introduce the result of [Ban&Lin ],

they develop the ordering matrix and use the transition matrix of 2× 2 lattice to evaluate the

number of Γmn(U). So, we take the L-shaped pattern into a 2 × 2 lattice, then we also can

know the transition matrix of the given [µ, ν]d of L-shaped patterns. And in the section-4, we

introduce the result of [Ban, Lin&Lin], they develop the connecting operator to estimate the

lower bound of entropy. So, we can use this technique to evaluate the lower bound of entropy

of the L-shaped patterns. Finally, we compare the result with the result of [Lin&Yang 2002].

By the previous result of [Lin&Yang 2002], we refer to the building blocks in the process of

[Lin&Yang 2002] to know the lowest order of connecting operator. In the new way, we can

estimate the entropy better than the previous. Undeniably, the predecessor inspires clues in

my study
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2 Partitioning the Parameter Space

Then we concentrate the simplest two-dimensional template, L-shaped liked , i.e. A=




0 r 0

0 a s

0 0 0




The state equation is

dxij

dt
(t) = −xij(t) + ryi,j+1(t) + syi+1,j(t) + ayij(t) + z (6)

For a mosaic solution x, the output at cell Cij is +1,

i.e., xij ≥ 1 (yij = 1), if and only if,

(a− 1) + z + (ryi,j+1 + syi+1,j) ≥ 0 (7)

and similarly, the output at cell Cij is -1,

i.e., xij ≤ −1 (yij = −1), if and only if,

(a− 1)− z − (ryi,j+1 + syi+1,j) ≥ 0 (8)

We discuss (6), it can be rewritten as the following form :

(a− 1) + z ≥ −(ryi,j+1 + syi+1,j) (9)

In this inequality, it has four parameter, we can rearrange to three parts:

♦(yi,j+1, yi+1,j)

♦(r, s)

♦((a− 1), z)

First, (yi,j+1, yi+1,j) ∈ {−1, +1}2, so (yi,j+1, yi+1,j) has four cases. Moreover, the right side of

(8) also has four cases as the following table :
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(yi,j+1, yi+1,j) −(r · yi,j+1 + s · yi+1,j)

(−1,−1) r + s Pi(−1,−1)

(−1, +1) r − s Pi(−1, +1)

(+1,−1) −r + s Pi(+1,−1)

(+1, +1) −r − s Pi(+1, +1)

(10)

If Pi(k,m) = t, let L+
t be the line on (a-1)-z plane with equations:

(a− 1) + z + kr + ms = 0. (11)

According the magnitude relationship between r and s, the sort of {Pi(−1,−1), Pi(−1, +1),

Pi(+1,−1), Pi(+1, +1)} can be different. For example, if r > s > 0, the sort of {Pi(−1,−1),

Pi(−1, +1), Pi(+1,−1), Pi(+1, +1)} is Pi(−1,−1) < Pi(−1, +1) < Pi(+1,−1) < Pi(+1, +1).

In terms of geometry, we can have the following figure :

a-1

z

Figure 2-1

Similarly, the inequality (7), it also can be rewritten as the following form :

(a− 1)− z ≥ ryi,j+1 + syi+1,j (12)

We also have the following table:

(yi,j+1, yi+1,j) r · yi,j+1 + s · yi+1,j

(−1,−1) −r − s Ni(−1,−1)

(−1, +1) −r + s Ni(−1, +1)

(+1,−1) r − s Ni(+1,−1)

(+1, +1) r + s Ni(+1, +1)

(13)
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If Ni(k, m) = q, let L−q be the line on (a-1)-z plane with equations:

z − (a− 1) + kr + ms = 0. (14)

According the magnitude relationship between r and s, the sort of {Ni(−1,−1), Ni(−1, +1),

Ni(+1,−1), Ni(+1, +1)} can be different. In terms of geometry, we can have the following

figure:

a-1

z

Figure 2-2

We combine the Figure 2-1 and 2-2, we have :

a-1

z

Figure 2-3

Now, we have parted r-s plan into eight open regions and (a-1)-z plane into twenty-five disjoint
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regions.
r

s
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VI
VII

VIII
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Figure 2-4

a-1

z

[ ]4,4

[ ]4,3

[ ]4,2

[ ]4,1

[ ]4,0

[ ]3,4

[3,3]

[ ]3,2

[ ]3,1

[ ]3,0

[ ]2,4

[ ]2,3

[ ]2,2

[ ]2,1

[ ]2,0

[ ]1,4

[ ]1,3

[ ]1,2

[ ]1,1

[ ]1,0

[ ]0,4

[ ]0,3

[ ]0,2

[ ]0,1

[ ]0,0

Figure 2-5

The admissible local patterns of [µ, ν]d can be compared with the following figure.

r

s s

r
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Figure 2-6

Note that the black square means the yi+k,j+l = +1 where k, l ∈ {0, 1}, also means the square

value is +1. The white square means the yi+k,j+l = −1 where k, l ∈ {0, 1}, also means the

square value is 0. After partitioning the parameter space, Proposition2.1 indicates how the

admissible local patterns are determined for each region [µ, ν]d.

Proposition 2.1 ([Lin&Y ang, 2002])

For ((a − 1), z) ∈ [µ, ν]d, the admissible local patterns are exactly the union of
⋃

Ji(k,m)≤µ

Pk,m

and
⋃

Ji(k,m)≤ν

Nk,m,

where Pk,m = {ck : 5 ≤ k ≤ 8} and Nk,m = {ck : 1 ≤ k ≤ 4} and Ji(k, m) are the number of

pattern in r-s plane.

Therefore, for given [µ, ν]d, we can find out the admissible local patterns set B, the basic set,

B =
⋃

Ji(k,m)≤µ

Pk,m ∪
⋃

Ji(k,m)≤ν

Nk,m.

Note that :

P (+1, +1) = c8 N(+1, +1) = c4

P (+1,−1) = c7 N(+1,−1) = c3

P (−1, +1) = c6 N(−1, +1) = c2

P (+1, +1) = c5 N(+1, +1) = c1

(15)
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3 Ordering matrix

3.1 Ordering matrix in 2×2 lattice

According the Ref[Ban&Lin, 2005], we have the following results. On a fixed finite lattice

Zm1×m2 , the ordering χ = χm1×m2 on Zm1×m2 is obtained by

χ((α1, α2)) = m2(α1 − 1) + α2 (16)

i.e.

m2 2m2 m1m2

...
...

...
...

1 m2 + 1 (m1 − 1)m2 + 1

(17)

and similarly, the ordering χ(U) on Σm1×m2 is obtained by :

for each U = (µα1,α2) ∈ Σm1×m2 ,

χ(U) ≡ χm1×m2(U) = 1 +

m1∑
α1=1

m2∑
α2=1

uα1,α2 · 2m2(m1−α1)+(m2−α2) (18)

Obviously, there is an one-to-one correspondence between local patterns in Σm1×m2 and posi-

tive integer in the set N2m1m2 = {k ∈ N : 1 ≤ k ≤ 2m1m2}.
For 1× n pattern U = (uk) , 1 ≤ k ≤ n in Σ1×n, as in (14), there is a number

i = χ(U) = 1 +
n∑

k=1

uk · 2(n−k) (19)

In particular, when n = 2, i = 1 + 2µ1 + µ2 and xi =
u2

u1

A 2 × 2 pattern U = (µα1,α2) can be obtained by a horizontal or vertical direct sum of two

1× 2 or 2× 1 patterns,respectively.

i.e.

xi1,i2 ≡
u12 u22

u11 u21

(20)

where

ik = 1 + 2uk1 + uk2 , 1 ≤ k ≤ 2 (21)
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and

yj1,j2 ≡
u12 u22

u11 u21

(22)

where

jl = 1 + 2u1l
+ u2l

, 1 ≤ l ≤ 2 (23)

A 4×4 matrix X2 = [xi1,i2 ] and Y2 = [yj1,j2 ] can be obtained for Σ2×2,

i.e.

0

1

0

0

0 0

0

0

0

0

0 0

0 0

0

0

0 0

0

0

0

0

0

0

0

0 0 0 0

0

0

0 0 0

0

0 0

0

0

1

1

1

1

1

1

1

1 1 1 1

1

1 1

1

1

1

1

1 1

1

1 1 1

1

1

1

1

1

1

1

1 1

1 1

1

1

1

1

0

0

(24)

0 0

0 1

1 0

1 1

0 0 0 1 01 1 1

0

0

0

0 0 0 0 0 0 0

0 0

0 0

0 0

0

0

0

0

0

0

0

0

0 0 0 0

0 0 0 0

1 1 1 1

1

1

1

1

1

1 1

1

1

1 1 1 1

1

1

1 1

1

1

1 1

1 1

1

1 1

1 1 (25)

The relationship between X2 and Y2 had found.

X2 =




y1,1 y1,2 y2,1 y2,2

y1,3 y1,4 y2,3 y2,4

y3,1 y3,2 y4,1 y4,2

y3,3 y3,4 y4,3 y4,4




,Y2 =




x1,1 x1,2 x2,1 x2,2

x1,3 x1,4 x2,3 x2,4

x3,1 x3,2 x4,1 x4,2

x3,3 x3,4 x4,3 x4,4



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3.1.1 Ordering matrix in L-shaped

For the convenience, we let the color white and black to be 0 and 1,respectively. According

Sec3.1, we can put L-pattern into 2 × 2 lattice by the following method. Let ck =
l2

l1 l3
,

where k = 1 + 20l3 + 21l2 + 22l1, so we have c1 ∼ c8 that means
0

0 0
∼ 1

1 1
. And, let

ΣL = {ck : 1 ≤ k ≤ 8}.

For a L-pattern ck in a 2× 2 lattice
α12 α22

α11 α21

.

We can define





i = 1 + 21α11 + α12

j = 1 + 21α21 + α22

and





l1 = α21

l2 = α12

l3 = α11

.

For example,

(26)




i = 1 + 21 · 0 + 0

j = 1 + 210 + α22

⇒




i = 1

j = 1 or 2 for α22 = 0 or 1, resp.

i.e.

(27)

10



3.2 Transition matrix B ⊂ ΣL

3.2.1 Transition matrix in 2× 2 lattice

Now, given a basic set B ⊂ Σ2×2, horizontal and vertical transition matrices H2 and V2 can

be defined by:

Let H2 = [hi1,i2 ] and V2 = [vj1,j2 ], according to the following rules, we can define the entries

of H2 and V2 is 0 or 1:



hi1,i2 = 1 , if xi1,i2 ∈ B
hi1,i2 = 0 , if xi1,i2 ∈ Σ2×2\B




vj1,j2 = 1, if yj1,j2 ∈ B
vj1,j2 = 0, if yj1,j2 ∈ Σ2×2\B

The transition matrix for B can be defined by:

H2 ≡ H2(B) =




v11 v12 v21 v22

v13 v14 v23 v24

v31 v32 v41 v42

v33 v34 v43 v44




By induction on n, we have Proposition3.1 of the property of Hn

Proposition 3.1 ([Ban&Lin, 2005])

Let H2 be a transition matrix for B. Then the higher order transition matrices Hn, n ≥ 3,we

have the following expression. Hn can be decomposed into a successive 2×2 matrices as follows

:

Hn =


 Hn;1 Hn;2

Hn;3 Hn;4




Hn;j1···jk
=


 Hn;j1···jk1 Hn;j1···jk2

Hn;j1···jk3 Hn;j1···jk4


 for 1 ≤ k ≤ n− 2 and

Hn;j1···jn−1 =


 υj1···jn−11 υj1···jn−12

υj1···jn−13 υj1···jn−14


.

Furthermore, Hn;k =


 υk1Hn−1;1 υk2Hn−1;2

υk3Hn−1;3 υk4Hn−1;4


.
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3.2.2 Transition matrix in L-pattern

Given a basic set BL ∈ ΣL,

if
l2

l1 l3
is an admissible local pattern , we can calculate:





i = 1 + 20l2 + 21l1

j = 1 + 20α22 + 21l3
(28)

then tij=1 ∀i, j ∈ (28)

Example 3.2 if
0

0 0
is admissible ,





i = 1 + 200 + 210 = 1

j = 1 + 20α22 + 210 =





1, α22 = 0

2, α22 = 1

the h11 = h12 = 1 in HL;2

In the other way,

if
l2

l1 l3
is a forbidden local pattern , we can calculate:





i = 1 + 20l2 + 21l1

j = 1 + 20α22 + 21l3
(29)

then tij=0 ∀i, j ∈ (29)

Example 3.3 if
0

0 0
is forbidden ,





i = 1 + 200 + 210 = 1

j = 1 + 20α22 + 210 =





1, α22 = 0

2, α22 = 1

the h11 = h12 = 0 in HL;2

In this paper, we use the second way to discuss the entropy of the given [µ, ν]d. For given

[µ, ν]d , we can know the forbidden set, F[µ,ν]d={ck}. And for every forbidden local pattern ck,

we could find the forbidden set of ck , namely, Fck
= {(i, j)}. Let F=

⋃
ck∈F[µ,ν]d

Fck
, the union

set of the forbidden set of ck.

The transition matrix HL;2 could be expressed that [hij] , where





hij = 0, if (i, j) ∈ F

hij = 1, if (i, j) /∈ F

In other words, for given [µ, ν]d, in Sec.2, we can find the basic set of [µ, ν]d, BL. Then we also

can know the forbidden set of [µ, ν]d, F[µ,ν]d = ΣL \ BL. Now, we have the following theorem.
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Theorem 3.4 ([Ban&Lin, 2005])

Given m,n,d , 0 ≤ µ, ν ≤ 4, 1 ≤ d ≤ 8, µ, ν, d∈ N ,

we have a basic set BL of [µ, υ]d and a forbidden set F of [µ, υ]d

then the HL;2 = [hij] can be written by 4× 4 matrix where





hij = 0, if hij = aij ∈ F

hij = 1, if hij = aij /∈ F

Then the higher order transition matrices HL;n, n ≥ 3,we have the following expression. HL;n

can be decomposed into a successive 2× 2 matrices as follows :

HL;n =


 HL;n;1 HL;n;2

HL;n;3 HL;n;4




HL;n;j1···jk
=


 HL;n;j1···jk1 HL;n;j1···jk2

HL;n;j1···jk3 HL;n;j1···jk4


 for 1 ≤ k ≤ n− 2 and

HL;n;j1···jn−1 =


 υj1···jn−11 υj1···jn−12

υj1···jn−13 υj1···jn−14


.

Furthermore, HL;n;k =


 υk1HL;n−1;1 υk2HL;n−1;2

υk3HL;n−1;3 υk4HL;n−1;4


.

Proof.

step I:

For given [µ, ν]d, we have the transition matrix HL;2 of the basic set of [µ, ν]d.

step II:

If the n-th transition matrix is HL;n =


 HL;n;1 HL;n;2

HL;n;3 HL;n;4




step III:

By the transition matrix recursive formula in Proposition3.1HL;n+1;k =


 vk1 ·HL;n;1 vk2 ·HL;n;2

vk3 ·HL;n;3 vk4 ·HL;n;4


,

1 ≤ k ≤ n− 1

The proof is complete. 2
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4 Spatial entropy

The spatial entropy of L-shaped patterns [µ, ν]d , we have the following theorem

Theorem 4.1 ([Chow et al., 1996]; [Juang et al., 2000]; [Ban&Lin, 2005])

Given a basic set BL of [µ, ν]d , let λn be the largest eigenvalue of the associated transition

matrix HL;n which defined in Theorem 2.4.

Then h(BL) = lim
n→∞

log λn

n

Proof. By the construction of the transition matrix, we know the L-shaped pattern in a

2× 2 lattice, the upper right lattice has lost to compare. By the recursive formula, the m× n

lattice paste by L-shaped patterns, we also only lost the upper right lattice. So, the entropy

of the L-shaped pattern

h(BL) = lim
n,m→∞

log Γm×n(BL)
m×n

= lim
n,m→∞

log (Γm×n(B)÷2)
m×n

= lim
n,m→∞

log Γm×n(B)−log2
m×n

= lim
n,m→∞

log Γm×n(B)
m×n

From the construction of transition matrix Hn, we observe that for m ≥ 2,

Γm×n(B) = Σ
1≤i,j≤2n

(Hm−1
n )i,j = #(Hm−1

n ) (30)

As in a one dimensional case, we have

lim
m→∞

log #(Hm−1
n )

m
= log λn (31)

e.g. [42].

Therefore, h(BL) = lim
n,m→∞

log Γm×n(BL)
m×n

= lim
n,m→∞

log Γm×n(B)
m×n

= lim
n→∞

1
n
( lim
m→∞

log Γn×m(B)
m

) = lim
n→∞

logλn

n
2

But we can not evaluate the exact entropy Hn for n increasing to infinite. So, the following

section will help us estimate the lower bounded of spatial entropy.
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4.1 Connecting operator

In Ref[Ban, Lin&Lin, 2006], it found a method to measure the lower bounded of entropy. In

this paper, we can use this method to estimate the lower bounded of entropy.

Proposition 4.2 ([Ban, Lin&Lin, 2006])

For m ≥ 2 , define

Cm =




Cm;11 Cm;12 Cm;13 Cm;14

Cm;21 Cm;22 Cm;23 Cm;24

Cm;31 Cm;32 Cm;33 Cm;34

Cm;41 Cm;42 Cm;43 Cm;44




=




Sm;11 Sm;12 Sm;21 Sm;22

Sm;13 Sm;14 Sm;23 Sm;24

Sm;31 Sm;32 Sm;41 Sm;42

Sm;33 Sm;34 Sm;43 Sm;44




,

where

Cm;αβ = (


 hα1 hα2

hα3 hα4


 ◦ (

∧⊗

 V2;1 V2;2

V2;3 V2;4




m−2

)2×2)2m−1×2m−1

◦(E2m−2×2m−2 ⊗ (


 h1β h2β

h3β h4β


))2m−1×2m−1

Now,Cm+1 can be found from Cm by a recursive formula,

Cm+1;αβ =


 hα1Cm;1β hα2Cm;2β

hα3Cm;3β hα4Cm;4β


 ,

where ◦ is the Hadamard product, ⊗ is the tensor product

and E2k is the 2k × 2k matrix with 1 as its entries.

Proposition 4.3 ([Ban, Lin&Lin, 2006])

For any m ≥ 2 and n ≥ 2, let Sm;αβ be given as above.

Then, Xm;n;α;β = Sm;αβXm;n−1;β.

Proposition 4.4 ([Ban, Lin&Lin, 2006])

Let β1β2 · · · βKβ1 be a diagonal cycle.

Then for any m ≥ 2, h(H2)≥ 1
mK

logρ(Sm;β1β2Sm;β2β3 · · ·Sm;βKβ1)

In particular, if a diagonal cycle β1β2 · · · βKβ1 exists and m ≥ 2 such that

ρ(Sm;β1β2Sm;β2β3 · · ·Sm;βKβ1) > 1

then h(H2) > 0.

By Nonnegative matrices in the Mathematical Sciences [AbrahamBerman, RobertJ.P lemmons],

we have the following proposition.
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Proposition 4.5 If 0 ≤ A ≤ B, then ρ(A) ≤ ρ(B)

16



4.2 L-shaped

Herein, we first state the result of this phenomenon.

Theorem 4.6 if HL;n([µ, ν]d) = [hi,j] and HL;n([ν, µ]d) = [h
′
i,j]

Then h
′
i,j = h2n+1−i,2n+1−j

Proof.

Since the basic set of [µ, ν]d and [µ, ν]d are :

B[µ,ν]d =
⋃

Ji(k,m)≤µ

Pk,m ∪
⋃

Ji(k,m)≤ν

Nk,m

B[ν,µ]d =
⋃

Ji(k,m)≤ν

Pk,m ∪
⋃

Ji(k,m)≤µ

Nk,m

In particular,

⋃

Ji(k,m)≤µ

Pk,m ∪ and
⋃

Ji(k,m)≤µ

Nk,m have opposite colors and same number µ

and
⋃

Ji(k,m)≤ν

Pk,m ∪ and
⋃

Ji(k,m)≤ν

Nk,m have opposite colors and same number ν

Moreover, every pattern in Pk,m, its h′i,j = h22+1−i,22+1−j in Nk,m.

By the recursive formula H2 to Hn, we can have the following result :

h′i,j = h2n+1−i,2n+1−j. 2

Theorem 4.7 h([µ, ν]d) = h([ν, µ]d)

Proof. By Theorem 4.1, we can evaluate spatial entropy by h(HL)= lim
n→∞

ln λn. And , we

can use the relationship between Hn([µ, ν]i) = H and Hn([ν, µ]i) = H ′ had shown in The-

orem4.6. For evaluate the eigenvalue, we need to have the equation det(A-λI)=0, where

det(A)=
n

Σ
α=1

(−1)1+α · a1,α · det(A1|α) , where Aα|j is the cofactor of a1,α. So,we can have the

following equality

det(Hn − λI) =
2n

Σ
α=1

(−1)1+α · h1,α · det((Hn − λI)1|α)

=
2n

Σ
α=1

(−1)1+α · h′2n,α · det((H ′
n − λI)1|α) = det(H ′

n − λI)

Hence, we can know the det(Hn − λI) = det(H ′
n − λI), and then the maximal eigenvalue of

17



Hn is equal to the eigenvalue of H ′
n. So, the spatial entropy of [µ, ν]d is equal to the spatial

entropy of [ν, µ]d

2

Since the patterns for [µ, ν]d and [ν, µ]d have same entropy, it is a sufficient to discuss only

the cases of [ν, µ]d with µ ≥ ν and 1 ≤ d ≤ 8. By the generation rule in Sec.3 and previous

proposition and theorem, we have the main result in this section.

Theorem 4.8

I.exactly solvable

region spatial entropy notation

[4,4] R1˜R8 ln 2 H2 = E ⊗ E

[4,2] R4,R5 ln(1+
√

5
2

) V2 = G
′ ⊗ E

[4,2] R6,R7 ln(1+
√

5
2

) H2 = G
′ ⊗ E

[4,2] R1,R8 0 V2 = L⊗ E

[4,2] R2,R3 0 H2 = L⊗ E

[2,2] R1˜R8 0 H2 = I ⊗ E

II.lower bounded

region Connecting Operator eigenfunction ρ∗ Lower bounded
of spatial entropy

[4,3] R1,R2 S3,11 x4 − 4x3 + 2x2 2 +
√

2 ln(2+
√

2)
3

[4,3] R3,R4 S3,44 x4 − 4x3 + 2x2 2 +
√

2 ln(2+
√

2)
3

[4,3] R5,R6 S3,44 x4 − 3x3 − 2x2 3+
√

17
2

ln( 3+
√

17
2

)

3

[4,3] R7,R8 S3,14S3,41 x4 − 9x3 + 2x2 9+
√

73
2

ln( 9+
√

73
2

)

6

[4,1] R5,R6 S3,44 x4 − x3 − 3x2 − x 1 +
√

2 ln(1+
√

2)
3

[3,3] R1,R2 S6,11S6,11S6,14S6,44S6,41 x2 − 177x + 101 176.4275 ln(176.4275)
30

[3,3] R3,R4 S4,14S4,41S4,11 x8 − 11x7 + 10x6 10 ln(10)
12

[3,3] R5,R6 S6,14S6,44S6,41 120.6018833 ln(120.60188)
18

[3,3] R7,R8 S3,44S3,44S3,41S3,14S3,44 x4 − 6x3 6 ln(6)
15

[3,2] R4 S3,14S3,44S3,41 x4 − 5x3 + 4x 4 ln(4)
12

[3,2] R5 (S4,41S4,14)
2S4,44(S4,41S4,14)

2 x8 − 40x7 + 80x6 20 + 8
√

5 ln(20+8
√

5)
36

[3,2] R6(R5) (S4,41S4,14)
2S4,44(S4,41S4,14)

2 x8 − 40x7 + 80x6 20 + 8
√

5 ln(20+8
√

5)
36

[3,2] R7(R4) S3,14S3,44S3,41 x4 − 5x3 + 4x 4 ln(4)
12

18



III.entropy is zero

region upper matrix

[4,1] R1˜R4 H2 < L⊗ E

[4,1] R7,R8 V2 < L⊗ E

[4,0] R1˜R8 H2 < L⊗ E

[3,2] R1,R8 V2 < L⊗ E

[3,2] R2,R3 H2 < L⊗ E

[3,1] R1˜R4 H2 < L⊗ E

[3,1] R5,R6 *

[3,1] R7,R8 V2 < L⊗ E

[3,0] R1˜R8 H2 < L⊗ E

[2,1] R1˜R8 H2 < H2,[2,2]

[2,0] R1˜R8 H2 < H2,[2,2]

[1,1] R1˜R4,R7,R8 H2 < L⊗ E

[1,1] R5,R6 H2 < I ⊗ E

[1,0] R1˜R8 H2 < L⊗ E

Proof. We have three cases for evaluating spatial entropy. In Part I , we can exact solve

spatial entropy of some regions. In Part II , we largely use connecting operator to estimate

the lower bound of spatial entropy which is positive. In Part III , we use the character of

transition matrix of some regions to evaluate the upper bound of spatial entropy is zero, then

we can say the spatial entropy is zero.

Part I :

For [4, 2]6,7, the transition matrix is :

H2 =




0 0 1 1

0 0 1 1

1 1 1 1

1 1 1 1




= G
′ ⊗ E
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By the recursive formula of the transition matrix, the H3 can be expressed :

H3 =




0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1




= G
′ ⊗G

′ ⊗ E

If Hn = G
′ ⊗G

′ ⊗ · · ·G′ ⊗ E is with (n-1) times of G
′
, also by the recursive formula: we can

make sure the Hn = G
′ ⊗ G

′ ⊗ · · ·G′ ⊗ E is with n times of G
′
. So induction by n, we can

know the Hn = G
′ ⊗ G

′ ⊗ · · ·G′ ⊗ E is with (n-1) times of G
′ ∀n ∈ N. Then the maximal

eigenvalue of Hn is ρ(Hn) = gn−1 · 2, where g = 1+
√

5
2

. Then,

h(Hn)= lim
n→∞

ln(gn−1·2)
n

= lim
n→∞

(n−1) ln g+ln 2
n

= ln g = ln(1+
√

5
2

).

We can use the same way to evaluate the other regions in Part I.

Part II :

For [4, 3]1,2, the transition matrix is :

H2 =




1 1 1 1

1 1 0 0

1 1 1 1

1 1 1 1




We can find the trace operator T3 :

T3 =




1 1 1 1 1 1 1 1

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1



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By Proposition 4.3, we have find out a diagonal cycle.

S3,11 =




1 1 1 1

1 1 0 0

1 1 1 1

1 1 1 1




which maximal eigenvalue is 2+
√

2. By the Proposition 4.4, we can estimate the lower bound

of spatial entropy is ln(2+
√

2)
3

.

We can use the same way to evaluate the other regions in Part II.

Part III :

For [3, 1]5,6, the transition matrix is :

H2 =




0 0 0 0

0 0 1 1

1 1 1 1

1 1 0 0




In particular,

T2 =




0 0 0 0

0 0 1 1

0 1 0 1

1 0 0 0




We can see that T2’s every row or column has not more than two 1’s.

T3 =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 1 0 0 0 0

1 0 0 0 0 0 0 0




The matrix T3 has the same property. By recursive formula, we can know that Tn has the

same property. Then, by the matrix’s property : M=[mi,j]n×n, ρ(M) ≤ max(
n

Σ
j=1

mi,j, for some
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i) or max(
n

Σ
i=1

mi,j, for some j) . So the entropy of [3, 1]5,6 is less than lim
n→∞

ln 2
n

= 0. Therefore,

we can see [3, 1]5,6 is pattern formation.

Otherwise, for [4, 1]1,2, the transition matrix is :

H2 =




1 1 0 0

0 0 0 0

1 1 1 1

1 1 1 1




In particular,

H2 =




1 1 0 0

0 0 0 0

1 1 1 1

1 1 1 1



≤




1 1 0 0

1 1 0 0

1 1 1 1

1 1 1 1




In the Part I , we can know H2 = L ⊗ E is entropy zero. So we can use Proposition 4.5 to

know the upper bound of spatial entropy of [4, 1]1,2 is zero. So, the spatial entropy of [4, 1]1,2

is exactly zero.

We can use the same way to evaluate the other regions in Part III.

2

Now, we can conclusion the regions which is spatial chaos in the following figures.

[ ]4,4

[ ]3 ,4

[ ]3 ,3

[ ]4,3

R1, R2, R3, R8
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[ ]4,4

[3,4]

[ ]3 ,3

[ ]4,3

[ ]4,2

[ ]3 ,2

[ ]2 ,4

[ ]2,3

R4, R7

[ ]4,4

[ ]3 ,4

[ ]2 ,4

[ ]1 ,4

[ ]4,3

[ ]3 ,3 [ ]4,2

[ ]4,1[ ]2 ,3 [ ]3,2

R5, R6

Corollary 4.9 ([Lin&Yang, 2000])

Equation(5) is spatial chaos if and only if r,a,s and z belong to the following regions of P4 :

1. [4,4]d, 1 ≤ d ≤ 8

2.[4,3]d, 1 ≤ d ≤ 8

3.[4,2]d, d = 4, 5, 6, 7

4.[4,1]d, d = 5, 6

5.[3,3]d, 1 ≤ d ≤ 8

6.[3,2]d, d = 4, 5, 6, 7

In the following table,we can see the compare about Prof.Lin and Prof.Yang with my result.
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Prof.Lin & Yang’s result(lower bounded) Huang’s result

[4,4]1˜8 ln2 ≈ 0.69315 ln2

[4,3]1,2
ln 3
4
≈ 0.27465 ln 2+

√
2

3
≈ 0.409316

[4,3]3,4
ln 4
4
≈ 0.347657 ln 2+

√
2

3
≈ 0.409316

[4,3]5,6
ln 5
4
≈ 0.40236 ln 3+

√
17

3
≈ 0.654448

[4,3]7,8
ln 4
4
≈ 0.347657 ln 9+

√
73

6
≈ 0.47745

[4,2]4,5
ln 4
4
≈ 0.347657 ln(1+

√
5

2
) ≈ 0.48122

[4,2]6,7
ln 4
4
≈ 0.347657 ln(1+

√
5

2
) ≈ 0.48122

[4,1]5,6 chaos ln 1+
√

2
3

≈ 0.293789

[3,3]1,2
ln 20
20

≈ 0, 14979 0.17234

[3,3]3,4
ln 9
12
≈ 0.1831 ln 10

12
≈ 0.191882

[3,3]5,6
ln 9
9
≈ 0.24414 ln(120.60188)

18
≈ 0.26625

[3,3]7,8
ln 9
20
≈ 0.10986 ln(6)

15
≈ 0.11945

[3,2]4
ln 3
12
≈ 0.09155 ln 4

12
≈ 0.1155245

[3,2]5
ln 8
21
≈ 0.099 ln(20+8

√
5)

36
≈ 0.10096

[3,2]6
ln 8
21
≈ 0.099 ln(20+8

√
5)

36
≈ 0.10096

[3,2]7
ln 3
15
≈ 0.07324 ln 4

12
≈ 0.1155245
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Appendix

R1˜2 R3˜4 R5˜6 R7˜8

[4, 3]




1 1 1 1

1 1 0 0

1 1 1 1

1 1 1 1







1 1 0 0

1 1 1 1

1 1 1 1

1 1 1 1







0 0 1 1

1 1 1 1

1 1 1 1

1 1 1 1







1 1 1 1

0 0 1 1

1 1 1 1

1 1 1 1




[3, 3]




1 1 1 1

1 1 0 0

0 0 1 1

1 1 1 1







1 1 0 0

1 1 1 1

1 1 1 1

0 0 1 1







0 0 1 1

1 1 1 1

1 1 1 1

1 1 0 0







1 1 1 1

0 0 1 1

1 1 0 0

1 1 1 1




[4, 1]




1 1 0 0

0 0 0 0

1 1 1 1

1 1 1 1







0 0 0 0

1 1 0 0

1 1 1 1

1 1 1 1







0 0 0 0

0 0 1 1

1 1 1 1

1 1 1 1







0 0 1 1

0 0 0 0

1 1 1 1

1 1 1 1




[3, 1]




1 1 0 0

0 0 0 0

0 0 1 1

1 1 1 1







0 0 0 0

1 1 0 0

1 1 1 1

0 0 1 1







0 0 0 0

0 0 1 1

1 1 1 1

1 1 0 0







0 0 1 1

0 0 0 0

1 1 0 0

1 1 1 1




[1, 1]




1 1 0 0

0 0 0 0

0 0 0 0

0 0 1 1







0 0 0 0

1 1 0 0

0 0 1 1

0 0 0 0







0 0 0 0

0 0 1 1

1 1 0 0

0 0 0 0







0 0 1 1

0 0 0 0

0 0 0 0

1 1 0 0




[1, 0]




0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 1







0 0 0 0

0 0 0 0

0 0 1 1

0 0 0 0







0 0 0 0

0 0 0 0

1 1 0 0

0 0 0 0







0 0 0 0

0 0 0 0

0 0 0 0

1 1 0 0




[4, 0]




0 0 0 0

0 0 0 0

1 1 1 1

1 1 1 1







0 0 0 0

0 0 0 0

1 1 1 1

1 1 1 1







0 0 0 0

0 0 0 0

1 1 1 1

1 1 1 1







0 0 0 0

0 0 0 0

1 1 1 1

1 1 1 1




[3, 0]




0 0 0 0

0 0 0 0

0 0 1 1

1 1 1 1







0 0 0 0

0 0 0 0

1 1 1 1

0 0 1 1







0 0 0 0

0 0 0 0

1 1 1 1

1 1 0 0







0 0 0 0

0 0 0 0

1 1 0 0

1 1 1 1



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R1˜8 R2˜3 R4˜5 R6˜7

[4, 2]




1 1 1 1

0 0 0 0

1 1 1 1

1 1 1 1







1 1 0 0

1 1 0 0

1 1 1 1

1 1 1 1







0 0 0 0

1 1 1 1

1 1 1 1

1 1 1 1







0 0 1 1

0 0 1 1

1 1 1 1

1 1 1 1




[2, 2]




1 1 1 1

0 0 0 0

0 0 0 0

1 1 1 1







1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1







0 0 0 0

1 1 1 1

1 1 1 1

0 0 0 0







0 0 1 1

0 0 1 1

1 1 0 1

1 1 0 0




[2, 0]




0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1







0 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1







0 0 0 0

0 0 0 0

1 1 1 1

0 0 0 0







0 0 0 0

0 0 0 0

1 1 0 1

1 1 0 0




R1 R2 R3 R4

[3, 2]




1 1 1 1

0 0 0 0

0 0 1 1

1 1 1 1







1 1 0 0

1 1 0 0

0 0 1 1

1 1 1 1







1 1 0 0

1 1 0 0

1 1 1 1

0 0 1 1







0 0 0 0

1 1 1 1

1 1 1 1

0 0 1 1




R5 R6 R7 R8

[3, 2]




0 0 0 0

1 1 1 1

1 1 1 1

1 1 0 0







0 0 1 1

0 0 1 1

1 1 1 1

1 1 0 0







0 0 1 1

0 0 1 1

1 1 0 0

1 1 1 1







1 1 1 1

0 0 0 0

1 1 0 0

1 1 1 1




R1 R2 R3 R4

[2, 1]




1 1 0 0

0 0 0 0

0 0 0 0

1 1 1 1







1 1 0 0

0 0 0 0

0 0 1 1

0 0 1 1







0 0 0 0

1 1 0 0

0 0 1 1

0 0 1 1







0 0 0 0

1 1 0 0

1 1 1 1

0 0 0 0




R5 R6 R7 R8

[2, 1]




0 0 0 0

0 0 1 1

1 1 1 1

0 0 0 0







0 0 0 0

0 0 1 1

1 1 0 0

1 1 0 0







0 0 1 1

0 0 0 0

1 1 0 0

1 1 0 0







0 0 1 1

0 0 0 0

0 0 0 0

1 1 1 1


26
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