1 Introduction

In this paper, we use the new way to evaluate the entropy of the L-shaped patterns or
estimate the lower bounded of entropy. First, the cellular neural network(CNN), as designed
by Chua and Yang [1988a, 1988b], is an array of an identical system of cells that are locally
coupled. This work investigates the complexity of stable binary patterns of two-dimensional
CNN. The state equation of a cell Cj; is the set of coupled O.D.E’s

wii(t) = =2 () + Y amisnju(t) +2 ,i,j €L (1)
|kl,[l|<d

with output v, ;(t) = f(z;;(t)). Here y = f(-) is a piecewise-linear function expressed as

flae) = (e +1] ~ |z ~ 1) )
The parameter z is a time-invariant bias and d is a positive integer. The coupling parameters
ag’s are assumed to be space-invariant, which is arranged in a (2d + 1) x (2d + 1) matrix A
called a template. The stationary solution x = (z;;) of (1) are prerequisite for understanding

the CNN dynamics. The stationary solutions x = (z;;) of (1) satisfy

d!lfij
dt

(t) =2+ Z g f (Tivhji) %, J €L (3)

||l <d

A stationary x solution is called a mosaic solution if |z,;| > 1 Vi,j € Z. The corresponding
output y = (f(z;5(t))) is called a mosaic pattern. Among all stationary solutions, the stable
mosaic solutions,which have been studied before [Juang,Lin,1997], are the most fundamental
and important applications (finite cells) in image-processing [Chua,1988b,1988]. The com-
plexity of mosaic solutions can be examined according to its entropy. For completeness, the
following discussion introduces some definitions and results concerning spatial entropy. Further
details can be found in [Chow et al.,1996a]. Denote by {—1,1}%" the set of all y: Z? — {—1,1}
i.e. the set of all mosaic patterns. Let U be a translation invariant subset of {—1, 1}22 and
Lnn = {(1,7): 1 <i < m,1 < j <n}. The number of distinct patterns observed among the
elements of U when observation is restricted to subset Z,,,, is denoted by I, (). The spatial

entropy h(U) of U is defined by

InT,,, (U)
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U is called spatial chaos if the spatial entropy h(U) is positive. Otherwise, U is called

pattern formation.

In this paper, we concentrate the simplest two-dimensional template, L-shaped liked

0 » O
,ie. A= 0 a s | The state equation is
0 0 0
dxl-j
W(f) = Tyi,jJrl(t) + Syi+17j(t) + ayl](t) +z—-1 (5)

We partition the parameter space in the section-2, then we have the eight regions of r-s
plane and twenty-five regions of (a-1)-z plane. For the [u,v]; , we can know the basic set of
admissible local L-shaped patterns. In the section-3, we introduce the result of [Ban&Lin |,
they develop the ordering matrix and use the transition matrix of 2 x 2 lattice to evaluate the
number of I',,,(U). So, we take the L-shaped pattern into a 2 x 2 lattice, then we also can
know the transition matrix of the given [u, v|; of L-shaped patterns. And in the section-4, we
introduce the result of [Ban, Lin&Lin|, they develop the connecting operator to estimate the
lower bound of entropy. So, we can use this technique to evaluate the lower bound of entropy
of the L-shaped patterns. Finally, we compare the result with the result of [Lin& Yang 2002].
By the previous result of [Lin&Yang 2002], we refer to the building blocks in the process of
[Lin&Yang 2002] to know the lowest order of connecting operator. In the new way, we can
estimate the entropy better than the previous. Undeniably, the predecessor inspires clues in

my study



2 Partitioning the Parameter Space

0 r O
Then we concentrate the simplest two-dimensional template, L-shaped liked ,i.e. A=| 0 o s
0 00
The state equation is
dxij
o (8) = =2 () 1y () + syier () + ayi(t) + 2 (6)
For a mosaic solution x, the output at cell C;; is +1,
ie., z;; > 1 (y;; = 1), if and only if,
(@—1)+ 2+ (1yij41 + SYit15) > 0 (7)
and similarly, the output at cell C;; is -1,
ie., z;; < —1 (y;; = —1), if and only if,
(@ —1) =2 = (FYij+1 + Yir15) 2 0 (8)
We discuss (6), it can be rewritten as the following form :
(a—1)+2 > —=(ryij1 + sYit1) (9)

In this inequality, it has four parameter, we can rearrange to three parts:

<><yi,j+17 yi+1,j>

O(ry 8)

Ola—1),2)

First, (yij11,Yir1;) € {—1,+1}% 80 (yij11,Yir1,) has four cases. Moreover, the right side of

(8) also has four cases as the following table :



Yij+1sYirrg) | =7 Yijer + 8 Yiy1j)
( ) T+ s P’L(_lu _1)
(— 1,+1) r—s Pi(—1,+41) (10)
(+1,-1) —r+s P(+1,-1)
(+1,+1) —r—s P(+1,+1)
If Pi(k,m)=t, let L] be the line on (a-1)-z plane with equations:
(@a—1)+z+kr+ms=0. (11)

According the magnitude relationship between r and s, the sort of {FP;(—1,—1), Pi(—1,+1),
P,(+1,-1), Pi(+1,+1)} can be different. For example, if » > s > 0, the sort of {P;(—1,—1),

In terms of geometry, we can have the following figure :

a-1
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L
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Figure 2-1

Similarly, the inequality (7), it also can be rewritten as the following form :
(a—=1) =2z >7yij11 + SYir1 (12)

We also have the following table:

(Yija1s Yivrg) | 7 Yiger TS Yirr

(—1,-1) —r —5 N;(—1,-1)

(—1,+1) —r+s N;(—1,+1) (13)
(+1,-1) r—s Ni(+1,-1)

(+1,+1) r+s N;(+1,+1)




If Ni(k,m) = q, let L be the line on (a-1)-z plane with equations:
z—(a—1)+kr+ms=0. (14)

According the magnitude relationship between r and s, the sort of {N;(—1,—1), N;(—1,+1),
N;(+1,—1), N;(+1,+1)} can be different. In terms of geometry, we can have the following
figure:

% //
L, LZL//

1

Figure 2-2

We combine the Figure 2-1 and 2-2, we have :

a-1

Figure 2-3

Now, we have parted r-s plan into eight open regions and (a-1)-z plane into twenty-five disjoint



regions.

Figure 2-4

a-1

The admissible local patterns of [u, v]; can be compared with the following figure.
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Figure 2-6

Note that the black square means the y;. j1; = +1 where k, 1 € {0, 1}, also means the square
value is +1. The white square means the y; 14 ;4 = —1 where k,1 € {0,1}, also means the
square value is 0. After partitioning the parameter space, Proposition2.1 indicates how the

admissible local patterns are determined for each region [u, V]4.

Proposition 2.1 ([Lin&Y ang,2002])

For ((a — 1),2) € [u,v]q, the admissible local patterns are exactly the union of |  Pim
Jz(k‘vm)gﬂ
and |J  Nigm,
Ji(k,m)<v
where Py = {cx 15 < k <8} and Ny, = {cr 1 1 < k < 4} and J;(k,m) are the number of

pattern in r-s plane.

Therefore, for given [u, |4, we can find out the admissible local patterns set B, the basic set,

B = U Pk7mU U Nk,m-

Ji(k,;m)<p Ji(k,m)<v
Note that :
P+1,+1) B =, N1+ M =g
P(+1,-1) & =c; N(+1,-1) um =c3
(15)
P(-1,+1) B =¢; N(-1,+1) Bm =
P(+1,+1) B =¢ N(+1,+1) B =¢



3 Ordering matrix

3.1 Ordering matrix in 2x2 lattice

According the Ref[Ban&Lin, 2005], we have the following results. On a fixed finite lattice

Loy xmy, the ordering X = Xom, xmy O0 Zy, xm, 15 Obtained by

X((a1, a2)) =ma(a; — 1) + s (16)
i.e.
mo 2m2 mi1me
(17)
1 m2+1 (ml—l)mg—i-l

and similarly, the ordering x(U) on 3, xm, is obtained by :
for each U = (ftay.a) € Ly xmas

mi  ma

X(U) = Xm1><m2<U) =1+ Z Zu’al,az X 2m2(m17a1)+(m27a2) (18)

aj=lags=1
Obviously, there is an one-to-one correspondence between local patterns in X, xm, and posi-
tive integer in the set Nomim, = {k € N:1 <k <272,

For 1 x n pattern U = (ug) , 1 <k < nin ¥j.,, as in (14), there is a number

i=x(U) =1+ u-20"" (19)
k=1

U2

In particular, when n =2, ¢ =14 2uy + po and x; =

U

A 2 x 2 pattern U = (fa;.0,) can be obtained by a horizontal or vertical direct sum of two

1 x 2 or 2 x 1 patterns,respectively.

1.e.
U2 | U22
Tiy iy = (20)
U1 | U21
where



and

where

A 4x4 matrix Xy = [z, 4,] and Yo

1.e.

Ji

yjl?jQ =

U2

U1

U22

U21

:1+2U1l+’l£2“1§l§2

= [y}, j»] can be obtained for g5,

The relationship between X5 and Y, had found.

X

Y11
Y1,3
Y31

Y33

0] 0]
o] |9
[ 0] o]0 011 0ojo 0]1
[ 0 o]0 0]0 01 0]1
(1] 110 111 110 111
[ 0] 0ojo ojo 011 011
o] | [o]o] [oT+] [o]o] [oT
[ 1] 110 110 111 111
=1 | Tol [T41 HTo] [ 1]+
1 110 140 111 111
[Te] [o[]
[Jofol |o] 1o 111] T
010 0f0 010 00
ofjo (o}l 110 111
011 01 0of1 011
[1]ol|lofo} [ol+1] [1lo] 1]+
110 110 110 110
00 01 110 111
IR EREEREER
Y12 Y21 Y22 T11 12 21
Y14 Y23 Y24 Y, = 13 T14 T23
Yso Ya1 Ya.2 T31 T32 T4,1
Ysa Y43 Yaa T33 T34 T43

Z2.2
T2.4
T4,2

Ta4

(22)

(23)

(24)

(25)




3.1.1 Ordering matrix in L-shaped

For the convenience, we let the color white and black to be 0 and 1,respectively. According

Sec3.1, we can put L-pattern into 2 x 2 lattice by the following method. Let ¢, =

where k = 1 + 2%3 + 2%, + 2211, so we have ¢; ~ cg that means

EL:{Ck1§k§8}

. . Qla | (22
For a L-pattern ¢; in a 2 x 2 lattice
a1 | Q21
) li = an
i=1+2'a; +ap
We can define and Iy = g -
j=142"a +am
l3 =an
For example,
|
i=1+2-040 1=1
=
§ =142+ ag j=1o0r2 for axp =0 or 1,resp.

1.e.

FH

10

l>
L | s

. And, let

(26)

(27)



3.2 Transition matrix B C ¥,
3.2.1 Transition matrix in 2 x 2 lattice

Now, given a basic set B C Y9, horizontal and vertical transition matrices Hy and V5 can
be defined by:
Let Hy = [hs, 4,] and Vo = [v;, j,], according to the following rules, we can define the entries
of Hy and V5 is 0 or 1:

hiyi, =1 ,if 2;,,, €B

hiyin =0 ,if 25, 5, € Bayo\B

Ujy,j2 = 17 Zf Yjrge € B
Vj1,42 = 0, Zf Yirja € 22><2\B

The transition matrix for B can be defined by:
V11 V12 V21 V22
V13 V14 V23 Vg
HQ = HQ (B) ==

V31 V32 Ugq1 V42

i U3z U3z4 V43 Va4 i
By induction on n, we have Proposition3.1 of the property of H,

Proposition 3.1 ([BanéLin, 2005])
Let Hy be a transition matriz for B. Then the higher order transition matrices H,, n > 3,we

have the following expression. H,, can be decomposed into a successive 2 x 2 matrices as follows

Hn;l Hn;?
H, =
Hn;3 Hn;4
ig1egkl 7351 Jk2
Hpjyojp = for1<k<n-—2and
Hrgjioges Hngipa
H _ U.jl"'jnfll ,Ujl"’jnflz
N1 jn—1

Ujy-jn13 Ujrjn_14
Ulenfl;l Uk2Hn71;2
Furthermore, H,, .\, =
Uk3anl;3 Uk4an1;4

11



3.2.2 Transition matrix in L-pattern

Given a basic set By, € ¥,

l
if |2 is an admissible local pattern , we can calculate:
Iy | I3
i=1+2% + 2%
2 1 (28)
j =1+ 20a22 + 21l3
; i=14204+2'0=1
Example 3.2 if s admissible , 1,99 =0
0|0 j:1+200622+210:
2, 99 — 1
the hll = h12 =11m HL;Q
In the other way,
l
if |2 is a forbidden local pattern ;| we can calculate:
Lifls
ot RO D
2 1 (29)
j=142%0 +2';
then ¢;;=0 Vi, j € (29)
; i=1+20+210=1
Example 3.3 if is forbidden , Loy =0
0 0 j:1+200522+210:
2, gy = 1

the hll = h12 =01n HL;Q

In this paper, we use the second way to discuss the entropy of the given [u,v]s. For given
(11, v]q , we can know the forbidden set, §7,.),={cr}. And for every forbidden local pattern c,

we could find the forbidden set of ¢4 , namely, §., = {(¢,7)}. Let =

€T, Se,, the union

set of the forbidden set of ¢;.
hij - O,Zf (Zaj) S S
hij=1if (i,j) € §

In other words, for given [u, V|4, in Sec.2; we can find the basic set of [u, V|4, Br. Then we also

The transition matrix Hy., could be expressed that [h;;] , where

can know the forbidden set of [11, V)4, $[uu, = X1 \ Br. Now, we have the following theorem.

12



Theorem 3.4 ([BanéLin, 2005])
Given myn,d , 0 < pu,v <4,1<d<8, u, v, de N,

we have a basic set B, of [u,v]q and a forbidden set § of [u,v]q

then the Hy.o = [hi;| can be written by 4 x 4 matriz where

hij = O,Zf hij = Q45 S S

hij=1,if hyj = ai; ¢ §

Then the higher order transition matrices Hy.,,n > 3,we have the following expression. Hp,,

can be decomposed into a successive 2 X 2 matrices as follows :
HL;n;l HL;n;2
HL;n;3 HL;n;4

HL;n =

) 7.71.7161 Lﬂ'L,]l"']kQ
Hrngrge = for1<k<n-—2and

HL;n;jr-ij HL;n;jl---jk4
Ujrojno1l Ujiefin_12

HL;n;j1-~-jn_1 -
Ujl"'jn—13 Ujl"'jn—14
UmHL;nq;l Uk2HL;n71;2
Furthermore, Hp.) =
Uk3HL;n*1;3 Uk;xiHL;’n——l;fl

Proof.
step I:

For given [u, V|4, we have the transition matrix H; , of the basic set of [u, v]q4.

step II:
HL;W,:I HL;77,;2

HL;n;S HL;n;4

If the n-th transition matrix is Hy,,, =

step III:

By the transition matrix recursive formula in Proposition3.1 Hy,,, 414 =

1<k<n-1

The proof is complete.

13
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4 Spatial entropy

The spatial entropy of L-shaped patterns [, v]s , we have the following theorem

Theorem 4.1 ([Chow et al., 1996]; [Juang et al., 2000]; [BanéiLin, 2005])
Given a basic set By, of [u,v]a , let A, be the largest eigenvalue of the associated transition
matriz Hy,, which defined in Theorem 2.4.

Then h(Br) = lim &2

Proof. By the construction of the transition matrix, we know the L-shaped pattern in a
2 x 2 lattice, the upper right lattice has lost to compare. By the recursive formula, the m x n
lattice paste by L-shaped patterns, we also only lost the upper right lattice. So, the entropy
of the L-shaped pattern

h(BL) — lim log Tyxn(Br) lim log (Truxn(B)+2) — lim log Tyyxn(B)—log2 — lim log T'yyxn(B)

n,Mm—00 mxn n,Mm—00 mxn n,Mm—00 mxn n,Mm—00 mxn

From the construction of transition matrix H,,, we observe that for m > 2,

Tmxn(B) = 3 (H)iy = #(H; ™) (30)

d<ig<on
As in a one dimensional case, we have

log #(HF™")

e.g. [42].
Therefore, h(Br) = lim W — lim W
= lim %( lim M) — lim lOi]j\n o

But we can not evaluate the exact entropy Hl, for n increasing to infinite. So, the following

section will help us estimate the lower bounded of spatial entropy.

14



4.1 Connecting operator

In Ref[Ban, Lin&Lin, 2006], it found a method to measure the lower bounded of entropy. In

this paper, we can use this method to estimate the lower bounded of entropy.

Proposition 4.2 ([Ban, LinéfLin, 2006])

For m > 2 ,define

Cm;ll Cm;lZ Cm;l?) C’m;14 Sm;ll Sm;12 Sm;21 Sm;22
(C Om;21 Cm;22 Cm;23 Cm;24 Sm;l?) Sm;14 Sm;23 Sm;24
m — - )
Cm;Sl Om;32 Cm;33 Cm;34 Sm;31 Sm;SQ Sm;41 Sm;42
Cm;41 C(m;42 C’m;43 Cm;44 Sm;33 Sm;34 Sm;43 Sm;44
where )
m—
hal ha2 A VY2;1 VY2;2
Crmiap = ( °o(® )2x2)2m—1 xgm-1
h'a3 ha4 ‘/2;3 ‘/2;4
hig haop
O(E2m72x2m72 ® ( ))2m71><2mfl
h33 h4‘6'

Now,C,, 1 can be found from C,, by a recursive formula,

hoelom;lﬁ ha2Cm;25
Cerl;aB - y
hoz3cm;3ﬁ ha4cm;4,6

where o is the Hadamard product, ® is the tensor product

and By is the 2F x 2% matriz with 1 as its entries.

Proposition 4.3 ([Ban, LinéfLin, 2006])
For anym > 2 and n > 2, let Sy,.qp be given as above.

Then; Xm;n;a;ﬁ = Sm;aﬁXm;n—l;B~

Proposition 4.4 ([Ban, LinéLin, 2006])

Let 5155 - - B B1 be a diagonal cycle.

Then for any m > 2, h(H)Z 210gp(Smins S+ Smiscsn)

In particular, if a diagonal cycle 3105 - - - Bx 01 exists and m > 2 such that

p(Sm;ﬁlﬁzsm;ﬁ2ﬁ3 T Sm;ﬁkﬁl) >1
then h(Hy) > 0.

By Nonnegative matrices in the Mathematical Sciences [Abraham Berman, Robert.J. Plemmons],

we have the following proposition.

15



Proposition 4.5 If0 < A < B, then p(A) < p(B)

16



4.2 L-shaped

Herein, we first state the result of this phenomenon.

/

Theorem 4.6 if Hyu ([t v]a) = [hiy) and Hy([v, 1la) = [1)

’
Then h%] = h2n+1_i,2n+1_j

Proof.

Since the basic set of [u, v|q and [u, v]q are :

B[u,u]d = U PkmU U Nkm

Ji(k;m)<p Ji(k,m)<
B[V,}L]d = U PkmU U Nkm
Ji(k,m)< Ji(k,m)<p

In particular,

U Py U and U Ny have opposite colors and same number
Ji(km)<p Ji(kym)<p

and

U Py U and U Ni.m have opposite colors and same number v
Ji(k,m)<v Ji(k,m)<v

Moreover, every pattern in Py, its Wi ; = ho2 1592015 in Ny .
By the recursive formula Hy to H,,, we can have the following result :

/
hi,j - h2”+1—i,2”+1—j~ O

Theorem 4.7 h([u,v]q) = h([v, u]a)

Proof. By Theorem 4.1, we can evaluate spatial entropy by h(HL):Tfi”QO In),. And , we
can use the relationship between H, ([u,v];) = H and H,([v,p];) = H' had shown in The-
orem4.6. For evaluate the eigenvalue, we need to have the equation det(A-AI)=0, where
det(A):aél(—l)Ha “ay,q - det(Ayje) ,where Ay is the cofactor of a;,. So,we can have the
following equality

det(Hy ~ M) = 2 (<114 -y o - dot((H, — Al)y)

:jél(—l)”ra < hyn o, - det((H), — M )yjo) = det(H], — M)
Hence, we can know the det(H,, — AI) = det(H] — AI), and then the maximal eigenvalue of

17



H, is equal to the eigenvalue of H/. So, the spatial entropy of [u, V] is equal to the spatial

entropy of [v, g

O

Since the patterns for [u,v|q and [v, u|q have same entropy, it is a sufficient to discuss only

the cases of [v, u]g with p > v and 1 < d < 8. By the generation rule in Sec.3 and previous

proposition and theorem, we have the main result in this section.

Theorem 4.8

Lexactly solvable

region | spatial entropy | notation
[4,4] | B1"Rg | In2 Hy,=F®FE
[4.2] | Ri.Rs | In(*52) V=G ®E
[4.2] | Ro.Ry | In(*5%) Ho=G ®F
[4:2] | Bi,Rs | 0 Vo=L®EFE
[4,2] | Re,R3 | 0 Ho=L®FE
[2,2] | Ri "Rs | 0 Ho=1TQ®FE

11 lower bounded

region | Connecting Operator eigen function p* L(?fus}facz‘a[goe%gﬂgl;%d
[4,3] | BiBy | S e 4222|2442 S
[4,3] | R3,Ra | S3a4 zt — 2% 4 222 242 M
[4,3] | Rs,Rs | S344 2t — 3% — 222 %ﬁ %
[4,3] | R7,Rs | 83145341 xt — 973 4+ 222 % %
[4,1] | Rs,Rs | S3.44 2t — 3 32 —x | 1+2 M
[3,3] | Ri,Ra | S6,1156,1196,1456.4496,41 2? — 177z + 101 | 176.4275 —ln(17§64275)
[8,3] | R3,Ry | S114S4418111 28 — 1127+ 102% | 10 @
[3,3] | Rs,Rs | S6.1456.4456.41 190.6018833 ln(1201.§0188)
[3,3] | R7,Rg | S3445344554153,1453,44 z* — 623 6 In(6)
[5,2] | Ry 53,1453,4453 41 xt — 5t + 4x 4 1“1(24)
[3,2] | Rs (S4415014)2S0,44(Spa1S414)? | 28 — 4027 + 8028 | 20+ 8y/5 | [n204EV5)
[3,2] | Re(Rs) | (S4.415114)%S1,44(Su418114)% | 2% — 4027 4 802° | 20 + 8v/5 %
[8,2] | R7(Ry) | S5,14534453.41 xt — 523 + 4x 4 1111(24)

18




I11.entropy s zero

reqion upper matrix
[4.1] | Ri "Ry H,<L®E
[4.1] | R, Ry Vo< L®E
[4,0] | Ry “Rs H,<L®E
[3,2] | Ri,Rs Vo< L®E
[3,2] | Ra,Rs H,<L®E
[3.1] | Ry "Ry H,<L®E
[3.1] | Rs,Re *
[3.1] | Ry, Ry Vo< L®E
[3,0] | Ry "Rs Hy,<L®E
[2,1] | Ry "Rs Hy < Hy oo
/2,0] | Ry "Rs Hy < Hy oo
[1,1] | Ry "Ry,Re.Rs | Hy < L® E
/1,1] | Rs,Re H, < I®E
[1,0] | Ry “Rs H,< L® E

Proof. We have three cases for evaluating spatial entropy. In Part I , we can exact solve
spatial entropy of some regions. In Part Il | we largely use connecting operator to estimate
the lower bound of spatial entropy which is positive. In Part III , we use the character of

transition matrix of some regions to evaluate the upper bound of spatial entropy is zero, then

we can say the spatial entropy is zero.

Part I :

For [4,2]6 7, the transition matrix is :

= = O O

= = O O

19
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By the recursive formula of the transition matrix, the Hs can be expressed :

(0000001 1]
00000011
00001111
S IR R R U VR
00110011
00110011
11111111
111111

IfH, =G ®G ®---G ® E is with (n-1) times of G, also by the recursive formula: we can
make sure the H, = G' ® G’ ® ---G' @ E is with n times of G'. So induction by n, we can
know the H, = ¢’ ® G’ ® ---G' ® E is with (n-1) times of G’ Vn € N. Then the maximal
eigenvalue of H, is p(H,) = ¢" ! - 2, where g = %‘?’ Then,

h(Hn):Ji_)Igow: lim (p=Dngtn2 Ing = 111(“’7‘@).

n—oo n

We can use the same way to evaluate the other regions in Part I.
Part II :

For [4, 3]12, the transition matrix is :

&
i

We can find the trace operator Tj :

—_ =

= e
e = e = == =
_ o O O = = O =

_ o o O = =
= = O = O O O =
- o O O o o o =

—_
)

[E—
_ O

]
=)



By Proposition 4.3, we have find out a diagonal cycle.

1 1 11

1 100
S311 =

1 1 11

1 111

which maximal eigenvalue is 2+ v/2. By the Proposition 4.4, we can estimate the lower bound

of spatial entropy is M

We can use the same way to evaluate the other regions in Part II.

Part 111 :

For [3,1]5¢, the transition matrix is :

&
I

—_ = O O
o =Rk = O
o Rk = O

In particular,

11
0 1
000

We can see that Ty’s every row or column has not more than two 1’s.

TQI

=
= [= W=

- o O o o o o o
- o o o o o o
- o O O o o

o = O O o o o o
o o o o = o o o
o O ©O = o o o
o O = O o o o o
o o o o o o o

o O

0 0 0

The matrix T3 has the same property. By recursive formula, we can know that T, has the

same property. Then, by the matrix’s property : M=[m; ;] .., p(M) < max( '21mi’j’ for some
]:
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i) or max(glmi,j, for some j) . So the entropy of [3,1]54 is less than lim 22 = 0. Therefore,

we can see [3, 1]5 6 is pattern formation.

Otherwise, for [4, 1]; 2, the transition matrix is :

In particular,

H

In the Part I, we can know H, = L ® E is entropy zero.

= = O =

= = O =

0
1
1

_ = O =

= = O O

_ = O =

IN

_— = O O

_— = O O

—_ = = =

1
1
1

n—oo

—_ = O O
—_— = O O

So we can use Proposition 4.5 to

know the upper bound of spatial entropy of [4,1]; » is zero. So, the spatial entropy of [4,1]; 2

is exactly zero.

We can use the same way to evaluate the other regions in Part III.

Now, we can conclusion the regions which is spatial chaos in the following figures.

R17 RQ; R37 RS
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v
%

R4a R7

e

S

&

Corollary 4.9 ([LinéfYang, 2000))
Equation(5) is spatial chaos if and only if r,a,s and z belong to the following regions of P* :
L 4]yl <d<8
2.[4,8],,1 <d <8
3.[4,2],,d =4,5,6,7
4./4,1],,d =5,6
5./3,8],,1<d <8
6./3,2/,,d =4,5,6,7

R57 RG

In the following table,we can see the compare about Prof.Lin and Prof.Yang with my result.



Prof.Lin & Yang’s result(lower bounded) | Huang’s result
[4 In2 = 0.69315 In2
[4 I3 ~ 0.27465 In26v2 ~ 0.409316
[4 Il 0.347657 242~ 0.409316
[4 In5 ~0.40236 W3EVIT & 0.654448
[4 I ~ 0.347657 WIEVT ~ 0.47745
[4 I ~ 0.347657 In(15) ~ 0.48122
[4 Il ~ 0.347657 In(15) ~ 0.48122
[4,1]56 | chaos Iliv2 ~ 0.293789
3,312 | 220 ~0,14979 0.17234
3,3]54 | 22 ~0.1831 10~ 0.191882
3,356 | 2 ~ 0.24414 I(120.60189) ~ 0.26625
3,3]75 | 22 ~ 0.10986 20) ~0.11945
3,2 3 ~ 0.09155 I~ 0.1155245
3,25 |28 ~0.099 I(@048V5) ~ 0.10096
3,206 | 28 ~0.099 I(2048V5) ~ 0.10096
3,2 13 ~0.07324 !~ 0.1155245
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Appendix

Ri- R34 Rs-¢ Re-g
1111 1100 loo11 1111
|| 100 1111 1111 00 11
1111 1111 1111 1111
1111 1111 1111 1111
1111 1100 00 11 1111
| | 100 1111 1111 00 11
00 11 1111 1111 1100
1111 00 11 1100 1111
1100 0000 000 0 0011
wy| 0000 1100 00 11 000 0
1111 1111 1111 1111
1111 1111 1111 1111
1100 0000|0000 0011
| |00 00 1100 00 11 0000
0011 1111 1111 1100
1111 00 I 1 110 0 1111
1100 0000]|]0oo0o0o0 0011
L] 0000 1100 00 11 000 0
0000 0011 1100 0000
00 11 0000 0000 1100
0000 0000|0000 0000
| |00 00 0000 0000 0000
0000 0011 1100 000 0
00 11 0000|0000 1100
0000 0000|0000 0000
| |0000 0000 0000 0000
1111 1111 1111 1111
1111 11011 1111 1111
0000 0000 0000 0000
s [0000 0000|||%o0o0 0 0000
00 11 1111 1111 1100
1111 00 11 1100 1111




Ry-g Ro-3 Ry-s Re-7

1 1 11 1100 0O 00O 0011
4.9] 00 0O 1100 1 1 11 0011
1 111 1 111 1 111 1 111
1 1 11 1111 1111 1 111
1 1 11 1100 0O 00O 0011
9.9] 00 0O 1100 1111 0011
0 00O 0 011 1 1 11 1 101
1 1 11 0 011 0O 00O 1100
0 00O 0 00O 0 00O 0000
2.0] 0 00O 0 00O 0 00O 0000
0 00O 0 011 1 1 11 1 101
1 111 0 011 0 00O 1100

Ry Ry R Ry
1 111 1 100 1. 100 00 00O
3.9] 0 00O 1 100 1100 1 111
0 011 0 0 1 1 T 1g=1 1 1 111
1111 1 A 10 0 011 0 011

R Ry Rs R
00 0O 0 0 11 0 011 1 111
3.9] 1 111 0 011 0 011 0000
1 111 1111 1100 1 100
1 100 1100 1111 1 111

R, R, Ry R
1 100 1100 0 00O 00 00
2.1] 00 0O 00 0O 1100 1 100
0 00O 0 011 0 011 1 111
1 111 0 011 0 011 0000

Rs Rg Ry Rg
0 00O 0 00O 0 011 0011
2.1] 0 011 0 011 0 00O 0000
1111 1 100 1 100 00 0O
0 00O 1100 1100 1 111
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