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Abstract

The well-known Taniyama-Shimura conjecture states that for every rational elliptic
curve
E o y? + aiwvydf asy = 2° Faga® + agr + ag,

there is a natural integer N and a -rational-map such that
¢ XeN) = E.

To complete the proof of Fermat’s Last. Theorem, this conjecture plays an important role.
Although it was proved by Andrew Wiles, it is difficult to find a rational map ¢ for a
given rational elliptic curve actually. In this thesis, we will find modular functions that
parameterize elliptic curves that are actually modular curves of type Xo(p) or X (p),
where p are prime numbers.

Our basis ideas are referred to Y. Yang’s Defining equations of modular curves. We use
the Dedekind eta function and generalized Dedekind eta functions to construct generators
of modular function fields on Xy(p). Then we use distinct ways to parameterize the given
elliptic curves, the methods are as follows.

1. For Xy(p), find X with pole at co of order 2, and find Y with pole at co of order 3.
2. For X{ (p),

(a) using the generators of the function field on Xy(p) to construct the functions
with pole at oo of order 2 and 3.

(b) using the fact that the holomorphic 1-forms on a modular curves are actually
cusp forms of weight 2.
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Notations

1. We use the notations R, C, Q, Z, and N to stand for the real number field, the
complex number field, the rational number field, the ring of integers, and the set
of positive integers, respectively. And P!(C) = C U {oco}, the Riemann sphere;
P'(Q) = QU{oo}; H = {7 € C: Im7 > 0}, the upper half plane; H* = HUQU{occ}.

2. For any commutative ring R with unity 1, the vector space M,(R) is defined
to be the set of square matrices with degree n over R; the general linear group
GL,(R) = {7y € M,(R) : dety € R*}, where R* = {a € R:ais an unit} is the
group of invertible elements in R. The special linear group SL,(R) is defined
to be the subgroup of GL,(R) consisting of matrices of determine 1. In the se-
quel, we mostly consider the rings R = R, Z, or Zy, for N € N. And we denote
{v € GL,(R) : detvy > 0} by GL!(R).



Chapter 1

Introduction

In a famous story about Fermat it is said that Fermat once wrote in his copy of Diophantus’
Arithmetica that he had a truly marvelous proof of the fact that the equation

"4yt =2"

has no solutions in positive integers when n > 3, but the proof was too long to be contained
in the margin of the book. However, during Fermat’s lifetime, he never published the
claimed proof. Afterwards, many great mathematicians tried to produce a legitimate
proof, but to no avail, and this problem’became widely known as Fermat’s Last Theorem.
It was not until 1995 that an English-mathematician Andrew Wiles, assisted by his student
Richard Taylor, finally put an end to this 350 year old puzzle.

It turns out that what Wiles did'was not-a direct attack on Fermat’s Last Theorem,
but an effort to prove the Taniyama-Shimura eonjecture. In 1957, Yutaka Taniyama,
a young mathematician in Japan;. based on“some numerical examples, made a daring
conjecture that there is a one-to-one‘eorrespondence between rational elliptic curves and
cusp forms. This conjecture was later made more rigorous by Goro Shimura. To be more
precise, the conjecture states that the L-function of a rational elliptic function is equal to
the L-function of a cusp form of weight 2 on a certain modular curve Xo(N). Putting it
an alternative way, this means that every rational elliptic curve can be parameterized by
modular functions on Xy (V) for some N. In 1986 Ken Ribet proved that any non-trivial
solution to 2" + y" = 2", n > 3, will give rise to an elliptic curve that is too weird to
be modular. Wiles then proceeded to prove the Taniyama-Shimura conjecture for the
semistable cases, and hence establsihed Fermat’s Last Theorem. However, we should
remark that in general it is difficult to find modular functions that parameterize a given
rational elliptic curve. In this thesis we will address this problem. In particular, we will
find modular functions that parameterize elliptic curves that are modular curves of type
Xo(p) or X (p) themselves, where p are prime numbers.

Our method is basically an extension of Yang’s method [16]. In [15] Y. Yang obtained
transformation formulas for generalized Dedekind eta functions (see Section 2.3.3), from
which he deduced criteria for a product of generalized Dedekind eta functions to be
modular on X (N) or X;(N). Using these simple criteria, he then devised a systematic
method of finding generators of modular function fields on modular curves of type X (N),
X1(N), and Xo(N). Since finding modular parameterizations of elliptic modular curves
X (p) is equivalent to finding generators of function fields on T'§(p), this thesis can
naturally be considered as a continuation of Yang’s work [16]. (Here we should remark
that our method works also in the cases where the levels are not primes. The main reason



why we consider only the prime cases here is that this thesis has to be submitted by a
certain deadline.)

The rest of thesis is organized as follows. In Chapters 2 and 3 we will briefly review
the definition and basic properties of modular curves and elliptic curves. Finally, in the
last chapter of the thesis we will describe our method in more details and give the results
of our computation.



Chapter 2

Modular curves and Modular forms

Almost all of this chapter are from the Lecture Notes on Modular Forms and Modular
Functions by Y. Yang [17]. Some sources are given by T. Miyake’s Modular Forms [10]
and T.M. Apostol’s Modular Functions and Dirichlet Series in Number Theory [1].

2.1 Congruence subgroups of PSLs(R)

In general, we call PSLy(Z) the modular group. There are many subgroups of finite index
of PSLy(Z). Among them, we are interested in‘eongruence subgroup.

Definition 2.1.1 Let I' be a discrete subgreup of PS4, (R) commensurable with PSLy(Z).
If I' contains the subgroup

T(N) = {7 c PSLT =R ((1) (1)) mod N}

for some positive integer N, then I' is a congruence subgroup. The smallest such positive
integer N is the level of I'. The group I'(N) is called the principal congruence subgroup
of level N.

The following two types of congruence subgroups

To(N) = {(Z Z) € PSLy(Z):c=0 mod N} ,

d

are most often encountered in number theory. The congruence subgroups I'g(N) are also
called the Hecke congruence subgroups and are conjugate to

Fl(N):{(CCL b)ePSLQ(Z):CEO,aEdE:H modN}

T°(N) = {(CCL Z) € PSLy(Z):b=0 mod N}

in PSLy(R).

Proposition 2.1.2 We have

(1) T'1(N) is a normal subgroup of T'o(N) and To(N)/I'1(N) ~ Zy/ £ 1, where Zy, is
the multiplicative group of residue classes modulo N that are relatively prime to N.
(2) T'(N) is a normal subgroup of PSLy(Z) and PSLy(Z)/T'(N) ~ SLy(Zy)/ £ 1.



2.1.1 The index of a congruence subgroup in PSLy(7Z)
From the last section, we can determine the indices of the congruence groups.
Proposition 2.1.3 We deduce that

(1) I (N) : T(N)] = N,

(2) To(2) =T1(2) and

[To(N) : Ty (N)] = gH (1 — ]10) , for N > 3.

(3)
[PSLy(Z) : To(N)] = N JJ(1 +1/p),
pIN

where the products run over all prime divisors p of N.

2.1.2 Atkin-Lehner involutions

Let N > 2 be any positive integer.

Definition 2.1.4 Let n be a divisor'of N_with ged(n, N/n) = 1. The elements in

1 fan b 2 B
w, = {% (cN dn)’ adn —ch—n}

are the Atkin-Lehner involutions ‘en I'g(N) \ H. The set of I'o(/N) union all possible
Atkin-Lehner involutions is denoted by Fa-(N-)s

Proposition 2.1.5 The Atkin-Lehner involutions normalize T'o(N). Furthermore, we
have T (N)/To(N) =~ Z5, where k is the number of distinct prime divisors of N.

2.2 Modular curves

2.2.1 Group action of PSLy(Z) on H

Recall that the linear fractional transformation of H is given by

ar +b
et +d’

Yol T a,b,c,d € R, ad — bc > 0,

and a linear fractional transformation v determines the matrix (Z Z) € GLj(R) up to
a scalar multiplication. Hence, dividing by a suitable scalar, we may represent v by a
matrix of determinant 1. The group SLs(R) contains I = (é (1)> and —] = (Bl _01>
which act trivially, and the group PSLs(R) is identified with the group of linear frac-
tional transformations. It is not difficult to check that the definition of linear fractional
transformations gives a group action of PSLy(R) on H.

Let I' be a congruence subgroup of finite index of PSLy(Z). Then H and H* =
HUQU {oo} are acted on discontinuously by I'. The set {T'x : x € H} of all orbits forms

5



the quotient space I' \ H. Note that a group action gives rise to an equivalence relation
given by x ~ y if and only if there is an element v lying in I" such that vx = y. The
equivalence class containing z is exactly I'z. The classical modular curve X(T") is defined
by the quotient space I'\ H*. For the ease of notation, we abbreviate X (I'o(V)) to Xo(N),
X(I'y(N)) to Xq1(NV), and X(I'(N)) to X(N).

Now we consider the fix points of linear fractional transformations. Let v = <i Z) €

PSLy(R) be a representation of a linear fractional transformation. The points fixed by =
are the roots of ¢7? + (d — a)7 — b= 0. When y = +1, every point is fixed by ~, and this
identity motion forms a class by itself. When ~ # 41, there are three possibilities,

(1) v has one fixed point on P!(R), and this « is called parabolic;
(2) v has two distinct fixed points on P*(R), and this v is called hyperbolic;

(3) v has a pair of conjugate complex numbers as fixed points, and this « is called
elliptic.

These classifications can be also described in terms of the trace of 7,
Lemma 2.2.1 Let v € PSLy(R). Then

(1) v is parabolic if and only if tr(y) = 2;
(2) ~v is hyperbolic if and only if tr(~),3%25
(3) ~v is elliptic if and only if tr(x) < 2.

Definition 2.2.2 A point on P!(R)fixed by & parabolic element is called a cusp, and a
point in H fixed by an elliptic element is called an' elliptic point.

Proposition 2.2.3 The set of cuspsof PSLy(Z)4s'P(Q), and the cusps are all equiva-
lent to each other under PSLy(Z).

Proposition 2.2.4 Now we consider elliptic element and elliptic point of PSLy(Z)
(1) Every elliptic element of PSLy(Z) has order 2 or 3.

(2) An element of PSLy(Z) has order 2 if and only if its trace is 0. An element has
order 3 if and only if its trace has absolute value 1.

3) Every elliptic element of order 2 is conjugate to O 1) in PSLy(Z). FEvery elliptic
10

element of order 3 is conjugate to either (? j) or (j é)

(4) PSLo(Z)\H has only two inequivalent elliptic points. One is represented by i, which
is of order 2; the other is represented by €™/, which is of order 3. That is ,if T € H
is of order 2, then T is equivalent to i; if it is of order 3, it is equivalent to e™/3.

2.2.2 Cusps and Elliptic points of congruence subgroups

Here we discuss the cusps and elliptic points of congruence subgroups.

Lemma 2.2.5 Let I' be a congruence subgroup of PSLo(Z), then the set of cusps of T is
ezactly P*(Q).



Definition 2.2.6 Let I' be a congruence subgroup of PSLy(Z). Let a/c € P1(Q) be a
cusp. The smallest positive integer m such that the matrix

a b 1 m d —=b\ (1—-acm a’*m (2.1)
c d)\0 1 — a ) \ =m 1+aem :
falls in I' is called the width of the cusp a/c.

Remark. In fact, a cusp a/c is fixed by the matrix describing in (2.1).

Proposition 2.2.7 A set of inequivalent cusps for T'o(N) is given by
{E :¢|N, a=0,...,ged(e, N/e) — 1, ged(a,c) = 1}.
c
Hence the number of inequivalent cusps is

> dlged(e, N/o)).

c|N
The number of inequivalent cusps for T'1(N), N > 3, is
1
. SSeeny/o).
/N
where ¢ is the Euler totient function.

Proposition 2.2.8 The numbers of.inéquivalent elliptic points of order 2 for T'o(N) is
equal to the number of solutions of &% A1"=0%in Zy: That is, when 4|N, vy = 0 and

-1
when 41 N, vy = || 1+ — )
f ’ : ( ( p ))
p|N,p odd prime

The number vs of inequivalent elliptic points of order 3 for I'y(N) is equal to the number
of solutions of x> +x +1=0 in Zy. That is, when 9N, v3 =0, and

when 9t N, v3 = 1T (1+ (?))

p|N,p odd prime
ay .
where (E) 1s the Legendre symbols.

Proposition 2.2.9 When N > 4, the congruence subgroups T'y(N) are torsion-free.
When N > 2, the principal congruence subgroups I'(N) are torsion-free.

2.2.3 Genus

Let I' be a subgroup of PSLy(Z) of index m. We now determine the genus of X(I'). Let
Vg, U3, Us be the numbers of ['-inequivalent elliptic points of order 2, elliptic points of
order 3, and cusps, respectively. Then the genus ¢g(I") of X(I') is given by the formula



2.3 Modular forms and Modular functions

2.3.1 Definitions

Let v = <'z 2) € GL3(R). For an integer k& and a meromorphic function f : H — C we
let the notation f(7)| [y]x denote the slash operator

POl = (et 2er + 7 (20).

The factor ¢ +d is called the automorphy factor. If the weight k is clear from the context,
we often write simply f |7.

Definition 2.3.1 Let I" be a subgroup of PSLy(Z) of finite index, and k£ be an even
integer. A holomorphic function f : H +— C is called a modular form of weight k& with
respect to I' if

(1) f(r)| Wk = f(7) for all T € H and v € T, that is,

) = ter+dy+p (0).

(2) f(7) is holomorphic at every cusp.
In addition to (1) and (2), if the function also satisfies
(3) f vanishes at every cusp,
then the function f is a cusp form of weight k with respect to I'.

Let a/c € PY(Q) be a cusp and choose o = (Z Z) € PSLy(Z). Then a function

f satisfies condition (1) if and only if the function g(7) = f|[o]) is invariant under the
action of o~ 'T'o since

(f|[o]) | lo~ ol = (f| 7)) | o] = f| o], for all v €T.

In particular, g(7) is invariant under the substitution 7 — 7 + h, where h is the width
of the cusp a/c. Let )~ ., ane?™™7/" be the Fourier expansion of g(7). Then we say f is
holomorphic at a/c provided that a,, = 0 for all n < 0, or equivalently, that g is bounded
in a neighborhood of a/c. Moreover, condition (3) means that a, = 0 for all n < 0 for
each cusp a/c.

Definition 2.3.2 A meromorphic modular form of weight 0 is called a modular function.
That is a modular function on I' is a meromorphic function f : H — P!(C) such that

f(yr) = f(7) for all y € I.

It is clear that modular functions form a field.



2.3.2 Dedekind eta function 7(7)

The Dedekind eta function plays a central role in number theory. It was introduced by
Dedekind in 1877 and provides another convenient way of constructing modular forms
and modular functions.

Definition 2.3.3 Let 7 € H, and write ¢ = €*™". The Dedekind eta function n(7) is
defined by

77(,7_) _ q1/24 H(l . qn) _ €7T’i7/12 H(l . e27rin7').
n=1 n=1

Proposition 2.3.4 For
a b
Y= (C d) € SLQ(Z),
the transformation formula for n(t) is given by, for ¢ =0,
n(r +b) = ™ (7),

and, for ¢ > 0,

ct +d

TI(VT) - €<a7 b, c, d) i 7](7-)

with
(C_Z> i(l—c)/267ri(bd(1—62)+c(a+d))/12, ch 7;5 Odd,
e(a,b,c,d) = ¢

(2.2)
<C£i) 67'('7;(ac(l—dz)-|-d(b—0-|—3))/127 Zfd is Odd,

d
where (E) is the Legendre-Jacobi-symbol.

Proposition 2.3.5 Let N be a positive integer. If

7(r) = T nthr)

h|N
satisfies

(1)
e:ZehEO mod 4,
h|N
(2)
H he" is a square of a rational number,
KN
(3)
Zehh =0 mod 24,
h|N

(4)
ZehN/h =0 mod 24,

h|N

then f() is a meromorphic modular form of weight 3¢ on I'o(N).



2.3.3 Generalized eta functions

In this section, what we discuss are refered to the paper [15] Transformation formulas for
generalized Dedekind eta functions by Y. Yang.

Definition 2.3.6 Let N be a positive integer. For 7 € C with Im 7 > 0, we set g = €2™7.
Let g and A be arbitrary real numbers not congruent to 0 modulo N simultaneously. We
define the generalized Dedekind eta functions E, (1) by

[e.9]

Egh(T) _ qB(g/N)/2 H (1 _ <hqm—1+g/N) (1 _ C—hqm—g/N) .

m=1

Let g be an arbitrary real number not congruent to 0 modulo N. We define the generalized
Dedekind eta function E,(7) by

Eg(T) _ qNB(g/N)/Q lo_o[ (1 _ q(mfl)NJrg) (1 o qufg) )

m=1
Where ¢ = e2™/N and B(r) = 2? — x + 1/6.
Proposition 2.3.7 The functions E,; satisfy

Eginn = E_g 5= —C Egan, Egnin = Egp. (2.3)

Moreover, let v = (“ Z) € PSLy(Z). Then we have, for ¢ =0,

Eg,h(T $b)= ewa(g/N)Eg,ngrh(T)?

and, for ¢ > 0, ’
E,n(y7) = €(a, b, c, d)e’”‘sEg/’h/ (1),

where
omi(bd(1=c?)+e(atd—3)) /6 if ¢ is odd
5(&, b7 C, d) = ] 2 | ’
_jemilact=d)+db—ct3))/6 it g is odd,
5_ g°ab+2ghbe + h’ed g+ h(d — 1)
= N2 N ’
and

wir=an(t ).

Using the fact that

_a(NT)+bN  (a bN .
Nor = ¢(NT)+d _<C d>(N)

and the special class of generalized Dedekind eta functions E,(7) = E,o(NT), we have
Proposition 2.3.8 The functions E, satisfy

Egn=E_g=—E,

10



Moreover, let v = (C(}V Z) € I'o(N). Then we have, for c =0,

Ey(7 +b) = VBN g ()
and, for ¢ # 0, -
E,(y71) =¢(a,bN, ¢, d)e’”(g “b/N_gb)Eag(T),

where
emi(bd(—cDtela+d=3))/6  4r 0 o odg

e(a,b,c,d) = .
( ) {_Z-erm(ac(ldQ)er(chr?)))/G7 if d is odd.

Proposition 2.3.9 Consider the function f(1) = [, E4(7)%, where g and e, are inte-
gers. Suppose that one has

Z e =0 mod 12, deg =0 mod 2. (2.4)
9 9

Then f is invariant under the action of I'(N). Moreover, if, in addition to (2.4), one also
has
29269 =0 mod 2N. (2.5)
9

Then f is a modular function on I'y(N).
Furthermore, for the cases where Nius a positive odd integer, the conditions (2.4) and
(2.5) can be reduced to
Zeg =0"! mod 12 (2.6)
g
and

39, =0 modN, (2.7)
g
respectively.

Proposition 2.3.10 The order of the function E, at a cusp a/c with ged(a,c) =1 is

% ged(e, N)Py(ag/ged(c, N)),

where Py(x) = {x}* — {x} + ¢ and {x} denotes the fractional part of a real number x.

Proposition 2.3.11 Observe that the action of the Atkin-Lehner involution wy sends
the cusps to the cusps that are equivalent to oo under I'o(N). Then we have

—1 ) )
Eog (W) = —ie™/NE, o(NT) = —ie™/NE, (7).

2.4  Petersson Inner Product and Hecke Operators

2.4.1 Petersson inner product
Let ' be a subgroup of PSLy(Z) of finite index. The vector space
Sp(T') ={f: f is a cusp form of wight k on I'}

is equipped with an inner product, called the Petersson inner product.

11



Definition 2.4.1 Let D be a fundamental domain for I'. Then the Petersson inner
product of f,g € Sk(I') is defined as

/ / dxdy
[PSLQ ’y ’

where for 7 € H we write 7 = x + iy.

(frg)r =

The Petersson inner product is defined only on S(I") because if f and g are not cusp
forms then the integral may not be finite. However, the integral will converge whenever
at least one of f and ¢ is a cusp form. We remark that

(1) The hyperbolic measure dxdy/y? is invariant under the substitution 7 — ~7 for any
v € GL3 (R).

(2) The factor 1/[PSLs(Z) : T is inserted so that the inner product (f,g) will remain
the same if we consider f and g as modular forms on a smaller subgroup I".

(3) The Petersson inner product is independent of the choice of the fundamental domain

D.

2.4.2 Hecke Operators on modular forms on I'j(V)

To define the Hecke operators T, +on I'o(/N) it is, necessary to distinguish the cases
ged(n, N) = 1 from the cases ged(n, N) # 1. When n is a positive integer relatively
prime to N, we consider the sets

M;M:{(i Z) EGLQ(Z):ad—bc:n}/il.

When n = p is a prime divisor of NV, we consider the set
w _J(a b Cad — be — _
M = e d) € GLy(Z) : ad — bc = p, Nle, p|ld,ged(a, N)=1;/+1

instead. Then the modular group I'y(/V) acts on MM by multiplication from left. We

denote the set of orbits (equivalence classes) by S5".

Proposition 2.4.2 Let o € To(N). Then ¢, : SS) — S given by ¢o([7]) = [yo] is a
well-defined permutation on the elements of S,

Proposition 2.4.3 Let n be a positive integer relatively prime to N. A complete set of
representatives of orbits in S is

a b
{(0 d) .ad—n,a>0,b—0,...,d—1}.

When n = p is a prime divisor of N, a set of representatives of SIEN) is
10
() ovmo ).

12



Definition 2.4.4 Let k be an even integer and n a positive integer. Write n in the form
mp{* ...p¢ such that ged(m, N) = 1 and p;|N are prime divisors of N. Then the nth
Hecke operator T;, on the space of modular forms of weight k is defined by

T, =TT ... T¢,

where
Tof =203 f| e

(N)
['Y]Esh

Proposition 2.4.5 The Hecke operators T, are linear transformations on the space of
modular forms on T'o(N). Moreover, if f is a cusp form, then so is T, f.

Proposition 2.4.6 For all positive integers m and n with ged(m,n) = 1 we have
Ton = T, T,.

Furthermore, suppose that m and n are positive integers such that both of them are rela-
tively prime to N. Then we have

T.Th= > d" T =TT
d ged ()

In the following contents we will detesmine the adjoints 77* of the Hecke operators T,
with respect to the Petersson inner product. For convenience, throughout this section the
notation (-,-) without any subsctipt denotes the innet product on the space of modular
forms on PSLy(Z), while (-,-)r carriesithie-usual-meaning.

Proposition 2.4.7 Letn be a positiveintegerwrélatively prime to N. The Hecke operators
T, are self-adjoint (also called hermitian) with respect to the Petersson inner product.
That is, we have

(Tf,9) = (f.Tag)-
for all modular forms f and g of weight k on T'o(N).

Since T, are self-adjoint, an elementary result in linear algebra asserts that the eigen-
values of T, are all real.

Proposition 2.4.8 For all positive integers n with ged(n, N) = 1, the eigenvalues of T,,
are all real.

Now we have a family of self-adjoint linear operators T;, that are commuting with each
other on an inner product space. By a well-known theorem in linear algebra, These linear
operators T), are simultaneously diagonalizable. In other words, the vector space has a
basis consisting entirely of simultaneous eigenvectors.

Proposition 2.4.9 There is a decomposition of the vector space Sk(I'o(N)) into a direct
sum
Sk(To(N)) = @V

of orthogonal subspaces V; such that each V; is a simultaneous eigenspace for all T, with
ged(n, N) = 1.

13



Moreover, if f is an eigenform in V;, then so is T}, f for p|N. Therefore, each T}, p| N,
stabilizes V;. However, in general, V; may not have a basis consisting of simultaneous
eigenforms for all 7T},. There does not exist a basis whose elements are all simultaneous
eigenforms for all T;,. Nevertheless, if f = > ¢,¢" is a simultaneous eigenforms for all
T,, then f still enjoys the property that T,,f = ¢, f.

In general, let f be a non-vanishing modular form of weight &k on PSLy(Z).

Definition 2.4.10 If f is a simultaneous eigenform for all Hecke operators T,, on PSLsy(Z),
then we say f is a simultaneous eigenform or a Hecke eigenform. If the Fourier expansion
of f has leading coefficient 1, then f is normalized.

Proposition 2.4.11 The space Sk(PSLo(Z)) of cusp forms of weight k on PSLy(Z) is
spanned by simultaneous eigenforms.

2.4.3 Properties of Hecke eigenforms

Throughout this section we let k be a positive even integer and d be the dimension of
Sp(PSLsy(Z)). We assume that { f1,..., fa} is a basis of Sp(PSL2(Z)) consisting of Hecke
eigenforms. In this section we will study properties of f;.

Proposition 2.4.12 Let f be a Hecke eigenform, and assume that the Fourier expansion
of fisciq+ cag? +-+-. Then ¢, # (.

Recall that we say a Hecke eigenform is-normalizéd if the leading Fourier coefficient is
1, the Fourier coefficients of a notmalized Hecke eigenform are multiplicative.

Proposition 2.4.13 Let [ be a ‘normalizedrHecke €igenform with a Fourier expansion
q+cq® +c3q®+---. Then T,,f =tCnf for all positive integers n.

Proposition 2.4.14 If f is a normalized Hecke eigenform with a Fourier expansion q +
coq® + c3q® -+ -, then we have

k—1
CmCp = E d Cmn/d?

d| ged(m,n)
for all positive integers m and n. In particular, if ged(m,n) = 1, then cpp = ¢mCp.

Proposition 2.4.15 Let f # g be two normalized Hecke eigenforms. Then f and g are
orthogonal with respect to the Petersson inner product.

2.4.4 Newforms and oldforms

Some of the cusp forms in Si(I'o(V)) actually have level smaller than N. Namely, if M
is an integer dividing N, then any cusp forms on I'g(M) is also a cusp form on T'g(N).

Proposition 2.4.16 Let M be a positive integer dividing N, and f(7) be a cusp form on
Co(M). Then for any h|(N/M), the function f(ht) is a cusp form on To(N). Moreover,
if f(7) is a simultaneous eigenform for all T,, with ged(n, N) = 1, then so is f(h1).

14



Definition 2.4.17 If f(7) € Sp(I'o(IN)) satisfies f(7) = g(hT) for some simultaneous eigen-
form g(7) € Sk(I'o(M)) with M|N, M < N, and h|(N/M), then f(7) is called an oldform.
The subspace spanned by all oldforms is called the space of oldforms and is denoted by

S,?Id(FO(N)). The orthogonal complement is called the space of newforms and is denoted by
S (Lo(N)).

Proposition 2.4.18 Each of SPUTy(N)) and SP*Y(T(N)) is stable under T, for all n
with ged(n, N) = 1.

Proposition 2.4.19 The subspace SJ'*W(To(N)) has a basis consisting of simultaneous
eigenforms for all T, with ged(n, N) = 1.

Definition 2.4.20 Let f € SM®W(T'y(N)). If f is a non-vanishing simultaneous eigenform
for all T,, with gcd(n, N) = 1, then f is a newform.

In fact, more about SPCW(Ty(N)) is true. To facilitate further discussion. Let us recall
a result of Atkin and Lehner.

Proposition 2.4.21 (Atkin-Lehner) Let f(7) = > > ¢,q" be a cusp form on To(N).

n=1

If there exists a positive integer M such that whenever ged(n, M) = 1 the coefficient a,,
vanishes, then f lies in the space of oldforms.

Proposition 2.4.22 Let f(1) = Y02 ¢,q" be amewform on To(N). Then ¢ # 0.

n=1

Proposition 2.4.23 Let S]'°Y(Tp(N)) = & Visbe the decomposition of SJ*¢Y(To(N)) into
a direct sum of simultaneous eigenspaces for-all T,, with gcd(n, N) = 1. Then each V; has
dimension 1.

Before we state our last results im this chapter, let us recall that the Atkin-Lehner
involutions

B 1 an b - 2 _
o {% (CN dn) - I ged(n, Nfn) =1, adn” = belV = n}’

normalize ['g(N). Thus if f is a modular form of weight k& on I'g(V), then so is f‘ [wWy] -
For the ease of notation, given a modular form on I'y(NNV), we write

Wof = f| [wn].

We remark that since w? € To(N), the coset ['o(N)w, is all the same for a fixed n,
regardless of which w,, we choose. Therefore, the definition of W,, does not depend on the
representative w,,.

Proposition 2.4.24 If m is a positive integer such that gcd(m, N) = 1, then T,,W,, =
W, T,,.

Proposition 2.4.25 The space of newforms is spanned by cusp forms that are simulta-
neous eigenforms for all Atkin-Lehner involutions and all Hecke operators.
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Remark. Since w? € T'y(N), we have W2f = f. Thus, the eigenvalues of W, must be
1or —1.

Finally we study the eigenvalue of T}, p| N, associated with a newform.
Proposition 2.4.26 Let f =) c¢,q" be a normalized newform on T'o(N). Let p be a

prime divisor of N. If p?|N, then ¢, = 0. If p* does not divide N, then c, = —ep*/>71,
where € is the eigenvalue of W), associated with f.
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Chapter 3

Elliptic Curves

An elliptic curve is a pair (E,O), where F is a smooth projective curve of genus 1 and O
is a basepoint of E.

Let K be any perfect field. The elliptic curve (E,O) is said to be defined over K if
the curve is defined over K, which is also denoted by E/K, and O is a rational point on
E defined over K. Every such curve can be written as the locus in P? of a cubic equation
with only one point on the line at infinity. That is, after scaling X and Y, as an equation
of the form

Y272 4+ a1 XY Z + asY ZA2 X340, X2 7 + a, X 7% + ag 7.
Here O = [0,1,0] and a; € K. And!there éXists’a morphism
+:E><E—>Edeﬁnedby (Pl,P2)|—>Pl+P2

giving the group law such that the set, of rational points on F with identity O (point at
infinity) forms an abelian group.

3.1 Definitions

In this chapter, we consider the special case K = Q.
A cubic curve in normal form looks like

v = f(z) =2 + ax® + bz + c.

Assuming that the roots of f(z) are distinct, that is, this curve is nonsingular. Then such
a curve is an elliptic curve, and every point on an elliptic curve has a well-defined tangent
line. The reason is as follows. If we write the equation as F(z,y) = y*> — f(z) = 0 and
take the partial derivatives,

oF , OF
e —f'(x), and oy 2y.

We can see that there is no point on the curve at which the partial derivatives vanish
simultaneously, since the curve is nonsingular. The details can be found in Rational Points
on Elliptic Curves by J.H. Silverman [13].

If this curve is singular, we classify the singular points depending on its tangent di-
rections.

Definition 3.1.1 Let P be a singular point on the curve F(z,y) = 0. We say that P is a
node if there are two distinct tangent directions at P. P is a cusp if there is one tangent
direction at P.
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3.1.1 Minimal Weierstrass Equation

We may assume that each elliptic curve have a Weierstrass equation of the form
E y2 + a1y + azy = 3 + a2x2 + a4 + ag.
And this equation has an associated discriminant

A = — (a] + 4ay)*(a3ag + 4asas — ayazay + aga; — ai) — 8(2a4 + ajasz)®

—27(a3 + 4ag)® + 9(a] + 4ay)(2a4 + aras) (a3 + 4ag).

If we replace the variables (z,y) by (z/u? y/u?), then each a; in the Weierstrass
equation F : 4% 4+ ajxy + asy = 23 + asx® + asx + ag becomes u'a; and the discriminant
is u'2A. In this way, we can choose u such that u’a; are all integers.

Let £’ be a new equation

E' 9?4 bixy + bgy = 23 + box? + by + bg

of this elliptic curve E form changing variables such that b; are all integers. Let A’ be the
discriminant of E’. For each prime p, define v,(A’) as the power of p such that p* (") | A/
but p* + A" if k > v, (A).

Definition 3.1.2 A Weierstrass equation is called a minimal Weierstrass equation E' for
E at p if v,(A’) is minimized subjeet to theeondition b; € Z.

If we define
v,(A) = r%ilnvp(A’),

then the minimal discriminant of E is defined by
D — HpvP(A)
p

Definition 3.1.3 A Weierstrass equation is called a global minimal Weierstrass equation
for F if F is simultaneously minimal at all primes of Q. The discriminant A of this global
minimal Weierstrass equation is equal to the minimal discriminant D of E/Q.

Proposition 3.1.4 ([12], Corollary 8.3) FEvery elliptic curve E/Q has a global mini-
mal Weierstrass equation.

We remark that we can find a global minimal Weierstrass equation for £/Q by finding
local minimal equations(e.g. by using Tate’s algorithm).

3.1.2 Reduction

The reduction of E modulo p, denoted E , is then the curve over Z, defined by the equation
E: g + @wy + Gy = 2° + @0’ + daw + d,

where a; denotes reduction modulo p. The curve E may be singular; its non-singular part
is denoted E™*.

Definition 3.1.5 We say that
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(1) E has good (stable) reduction if E is non-singular.

(2) E has multiplicative (semi-stable) reduction if E has a node. And the reduction is
called split if the tangent directions are defined over Z,, otherwise it is non-split.

(3) E has additive (unstable) reduction if E has a cusp.

In cases (2) and (3), F is naturally said to have bad reduction.

3.1.3 Conductor

The minimal discriminant is a measure of the bad reduction of £. Another such measure
is the conductor of E/Q.

Definition 3.1.6 The conductor of E/Q is defined by

N(E/Q) = [[##12,

where the exponents f,(£/Q) are given by

0, if £ has good reduction at p,
f(E/Q) =11, if Frhas multiplicicative reduction at p,
2 + 0p, Jif E hasadditive.reduction at p,

where 6, = 0 if p 1 6.

Further, f, may be computed by using=Ogg’siformula[11].

3.1.4 [-Series

The L-series of an elliptic curve is a generating function which records information about
the reduction of the curve modulo every prime.
Let E be an elliptic curve. Set ¢ = p¥, for some prime p.

Definition 3.1.7 Let E(F,-) be the set of points on E with coordinates in Fyr. The zeta
function of E/ over Fyr is given by the formal power series

o k

Z(EJF,;T) = exp (Z(#E(qu))g) , where exp(u) = Z %

r=1
Proposition 3.1.8 [12] There is an integer a so that

o 1—aT4q1*  (1-aoT)(1-p6T) _ 13l —
ZE/FT) = Toma—gr — a=ma—gr) Vel =18=va

Further more

Z(E[F;T) = Z(E[Fy;1/(qT)).
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For each prime p, if E has good reduction at p, let a, = p+ 1 — #E(Fp). The local
factor of the L-series of E at pis L,(T) = 1 — a,T + pT?. We extend the definition of
L,(T) to the case that E has bad reduction by setting

1 =T, if E has split multiplicicative reduction at p,
L,(T)=<1+T, if E has non-split multiplicicative reduction at p,
1, if E has additive reduction at p.

In all cases, the relation L,(1/p) = #E(Fp)/p holds.

Definition 3.1.9 We make substitution 7' = p~® in Z(E/F,;T), and define Hasse- Weil
L-series L(E, s) by
_ e)s =)
II,Z(E/F,;p=*)’
where ((s) is the Riemann zeta function defined by

1

L(E,s)

((s) = Z vt for Re(s) > 1
neN
and we can express ((s) as
1
C(S) = H T ps ’
primesp
Thus, we have
1 —s\—1
LE/Q ) = IPI 1= opstpl 2= I;Lp(p )

3.2 Taniyama-Shimura‘Conjecture

The conjecture says that every rational elliptic curve y* = f(z) = 2® + az? + bx + cis a
modular form in disguise.

Proposition 3.2.1 Taniyama-Shimura Conjecture
Let E/Q be an elliptic curve of conductor N, let L(E,s) =Y c,n~* be its Hasse- Weil
L-series,and let f(1) =Y c,e*™™7 be the inverse Mellin transform of L(E,s).

1. f(7) is a cusp form of weight 2 on T'y(N), for some positive integer N .

2. For each prime p{ N, let T(p) be the corresponding Hecke operator; and let W be
the operator (W f)(1) = f(—=1/NT). Then

Tp)f =c,f and Wf =wf,
where w = £1 s the sign of the functional equation
E(s) = wEn(2 — 5), where Ex(s) = (27) *NV2(s)L(E,s), for s € C,

with the well-know Gamma-function T'(s).

3. Letw be an invariant differential on E/Q. There exists a morphism ¢ : Xo(N) — E,

defined over Q, such that ¢*(w) is a multiple of the differential form on Xy(N)
represented by f(7)dr.
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Chapter 4

Modular parameterizations

In this chapter we will obtain modular parameterization of elliptic curves that are modular
curves of the form Xy(p) and X (p) = X(T'§(p)) = Xo(p)/wp, where the levels p are
primes. In Section 4.1 we will determine all such curves, and then describe methods to
obtain parameterizations in Section 4.2. Afterward, we work out several examples to
illustrate the procedures. Finally, we will tabulate the results in Section 4.3.

4.1 Genera of Xy(p) and X, (p)

First we observe that the genus of an elliptie.curveis 1, so we need to find the modular
curves Xo(p) and X (p) of genus-l.
Since Xy(p) is a Riemann surface, from the Riemahn Hurwitz’s formula, we have

MY U3 Uso
F = 1 —_—————— = — —

which is given in section 2.2.3. Using Propositions 2.1.3, 2.2.7, and 2.2.8,

lp/12] =1, if p=1mod12,
9(Lo(p)) = 9 Lp/12], if p=>5,7 mod12,
Ip/12] +1, if p=11 mod 12,

the formula becomes simplifier. Hence we can deduce that only when p = 11, 17 and 19,
the modular curves Xy(p) are of genus 1.
P. Zograf [18] proved that

9(Tg (p)) +1 > 3x(I'g (p))/64,
where
(T) = Vol(I"\H)
X = 6Vol(PSLy(Z)\H)
For T'§ (p), the value of x(I'y(p)) is (p + 1)/12. Thus, we only need to determine the

genera of X (p) for p < 511. To find the genus of X (p), we use the Fricke’s formula
that the number of fixed points of the involution w, on Iy(p) is

) h(—4p), if p=1mod4,
U(p) —
b h(—4p) + h(—p), if p=3 mod4,



where h(d) is the number of
{aa® + bry + cy® : b° — dac = d} /SLy(Z).

(The general formula for T'j (N) can be seen in [9].) Now the class numbers h(—p) and
h(—4p) can be easily computed using Kronecker’s class number relations

Z H(AN —n?) = Zmax(d, N/d) +

|
n2<4N d|N 0, else,

{1/6, if N is a square,

with the initial values H(1) = H(2) = 0, H(3) = 1/3. Here H(d) denotes the Hurwitz
class number, and is essentially h(—d). In fact, when d # n?, 3n?, we have H(d) = h(—d).
Finally the Riemann-Hurwitz formula yields

9(To(p)) = 2(9(T'F (p)) — 1) + 1+ v(p)/2.

From this we deduce that only when p = 37, 43, 53, 61, 79, 83, 89, 101, and 131, the
genus of g(T'¢ (p)) is 1.

4.2 Methods for finding modular parameterizations

In [16] Y. Yang gave a general method of finding defining equations of modular curves of
the type Xo(V), X1(N), and X (N:). Here'we will fitst review his method for Xy(p), and
then we will refine the method toZobtain modular parameterizations for X (p) that have
genus 1. We will also describe anzalternative:method using the fact that the holomorphic
1-forms on a modular curve are actually cusp-forms of weight 2 in disguise.

4.2.1 Equations for X(p)

In [16], it was shown that for any positive integer N it is always possible to find modu-
lar functions X and Y that generate the function field on Xy(N) using the generalized
Dedekind eta functions.

To be more explicit, recall the basic fact that the congruence subgroup I'y(N) is
a normal subgroup of I'y(N). Let I" be an intermediate subgroup between I'g(N) and
I'i(N). We have the fact that I' is a normal subgroup of I'o(N). Thus, if f(7) is a
modular function on I', then the function

> fm)

v€lo(N)/T

is modular on I'g(/N). Furthermore, assume that f has only poles at cusps that are
equivalent to co under I'g(N). Assume also that the order of f at oo is m, while at the
other poles the orders are less than m. Then the above function has exactly one pole
of order m at oo and is holomorphic at any other point of Xo(N). Thus, the problem
of finding generators of the function field on Xy(N) reduces to that of finding modular
functions on I'y (V) that have the required analytic behaviors. In [16], Yang demonstrated
a method how one can achieve this using generalized Dedekind eta functions. Here we
will work out the case N = 17 to demonstrate the whole procedure.

First of all, let us set Wy = FEy/Es. The purpose of this setting is to get rid
of the factor involving €™ in Proposition 2.3.8. Then any product of W}, will satisfy
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condition (2.6) in Proposition 2.3.9 automatically. Thus, if e, are integers such that
> k*er, = 0 mod 17, then ], Wi* is modular on T'1(17). Furthermore, it is easy to see
that the infinite products defining Ej converge absolutely for any 7 € H. Thus, the only
possible poles or zeroes of Fj. are all at cusps. In fact, using Proposition 2.3.10, we see
that the poles and zeroes can happen at cusps k/17, 17 1 k.

There are eight distinct Wy, k& = 1...8. The cusp oo of Xy(17) splits into eight
inequivalent cusps k/17, k = 1...8,in X;(17). The orders of W}, at these cusps, multiplied
by 17, are as follows.

3/17 8/17 7/17 4/17 5/17 2/17 6/17 117
Ws| -7 —-12 28 14 —-10 -5 —11 3
We| —12 28 14 —-10 -5 —11 3 -7
Wr| 28 14 —-10 -5 —11 3 -7 —12
Wy| 14 —-10 -5 —11 3 -7 —-12 28
Ws| -1 -5 —-11 3 -7 —12 28 14
Wo| -5 —11 3 -7 —12 28 14 -10
We| -11 3 -7 —12 28 14 -10 -5
Wil 3 -7 —-12 28 14 -10 -5 -1l

We need a function F' with a pole of order 2 at infinity and poles of order less than 2 at
other cusps equivalent to infinity under I'g(17), and holomorphic at any other points. To
find F is equivalent to solving the integer programming problem

—Try —12x5 +28z3 +l4xh =105 w —bxg —1lz; +3xg > —17,
—12x1 +28z9 +14x3 =10xy —dzss —llzg +3x; —Txg > —17,
28x¢1 +14x9 —10x3 bz, —Alxs +3x¢ —Tx; —1228 > —17,
14.T1 10272 —5.T3 —11I4 —|-3.’175 —7I6 —12$7 +28I8 Z —].7,
—10z4 —dXo —11[E3 +3£E‘4 —71'5 —].25(]6 +28[L‘7 +14JZ8 > —]_77
—5I1 —111’2 +3I3 —71'4 —122175 +28.CE6 +14ZE7 —10?[)8 Z —17,

—11zy  +3z9 —Trg —1224 +28x5 +14z¢ —10x; —dxg > —17,
3r1 —Txy —12x3 +28x4 +14xy —10x¢ —dx; —1llag = —34.

We find one of the solutions is (x1, 29, x3, 24, T5, T, X7, 23) = (0,1,0,0,0,0,1,2). That is,
F:W8W6W12:q*Q—i—q’l+2+2q+q2+2q3+q4—|—q5+q6—q7+-~ :

where ¢ = e?™7. Thus, if we choose

X= > Fl,

7€ To(17)/T1(17)

_ Z EIOE|42

rero(myman FrEsk

_ E13E122 E12E152 E2E112 o E6E162
B E6E14E2 E16E9E11 E16E14E10 E8E13E14
E?IG-E'?)2 E3E82 E9E72 Evl()£?42
T EvEwEw  EiEnE; | EnEuE; | EsBEiEn
=¢ 2+ q¢ ' +3+q+2¢° +2¢° +3¢" —4¢" +4¢° —2¢" — ¢+ - -,

o

then X is modular on I'g(17) with those properties which we want, where 7 runs over a
set of coset representatives of I'o(17)/I'1(17). Similarly, we can choose a degree 3 function
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Y to be

EwEs*E
Y: Z ElOE|36E8
YET(17)/Ty(17) 114712

=q =207 =27 +8—2¢° —7¢> — 2¢" +15¢° — 6¢° + - -

Y

Then the functions satisfy
Y24+ 7XY —31Y = X3 — 19X? + 123X — 264.

Now let

E0E4?
=X —92— Z 1074

sero(myman LrEsk

_27
v

Z E10E63E8

Y 4+32-9= Z1076 T8
y EAE3, Frs

+ 3z — 9.

Y

Y€ To(17)/T'1(17)

We have an elliptic curve y? + zy +y = 2° — 22 — 2 — 14, which is a minimal Weierstrass

equation. This concludes the demonstration of the case Xy(17). For other two Xy(p) of
genus 1, the same method also applies. We list the results in Section 4.3.

4.2.2 Equations for X (p)

For curves X (p) the basic idea is thie same. Sitice the-curves X (p) are assumed to be of
genus one, there are two modular-functions & and y oh X (p) such that they have poles
only at the cusp oo with orders 27and:3; respectively. Now consider z and y as modular
functions on I'g(p). Since the Atkin:Lehner involutions w, on Xy(p) sends the cusps oo
and 0 to each other, the function x has'double poles at cusps co and 0, and the function
y has triple poles only at cusps oo and 0. Thus, our goal here is to find modular functions
that satisfy these requirement. One way to achieve this is as follows.

Suppose that s is a modular function on I'y(p) such that s has a double pole at oo, a
pole of order less than or equal to 2 at 0, and holomorphic at any other points. Then the
function

T =545y,

considered as a function on I'J (p) will have a pole of order 2 at co. Similarly, if ¢ is a
modular function on I'y(p) with a triple pole at oo, a pole of order less than or equal to
3 at 0, then a possible choice of y is

=t +tly,.

We take X (61) for example. Now we construct modular functions to parameterize
this elliptic curve.
Let I" be the intermediate subgroup between I'y(61) and I'g(61) with [['z(61) : I'] = 6.
Then I' is generated by I'1(61) and (631 421>, and
Wi, = Ee Ersk Esax Eaor Ear, | Esy Eox Eari Eoaor B,

is a modular function on I" for any positive integer k. There are six distinct Wy, and they
are Wy, Wy, Wy, W5, Wi, and W;. Moreover, the cusp oo splits into six inequivalent
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cusps 2/61, 4/61, 8/61, 5/61, 10/61, and 1/61 in I". The orders of W}, at these cusps are
as follows.

2/61 4/61 8/61 5/61 10/61 1/61
W,| —4 4 -7 13 0 —6
Wyl 4 -7 13 0 -6 —4
Ws| -7 13 0 —6 —4 4
Ws| 13 0 —6 —4 4 -7
Wyo| 0 —6 —4 4 -7 13
Wy -6 —4 4 -7 13 0

It follows that

Z EsoEso Eys Eag Erg
By E16Eag B Esg

v€To(61)/T v

is a modular function on I'y(61) and has a unique pole of order 7 at infinity.
Now we set

~ n(617)2

and
EsoEso Eog s Fhg

Y(7) = T
() e To(on)/T E46E16E48E22E56(

where X and Y have pole at infinity ofsorder5 and 7, respectively. Then we have
V223X Y4149 XY 3 —9( X431 X2 6 LX)V A4 33(X°+ X +61X7)Y = X3( X2+ X+61)?,

+9,
.

which we takes as the defining equation of Xq(61).
The points co and (0, 0) correspond tio.thé cusps oo-and 0, respectively. This is because
if we use the transformation forntula for the'Dedekind eta function (Proposition 2.3.4),
then we get that
7(617)? 61

X0y = 018 5 = 515 (4.1)

and thus X (0) = 0.
From Proposition 2.3.11, we deduce that

Y (7)., = 61¢°(1 4+ 3q + 10¢° + 24¢° + 57¢* + 120¢° + 246¢° + - - -). (4.2)

w61

If we consider the Fourier expansions of these functions, then we obtain that the function
Y|W61 X? has a pole at cusp oo of order 7, so we use the function Y to cancel it. Thus,

we have
61Y

|w61 - F

To find modular parameterization of X (61), we need to construct functions s and ¢

with poles only at cusps co and 0 such that s has double poles at cusps oo and 0, and

t has triple poles at cusps oo and 0. According to equations (4.1), (4.2) and (4.3), since
the Atkin-Lehner involution wg; sends the cusps co and 0 to each other, we have

div(X) = —5(c0) + 5(0,0),

div(Y) = —=7(c0) + 3(0,0) + 2(«, 0) + 2(,0),
div(XJug, ) = 5(00) = 5(0,0),

div(Ywg, ) = 3(c0) — 7(0,0) + 2(c, 0) + 2(3,0),

(4.3)

25



where div(f) means the divisor of the function f, and «, 3 are the roots of X2+ X +61 = 0.
Thus, the function X, Y = 61Y/X has double poles only at oo and 0. Using the
equations (4.1) and (4.3), we can find that
Y| 61y X Y

X Xz “6 X

w61

that is, Y/ X is invariant under Atkin-Lehner involutions.
Also, one has

div(X? + X 4 61) = —10(00) + 2(a, 0) 4+ 2(3,0) + other six simlpe zeros.

Hence the function (X2 + X + 61)/Y has triple poles only at oo and 0. Similarly, we
can show that (X% + X + 61)/Y is invariant under Atkin-Lehner involutions by directly
computation.

By setting s = Y/X and t = (X? + X +61)/Y, we have

2 4+ 9st — 33t + 270 = s — 235 4 1495,

which we takes as the defining equation of X (61). Let

=Xy
r=s—1=—=—
X 9
X2t X +61
y:rwu-¢2:——i?j;—+4m—m.

Hence we have modular parameterization of the elliptic curve y? + zy = 23 — 2z + 1.

4.2.3 An alternative method for X (p)

In this section we describe an alternative method for finding modular parameterizations
of elliptic curves of the type X (p), where p is one of the primes 37, 43, 53, 61, 79, 83,
89, 101, and 131.

First of all, for such a given modular curves X (p), there are two pieces of infor-
mation available to us in the tables of [3] (The tables can be seen in the web site
http://modular.fas.harvard.edu/Tables/. [14]). One piece of information is the equation

y2 + a1y + asy = 23+ ayr® + agx + ag
of the elliptic curve given in Table 1 of [3]. The other is the Fourier expansion
q+b2g” +b3g’ + -

of the unique normalized Hecke eigenform given in Table 3. Now let # be a modular
function on I'y (p) with a unique pole of order 2 at infinity with leading coefficient 1 and
y be a function with a triple at infinity with leading coefficient 1. We may assume that
they satisfy the equation 3% + a12y + asy = 2° + asx? + asx + ag. Furthermore, recall
that if I' is a subgroup of PSLy(Z) of finite index, there is an isomorphism w = fdr
between two vector spaces {f: meromorphic modular forms of weight 2 on I'} and {w:
meromorphic differential 1-forms on X (I')}. By this one-to-one correspondence, w is
holomorphic on X (I') if and only if f vanishes at every cusps on X (I'). Thus, if w is a
holomorphic differential 1-form on X (p), then w/dr is a cusp form of weight 2 on X" (p),
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where 7 denotes the standard local parameter of X, (p). Since the holomorphic 1-form of
y? + a1y + azy = 2° + apx® + asx + ag is given by

dx
2y + a1x + as’
we have .
qdz/dq
—_— =g+ b.q".
2y + a1x + as 1 ; 4

This relation, together with y? + a12y + asy = 23 + ax2? + a4 + ag, uniquely determine
the Fourier expansions of x and y.

Let us take the curve X (43) for example. According to Table 1 of [3], it has an
equation

v +y =2+

Furthermore, from Table 3 of [3], we find that by = —2, b3 = —2, b5 = —4, b; = 0, by; = 3,
and so on. Using Proposition 2.4.14, we then deduce that the unique normalized Hecke
eigenform on I' (43) has the Fourier expansion

q—2q2—2q3+2q4—4q5+4q6+q9+8q10+3q11—4(]12-1— )
Thus, assuming that
T=q 4 co1q " oottt =t d o +dag

and solving

—qdz/d
2qyi/1—q = q—2¢° — 2¢° +°2¢" AT +1¢°" +8¢" + 3" — 4" + -,

y?+y =23+ 2%
for the coefficients ¢; and d;, we conclude that
r=q 24207 + 4+ Tq+ 13¢% + 204> + 33¢* + 50¢° + 77¢5 + 112¢" + 166¢° + - - -
and
y=q 24+3¢2+8¢ 1+ 16 + 34q + 63¢*> + 115¢> + 197¢* + 336¢° + 549¢° + 885¢" + - - - .

The remaining task is to find a closed form representation for x and y.

Observe that z, considered as a modular function on I'y(43), has two double poles at
oo and 0 and holomorphic at any other points. Thus, if f is a modular function with a
double zero at 0 and having poles only at oo, then the function x f has only poles at oo,
and we can express it as a sum of functions having poles only at co. We now work out
the details in the following computation.

Let I" be the intermediate subgroup between I'y(43) and T'(43) with [[z(43) : T] =7,
and set

16,
By BBy EgEsgEyy  EsgEyaEgEsEagEsy

Y

EsyEso Fog B9 By B EogErg o2 By B
X — Z 348032 Liop L1214 Lo 26 16 01012 01402

v€T0(43)/T

Z E26E16E10E12E14E2

v€T0(43)/T F36Ey2Eg E3a Fog By

Yy =

+7,

Y
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EoyEosE
e Toan)r L6542 ],
and
V _ Z E22E40E18E26E16E10E12E14E2 —15
~ETo(43)/T E32E20E34E30E8E38E6E36E42 o
The Fourier expansions for them are
X=20"+q"+¢° - 124+q+2¢+2¢" + " +2¢° = 2¢" + 4¢° + - - -, (4.4)
Y =¢ 7 =23 —q¢ 2 =20 +4+2¢+2¢* —3¢* —2¢° +2¢" — ¢ +-- -, (4.5)
Z=q¢+q+q +q 7 =164+20+3¢ +2¢" + ¢ +4¢° + 3¢ + -, (4.6)
and
V=g +q¢+q7—q¢ +2¢" =124 -2+ 2" +-- - . (4.7)

Now we consider the behavior of X, Y, Z and V under wy3. We can deduce that

X|,,, =43(q +3¢° + 7¢° + 16¢" + 32¢° 4+ 63¢° + 117" + - -+ ),
Y|w43 :43(q2 =+ 4q3 + 12(]4 + 31q5 + 71(]6 + 154(]7 + 314q8 I )’
2., =43(2q + 8% + 24¢° + 65¢" + 159¢° + 366¢° + 7947 + 1654¢° +--- ),
and
Vi, = 43(3¢ + 13¢% + 47¢° & 14lg* + 335¢° + 963¢° + 2270 + 5074¢° + - - - ).

w43

Thus, the modular function X has pole-of-erder4 at cusp oo and zero of order 1 at cusp
0, the modular function Y has pole of order 5 at eusp oo and zero of order 2 at cusp 0,
the modular function Z has pole of order:6-at-¢usp oo and zero of order 1 at cusp 0, and
the modular function V' has pole of order 7 at cusp oo and zero of order 1 at cusp 0 on
I'0(43). It follows that the function

Y =q¢ +2¢°+2¢7°+2¢7 ¢ P +2¢7+ 207 +3+3¢+6¢" + -,

has only a pole at oo, and thus can be represented as a linear sum of X, Y, Z, and V. To
be precise, we use the function V' to cancel the pole of order 7 at cusp co. Then we have

Y =V =q ¢ +3¢ " +q 7 +2¢2 + 154 3¢+5¢* + 4¢° +2¢* +6¢° —2¢" +3¢° + - - - |

which is a function with pole at cusp oo of order 6. We then use Z, Y, and X to cancel
g%, ¢7°, and ¢~* sequentially. We arrive at

r=(X+V+Z+43)/Y.
By a similar procedure, we find that
y=02Zxz—-Va+Z+2V+Y —-2X)/3Y — Z +2X).

Hence we have modular parameterization of the rational elliptic curve y? + y = 2 + 2.
For the other X (p) of genus 1, these two methods also apply. We list the results in
Section 4.3.
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4.3 Results

N

Functions

Elliptic Curve

11

EyEy° E5*
= —7 pr— —"— 1
PPt ;&%

5

y?+y =12 — 2> — 10z — 20

17

- EwE,’
v Z@%%

vV+ay+y=a2>—2?—z—14

19

EsEg
x‘za&

v +y=a2>+22—-92 15

37

TI(T)2 -
n(377)%’ 5 EsE By
—47X2 4+ X3 4+6Y2—7XY + 185Y + 222X

X(Y + 185)
y=37/X+X+5x—-7

xr =

v4+y=2—u

43

-9-Y

X — Z E34E32E20E12E14E2
E24E28E4E6E36E42

Y — Z E26E16E10E12E14E2
E36E42E6E32E20E34

7 Z Enkbisby g
E6E36E42

V = Z E22E40E18E26E16E10E12E14E2
E32E20E34E30E8E38E6E36E42

v=(X+V+2Z+43)/%
271 — Va+ 7+ 2V Y - 2X

y= 3V 742X

+7

=15

V2 4y =1’ + 2

23

E Ess
X — Z 24F23 E36 o 4
EnEpEisE

E14E4E24E22 E24E22
Y = =
Z 2 Fub

— 16
EwEyEraFyy’

B SY(Y — 53) +52(Z — 53) + 2173

(53 + 3X)X
—9Y 429X — 257 + 547

A sy 4ar
_ @2+ @3V +3T 0 g,

v tay+y=a’—a’

61

+9

_ Z B0 Eso Eos Eas B
By B Eag oo Esg
Y X2 —l— X +61

4o — 12
X v + 4x

4oy =a3—-2r+1
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N Functions Elliptic Curve
EsqFa F3o
Xg = ——— —16
’ ;g&@s
EpEgFE s E
X1o=Z w2boobasbsorsog )
s FEroFygFrg iy Bog Bg
EsqFa Ei3y
X = ——20
. g%ﬁﬁ
Xia — Z EsyF36 Fiog g By Frog By Bz Bog Bige 44 Errg o
13 =
79 3 Esy B By By Esg 014 Figo Figa Fro By Fag Eizg Firg Vv4ay+y=ad+22 -2

—7
X — Z E54E36E24E16E42E28E34E30E20E66E44E76E2
¥ £ BsoEnEis B3y Fra Bss Eos Eoo Eao Fas Ero E B
— 10
v — Xis + Xz + X2 — 2X50 + Xy
B Xy3 — 2X19 + Xyo
X3 — X0 + Xo

XlO — X9
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Elliptic Curve

83
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FoxEioE-0EsFrcEroEoi Ecs E
XIQZZ 3844104~704~462L~456L4401~24 L~466 18_215
41 E76E78E48E20E4E50E74E6E26
Fag By Eog Eso Fso Fog Ees B3 E
}/1922 3844464+204~+304~82 1428 L466L~18 12_37
E76E78E48E60E80E68E4E50E74
By EooEioE6Fos Fes Eis B0 E
XQOZZ 4644204442 1716 442814664418 L~12 52_111
EeoEvo o Beo By B4 Esg Eirg Figg
}/20:2 3844464+204~+304~82L~416L+28 L4 661L+18 L~12 52_400
41 E64E76E78E48E60E80E62E68E4E50E74
FusEsuEyyEsFryEy B F
Z20:Z A8 Lv44 1222 1A LvT74 174 L2116 52+12
1 E46E10E80E62E14E70E72E2
EEwFEs’EsoF
UQOZZ 484244 1264 621440 +13
1 E16E80E14E52E10E70
_ Z E38E48E58E68E44E22E40E74E4E16E52 o 208
1 E64E76E78E54E34E24E46ESOEGZE72E2
_ Z E38E64E44E62E40E30E26E82 + 79
41 E76E78E70E68E16E52E80E42
_ Z E38E44E46E20E72E2E16E28E12E52 + 27
1 E64E76E78E24E56E22E80E62E4E74
_ Z E38E14E70E54E34E36E44E46E20E6E42 . 508

—~ Fy Frrg Errs Fias Eis g Fors Eigg BigaEiso Elg:

_ Z E38E54E34E44E20E28E12
FEre Frg Fag Eise EggEigs Bisg
Z E48E44E64E40
EgoEr4Er0Er

_ Z Ess B4y By E3gEog By
—~ Li76 Ers Eng Egs Eso Eso

_ Z Esg Egy FEyyFao Ego Eyo By By
= EreErs B Eso Blag Eso Era Loy
_ Z E54E34E44E20E42E16E28E12E52
—~ L5 10 Ego Eleo Ess Ei3o Eiso E'ra Ege

_ Z E54E34E44E20E38E16E28E12E52
—~ Liga ET6 Ers Eys Es Eso Ego Egs Ess

_ Z E48E44E40E16E52

+ 86

— 12

+ 42

— 162

— 240

— 405

— 40
~ E10E80Eg EvaEro
Usy — Z EssEya By EyoEry by 195
—~ Fr6 Erg Eo Bigo Era by
Vo — Z Es4*Eey” F3g Egy Eyo _ 585

1 E522E162E76E78E80

Vtryty=1+a2*+zx
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Functions

Elliptic Curve

83

Xig = Ty — Xoo

Xi7 = Xgo — Uy

X16 = Yoo — Zao + Y19 + X1g — Xu7

Yie = Voo — Xoo — Xi3 — Xy7

Xi5 = Xoo — Zao + X1g +2X15 + 3X56

Yis = Xoo — Voo + Yig + 2X48 + 2X17 + 3 X6

X4 = Zog — Uy + Xoo + 2Y19 + 2X48 + 2X 17 + 2X 46

Yia = Zy — Yo — 2Us1 + 2151 + 2X50 + Xig + 3 X5 + 2X47
+ Yig

Zyy = (X15 — Yi5)/2

Yig = (Va1 — Zo1 — Y19 — Xu7 4+ Xu6 — X5 +3X14)/21

Rz = Yoy — Voo + 2Ups — 2755 + X1 — 3 X9 — X1 — 2X8
— X6 +2X15 —Yis — Xy — Yy — 42y,

T3 = (Vor — Zon — Yig — Xa7 + Xi6 — Yis + X14)/2

Uiz =4Y15 — 4X 15 + 3X 14 + 5Y1y

Yio = 3(Za1 — Xo1 + Xoo + Xig — Xis +2X17 — 8X6
+ 7X5 — 34X14 + 301Y13) — Rys + Ths

Zig = 4X9y — 2Uzp — 2V — 2X51 + 3Yog + 2X50 — 3Uy
—4Xq9 4+ Xqg8 — 12X17 — X6 — 5 X15 + 58214 — 22R;5

Vig = 21(Xo1 — Zon — Xoo — Xig +1Xig == 2X17 + 8X46
— TX15 + 34X 14 — 301Y33) /2 + Ri3 — Vi

X1 = 10X15 — 10Y15 — 3 X4 — 1744 = 60155+ 212 + 3Y1o

Z11 = (X15 — Yis — 2Y14 — g — 17¥75)/4

X0 = (2Up — Yoo — Zgo — Kooy — Xig'= X174 2X 16 — 4X15
+ 24X, — 210Y73)/25

Yy = (6Xo1 — 11Uy + 6151 — Xy + 7X 15 —4X 17 + 20X 6
- 59X15 + 52}/15 —|— 17X14 —|— 98Yi4 "’ 5R13 + 393T13
~ Uss + 290Yi1s — T7/2X 11 + 48035 /2X10) /48

Ry = (2T13 — 2Rq3 — 2Vip — 18Y19 + X101 — 214
— 2157/4X 1) /4

Xg =5(Ry —Yy)/313

—Yig — 2X15 +2X17 — 6X15 + 11.X15 — 62774 — 3973

X6 — X7
—464Y7, — 391/2X1115131/2X10 + 109580 Ry
X6 — Xa7
15055231 /10X + 498

X6 — Xu7
TR 2X s 16X 17 + 83X + 84X — 4727y,

3X16 — 2X15
_496Rys + 181(Vig = Z13) 924035 — 326 X1

—937109/2X¢ + 739424 Ry — 20418507 /2 X

3X16 — 2X5

V4+ay+y=23+22+x
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N Functions Elliptic Curve
EysEgEis -
XH:Z 26126 L46 38+47
—* Er6Ligs Eos Lrro
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EoyEryEiEss By E
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m FEoo Frg Fizg Fige i1y Fiye Eisg g
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y = (Xig+ X1z + X2+ 2Y7; +89) /Xy, — 1
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Functions

Elliptic Curve
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Zip =
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Eos B9 By Era By

10

+41

+ 14

— 133

— 14
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Z E4OE46E38E74E26 E40E46E38E74E26

10 E70E30E16E22E96 E90E48E18E66E8
X, 24
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X =217 —Vir — X6 — 2X15 +4X14 — 5X13
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= Lh22Eros Bsa Evig By ligs By By Bog o
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Xog = Voy — Ty
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N Functions Elliptic Curve
L 3Xa5 — 3T + 3K 16Xy + 8y + I8X5 § 21X 7

3(Z20 — X18)
+6X16 + 27X 15 + 102X 14 — 5X13
3(Z20 — X18) 2 32
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Xis + Yoo — X0
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