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The Distance of Vogan Diagrams

Student: Chien-Yu Chen Advisor: Dr. Meng-Kiat Chuah

Department of Applied Mathematics

National Chiao Tung University

Abstract

A Vogan diagram is a Dynkin diagramwith'an involution, andthe vertices fixed by the
involution may be black. If a Vogandiagram.can be represented by another Vogan diagrams,
then they are equivalent. Any Vogan diagram with many black vertices is equivalent to a
diagram with only one black vertex. Our purpose is to find the steps from a Vogan diagram
with many black vertices to one black vertex.

This thesis is divided into two parts. In the first part, consisting of Sections 1-5, we
give a brief introduction of some fundamental concepts in Vogan diagram and the distance
of two Vogan diagrams in classical types with proof. In the last part, Sections 6-9, we

prove the distance of two Vogan diagrams in exceptional types.
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1 Introduction

A Dynkin diagram is a certain type of graph. It satisfies the property that two
vertices may be connected by 0, 1, 2 or 3 edges, and an orientation (arrow) is assigned
to each double or triple-edge. There are altogether seven classes of Dynkin diagrams,
labelled as types A, B,C, D, E, F, G (|2, Chapter 11]). A Dynkin diagram in each type
is specified by a subscript which indicates the number of vertices in that diagram,
for example Aj is the diagram of type A which has 5 vertices. Then all the Dynkin
diagrams are given by A,, B,,C,, D, for n > 1, as well as Eg, E7, Eg, Fy, G5. The
infinite lists of diagrams of types A, B, C, D are called classical, and the finite lists of
types E, F, G are called exceptional.

A Vogan diagram is a Dynkin diagram together with extra information. Namely,
there is a diagram involution €, such that the fixed points of 8 are colored white or
black [3]. Many Dynkin diagrams, for example B,, and C,,, have trivial symmetry. In
these cases the involution is thesidentity:

This thesis studies the follewing algorithm on the Vogan diagrams. Suppose that
v is a Vogan diagram, and p 15 a black“vertex of v. Let F}, be the algorithm which
reverses the colors of all the #-fiked vertices which are adjacent to p (but not p itself),
except when the vertex is joint to p with 'a double-edge with arrow pointing towards

p. In this way, F,(v) is another Vogan diagram. We give some examples as follows.

Example. The vertices are labelled 1,2, ... starting from the left.
vV=0—0—@——O

= [5(v) = e—e—0—0

= F3(v) = 0—O0—e—e@
u=0—0—0O—0—@

= Fy(u) = O—e—e—e—=0

= F5(u) = 0—e—0—e—e

We say that two Vogan diagrams v and w are equivalent if there is a sequence of

1



algorithms

V=109 — V] — ... = UV =W (1.1)

such that each step v; — v;41 is given by some F,,. If v and w are equivalent and £ in
(1.1) is as small as possible, we say that k = d(v, w) is the distance between v and w.
Clearly a diagram without black vertex is not equivalent to any other one. Therefore,
once and for all, we may consider only Vogan diagrams with black vertices, and denote
them by V(X), where X is a Dynkin diagram with trivial diagram involution. Let
V1(X) € V(X) denote the diagrams with exactly one black vertex. It is known that
every diagram in V(X)) is equivalent to a diagram in Vi(X) [1][3]. It allows us to
define the distance between v € V(X)) and V4 (X) by

d(v,V1(X)) = min d(v,w). (1.2)

weV(X)

For fixed X, we intend to seek an upper bound for {d(v, V;(X));v € V(X)}, namely

d(V (X)) = EERA NG V1 (X))- (1.3)

We present the main results of the thesis as follows. The classical Vogan diagrams
are denoted by V(4,), V(B,), VACy);V(D,),V (D, 0), where  denotes the nontrivial

involution. We need not consider ¥ (A, 0)-because it contains only one diagram.

Theorem 1

(a) d(A,) is bounded above by (n — 1)n?.
(b) d(B,) is bounded above by (n — 1)n?.
(c) d(C,) is bounded above by (n —1)(n — 1)2.
(d) d(D,) is bounded above by (n — 1)(n — 2)%.
(e) d(D,,0) is bounded above by (n —1)(n — 2)2.

2

)
)

For the proof of Theorem 1, we shall study type A in Section 2, type B in Section
3, type C' in Section 4, and type D in Section 5.
For the exceptional diagrams, only Fjy contains nontrivial involution §. We provide

their upper bounds in the following theorem.
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Theorem 2

(a) d(FEg) is bounded above by 130;
b) d(Eg,0) is bounded above by 1;
d(E7) is bounded above by 228;

(

(c

(d) d(FEg) is bounded above by 180;
(e) d(

(

)
)

e) d(Fy) is bounded above by 4;

f) d(Gs) is bounded above by 1.

For the proof of Theorem 2, we shall study FEg in Section 6, E7 in Section 7, Fg

in Section 8, and F}, G5 in Section 9.



2 Type A

Recall that a Dynkin diagram of type A, is given by

oO—0— ++ —O0—0
1 2 n—1 n

(2.1)

A Vogan diagram of A,, is labelled as (2.1) with at least one black vertex, denoted
by V(A,). According to the theorem by Borel and de Siebenthal[l, Theorem 6.96],
every Vogan diagram is equivalent to a Vogan diagram with 0 or 1 painted vertex. For
type A, all Vogan diagrams with some black vertices can be equivalent to a painted
one. Let Vi(A,) C V(A,) denote the Vogan diagram of A, with & black vertices.
From (1.2), it also extends to the distance between Vi (A,,) and Vi(A,,) by

d(Vi(A,), Vi(A,)) =min{d(v, w)iv € Vi(A4,),w € Vi1(4,)} (2.2)

or just write di(V1(4,)).

For convenience, we write (Zy, . ..y 05)-€ V(A ) to denote the diagram with vertices
i1,...,1 painted. For example {3,5) € V(Ag) means O—0O—@—0O—@—O

In this section, we will discuss the distance between Vi (A,,) and Vi(A,); in other
words, we provide an upper bound for it.

d(V(A,) = max d(v, Vi(A,)). (2.3)

veV (An)

Example. For V(A,), there are 7 cases to discuss.
(1,2) = (1)

(1,3) = (1,2,3) = (2)

(1,4) — (1,2,4) — (2,3,4) — (3)

(2,3) = (1,2) = (1)

(1,2,3) — (2)



(1,2,4) — (2,3,4) — (3)
(1,2,3,4) — (2,4) — (2,3,4) — (3)
By (2.3), d(V(A4)) = max{1,2,3,2,1,2,3} = 3.

Proposition 2.1 Let u = (i,5) € V(A,)
(a) If i—1<n—j, thend(u,v) <i(j—1i) wherev = (j —1i) € V(4,).
(b) If i—1 >n—j, thend(u,w) < (n—j+1)(j—i) where w = (n+i—j+1) € V(A,).

Proof: u has two black vertices in V(4,,), and it can be equivalent to a diagram in
Vi(A,); in other words, u ~ s € V1(A).

There are two ways to make u reduce to a Vogan diagram of A, with only one
painted vertex:

Case 1 Move i and j towards the left:

1 1 J 7 ). 1—1 7-—1 n
== O—  —@—  —@— +rnn- —0

1 1—2 7—2 n

~ e&—O0— - —e—0— - —O

1 jg—i+1 n

~ OoO— ——— - —0

1 Jj—1 n

u=(,5) — (t—1l4,i+1,j5) — (t—Li+1,i+2,j) — - — (i —1,j — 2,
j—1,7) — (i —1,j — 1) needs at most j — i steps.



Continuously,
(t—1,7—1) — (i — 2,7 — 2) needs at most j — ¢ steps.
(1 —2,7—2) — (i — 3,7 — 3) needs at most j — i steps.

(2,j—i+2) — (1,7 — i+ 1) needs at most j — i steps.

Finally,

(1,j—i+1) — (1,2, j—i+1) —> (2,3, j—i+1) —> -+ — (j—i—1, j—i, j—i+1) —>
(7 — i) needs at most j — ¢ steps.

Thus, d(u, (j—i)) < (j—i)[(i—1)+1] = i(j —4). Let v = (j —i) and d(u, v) = d;.

Case 2 Move ¢ and j towards the right:

O—< )77.77’74—0 ~ 077.74.7 ...... 70
1 1 J n 1 t+1  7+1 n
o~ O— - —Q— - - —@— - —O

1 1+2  j42 n

~ O—0—  —e0O— - —@

1 n+it—7j n

~Y Oi ...... 40_.7 . 70

1 n+t1—7+1 n

— (i+ 1,7 4+ 1) needs at most j — 7 steps.

Continuously,



(t+1,j+1) — -+ — (i + 2,7 + 2) needs at most j — i steps.
(1+2,j+2) — -+ — (i+ 3,7 + 3) needs at most j — 7 steps.

(n+i1—j—1,n—1) — (n+i—j,n) needs at most j — i steps.

Finally,

n+i—jn) — n+i—jn—-—1n) — n+i—jn—-2n—-1) — - —
(n+i—jn+i—j+1,n+i—j+2) — (n+i—j+1) needs at most j — i steps.

Thus,d(u,(n+i—j+1) < (j—in+i—j+i)+1=n—7+1)(j—1i). Let
w=(n+i—j+1)and d(u,w) = ds.

Comparison with Case 1 and Case 2, the proof can be completed as the following:
(@)i—-1<n—j=i<n—j+1=i(j—i) < (n—j+1)(j—1i) = dy <dy with
j—1i>0. By (1.2), it needs at most i(j —i) steps s.t. u — -+ — v = (j—i) € V1(4,).
b)i—1>n—j=i>n—j+1=yig—1) > n—7+1)(j—1i) = di < dy with
j—1>0. By (1.2), it needs atimost (n,— g4 +1)(j — i) steps such that v — --- —
v=(j—1i) € Vi(4y). O

Therefore, we can conclude that:
Proposition 2.2 Given u = (iy,1z, ..., 1) € Vi(A,), then dp(Vi(A,)) < (K — 1)n%

Proof : By Proposition 2.1, we have known that any two painted vertices which can
be reduced to be only one painted vertex in Vi (A,) needs at most d; or d steps.
Case 1 Ifi; — 1 <n — i, and just move the leftmost two black vertices (i, i3) in

the left direction:



1 11 ig ig 1 n
l

O— vvvv —— - —@—0O— - —0—0O0—0O— —0O

1 iz — il ig 1 n

Let Dm = (’Lm — -1+ o — ... £ il)(im+1 — m + -1 — t—a + ... F Zl) where
0 < m < k. By Proposition 2.1(a), u ~ (iy — i1, 3, ..., i) € Vx—1 needs at most D,
steps.

Continuing the same way;,

(19 — 41,13, ..., Ig) ~ (i3 — i3 + i1, 14, ..., ix) € Vk_o needs at most Dy steps.

(tg—1 — ig—2 + ... T i1, 0k) ~ (ix —dpeq + ... Fip). € V1 needs at most Djy_; steps.

Then D < iy-iy = 19> < 0y Dy <liztig =232 < n?, ..., Dy_y < ip-ij = i3> < n?,
and thus d(u,r) = Dy + Dy + ..o Dy < n” +n% + ... +n? = (k — 1)n?, where
r= (i —ig_1+ ... Fi1) € V5.

Case 2 Ifi; — 1 > n — i, and just move the rightmost two black vertices (ix_1, ix)

in the right direction:

1 11 ik_g ik—l (2> n
l

o— —O0—0O @ —0O@— —@— - —O0

1 il ik_g n+ik_1—ik+1 n

By Proposition 2.1(b), u ~ (i1, ...,ix_2,n + ix_1 — i + 1) € Vi_1 needs at most Ry
steps where Ry = (n — i + 1) (i — ix—1).



Continuously,
(il, ceey Z'k,Q, n -+ Z'kfl — Zk + 1) ~ (il, ey ?;kfg, Zk — ’l'kfl + Z'kfg) S Vk,Q needs at most RQ

steps where Ry = (ix — ix_1)(n +ip_1 — ip + 1 — ip_2).

(11,15 — tg—1 + lg—2 — ... T ig) ~ (n —ix + ip—1 — ... Fla + 11 + 1) € V] needs at most
Ry steps where Ry = (n — i +ix_1 — ... Fio+i1+ 1)(ig — ig_1 + g2 — ... £i1).
Hence Ry <n-n=n% Ry<n-n=n? .., Ry_1 <n-n=n?

Then d(u,t) = Ry + Ry + ... + Ry < n?+n?+ ... +n? = (k — 1)n? where t =

(n—ik—i-ik,l—...:FZ'g—i-ilﬁ-l)E‘/l. L]

Consequently, we can get the result of Theorem 1 (a) immediately.



3 Type B

A Dynkin diagram of type B,, is given by

o—0— -+ —0=0
1 2 n—1 n (3.1)
A Vogan diagram of B,, is labelled as (3.1) with at least one black vertex, denoted
by V(B,). Let Vi(B,) C V(B,) denote the Vogan diagram of B, with k black
vertices. From (1.2), it also extends to the distance between Vi (B,,) and V;(B,) by

d(Vi(B,), Vi(B,)) = min{d(v,w);v € Vi(By),w € Vi(B,)} (3.2)

or just write di(Vi(B,)). Note that if n is painted, then F,, cannot reverse the color
of n — 1, or we can write F,,(w) = w, here w € V(B,)
In this section, we discuss the distance between Vi (B,) and Vi(B,). We will

provide an upper bound for it.
Proposition 3.1 Let u = (i5i+ k) € V(B,,), then u ~ v needs at most ki steps
where v = (k).

Proof : Suppose that we want to obtain a Vogan diagram of B,, with one black vertex
from v immediately. Then we should move the painted vertices in the left direction,

or the vertex n will be painted and it does not make sense that we mentioned before.

1

) 1+ k n
| F;
i—1 1+1
1 ) 1+ k n
| Figa
1+ 2
1 1—1 714+1 1+ k n
1 Figa

10



1 7—1 1+ k n
| Fivk—

O—  —@—O—O—O— -+ - —O0—O0—8—0— -+ —O=0

1 7—1 1+ k—1 n

The graph says that u = (i,i+k) — (i—1,4,i+1,i+k) — (i—1,i+1,i+2,i+k) —
— (i—1,i+k—2i+k—1i+k) — (i —1,i+ k —1) and it needs at most

(i 4+k—1)—i] + 1=k steps.

Continuously, we also can get that

(t—1,i+k—1)~ (i —2,i+ k — 2) needs at most k steps.

(t—2,1+k—2)~ (i—3,i+k <3) needs at most k steps.

(2,2+ k) ~ (1,14 k) needs at most, k. steps.
Finally, (1,1+k) — (1,2, 1 + ks @30 k) - — (k— 1,k k+1) — (k)
and it needs at least k steps.

Thus, there are at most k + [(i — 1) — 1]k + k = ki steps to make (i,i + k) ~ (k);

in other words, d(u,v) < ki where v = (k). O

Therefore, we can conclude that:
Proposition 3.2 Given u = (i1, ig, ..., 1) € Vi(B,), then di(Vi(B,)) < (k — 1)n?.

Proof : By Proposition 3.1, there are at most i(j — i) steps to make (¢, j) reduced to
(J —1).
Let u = (i1, 12, ...,1x) € Vk. Similar to Case 1 of Proposition 2.2, we move vertices

11 and iy towards the left, so that eventually we get only one black vertex from 7,

11



and i5. Repeat this process of moving pairs of leftmost black vertices towards the
left. Finally, we prove that dy(V;(B,)) < (k — 1)n?. Throughout these steps, vertex

n remains unpainted. UJ

Consequently, we can get the result of Theorem 1 (b) immediately.

12



4 Type C

The Vogan diagram of C,, is similar to B,, except for the direction of arrow on the

double-edge, it is indicated by (4.1) and denoted by V(C,,).

o—0— - —0O=0
1 2 n—1 n (4.1)
By Borel-Siebenthal Theorem, every Vogan diagram is equivalent to one with a
black vertex. If a Vogan diagram belongs to V(C,,) and its vertex n is painted, then
this diagram is equivalent to (n). For example, (2,4) € V4(C,) and then (2,4) —
(2,3,4) — (3,4) — (4).
Before talking about the distance between Vi(C,) and V;(C,,), we consider the
distance between V5(C,,) and V;(C,,) first.

Proposition 4.1 Let u = (i, ) €,V(Ch,).
(a) Ifj #n (i.e. n is unpainted); then

(1) d(u,v) <i(j—i) if 4=1< (n=1) = j,mwhere v = (j —1).

(i) d(u,w) < (n—j)(j=4d) if e—t=(n=1) — j, where w = (n — j +1).
(b) Ifj=n (i.e. nis painted), then d(u, s)< ("_’)(QM where s = (n).

Proof :

(a) If n is unpainted and we cannot use any method to make it become painted,
then we can ignore the existence of n or just regard this Vogan diagram as V(A,,_1).
Recall the result of Proposition 2.1, then the proof of (i) and (ii) can be completed
right away.

(b) If j = n, then u = (i, n).
Since n is black, there are no ways to let it change color. Now, we want to move the
first black vertex closer to n(in other words, move it in the right direction), or they

are too far to get the major distance.

13
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7 n
L F,
n—1
O— ' —O—8—0—0— - —O0—0O—0<e
1 7 n
an,1
n—1
O—  —0O—8—0—0— - —O—0—0<®
1 7 n—2 n
anfQ
n—3
O— " —O0—0—0—0—  —0—0—00
1 7 n—2 n
an,3
| Fipo
1+ 1
oO— - - —O0—0—0—0— - 0000
1 ) 142 n
A

1

The graph says that v = (i,n) — (i,n—1,n) — (i,n —2,n —1,n) — (i,n — 3,
n—2,n) — -+ — (i,i+1,i+2,n) — (i+1,n) and it needs at most n— (i+1)+1
=n — 1 steps.

By the same way, we can get that

(14 1,n) ~ (i1 + 2,n) needs at most n — 7 — 1 steps.

(1 +2,n) ~ (i+3,n) needs at most n — i — 2 steps.

(n—2,n) ~ (n—1,n) needs at most 2 steps.
(n —1,n) — (n) needs 1 steps.

Let s = (n) and thus d(u,s) < (n—i)+(n—i—1)+n—i—2)+---+2+1

14



Therefore, we can conclude that:

Proposition 4.2 Given u = (iy, iz, ..., i) € Vi(Cy).
(@) If i #n, then di,(Vi(Ch)) < (k—1)(n —1)%
(b) If ix = n, then di(Vi(C,)) < E=m2

Proof :
(a) If iy, # n, then u € V(A,,—1). Now, there are two cases to discuss:
ih—1<(n—1)—i
ii—1> (n—1)—i

By Proposition 2.2, the result of (a) can be proved.

(b) First, we want to reduce, the number of painted vertices step by step. With
the same idea as Proposition 4.1(2),-we move:the first £ — 1 black vertices closer to

n. Therefore, we just move i,=1 rightwards and make i;_; and n reduce to one black

vertex.

Let S, = 3(n — ix—p)(n — ix—p + 1) where 0 < p < k. By Proposition 4.1(b),

w=(i1,09, -, ig_1,n) ~ (i1,12, k2, -+, n) € Vk_1(C,,) needs at most Sy steps.
Continuously,

(11,89, ,ig_o,n) ~ (i1,42,9k_3, -, n) € Vik_o(C,) needs at most Sy steps.
(11,49, ig—g,n) ~ (i1,12, k4, -, n) € Vk_2(C}) needs at most Sz steps.

15



(11,n) ~ (n) € V1(C,) needs at most Si_; steps.
2 2

Then S; < %n no= T, Sy < &, S < "72, v 5 Sk < "72 and thus dp(V1(C),)) =
51+S2+"'+Sk—1§n72(k_1)- O

IN

Consequently, we can get the result of Theorem 1 (¢) immediately.

16



5 Type D

A Vogan diagram of D,, is a Dynkin diagram of D,, with a diagram involution 6,
denote it by V (D, 0)(see (5.1)). Besides, 6 can be trivial and we also call it a Vogan
diagram of D, denote it by V(D,,) (see (5.2)). However the vertices n — 1 and n
fixed by 6 can be painted.

n—1
oO—O0O— 1o
1 2 n—2
on (5.1)
n—1
o—0O—
1 2 n—2
n
(5.2)

About (5.1) and (5.2), wesgive two examples to compare the difference between
V(D,,0) and V(D,,) if we use the samie process.

Example :

(1)

(i.e. (3,5) € V(D7,0) and (3,5) ~ (4) needs 2 steps. )

2)
s ) s

\O \. \.
Bfooee B /

S
5



(ie. (3,5) € V(D7) and (3,5) ~ (5) needs 4 steps. )

Recall that Vi (D,,) means there are k black vertices in Vi (D,,). From (1.2), it also
extends to the distance between Vi(D,,) and Vi(D,,) by

d(Vi(D,,), Vi(Dy)) = min{d(v,w);v € Vi(D,),w € Vi(D,)} (5.3)

or just write di(V1(D,,)). In this section, we provide an upper bound for the distance

between V(D)) and Vi(D,,). Now, we discuss V(D,, 6) as follows.

Proposition 5.1 Let u = (i,5) € V(D,,0).
() Ifi—1<(n—2)—7, then d(u,v) < i(j —1i) where v= (5 —1).
(b) Ifi—1>(n—2)—yj, thend(u,w) < (n—j5—1)(j —1i) wherew = (n—j+i—1).

Proof : Obviously, we can regard V(D,,0) as V(A,_3) since n — 1 and n have no
colors. Then u = (i,j) € V(A,_2) and by Proposition 2.1, the results of (a) and (b)

here will be proved. O

Therefore, we can conclude that:

Proposition 5.2 Given u = (fy,4g, ., 1) € Vi(D,,, 0), then di,(Vi(D,,0)) < (k—1)-
(n —2)2

Proof : Similarly, V(D,, 0) is equivalent to V(A,,_s). Extending the result of Propo-
sition 2.2, we obtain that dy(Vi(D,,0)) < (k —1)(n — 2)? right away. O

Consequently, we can get the result of Theorem 1 (e) right away. Continuously,

we try to find the upper bound for d(Vy(D,,), Vi(D,)) and then discuss di(V1(D,,)).

Proposition 5.3 Let u = (i,j) € V(D,).
(a) Ifj7¢{n—1,n}, then d(u,v) <i(j — i) where v = (j —1).
(b) Ifi ¢ {n—1,n} andj € {n—1,n}, then d(u,w) < ("_Z)(Qﬂ where w = (n—1)

or (n).

(¢) Ifu=(n—1,n) then d(u,p) <n —1 where p = (1).
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Proof :

(a) Suppose that j ¢ {n — 1,n}. Then i,j € {1,2,...,n — 2}. Now, we want to
reduce u to be a Vogan diagram with one painted vertex. If we move these two black
vertices toward right, then vertices n — 1 and n will become painted and the path to
a Vogan diagram of V;(D,,) must be more complicated. Hence we move black vertices

toward left.

O

/

) ...—O

1 J \O
L

1—1 141 /

1 J \O
L Fiqa
FFj o

S é\o s g\o

It means that u = (i,j) ~ (i — 1,7 — 1) needs at most (j — i) steps.
Continuously;,

(1—1,7—1) ~ (i —2,j —2) needs at most (j — i) steps.
(i—2,7—2)~ (i —3,j —3) needs at most (j — i) steps.

(1,j—i+1) ~ (j —1i) needs at most (j — i) steps.
So, there are at most i(j — i) steps to make (i,7) ~ (j — ¢); in other words,

d(u,v) < i(j —1i) where v = (j —1).
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(b) Suppose that i ¢ {n—1,n}and j ¢ {n—1,n}. Thenu = (i,n—1) or u = (i,n),
0 < i < n—1. We only talk about u = (i,n—1) because (i, n) is equivalent to (i,n—1),
and the conclusions are the same.

Now, we want to move these two black vertices closer and u will be reduced to a

Vogan diagram of V;(D,,) as soon as possible.

oj=n—1

|
|
i

5

an—Q
/O
o—0— - —e—0O0—O— -  —O—e—e
i n =3 \
on
an—3

N
|
¢ o

n
\LFn—4
| Fito
it1 s
o—0— - —0—0—(
) 142 AN
o N
| Fipq

We get (i,n — 1) ~ (i + 1,n) needs at most (n —1) — (i — 1) + 1 =n — i — 1 steps.

By the same way, we also get
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(t+1,n) ~ (i+2,n—1) needs at most n —i — 2 steps.
(t+2,n—1) ~ (i+3,n) needs at most n — i — 3 steps.

(n—2,n—1)~ (n)or (n—2,n)~ (n—1) needs at most 1 steps.

Thus, d(u,w)§1+2+---+(n—i—1):%Wherew:(n) or (n—1).

(¢) We have known that vertices n — 1 and n are painted. The only way to let u

be a diagram with one painted vertex is moving them in the left direction.

on — 1

N
an or Fn,1

on — 1

/

n—2\.n
an—Q
/Qn—l
an—?)
LB

1 2 o

LFy

/O

e—0O0— - —O—"0O— - —0O0—0

! o

From the above graph, it tells us that (n — 1,n) ~ (1) needs at most (n —1) — 1+ 1

steps, i.e. d(u,p) <n —1 where p = (1). O
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Therefore, we can conclude that:

Proposition 5.4 Given u = (i1, g, ..., i) € Vi(Dy).
(@) If n—1,n¢u, then dp(Vi(D,)) < (k—1)(n —2)%
(b) If n—1€w orn€u, then dp(Vi(D,,)) < W

(¢) If n—1,n€u, then di,(Vi(D,)) < (k—3)(n —2)*+ (n — 2).

Proof :

(a) Suppose that 1 < iy,i9,--,1 < n—2 (i.e. vertices n—1 and n are unpainted).
Looking back the method of Proposition 5.3(a), we just try to move the leftmost two
black vertices toward left and then become one black vertex. Step by step, we can

finally get only one black vertex in this Vogan diagram.

1511 13 -1 Uk \O

Let Rm = (lm — im—l + im_g — ... =x il)(im—&—l — Zm + im—l — im_Q +...F ’Ll) where
0 < m < k. By Proposition 5.3(a), u ~ (iy — 41,143, ...,1) € Vk_1(D,,) needs at most
Ry steps. Continuing the same way,

(19 — 11,13, ..., i) ~ (i3 — ig + 11,44, ..., ix) € Vk_o(D,) needs at most Ry steps.

(tg—1 — ig—2 + ... £ i1, ig) ~ (i — ig—1 + ... Fi1) € Vi(D,) needs at most Rj_; steps.
Then Ry <y ig =092 < (n—2)2, Ry <ig-iz = i3> < (n—2)% -+, Ry < ip-ip =
i? < (n—2)2
Thus d(u,r) = Ri+Ro+...+Rp_1 < (n—2)*+(n—2)*+...4+(n—2)* = (k—1)(n—2)?,
where r = (ix —ig—1 + ... Fi1) € Vi(Dy).
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(b) If n—1 € worn € u, then one of vertices n — 1 and n — 1 is painted (i.e.
ix=n—1orig=n,but iz #n—1).

Similar to the process of Proposition 5.3(b), we try to move the black vertex ix_;
towards the right. Finally, these two vertex will be reduced to a black vertex.

Here we just talk about i, = n — 1 because its result is the same as 1, = n.

.ik:n—l

AN

31 12 13 -2 Tp—1

S

n—1

\.

(31 2 3 Tg—2 \O

Note that the rightmost black vertex could be n — 1 or n, but it does not affect
the result. Let

1
szi(n—ik_p)(n—ik_p—l), 1§p§k—1

. By Proposition 5.3(b),
w ~ (i1,12, ..., ig_9,n — 1) needs“atumost Sy steps. With the same method,
(11,49, <oy if—2,m — 1) ~ (i1,%9, ..., i)_3, 1 = 1) needs at most Sy steps.

(11,99, ooy if—3,m — 1) ~ (i1,19, ..., 7x—4,m — 1) needs at most S; steps.

(i1,m — 1) ~ (n — 1) needs at most Sk_; steps.

We find that S} < 1(n—2)(n—1), S < 1(n—2)(n—1), -+, Sp—1 < 3(n—2)(n—1).
Thus d(u,w) = Sy + So+ -+ Sp—1 < 3(k—1)(n — 2)(n — 1), where w = (n — 1) or
(n) and this proof is completed.

(c) Let iy =n—1 and iy = n, i.e. u = (i1,42,...,75_9,n — 1,n). Regardless of
vertices n — 1 and n, we hope to reduce the k — 2 black vertices in 1,---,n —1 to one
black vertex. Then adding in vertices n — 1 and n, we finally make these three black

vertices become only one black vertex.
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Referring to the method of (a), we move the leftmost two painted vertices towards

the left.
.n—l
21 12 i3 tk—2 \on
l
/on—l
19 — 17 13 1p—2 \.TL
l
l
oen—1
Ne 7
Let Mg = (is — i5—q1 + -+ - 2201 ) (51— s + 152y — -+ F i) where 1 < s < k— 3.
By Proposition 5.3(a), u ~ (ig='9,43,...s =1, n)needs at most M; steps. Keep on

the same way:

(19 — 11,13,...,n — 1,n) ~ (i3 — lo 441, la, .cn @ — 1, n) needs at most M, steps.
(i3 —ig + 41,04, ...,m — 1,n) ~ (ig — i3 + 19 — i1,15,...,n — 1,n) needs at most M;
steps.

(tg—3 — lg—a+ ... Ti1,0p_o,mn —1,n) ~ (ig_g — ixg_3 + ... Fi1,n — 1,n) needs at most
M;,_3 steps.
Let a = 1o — %1_3 + ... F i1 and the final step is to find vertex ¢ such that
(a,m—1,n) ~ (3):
(a,m —1,n) — (a,n —2,n—1,n) — (a,n —3,n—2) — (a,n —4,n —3) —
- — (a,a+1,a+2) — (a+ 1) needs at most (n —a — 1) steps and i = a + 1.
We have known that 1 <a<n—2,thenl <n—a—1<n-2.
de(Vi(Dy)) < My + Mo+ -+ My_s+(n—a—1)
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Sil'i2+i2-i3+"'+ik_3'ik_2+(n—a—1)
<m-22%+n—-272%+-+(n-—2)
= (k—3)(n—2)2%+ (n—2).

Consequently, we can get the result of Theorem 1 (d) immediately.
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6 Type Eg

After observing A,,, B,,, C, and D,,, we talk about other different type: Eg, Fr, Fyg, F}
and Gs.

Es

(6.1)

This section will deal with the upper bound for the distance between Vj(Es) and
Vi(Eg). Others are discussed later. Besides (6.1), there is another type of Fg, unfixed
by 6, denoted by V (Eg, 6).

N

1
0

We label the vertices in V(Eg) and V(Eg, 0) as follows.

26



1 23 45 12345
1
0

We give an example about V(FEs) and V(Es,60) on how to reduce some black

vertices to only one black vertex.

Example :
VE) eoboe P eeveeloelesh
! n T

ie. (1,3,5)—(0,1,2,3,4,5)—(0,2,4,5)—(0,2,3,4) —(3)

V(Eg, 0): WT > 48 O—O—g—o—o

¥ EEA W
0 0

i.e. (0,3)—(0)
Indeed, there are two vertices in V (FEg, #) can be drawn color, vertex 0 and vertex

3, just like the vertices n and n — 1 in V(D,,, 9).
Recall that

dpr(V1(Eg)) = d(Vi(Es),d1(Eg)) = min{d(u,v);u € Vi(Es),v € V1(Es)}

Proposition 6.1 di(Vi(Es)) < 5(5k —4) where 1 < k <6.

Proof : Separate Eg into A5 and a vertex 0. Regardless of vertex 0, we reduce other
black vertices to be one black vertex in V' (As). There are 4 cases to discuss.
Case 1 Consider vertex 0 is white and all black vertices are in vertex 1 to 3

or vertex 3 to 5. Then vertex 0 will not become painted. By Proposition 2.2, we
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can get the distance between Vi (FEg) to Vi(Eg) directly. di(Vi(Fg)) = dip(Vi(A5)) <
52(k — 1) = 25(k — 1).

Case 2 Consider vertex 0 is black and all black vertices are in vertex 1 to 3
or vertex 3 to 5. Then vertex 0 will not become unpainted. We arrange the black
vertices in V' (As) to be singly white and finally deal with vertex 0. We have to discuss
the following cases.

(i) w~ (0,1) and (0,1) — (0,1,2) — (0,2,3) — (3,4) — (4,5) — (5). By
Proposition 2.2, we have known that dj(V1(4s)) < 5*(k — 1) = 25(k — 1). Then
d(u,(5)) < 25(k —1) 4+ 5 = 25k — 20.

(i) w~(0,2) and (0,2) — (0,2,3) — (3,4) — (4,5) — (5).

Then d(u, (5)) < 25(k — 1) + 4 = 25k — 21.

(ili) w ~ (0,3) and (0,3) — (0). Then d(u, (5)) < 25(k — 1) + 1 = 25k — 24.

We don’t handle with (0,4) and (0,5) because they are equivalent to (0,2) and
(0,1). Thus, dp(Vi(Es)) < max{26k — 20,25k — 21,25k — 24} = 25k — 20 where
1 <Ek<6.

Case 3 Consider vertex <0 is white." Some black vertices are in vertex 1 to 3
and others are in vertex 3 to+5. Then the process of becoming singly painted will
affect the color of vertex 0. We let wertex-0 be black and use the same method as
Case 2. Similarly, there are 3 cases to discuss and thus di(Vi(Es)) < 25k — 20 where
1<k <5,

Case 4 Consider vertex 0 is black. Some black vertices are in vertex 1 to 3 and
others are in vertex 3 to 5. The color of vertex 0 will be reversed in the process of
reducing to singly painted vertex. We let vertex 0 be white and regard V' (E7) as
V(Ag). Thus, dp(V1(Eg)) = di(Vi(As)) < 25(k — 1) = 25k — 25 where 1 < k < 6.

Arrange above 4 cases, we get that di(Vi(Eg)) < 25k — 20 = 5(bk — 4) where
1 <k < 6. We complete the proof of Theorem 2(a). O
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Proposition 6.2 d(Vi(Fs,0)) <1 where k = 2.

Proof : Since vertices 1, 2, 4 and 5 are unfixed by 6, we do not have to paint any
color on them. In other words, only vertices 0 and 3 can have color. Hence, the only
one case is like the above example, (0,3)—(0), needs only one step. Therefore, we

get the proof of Theorem 2(b) immediately. O
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7 Type Ef

By (6.1), we also label 0,1,...,7 to the Vogan diagram of E7.

1 2 3 45 6

The process of making some black vertices to be singly painted is similar to V (Eg).

Now, we discuss how many steps that Vi (E7) goes to Vi (F7) at most.

Proposition 7.1 Given u = (i1, 9, ..., 1) € Vi(E7), di(Vi(E7)) < 12(3k — 2) where
1<k<T.

Proof : Separate E7 into Ag and a vertex 0. We try to discuss the distance between
k painted vertices and only one painted vertex. by the color of vertex 0.

Case 1 Suppose that vertex 0 is whife and all black parts are in vertices 1 to 3
or vertices 3 to 6. Then the process of reducing to enly one black vertex cannot affect
the color of vertex 0. Thus we_just régard V( E7) as V(Ag) and by Proposition 2.2,
dp(V1(E7)) = dp(Vi(Ag)) < 6%(k —1)= 36k~ 30.

Case 2 Suppose that vertex 0 is black and other black parts are in vertices 1 to
3 or vertices 3 to 6. Then the process of reducing to only one black vertex cannot
affect the color of vertex 0. We make these painted vertices in V' (Ag) become one
painted and then act on vertex 0. There are 6 cases to be discussed.

(i) u ~ (0,1) and (0,1) — (0,1,2) — (0,2,3) — (3,4) — (4,5) — (5,6) — (6).
By Proposition 2.2, we have known that d(V;(Ag)) < 6%(k — 1) = 36(k — 1).
Then d(u, (6)) < 36(k — 1) + 6 = 36k — 30.

(i) u ~ (0,2) and (0,2) — (0,2,3) — (3,4) — (4,5) — (5,6) — (6).

Then d(u, (6)) < 36(k — 1) + 5 = 36k — 31.

(iii) w ~ (0,3) and (0,3) — (0).

Then d(u, (0)) < 36(k — 1) + 1 = 36k — 35.
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(iv) u ~ (0,4) and (0,4) — (0,3,4) — (2,3) — (1,2) — (1).

Then d(u, (1)) < 36(k — 1) + 4 = 36k — 32.

(v) u ~ (0,5) and (0,5) — (0,3,5) — (2,3,4,5) — (2,4) — (1,2,3,4) — (0,1,3) —

(0,1) — (0,1,2) — (0,2,3) — (3,4) — (4,5) — (5,6) — (6).

Then d(u, (6)) < 36(k — 1) + 12 = 36k — 24.

(vi) u ~ (0,6) and (0,6) — (0,5,6) — (0,4,5) — (0,3,4) — (2,3) — (1,2) — (1).

Then d(u, (1)) < 36(k — 1) + 6 = 36k — 30.

Thus, di(V1(E7)) < max{36k—30,36k—31, 36k—35, 36k—32, 36k—24, 36k—30} =
36k — 24 where 1 < k < 7.

Case 3 Suppose that vertex 0 is white and some black vertices are in vertex 1
to 3 and the other black in vertex 3 to 6. The color of vertex 0 will be reversed
in the process of reducing to singly painted vertex. We let vertex 0 be black and
use the same method as Case 2. Similarly, there are 6 cases to discuss and thus
dr(Vi(E7)) < 36k — 24 where 1 <4 <6.

Case 4 Suppose that vertex 0lis black and some black vertices are in vertex 1 to
3 and others are in vertex 3 to-6. The color of vertex 0 will be reversed in the process
of reducing to singly painted wertex.TWe let vertex 0 be white and look V(FE;) as
V(Ag). Thus, di(Vi(E7)) = di(Vi(Ag)).<36(k— 1).

Combining with Case 1 to Case 4, we can get that dp(Vi(E7)) < 36k — 24 =
12(3k — 2) where 1 < k£ < 7. And we also finish the proof of Theorem 2(c). O
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8 Type Eg

From the diagram of (6.1), we have known that what the Vogan diagram of Eg

looks like. Similarly, we give 8 numbers on Eg.

0

|

O—O0—0O0—0—0—00
1 23 45 6 7

This section also talk about what is the maximal distance between Vj(Eg) and

Vi(Es).

Proposition 8.1 Given u = (iy,is,...,ix) € Vi(Es), then dp(Vi(Es)) < 5(bk — 4)

where 1 < k < 8.

Proof : Use the same way as Proposition 6.1r.and Proposition 7.1, we also have to
talk about 4 cases. As above, we just calculate Case 2 and Case 3 since they need
more steps.

I. Suppose that vertex 0 is black and other black parts are in vertices 1 to 3 or
vertices 3 to 7. Then the process‘of reducing.to only one black vertex cannot affect
the color of vertex 0. We make these painted vertices in V(A7) become one painted
and then act on vertex 0. There are 7 cases to be discussed.

(i) u~ (0,1) and (0,1) — (0,1,2) — (0,2,3) — (3,4) — (4,5) — (5,6) — (6,7) —

(7).

By Proposition 2.2, we have known that dy(Vy(A7)) < 7%(k — 1) = 49(k — 1).

Then d(u, (7)) < 49(k — 1) + 7 =49k — 42.

(i) u ~ (0,2) and (0,2) = (0,2,3) — (3,4) — (4,5) — (5,6) — (6,7) — (7).

Then d(u, (7)) < 49(k — 1) + 6 = 49k — 43.

(iii) u ~ (0,3) and (0,3) — (0).
Then d(u, (0)) <49(k — 1) + 1 = 49k — 48.
(iv) u ~ (0,4) and (0,4) — (0,3,4) — (2,3) — (1,2) — (1).
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Then d(u, (1)) <49(k — 1) + 4 = 49k — 45.

(v) u ~ (0,5) and (0,5) — (0,3,5) — (2,3,4,5) — (2,4) — (1,2,3,4) — (0,1,3) —
(0,1) — (0,1,2) — (0,2,3) — (3,4) — (4,5) — (5,6) — (6,7) — (7).
Then d(u, (7)) < 49(k — 1) + 13 = 49k — 36.

(vi) u ~ (0,6) and (0,6) — (0,3,6) — (2,3,4,6) — (2,4,5,6) — (2,5) — (1,2,3,5)
—(0,1,3,4,5) — (0,1,4) — (0,1,3,4) — (1,2,3) — (2).
Then d(u, (1)) < 49(k — 1) + 10 = 49k — 39.

(vii) u ~ (0,7) and (0,7) — (0,6,7) — (0,5,6) — (0,4,5) — (0,3,4) — (2,3) —
(1,2) — (1),
Then d(u, (1)) < 49(k — 1) + 7 = 49k — 42.

Thus, di(Vi(Es)) < max{49k — 42,49k — 43,49k — 48,49k — 45,49k — 36,49k —

39,49k — 42} = 49k — 36 where 1 < k < 8.

I1. Suppose that vertex 0 is white and some black vertices are in vertex 1 to 3 and
the other black in vertex 3 to 7. Thé eolor of vertex 0 will be reversed in the process of
reducing to singly painted vertex. Wellet vertex 0-be black and use the same method

as I. Similarly, there are 7 cases to diseuss and thus d(V1(Es)) < 49k — 36 where

1<kE<LZT.
Combining with I and IT, we can get that d; (V1 (Es)) < 49k —36 where 1 < k£ < 8.
And we also finish the proof of Theorem 2(d). O
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9 Type F; and G

Finally, we look the remaining Vogan diagram, F; and G, and observe that the

upper bound for d(Vi(Fy), Vi(Fy)) (k = 2,3,4) and d(Vi(G2, Vi(G2)).
Proposition 9.1 di(Vi(Fy)) < 4 where k = 2,3,4.

Proof : Since there are only 4 vertices in V(Fy), we just use diagram to find the

distance between Vi (Fy) and Vi (Fy), k = 2,3, 4.

*—0—O0— 0O — &—C0—0—-70

From the above process, we can find that it needs at most 4 steps to make a Vogan
diagram with some black vertices reduce to only one black vertex. ]

Thus, Theorem 2(e) can be completed right away.
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Proposition 9.2 di(Vi(G2)) < 1 where k = 2.

Proof : V(G9) is graphed as 0==0 and there are at most 2 vertices to be painted.
So, we just talk about the only one case, (1,2).

—e — 0—0
Therefore, dy(V1(G2)) < 1 and Theorem 2(f) is done. O
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