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ABSTRACT

In this paper, the primitivity of n-th order transition matrices A defined on

Z, . are studied, this topics related to the mixing property of 2- dimensional
shift of finite type.

Our purpose is to give some necessary conditions for A, to guarantee the
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primitivity of A .
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The primitive property of subshift of finite
type in 2-dimensional lattice

Hui Ping Chen
Department of Applied Mathematics
National Chiao Tung University
Hsinchu 300, Taiwan

Abstract

In this paper, the primitivity of n-th order transition matrices A,
defined on Zgyx, are studied,thisitopics related to the mixing property
of 2-dimensional shift of finite type.

Our purpose is to give Some necessary: conditions for Ay to guar-
antee the primitivity of A=

1 Introduction

Many systems have been studied as models for spatial pattern forma-
tion in biology, chemistry, engineering and physics. Lattices play important
roles in modeling underlying spatial structures. We mention some works
arising in biology ([8],[9],[22],[23],[24],[28],[29],[30]), chemical reaction and
phase transitions ([7],[13],[14],[15],[16],]25],[34]), image processing and pat-
tern recognition ([12],[13],[14],[17],[18],[19],[20],[26],[33]), as well as materials
science ([11],[21],]27]). In Lattice Dynamical Systems (LDS), especially Cel-
lular Neural Networks(CNN), the complexity of the set of all global patterns
has received considerable attention in recent years ([1],[2],[5],[10]). One of
the interesting problem comes from the statistic mechanism is d-demensional
shift of finite type, state as follows, given a list of patterns with shape F € Z¢,
consider the set

X = X; = {z € AZfor all n € Z% and o"(2)|F € L}, (1.1)



where A is a finite set, we call it symbol, and without loss of generality,
F is d-dimensional cube, i.e., F' = {(ny,.....,nq)|l < ni < k,Vk = 1,...,d},
many invariants related to the shift of finite will discussed likewise in [32],
e.g., the topological entropy, measure-theoretical entropy, variational princi-
ple, mixing property, and extension problem. Unfortunately, unlike the the
one dimensional case, it is extremely difficulty to compute and check those
invariants, for example, only a very few example of entropy of 2-dimensional
shift of finite type can be computed explicitly,also for mixing property. In
this paper we start to study the mixing property of d-dimension shift of finite
type, and we focus on d=2. In [3], the authors construct a finite approxima-
tion scheme of higher dimensional shift of finite type, and call it the series of
transition matrices in multi-dimensional lattice model in Z?2, we are going to
use the structure of such transition matrices to study the mixing property of
higher dimensional shift of finite type.

We first recall some results in [3], which are crucial in this study. For
simplicity, we only consider two symbols which are given on 2 x 2 lattice
Zoyo. We begin with a consideration of given horizontal transition matrix

hiws iy hys. Bis
hsi haa hos “hay
H, = 1.2
2 hsi hsa hsgs hga |’ (1.2)

hgy  hay haz has
which is related to a set of admissible local patterns on Zsyo, and
hij € {0,1} for ' i< 4. (1.3)
The associated vertical transition matrix Vy is defined by

V11 V12 V13 V14
V21 V22 V23 V24
Vy = . (1.4)
V31 V32 U3z Us4
V41 V42 V43 Vaq

In 2-dimensional shift of finite type, one can immediate construct the Hy
according to the list of pattern with shape F' = {(ny,n2)|1 < n; < 2,Vi =
1,2}. In [3], Hy and V3 possess the following property to each other

V11 Vi2 Vi3 V14
H, — Vg1 V22 V23 U2g - H2;1 H2;2
2 — - H H )
2;3 2;4

V31 V32 V33 Usg
Vg1 Vg2 V43 Vgq

(1.5)
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and

hii hia his hig
v, — hor haa hog haa | _ | Vaa Vap
2 hsi hsa hgs haa Va3 Vou |-

h41 h42 h43 h44

(1.6)

The recursive formula for n-th order horizontal transition matrices H,, defined
on Zsy, has been obtained [3] by the following procedure:

UllHk;l UIQHk;2 U21Hk;1 U22Hk;;2
7113H1<;;3 U14sz;4 U23Hk;3 U24Hk;4

H = , 1.7
o USlHk;l U32Hk;2 U41Hk;1 U42Hk;2 ( )
U33Hk;3 U34Hk;4 U43Hk;3 U44Hk;4
whenever
Hyp: Hgpo
H, = ’ ’ 1.8
b [ Hpz'  Hpua } (18)

for £ > 2. The number of all adimissible patterns defined on 7Z,,,, which can
be generated from Hj is now defined by

[H

= the summationof ‘all entries in H”" ',

men(H2)

The quantitative properties of H,, for n > 2 are interesting problem in
matrix theory and combinatorial dynamics, the most important one is the
primitive property, in matrix analysis, the primitivity of a nonnegative matrix
will guarantee the positivity of the maximal eigenvalue of a given matrix,
and according to the discussion above, if some H, is induced from some of
2-dimensional shift of finite type, then primitivity of Hy demonstrate the
shift is mixing. And some interesting dynamics will appear therein, for
example, the periodic orbits is dense, and there exists a unique measure
of maximal entropy. Thus, it give rise to the study the primitivity of H,,
Vn > 2.

The difficulties of this study is that the size of H,, grows exponentially,
i.e., H,, € Maonyon, then it is of nature and interesting to ask that which kind
of sufficient conditions will guarantee the primitivity for H,,. [4] and [31] have
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given some results. To overcome this problem, the powerful tool X2, ', T", IV will
be introduced, thus we obtain some checkable conditions of H, to guarantee
the primitivity for H,,, Vn > 2.

The paper is organized as follows, Section 2 introduce some definitions,
the main results and proof will presented in section 3. Furthermore, the
results in section 3 can be generalized to p-symbols and it will be introduced
in section 4.

2 Preliminaries

As mentioned in the introduction, horizontal transition matrix Hy and ver-
tical transition matrix V, are related to each other. However, in applica-
tion, usually it is better working on one matrix then the other. There-
fore, we use A, and B, to replace Hy and V5 throughout this paper, i.e., if
Ay, = Hy then By=V, and if Ay=V, then By, = Hy. Therefore, for simplic-
ity, only A, is stated herein.

Definition 2.1. A matrix A € . M,,«,(Z) is called non-compressible if no
columns and rows of A are all zero.

Definition 2.2. A matrix A€ M, x,(Z) has property C, if no columns
of A are all zero; and has property £,-if no rows of A are all zero.

Next, R(a), R(a), C(a), C(a), E, X', T', I'.are introduced, these concepts
are defined in, and is crucial for our study.TWe follow the notation from [3] to
denote the recursive formulae for n-th order transition matrices A,, defined
on Zown 01 Linxa, by

An = (An_l)Qn—l x9on—1 O E2n72 xon—2 ® A2;1 A2;2 s (21)
A2;3 A2;4 on—1y9on—1

for n > 2, where

(2.2)

and Ag;a c MQXQ(Z>, Vace {1,2,3,4}
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Definition 2.3. From (2.2), we define

Cla) ={Cy; |5 € U}, where Cp; = min{flbas =1, f=7+2-(k—1
R(a) = {Rn;lj € U}, where R,j = min{f|bys =1, f=k+2-(j—1
Cla) = {5%-]]' € U}, where 5a;j =max{flbys =1, f=7+2-(k—1
R(a) = {ﬁa;jb‘ € U}, where éa;j =max{flbog =1, B=k+2-(j—1

where where k € U, and U = {1, 2}.

Definition 2.4. A sequence {ay}7*, is called an eventually periodic sequence
if there exists 1 <n < m such that a,, = a,, and a, # a,,ifl <p #qg<m.

Example 2.5. Let sequence {ax}i_, = {a1, ag, a3, a4} = {2,3,1,3}. Since
there exists 2 such that a4 = a9, and «, # oy, ifl < p # ¢ < 4 then we
call {a;}1_, is an eventually periodic sequence.

Definition 2.6. From definition 2.3, we define

(1) ¥ = 3. U Xy, where ¥.=the set of all eventually periodic sequences
{ay}7, which satisfy ag = 1, oy & C(e—1)e,50 =the set of all sequences
{ap}7 | which satisfy ap =1, ax € Clagep)p 1 Sk <m—1, C(an) = 0.
(2) ¥ = XL U3, where X! =the set of-all eéventually periodic sequences
{ay} 7, which satisfy ap = 1= € R(agzi). Lo =the set of all sequences
{ap }7, which satisfy ag = 1, @4 €.R(@g1),-1 <k <m—1, R(ay,) = 0.
(3) ' = I'.UTl'y, where I', =the set of all eventually periodic sequences {oy } 7%,
which satisfy ag = 1, o € C(apoq)e Lo =the Set of all sequences {oy}™,
which satisfy ag = 1, ay, € 5(0%_1), 1<E<m-—1, 6(am) = 0.

(4) I = I', U Ty, where I, =the set of all eventually periodic sequences
{ax}m | which satisfy ap = 1, o € R(ag_y). Iy =the set of all sequences
{ag}i, which satisfy ap =1, oy € fi(ak_l), 1<k<m-1, Rlay,) =0.

biin bz bar by 1110
| bz by baz by | |1 0 0 1
Example 2.7. Let Ay = ba s bu bo | |1 0 0 0
bss b3y sz buy 1 000
From Definition 2.3, we have C(1) = {C4.1, Ch2} = {1,2}, ,R(1) = {Ry.1, R12} =

{1,3}, and by Definition 2.4, 2.6, we have
5= R0 = ({11}, {12 1JUHL 2,4 ={{L 1}, {121}, {1.2.4}} and
S =¥ = {{1,1},{1,3,1},{1,3,3}}.



bii bz bar by 0110

| bz big by by | [0 1 0 1

Example 2.8. Let Ay = bay bs bu b | |0 0 0 1
bsz b3s bz bus 1 1 11

From Definition 2.3, we have C(3) = {Cs.1, Cs0} = {3,4}, R(1) = {Ry.1, R1.n} =
{2,4}, and by Definition 2.4, 2.6, we have I' = I',U T = I, = {{4,4}, {4,3,3}, {4,3,4}}
and I =T’ = {{4,4},{4,2,4},{4,2,1,2},{4,2,1,4}}.

3 Main Theorem (2-Symbols)

Definition 3.1. Let A € M,,»,,(Z) is called primitive if there exists an integer
k > 1 such that A* > E,,, (full matrix), and let 7(A) be the minimum
number of such &, i.e.,

7(A) = min{k : A¥ > E,..,.}.

In this paper we follow the notationfrom,[6]to denote the multiplication
m-times of A, i.e., A" | by

m o __ Am,n;l Am,n;2
An N [ Am,n;3 Am,n;4 :! ’ (31)

and by matrix multiplication we have

2m—1
Am,n;a = Z Agi,)n;oc where A7(7]i,)n;a = An;j1~j2 . An;jg'jg . ""An;jm‘j7n+1 (32)
k=1
k=14 2" (ji—1)and a =2 (ji — 1) + jms1. (3.3)
=2

Lemma 3.2.

(a) If for any sequence {04;{}21:(? belongs to ¥, 1 < k < m(k), Ay, has
property C then for any n > 2, 1 < k < m(k), An.., has property C.

(b) If for any sequence {ﬂk}zlz(’f) belongs to ¥/, 1 < k < m(k), Ay p, has
property R then for any n > 2, 1 < k < m(k), A,.3, has property R.



Proof. Firstly, by recursive formulae (2.1), we have

if
bir biz bar b
big bis bz Doy Aoy Agp
Ao — = ’ ’ 3.4
? bs1 b3z ba1 b2 {A2;3 Aoy ( )
bss b3y sz buy
,then
bllAn;l leAn;Q b21An;1 b22An;2
b13An'3 b14An‘4 bQSAn'?) 624An'4
A, = : ' ' ' 3.5
i batAna baAno baAng baAgo ( )
b33An;3 b34An;4 b43An;3 b44An;4
whenever
_ An;l An;2
A, = |:An;3 A ] .o for n > 2 (3.6)
or equivalently,
Apitia = { l[zin; gzﬁ”j } ,for o €91,2,3,4}. (3.7)

Next, we prove (a) by induction on n:

When n = 2, by condition (a), it is trivial that the result holds for n =
2. Now, assume that for any sequence {ak};n:(]f) belongs to X, 1 < k <
m(k), An.qa, has property C ; the goal is to show that it also holds for
n+1. Firstly, we let {045»1)}7]-“:1 be a sequence in ¥ and «; be the i — th term
of {Oz;-l) 71, next we consider the following situations to show A, 1., has
property C.

Case 1: 1 < i < m.

By condition (a), because Ay, has property C, so |C(q;)| =2, and we de-
note it as C(o;) = {p, ¢} where p,q € {1,2,3,4}, i.e., ba;p =1, ba,;;q = 1. By
condition (a), we have for any sequence {ak}zl:(]f) belongs to X, 1 < k < m(k),
|C'(ag)| = 2 and ¥ = ¥.. Therefore, it is trivial that there exists another
sequence {a§2)} which belong to ¥ and satisfies the following properties

(a)ag.l) = af), wherel < j <4, aﬁ)l =p, agl =q.



(b)bai;p =1, bajyg=1
(¢)Anp, Apg have property C.
Therefore by (3.7) A, 11,4, has property C.
Case 2: i = m.
Since {aﬁ»l) 7L, s an eventually periodic sequence, i.e., there exists 1 <
M < n such that o; = a,, = aypy. By case 1, we have A, 11.,,, has property
C, i.e., Apt1.0, has property C.

Finally, using the same argument of case 1 and case 2, we obtain for any
sequence {&k}}?:l;) belongs to X, 1 < k < m(k), Ant1,, has property C.

In the same fashion of proof (a), we also have for any sequence { ﬁk}zlz(l;) be-
longs to X', 1 < k < m(k), A, p, has property R for any n > 2. This
completes the proof of lemma 3.2. n

Lemma 3.3.

Let E, € M,«,(Z) is full matrix, i.e., for all 1 <1i,j <mn, e; = 1.
(1) If A € M,,«n(Z) has property C, then E,, - A > E,.

(2) If A € M,,«n(Z) has property R, then A- E, > E,.

Proof. (1) Since

(En - Apg= B * AW, (3.8)
where E, ) is the p—th row of matrix #,; A is the ¢ — th column of matrix
A and A has property C, E,, is full matrix;"so we have (E, - A),, > 1 and

this imply E,, - A > E, .
(2) Since

(A : En)pq = A(p) ) E(Q)> (3-9)

n

where Ay is the p —th row of matrix A; E is the q — th column of matrix
E, and A has property R, E, is full matrix, so we have (A - E,),, > 1 and
this imply A - E,, > E,. This completes the proof of lemma 3.3. m

Lemma 3.4. Let

A — |:An;1 An;z :| _ |:An;11 An;12 :|
" An;g An;4 An;21 An;22

where A,.;; € Man-1y9n—1(Z), fori,j € {1,2}.
If A, satisfies the following properties
(1) There exists an integer k and indices 1 < ig, 41, ....., i < n such that

8



(a) dg =ix =1 (io = ir = 2);

(b) TTAx

i 1s primitive.
(2) Anar (An22) is nonzero matrix; A, has property C (R) and A, has
property R(C).

Then A, is primitive.

Proof. By the definition of primitive, it suffices to show that there exists
[ € N, such that Afl > Fonyon.
Let m = k 4+ 1, we consider

m __ Am,n;l Am,n;Z
AT = { A A } : (3.10)
by (3.1)(3.2), we have
om— 1
mnl - Z Amnl 2 An 11 HAan 145 + HAnz] 195 ° An;ll; (311>
U=
om—1 k
ng - Z Aan i ]:[An;ij,lij i An;127 (312)
=1
gm— 1
mn3— ZAmn3>A”21 HAan 15 (313>

From condition (2), we have A,,1; is nonzero matrix, so there exists
(Apa)u #0 for k1€ {1,2,..,2" 1} (3.14)

Furthermore, from condition (1)(b), (3.11) and (3.14), we have (A, n.1 )k > 1
and (Apna)a > 1foralld,j € {1,2,..,2""'}. Therefore, A,, .1 has property
R and C.

From condition (1) (2), we have HAn i;_1i; > B, Anio has property C;
A,.01 has property R, then by (3. 12)(3 13) and lemma 3.3, we have A,, .0 > F
and A,, .3 > E .

Finally, choose [ = 2m, we have Al = (A™)? > E. This completes the
proof of lemma 3.4. [



bll b12 b21 b22

Next, we give Ay and write it as Ay = bis i bag boy = [ ﬁ&l ﬁm }
2;3 2;4

b31 b32 b41 b42
b33 b34 b43 b44

{ Aga1 Ago ]’ where Ay, € Moys(Z),Va € {1,2,3,4}. And, we follow the

A2;21 A2;22
recursive formulae for n-th order transition matrices A,, from (2.1). Then we
prove the following Theorem.

Theorem 3.5. Given Ay € Myy4(Z), where (Ag11)1; = (A1) = 1 for all
i,7 € {1,2}. If A, satisfies the following properties

(a) Every sequence {ozk};?:(l;) in ¥, Ay, has property C, V1 < k < m(k).
(b) Every sequence {6;6}21:(? in ¥, Ay, has property R, V1 < k < m(k).
Then A, is primitive for all n > 2.

Proof. Firstly, for matrix multiplication, the indices of A,,., are conveniently
expressed as

An‘ll An'12
A, = ’ 2 : 3.15
|: An;21 An;22 :| ( )

Clearly, A,.o = Ay, j,, Where
o = O./(jl,jg) = 2(]1 — ].) +]2 (316)

Next, we divide this proof into three steps.

Step 1: Since C(1) = {1,2}, then there exists a sequence {(sx)}-;} which
belongs to ¥ with s; = 1,5, = 2. Therefore, by lemma 3.2 and condition

(a), Ap and A, have property C for all n > 2.

Step 2: Since R(1) = {1,3}, then there exists a sequence {(d;)j,} which
belongs to ¥’ with d; = 1,dy = 3. Therefore, by lemma 3.2 and condition

(b), A, and A,,5 have property R for all n > 2.

Step 3: The goal is to show that there exists k(n) such that Ai(ﬁ) > F forall n> 2.

This imply there exists an integer k(n) and indices iy = iy = ... = ipm) =
1 such that
Ani i > E. (3.17)
i=1

10



From (3.7) and (3.16), we have to show that
Al > g (3.18)
is equivalent to show that

k(n+1
[ An;ll An;12 :| (1)

> k. 3.19
An;21 b14An;22 ( )

We prove (3.18) by induction on n.
When n=1, we choose k(2) = 2, it is trivial that A3,, > E.
When n=2, since Ag;ll > E, Agq is nonzero matrix, Agjo has property C,
and Aso; has property R, by lemma 3.4 and (3.19) there exists k(3) such
that Ag(fl) > E. Now, assume that holds for n, the goal is to show that it also
holds for n+1.Since Az(ﬁ) > E, A1 is nonzero matrix, A,.12 has property C,
and A, has property R, by lemma 3.4 and (3.19) there exists k(n+ 1) such
that AN > B

Finally, by step 1, step 2, step:3, and-lemia 3.4, we have A,, is primitive

for all n > 2. This completes tlie proof of Theorem of 3.5 . ]
b by~ ba1 Doy 1101
. . b13 b14 b23 b24 . 1 010
Example 3.6. Consider A, = bay b b b | |0 10 0
b3 b3 baz” bay 1000

By definition 2.3, 2.4 and 2.6, we have 3 = {{1,1},{1,2,2},{1,2,3,2},{1,2,3,3}}
and ¥’ = {{1,1},{1,3,3},{1,3,2,2},{1,3,2,3}}. From Ay, we get As1, Az, Ass
have property R and C. It is easily checked that (a) and (b) of Theorem 3.5
hold, then Theorem 3.5 is applied to show that A,, is primitive for all n > 2.

Example 3.7. Consider A, — gg Zi,i Zi’ Zii _ } 8 (1) 8
bsz b3y bz bus 0110

By definition 2.3, 2.4 and 2.6, we have ¥ = {{1,1},{1,2,1},{1,2,2})} and ¥’ =
{{1,1},4{1,3,1},{1,3,4,1},{1,3,4,3}}. From Ay, we get As.,1, As.o have prop-
erty C and Ay, Asg R. It is easily checked that (a) and (b) of Theorem 3.5
hold, then Theorem 3.5 is applied to show that A,, is primitive for all n > 2.

11



Corollary 3.8. Given Ay € My, 4(Z), where (Az.92)2; = (As:22)ie = 1 for all
i,7 € {1,2}. If A, satisfies the following properties

(a)Every sequence {ak};?:(’f) in I', Ay, has property C, V1 <k <n(k).
(b)Every sequence {6;{}2”:(? in I, As.5, has property R, V 1 < k < n(k).
Then A, is primitive for all n > 2.

Proof. The proof is similar to Theorem 3.5, the details are omitted. O]

b1 bia bar ba 0 0O

1
. 613 b14 623 b24 1 1 01

Example 3.9. Consider A; = =
P ? bsi bsza bar  bao 1 001
01 11

bz b3s baz b
By definition 2.3, 2.4, 2.6, we have
T = {{4,4},{4,3,4},{4,3,1,3},{4,3,1,4}} and T" = {{4, 4}, {4,2,4}, {4,2,2}}
From Ay, we get As;q, Aoz, Asy have property C and Asg,o, A2y have property
R. It is easily checked that (a) and (b) of Corollary 3.8 hold, then Theorem
3.5 is applied to show that A, is primitive for all n > 2.

Next, we will formulate the second main theorem of our study and proof.
First, we define A; of A,.

Definition 3.10. Given A, and write it.as

AQ = I: A2;11 A2;12 :|
A2;21 A2;22

, where Ao.;; € Moyo(Z), then Ay € Myyo(Z) is defined as follows
1 if Azij # Oaxa.
A = o I
( 1)] { 0, if AQ;ij = Osxo.

Theorem 3.11. Given AQ - M4><4(Z), where A2;127A2;21 - {|: i (1) :| , [ 1 1 :|}

If A, satisfies one of the following properties
00

@ tin=] 0 O Jand = |1 1]

(b)Ag;H;«é{g ﬂandAle{“ H“ ”}

Then A,, is primitive for all n > 2.

12



Proof. We divide this proof into three steps, and we prove these steps by
induction on n.

Step 1: The goal is to show A,.1 # Ogn-1,9n—1 for all n > 2.

Case 1: If Ay = [8 (1)] , we prove that A,; # Ogn-1,9n—1 for ¢ €
{29 ..,22} by induction on n.

When n=2, by condition (a), it is trivial that As; # Oayxo for i € {2°,.., 2%},
Suppose A,.; # Ogn-1y9n-1 for i € {2°..,2?} next we need to claim it also
holds for n+1. Since

Aao # Ovaaiien | 172 | £ 00 (320)

and
Apii # Ogn-1yon—for i € {2°,..,27} (3.21)

then
Antiia = { 2;‘;2; Zzzﬁzz } £ Qron. (3.22)

Case 2: If Ayqq # { 8 (1)
have An;l ?A Ozn—l xon—1.
Step 2: The goal is to show A5, A,.4 have property R and C.

When n=2, it is trivial that Ass, Ay have property R and C. Next, sup-
pose A2, A3 has property R and C, then

], then fint the-same fashion of proof case 1, we

An;l An;2

Apila = [ A bosAras } for o € {2, 3}, (3.23)

also have property R and C.

Step 3: The goal is to show that for all n > 2, there exists an even num-
k(n)

ber k(n), and indices 1 < g, ..., iy < nsuchthat [ An;,_;; > E, wherei; =
i=1

1if [is even; ¢, = 2 if [ is odd.

2
When n=2, we choose k(2) = 2, then [[A,,_,;, > E. Now, assume the
i=1

result holds for n, i.e., there exists an even number k(n), and indices 1 <
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i0, -y i) < M, such that 'HAn;ij,lij > E, where i; = 1 if [ is even; 4; =

=1
2 if [ is odd. The goal is to show that it also holds for n4+1. From the
k(n)
assumption [] Ang,_ i, > E, io = ixm) = 1 and stepl, step2; lemma 3.3 is
i=1
applied to show that there exists m(n) such that

Am(n) o An;ll An;12 ) >FEf c {2 3} (3 24)
e = | Al O > F for o 3} )
We choose k(n+1) = 2-m(n) and indices 1 < ig, ..., ign+1) < n, where i = 1if
k(n+1) A 1 A 1 2-m(n)
lis even; 4, = 2if lis odd, then [] Ani14, i, > [ A"’ O"’ ] > F,
; ’ n;21

=1
this imply the result also holds for n + 1 .
Finally, from step 1 step 2 and step 3, lemma 3.3 is applied to show
that A, is primitive for all n > 2. This completes the proof of Theorem of
3.8. ]

bt 1 biatihor oo 1011
. . b13 b14 623 b24 . 0010
Example 3.12. Consider Ay = ba b B B | |1 100
bsg b3s baz Daa 1000
From A,, we have A; = } (1) and 1t-iseasily checked that (b) of Theorem

3.10 holds, then Theorem 3.10 is<applied to show'that A, is primitive for all
n > 2.

Corollary 3.13. Given AQ € M4X4(Z),Where A2;12,A2;21 c {|: ? 1 1 s |: i :1[ :|}

If A, satisfies one of the following properties
10

(a)AmQ:[O O}andAF“ ”
o[} s (3111 1])

Then A, is primitive for all n > 2.
Proof. The proof is similar to Theorem 3.11, the details are omitted. [

bii bia bar bao 1 001
. blg b14 b23 b24 0011

E le 3.14. C der A, = =
xample onsider A, bor bus e bus 0110
bsz b3zs baz bus 1100
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1 1 and it is easily checked that (a) of Corollary
3.13 holds, then Corollary 3.13 is applied to show that A, is primitive for all
n > 2.

From A,, we haveA; =

Remark 3.15. From theorem 3.5, 3.11 and corollary 3.8, 3.13, we can find
the marginal states for classes of Ay. To be clearly, we can easily seen that
if A > B (in the sense that A > O, all entries of A are nonegative), then B
is primitive imply that A is also. Thus we search for all marginal Ay which
is prime, and use comparison to show others are also.

We let

11 00 11 , 01
S R A R F R

11 10 10 0 1
v=lon] e e ] -]

10 [ 1=1"7 0 1 0 0
T1:|:10:|7 TZZ-O 0_7 T3:l:01:|7 T4:|:1 1:|7

10 0 1] 0 0 00
m‘“oy &_JOQ &_Loy &_h1}
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marginal states for Corollary 3.8

marginal states for Theorem 3.5 ‘

Aoy | Agp | Aoz | Aoy Aoy Aoy | Aoz | Aoy
G J J | O 0 T3 | Ty | G

G T, | T | O 0 J J |G

G T, I |1y, 1 I,G' T, I |G

G T, I |G, I Ty, 1 T I |G

G I Ty | Ty, 1 15,1 1 T, | G

G I T | G, 1 I,G' 1 T |G

G 1 I | JI I,J 1 I | &

G I J | J 1 I1,J 1 J |G

G J 1 | J I 1,J J I | &

G G | T3 | Ty, 15,1,J T, 15,1,J | T} L | &

G Uu | 1y | Ty,T5,J 150, | T | G |G

G U J | 1T1,T; 15, 1,J | J L | &

G T, G |15, T,,1,J J L T |G

G T, L | T5,Ty,J Ty, Ty, J U | Tr |G

G L J | Ty, T, T,Ty1,J | G | Ty |G

G J L | T, Ty 1y, T J u |G

] marginal states for Theorem 3.11—| rmarginal states for Corollary 3.13

K, |G|G|O K, Ky, K3, Ky | G| G| K4
Ky |G| G|O O G |G| K,
Ks | G|G|O 0 G |G| K;
K4 G| G Kl,KQ,Kg,K4 O G/ G/ K4

4 Main Theorem (P-Symbols)

The results in last two subsections can be generalized to p-symbols.
Next, we follow the notation from [3] to denote the recursive formulae for
higher order transition matrices A,, defined on Zgy;«9;, by

An - (An_l)pnflxpnfl @ (Epn72 ® A2)7 (41)
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A2;1 e A2;p

I (4.2)
;42;(p71)p+1 A2;p2
and
bos1 oo bayp
Age = bttt ey (4.3)
bap(p-1)+1 Doy

for v € {1,2,...,p},n > 2.
Definition 4.1. From (4.3), we define

C(a) = {Cuyli €U}, where Cpj = min{Blbys =1, =j+p- (k- 1)},
R(a) = {Rq;lj € U}, where RaJ-mm{ﬁ‘baﬁ—l B=k+p-(j—1

Cla) = {CMIJ € U}, where Ca] = max{flbag=1, B=7j+p-(k—1),
R() = {Raylj € U}, where Ry; = max{Plbgs =1, 6=k+p- (G —1)},

)}
)

where k € U, and U = {1,2. p}.

Definition 4.2. From definition 4.1,"we define

(1) ¥ = 3. U Xy, where X .=the"setrof-all eventually periodic sequences
{ou}i, which satisfy ap = 1, a € C(ag-1). Xy =the set of all sequences
{ap }7 | which satisfy ag =1, oy, € Clag_1), 1 <k<m—1, C(an) =0.
(2) ¥ = XL U3, where X! =the set of all eventually periodic sequences
{ay} 7, which satisfy ag = 1, oy € R(ay—1). Lo =the set of all sequences
{an }i, which satisfy ap =1, oy € R(ag—1), 1 <k <m—1, R(an,) = 0.
(3) ' =I'.UI'y, where I', =the set of all eventually periodic sequences {oy } 7%,
which satisfy ap = p%, aj, € C(ax_1). [y =the set of all sequences {ay}™,
which satisfy o = p?, ay € CN'(ozk_l), 1<k<m-—1, é(am) = 0.

(4) I'" = T, U Ty, where I', =the set of all eventually periodic sequences
{ag )y, which satisfy ag = p?, aj € R(og_1). T =the set of all sequences
{ap}7 | which satisfy ag = p?, a; € E(ak_l), 1<k<m-—1, Rlay,)=0.

17



Next, welet A, € Mynypn(Z), A, = [Apijlpxp whered, j € {1,2,...,p}, Anij €
M -1y -1 (Z). By matrix multiplication we denote A} as

p
At o -
Am mnip+l e Am,n,Qp
"= : (4.4)
Amvn p(p_1)+1 """ Amzn7p

mna - E Amn a where Amna = An%jl']é : An?jZ’jS ’ ""An§jm‘jm+1 (45)

E=14> p" " (i—1) anda=p-(j1 — 1) + jms- (4.6)

i=2
Lemma 4.3.

Let Ay, = [Avijlpxp € Mpnypn(Z), where i, j € {1,2,...,p}, Apij € Mpn-1,,n-1(Z).
If A, satisfies the following properties

(1) There exists an integer k and indices|lieg, ¢, -...., ix < p such that
(a) ig = ix = [, where [ € £1,2, ... pk:
k
(b) HAn;ij,lij is primitive.
i=1

(2) Any is nonzero matrix, A,,3-hasproperty G and A,,.5 has property R
for all 6 £1, 5 €{1,2,...,p}.

Then A, is primitive.

Proof. By the definition of primitive, it suffices to show that there exists
r € N, such that A} > E. Firstly, for matrix multiplication, the indices of
A,na are conveniently expressed as (Al');;, where a = (i, j) = p(i—1)+7.

Let m = k 4 1, and consider A", By(4.1) (4.2), we have

m 1

k
(Agb)l mna_ ZAmnaZH nyij 195 nlﬁa (47)

(Ao = Amma = Z A = Aus HAn ijo1ig (4.8)

18



m—1

p

k k
(Anm)ll = Am,n;a = Z A»Eylj?n;a > HAn;ijflij : An;ll + An;ll : HAn;ijflij-(Zl-g)

k=1 =1 =1

From condition (2), we have A, is nonzero matrix, so there exists

(Apat)st # 0 for s,t € {1,2,.....,p" '} (4.10)

k
Furthermore, since (Anu)se # 0 and [[ A, > E, then for a = p- (I -
i=1

1) + 1, we have (Aimna)s; > 1 and (Appa)ie > 1 for all 4,5 € {1,2,..,p" 1}
Therefore, (A7), has property R and C. By condition (1) (2), (4.7), (4.8),
and lemma 3.3, we have (A7");3 > E and (A)g > E foral g #1, (€
{1,2,..,p}. Finally, choose r=2m, we have A” > E. This completes the proof
of lemma 4.3. [

Lemma 4.4.

(a) If for any sequence {ozk}zn:(? belongs to ¥, 1 < k < m(k), As,, has
property C then for any n > 2, 1 < kx&Zn(k), A,.., has property C.

(b) If for any sequence {Bk}?:(’f) belongs to. Y51 < k < m(k), Ay, has
property R then for any n > 2,51 < k <im(k), A5, has property R.

Proof. Firstly, by recursive formulae (4-1);(4.2); (4.3), we have

ba;lAn;l e ba;pAn;p
bapr1An. R .

A= |7 B (4.11)
ba;p(p—1)+1An;p(p—1)+1 o e A

for a € {1,..,p*}, n > 2, where

Apa Ano o Ay
A, A, .. A,.

A, =| AR (4.12)
An;p(pfl)ﬂ T T An;p2

Next, we prove (a) by induction on n.
When n = 2, by condition (a), it is trivial that the result holds for n = 2.
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Now, assume that for any sequence {&k};n:(’;) belongs to ¥, 1 < k < m(k),
Ao, has property C; the goal is to show that it also holds for n+1. Firstly,

we let {aél)};”zl be a sequence in ¥ and «a; be the i — th term of {ozgl)}gnzl,

next we consider the following situations to show A, ., has property C .
Case 1: 1 <i<m

By condition (a), because Ay, has property C, so |C(a;)| = p, and we de-
note it as C(a;) = {q1,q2, ..., ¢} where q1,¢a,...,q, € {1,..,p}. i.e., baiq, =
1 for all k € {1, .., p}. By condition (a), we have for any sequence {ak}?:(]f) be-
longs to X, |C(ax)| = p and ¥ = X,.. Therefore, it is trivial that there exists
sequences {a§-2)}, {&5-3)}, o {ag.p )}, which satisfy the following properties

(a)a(-l) = agg) =

; ...:aj(.p),wherelgjﬁi,
(b)ozl(_li)l = qy, for all k € {1,2,..,p},
(€)bayg, = 1 for all k € {1, .., p},
(d)A,,, has property C for all k € {1,..,p}.
Therefore by (4.11) A, 41,4, has property C.
Case 2: i =m
Since {(ay)7L,} is an eventually periodic sequence, i.e., there exists 1 <
M < m such that oy = «,, = ay. By case 1,.4,.1.,, has property C,
i.e., Ayt1.q, has property C.

Finally, using the same argument of case 1 and case 2, we obtain for any
sequence {ak}zgi) belongs to B, 1 <k-<mf(k), Apni1.q, has property C for
all n > 2.

In the same fashion of proof (a); we also-have for any sequence {ﬁk}?:(?
belongs to ¥, 1 < k < m(k), A3, has property R, for all n > 2. This

completes the proof of lemma 4.4. n
A2;1 A A2;p
Next, we give Ay € M,2,2(Z) and write it as Ay = Az o 'Amp
;42;(p—1)p+1 e Agye
Asay -+ Agy baiy o b
:142;21 42;213 where A, = {)a;pﬂ ?aﬂp , a€q{1,2,..,p*}.
AQ;pl T ;42;171? basp(p—1)+1 ba;pg

And, we follow the recursive formulae for n-th order transition matrices A,, from
(4.1). Then we prove the following Theorem.
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Theorem 4.5. Given Ay € M2,,2(Z), where (As11)1; = (A211)a = 1, for alld, j €
{1,2,..,p}. If A, satisfies the following properties

(a) Every sequence {ak}zn:(?) in ¥, Ay, has property C, V1 < k <m(k).

(b) Every sequence {6k}km:(lf) in ', Asp, has property R, V 1 <k < m(k).

Then A, is primitive for all n > 2.

Proof. Firstly, for matrix multiplication, the indices of A,,., are conveniently
expressed as A,.j j,. Clearly, A,.. = A, j,j,, where

a=a(j1,j2) =201 — 1) + ja. (4.13)

Next, we divide this proof into three steps.
Step 1: Because (Ayj)1; = 1 forall j € {1,2,..,p}, so we have C(1) =
{1,2,..,p}, and it is trivial that there exists sequences {ozg-k) };n:(’f) which be-
long to ¥ and satisfy agk) =1, agk) = k, where k = 1,2, .., p. Therefore, by
condition (a) and lemma 4.4, A, has property C for all o € {1,2,..,p},
n > 2. By (4.13), we have A,,1; has property C, for all j € {1,2,...,p}.
Step 2: Because (Ag,1);1 = 1 for alli € {1;2;..,p}, so we have R(1) = {1+(k—
Dp| ke {l1,2,..,p}}, then there exists sequences {ﬁj(.k)}?;(lf)
Y and satisfy ﬂfk) =1, ﬁék) = 14 (k= 1)py where k£ = 1,2,..,p. There-
fore, by condition (b) and lemma 4.4, A;.5 has -property R for all g €
{1+(k—1p| ke{l,2,..,p}}rn > 2. By (4.13), we have A,,;; has property
R, for all i € {1,2,...,p}.
Step 3: The goal is to show that there exists k(n) such that Ai(ﬁ) > FE forall n> 2.

which belong to

This imply there exists an integer k(n) and'indices iy = iy = ... = ipm) =
1 such that
k(n)
HAZ-J.A,Z-J, > E. (4.14)
i=1
From (4.11) and (4.13), we have A, 1.1 = Apn41.11, 0 to show that
A > E (4.15)
is equivalent to show that
k(n+1)
An;ll An;12 e An;lp
tAn;Ql {)1;p+2An;22 et ?)I;QpAn;Zp 2 B (4]_6)
Appt bl;p(P*1)+2An;p2 e b Ay
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We prove (4.15) by induction on n.
When n=1, we choose k(2) = 2, it is trivial that A3,, > E.
When n=2, since Ag;ll > F, Aga; has property C and Ay, has property R
forall i ,j € {1,2,3,..,p}, by lemma 4.3 and (4.16) there exists k(3) such
that Ag(f’l) > E. Now, assume that holds for n, the goal is to show that it also
holds for n+1. Since Aﬁ(ﬁ) > E, Ay.q; has property C and A,;; has property
Rforallij € {1,2,3,..,p}, by lemma 4.3 and (4.16) there exists k(n+1) such
that AL > B

Finally, by step 1, step 2, step 3 and lemma 4.3, we have A,, is primitive
for all n > 2. This completes the proof of Theorem of 4.5 . O]

—_

Example 4.6. Consider A, =

T T T e
O OO DO O oo
ORI OS> © © O =
OC O OO O OO+
O OO0 O© O O =
OO OO OO OO
SO R OO O OO
(Nel S eoNeNoNoe ol
OO OO O, OoOOo

By definition 4.1 we have

=%, = {{1,1},{1,2,1}, {1, 2,2} {1,2,3, 11 {1:2,3,2},{1,2,3,9, 1}, {1,2,3,9, 2},
{1,2,3,9,3},{1,3,1},{1,3,2, 1}, {1, 352:23:41. 3, 2,3}, {1,3,9, 1}, {1,3,9,2, 1},
{1,3,9,2,21{1,3,9,2,3},{1,3,9,3} } and >/ = 5 = {{1,1}, {1, 4,1}, {1,4,4},{1,4,7,1},
(1,4,7,4%, 11,4, 7,74, {1, 7,1}, {1, 7,4, 1}, {1,7, 4,4}, {1,7,4, 7}, {1,7, 7} }. From A.,

we get Ay, Ago, Aaig, As.g have property C, and Ay, Asa, Asr have property

R. It is easily checked that (a) and (b) of Theorem 4.5 hold, then Theorem

4.5 is applied to show that A, is primitive for all n > 2.

Corollary 4.7. Given Ay € M2, ,2(Z), where (Asyp)p = (Aaypp)ip = 1, for all i, j €
{1,2,..,p}. If A, satisfies the following properties

(a) Every sequence {ak}};":(]f) in I', As,, has property C, V 1 <k < m(k).

(b) Every sequence {ﬁk}}?:(l;) in I, As.p, has property R, V 1 < k < m(k).

Then A, is primitive for all n > 2.

Proof. The proof is similar to Theorem 4.5, the details are omitted. O
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00100O01O00
00100O0O0O01
00100O0O0O01
0000O0O0OTO0GQ 01
Example 4.8. Consider A, =10 0 0 0 0 0 0 0 1
0000O0O0OTO0DTO 01
0000O0O0OTO0TQ 01
00 00O0O0OTO0T 01
111111111,

By definition 4.1 we have
r'={{9,9},{9,7,7},{9,7,9},{9,7,8,7},{9,7,8,8},{9,7,8,9},{9, 8,9}, {9, 8,8},
{9,8,7,7},{9,8,7,8},{9,8,7,9}} and I” = {{9, 9}, {9,6,9},{9,6,6}, {9, 6, 3,9},
{9,6,3,6},{9,6,3,1,3},{9,6,3,1,6},{9,6,3,1,9},{9, 3,9}, {9, 3,6,3},{9, 3,6,6},
{9,3,6,9},{9,3,1,9},{9,3,1,6,9},{9,3,1,6,6},{9,3,1,6,3},{9,3,1,3}}. From A,,
we get Ag.7, Aoig, Aa.g have property C, and Ay, As3, Ags, A2.9 have property

R. It is easily checked that (a) and (b) of Corollary 4.7 hold, then Corollary

4.7 is applied to show that A, is primitive for all n > 2.

Theorem 4.9. If Ay € M,2,,2(Z) satisfies.the following properties
(a)There exists an integer s 1,2, .. plsuch that (Asss)s; = (Aiss)is =
1 for all 7,57 € {1,2,...,p}.

(b)As.; has property R and Cfor all i3 € 41,2, ..«, p}.

Then A, is primitive for all n > 2.

Proof. We divide this proof into two steps.
Step 1: By condition (b),(4.11) and (4.12), it is trivial that A,;; has
property R and C for all 4, j € {1,2,...,p}, n > 2. The details are omitted.
Step 2: The goal is to show that there exists k(n), such that A > E.

This imply there exists an integer k(n), and indices ig = i3 = -+ = i) =
s such that
k(n)
14, = E (4.17)
i=1

By condition (a), we have to show that

A > B (4.18)
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is equivalent to show that

_ - k(n+1)
allAn;ll T An;ls e alpAn;lp
a21An;21 s An;2s s anAn;Qp
‘ C o >F (4.19)
An;sl e An;ss e An;sp
| apiAppt 0 Apps o GppAagp

We prove (4.18) by induction on n.
When n=1, we choose k(2) = 2, it is trivial that A% > E.

2;s8
When n=2, since A3, > F, Ay, has property C and As;s has property R

2;s8

forall i ,j € {1,2,3,..,p}, by lemma 4.3 and (4.19) there exists k(3) such
that A% > FE. Now, assume that holds for n, the goal is to show that it also

3;s8
holds for n+1. Since AIZ(?S) > E, A,.s; has property C and A, has property
Rforallij €{1,2,3,..,p}, by lemma38rand (4.19) there exists k(n+1) such
that AXD > B,

n+1;ss
FinaJlrly, by step 1, step 2 and lenima-4.3; we:-have A, is primitive for
all n > 2. This completes the proef of Theorem of 4.9 . O]
1 0 0 0 1

01010

00100

Apir Az Agis 01001

Example 4.10. Consider AQ == A2;21 A2;22 A2;23 = 1 0011
Aoz Agzp Agss 00101

00101

01010

100 00

From AQ, we have (AQ;QQ)QJ‘ = (A2;22)i2 = 1, A2;ij has pI'OpGI'Ey R and C for
all 7,7 € {1,2,3}; then Theorem 4.9 is applied to show that A, is primitive
for all n > 2.
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