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摘要 

 

 

 

在這篇論文中,討論 階置換矩陣 的原始性質。而這些主題與 2維

有限型的移位之混合性質有關。 

n nA

我們的目的是給定2階置換矩陣 的某些必備條件,進而証得矩陣

的原始性質。 
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The primitive property of subshift of finite
type in 2-dimensional lattice

Hui Ping Chen
Department of Applied Mathematics

National Chiao Tung University

Hsinchu 300, Taiwan

Abstract

In this paper, the primitivity of n-th order transition matrices An

defined on Z2×n are studied,this topics related to the mixing property
of 2-dimensional shift of finite type.

Our purpose is to give some necessary conditions for A2 to guar-
antee the primitivity of An.

1 Introduction

Many systems have been studied as models for spatial pattern forma-
tion in biology, chemistry, engineering and physics. Lattices play important
roles in modeling underlying spatial structures. We mention some works
arising in biology ([8],[9],[22],[23],[24],[28],[29],[30]), chemical reaction and
phase transitions ([7],[13],[14],[15],[16],[25],[34]), image processing and pat-
tern recognition ([12],[13],[14],[17],[18],[19],[20],[26],[33]), as well as materials
science ([11],[21],[27]). In Lattice Dynamical Systems (LDS), especially Cel-
lular Neural Networks(CNN), the complexity of the set of all global patterns
has received considerable attention in recent years ([1],[2],[5],[10]). One of
the interesting problem comes from the statistic mechanism is d-demensional
shift of finite type, state as follows, given a list of patterns with shape F ∈ Zd,
consider the set

X = XL = {x ∈ AZd|for all n ∈ Zd, and σn(x)|F ∈ L}, (1.1)
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where A is a finite set, we call it symbol, and without loss of generality,
F is d-dimensional cube, i.e., F = {(n1, ...., nd)|1 ≤ nk ≤ k, ∀k = 1, ..., d},
many invariants related to the shift of finite will discussed likewise in [32],
e.g., the topological entropy, measure-theoretical entropy, variational princi-
ple, mixing property, and extension problem. Unfortunately, unlike the the
one dimensional case, it is extremely difficulty to compute and check those
invariants, for example, only a very few example of entropy of 2-dimensional
shift of finite type can be computed explicitly,also for mixing property. In
this paper we start to study the mixing property of d-dimension shift of finite
type, and we focus on d=2. In [3], the authors construct a finite approxima-
tion scheme of higher dimensional shift of finite type, and call it the series of
transition matrices in multi-dimensional lattice model in Z2, we are going to
use the structure of such transition matrices to study the mixing property of
higher dimensional shift of finite type.

We first recall some results in [3], which are crucial in this study. For
simplicity, we only consider two symbols which are given on 2 × 2 lattice
Z2×2. We begin with a consideration of given horizontal transition matrix

H2 =




h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44


 , (1.2)

which is related to a set of admissible local patterns on Z2×2, and

hij ∈ {0, 1} for 1 ≤ i, j ≤ 4. (1.3)

The associated vertical transition matrix V2 is defined by

V2 =




v11 v12 v13 v14

v21 v22 v23 v24

v31 v32 v33 v34

v41 v42 v43 v44


 . (1.4)

In 2-dimensional shift of finite type, one can immediate construct the H2

according to the list of pattern with shape F = {(n1, n2)|1 ≤ ni ≤ 2,∀i =
1, 2}. In [3], H2 and V2 possess the following property to each other

H2 =




v11 v12 v13 v14

v21 v22 v23 v24

v31 v32 v33 v34

v41 v42 v43 v44


 =

[
H2;1 H2;2

H2;3 H2;4

]
, (1.5)
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and

V2 =




h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44


 =

[
V2;1 V2;2

V2;3 V2;4

]
. (1.6)

The recursive formula for n-th order horizontal transition matrices Hn defined
on Z2×n has been obtained [3] by the following procedure:

Hk+1 =




v11Hk;1 v12Hk;2 v21Hk;1 v22Hk;2

v13Hk;3 v14Hk;4 v23Hk;3 v24Hk;4

v31Hk;1 v32Hk;2 v41Hk;1 v42Hk;2

v33Hk;3 v34Hk;4 v43Hk;3 v44Hk;4


 , (1.7)

whenever

Hk =

[
Hk;1 Hk;2

Hk;3 Hk;4

]
, (1.8)

for k ≥ 2. The number of all admissible patterns defined on Zm×n which can
be generated from H2 is now defined by

Γm×n(H2) = |Hm−1
n |

= the summation of all entries in Hm−1
n .

The quantitative properties of Hn for n ≥ 2 are interesting problem in
matrix theory and combinatorial dynamics, the most important one is the
primitive property, in matrix analysis, the primitivity of a nonnegative matrix
will guarantee the positivity of the maximal eigenvalue of a given matrix,
and according to the discussion above, if some H2 is induced from some of
2-dimensional shift of finite type, then primitivity of H2 demonstrate the
shift is mixing. And some interesting dynamics will appear therein, for
example, the periodic orbits is dense, and there exists a unique measure
of maximal entropy. Thus, it give rise to the study the primitivity of Hn,
∀n ≥ 2.

The difficulties of this study is that the size of Hn grows exponentially,
i.e., Hn ∈ M2n×2n , then it is of nature and interesting to ask that which kind
of sufficient conditions will guarantee the primitivity for Hn. [4] and [31] have
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given some results. To overcome this problem, the powerful tool Σ, Σ′, Γ, Γ′ will
be introduced, thus we obtain some checkable conditions of H2 to guarantee
the primitivity for Hn, ∀n ≥ 2.

The paper is organized as follows, Section 2 introduce some definitions,
the main results and proof will presented in section 3. Furthermore, the
results in section 3 can be generalized to p-symbols and it will be introduced
in section 4.

2 Preliminaries

As mentioned in the introduction, horizontal transition matrix H2 and ver-
tical transition matrix V2 are related to each other. However, in applica-
tion, usually it is better working on one matrix then the other. There-
fore, we use A2 and B2 to replace H2 and V2 throughout this paper, i.e., if
A2 = H2 then B2=V2 and if A2=V2 then B2 = H2. Therefore, for simplic-
ity, only A2 is stated herein.

Definition 2.1. A matrix A ∈ Mn×n(Z) is called non-compressible if no
columns and rows of A are all zero.

Definition 2.2. A matrix A ∈ Mn×n(Z) has property C, if no columns
of A are all zero; and has property R, if no rows of A are all zero.

Next, R(α), R̃(α), C(α), C̃(α), Σ, Σ′, Γ, Γ′ are introduced, these concepts
are defined in, and is crucial for our study. We follow the notation from [3] to
denote the recursive formulae for n-th order transition matrices An defined
on Z2×n or Zn×2, by

An = (An−1)2n−1×2n−1 ◦
(

E2n−2×2n−2 ⊗
(

A2;1 A2;2

A2;3 A2;4

))

2n−1×2n−1

, (2.1)

for n > 2, where

A2 =

[
A2;1 A2;2

A2;3 A2;4

]
=




b11 b12 b21 b22

b13 b14 b23 b24

b31 b32 b41 b42

b33 b34 b43 b44


 (2.2)

and A2;α ∈ M2×2(Z), ∀ α ∈ {1, 2, 3, 4}
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Definition 2.3. From (2.2), we define

C(α) = {Cα;j|j ∈ U}, where Cα;j = min{β|bαβ = 1, β = j + 2 · (k − 1)},
R(α) = {Rα;j|j ∈ U}, where Rα;j = min{β|bαβ = 1, β = k + 2 · (j − 1)},
C̃(α) = {C̃α;j|j ∈ U}, where C̃α;j = max{β|bαβ = 1, β = j + 2 · (k − 1)},
R̃(α) = {R̃α;j|j ∈ U}, where R̃α;j = max{β|bαβ = 1, β = k + 2 · (j − 1)},
where where k ∈ U , and U = {1, 2}.

Definition 2.4. A sequence {αk}m
k=1 is called an eventually periodic sequence

if there exists 1 ≤ n < m such that am = an and ap 6= aq, if1 ≤ p 6= q < m.

Example 2.5. Let sequence {αk}4
k=1 = {α1, α2, α3, α4} = {2, 3, 1, 3}. Since

there exists 2 such that α4 = α2, and αp 6= αq, if1 ≤ p 6= q < 4 then we
call {αi}4

i=1 is an eventually periodic sequence.

Definition 2.6. From definition 2.3, we define
(1) Σ = Σe ∪ Σ0, where Σe=the set of all eventually periodic sequences
{αk}m

k=1 which satisfy α0 = 1, αk ∈ C(αk−1). Σ0 =the set of all sequences
{αk}m

k=1 which satisfy α0 = 1, αk ∈ C(αk−1), 1 ≤ k ≤ m− 1, C(αm) = ∅.
(2) Σ′ = Σ′

e ∪ Σ′
0, where Σ′

e=the set of all eventually periodic sequences
{αk}m

k=1 which satisfy α0 = 1, αk ∈ R(αk−1). Σ0 =the set of all sequences
{αk}m

k=1 which satisfy α0 = 1, αk ∈ R(αk−1), 1 ≤ k ≤ m− 1, R(αm) = ∅.
(3) Γ = Γe∪Γ0, where Γe =the set of all eventually periodic sequences {αk}m

k=1

which satisfy α0 = 1, αk ∈ C̃(αk−1). Γ0 =the set of all sequences {αk}m
k=1

which satisfy α0 = 1, αk ∈ C̃(αk−1), 1 ≤ k ≤ m− 1, C̃(αm) = ∅.
(4) Γ′ = Γ′e ∪ Γ′0, where Γ′e =the set of all eventually periodic sequences

{αk}m
k=1 which satisfy α0 = 1, αk ∈ R̃(αk−1). Γ′0 =the set of all sequences

{αk}m
k=1 which satisfy α0 = 1, αk ∈ R̃(αk−1), 1 ≤ k ≤ m− 1, R̃(αm) = ∅.

Example 2.7. Let A2 =




b11 b12 b21 b22

b13 b14 b23 b24

b31 b32 b41 b42

b33 b34 b43 b44


 =




1 1 1 0
1 0 0 1
1 0 0 0
1 0 0 0


 .

From Definition 2.3, we have C(1) = {C1;1, C1;2} = {1, 2}, ,R(1) = {R1;1, R1;2} =
{1, 3}, and by Definition 2.4, 2.6, we have
Σ = Σe∪Σ0 = {{1, 1}, {1, 2, 1}}∪{{1, 2, 4}}={{1, 1}, {1, 2, 1}, {1, 2, 4}} and
Σ′ = Σ′

e = {{1, 1}, {1, 3, 1}, {1, 3, 3}}.
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Example 2.8. Let A2 =




b11 b12 b21 b22

b13 b14 b23 b24

b31 b32 b41 b42

b33 b34 b43 b44


 =




0 1 1 0
0 1 0 1
0 0 0 1
1 1 1 1


 .

From Definition 2.3, we have C̃(3) = {C̃3;1, C̃3;2} = {3, 4}, R̃(1) = {R̃1;1, R̃1;2} =
{2, 4}, and by Definition 2.4, 2.6, we have Γ = Γe∪ Γ0 = Γe = {{4, 4}, {4, 3, 3}, {4, 3, 4}}
and Γ′ = Γ′e = {{4, 4}, {4, 2, 4}, {4, 2, 1, 2}, {4, 2, 1, 4}}.

3 Main Theorem (2-Symbols)

Definition 3.1. Let A ∈ Mn×n(Z) is called primitive if there exists an integer
k ≥ 1 such that Ak ≥ En×n (full matrix), and let τ(A) be the minimum
number of such k, i.e.,

τ(A) ≡ min{k : Ak ≥ En×n}.

In this paper we follow the notation from [6]to denote the multiplication
m-times of An i.e., Am

n , by

Am
n =

[
Am,n;1 Am,n;2

Am,n;3 Am,n;4

]
, (3.1)

and by matrix multiplication we have

Am,n;α =
2m−1∑

k=1

A(k)
m,n;α where A(k)

m,n;α = An;j1·j2 · An;j2·j3 · ....An;jm·jm+1 (3.2)

k = 1 +
m∑

i=2

2m−i · (ji − 1) and α = 2 · (j1 − 1) + jm+1. (3.3)

Lemma 3.2.
(a) If for any sequence {αk}m(k)

k=1 belongs to Σ, 1 ≤ k ≤ m(k), A2;αk
has

property C then for any n ≥ 2, 1 ≤ k ≤ m(k), An;αk
has property C.

(b) If for any sequence {βk}m(k)
k=1 belongs to Σ′, 1 ≤ k ≤ m(k), A2;βk

has
property R then for any n ≥ 2, 1 ≤ k ≤ m(k), An;βk

has property R.
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Proof. Firstly, by recursive formulae (2.1), we have
if

A2 =




b11 b12 b21 b22

b13 b14 b23 b24

b31 b32 b41 b42

b33 b34 b43 b44


 =

[
A2;1 A2;2

A2;3 A2;4

]
(3.4)

,then

An+1 =




b11An;1 b12An;2 b21An;1 b22An;2

b13An;3 b14An;4 b23An;3 b24An;4

b31An;1 b32An;2 b41An;1 b42An;2

b33An;3 b34An;4 b43An;3 b44An;4


 (3.5)

whenever

An =

[
An;1 An;2

An;3 An;4

]
, for n ≥ 2 (3.6)

or equivalently,

An+1;α =

[
bα1An;1 bα2An;2

bα3An;3 bα4An;4

]
, for α ∈ {1, 2, 3, 4}. (3.7)

Next, we prove (a) by induction on n.
When n = 2, by condition (a), it is trivial that the result holds for n =

2. Now, assume that for any sequence {αk}m(k)
k=1 belongs to Σ, 1 ≤ k ≤

m(k), An;αk
has property C ; the goal is to show that it also holds for

n+1. Firstly, we let {α(1)
j }m

j=1 be a sequence in Σ and αi be the i− th term

of {α(1)
j }m

j=1, next we consider the following situations to show An+1;αi
has

property C.
Case 1: 1 ≤ i < m.
By condition (a), because A2;αi

has property C, so |C(αi)| = 2, and we de-
note it as C(αi) = {p, q} where p, q ∈ {1, 2, 3, 4}, i.e., bαi;p = 1, bαi;q = 1. By

condition (a), we have for any sequence {αk}m(k)
k=1 belongs to Σ, 1 ≤ k ≤ m(k),

|C(αk)| = 2 and Σ = Σe. Therefore, it is trivial that there exists another

sequence {α(2)
j } which belong to Σ and satisfies the following properties

(a)α
(1)
j = α

(2)
j , where1 ≤ j ≤ i, α

(1)
i+1 = p, α

(2)
i+1 = q.

7



(b)bαi;p = 1, bαi;q = 1
(c)An;p, An;q have property C.
Therefore by (3.7) An+1;αi

has property C.
Case 2: i = m.
Since {α(1)

j }m
j=1 is an eventually periodic sequence, i.e., there exists 1 ≤

M < n such that αi = αn = αM . By case 1, we have An+1;αM
has property

C, i.e., An+1;αi
has property C.

Finally, using the same argument of case 1 and case 2, we obtain for any
sequence {αk}m(k)

k=1 belongs to Σ, 1 ≤ k ≤ m(k), An+1;αk
has property C.

In the same fashion of proof (a), we also have for any sequence {βk}m(k)
k=1 be-

longs to Σ′, 1 ≤ k ≤ m(k), An;βk
has property R for any n ≥ 2. This

completes the proof of lemma 3.2.

Lemma 3.3.
Let En ∈ Mn×n(Z) is full matrix, i.e., for all 1 ≤ i, j ≤ n, eij = 1.
(1) If A ∈ Mn×n(Z) has property C, then En · A ≥ En.
(2) If A ∈ Mn×n(Z) has property R, then A · En ≥ En.

Proof. (1) Since

(En · A)pq = En(p) · A(q), (3.8)

where En(p) is the p− th row of matrix En; A(q) is the q− th column of matrix
A and A has property C, En is full matrix, so we have (En · A)pq ≥ 1 and
this imply En · A ≥ En .
(2) Since

(A · En)pq = A(p) · E(q)
n , (3.9)

where A(p) is the p− th row of matrix A; E
(q)
n is the q− th column of matrix

En and A has property R, En is full matrix, so we have (A · En)pq ≥ 1 and
this imply A · En ≥ En. This completes the proof of lemma 3.3.

Lemma 3.4. Let

An =

[
An;1 An;2

An;3 An;4

]
=

[
An;11 An;12

An;21 An;22

]
,

where An;ij ∈ M2n−1×2n−1(Z), for i, j ∈ {1, 2}.
If An satisfies the following properties
(1) There exists an integer k and indices 1 ≤ i0, i1, ....., ik ≤ n such that

8



(a) i0 = ik = 1 (i0 = ik = 2);

(b)
k∏

i=1

An;ij−1ij
is primitive.

(2) An;11 (An;22) is nonzero matrix; An;12 has property C (R) and An;21 has
property R(C).
Then An is primitive.

Proof. By the definition of primitive, it suffices to show that there exists
l ∈ N, such that Al

n ≥ E2n×2n .
Let m = k + 1, we consider

Am
n =

[
Am,n;1 Am,n;2

Am,n;3 Am,n;4

]
, (3.10)

by (3.1)(3.2), we have

Am,n;1 =
2m−1∑

k=1

A
(k)
m,n;1 ≥ An;11 ·

k∏
i=1

An;ij−1ij +
k∏

i=1

An;ij−1ij · An;11, (3.11)

Am,n;2 =
2m−1∑

k=1

A
(k)
m,n;2 ≥

k∏
i=1

An;ij−1ij · An;12, (3.12)

Am,n;3 =
2m−1∑

k=1

A
(k)
m,n;3 ≥ An;21 ·

k∏
i=1

An;ij−1ij . (3.13)

From condition (2), we have An;11 is nonzero matrix, so there exists

(An;11)kl 6= 0 for k, l ∈ {1, 2, ...., 2n−1}. (3.14)

Furthermore, from condition (1)(b), (3.11) and (3.14), we have (Am,n;1)kj ≥ 1
and (Am,n;1)il ≥ 1 for all i, j ∈ {1, 2, .., 2n−1}. Therefore, Am,n;1 has property
R and C.

From condition (1) (2), we have
k∏

i=1

An;ij−1,ij ≥ E, An;12 has property C;

An;21 has property R, then by (3.12)(3.13) and lemma 3.3, we have Am,n;2 ≥ E
and Am,n;3 ≥ E .

Finally, choose l = 2m, we have Al
n = (Am

n )2 ≥ E. This completes the
proof of lemma 3.4.
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Next, we give A2 and write it as A2 =




b11 b12 b21 b22

b13 b14 b23 b24

b31 b32 b41 b42

b33 b34 b43 b44


 =

[
A2;1 A2;2

A2;3 A2;4

]
=

[
A2;11 A2;12

A2;21 A2;22

]
, where A2;α ∈ M2×2(Z),∀α ∈ {1, 2, 3, 4}. And, we follow the

recursive formulae for n-th order transition matrices An from (2.1). Then we
prove the following Theorem.

Theorem 3.5. Given A2 ∈ M4×4(Z), where (A2;11)1j = (A2;11)i1 = 1 for all
i, j ∈ {1, 2}. If A2 satisfies the following properties

(a) Every sequence {αk}m(k)
k=1 in Σ, A2;αk

has property C, ∀1 ≤ k ≤ m(k).

(b) Every sequence {βk}m(k)
k=1 in Σ′, A2;βk

has property R, ∀1 ≤ k ≤ m(k).
Then An is primitive for all n ≥ 2.

Proof. Firstly, for matrix multiplication, the indices of An;α are conveniently
expressed as

An =

[
An;11 An;12

An;21 An;22

]
. (3.15)

Clearly, An;α = An;j1j2 , where

α = α(j1, j2) = 2(j1 − 1) + j2. (3.16)

Next, we divide this proof into three steps.
Step 1: Since C(1) = {1, 2}, then there exists a sequence {(sk)

m
k=1} which

belongs to Σ with s1 = 1, s2 = 2. Therefore, by lemma 3.2 and condition
(a), An;1 and An;2 have property C for all n ≥ 2.
Step 2: Since R(1) = {1, 3}, then there exists a sequence {(dl)

n
l=1} which

belongs to Σ′ with d1 = 1, d2 = 3. Therefore, by lemma 3.2 and condition
(b), An;1 and An;3 have property R for all n ≥ 2.

Step 3: The goal is to show that there exists k(n) such that A
k(n)
n;11 ≥ E for all n ≥ 2.

This imply there exists an integer k(n) and indices i0 = i1 = ... = ik(n) =
1 such that

k(n)∏
i=1

An;ij−1,ij ≥ E. (3.17)

10



From (3.7) and (3.16), we have to show that

A
k(n+1)
n+1;11 ≥ E (3.18)

is equivalent to show that

[
An;11 An;12

An;21 b14An;22

]k(n+1)

≥ E. (3.19)

We prove (3.18) by induction on n.
When n=1, we choose k(2) = 2, it is trivial that A2

2;11 ≥ E.
When n=2, since A2

2;11 ≥ E, A2;11 is nonzero matrix, A2;12 has property C,
and A2;21 has property R, by lemma 3.4 and (3.19) there exists k(3) such

that A
k(3)
3;11 ≥ E. Now, assume that holds for n, the goal is to show that it also

holds for n+1.Since A
k(n)
n;11 ≥ E, An;11 is nonzero matrix, An;12 has property C,

and An;21 has property R, by lemma 3.4 and (3.19) there exists k(n+1) such

that A
k(n+1)
n+1;11 ≥ E.

Finally, by step 1, step 2, step 3, and lemma 3.4, we have An is primitive
for all n ≥ 2. This completes the proof of Theorem of 3.5 .

Example 3.6. Consider A2 =




b11 b12 b21 b22

b13 b14 b23 b24

b31 b32 b41 b42

b33 b34 b43 b44


 =




1 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0


 .

By definition 2.3, 2.4 and 2.6, we have Σ = {{1, 1}, {1, 2, 2}, {1, 2, 3, 2}, {1, 2, 3, 3}}
and Σ′ = {{1, 1}, {1, 3, 3}, {1, 3, 2, 2}, {1, 3, 2, 3}}. From A2, we get A2;1, A2;2, A2;3

have property R and C. It is easily checked that (a) and (b) of Theorem 3.5
hold, then Theorem 3.5 is applied to show that An is primitive for all n ≥ 2.

Example 3.7. Consider A2 =




b11 b12 b21 b22

b13 b14 b23 b24

b31 b32 b41 b42

b33 b34 b43 b44


 =




1 1 1 1
1 0 0 0
1 0 1 0
0 1 1 0


 .

By definition 2.3, 2.4 and 2.6, we have Σ = {{1, 1}, {1, 2, 1}, {1, 2, 2})} and Σ′ =
{{1, 1}, {1, 3, 1}, {1, 3, 4, 1}, {1, 3, 4, 3}}. From A2, we get A2;1, A2;2 have prop-
erty C and A2;1, A2;3 R. It is easily checked that (a) and (b) of Theorem 3.5
hold, then Theorem 3.5 is applied to show that An is primitive for all n ≥ 2.
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Corollary 3.8. Given A2 ∈ M4×4(Z), where (A2;22)2j = (A2;22)i2 = 1 for all
i, j ∈ {1, 2}. If A2 satisfies the following properties

(a)Every sequence {αk}m(k)
k=1 in Γ, A2;αk

has property C, ∀ 1 ≤ k ≤ n(k).

(b)Every sequence {βk}m(k)
k=1 in Γ′, A2;βk

has property R, ∀ 1 ≤ k ≤ n(k).
Then An is primitive for all n ≥ 2.

Proof. The proof is similar to Theorem 3.5, the details are omitted.

Example 3.9. Consider A2 =




b11 b12 b21 b22

b13 b14 b23 b24

b31 b32 b41 b42

b33 b34 b43 b44


 =




0 0 0 1
1 1 0 1
1 0 0 1
0 1 1 1


 .

By definition 2.3, 2.4, 2.6, we have
Γ = {{4, 4}, {4, 3, 4}, {4, 3, 1, 3}, {4, 3, 1, 4}} and Γ′ = {{4, 4}, {4, 2, 4}, {4, 2, 2}}
From A2, we get A2;1, A2;3, A2;4 have property C and A2;2, A2;4 have property
R. It is easily checked that (a) and (b) of Corollary 3.8 hold, then Theorem
3.5 is applied to show that An is primitive for all n ≥ 2.

Next, we will formulate the second main theorem of our study and proof.
First, we define A1 of A2.

Definition 3.10. Given A2 and write it as

A2 =

[
A2;11 A2;12

A2;21 A2;22

]

, where A2;ij ∈ M2×2(Z), then A1 ∈ M2×2(Z) is defined as follows

(A1)ij =

{
1 , if A2;ij 6= O2×2.
0 , if A2;ij = O2×2.

Theorem 3.11. Given A2 ∈ M4×4(Z), where A2;12, A2;21 ∈
{[

1 1
1 0

]
,

[
1 1
1 1

]}
.

If A2 satisfies one of the following properties

(a) A2;11 =

[
0 0
0 1

]
and A1 =

[
1 1
1 1

]
.

(b) A2;11 6=
[

0 0
0 1

]
and A1 ∈

{[
1 1
1 0

]
.

[
1 1
1 1

]}
.

Then An is primitive for all n ≥ 2.
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Proof. We divide this proof into three steps, and we prove these steps by
induction on n.
Step 1: The goal is to show An;1 6= O2n−1×2n−1 for all n ≥ 2.

Case 1: If A2;11 =

[
0 0
0 1

]
, we prove that An;i 6= O2n−1×2n−1 for i ∈

{20, .., 22} by induction on n.
When n=2, by condition (a), it is trivial that A2;i 6= O2×2 for i ∈ {20, .., 22}.
Suppose An;i 6= O2n−1×2n−1 for i ∈ {20, .., 22}, next we need to claim it also
holds for n+1. Since

A2;α 6= O2×2, i.e.,

[
bα1 bα2

bα3 bα4

]
6= O2×2 (3.20)

and

An;i 6= O2n−1×2n−1for i ∈ {20, .., 22} (3.21)

then

An+1;α =

[
bα1An;1 bα2An;2

bα3An;3 bα4An;4

]
6= O2n×2n . (3.22)

Case 2: If A2;11 6=
[

0 0
0 1

]
, then in the same fashion of proof case 1, we

have An;1 6= O2n−1×2n−1 .
Step 2: The goal is to show An;2, An;3 have property R and C.
When n=2, it is trivial that A2;2, A2;3 have property R and C. Next, sup-
pose An;2, An;3 has property R and C, then

An+1;α =

[
An;1 An;2

An;3 bα4An;4

]
for α ∈ {2, 3}, (3.23)

also have property R and C.
Step 3: The goal is to show that for all n ≥ 2, there exists an even num-

ber k(n), and indices 1 ≤ i0, ..., ik(n) ≤ n such that
k(n)∏
i=1

An;ij−1ij ≥ E, where il =

1 if l is even; il = 2 if l is odd.

When n=2, we choose k(2) = 2, then
2∏

i=1

A2;ij−1ij ≥ E. Now, assume the

result holds for n, i.e., there exists an even number k(n), and indices 1 ≤

13



i0, ..., ik(n) ≤ n, such that
k(n)∏
i=1

An;ij−1ij ≥ E, where il = 1 if l is even; il =

2 if l is odd. The goal is to show that it also holds for n+1. From the

assumption
k(n)∏
i=1

An;ij−1ij ≥ E, i0 = ik(n) = 1 and step1, step2; lemma 3.3 is

applied to show that there exists m(n) such that

A
m(n)
n+1;α =

[
An;11 An;12

An;21 O

]m(n)

≥ E for α ∈ {2, 3}. (3.24)

We choose k(n+1) = 2·m(n) and indices 1 ≤ i0, ..., ik(n+1) ≤ n, where il = 1 if

l is even; il = 2 if l is odd, then
k(n+1)∏

i=1

An+1;ij−1ij ≥
[

An;11 An;12

An;21 O

]2·m(n)

≥ E,

this imply the result also holds for n + 1 .
Finally, from step 1 step 2 and step 3, lemma 3.3 is applied to show

that An is primitive for all n ≥ 2. This completes the proof of Theorem of
3.8 .

Example 3.12. Consider A2 =




b11 b12 b21 b22

b13 b14 b23 b24

b31 b32 b41 b42

b33 b34 b43 b44


 =




1 0 1 1
0 0 1 0
1 1 0 0
1 0 0 0


 .

From A2, we have A1 =

[
1 1
1 0

]
and it is easily checked that (b) of Theorem

3.10 holds, then Theorem 3.10 is applied to show that An is primitive for all
n ≥ 2.

Corollary 3.13. Given A2 ∈ M4×4(Z), where A2;12, A2;21 ∈
{[

0 1
1 1

]
,

[
1 1
1 1

]}
.

If A2 satisfies one of the following properties

(a) A2;22 =

[
1 0
0 0

]
and A1 =

[
1 1
1 1

]
.

(b) A2;22 6=
[

1 0
0 0

]
and A1 ∈

{[
0 1
1 1

]
,

[
1 1
1 1

]}
.

Then An is primitive for all n ≥ 2.

Proof. The proof is similar to Theorem 3.11, the details are omitted.

Example 3.14. Consider A2 =




b11 b12 b21 b22

b13 b14 b23 b24

b31 b32 b41 b42

b33 b34 b43 b44


 =




1 0 0 1
0 0 1 1
0 1 1 0
1 1 0 0




14



From A2, we haveA1 =

[
1 1
1 1

]
and it is easily checked that (a) of Corollary

3.13 holds, then Corollary 3.13 is applied to show that An is primitive for all
n ≥ 2.

Remark 3.15. From theorem 3.5, 3.11 and corollary 3.8, 3.13, we can find
the marginal states for classes of A2. To be clearly, we can easily seen that
if A ≥ B (in the sense that A ≥ O, all entries of A are nonegative), then B
is primitive imply that A is also. Thus we search for all marginal A2 which
is prime, and use comparison to show others are also.

We let

E =

[
1 1
1 1

]
, O =

[
0 0
0 0

]
, G =

[
1 1
1 0

]
, G′ =

[
0 1
1 1

]
,

U =

[
1 1
0 1

]
, L =

[
1 0
1 1

]
, I =

[
1 0
0 1

]
, J =

[
0 1
1 0

]
,

T1 =

[
1 0
1 0

]
, T2 =

[
1 1
0 0

]
, T3 =

[
0 1
0 1

]
, T4 =

[
0 0
1 1

]
,

K1 =

[
1 0
0 0

]
, K2 =

[
0 1
0 0

]
, K3 =

[
0 0
1 0

]
, K4 =

[
0 0
0 1

]
.
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marginal states for Theorem 3.5

A2;1 A2;2 A2;3 A2;4

G J J O
G T2 T1 O
G T2 I T1, I
G T4 I G, I
G I T1 T2, I
G I T3 G, I
G I I J, I
G I J J, I
G J I J, I
G G T3 T1, T3, I, J
G U T3 T1, T3, J
G U J T1, T3

G T4 G T2, T4, I, J
G T4 L T2, T4, J
G L J T2, T4

G J L T2, T4

G J U T1, T3

marginal states for Corollary 3.8

A2;1 A2;2 A2;3 A2;4

O T3 T4 G′

O J J G′

I, G′ T1 I G′

T4, I T3 I G′

T3, I I T4 G′

I, G′ I T2 G′

I, J I I G′

I, J I J G′

I, J J I G′

T1, T3, I, J T1 L G′

T1, T3, I, J T1 G′ G′

T1, T3, I, J J L G′

J L T2 G′

T2, T4, J U T2 G′

T2, T4, I, J G′ T2 G′

T2, T4 J U G′

marginal states for Theorem 3.11

K1 G G O
K2 G G O
K3 G G O
K4 G G K1, K2, K3, K4

marginal states for Corollary 3.13

K1, K2, K3, K4 G′ G′ K1

O G′ G′ K2

O G′ G′ K3

O G′ G′ K4

4 Main Theorem (P-Symbols)

The results in last two subsections can be generalized to p-symbols.
Next, we follow the notation from [3] to denote the recursive formulae for
higher order transition matrices An defined on Z2l×2l, by

An = (An−1)pn−1×pn−1 ¯ (Epn−2 ⊗ A2), (4.1)
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A2 =




A2;1 · · · A2;p

A2;p+1 · · · A2;2p
...

. . .
...

A2;(p−1)p+1 · · · A2;p2


 (4.2)

and

A2;α =




bα;1 · · · bα;p

bα;p+1 · · · bα;2p
... . . .

...
bα;p(p−1)+1 · · · bα;p2


 (4.3)

for α ∈ {1, 2, ..., p}, n ≥ 2.

Definition 4.1. From (4.3), we define

C(α) = {Cα;j|j ∈ U}, where Cα;j = min{β|bαβ = 1, β = j + p · (k − 1)},
R(α) = {Rα;j|j ∈ U}}, where Rα;j = min{β|bαβ = 1, β = k + p · (j − 1)},
C̃(α) = {C̃α;j|j ∈ U}, where C̃α;j = max{β|bαβ = 1, β = j + p · (k − 1),

R̃(α) = {R̃α;j|j ∈ U}, where R̃α;j = max{β|bαβ = 1, β = k + p · (j − 1)},
where k ∈ U , and U = {1, 2, .., p}.

Definition 4.2. From definition 4.1, we define
(1) Σ = Σe ∪ Σ0, where Σe=the set of all eventually periodic sequences
{αk}m

k=1 which satisfy α0 = 1, αk ∈ C(αk−1). Σ0 =the set of all sequences
{αk}m

k=1 which satisfy α0 = 1, αk ∈ C(αk−1), 1 ≤ k ≤ m− 1, C(αm) = ∅.
(2) Σ′ = Σ′

e ∪ Σ′
0, where Σ′

e=the set of all eventually periodic sequences
{αk}m

k=1 which satisfy α0 = 1, αk ∈ R(αk−1). Σ0 =the set of all sequences
{αk}m

k=1 which satisfy α0 = 1, αk ∈ R(αk−1), 1 ≤ k ≤ m− 1, R(αm) = ∅.
(3) Γ = Γe∪Γ0, where Γe =the set of all eventually periodic sequences {αk}m

k=1

which satisfy α0 = p2, αk ∈ C̃(αk−1). Γ0 =the set of all sequences {αk}m
k=1

which satisfy α0 = p2, αk ∈ C̃(αk−1), 1 ≤ k ≤ m− 1, C̃(αm) = ∅.
(4) Γ′ = Γ′e ∪ Γ′0, where Γ′e =the set of all eventually periodic sequences

{αk}m
k=1 which satisfy α0 = p2, αk ∈ R̃(αk−1). Γ′0 =the set of all sequences

{αk}m
k=1 which satisfy α0 = p2, αk ∈ R̃(αk−1), 1 ≤ k ≤ m− 1, R̃(αm) = ∅.
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Next, we let An ∈ Mpn×pn(Z), An = [An;ij]p×p where i, j ∈ {1, 2, ..., p}, An;ij ∈
Mpn−1×pn−1)(Z). By matrix multiplication we denote Am

n as

Am
n =




Am,n;1 ..... Am,n;p

Am,n;p+1 ..... Am,n;2p
...

. . .
...

Am,n;p(p−1)+1 ..... Am,n;p2


 , (4.4)

Am,n;α =

pm−1∑

k=1

A(k)
m,n;α where A(k)

m,n;α = An;j1·j2 · An;j2·j3 · ....An;jm·jm+1 (4.5)

k = 1 +
m∑

i=2

pm−i · (ji − 1) and α = p · (j1 − 1) + jm+1. (4.6)

Lemma 4.3.
Let An = [An;ij]p×p ∈ Mpn×pn(Z), where i, j ∈ {1, 2, ..., p}, An;ij ∈ Mpn−1×pn−1(Z).
If An satisfies the following properties
(1) There exists an integer k and indices 1 ≤ i0, i1, ....., ik ≤ p such that

(a) i0 = ik = l, where l ∈ {1, 2, ...., p};
(b)

k∏
i=1

An;ij−1ij
is primitive.

(2) An;ll is nonzero matrix, An;lβ has property C and An;βl has property R
for all β 6= l, β ∈ {1, 2, ..., p}.

Then An is primitive.

Proof. By the definition of primitive, it suffices to show that there exists
r ∈ N, such that Ar

n ≥ E. Firstly, for matrix multiplication, the indices of
Am,n;α are conveniently expressed as (Am

n )ij, where α = α(i, j) = p(i−1)+j.
Let m = k + 1, and consider Am

n . By(4.1) (4.2), we have

(Am
n )lβ = Am,n;α =

pm−1∑

k=1

A(k)
m,n;α ≥

k∏
i=1

An;ij−1ij · An;lβ, (4.7)

(Am
n )βl = Am,n;α =

pm−1∑

k=1

A
(k)
m,n;β ≥ An;βl ·

k∏
i=1

An;ij−1ij , (4.8)
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(Am
n )ll = Am,n;α =

pm−1∑

k=1

A(k)
m,n;α ≥

k∏
i=1

An;ij−1ij · An;ll + An;ll ·
k∏

i=1

An;ij−1ij .(4.9)

From condition (2), we have An;ll is nonzero matrix, so there exists

(An;ll)st 6= 0 for s, t ∈ {1, 2, ...., pn−1}. (4.10)

Furthermore, since (An;ll)st 6= 0 and
k∏

i=1

An;ij−1ij ≥ E, then for α = p · (l −
1) + l, we have (Am,n;α)sj ≥ 1 and (Am,n;α)it ≥ 1 for all i, j ∈ {1, 2, .., pn−1}.
Therefore, (Am

n )ll has property R and C. By condition (1) (2), (4.7), (4.8),
and lemma 3.3, we have (Am

n )lβ ≥ E and (Am
n )βl ≥ E for all β 6= l, β ∈

{1, 2, .., p}. Finally, choose r=2m, we have Ar
n ≥ E. This completes the proof

of lemma 4.3.

Lemma 4.4.
(a) If for any sequence {αk}m(k)

k=1 belongs to Σ, 1 ≤ k ≤ m(k), A2;αk
has

property C then for any n ≥ 2, 1 ≤ k ≤ m(k), An;αk
has property C.

(b) If for any sequence {βk}m(k)
k=1 belongs to Σ′, 1 ≤ k ≤ m(k), A2;βk

has
property R then for any n ≥ 2, 1 ≤ k ≤ m(k), An;βk

has property R.

Proof. Firstly, by recursive formulae (4.1), (4.2), (4.3), we have

An+1;α =




bα;1An;1 · · · bα;pAn;p

bα;p+1An;p+1 · · · bα;2pAn;2p
...

. . .
...

bα;p(p−1)+1An;p(p−1)+1 · · · bα;p2An;p2


 (4.11)

for α ∈ {1, .., p2}, n ≥ 2, where

An =




An;1 An;2 ... An;p

An;p+1 An;p+2 .. An;2p
...

...
...

...
An;p(p−1)+1 · · · · · · An;p2


 . (4.12)

Next, we prove (a) by induction on n.
When n = 2, by condition (a), it is trivial that the result holds for n = 2.
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Now, assume that for any sequence {αk}m(k)
k=1 belongs to Σ, 1 ≤ k ≤ m(k),

An;αk
has property C; the goal is to show that it also holds for n+1. Firstly,

we let {α(1)
j }m

j=1 be a sequence in Σ and αi be the i − th term of {α(1)
j }m

j=1,
next we consider the following situations to show An+1;αi

has property C .
Case 1: 1 ≤ i < m
By condition (a), because A2;αi

has property C, so |C(αi)| = p, and we de-
note it as C(αi) = {q1, q2, ...., qp} where q1, q2, ..., qp ∈ {1, .., p}. i.e., bαi;qk

=

1 for all k ∈ {1, .., p}. By condition (a), we have for any sequence {αk}m(k)
k=1 be-

longs to Σ, |C(αk)| = p and Σ = Σe. Therefore, it is trivial that there exists

sequences {α(2)
j }, {α(3)

j }, ..., {α(p)
j }, which satisfy the following properties

(a)α
(1)
j = α

(2)
j = ... = α

(p)
j , where 1 ≤ j ≤ i,

(b)α
(k)
i+1 = qk, for all k ∈ {1, 2, .., p},

(c)bαi;qk
= 1 for all k ∈ {1, .., p},

(d)An;qk
has property C for all k ∈ {1, .., p}.

Therefore by (4.11) An+1;αi
has property C.

Case 2: i = m
Since {(αj)

m
j=1} is an eventually periodic sequence, i.e., there exists 1 ≤

M < m such that αi = αm = αM . By case 1, An+1;αM
has property C,

i.e., An+1;αi
has property C.

Finally, using the same argument of case 1 and case 2, we obtain for any
sequence {αk}m(k)

k=1 belongs to Σ, 1 ≤ k ≤ m(k), An+1;αk
has property C for

all n ≥ 2.
In the same fashion of proof (a), we also have for any sequence {βk}m(k)

k=1

belongs to Σ′, 1 ≤ k ≤ m(k), An;βk
has property R, for all n ≥ 2. This

completes the proof of lemma 4.4.

Next, we give A2 ∈ Mp2×p2(Z) and write it as A2 =




A2;1 · · · A2;p

A2;p+1 · · · A2;2p
...

. . .
...

A2;(p−1)p+1 · · · A2;p2


 =




A2;11 · · · A2;1p

A2;21 · · · A2;2p
...

. . .
...

A2;p1 · · · A2;pp


 where A2;α =




bα;1 · · · bα;p

bα;p+1 · · · bα;2p
... . . .

...
bα;p(p−1)+1 · · · bα;p2


, α ∈ {1, 2, ..., p2}.

And, we follow the recursive formulae for n-th order transition matrices An from
(4.1). Then we prove the following Theorem.
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Theorem 4.5. Given A2 ∈ Mp2×p2(Z), where (A2;11)1j = (A2;11)i1 = 1, for all i, j ∈
{1, 2, .., p}. If A2 satisfies the following properties

(a) Every sequence {αk}m(k)
k=1 in Σ, A2;αk

has property C, ∀ 1 ≤ k ≤ m(k).

(b) Every sequence {βk}m(k)
k=1 in Σ′, A2;βk

has property R, ∀ 1 ≤ k ≤ m(k).
Then An is primitive for all n ≥ 2.

Proof. Firstly, for matrix multiplication, the indices of An;α are conveniently
expressed as An;j1j2 . Clearly, An;α = An;j1j2 , where

α = α(j1, j2) = 2(j1 − 1) + j2. (4.13)

Next, we divide this proof into three steps.
Step 1: Because (A2;1)1j = 1 for all j ∈ {1, 2, .., p}, so we have C(1) =

{1, 2, .., p}, and it is trivial that there exists sequences {α(k)
j }m(k)

j=1 which be-

long to Σ and satisfy α
(k)
1 = 1, α

(k)
2 = k, where k = 1, 2, .., p. Therefore, by

condition (a) and lemma 4.4, An;α has property C for all α ∈ {1, 2, .., p},
n ≥ 2. By (4.13), we have An;1j has property C, for all j ∈ {1, 2, ..., p}.
Step 2: Because (A2;1)i1 = 1 for all i ∈ {1, 2, .., p}, so we have R(1) = {1+(k−
1)p | k ∈ {1, 2, .., p}}, then there exists sequences {β(k)

j }m(k)
j=1 which belong to

Σ′ and satisfy β
(k)
1 = 1, β

(k)
2 = 1 + (k − 1)p, where k = 1, 2, .., p. There-

fore, by condition (b) and lemma 4.4, An;β has property R for all β ∈
{1+ (k− 1)p | k ∈ {1, 2, .., p}}, n ≥ 2. By (4.13), we have An;i1 has property
R, for all i ∈ {1, 2, ..., p}.
Step 3: The goal is to show that there exists k(n) such that A

k(n)
n;11 ≥ E for all n ≥ 2.

This imply there exists an integer k(n) and indices i0 = i1 = ... = ik(n) =
1 such that

k(n)∏
i=1

Aij−1,ij ≥ E. (4.14)

From (4.11) and (4.13), we have An+1;1 = An+1;11, so to show that

A
k(n+1)
n+1;11 ≥ E (4.15)

is equivalent to show that



An;11 An;12 · · · An;1p

An;21 b1;p+2An;22 · · · b1;2pAn;2p
...

...
. . .

...
An;p1 b1;p(p−1)+2An;p2 · · · b1;p2An;pp




k(n+1)

≥ E (4.16)
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We prove (4.15) by induction on n.
When n=1, we choose k(2) = 2, it is trivial that A2

2;11 ≥ E.
When n=2, since A2

2;11 ≥ E, A2;1j has property C and A2;i1 has property R
for all i , j ∈ {1, 2, 3, .., p}, by lemma 4.3 and (4.16) there exists k(3) such

that A
k(3)
3;11 ≥ E. Now, assume that holds for n, the goal is to show that it also

holds for n+1. Since A
k(n)
n;11 ≥ E, An;1j has property C and An;i1 has property

R for all i j ∈ {1, 2, 3, .., p}, by lemma 4.3 and (4.16) there exists k(n+1) such

that A
k(n+1)
n+1;11 ≥ E.

Finally, by step 1, step 2, step 3 and lemma 4.3, we have An is primitive
for all n ≥ 2. This completes the proof of Theorem of 4.5 .

Example 4.6. Consider A2 =




1 1 1 1 1 1 1 1 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0




By definition 4.1 we have
Σ = Σe = {{1, 1}, {1, 2, 1}, {1, 2, 2}, {1, 2, 3, 1}, {1, 2, 3, 2}, {1, 2, 3, 9, 1}, {1, 2, 3, 9, 2},
{1, 2, 3, 9, 3}, {1, 3, 1}, {1, 3, 2, 1}, {1, 3, 2, 2}, {1, 3, 2, 3}, {1, 3, 9, 1}, {1, 3, 9, 2, 1},
{1, 3, 9, 2, 2}{1, 3, 9, 2, 3}, {1, 3, 9, 3}} and Σ′ = Σ′

e = {{1, 1}, {1, 4, 1}, {1, 4, 4}, {1, 4, 7, 1},
{1, 4, 7, 4}, {1, 4, 7, 7}, {1, 7, 1}, {1, 7, 4, 1}, {1, 7, 4, 4}, {1, 7, 4, 7}, {1, 7, 7}}. From A2,
we get A2;1, A2;2, A2;3, A2;9 have property C, and A2;1, A2;4, A2;7 have property
R. It is easily checked that (a) and (b) of Theorem 4.5 hold, then Theorem
4.5 is applied to show that An is primitive for all n ≥ 2.

Corollary 4.7. Given A2 ∈ Mp2×p2(Z), where (A2;pp)pj = (A2;pp)ip = 1, for all i, j ∈
{1, 2, .., p}. If A2 satisfies the following properties

(a) Every sequence {αk}m(k)
k=1 in Γ, A2;αk

has property C, ∀ 1 ≤ k ≤ m(k).

(b) Every sequence {βk}m(k)
k=1 in Γ′, A2;βk

has property R, ∀ 1 ≤ k ≤ m(k).
Then An is primitive for all n ≥ 2.

Proof. The proof is similar to Theorem 4.5, the details are omitted.
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Example 4.8. Consider A2 =




0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1




By definition 4.1 we have
Γ = {{9, 9}, {9, 7, 7}, {9, 7, 9}, {9, 7, 8, 7}, {9, 7, 8, 8}, {9, 7, 8, 9}, {9, 8, 9}, {9, 8, 8},
{9, 8, 7, 7}, {9, 8, 7, 8}, {9, 8, 7, 9}} and Γ′ = {{9, 9}, {9, 6, 9}, {9, 6, 6}, {9, 6, 3, 9},
{9, 6, 3, 6}, {9, 6, 3, 1, 3}, {9, 6, 3, 1, 6}, {9, 6, 3, 1, 9}, {9, 3, 9}, {9, 3, 6, 3}, {9, 3, 6, 6},
{9, 3, 6, 9}, {9, 3, 1, 9}, {9, 3, 1, 6, 9}, {9, 3, 1, 6, 6}, {9, 3, 1, 6, 3}, {9, 3, 1, 3}}. From A2,
we get A2;7, A2;8, A2;9 have property C, and A2;1, A2;3, A2;6, A2;9 have property
R. It is easily checked that (a) and (b) of Corollary 4.7 hold, then Corollary
4.7 is applied to show that An is primitive for all n ≥ 2.

Theorem 4.9. If A2 ∈ Mp2×p2(Z) satisfies the following properties
(a)There exists an integer s ∈ {1, 2, .., p} such that (A2;ss)sj = (A2;ss)is =
1 for all i, j ∈ {1, 2, ..., p}.
(b)A2;ij has property R and C for all i, j ∈ {1, 2, ..., p}.
Then An is primitive for all n ≥ 2.

Proof. We divide this proof into two steps.
Step 1: By condition (b),(4.11) and (4.12), it is trivial that An;ij has

property R and C for all i, j ∈ {1, 2, ..., p}, n ≥ 2. The details are omitted.

Step 2: The goal is to show that there exists k(n), such that A
k(n)
n;ss ≥ E.

This imply there exists an integer k(n), and indices i0 = i1 = · · · = ik(n) =
s such that

k(n)∏
i=1

Aij−1,ij ≥ E. (4.17)

By condition (a), we have to show that

A
k(n+1)
n+1;ss ≥ E (4.18)
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is equivalent to show that




a11An;11 · · · An;1s · · · a1pAn;1p

a21An;21 · · · An;2s · · · a2pAn;2p
...

. . . . . . . . .
...

An;s1 · · · An;ss · · · An;sp
...

. . . . . . . . .
...

ap1An;p1 · · · An;ps · · · appAn;pp




k(n+1)

≥ E (4.19)

We prove (4.18) by induction on n.
When n=1, we choose k(2) = 2, it is trivial that A2

2;ss ≥ E.
When n=2, since A2

2;ss ≥ E, A2;sj has property C and A2;is has property R
for all i , j ∈ {1, 2, 3, .., p}, by lemma 4.3 and (4.19) there exists k(3) such

that A
k(3)
3;ss ≥ E. Now, assume that holds for n, the goal is to show that it also

holds for n+1. Since A
k(n)
n;ss ≥ E, An;sj has property C and An;is has property

R for all i j ∈ {1, 2, 3, .., p}, by lemma 4.3 and (4.19) there exists k(n+1) such

that A
k(n+1)
n+1;ss ≥ E.

Finally, by step 1, step 2 and lemma 4.3, we have An is primitive for
all n ≥ 2. This completes the proof of Theorem of 4.9 .

Example 4.10. Consider A2 ==




A2;11 A2;12 A2;13

A2;21 A2;22 A2;23

A2;31 A2;32 A2;33


 =




1 0 0 0 1 0 1 0 0
0 1 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0
1 0 0 1 1 1 1 0 0
0 0 1 0 1 0 0 0 1
0 0 1 0 1 0 0 0 1
0 1 0 1 0 0 0 1 0
1 0 0 0 0 1 1 0 0




From A2, we have (A2;22)2j = (A2;22)i2 = 1, A2;ij has property R and C for
all i, j ∈ {1, 2, 3}; then Theorem 4.9 is applied to show that An is primitive
for all n ≥ 2.
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