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Preface

Unauthorized illegal duplication is a major problem in maargas. For digital
media, duplication is especially easy because copying suatarial is immediate
and no information is degraded in the process. In additfmgtowth of the Inter-
net makes it possible to distribute the material in a mudjelascale than before.
Because of both technical and legal issues, it is often dlffio find and prosecute
the pirates. Hence, to protect digital copies is a commtahsk. Recently, elec-
tronic fingerprinting was devised as a method to discouraggle from illegally
redistributing their legally purchased copy.

Electronic fingerprinting deals with the problem of objetgmtification through
the use of electronic marks, unique to each object. We cen§itherprinting for
the purpose of protecting innocent users from being framneld@cing of illegit-
imately copied and distributed data, so called pirate cpie

We examine the possibilities of designing fingerprintinge® that are resis-
tant to tampering. We show that under certain assumptioasre often able to
protect blameless users and even trace back the criminals.

Also, with the model we describe, the result of tracing stdnd reliable. That
is, our tracing may fail in the sense that no pirates are ifiedt but we should not
mistakenly accuse an innocent user. In this thesis, we gnéols on a number
of code constructions, and discuss their mathematicalgoti®s against piracy.
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Chapter 1

Introduction

Conventional mechanisms for copyright protection are absiy incapable of
treating digital data owing to the essential differencenefdocuments. This leads
to the interest of developing other means for deterring tfatgs from illegally re-
distributing products. Digital fingerprinting, for exaneplcan serve our purpose.
A fingerprint is a set of number sequence added to digital thethcan be de-
tected or extracted later to make an assertion about the Dagafingerprint can
be applied in several areas, including:

e Ownership assertion

e Authentication and integrity verification
e Content labeling

¢ Digital watermarking

e Access control protocols

e Content protection

e Detection of copyright violations

e Secure on-line multimedia distribution

e Resource usage control
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e Trust and trust management

With digital fingerprinting, a publisher embeds a unique érpyint into each
distributed copy of a document, keeping a database of sqts@nd their cor-
responding buyers. If an illegally distributed copy is dw¢ered, the publisher
would certainly want to trace back to the unauthorized ugerdmparing its fin-
gerprint to the database. Because of the uniqueness of tfexpint, the pirates
would introduce some kind of marking distortion upon thewuoents. In order
to redistribute illegal copies anonymously, a pirate maydifferent types of at-
tacks to disclose the fingerprint. Assuming that the piratedn access to a single
document copy, that has been marked for him, he may try toneeghe original
document by identifying and removing the fingerprint. Hoe\such an attack
may be questionable if the fingerprinting is hidden cargfaiid scattered all over
the document. A stronger attack results if several pirat#dsae and compare their
independently marked copies. They can identify the hiddegefiprint by locating
the differences among their copies, replace them with ddssible marks, com-
bine their copies into several new ones whose fingerprifemiffrom all of the
pirates, and resell their pirated products with differeng&rprints without ever
worrying about being caught. The copies replaced by feasirks are called
the descendence as will be made precise in Chapter 2.

Frameproof codes were introduced by Boneh and Stivag a method of
digital fingerprinting which prevents a coalition of a syfied sizew? from fram-
ing a user not in the coalition. Several constructionsdfameproof codes were
mainly introduced later on by Stinson, Wei, Encheva, ande@dh2, 14, 30].

Besides the design of frameproof codes against piracy/fiareet traitor trac-
ing algorithm might be necessary in order to identify theenéfers. The traitor
tracing problem was introduced by Chao, Fiat and Naor foatbcast encryption
systems, where the data should be accessible only to azgdansers. When an
illegal copy produced by a group of authorized users of thgygghted material
is detected, traitor tracing schemes allow to trace backastlone producer of
it. In particular, these schemes are suitable for pay-pa#TV applications. We
consider, as an example, a pay-per-view movie type scemdraruced by Fiat
and Tassa. In this scenario, the content is divided insegments. Each of this

Yw is a predetermined threshold for designing codes.
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segments is marked with one @tlifferent symbols. Each user receives a differ-
ently marked copy of the content. The ordered set of the nfarksach copy can
be given as g-ary vector of lengtm. A coalition of colluding users can make an
illegal copy by combining different segments of their datd &roadcast it. After
an illegal copy is detected, traitor tracing schemes attémpeveal at least one
traitor. The practical applications require to accommedst many users as pos-
sible when there is a restriction on the number of symbolswhan be used for
marking the data. On the other hand, some digits of the cadestever registered
or pirated, might happen to be erased or appear undetetiabbtyer accidentally
or deliberately. Therefore, there might be a need to distsigcodes in more than
one position in order to be fault-tolerant.

Several codes providing some forms of traceability haven lssigned to be
used in these schemes. These codes have been extensidedd sturecent years.
The weak forms are frameproof (FP) codes and secure framie{86P) codes.

A stronger form includes identifiable-parent-propertyRJRodes introduced by
Hollmann, van Lint, Linnartz and Tolhuize2]], and traceability (TA) codes in-
troduced by Chor, Fiat and Nadt(]. Such codes allow the tracing of at least one
parent of any illegal copy when the size of the coalition dfumers does not ex-
ceed some given number. Their combinatorial properties and related structures
with codes have been studied by Hollmann et al., Staddams@&tiand Wei, Barg,

et al. and SarkarZs, 30, 31, 21].

As a matter of fact, FP codes turn out to be a subclass of SFF3c8&P codes
are a subclass of IPP codes, and IPP codes are a subclass ofi@& @hey will
be mathematically formulated in Chapter 2. Their relatiopsvith hash families
will be treated in Chapter 3.

The aim of this thesis is to study the above codes under thsepce of un-
readable marks. In such a situation, Boneh and St@wwdinted out that codes
with traitor tracing properties do not exist. This will be deaprecise in Chapter
4. They provided an alternative, slightly weaker form ot&ability codes by us-
ing randomness and probabilistic traitor tracing. Theirkinie important from an
application point of view because they trade off some aayufar a fast traitor-
tracing algorithm under the condition that undetectableknaxist. Hence, IPP
and TA codes are only interesting from a theoretic point efwg and are less ap-
plicative owing to the intolerance of undetectable markee Probabilistic traitor
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tracing (PTT) algorithm due to Boneh and Shaw will be preséim the second
half of Chapter 4.

However, it should be pointed out that if there are too mamgadable marks
then even the probabilistic approach fails. An extreme vaséd be a codeword
filled with unreadable marks which is totally impossible fioe distributor to rec-
ognize, not mentioning tracing back. However, the piratextipcts with unread-
able marks will soon be detected by the distributor, and acfcal situations, the
pirates will scatter only a few unreadable marks to the pctglim order to falsely
convince the customers that the pirated products are agiped ones.

On the other hand, FP and SFP codes are immune from undééestalks.
Since SFP is stronger than FP, SFP codes find more practgatatpns such as
the distribution of multi-license. In such a scenario arthstor sells his products
to an institution instead of an individual. The distributben gives a couple of
codes as a base to generate more codes for the use of emplotreemstitution.
The distributor certainly hopes that the base codes exthibisecure frameproof
property so that codewords authorized to each institutéonb® treated indepen-
dently.

We conclude the introduction by giving a sketch of the thdsiChapter 2,
we will provide the basic definitions which will be more geslghan the original
definitions given by Stinson i3[)]. Chapter 3 is then dedicated to the relation-
ship between hash families and codes. In Chapter 4, we stugadable marks
and the probabilistic approach, and prove that IPP and TR£0do not exist. Fi-
nally, in Chapter 5, we investigate explicit constructiémsSFP codes. Most of
the results in Chapter 4 and 5 are taken from the literatuesh@wever tried to
increase clarity by adding more details and giving simgifigoofs of many re-
sults. Moreover, we tried to give a complete picture by ipooating all results
presently known concerning codes for copyright protectinder the presence of
unreadable marks.



Chapter 2

Definitions and Basics

2.1 Some Coding Theory

Throughout the thesis, we denote bythe code length, by: the code size, and
by ¢ the number of alphabets over a cade

2.1.1 Hamming Distance

Definition: TheHamming distanced between two codewords is the number of
positions whose entries are different.

Example 2.1.dy(11001,01101) = 2

2.1.2 Hamming Weight

Definition: The Hamming weight denotes the number of nonzero entries in a
codeword.

Example 2.2. The Hamming weight dft, 0, 1, 1, 0) is usually denoted as
weight (1,0,1,1,0) = 3.
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2.1.3 Minimum Distance

Definition: The minimum distance of a codeC' C 3" is the least Hamming
distancely (x, y) between any pair of different codewordsy € C'.

2.1.4 Error Correcting Code

Definition: The (IV, k, d),-Error Correcting Code (ECC) is ag-ary linear code
with cardinalityk, code lengthV, and minimum Hamming distance between any
two codewords. It follows that the code raté is k/n and code size ig*. In
some situations we also need to specifyDyhe maximum Hamming distance
between any two codewords. Normally we omit the subscrighiébinary case.

In the nonlinear casg,N, n, q) is ag-ary code of lengthV with code size
n. The rate is computed ag ! log, |n|. The following two nonlinear codes are
for practical applications. One is tlo®nstant-weight codebeing a binary code
whose codewords have a fixed numbedaf The other is theequidistant code
being a code where any two codewords enjoy a fixed Hammingraist

We further introduce some more terminology for linear EC@odlsws:

Theorem 2.1(Singleton Bound) For a codeC' : Y2* +— S>" with minimum
distanced, N > k +d — 1.

Codes satisfying the equality of Singleton Bound are cdiiectimum Distance
Separable (MDS)code.

A codeC with oddd is said to be &erfect Codeif for every codewordo of length
N notinC, there is an unique codewotg in C' such thatly (w, wy) < (d—1)/2.

2.1.5 Code Composition

Definition: Let A be an(N,,ns, ¢2) code over an alphabé, with |Qs| = ¢
and letB be an(Ny, ¢, ¢1) code over an alphabél; with |Q:| = ¢;. Let Qs =
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{a1,...,a,} and letB = {by,...,b,,}. Letd : )y — B be the one-to-one map-
ping defined by (a;) = b; for 1 < i < ¢o. For any codeword = (a4, ...,ay,) €
A we denote byi = (6(aq),...,0(an,)) = (by,...,byn,) theg-ary sequence of
length N, N, obtained fromu by usingf. The set

A*B:{a’:(blv"'abN2)|(a'lv"'aa’NQ)EA}

is called (N1 N, ng, ¢1) concatenation code ot and B, with inner codeA and
outer codeB.

2.2 Descendence

Certain properties of the codes discussed above can be lEiedwsing mathe-
matical notations. Subsequently, tetbe a code of lengthv on an alphabef

with |Q] = q.

We denote by “?” the unreadable mark deliberately or actig@mserted into
the pirated codewords. For any subset of codewotds C', we define the set of
descendants af,, denotediesc(Cy) by

{a; : a € Cp}, if |[{a; : a € Co}|=1;
{a; : a € CoyU{?}, otherwise '

desc (Cyp) := {x e .z c {

Namely, the setlesc(Cy) consists of theV-tuples plus perhaps some unreadable
marks that could be produced by a coalition holding the caddsiin the sef’,. If

in a certain entry there is only one choice for the coalittben only that feasible
element will be used in that entry. Besides, the coalitiomldechoose more than
one elements plus a question mark.

Letw € N be the number of codewords a coalition could have. We defme th
w — descendant code ofC, denotediesc,,(Cy)', as follows:

desc,,(C) :== U desc (Cy) .

CoCC,|Co|<w

TSome papers also call it theasible set
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In other words, the setesc, (C') consists of theV-tuples that could be pro-
duced by comparing the codewords they jointly hold by sonaditbon of size at
mostw.

Example 2.3.LetC' = {(1,2,0,1,1),(2,2,0,1,0)}.

Thenese(C {(() ())}.And,d6502<c>9.

Remark 2.1. Two pirated codewords (1,0,0,?,?) and (1,0,1,?,?) are alsly dif-
ferent because of the third entry. However, when given twlewords (1,0,1,2,?
and (1,0,1,?,?), we still treat them differently althougiy might become the same
codewords.

—~

NN =~
\3’—‘0

Next, we give the definitions concerning the mathematiogperties required
by FP, SFP, IPP, and TA codes.

2.3 Frameproof code

Definition: C'is aw-frameproof EP) code provided that for alt € desc,,(C),
x € desc(C;) N C impliesz € C;.

Roughly speaking, a code is-frameproof if no coalition of size at most
can frame another user not in the coalition by producing tieeword held by
that user.

2.4 Secure Frameproof code

Definition: C' is a w-secure frameproof§FP) code provided that for alk <
desc, (CYNQN, x € desc(C;) Ndesc(C;) implies thatC; N C; # 0, wherei # j.

In other words, a code is-secure frameproof if no coalition of size at mast
can frame a disjoint coalition of size at masby producing anV-tuple that could
have been produced by the second coalition. In other wordsnhewver given two
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disjoint coalitionsC; andC;, of size at mostv, we know that they cannot produce
the same false fingerprint, i.elgsc(C;) N desc(C;) N QN = 0.

Remark 2.2. Note that FP and SFP codes are resistent from the threats -of un
readable marks because if innocent users are safe from Iheinged by colluded
codewords, they are even safer from being framed by thosenawds with un-
readable marks under the assumption mentioned earlier marke2.1.

2.4.1 Separating Weights

Here, we do not look at the unreadable marks.

Definition: The separating weight \,, of two coalitions is the least number of
positions where the descendences of them are separatedoiirhalized separat-
ing weight is7,, := A\,,/N whereN is the code length.

Obviously, a code i — SF P if and only if A,, > 0.

Sometimes\,, is incremented by various means such as concatenation chetho
in order to overcome some undetectable marks problem. Narhgbme unread-
able marks occurs in a supposedly separating positiony ptigtions can serve
as a backup in order to separate codes correctly.

Example 2.4. The code{1122334, 2112433, 1212343} is a 2-SFP with\, = 2.

Assign1122334 to userl asu), 2112433 to user2 asu?, and1212343 to
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user3 asu®.

Coalition ({userl and2}) = descy ({u",u?})

S UORORIHEIH))

Coalition ({user2 and3}) = descy ({u(z), u(?’)})

UG G20

Coalition ({userl and3}) = desc, ({u™,u®})
{06622 () ()

Note that the coalition of usdrand2 cannot frame use} because of the second
and sixth entries, the coalition of useand3 cannot frame user because of the
third and seventh entries, and the coalition of usand3 cannot frame use?
because of the first and fifth entries.

Note that the separating weight of such codg;is- 2 because they are differ-
entiated in at least two positions. The normalized sepayatieight is therefore
To = 2/7

2.5 ldentifiable parent property code

Definition: C' is aw-identifiable parent property#P) code provided that for all
x € desc,(C), it holds that

m Ci # 0.

i:x€desc(Cy)

A code enjoys thev-identifiable parent property if no coalition of size at most
w can produce amvV-tuple that cannot be traced back to at least one member of
the coalition. In such a code, whenever a codeword belongsetadescendance
of a coalition of size at most, at least one of the parents of the coalition can be
identified.
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2.6 Traceability code

Definition: Forz,y € QY, definel(z,y) = {i : x; = y;}. C is aw-traceability
(TA) code provided that, for alt € desc,,(C), = € desc(C;) implies that there is
at least one codewornge C; such that/(z,y)| > |I(z,z)|foranyz € C \ C;.

In fact, I(x,y) stands for the closeness of two codewords, which can also be
expressed a®' — dy(x,y), where N denotes the length of the codeword, and
dy(z,y) is the hamming distance of two codewords.

A code enjoying theu-traceability property allows an efficient (i.e., linear-
time) algorithm to determine an identifiable parent. Morecgisely, if we com-
pare an illegal codeword to each codewordinthen the codeword closest to
the illegal one will be one of the parent in the coalition. &lthat TA property
is much stronger than just IPP property which necessitategparisons witi'(g)
sets, resulting in a nonlinear running time.

Remark 2.3. It has to be made clear that IPP and TA codes appear vulnerable
under the presence of unreadable marks because by definié@an say nothing

if there are “?”, not mentioning identifying or tracing theapents. This will be
justified in the beginning of Chapter 4 where we show that theact do not
exist.

Remark 2.4. If there are no unreadable marks in the pirated codewordenth
IPP and TA codes can exist. However, the constructions oflifPTA codes will
not be treated because they are only of theoretical interesng to intolerance of
unreadable marks.

In the sequel, we point out the relationships of these codes.

2.7 Relations

1. w-SFP impliesw-FP. This is self-explanatory if we treat an individual as
an independent coalition. Let one coalitighbe of size at mosiy and the
other coalitionB be simply one individuako-SFP assures that two disjoint
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coalitions of size at most cannot produce the same codeword. The coali-
tion B is a trivial coalition since the descendencefs B itself, which
would not be framed by coalitiod by the definition of SFP.

2. w-IPP implies w-SFP.This is clear because IPP itself is an intensified ver-
sion of SFP. Namely(C; N C) € ;. ,eese(cy) Ci # 0-

3. w-TA implies w-IPP. Suppose&’' is aw-TA code. Ifx € desc,(C), then
there is a aubset; C C, where|C;| = w, such thatr € desc(C;). Let
y € C; such that/(z,y)| > |I(x,z)| for all z € C;. Hence|l(z,y)| >

|I(x,z)| for any z € C by the definition of aw-TA code. We show that,
foranyC; C C with |C;| < w, x € desc(C;) impliesy € C;. In fact, if
y ¢ C;,thenthereisv € C; suchthat!(z,w)| > |I(x,y)| by the definition
of aw-TA code. This contradicts the fact thd{(z, y)| > |I(z, z)| for any
zeC.

IPP SFP FP Codewords



Chapter 3

Hash Families and Codes

Before going into explicit constructions of such codes, egmeliminaries are
needed to reinforce the mathematical structures and serbasic tools in the
construction.

Recently, hash families and related structures have beed tasconstruct
codes for copyright protection. Subsequently, we will defihem and discuss
their inter-relationship with the codes defined in the ppasgichapter.

3.1 Hash Functions

Let n > m. An (n,m)-hash function is a functioh : A — B, where|A| =n
and|B| = m. An (n,m)-hash family is a finite set{ of (n, m)-hash functions
such thath : A — B for eachh € H, where|A| = n and|B| = m. We use the
notationH F'(N; n, m) to denote arin, m)-hash family with|| = N.

13
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3.2 Perfect Hash Families

Let n, m andw be integers such that > m > w > 2. An (n, m, w)-perfect
hash family is ar{n, m)-hash family,H, such that for anyX C A with | X| = w,
there exists at least orte € H such thath|x is injective. We use the notation
PHF(N;n,m,w) to denote arin, m, w)-perfect hash family withH| = N.

3.3 Separating Hash Families

Let n, m, w; andw, be integers such that > m. An (n, m, w;, ws)-separating
hash family is an(n,m)-hash family,H, such that for anyX;, Xo C A with

| X1 | = wy, | Xa] = we andX; N X, = (), there exists at least oec H such that
{h(z) : € Xi}n{h(x) : x € Xy} = 0. We use the notatiofi H F'(N; n, m, wq, ws)
to denote arin, m, wy, we)-separating hash family witfH| = N.

[16] provides a survey on hash families. The following theorermimediate
from the definition of perfect hash families and separatiaghtfamilies.

Theorem 3.1.Let’H be an(V; n, m) hash family.

1. If HisaPHF(N;n,m,w), thenitisaPHF(N;n,m,w’) for all w < w.

2. f HisaSHF(N;n,m,w,ws), thenitis aSHF(N;n,m,w},w) for all
w) < wy andwh, < ws.

3. fHisaPHF(N;n,m,w; +ws), thenitisaSHF(N;n, m,w;, ws).

Next, we establish the relationship between hash famitidsades, we depict
a(N,n,q)-code,C, as am x N matrix M (C) ongq symbols, where each row of
the matrix corresponds to one of the codewords. Similar/,can represent an
HF(N;n,m), H, as anN x n matrix onm symbols, where each row of the
matrix corresponds to one of the functionsin These two matrices are transpose
to each other.
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Given an(N,n, q)-codeC, we defineH(C) to be theH F'(N;n,q) whose
matrix representation i8/(C)". Thus ifC = {z!,22,--- 2"} andl < j < N,
then the hash functioh; € 7(C) is defined by the rulé; (i) = 2%, 1 <i < n.

Obviously, the matrix representation of PHF and SHF shoatfy the fol-
lowing:

Lemma3.1.APHF(N;n,q, w) can be depicted as aN x n matrix with entries
from{1,2,..., ¢} such that in anyv columns, there exists at least one row such
that thew entries are distinct.

Lemma 3.2. ASHF(N;n, q,w;,ws) can be depicted as aN x n matrix with
entries from{1, 2, ..., ¢} such that in any two disjoint columiig andC, of size
wy andw, respectively, there exists at least one row such that theesnh the
columns’ are distinct from the entries in the colum@s.

Hence the relationship between PHF and FP codes and betwieartsl SFP
codes follows immediately by definition.

Theorem 3.2.A (N, n, q)-code,C, is aw — F'P code if and only if£(C) is an
SHF(N;n,q,w,1).

Theorem 3.3.A (N, n, q)-code,C, isaw—SF P code ifH(C)isanPHF(N;n, q,2w),
wheren > 2w.

Theorem 3.4.A (N, n, q)-code,C, is aw — SF P code if and only if(C) is an
SHF(N;n,q,w,w), wheren > 2w.

The proofs are trivial. Perfect hash families and sepagdtash families turn
out to be just another languages for FP and SFP codes.

3.4 Difference Matrices

Definition: An (n, k; \)-difference matrix is ak x nA matrix D = (d; ;), with
entries fromZ,,, in which the multiset

{dn; —d;jmodn : 1<j<n\}

contains every element @, ) times, for allh, i such thatl < h < i < k.



CHAPTER 3. HASH FAMILIES AND CODES 16

Example 3.1.1If ged ((k — 1)!,n) = 1, then thek x n matrix D defined by/; ; =
ij mod n is a(n, k; 1)-difference matrix.

The concept of difference matrix will serve as a tool latethe recursive
construction of perfect hash families in Theor&raQ

3.5 Set Systems

Definition: A set systemis a pair(X, B) where X is a set of elements called
points, and3 is a set of subsets of, the members of which are called blocks. A
set system can be described by an incidence matrix(XefB3) be a set system
whereX = {zy,x9,...,2,} andB = {By, By, ..., By }. The incidence matrix
of (X, B) isthe N x n matrix A = (a;;), where

1 if z; € B;
QAij = !
0 if Z; € B;.

Conversely, given an incidence matrix, we can define an agsdcset system
in an obvious way. Here, if’ is a(/V, n, 2)-code, then the matrix/(C') is a0 — 1
matrix, which can therefore be thought of as the incidenceiraf a set system.
For any codewordv € C', we will use B,, to denote the associated block in the
corresponding set system.

3.6 Sandwich Free Families

A set system X, B) is an (wy, wq)-sandwich free family provided that, for any
two disjoint subsetg’;, C; of B, where|C;| < w; and|Csy| < ws, the following
property holds:

(neju(ne)e(ue)n(us)
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An (w1, we)-sandwich free family, X, ), will be denoted as afw,, ws) —SEFF (N, n)
if | X| =nand|B|] =N.

The connection between SFF and SFP codes is stated as follows

Theorem 3.5.A w — SFP(N,n) exists if and only if there exists (@, w) —
SFF(N,n).

The proof is not so straightforward like the previous onel aill be given in
the proof of Theorend.16which focuses on explicit constructions of such codes.

3.7 Secure Codes

A codeC isw-secure if there exists a tracing algoritbdrsatisfying the following:
if a coalitionC of size at mostv generates a word then A(x) € C.

The tracing algorithmA4 on inputz must output a member of the coalition
C that generated the codeword. Hence, an illegal copy canabedrback to at
least one member of the guilty coalition. Clearly there ishope in recovering
the entire coalition since some of its members might be passiey are part of
the coalition, but they contribute nothing to the constiarcbf illegal copies.

Actually, the concept ofv-secure codes is not new to us since we have the
following result.

Proposition 3.1. C isw-secure if and only if C is aw-IPP code.

Proof. We firstly derive a necessary condition of a code toubsecure. Con-
sider the following scenario: l&t' be some code. Let; andC; be two coalition

of w colluders such tha€; N C; = (). Suppose an unregistered codeword is
caught which is marked by a codewardvhich belongs to botldesc,,(C;) and
desc,,(Cy). As a consequence, both coalitions are suspicious. Simieittier-
section is empty, it is not possible to determine with cettaiwvho created the
unregistered. It follows that if C' is w-secure then when the intersection(f
and(C}, is empty, the intersection a@fesc, (C;) anddesc,, (Cy) must be empty as
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well. Of course, the same is true fgrsubsets”,, ..., C;. This gives the nec-
essary condition. The sufficient condition is self-exptanaby the definition of
identifiable parent property of IPP codel

Hence, TA codes are secure codes as well. However, both I?FPAanodes
do not exist under the presence of unreadable marks as wildodied in the
next chapter. Therefore, IPP and TA codes are only inteig$tom a theoretic
point of view, and will not be treated subsequently. In thetraapter we will
explain more about unreadable marks and introduce a piaigddiraitor tracing
algorithm to construct “almost” secure codes.



Chapter 4

Unreadable Marks and PTT

Unreadable marks or undetectable bits are symbols in arrtantstate. For in-
stance, when the police or distributer recovers an illegalyoof an object, she
might find some symbols undefined in the codeword or couldhatetermine

which state an unreadable mark is in. The only thing she cas ttosimply re-

place them by “?"s.

On the other hand, unreadable marks can be deliberatelyedrbg the coali-
tions in order to make traitor tracing less feasible and ntakmselves safer from
being prosecuted. As a matter of fact, IPP and TA codes doxisit ender the
presence of unreadable marks as will be indicated later.edevwy FP and SFP
codes are resistent from the threats of unreadable marksibed innocent users
are safe from being framed by colluded codewords, they ame safer from being
framed by those codewords with unreadable marks.

Without unreadable marks, IPP and TA codes can exist anddeerinvesti-
gated by several researchers #i,[35, 10, 6, 2, 36, 37, 19, 29, 20]. However, in
the context of fingerprinting, the assumption that marksxoalbecome unread-
able is unrealistic.

Based on the above reasoning and the fact that SFP is anifigéngrsion of
FP codes, SFP finds more practical applications in indubtmgrefore, the explicit
construction of SFP codes will be our main focus in the neaptér.

19
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The remaining of this chapter will explain how unreadablekaaontravene
the existence of IPP and TA codes. In order to overcome thielgrg a proba-
bilistic approach will be proposed.

4.1 Unreadable Marks

Recall in Sectior3.7the idea of secure codes is introduced. We rephrase Proposi-
tion 3.1 as the following lemma.

Lemma 4.1. If C is aw-secure code then
Cin---NCr=0 = desc,(Cy)N---Ndesc,(C,) =10

for all coalitionsC, - - - , C,. of at mostw colluders each.

It seems that secure codes provide a good solution to thégpnaif collusion.
Unfortunately, whenv > 1, w-secure codes do not exist.

Theorem 4.1. For w > 2 there are naw-secure codes.

Proof. Obviously, it is sufficient to show that there are 2ecure codes. Let
W, @ ) pe three distinct legal codewords assigned to usgrs,, us, respec-
tively. Define the majority word/ = MAJ (¢, @ ¢®) by

cl(-l), if cl(-l) = cl(?) or cgl) = 02(3)
M, L5 0
7, otherwise

One can readily verify that the majority woid belongs talesco{uy, us}, desco{uy, us},
anddesco{us, us}, simultaneously. However, the intersection of the caaiiiis
empty. Hence, by Lemma 1, the2-secure code cannot existl

The proof of the theorem shows that if a coalition employstha&jority” strat-
egy it is guaranteed to defeat all fingerprinting codes. Baseabove argument
and PropositiorB.1 the existence of IPP and TA codes is denied. This forces us
to weaken our requirements for fingerprinting schemes. érfdhowing section,
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we intend to allow the distributor to make some random clsoideen embedding
the codewords in the products. The point is that the randamteh will be kept
hidden from the users. This enables us to construct codeshwtill capture a
member of the guilty coalition with sufficiently high prolbdy.

4.2 Probabilistic Traitor Tracing

Probabilistic traitor tracingRTT) is much more efficient in most of the cases.
In this scheme, we need not to identify colluders who havelabsly committed
crime! Instead, we treat a couple of might-be-colluders as suspaetl compute
the probability that they might be colluders. This may ndedainistically tell us
who is guilty for the first time. However, after several tineésdentification, some
pirates will become more and more suspicious by accumugl#tieir probabilities
of being guilty. Such a strategy works particularly well foe applications such
as pay-per-view movies that call for iterative retrievdigata.

Suppose a coalitiot’ of w users creates an illegal copy of an object. Finger-
printing schemes that enable the capture of a member of #igion C' with prob-
ability at leastl —e are calledv-secure codes witherror. Namely, PfA(z) € C] >
1 —e. In other words, The traitor tracing algorithon inputr outputs a member
of the coalitionC' that generated the codewardvith high probability. To do so,
we intend to allow the distributor to make some random clsowdeen embedding
the codewords in the objects. Our point is that the randonicelowill be kept
hidden from the users.

We begin by considering gV, n)-code which is:-secure withe-error for any
e > 0. Letc,, be a column of height in which the firstm bits arel and the rest
are0. The codeC' (N = d(n — 1),n) consists of all columns,,...,c,_;, each
duplicatedd times. The amount of duplication determines the error i e.

Example 4.1. The code”' (16, 5) for five usersd, B,C, D, E'is

IMore generally speaking, we say they committed crime withbpbility 1.



CHAPTER 4. UNREADABLE MARKS AND PTT 22

B Bs B3 By
—
1111 1111 1111 1111
0000 1111 1111 1111
0000 0000 1111 1111
0000 0000 0000 1111
0000 0000 0000 0000

SEWRG ReviS

An intuitive traitor tracing strategy is: if any of the firdtree positions of a
pirated codeword i, then we knowA must belong to the coalition. If we look
at the other direction, we have that if any of the last thresitpms of a pirated
codeword i9), then we know/ ' must belong to the coalition. i and B collude,
C, D, andE are safe from being framed. However,Afand E collude, the de-
scendance oft andE could jeopardize legal users &f C', andD. Nevertheless,
this is very unlikely becausd and E differ in 16 places and the probability for
AandFE to frameB, C, or D is barely(%)16 ~ 1075. This gives a heuristics for
probabilistic traitor tracing.

Consider, ifB is innocent, then what, C, D, E could detect in the first eight
positions is totally indifferent, namely, eithét111111 or 00000000. If some of
A, C, D, or E collude, then the number 6fs and1’s should be evenly distributed
in By and B,. If the number ofl’s tends to appear more ifi, rather than inB;,
then we deduce tha? is highly suspicious.

Let w, ..., w™ denote the codewords @& (N, n). Before the distributor
embeds the codewords 6f NV, n) in an objects he picks a permutatieras ran-
dom as possible. Uset’s copy of the object will be fingerprinted using the word
7w . Note that the same permutatioeris used for all users. The point is that
will be kept hidden from the user. Keeping the permutatiatdbn from the users
is equivalent to hiding the information of which mark in tHgect encodes which
bit in the code. This simple technique will be shown to bectie to overcome
the barrier of unreadable marks.

Before going to the construction, we introduce some natatio

1. LetB,, be the set of all bit positions in which the users see columbhgpe
cm. Thatis,B,, is the set of all bit positions in which the first users see a
1 and the rest see(a The number of elements i, is d.
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2. For2 < s <n—1defineR, = B,_; U B,.

3. For a binary string:, let weight(z) denote the number dfs as a binary
case of Hamming weight defined in Sectidni.2

Theorem 4.2(Boneh and Shawg]). Forn > 3 ande > 0 letd = 2n?log 2?” The
fingerprinting schemé'(NV, n) is n-secure withe-error.

The argument has been literally treated above, but we fazentie language
here. The length of this coded$n — 1) = O (n3 log %) Intuitively, suppose user
s is NOT a member of the coalitiofi; which produced the word. The hidden
permutationr prevents the coalition from knowing which marks represemtctv
bits in the code” (N, n). The only information the coalition has is the value of the
marks it can detect. Observe that without usarcoalition sees exactly the same
values for all bit positions € R,. Hence, for a bit positiohe R, the coalition’;
cannot tell ifi lies in B, or in B,_;. This means that whichever strategy they use
to set the bits of|g,, thel’s in x|z, will be roughly evenly distributed between
x|p, andzx|p,_, with high probability. As a result, if th&’s in z|, are not evenly
distributed then, with high probability, useris a member of the coalition that
generated.

Algorithm for probabilistic traitor tracing will be statextcordingly. The input
codewordr found in the illegal copy may contain some unreadable mabit
“?”. As a convention these bits are set to “0” before the weord feed into the
algorithm.

INPUT: z e {0,1}",
AIM: Find a subset of the coalition that produced
Algorithm:

1. If weight (z|p,) > 0 then output “Uset is guilty.”
2. If weight (z|p,_,) < d then output “User is guilty.”

3. Forsfrom2ton — 1 do:
Letk = weight (x
If weight (x

R,):

B,1) < % —/Elog 2, then output “Uses is guilty.”
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The correctness of algorithm rely on the following theorem.

Theorem 4.3.Consider the cod€’ (N = d(n — 1), n) whered = 2n?log 2*. Let
S be the set of users which is declared as guilty on inptthen with probability
at leastl — ¢, the setS is a subset of the coalitiofiy that produced:.

Before the proof of the theorem we introduce two preliminangmas.

Lemma 4.2 (Chernoff Bound) Let X be a binomial random variable over
experiments with success probabilit§2. Then,

k
Pr {X Sl a} < e 207k

The proof can be found in standard textbooks on probabligpty.

Lemma 4.3. LetY follows a hyper-geometric distribution:

B
&)

Let X follows a binomial distribution with success probability2:

= ()

Then, PiY = r] < 2Pr[X = 7]

Priy e
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Proof. For the sake of brevity assumaés even. (The case fdrodd is similar.)

()G

Prly =r] =
I
(kK\dd—-1)---(d=r+1)d(d—1)---(d—k+7r+1)
_<7’) 2d(2d — 1) ---(2d — k + 1)
k _kdz(d—l)z...<d_?2)2
<<7’)2 d(d—l)...(d_%)
(R ook d(d—l)...(d_%)
_<7’)2 (d—1(@d-3)-(d- %)
_<k‘)2_k d(d—1)--(d— 52
\r)T 14D d—2+d)- -5+ ) (@-EY
kN .k d
g(T)Q (d— 1)
()

Note that the last inequality follows sinée< d. 1
The proof of Theorerd.3is now as follows:

Proof. Suppose user was declared guilty, i.el, € S. Thenweight (z|g,) > 0.
This tells us that user must be a member af, (otherwise, the bits i3; would
appear undistinguishable fok). Similarly, if n € S thenn € C,.

Suppose the algorithm declared uset s < n as guilty. We show that the
probability thats is not guilty is at most. This will show that the probability that
there exists a user ifi which is not guilty is at most.

Let s be an innocent user, i.es, & Cy. As was discussed above, this means
that the coalition”y cannot distinguish between the bit positiondin Because
the permutationr was chosen uniformly at random from the set of all permu-
tations, thel’s in x|z, may be regarded as being randomly placed |in . Let
k = weight (z|g,). DefineY to be a random variable which counts the number of
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1'sinz

B._, given thatx

g, containsk 1’s. For any integer, 0 < r < k:

() G2,)
d
(%)
follows a hyper-geometric distribution whede= 2n?log 27" is the size of the

block. The expectation df is g To bound the probability thatwas pronounced
guilty we need to bound

PrlY =r] = Prlweight(z|p,_,) = 1 | weight(z|g,) = k] =

Pr

k k 2n
Y <& e
) zoge]

from above. This can be done by comparingo an appropriate binomial random
variable.

Let X be a binomial random variable overexperiments with success proba-
bility 1. Lemmad4.3tells us that for any we have that Piy” = 7] < 2Pr[X = r].
This means that for any > 0

k
Pr[Y—§<a

k
< 2Pr {X — " a] < 2¢20°/k

where the last inequality follows from the standard Chefrbolund of Lemma
4.2. Plugging ina = /£ log 2 leads to

k k 2n

2 €
< 26_10g% =1L
n

Pr

Hence, if usek is innocent then the probability of her being declared gudtat
most <. This also means the probability that some innocent usébwitleclared
guilty is at most, as desired. 1

Note that the code size is always smaller than the code lemgth factor
of d here, meaning a poor code size. This problem can be overcathehe
concatenation method discusseddhih order to increase the code size and hence
accommodate more users. We provide the sketch conceptRegall in Section
2.1.5the definition of code composition. L&Y' (N’, n’) be an outer code over an
alphabet sizen, with code sizen’ and code lengtliV’, where the codewords are
chosen independently and uniformly at random. The idea topose out-
secure inner cod€' (N, n) with the outer cod€’(N’, n’). Then the concatenated
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code will contaim’ codewords and has lengi N = N’d(n—1). Itis made up of
N’ copies ofC'(N,n). The point is that the codewords of the cadewill be kept
secret from the users. This is in addition to keeping hidden\t’ permutations
used when embedding thé€ copies ofC'( N, n) in the products. A traitor tracing
algorithm is also provided for this scheme which is simitathe original one.
Moreover, N andn can be chosen in such a way thais exponential inV. For
more details we refer the reader to their paggdr [n the next chapter we will
concentrate on the construction of secure frameproof codes



Chapter 5

Constructions of SFP Codes

This chapter discusses various constructions that meeetherement of secure-
frameproof property. The constructions can be classifiemltimo classes. One of
them is called direct construction which will be studied Ine tfirst half of this
chapter. In such scheme, we construct directly without aaty bf previous exis-
tential results. The other is recursive construction wkidhbe investigated in the
second half of this chapter. Given a codeatisfying certain properties the recur-
sive construction augments it to longer codewords and largge size satisfying
the original properties as well.

Part I: Direct Construction

5.1 Hadamard Matrices and Jacobsthal Matrices

Definition: A Hadamard matrix is an x n real matrixX{ which satisfies? Hy =
nl. The name derives from a theorem of Hadamard.

Theorem 5.1.Let X = (z;;) be ann x n real matrix whose entries satisfy; ;| <
1 for all 7 and j. Then|det(X)| < n"/%. Equality holds if and only ifY is a
Hadamard matrix.

Hwe call it the initial seed.

28
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Let xy, 2o, ..., x, be the rows ofX. By Euclidean geometrydet(X)| is the
volume of the parallelepiped with sides, -, . . ., z,,; hamely,

|det(X)| < || - |wa] - - - |

where|z;| is the Euclidean length af;; equality holds if and only ify, zo, . . ., x,
are mutually perpendicular. By assumption,

1/2
|| = (%21 +ah+ - +x22n> / <n'?,

with equality if and only if|z;;| = 1 for all ;.
Subsequently, we focus on Hadamard matrices with all entrie

For which orders: do Hadamard matrices exist? There is a well-known nec-
essary condition:

Theorem 5.2. If a Hadamard matrix of ordern exists, them = 1or2orn =0
(mod 4).

To see this, we observe first that changing the sign of every ena column
of a Hadamard matrix gives another Hadamard matrix. So ¢hgrige signs of
all columns for which the entry in the first row4s, we may assume that all entries
in the first row aret. (We abbreviater1 and—1 to 4+ and— respectively.)

Because every other row is orthogonal to the first, we seeethet further row
hasm entries+ and—, wheren = 2m. Moreover, ifn > 2, the first three rows
are displayed in the above figure with= 4a. The most important open question
in the theory of Hadamard matrices is that of existence (hewotvords, whether
or not the above necessary condition could serve as a saffioiadition is not
known).

Conjecture 5.1. A Hadamard matrix of ordetn exists for every positive integer
n.

The simplest construction comes from James Joseph Sylveste
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Theorem 5.3. Let H be a Hadamard matrix of ordern. Then the partitioned

matrix
H H
H —-H

is a Hadamard matrix of ordetn.

This observation can be applied recursively and leads téollm@ving series
of matrices.

Hy = [1]
1 1]
{1 1} {1 1} 11 1 1
1 —1 T s _
H,— SR ] 1
19l 1 1 1 =il 1
1 —1] |1 -1 Rk, =

In this manner, Sylvester constructed Hadamard matricesdeir2” for every
non-negative integes. Sylvester’s matrices have a number of special properties.
They are symmetric. The elements in the first column and tsierbw are all pos-
itive. The elements in all the other rows and columns are lg\@nided between
positive and negative.

Raymond Paley later showed how to construct a Hadamardxadtorder
q + 1 wheregq is any prime power which is congruent 3omodulo4. He also
constructed matrices of ord2fq -+ 1) for prime powers; which are congruent to
1 modulo4. His method uses finite fields.

Letq be a prime power congruent to 3 modulo 4. Recall that in the &#(q),
half of the nonzero elements are quadratic residues, afdutbuadratic non-
residues. The quadratic character of GF(q) is defined as:

0 if z =0;
x(xz) =< +1 if zis aquadratic residue
—1 if z is a quadratic non-residue

Definition: Let A be a matrix whose rows and columns are indexed by elements
of GF(q), and has entries as, = x(y — x). Then, A is skew-symmetric, with
zero diagonal andt1 elsewhere. Such matrix is then calledacobsthal matrix.
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Theorem 5.4. If we replace the diagonal zeros byl s in the Jacobsthal matrix
and augment it by a new row and a new column all of enttiese obtain a
Hadamard matrix of ordeg + 1 called Hadamard matrix of Paley type.

11
"= [1 A—I}

Example 5.1. For p = 7, we obtain the following matrix:

o 1 1 -1 1 -1 -1
-1 0 1 1 -1 1 -1
-1 -1 0 1 1 -1 1
A=|(1 -1 -1 0 1 1 -1
-1 1 -1 -1 0 1 1
1 TG PN 0 ]

] ] i 2

A normalized Hadamard matrik of orderq + 1 of Paley type is now given

as follows:
1 1
H:(lA—J'

Example 5.2.For p = 7, we obtain the following matrix over GF(3) by replacing
-1 by 2 fromA:

Al =

— =N NN O
=N =D NN O
N = NN DO ==
NN O =N
NN OD = N
N O~ = N~ N
O = =N =N DN

Let Hy, be any Hadamard matrix of ordék when+1s are replaced bys
and—1s by 1s.

Theorem 5.5(Encheva & Cohenl[7]). Hy isabinary2—SF P (N,n) whereN =
n = 4k.

Proof.We show that there is a column lik@011) " or (1100) " for anye;, cs, c3, ¢4 €
Hy;.. We consider a normalized Hadamard matrix where the firstisdaie allls
and firstly assume none of, cs, c3, ¢4 is the all1s codeword. Suppose the con-
trary. The supports af;, 5, c3 may be generalized as
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Because none afj, s, c3, ¢4 is the all 1s codeword, they should contain equal
number of0s as1s, and every two rows should coincide in half of the positions
and differ in the other half positions. Thereforge should contair2k 1s, yielding:

a+(k—0b)+(k—c)+d=2k
Sincecs should coincide with; in exactly2k positions, we have that:
a+b+ (k—c)+ (k—d) =2k
Again sincecs should coincide witle; in exactly2k positions, we have that:
a+b+c+d=2k

A routine calculation leads to = b = ¢ = d.

Accordingly, the support of;, ¢;, ¢3, ¢4 IS given by

2%k 2%k
a1 1., N T e R o T .0
k k k k
o 1.... ¥ . - ... 01... D ... 0
() (k—2) (k—2) (z) (k—z) (z) () (k—z)
——— " —
c3 1 ...10 ...01...0...a0...10 ...0
(k—y) ) (v) (k—y) () (k—y)  (k-y) (v)
—
¢ O0O..0L..0...0...1 0...0...20... .1
\I% \I%
yz>k—uw k—y>x
We deduce that
r+y==~Fk

which gives the following catastrophic patterns:
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() (k—z) (k—z)  (2) (k—z)  (2) ()  (k—2z)
cs 1...10 ... ...0...01...0... ...10 ...
() (k—z) (k—2) (o) (k—z)  (2) (z)  (k—a)

— "

P R N W,
4 O0..a...a...170..a...0......1

However, this is impossible becausgandc, should coincide iRk positions.
Moreover, if one ofcy, ¢, ¢3, ¢4 IS the all1s codeword then it is even easier for
them to exhibit the — SF P property. HenceH,, is2 — SFP. |

Theorem 5.6. Jacobsthal matrices generate- SF P over GF(3).

The proof is quite similar to the previous example and carobed in [L7].
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5.2 The Subsets Method

Another direct construction which employs the propertiesisets was proposed
by Tonien and Safavi-NainiBy].

Let (k) bethe se{1,2,...,k}. By (k); we denote the set of all subsets(6f
which contain exactly elements.

With parameters, ¢, r, consider the matri®/, .(k) whose rows are labeled by
elements of k), and columns are labeled by elementsg/of.. ForU € (k),,V €
(k),, the entry at the row/ and columnl/ of the matrix/, (k) is [U N V|. The
codeC, (k) is composed by the rows of the matul¥; . (k). Without ambiguity,
we identify a codeword ot’; (k) with a setU < (k), and a position with a
setV € (k),. By definition, the symbol of the codewofd at the position/ is
Uy=|UNV]|.

The codeC; <,.(k) can be defined in a similar way. Codg (k) is depicted
by the matrixM; <.(k) whose rows and columns are labeled by elements of the
sets(k), and(k)<, respectively. Fot/ € (k), andV € (k),, the symbol of the
codewordU at the position/ isUy = |U N V.

CodesCy, (k) andC; (k) are binary codes. They are constructed the same
as codeC; (k) and C; (k) except that the symbol of the codewdrdat the
positionV isUy = |[U N V| (mod 2).

Example 5.3.Codes of’35(5), C55(5), Cs, <2(4), andC’; .,(4) are shown below:

03,2(5) {152} {173} {154} {155} {273} {274} {255} {354} {375} {455}

N

{1,2,3} 1
{1,2,4}
{1,2,5}
{1,3,4}
{1,3,5}
{1,4,5}
{2,3,4}
{2,3,5}
{2,4,5}
{3,4,5}

ORRPRRPRRPREPRLRNNN
RPORPRRPREPNNRREN
PRPORNREPNRLRNR
PRPPRPONNRNRR
PRPNMNNORRERLR

PNRPNRPORRNR
PNONNRPRPRPONRR
NFRPRPNRPRRPRNOR

NREPNRPRPNRROR
NNRPRPNRRRRLRO
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C5o(5) | {12y {1,3} {1,4} {1,5} {2,3} {24} {2,5} {3,4} {3,5} {4,5}
{1,2,3)| O 0 1 1 0 1 1 1 1 0
{1,2,4} | © 1 0 1 1 0 1 1 0 1
{1,2,5} | © 1 1 0 1 1 0 0 1 1
{1,3,4} | 1 0 0 1 1 1 0 0 1 1
{1,3,5} | 1 0 1 0 1 0 1 1 0 1
{1,4,5} | 1 1 0 0 0 1 1 1 1 0
{2,3,4} | 1 1 1 0 0 0 1 0 1 1
{2,350 | 1 1 0 1 0 1 0 1 0 1
{2,4,5} | 1 0 1 1 1 0 0 1 1 0
(3,45} | © 1 1 1 1 1 1 0 0 0
Cso(4) [ {1} {2} {3} {4} {1.2} {1.3} {14} {23} {24} {3.4}
1,23y 1 1 1 0 2 2 1 2 1 1
(1,24} | 1 1 0o 1 2 1 2 1 2 1
(1,34} | 1 0o 1 1 1 2 2 1 1 2
(2,34} 0 1 1 1 1 1 1 2 2 2
Cio() [ {1t {2} {3} {4} {12} {13} {14} {2,3} {2,4} {3,4}
1,235 11 1 0 0 0 1 0 1 1
(1,24} | 1 1 0 1 0 1 0 1 0 1
(1,34} |12 0o 1 1 1 0 0 1 1 0
{2,3,4) a1 B—t 1 1 il 0 0 0

The following two theorems are used to establish the seftaneeproof prop-

erty of Cy (k) andC; <. (k).
Theorem 5.7.1f S, Sy, S3, and Sy are arbitrary subsets dfk) such that
Si ¢ S;andS; ¢ S;forallie {1,2}andj € {3,4}

then there exists an elemerifse (k)<; such that the following two sets

{|V N Sy mod 2,|V N S5 mod 2} and {|V N S;| mod 2, |V N Sy| mod 2}

are disjoint.

This further implies the following.
Corollary 5.1. If Sy, .Ss, S5, and.S, are arbitrary subsets dft) such that
Si ¢ S;andsS; ¢ S;foralli e {1,2} andj € {3,4}
then there exists an elemerifsc (k)<; such that the following two sets
{lVNnSi], [V NS} and {[V 1 .S], [V N Saf}

are disjoint.
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The proof of Theoren®.7 and Corollary5.1 can be found in34] which ex-
haustively investigates all of the possibilities of distiiion of 0s and1s. Based
on the above fact, we have the following explicit constros.

Theorem 5.8.For anyk > 4, Cy»(k) is a ternary2— S F P with code size, = (’;)
and code lengttv = (%).

Proof. We indicate a proof which is easier than the original founthmpaper of
Tonien and Safavi-Naini. First it is sufficient to show thia€h, »(8) is2 — SFP
then the same is true as well f6% »(%) for all £ > 8.

Therefore, whenever > 8, the submatrix of dimensioff) x (3) out of the
matrix of dimension(}) x (%) will always have the2 — SEF'P property. Thus
the conclusion follows. Now in order to finish the proof, wél $tave to verify
the2 — SF'P property fork = 5,6, 7,8, but this can be done either by hand or

computers. 1

Theorem 5.9.For anyk > t, C; <3(k) is a quaternary2 — SF' P with code size

n = (%) and code lengttv = (%) + (§) + (%) = £k(k> +5).

Theorem 5.10.For anyk > 4t +r—1andr > 3, Cy,.(k) is a(min{t,r} + 1) —
ary 2 — SF P with code size: = (}) and code lengttv = (¥).

Proof. For any four distinct elementsy, Ss, S, Sy of (k),, by Corollary5.1, there
existsV' € (k)<s such thatthe twosefgV’ N .Sy |, |V N Sy|} and {|V N Ss|, |V N Sy}
are disjoint. Sincé > 4t+r—1 = |Sy|+|Sa|+|Ss]|+]Ss|+7—1, we can add more
elements from the sék) \ (S, U S, U S; U Sy) to V' and obtain a set” € (k),.

We haveV N S; = V' N S;, and thus, the two set§V' N Sy, |[V' N Ss|} and
{|[V" N Ss|, |[V' N S,|} are disjoint. This proves that the code, (k) isa2— SFP.

I

Combining the results and Theoreny, 5.9, and5.10 we have the following
binary codes.

Theorem 5.11.For any k > t, C} ;(k) is a binary2 — SFP with code size
n = (¥) and code lengttv = (%) + (%) + (%) = 1k(k? + 5).
Theorem 5.12.For anyk > 4t +r — 1 andr > 3, Cf (k) is a binary2 — SF'P

with code sizex = (¥) and code lengtiv = (*).

Note that the “Subsets Method” which is capable of genegagixponential
code sized2 — SF'P is much better than the “Hadamard Method” which gives
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2 — SFP codes with code size only the same as the code length. In toder
demonstrate this, we take advantage of Stirling’s formula

k
k! ~ 271k (E) )
e

Consider the binary code derived in Theorér2, the maximum code size is for
t=15,

which is exponential with respect to the code lengthMoreover, the minimum
code length is for = 3, N = k(k* + 5). Therefore, the maximum code rate can
be achieved as:

R = N_llogqn

N <ék(k2 + 5)) T (2’\/%)

which tends to zero dsgoes to infinity. Nevertheless, we hae= O ((logn)*).
Later on, we will introduce better codes with positive codies where again the
code size is exponential with respect to the code lengtho,Alg to now we have
only investigate@ — SF' P codes, we will show — SF P codes forw > 2 in the
sequel.
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Part Il: Recursive Construction

5.3 Concatenation Method

Recall that in Sectior2.1.5 of second chapter the concatenation of two codes
is defined. The construction of the section employs coneditem of two codes:
normally a longer outer codB and a shorter inner codé. The concatenation is
usually used to increase the code length and the separagigipts,\ ,, defined

in Section2.4.1

Theorem 5.13.Letu > v, C; be au — SFP code with\, andCy av — SFP
code with)\,, then the concatenated, % C; is av — SF'P with a new separating
weight\ > A\, \,.

Proof.Cs, is anv — SF' P outer code and the symbols©f are replaced by a one-
to-one mapping by codewords 6f, so if any two coalitions of; of size at most

v IS separable, then any two coalitions(@f C- of size at mostb is separable as
well. The separating weight of outer code\is and for each separated position of
Cs the inner codé&’; itself separates in at leas}, positions by definition. Hence,
the new separating weight is at least\, \,. 1

Example 5.4.Let A and B be the following code:

00000
el 1 4
22220
3 _3 il
ST W 1
23011
00001 10321
11122 01231
A=12 2 2 21 B=113202
01210],. 02312
31022
2 01 3 2
2130 3
3021 3
03123
1203 3], .
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It is easy to check thal is a3 — SF'P code andB a2 — SF' P code. Define the
following mapping of alphabet symbols Bfto the rows ofA:

0 — (00001)
P R CRIE)
2 (22221)
3 — (01210)

Applying this mapping t& we obtain a codel s B with parametersV = 16,n =
25,q = 3:

00001 00001 00001 00001 00001]
11122 11122 11122 11122 00001
22221 22221 22221 22221 00001
01210 01210 01210 01210 00001
01210 22221 11122 00001 11122
22221 01210 00001 11122 11122
11122 00001 01210 22221 11122
00001 11122 22221 01210 11122
11122 01210 22221 00001 22221
0000122221 “ 01210~ L1122 2222%
01210 11122 00001 22221 22221
22221 00001 11122 01210 22221
22221 11122 01210 00001 01210
01210 00001 22221 11122 01210
00001 01210 11122 22221 01210
[ 11122 22221 00001 01210 01210

Ak DB =

- 16x25

A more practical application of the concatenation metholll lvg indicated
later in Sectiorb.5.
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5.4 Conversion from Hash Families

Constructions for hash families have been extensivelysingated by many re-
searches. Here, we assume the existence of certain hadie$aamd use them to
construct secure frameproof codes. We first construct srodéts and use them as
the initial seed to construct bigger ones.

We will use sandwich free families, perfect hash families] aeparating hash
families to construct SFP codes. Note that in the constinctine unreadable
marks are unnecessary for discussion. Before doing so, @sept a direct con-
struction and a recursive construction of SFP codes whighaas the idea of
recursive construction.

Theorem 5.14.For any integerw > 2, there is aw — SEP ((**7)), 2w).

w—1

Proof. Recall the representation of incidence matrix defined ini&e6.5 of set
systems. Let the cod@ be built from an incidence matrix whose first row contains
all 1s and the remaining columns correspondgstavhich is the set of subsets
By, ..., By, where B; contains all possibléw — 1) choices out of(2w — 1)
elements, yieldingV = (**'). We will show thatC' = {u®,...,«®")} is a

w — SFP(N,n) code whereV = (**~') is the code length and = 2w is the
code size. It suffices to verify that for al;,Cy; € C and |Cy| = |Cy| = w,
C1NCy = (. Sincen = 2w, if follows thatCy, = C'\ C}. Because the code length

is N = (*»~1), there is a unique bit positiansuch that.\”’ = 1 for all u) € C,
anduf.j) = O forall u") € C,. It follows thatz; = 1if 2 € desc,(C,) andz; = 0

if x € desc,(Cs) or vice versa. Hencelesc,, (C1) N desc,(Co) = 0. |

Example 5.5. Using the above method, a 3-SFP(10,6) code can be constructe
and interpreted as an incidence matrix as follows:

1 FEg@gEee™ 11
111100000 O0
1000111000
M(C) = 01 00100110
001001O01O0T1
00010O01O0T1T1

6x10

A recursive construction can be provided in a similar way.

Theorem 5.15.For any integerw > 2, there is aw — SFP (2(**), 2w + 1).

w—1



CHAPTER 5. CONSTRUCTIONS OF SFP CODES 41

Proof.Let C be the code defined in Theoréni4 Denote byM (C) the incidence

matrix of C' of dimensior2w x (**~'). Then we can construct@w+1)x2(**~")
matrix M as follows:

w—

_(_M(C) | M(O)
M= ( 0---0 ‘ 1---1
Then, it is not hard to say that/ can serve as the incidence matrix ofva—
SFP(2(* 1), 2w+1). 1

w—1

Next, we formulate the SFP codes in terms of hash familiesalRehe defini-
tions of set systems and sandwich free families definedegamliSectior3.5and
Section3.6:

Lemma 5.1. LetC' = {u®,...,u™} C {0,1}" and letz € {0,1}". Then
x € desc,(C) if and only if

w w
ﬂ B,» € B, C U B .
i=1 =

Proof. Note thatnB,,, C B, if and only if z; = 1 when all the codewords ¢
havejth bit equal tol. Likewise, B, C UB, if and only ifz; = 0 when all the
codewords inC' havejth bit equal ta). The conclusion follows. 1

Based on the lemma, we restate Theofefand prove it now.
Theorem 5.16.A w — SFP(N,n) exists if and only if there exists (@, w) —
SEF(N,n).

Proof. Suppose thatX, B) is a set system. It suffices to say thiat, B) is not a
(w,w) — SFF if and only if there is a séi” C X such that

(1Bcwc (B

BeCq BeC,
and
(fBcwc |JB
BeCs Bels
where|Cy| = |C2| = w. Now, viewingC; and C, as sets of codewords in the

associatedn, N)-code, the two conditions above are equivalent to

desc,(C1) Ndesc,,(Cy) # 0.
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by Lemma5.1. |

The following two theorems are given earlier in Chapter 3ckiwill be used
now.

Theorem 5.17.A (N, n, q)-code,C,isaw—SF P codeifH(C)isanPHF (N;n, ¢, 2w),
wheren > 2w.

Theorem 5.18.A (N, n, q)-code,C, is aw — SF P code if and only ifH(C) is
anSHF(N;n,q,w,w), wheren > 2w.

These theorems tell us that if we can find the construction®PftF or SHF,
we have equivalently the SFP codes as well. We now examinetuesive con-
struction.

Theorem 5.19.If there exists dw,, wy) —SFF(v,m)and aPHF(N;n,m,w,+
wy), then there exists @y, wy) — SFF(vN,n).

Proof.Let (X, B) be n(wy, ws)—SFF(v,m), and letF be aPH F (N;n, m, w,+
wy), Wwheref : Y — X forany f € F. DefineW = X x F, and for every
y €Y, define

Ay ={(Bsw,f) : fEF}.
LetA = (4, : y €Y). We will show that the set syste(h/, A) is a(w;, wy) —
SFF(uvN,n).

Suppose thatWW, A) is not a(w, ws) — SFF(vN,n). Then there exist two
disjoint subsetg§’;, Cy C Y such thatCy| = wy, |Cs| = wq and

(na)u(na)(Ua)n(ua)

Then, for everyf € F, it must be the case that

(e)u( )< () 5e)

yeC y€Co yeCy yeCo

However, sincé" is a perfect hash family, there is gne F' such thatf|c, ¢, is
one-to-one. For this particuldr, f(C) and f(Cs) are two disjoint subsets of,
and therefore the last equation contradicts the fact(tNat3) is an (wy, wy) —
SFF(v,m). 1
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In [4], a recursive construction of perfect hash families isassed in order to
provide an infinite class of prefect hash families. They #agesdl in the following
two theorems.

Theorem 5.20.Suppose there existsRAH F'( Ny; ng, m, w), and suppose that
ged(ng, (g’)') = 1. Thenthereis &@HF (((g’) + 1) Ny;n2, m, w).

Proof. Recall the definition of difference matrices mentioned ictl®m 3.4. De-

note D = (d;;) by the ruled; ; = ij mod ng,0 < i < (4),0 < j < np— 1.

According to the fact thagcd(no, (3)!) = 1, the values ofl; ; mod n, are pair-
wise distinct. Thereforel) is an (no, (’2‘) + 1; 1)-diﬁerence matrix which can be
embedded into the origindt H F'( Ny; ng, m, w) to yield a bigger

PHF (((3) +1) No;ng, m,w). |

One nice thing about Theorem20is that it can be iterated.

Theorem 5.21. Suppose there exists BH F'(Ny; ng, m,w), and suppose that
ged(ng, (3)!) = 1. Then there is @ HF (((g’) + 1) No; 2’ m, w) for any in-
tegerj > 1.

In order to iterate, we need two seeds as the following:
Example 5.6. There exists @ H F'(7;7,4, 4) as follows:

123412 3
123 4 214
1,2, 3 4/ 347 1
123 443 2
23231114
2412 3 43
11 2.2 3 4 3

Example 5.7. There exists a2, 2) — SFF(3,4), or 2 — SF'P(3,4) whose inci-
dence matrix can be depicted as follows:

0 0

_ o O =

0
1
1

[ s R

Then, with Theoren®.19and Theorenb.21in mind, we have the following
infinite classes of 2-SFP codes.
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Theorem 5.22.There exists & — SFP(3- 77+ 7%) forall j > 0.

Proof. We have Exampl&.6 as a initial seed, and we iterate by Theoremlto
get an infinite class oPHF (((;‘) +1)7 7,774, 4) — PHF (7”1; 72 4, 4)
for all j > 0. On the other hand, since2a— SFP(3,4) exists by Examplé.7,
we have an infinite class af— SFP(3 - 77+, 7' ) by Theorenb.19. |

If we use separating hash families instead of perfect hasiliés, we also
have a similar recursive construction.

Theorem 5.23.1f there exists affw;, ws)—SF F(v,m)and anSH F(N;n, m, wy, ws),
then there exists aw,, wy) — SFF(vN,n).

The proof is similar as before. Also id]} a similar recursive construction for
providing infinite class of separating hash families is jmled as follows:

Theorem 5.24.Suppose there exists & F'(Ny; ng, m, wy, wsy), where
gced(ng, (wiws)!) = 1. Then there exists afiH F ((wlwg + 1)7 Np; ngj,m, wy, w2>
for any integer; > 0.

An initial seed of separating hash families can be providsdw:

Example 5.8. There exists a® HF'(3;7,4,2,2) as follows:

o, TR B 3 a0
2112433
1212 3 4 3

Combining the seeds served by Exampléand Examplé.8leads to:

Theorem 5.25.There exists & — SFP(9-5/,7%) forall j > 0.

Proof.From Theoren®.24and Examplé.8, we have an infinite class of F'(3 -
57;7%,4,2,2) for all j > 0. Since a2 — SFP(3,4) exists by Examplé.7, the
conclusion follows by Theores.23 1
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Here the code rate is

R=N"1logn

=95 log 7

_ 2log7
957
_log7 (2 J
- (6)

which still tends to zero aggoes to infinity.

Also, the asymptotic behavior of code lengthNs= © ((log7 n)\os 7).

A more general result fap > 2 can be provided in a similar fashion.

Theorem 5.26(Stinson B1]). Letw > 2. Then there exists an

w— SFP (2(2j_‘11) C(w?+1),(2d + 1)21) forall j > 0 andd > w such that
ged (2d + 1, (w?)!) = 1.

The proof is similar to the one of Theorem20 combining the existence of
w—SFP(2(2""),2w+ 1) in Theorenb.15

w—1

The following result is an immediate corollary of Theorérat

Corollary 5.2. For anyw > 2, there exists an explicit construction for an infinite
class ofw — SEP(N,n) whereN = O ((1Og )\ (wz+1)>

It is important that we choose our seeds as best as possibleover, in b,
32], more new constructions for perfect hash families andisejpe hash families
are established using orthogonal arrays and Latin reaarag follows.

Theorem 5.27.For any positive integers: andw such thatw < m, there exists
an infinite class o H F/(N; n, m, w) for which N is O ((wz)log*" (log n)).

Note thatlog* : N — N is a function growing very slowly and is defined
recursively as

log"1 =1
log®n = log" ([logn]) + 1,if n > 1.
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Example 5.9.10g* 10" = log" 10 + 1 =log" 1 +1+1=1+1+1=3.

Theorem 5.28. For any positive integersn, w; andw,, there exists an infinite
class ofSH F(N;n, m,wy, ws) for which N is O ((wlwg)log* " (log n))

This gives immediately the following consequence.

Corollary 5.3. For any positive integersn, w, there exists an infinite class of
w — SFP(N,n, q) for whichN is © ((wz)l"g*” (log n)).

Here the code rate is

logn - 1

R=N"'logn ~ —= F —
() " (logn) ()"

which would tend to zero however much slower than the prevane.

The proofs of Theorerb.27and5.28are beyond the scope of our thesis and
can be found in32].
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5.5 Linear Codes

Recall the notions defined in Sectiari.4 Error correcting codes with sufficiently
large minimum distance can serve the secure-frameprogkpip Also, positive
code rates which have not been achieved before will be adddady using error
correcting codes here.

In [1, 14, 4], the following condition is given.

Theorem 5.29.1f an error correcting code” (N, k, d), satisfiess > 1 — (Tl)
2
theniitis also anPHF(N; ¢*, q, w).

Proof.To say that” is a PHF, it suffices to say that anycodewords{«"), ..., u(*)}
of C' containw distinct values in at least one entry. Otherwise, then fergentry
some pair of the:;'s agree and hence the sum of distances betwee(‘iz”l)']pairs
of u'sis< N(4) — N = (4)N (1 —1/(3)), a contradiction. 1

One nice application can be derived from Reed Solomon cédesed Solomon
code is a maximum distance separable code having paranieters &, q — k),

wherek < ¢—1 andgq is a prime power. Suppose we tgk be a primep > (12”)
q = p’ andk = p’~L. Then we verify the conditions of TheorenP2a

Sl i

N pi—1

1
e

Hence, we obtain the following result.

Corollary 5.4. Supposep is a prime,p > (%), andj > 1. Then there is a
PHF (pf - 1;p7'pj*,pf,w).
Combining the results of Theorem17 and Corollary5.4, we have the fol-

lowing SFP codes constructed using Reed Solomon codes.

Theorem 5.30. Supposep is a prime,p > (%), andj > 1. Then there is a
%]~ SFP (p = 1,97 p).
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A similar condition for separating hash families can be wisd.

1
wiwsz !

Theorem 5.31.1f an error correcting codeC (n, k, d), satisfies? > 1 —
thenitis also aSH F'(n; k, q, wy, w,).
Similar constructions using Reed-Solomon codes can beatkais well.

Theorem 5.32.Suppose is a prime,p > w?, andj > 1. Then there is av —
SFP (pf . 1,p7'p“,pf).

This is an advanced construction with a positive code rate.

R=N"! log, n
108 (59 (Pjpjfl)

o —1
log p?’ "
(p? — 1) log p?

__jp’logp
j(p’ —1)logp
pj—l

J

1

— 3

|

Moreover, note thaVv = O (1—? log n)
7 /4

Subsequently, we restrict ourselves to the situationa 2. In [15], a necessary
condition is provided.

Theorem 5.33.1f C'is a linear, binary2 — SF' P code of dimensioh, thenD <
N —2(k—-2).

Proof.If £ < 1, the result is trivial. Fok = 2, it only says that the all-one code-
word 1 cannot be in the cod€. Suppose not, denote Iythe all-zero codeword
and by1 the all-one codeword, and choose a codewor C',  ## 0 or 1. Then,
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descy({0,1}) = desco({x,x + 1}). Herex+1 inverts each entry of by changing
Oto 1 and 1to O in, which violates the — SF P property.

We then turn to the cage> 3. We shall prove that ifV — D < 2(k —2), then
C cannot be & — SF P. Consider a codeword of maximum Hamming weight.
Since the code is linear, for every setkof 2 coordinate positions, there exist at
least three nonzero codewords which are zero on thesegsitind thus at least
on which is notz. In particular, there is a nonzero codewardvhich is zero on
half the positions not in the supportefand one» which is zero on the other half.
Thusdescy ({0, c}) Ndescy({u,v}) # 0. 1

Theoremb.33gives the necessary condition foea- SF P code. The follow-
ing theorem gives the sufficient condition (compare withdreen5.29):

Theorem 5.34.1f a linear code satisfiesd > 2D + N, orif 4d > 3D, thenitis
2 - SFP.

The proof is provided in]5] which exhaustively investigates the possibilities
of D andd given four codewords and identifies the condition that thay be
separated.

Equidistant codes (see Secti@nl.4 provide more examples & — SEF'P
codes.

Theorem 5.35.All linear, equidistant codes are— SF P.

The proof is easy by simply checking the equidistant prgpketween any
two codewords and similar to the one given as for Thedsem

The nonlinear case can also be addressed as follows.

Theorem 5.36.All nonlinear, equidistant codes withl > n are2 — SF'P.

The proof can be found irLf].

In the sequel we provide an exampl®]14] which combines the construction
techniques of concatenation methods and error correctidgsc

Choose the first seed, as a(4, 2, 3); tetracode. This code is a MDS code, ex-
tended perfect Hamming code, and equidistant with Hammistgioce3 defined
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by the generator matrix

Clearly, itisa2 — SFP.

The second seed we use to concatenate with the tetracode exténded
Reed-Solomon cod@,(9, 3, 7)s2. Itis a2 — SF' P by Theorenb.29 The result is
thenC; % C5(36, 6)3, which is anotheg — SF P by Theorenb.13

Next, in order to produce infinite families of SFP codes wibisifive rates, we
need the following constructive result of algebraic-getsgneodes.

Theorem 5.37(Tsfasman38]). For anya > 0 there is an infinite family of codes
C(N,NR,N¢), for N > No(a) and

R+6>21-(/g—-1)"~-a

whereR stands for the code rate.

Now C1% C5 is a large enough seed for the algebraic-geometry cod&sf [
Because of Theorem.34 we choosel = [3N/4] and hence, concatenate with
the(N, k, d)3s algebraic-geometry code of rate approximately? = i—(33 — 1)‘1 =

11/52. We summarize the result in the following theorem.

Theorem 5.38.{C; % C>% C'} \; gives an infinite class of linear ternagy— SF'P
codes with positive rateB’ = R/6 ~ 0.0352.

The structure of algebraic geometric is beyond the scopbkeotttesis. Their
construction can be found ir8§]. Cohen et al. gives more algebraic geometry
codes of various rates used for similar concatenationsnieoe details, we refer
the interested reader ta).
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5.6 Comparisons
We summarize this chapter by providing a table of comparison
Coa- Al-
li- Code Code pha- . Code
Method tion length size bet Asympt_otlc Rate Comment
size (N) (n) size Behavior (R)
(w) ()
Hadamarg , | s | 2 N =0 .0 | Theorenb.5
Matrix
Subsets k k 3
Vethod | 2 (ng) (5) 2 N =0 ((logn)”) — 0 | Theoremb.11
Direct
Construc-| w | (**7) | 2w 2 N=0(2"1" * | Theoremb.14
tion
PHF _
and 2 | 3.7 7 2 N=0O <(10g7 n)l"g??) — 0 | Theoremb.22
SFF
SHF ,
and 2 9.5 " 2 i ((10g5 n)1°g25> — 0 | Theoremb.25
SFF
9(2d-1y. :
ExtSeFr}ged w (i;l; )1>j @+1¥ | 2 | N=0O ((log n)%e (w2+1)) — 0 | Theoremb.26
Latin 2 N n m | N=0(w)? "(logn)) | — 0 | Corollary5.3
Rectangle '
Reed
Solomon| w | pi—1 | p® " | p N=0O <§ log,, n) — % Theoremb.32
Code
Conca- Depending
tenation on the
with . 2 N n 3 structure. —0.0352 | Theoremb5.38
Algebraic of algebraic
Geometry geometry
Code code

*We do not compute the rate because the rate is a functierre$ulting in different classes of

codes.




Chapter 6

Summary

We have tried to give a complete picture of codes for copynugbtection. Also,

we redefined the descendence under the presence of uneausatsls. In partic-

ular, we investigated various constructions of secure é@noof codes. Most of
the explicit constructions discussed so far treat coal#tiof size2. Few of them

handle a general coalition size. Most of the code rates termbto except for
two constructions that are based on error correcting caualgebraic geometry
codes. However, as was indicated in the beginning of thesthiés important to

be able to handle coalitions of large size and the code sizeldlbe as large as
possible in order to accommodate many users. On the othdr bader the pres-
ence of unreadable marks, it is impossible for the policelemiify the traitors.

As an alternative, the probabilistic approach is capableawing traitors with a

certain successful probability, which might be an intengstirection of future

research.
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Appendix A

Acronyms

ECC Error Correcting Code

HF Hash Functions

PHF Perfect Hash Families

SHF Separating Hash Families

SS Set Systems

SFF Sandwich Free Families

FP Frameproof Code

SFP Secure Frameproof Code

IPP Identifiable-Parent-Property Code
TA Traceability Code

PTT Probabilistic Traitor Tracing
TTA Traitor Tracing Algorithm

MDS Maximum Distance Separable

RS Reed Solomon Code
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