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Root System and Orbits of the Weyl Group

Student: Tsai-Yin Lin Advisor: Meng-Kiat Chuah

Department of Applied Mathematics

National Chiao Tung University

Abstract

Let g be a finite dimensional complex semisimple Lie algebra with the Cartan
subalgebra . g induces a root system containing roots. Each root gives a reflection
with respect to its hyperplane. These reflections generate a group W called Weyl
group acting on on h*. Given two vectors, our purpose is to find a systematic method
to judge if they are in the sane W-orbit by observing the structure of W. For type
A, B, Cy, D, Gy, we study the W-action on Euclidean space. For type Fj, observe
the relation between the automorphism of the root system of Fy and it of D4. Then

describe the Weyl group of Fj; by the Weyl group of D,.
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1 Introduction

Let g be a finite dimensional complex simple Lie algebra. Let § be a Cartan subalgebra
of g, and A C b* a choice of simple roots. It corresponds to a diagram D = Dyn(g),
whose vertices are the elements of A, known as the Dynkin diagram of g . The
Dynkin diagram is independent of the choice of h and A. Let & C h* be all the roots.
Each o € ® defines a reflection which preserves ®, and these reflections generate a
subgroup W of Aut(®), known as the Weyl group. Let X be the set of all assignments
of complex numbers to the vertices of D. By ®, we can identify h* with X. Namely,
the element ) \ ¢, € h* can be represented by the assignment of the numbers {c, }
on the vertices {a} of D. Since W acts on ® as well as on h*, it also acts on X. In
this thesis, we study the orbits of the W-action on X.

This thesis is divided into the following sections. In Section 2, we recall the
definitions of Cartan subalgebras, root system, simple roots, Dynkin diagram and
Weyl group. In Section 3, we introduce some standard actions on R” by S,, (symmetric
group) and Z% (n-fold product of Z,) as well as their semi-direct product, so that we
can use them to describe the W-action on h*. In Section 4, we present the main result

of this thesis, which is the study of the W-orbits on X for the classical Lie algebras.



2 Mathematical Background

In this section, we start from the definition of Cartan subalgebra. Every complex
semisimple Lie algebra g gives a root system by choosing Cartan subalgebra. A root
system of a vector space V' induces a Weyl group and a simple system so that we can
make use of them to define an equivalence relation on V' and begin to observe it type

by type. Finally, recall the list of all types of complex semisimple Lie algebras.

Definition 2.1 Let g be a Lie algebra, the adjoint representation ad : g — Endg
sending X to adx is given by ad,(Y) = [X,Y], for all X, Y € g.

Definition 2.2 Let g be a complex semisimple Lie algebra. A Lie subalgebra h of g
is called a Cartan subalgebra if

(a)h is maximal abelian.

(b) ady is simultaneously diagonalizable.(i.e. there exists basis {v;} of g such that

each v; is an eigenvector of ady for all X € .)

From (b), we can write g as a simultaneous eigenspace decomposition. That is,

9="b® P ga, where go = {Y € gl adxY = a(X)Y,VX € b}, b = go.

acd
Here & = {a € h*|a # 0 and g, # 0} and « is a function translating X to the
eigenvalue of adyx with respect to eigenvector Y. « is linear because of the bilinearity

of the Lie bracket. Therefore, @ € ® C h*. P is called the root system of g and the

elements of ® are called roots.

Proposition 2.3 (/4/, Proposition2.17, Corollary2.38) Let B( , ) be Killing form on
a Lie algebra g , h C g is the Cartan subalgebra. Let o a root of g with respect to b.
Then

(a)There exists H, € b such that o(H) = B(H, H,) for all H € §.

(b)If ho = spang{Ha|o € @}, then by is a real form of b such that oy, is real on by

for all o € ®, hence ® can be considered as in by.
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Proposition 2.4 ([4], Corollary2.38) Let by C h C g be defined as above. Then b

18 an inner product space over R.

Note that the inner product in bj is given by (o, 8) = B(H,, Hp) for all a, 8 € bj,

where H,, Hp is the same as Proposition 2.3(a).

Next, we recall the definition of the root system of general real vector space E.
By setting 2 = b, g determines a root system through its Cartan subalgebra b .
Now let E be an real inner product ( , ). Any nonzero vector « gives a reflection o,
by 04(8) =0 — (ﬁ’ 5, for all 8 € E. For convenient, denote the number 2(ﬂ’ a by

(e (e,
< B, >. Hence we have 0o(B) = 0— < B, > a.

Definition 2.5 A subset ® of the euclidean space E is called a (reduced)root system
in B if

(a
(b

) @ is finite, spans E, and does not contain 0.

) If & € @, the only multiples of a in ¢ are +a.
(c) If a € @, the reflection o, leaves ® invariant.
(d) If a, 8 € &, then < f,a >€ Z

® is called irreducible if it cannot be partitioned into the union of two proper subsets

such that each root in one set is orthogonal to each root in the other.

In what follows, we see how a root system induces a Weyl group.
Definition 2.6 Let ® be a root system in E. Define the Weyl group of ® by
W =W(®) = {o,|a € D}.

The main question that we want to discuss in this thesis is to study the orbits of
Weyl groups. In Section 4, we introduce the root system of every g of each type of

complex semisimple Lie algebras. Then



Definition 2.7 Let E be a vector space. A subset A of ® is called a simple system
if

(a) A is a basis of E.

(b) each root  can be written as § = Y,cacoa with integral coefficients ¢, all
nonnegative or all nonpositive.

The roots in A are called simple roots.

The simple system is a particular basis. We can use the simple system of a root
system to draw Dynkin diagram and write numbers on each vertex to represent the

elements of h*.

Definition 2.8 Let ® be a root system of rank n, Wits Weyl group, A = {ay, ..., @, }
a simple system of ®. Define the Dynkin diagram of ® to be a graph having n vertices
where the ith vertex denotes the simple root ;. Then set < oy, o; >< a5, ; > edges
between the ith and the jth vertices for all i # j. Finally, if there exists any edge
between two vertices with different length, add an arrow from the longer to the shorter

of the two roots.

Example 2.9 Gy (O&D)

Recall that a complex semisimple Lie algebra induces a root system, hence a
Dynkin diagram. We can classify all complex semisimple Lie algebras through their
Dynkin diagram. The following theorem shows that they can be exactly classified in
several types. Hence we can study the equivalence relation with respect to each type

of complex semisimple Lie algebras.

Theorem 2.10 If ® is an irreducible root system of rank n, its Dynkin diagram is

one of the following:
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3 Group Action

To understand the orbit of a Weyl group, we observe the structures of those Weyl
groups and described them (on R™) by other groups that we are more familiar in
experience. Therefore, we need some definition for those group action on R™ which

describes the Weyl group action on h*.

In this article, the elements in Euclidean space are represented by column vector

in order to separate from the elements in symmetric groups.

T
Definition 3.1 Let z = : € R”, we define the group action G x R* — R"”
Tn

with respect to the following types of G :

(a) G =S, (S, is the symmetric group of degree n) acts on R"
T To—1(1)

Define o.x = o. : = : , for o0 € G.

Ty To—1(n)

(b) G = Z% acts on R”
bl Wist (—1)b15L’1 b1
Define b.x = : . : = : , for b = : €G.
by, Ty, (=1, by,

(c) G =Zy ! acts on R"

b1 I b1
Define b.x = : : : = ' , for b = : eG.

bnfl Tn

(d) G =74 x S, acts on R”



Note that the group action in G is defined by (b, 01)(b2, 02) = (b1 + 01.b2, 0103),
for all (b1, 01), (ba, 02) € G. Define (b,0).x = b.(0.x), for b € Z§,0 € S, where (0.2)

is defined in case (a) previously.

(e) G = Zy x S3 acts on R3
Define (b, 0).x = (—1)%(0.z), for b € Zy, 0 € S3, where (0.7) is defined in case (a)

previously.

Note that the definition in (a) and (b) are special cases of that in (d). They can be
obtained by setting identity of the first and the second group of Z3 x S,, respectively.

Example 3.2 We give some examples for the above definition of group actions. In
what follows, the examples (a),(b),(c),(d),(e) correspond respectively to the group
actions in Definition 3.1 (a),(b),(c),(d),(e).

Z1 3
(a) Let n=3,then (123). | 2o | =| =1
T3 i)
1 5 )
(b) Let n =3, then | 0 6 |=| 6
1 7 -7
) )
1
6 6
(c) Let n =4, then | 0 =
7 —7
1
8 3
1 ) 1 6 —6
(d) Let n = 3, then 01.2)1. 16 |=|o0]-]5]= 5
1 7 1 7 -7



Definition 3.3 Let g be a complex semisimple Lie algebra with Cartan subalgebra
h. Let Dyn(g) be the Dynkin diagram of g and fix a simple system {a;}?; of b, we
can denote elements of hj by writing numbers on the vertices of Dyn(g) corresponding

to the coefficients of the linear combination of A.

Example 3.4 Fix a simple system {a;}?; of A,, then

a; az [} a,

denotes X7 a;q;.

Definition 3.5 Let A = {o;}, be a simple system of a vector space V, W =

({0,

equivalent to b with respect to W if there exists ¢ € W such that ca = b, and denote

i = 1,...,n}) be the Weyl group. Let a = Ya;a;, b = by € V' we say a is

a1 by

it by : ~ : or a ~ b if we denote a, b by Dynkin diagram.

ap b,

Example 3.6 Let V = R? with simple system
A= A(B:a) = {041 = €1 —€2,Qg = €3 — €3,03 = 63}
Consider a vector v = 2a; + 3as + Hag . Then

Oay (V) = 2(0q + ag) + 3(—a2) + 5(ag + a3) = 2a; + 4as + bas



Oas0ay (V) = 201 + 4(g + 2a3) + 5(—a3) = 60 + 4oy + 3ag

and

The main question that we are curious is if there exists some convenient method
to check whether two vectors are equivalent or not. Next, to solve the problem, we
are going to observe the equivalence relation on a different basis through some groups

isomorphic to the Weyl groups.



4 Equivalence Relation:Classical cases

In Section 4 and 5, we introduce some construction of root systems of complex
semisimple Lie algebras where Section 4 is for the classical cases and Section 5 is
for the exceptional cases. After observing the action of their Weyl groups on another

basis of h*, we will find that the behaviors of those actions are very straight forward.

To observe the relation between bases and Weyl group action later, it is useful to

define some notation to represent a vector with respect to a basis for the discussion.

Definition 4.1 Let V' be an n-dimensional vector space over a field F', = {vy,...,v,},7 =
{ui,...,u,} be two bases of V.
(a) For z € V| let ay, ...a,, be the unique scalars such that z = 37 a;v;.

We define [z]|z € F™ by
ai
[2]s =
an

(b) Let b;;(i,j = 1,...,n) be the scalars such that
v; = X1 biu; for 1 < j <n.
We define the n x n matrix [1]} by [1]; = (b;)-

Now, we are going to observe the root system of each type of complex semisimple

Lie algebras. In what follows, we still denote elements in Euclidean space by column

x

vectors written in the forms : or (g -a,)"

Tn

Type A,(n > 1)

10



Consider the hyperplane
L

V = :{ |x1+"'+$n+1:O}QRn+l’

1 Tnt1

as well as

d={veVnZ'||v|*=2}={ei—ej1 <i#j<n+1}.

Then @ is a root system of type A,,, and

A=A(A,) ={ag=e1—e€9,...,a, =€, —€py1}

is the simple system of .

In V, since o, permutes e;, €;11 and leaves all other e;’s fixed, o,, corresponds to

the transposition (i i+ 1) in the symmetric group S,,1. These transpositions generate

Spi1, SO we obtain W = S, 4.

The behavior of W on the standard basis is so simple and direct that we can

easily judge if two vectors in V' are equivalent with respect to W. Given two vectors

a,b € V, we have [asq and [b]sq in R™™! by choosing standard basis to represent

them. To ask if there exists an element of Weyl group translating a to b is equivalent

to ask if there exists a permutation of coordinates translating [a]sig to [b]siq. There-

fore, we have the following result.

a a a a b b b,. b,
Lemma 4.2 d é C)I O ~ d é Oj O
there exists o € Spy1 such that o.M (ay -+~ a,)' = M(by - - - b,)", where
1
-1 1
M = -1
1
7/ (a+D)xn

11

if and only if



Type B,(n > 2)
We just follow the idea that we did in type A,,. Let V = R", as well as
®={vecVnZ"||v|* = Lor |v||* =2} = {Fei]l <i < n}U{deite|l <i<j<nl
Then @ is a root system of B,, and
A=AB,) ={ar=e1—ey...,0n 1 =61 — €n,0p = €,}

is the simple system of ®. In V| o,, permutes e;,e;41 for i =1,...,n — 1, and o,,
changes the sign of e,. These generate all permutations and sign changes of stan-

dard coordinates, and can be described by Z% x.5,,. Hence we have the following result.

a; a, (%) ay.q a, b, b,.
Lemma 4.3 O—O—0O—C—2>0 ~ O—0O—0O—C—>0

if and only if there ezists 0 € 75 x.S,, such that 0.[1]X?Bn)(a1 ceay)t = (154, (b b)Y

where

[1]X?Bn) =

-1 1

nxn

(i.e. they are different from a permutation and some sign changes in standard coor-

dinates representation.)

Type C,(n > 3)
The case of C,, is almost the same as B,,. Consider V = R", then
O = {£2¢;} U{te; L]l <i<j<n}
is a root system of type C,, and

A=AC,) ={a1=e1—e€9,...,0n_1=€p_1 — €y, 0, = 2€,}

12



is the simple system of ®. In V| o,, permutes e;,e;41 for i =1,...,n — 1, and o,,
changes the sign of e,,. These generate the same group action on standard coordinates
as type C,,. Therefore, the Weyl group action in type C), is the same as that in type
B,,. Hence we can make use of the same method to judge whether two vectors are

equivalent.

a; a; ay.p ay.; a, b, b, b,
Lemma 44 O—COO—0O—0O ~O—O—O—0O=0 ¥

and only if there exists o € Z5 x S, s.t. a.[l]i‘(i(;n)(al eay) = [I]X?C")(bl by,

where

[HZ“?C,L) =

Type D,(n > 4)
Consider V = R", as well as a root system
O ={te; £ej|l <i<j<n}
corresponding to the simple system
A=A(D,)={a1 =€ —€9,...,Qn 1 =€ 1 — €y, 0, =€,_1+ €y}

In V, 0, permutes e;,e;41 , fori =1,...,n—1; o,, permutes e,_1,e, and changes
their sign simultaneously. These generate all permutations and all sign changes of
even number. Such kind of sign changes can be described by Z5™!, since the n-th
component in coordinate is determined by the other n — 1 components. Therefore,

W = 757! x S, and we have the following result.

13
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a; a; a,.;

b,
Lemma 4.5 (O O O ~ O O O

a

n

only if there exists o € Z5 ' % S,, such that a.[l]zt?Dn)(al cay) = [1]5At‘(iDn)(b1 b)),

where

nxn

14



5 Equivalence Relation:Exceptional cases

In this section, we keep the same work as Section 4 for exceptional cases of complex
semisimple Lie algebras. For type E, we have not find a method good enough to

study the orbit of Weyl group yet. So here we only discuss the type Fy and G, .

Type F}
Let V = R*, and the root system
1
P = {j:e, + 6j|1 <1 <j < 4} U {j:61|2 = 1,2,3,4} U {5(:&:61 *eytesE 64)},

as well as the simple system

1
A={a;=ey—e3,a0=e3—e4,a3 = €4,04 = 5(61 — ey —e3—ey)}.

When a vector are represented by standard basis, it become more complex after
0., moving it. Hence it is not a good idea to follow the same method to observe the
orbits of W (F}). Instead, we make use of the relation between W (F,) and W (Dy).
The relation of the Weyl group of Fy and D, is associated by the automorphism of

their root system which we are going to discuss.

Definition 5.1 Let ¥ be a root system. Define
Aut(V) = {¢ : U — V|¢ is linear and < a, f >=< ¢(a), ¢(5) > for all a, f € V}.

Consider @', the root system of D, observe that the 24 long roots in ® form a root
system @ of type Dy. In what follows, we are going to show that W (®) = Aut(d’).
Consider W(®') € W(®) = Aut(P’), other automorphisms of ¢’ arise naturally from
Aut(Dyn(D,)). Finally, W(®) = Aut(Dyn(®")) x W(®') = S3 x W(D,). Next, we

explain that more precisely.

15



Definition 5.2 A lattice is a discrete subgroup of Euclidean space and contains the
origin. Define the lattices Ly, Lo in R™:

(a) Ly = {¥7  a;e; € Z"| X! 1a; is even} is a subgroup of Z".

(b) Ly =Z" + Z1 (S 1e;) = {v + 551 e5]v € Z", k € Z}.

Lemma 5.3 Let ®' be the root system of Dy that we have defined previously. Then
(a)Aut(D’) preserves (, ) in P’
(b)Aut(®’) preserves < , > in Ly

(c)Aut(D’) preserves < , > in Lo

Proof. (a) Let ¢ € Aut(®'), a, 5 € ®'. Then

2Aed) __ _ 2(6(a), 0(9)
=< @ f>=<0la).00) >= 1o 58

Since (3, 0) = (¢(8), ¢(9)), (o, B) = (¢(), ¢(5))-

(b) Let ¢ € Aut(®'), a, 51, Bo € ®,c € R. Then
((), d(cBr + f2))

= (¢(a), cd(B1) + @(B2)) = c(d(a), d(B1)) + (d(a), (B2)) = (v, B1) + (e, Ba)

= (a,cf1 + fa) -
Since all elements in L; are linear combination of &', Aut(®’) preserves the inner

product (-,-) of L;. Therefore, it also preserves < , > in L;.
(c) Let ¢ € ', X\ € Lo. It is obvious that 2\ € L;. By (b), we have

< O(A), P(N) >=< 20(N),20(N\) >=< d(2N), Pp(2)) >=< 2\,2A >=< A\, A >. [

Proposition 5.4 Let ® and ' be the root systems of Fy and D, defined as previous
respectively, then Aut(®) = Aut(P').

Proof. Recall that ® have disjoint three parts:
1
b = {:I:ez + €j|1 S 1< j S 4} U {:l:61|l = 1, 2,3,4} U {5(:&61 + €9 + €3 + 64)}.

16



Observe that for all 7 € Aut(®’), 7 is stable on these three parts respectively.
Hence 7 is stable on ®. In addition, based on the last lemma and the fact that
¢ C Ly, 7 preserves < , > in ®. It follows that Aut(®’) C Aut(P). Conversely,
Aut(®) C Aut(P’) because the elements in ¢’ are exactly the long roots of . [

The next Corollary is followed by Proposition 5.4 and the fact that

Aut(®) = Aut(Dyn(®)) x W (D).

Corollary 5.5 W(F,) = S3 x W(Dy)
Proof. Aut(Dyn(Fy)) = 1 implies that
Aut(Fy) = Aut(Dyn(Fy)) x W(Fy) = W(Fy).
On the other hand,
Aut(Dy) = Aut(Dyn(Dy)) x W(Dy) = S5 x W(Dy).
Apply Proposition 5.4 , we have W(F,) = S3 x W(Dy). O

Recall that A(Dy) = {1 = e1 — €2, = €3 — €3,035 = €3 — €4, B4 = €3 + e4} and
Aut(Dyn(D,)) is the set of all bijections of {3, 33, 84}. Hence Aut(Dyn(D,)) can
naturally be described by S5 consisting of all permutations of {31, 33, 54}. The group
action Aut(Dyn(D,)) on W(D,) is defined by 1.05 = op_, , for all 5 € A(Dy),
for all 7 € S5. When [a]ar) ~F, [b]acr,), it means [a]ap,) ~p, T.[blap,) for some

7 € S3. Now, apply Lemma 4.5, we have the following property.

Lemma 5.6 Let (Cl Cy C3 C4)t = [1]2%?;8 ((11 a9 a3 (14)t and (dl d2 dg d4)t = [1]25?8 (bl bg bg b4)tL

Then

a, a, az ay b, b, b; by,

O—C—>0—0 ~O—C—20—=0

17



if and only if T. Q—C< Q—Ci for some T € S3 denoting

the set of all permutations of {1, B3, B1} € A(Dy)

if and only if o.(1X{p, (T-(c1 2 3 ca)")) = [U{p,y(dr d2 d3 du)t, for some o €

Sy X Z3, some T € S3, where

00 0 3
A 10 0 0
A(F4) 1

01 -4 0

00 5 4

Example 5.7 Let (a bcd)' =1 ]Agg(x yzt)t, (abdc) = [1]251138 (' 2 )t and
A(‘D4> - {/817 /627 637 64} Then

c a -a

c b+a

((1 3)7Uﬁs>' = 083

((1 43)7051)' =0p3

c

This corresponds to the operation in S5 x W(Dy), i.e. ((14 3),05)((1 3),08,) =
((143)(13),08 0((143).08)) =((34),03 cog,) = ((34),1).Therefore,

18



X y z t x’ ¥y 7’ t
~ and O—O=>0—0 ~ O—0=>0—0 -
d c
Type G
Consider
1
1 T
V=11 ={| = |lo1+az2425=0} CR’
1 T3
Define

d = {vEVﬁZ“[HvH2:20r HUH2:6}
= {f(ei — )1 <i < j <3 U{E(2e; — 5 —ex) {1, 5, k} = {1,2,3}}

= {:l:(@l — 62), :|:(€2 — 63), :i:(el = 63), :]:(261 — €3 — 63), 1(262 — €1 — 63)7 :|:(263 — €1 — 62)}
Then @ is a root system of type G5, and
A= {O[l = €1 — €9,y = —261+62+€3}

is the simple system of .

In V, 0,, permutes ej,ey; 04, permutes e, es and changes sign of any vector
in V. Recall that the definition of group action of Z3 x S3 on R3, we have o,, =
((000),(12) and 0., = ((111)%,(23)) in V. Since W is generated by o,, and
Ouy, W has an embedding in Z3 x S3. That is,

W =< 04,,00, >2< ((000),,(12)),((111)"(23)) >

(In this thesis, < - > in a Weyl group always means the group generation).
This subgroup can actually be described by < (000)*,(111)" > x < (12),(23) >
since (0 0 0)* and (1 1 1)* are both fixed by any element in S3. Besides, note that

19



the additive group < (0 0 0)',(1 1 1) > Z, which acts on V and denotes sign

change(simultaneously sign change on all standard coordinates of V). Therefore,
W =< (0,(12)),(1,(2 3)) >=Zy x Ss.

In fact,

W= Dg=1{0°...,0° 1,07,...,0°7}

with |o| =6, 7> = 1, and o070 = 7, where 0 = (1, (12 3)),7 = (0, (1 2)). We make use
of the former structure (Z, x S3) in that it is more helpful to check the equivalence
relation for vectors in V.

Considering all the factors above, for two vectors a,b in V, [a]ac,) ~ [blas)
means that the difference between [a]sq and [b]sq in R3 are their arrange or sign.

Hence we have the following result.

a b c d
Lemma 5.8 (O ~ (O if and only if Jo € Zy x S5 such that
1 =2
cr.M(Z) = M(fl), where M = | —1 1

0 1
Corollary 5.9 Let x € V, suppose that v = acy +bas = x1e1 + xoe9 + x3€3, for some

scalars a,b, xq,x9, 3 in R. Then the equivalence class of x is

(2] = {£ (21 22 23)", £ (21 73 22)", £(12 71 23)", £(200 23 1), £ (73 71 22)", (23 79 1)"} C R3.
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