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EEG-Based Assessment of Driver Cognitive
Responses and Its Application to Driving Safety

Student : Ruei-Cheng Wu Advisor : Dr. Chin-Teng Lin

Department (Institute) of Electrical and Control Engineering

National Chiao Tung University

Abstract

In this thesis, we develop advanced biomedical signal-processing technologies that
combine independent component analysis (ICA), power spectrum analysis, correlation
analysis, and fuzzy neural network (FNN) models to assess the event-related transient brain
dynamics and the level of alertness of ‘drivers by investigating the neurobiological
mechanisms underlying non-invasively recorded electroencephalographic (EEG) signals in
the virtual-reality-based cognitive driving tasks. The-developed techniques are then applied
for dynamically quantifying driver’s .cognitive responses related to perception, recognition,
and vehicle control abilities with concurrent changes in the driving performance to maintain
their maximum performance in order to prevent accidents caused by errors and failures for
driving safety.

We first propose a novel ICA-based temporal matching filter for analyzing the single-trial
event-related brain potentials (ERP) without using conventional trial-averaging results as
input features of the FNN classifiers and apply this method to recognize the different transient
brain responses stimulated by red/green/amber traffic-light events. Experimental results
demonstrate the feasibility for identifying multiple streams of EEG signals related to human
cognitive states and responses to task events. Our proposed methods can dramatically increase
the quantity and quality of momentary cognitive information and achieve high recognition
rates.

We also develop a new ICA-based adaptive feature-selecting mechanism to extract most
effective bandpower from EEG power spectrum and build an individual FNN model for each
subject to further examine the neural activities correlated with fluctuations in human alertness

level accompanying changes in the driving performance in the lane-keeping driving tasks.

il



Experimental results show a closed relationship between changes in EEG power spectrum and
the subject’s driving performance. Our proposed models also can effectively remove most
non-brain artifacts and locate optimal positions to wire EEG electrodes such that it is possible
to accurately estimate/predict the continuous fluctuations in human alertness level indexed by
measuring the driving performance quantitatively. The computational methods are well within
the capabilities of modern digital signal processing hardware to perform in real time and thus
might be used to construct and test on a portable embedded system for an online alertness

monitoring system in the future.
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The scalp topography of the ICA mixing matrix W™, where the orders of the
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(a) The VR-based freeway scene.-(b) Example of the driving performance
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Flowchart of the training process for estimating subject’s driving errors. (1).
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from Subject B (worst case). Note that the relationship between EEG power
spectrum and driving performance is stable within this subject, especially
below 20 Hz. However, the relationship is variable from subject to subject
(contrast Fig. 4-9 and 4-10)........coooiiiiiiieiieeeeceeee e 79
Figure 4-11. Driving performance estimates for a training session from Subject 3, based
on a linear regression (red line) of PCA-reduced EEG log spectra at two
scalp sites, overplotted against actual driving performance time series for
the session (solid line). The correlation coefficient between the two time
SEIIES 1S T = 0.88. 1ottt 82
Figure 4-12. Driving performance estimates for a testing session of Subject 3, based on a
linear regression (red line) of PCA-reduced EEG log spectra from a separate
training session from. the same subject, overplotted against actual driving
performance time series of the .test session (solid line). The correlation
coefficient between-the two-time-series is r = 0.7. Note that the training and
testing data in this study were completely disjoined..........c.ccoveeevieeieiiiieniennnnn. 82
Figure 4-13. Correlation spectra between smoothed driving performance and log subband
power spectra of (a) 33 EEG channels and (b) 33 ICA components for
frequencies between 1 and 40 Hz of Subject-3. It is observed that the
subband power spectra between frequency bands 10~14Hz have high
positive correlation with driving performance in most EEG channels and
both 11™ and 13™ ICA components. Figs. 4-13 (c) and (d) show the scalp
topographies of weighting matrices for dominant ICA component 11 that
was centered on Pz (28"™) channel and ICA component 13 that was centered
0N P4 (29™) /O4 ChANNELS. ...t 85

Figure 4-14. Correlation spectra between smoothed driving performance and log subband

xiii



Figure 4-15.

Figure 4-16.

Figure 4-17.

Figure 4-18.

Figure 4-19.

power spectra of (a) 33 EEG channels and (b) 33 ICA components for
frequencies between 1 and 40 Hz of Subject-2. It is observed that the
subband power spectra between frequency bands 8~13Hz have high positive
correlation with driving performance in most EEG channels and both 8™ and
17" 1ICA components. Figs. 4-14 (¢) and (d) show the scalp topographies of
weighting matrices for dominant ICA component 8 that was centered on
CPz (22™)/Fz channels and ICA component 17 that was centered on Pz (28")
JOZ ChANNEIS. ..ottt
Scalp topography of ICA weighting matrix w;; by spreading each w;; into
the plane of the scalp corresponding to the jy, ICA components based on
International 10-20 SYSTEML. ......ccueeruiiiiiiiiiieiiecie ettt ettt e eae e eene e
Correlation spectra between smoothed driving performance and log power
spectra of 33 ICA components of. Subject-2. It is observed that the
bandpower spectra between-frequency bands 8~12Hz have highest positive
correlation with driving'performance in both 8" and 17" ICA components.......
Scalp topographies of ICA weighting matrices for dominant components 8
and 17. Note that the CPz channel and Pz channels are at the center position
of these two ICA components, reSPeCtiVely. ......cccvierrieeciierieeiienieeieeeie e
Driving performance estimates for training/testing sessions of subject 3,
based on a linear regression model (red line) with subband log power
spectra at frequency bands 10~14 Hz of ICA components 11 and 13 selected
according to Table 4-4, overplotted against actual driving performance time
series for the session (blue line). The correlation coefficient between the two
time series is 1=0.93 in the training session and r=0.92 in the testing session....

Driving performance estimates for training/testing sessions of subject 2,

Xiv

86

89

90

95



Figure 4-20.

Figure 4-21.

based on a linear regression model (red line) with subband log power
spectra at frequency bands 8~12 Hz of ICA components 8 and 17 selected
according to Table 4-4, overplotted against actual driving performance time

series for the session (blue line). The correlation coefficient between the two

time series is 1=0.91 in the training session and r=0.89 in the testing session....

Driving error estimates for training/testing sessions of subject 3, based on a
linear regression model (red line) with subband log power spectra at
frequency bands 10~14 Hz of EEG channels Pz and P4 (selected according
to Table 4-6), overplotted against actual driving error time series for the

session (blue line). The correlation coefficient between the two time series is

r=0.91 in the training session and r=0.87 in the testing SeSSION. .........cccvervennene

Driving performance .estimation for training/testing sessions of subject 3,
based on SOFNIN inodels (red line) with input features selected by AFSM
method according+to Table-4-11, overplotted against actual driving
performance time series  for the ‘session (blue line). The correlation

coefficient between the two time series is r=0.96 in the training session and

95

1=0.94 in the teStING SESSION. ...evvieriieeiieeiieeie et eriee et e reeseeeaeeseaeessee e 101

XV



Table 3-1.

Table 4-1.

Table 4-2.

Table 4-3.

Table 4-4.

Table 4-5.

Table 4-6.

Lists of Tables

Classification rates of three linear/nonlinear classifiers with/without

temporal matching filters for 8 subjects in the VR-based traffic-light motion

SIMUIAtION EXPETIMENLS. ...vveeeirieeiiieeiiieesieeesreeesbeeesteeesreeeseaeeessseeessseeensseeennnes

Comparisons of driving performance estimation using one single linear
regression model for all five subjects and using individual model for each

subject. Note that the input features are PCA-reduced EEG power spectrum

from 1-40Hz in Cz and Pz channels. ........ooooveiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeee

The correlation coefficients between the log subband power spectra and the
driving error of subject 3 corresponding to different frequency bands from 8

to 15 Hz of ICA component 11 and 13 in the training and testing sessions

using the same ICA-weighting matrices obtained from the training session. ....

The correlation coefficients-between log subband power spectra and the
driving error of subject 3 using five best frequency bands (from 10 to14 Hz)
corresponding to different single ICA component. The same ICA weighting

matrices obtained from the training session were used for testing session

performed in the other day...........ccoooiieiiiiiiiiiecceee e

The optimal 2 ICA components and frequency band ranges corresponding to

different subjects according to the higher correlation coefficients between

log subband power spectra and the driving performance............cccccceevveeneennnnn.

Driving performance estimation using total 10 frequency bands in 2

dominant ICA components (5 frequency bands for each ICA component) as

input features of the linear regression model for five subjects. .......c..cceeeueennnee.

The correlation coefficients between log subband power spectra and driving

Xvi

.59

.81

.92

.94



Table 4-7.

Table 4-8.

Table 4-9.

Table 4-10.

Table 4-11.

error of subject 3 using bandpower in frequency bands from 10 tol4 Hz
corresponding to different single EEG channel in the training/testing session.
97
The optimal 2 EEG channels and the associated frequency band ranges
corresponding to different subjects based on central electrode positions of 2
ICA components which have the better correlation coefficients between the
log subband power spectra and the driving performance............ccccccveeevveniiennnnnne 97
Driving error estimation using total 10 frequency bands (5 for each EEG
channel) as input features of the linear regression model for five subjects. ....... 98
The optimal 2 ICA components and frequency bands selected manually and
by AFSM corresponding to different subjects according to the higher
correlation coefficients between log.bandpower spectra and the driving
PEITOTINANCE. ... .. s vresannesensness sifanannas s 0 eeenreeeanseeennseeennseeensseeensseesnsseesnsseesnnsens 100
Driving performance estimation—using total 10 frequency bands in 2
dominant ICA components selected manually and by AFSM methods shown
in Table 4-9, as input features of the linear regression models for five
SUDJECLS. eeuvieiieeiieitte ettt ettt e et e e it e et e e bt e s sbeebeeetbeeseeesseensaessbeenbeeesaeenseesnnaans 100
Driving performance estimation using total 10 frequency bands in 2
dominant ICA components selected by AFSM methods shown in Table 4-9,
as input features of the linear regression models and SONFIN for five

SUDJECLS. 1eeuvieiieeiiieitte ettt ettt e et e et e et e eteeebeebeeeabeeseessbeeseeesbeenbeeesaeeseenrnaans 100

Xvii



1. Introduction

Many disasters and near-disasters have resulted from loss of alertness, lack of attention,
or poor decision-making on the part of ship navigators, airplane pilots, railroad engineers,
truck and auto drivers, and plant monitors. Catastrophic errors can be caused by momentary
lapses in alertness and attention during periods of relative inactivity. Unfortunately, as sixty
years of research in human vigilance and attention has shown, humans are not well-suited to
maintaining alertness and attention under monotonous conditions, particularly during the
normal sleep phase of their circadian cycle. Yet most operative interfaces today simply
assume that an alert and attending operator is always present and available to solve
unexpected problems and can make decision and perform essential tasks that cannot be
automated. Our society thus becomes more and more vulnerable to circadian alertness issues.
This motivates us to develop the advanced biomedieal signal-processing techniques and to
build a human cognitive-state moenitoting system. to assist operators working in an interactive
monitoring or control environment n maintaining a high sustained cognitive capacity while
minimizing performance lapses and errors of interpretation, and to demonstrate the feasibility
of detecting and modeling, in near real time via multiple streams of psychophysiological
information such as electroencephalogram (EEG) and event-related potential (ERP) that
organize operators’ cognitive states and responses to task events.

In this chapter, a brief overview of methods to assess brain activities related to human
cognitive states is presented, including the study of the transient brain dynamics, the relations
of brain dynamics to the changes in the cognitive states of human operators, and problems of
monitoring driver’s cognitive states related to driving errors, which suggested us the direction
of developing advanced biomedical signal processing methodologies and application for

diving safety issues.



1.1. Assessment of Brain Activities to Human Cognitive

States

The human electroencephalogram (EEG), first studied by Berger in the 1920°s,
represents macroscopic oscillatory and non-oscillatory brain potentials thought to be
generated mostly by synchronous post-synaptic currents in large populations of neurons in the
cortex. It is a completely non-invasive measurement of brain function by analyzing the scalp
electrical activity generated by brain networks that can be applied repeatedly in patients,
normal adults, and children with no risks or limitations. For three generations it has been
known that abundant information regarding cognitive states such as alertness and arousal is
available in EEG recordings. However, relatively little has been done to capture this
information in near-real time until the advent of computers fast enough to adequately process
the data and signal processing methods capable of extracting the relevant information. For the
past thirty years, the dominant analysis-method for-human cognitive studies has been the
averaged evoked response or event-related potential (ERP). Measures of the EEG spectrum
have been widely used only to identify stages of sleep. Now that adequate computing power
and signal processing algorithms are available, it is of both practical and theoretical interest to
know what information about changes in waking human cognitive capacity and behavior is

available in complex EEG signals.

1.1.1. Study of the Transient Brain Dynamics

Several groups have attempted to relate brain potentials recorded non-invasively from
the human scalp to speculate a cause and effect relationship between EEG and certain stimuli
or tasks. These studies have used the EEG spectrogram or the Event-Related brain Potential

(ERP)-liked measuring techniques for comparing the complex EEG data to independent task,



performance or subjective rating measures [1-19]. An early effort in this direction,
Pfurtscheller and Araniber first reported a method for quantifying the average transient
suppression of alpha band (circa 10-Hz) activity following stimulation [3]. In the last decade,
researchers studying Pfurtscheller's event-related desynchronization (ERD, spectral amplitude
decreases), and event-related synchronization (ERS, spectral amplitude increases) in a variety
of narrow frequency bands (4-40 Hz) have reported on their systematic dependencies on task
and cognitive state variables as well as on stimulus parameters [4]. For example, Williamson
et al. reported that, given a visually presented arithmetic problem to compute mentally, the
resulting subject alpha-band ERD resolved only when the calculation was complete [5].
Typically, psychologists calculated averaged Event-Related Potential (ERP) methods by
applying simple measures of peak amplitudes and latencies in ERP averages at single scalp
channels and focused on the feasibility studies..of brain computer interface (BCI) and
biofeedback methods in order te choose characters 'or move a cursor on a computer screen
[6-14]. These response averaging, reducing EEG-.data-sets to one or more averaged ERPs, has
been the dominant mode of EEG data analysis in cognitive studies for nearly 40 years. The
ERP is accomplished by computing averaging epochs (recording periods) of EEG time-locked
to repeated occurrences of sensory, cognitive, or motor events [15-18]. Averaged ERPs
evoked by brief unattended visual stimuli consist of a sequence of positive and negative peaks
that are generally assumed to reflect activity in individual visual cortical processing regions
[19]. In this view, response averaging attempts to remove background EEG activity or
unrelated noises, whose time course is presumed to be independent of experimental events, as
well as artifactual potentials produced by eye and muscle activity, and reflect only activities

which are consistently associated with the stimulus processing in a time-locked way.



1.1.2. Monitoring of Human Cognitive State

During the past 10 years, several scientific researches in electrophysiological analysis
had been reported to investigate the feasibility of accurately estimating shifts in an operator’s
global level of alertness by monitoring the changes in the physiological signals. These
methods can be further categorized into two main fields. One focuses on detecting physical
changes during drowsiness by image processing techniques, such as average of eye-closure
speed, percentage of eye-closure over time, eye tracking as quantization of drowsiness level,
driver’s head movements, and steering wheel angle [20-28]. These methods can be further
classified as being either direct contact by attaching sensors to the driver’s body or
non-contact types by using optical sensors or video cameras to detect vigilance changes and
achieve a satisfactory recognition rate. However, these parameters vary in different
environmental situations and driving conditions, it. would be necessary to devise different
detection logic for different types of vehicles. Recently, Van Ordan and et al. further
compared these eye-activity based methods to-EEG-based methods for alertness estimates in a
compensatory visual tracking task [29]. Tt'showed that although these eye-activity variables
are well correlated with the subject performance, those eye-activity based methods require a
relatively long moving averaged window aiming to track slow changes in vigilance, whereas
the EEG-based method can use a shorter moving averaged window to track second-to-second
fluctuations in the subject error in a visual compensatory task [40, 49-52].

The other field focuses on measuring physiological changes of drivers, such as heart rate
variability (HRV) and electroencephalogram (EEG), as a means of detecting the human
cognitive states [30-34]. It has been known that abundant information in
electroencephalogram (EEG) recording can relate with drowsiness, arousal, sleep, and
attention [35]. Previous psychophysiological studies show that typical sleep rhythm regulated

by the circadian process can be divided into non-rapid-eye-movement (NREM) sleep and



rapid-eye-movement (REM) sleep [36-37]. NREM sleep is further subdivided into stages 1-4.
In the first part of falling into sleep (micro-sleep at NREM), increasing amplitudes of slow
alpha waves of the EEG signals were observed with positive correlation at occipital sites (O1
and O2) and negative correlation at central sites (C3 or C4) [38-39]. While approaches based
on EEG signals have the advantages for making accurate and quantitative judgments of
alertness levels, relatively little information has been captured in real time until signal
processing methods and computer power are fast enough to extract the relevant information
from the EEG [40]. Thus, it is practicable and appealing to know what information about

human cognitive state and behavior are available through analyzing complex EEG signals.

1.2. Statement of the Problem

Although EEG-based technologies had been studied and applied in cognitive analysis by
many psychologists and brain résearchers for nearly 40 years. There are still many problems
and limitations existing in analyzing the'EEG signals and in practical applications. To achieve
a reliable and applicable assessment of human cognitive states by investigating the
neurobiological mechanisms underlying non-invasively recorded electroencephalographic
(EEG) brain dynamics in the cognitive driving tasks, the following issues should be

investigated.

1.2.1. Spatial Resolution and Source Localization

Comparing with other physiological signals, such as heart rate variability (HRV),
galvanic skin response (GSR), and functional magnetic resonance imaging (fMRI), the EEG
has the advantage of high temporal resolution (up to several KHz) and easy implementation to
the subjects. However, previous studies used simple measures of peak amplitudes and

latencies in ERP averages at single or fewer scalp channels, the spatial resolution of the EEG
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signals distributed on the scalp is difficult to be obtained and is incapable of extracting the
relevant information. Thus, the possible source localization, which can be used to wire as few

as electrodes, related to the external stimulus or the nidus can not be determined, either.

1.2.2. Single-Trial Analysis

Current ERP-based studies attempt to use response overlap-added averaging method in
time domain to reducing EEG data sets to one or more averaged ERPs in order to remove the
background EEG activity or unrelated noises. However, previous studies had showed
evidences from humans and animals experiments, suggesting that averaging ERPs data from a
number of experimental trials only conceals rather than reveals the essential nature of
event-related brain dynamics [41-44]. Because of the physics of volume conduction,
potentials arising through partial synchronization of neural activity, or from artifacts produced
by muscle activity or eye movements, all contribute to the signal recorded from nearly any
scalp electrodes. Another disadvantage of the trial-averaging method is that it needs to collect
many trials first in order to increase the signal-to-noise ratio and thus, is hard to be used in

real-time application.

1.2.3. Inter-trial Time-alignment Problem

For single-trial analysis of ERP signals in time domain, the amplitude and latency of the
ERP is an important factor for the classification of ERPs. The time-alignment problem is
defined as estimating the time lag of ERP latency due to the time-varying and non-stationary
properties of the ERPs in single trials related the same stimulus. There are many
psychophysiological factors leading to the time-alignment phenomenon of the single-trial
ERP signals for one subject, such as the cognitive state of the subject at that moment, and the

different response behavior for each trial of the subject, etc. The time-alignment problem



caused by the different time lags of subject’s response in different epoch for the same stimulus

will lead to serious problems for identifying the ERPs and decrease the recognition rate.

1.2.4. Artifact Removal

One of the important problem of applying EEG-based method to driving task or other
applications is artifact handling due to the non-invasively measuring manner of EEG signals.
During the period of collecting the EEG signals, subjects move their hands, torso, head, and
eyes, which will create huge muscle movement, eye-blinking artifacts, heart rate, and other
line noise. Using low pass filtering method or the trial-averaging method will not remove
them but mask them only. The other method uses regressions in the time or frequency domain
to derive effective parameters characterizing the spread of EOG noises in the EEG channels
[45-46]. However, regressing outy EOG _activity, "which also contains brain signals [47],
inevitably involves subtracting: a portion -of the -relevant EEG signals and tends to
overcompensate for blink artifacts and may introduce new artifacts into EEG records due to
the difference between the spatial EOG=to-EEG  transfer functions for blinks and saccades.
Regression also cannot be used to remove muscle noise or line noise, either, since these have

no reference channels [48].

1.2.5. Cross-Subject’s Individual Variability

Details of brain dynamics may be as variable between subjects as details of brain shape
and orientation. Thus, measures defined a priori and applied uniformly to data from groups of
subjects cannot have the statistical power of measures customized to the relevant features of
individual subject brain signals such that it is difficult to build a single model to accurately
estimate or predict individual changes in alertness and performance of all the subjects [40,

49-52].



1.2.6. Objective Performance Evaluation

Current brain research uses subjective reports, questionnaires, and the judgments based
on the expert’s knowledge to determine the subject’s cognitive states, such as level of
drowsiness, and level of motion sickness, etc. An objective statistic measure is needed to
quantify the human performance improvement related to subject’s cognitive states and to

study the objective criterion for evaluating the overall task performance of system operator(s).

1.2.7. Online Application

In order to apply the developed EEG-based methods for online applications outside the
psychophysiology laboratory, the proposed  signal processing technologies will have the
limitations of less computational: cost andruse as few as EEG electrodes to be easily
implemented on a portable real-time embedded system. Therefore, there is a compromise

between computational cost and System accuracy.

1.3. Preventions of Road Traffic Accidents

During the past years, driving safety has received increasing attention in public security.
The road traffic injuries constitute a major public health and are predicted to increase if it is
not addressed adequately and requires more concerted efforts for effective and sustainable
preventions. The major risk factors for road driving safety can be roughly classified in two
catalogs. One is the environmental influences, such as the enforcement of traffic rules; defects
in road design, layout, and maintenance; inadequate visibility to difficultly detect vehicles and
other road users; vehicle factors including braking, handling, and maintenance; insufficient
vehicle crash protection for occupants and for those hit by vehicles; and the use of seat-belts

and child restraints. Another factors related to driver’s behaviors including the violation of
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traffic regulations; the detection of targets in the periphery of the eye; the estimation of speed
and distance; presence of alcohol, medicinal or recreational drugs; the processing of
information by the brain; fatigue/micro-sleep; delay in detecting crash; and other
physiological factors associated with age and sex that have a bearing on crash risk.

Although many governments and vehicle manufacturers try to make the use of
information and publicity on their own to prevent road traffic accidents including strategies to
address rates of speed, alcohol consumption; promotion of using helmets and seat belts, or
improvement of design and layout of the road, enhancements of vehicle structures and etc. Yet
the knowledge currently exists to take action on a number of fronts to prevent these needless
deaths, disabilities, immense loss, and suffering they cause. It is still wide held that the major
responsibility of the road crashes still rely on driver’s errors. Therefore, preventing such
accidents is highly desirable but requires techniques. to reduce the number of traffic conditions
causing death or injury or to prevent accidents before they happen such as eliminating
situations that the driver is in insecure-essentials. The key points of preventing accidents
caused by driver’s errors and failures behind the steering wheel related to the driving safety
can be roughly recognized into two aspects: the identification of transient brain dynamic
responses and the continuous estimation of driver’s alertness level, which support information
seeking and attention, decision-making, response selection, and anticipation of expected

consequences.

1.3.1. Accidents Related to Driver’s Transient Response

The human cognitive states accompanying incorrect/absent motor responses or slow
responses in driving tasks on the roads may easily triggers an accident and lead to disastrous
consequences as an underlying cause. An impaired driver will not take evasive action prior to

a collision, where almost 30% of accidents could be avoided by means of reducing the driver



related reaction time by just 0.5 sec, and thus the reductions in traffic crash losses from
reducing crashes attributable to driver impairment far exceed reductions from any other

potential countermeasure [53].

1.3.2. Accidents Caused by Driver’s Loss of Alertness

Previous studies have showed that drivers’ fatigue has been implicated as a causal factor
in many accidents because of the marked decline in the drivers’ abilities of perception,
recognition and vehicle control abilities while sleepy [54-56]. The National Highway Traffic
Safety Administration (NHTSA) conservatively estimates that 100,000 police-reported
crashes are the direct result of driver fatigue each year [57]. This results in an estimated 1,550
deaths, 71,000 injuries and $12.5 billion in monetary losses. The National Sleep Foundation
(NSF) also reported in 2002 [58] that 51%_ of adultrdrivers had driven a vehicle while feeling
drowsy and 17% had actually fallen asleep. The National Transportation Safety Board found
that 58 percent of 107 single-vehicle roadway deéparture crashes were fatigue-related in 1995,
where the truck driver survived and no othervehicle was involved.

Driving under the influences of drowsiness will cause (a) longer reaction time, which
will produce effects on crash risk, particularly at high speeds; (b) vigilance reduction
including non-responses or delaying responding where performance on attention-demanding
tasks declines with drowsiness; (c) deficits in information processing, which will reduce the
accuracy and correctness in decision-making tasks.

Therefore, the leading response should be to persuade road users to adopt “error-free”
behavior and maintain the human high performance in the context of road traffic safety
certainly. Developing accurate and continuous techniques for both identifying driver’s
transient cognitive responses related to environmental stimuli and continuously detecting,

estimating, and predicting driver’s alertness level would be highly desirable, particularly if
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this measure could be further used to predict changes in driver's performance capacity in order

to deliver effective feedbacks to maintain their maximum performance.

1.4. Object and Overview of the Thesis

The objects of this thesis are to develop advanced biomedical signal processing
methodologies to quantify the level of the human cognitive state with concurrent changes in
the driving performance. To achieve these goals, we develop methodologies that combine
independent component analysis (ICA), power spectrum analysis, correlation analysis, and
fuzzy neural network (FNN) models for ongoing assessment of the transient event-related
brain dynamics and the level of alertness of drivers by investigating the neurobiological
mechanisms underlying non-invasively, recorded multidimensional electroencephalographic
(EEG) brain dynamics in the cognitive driving tasks."We then apply these methods to the field
of the driving safety, and focus:on two major applications, the visual traffic-light detection
task and the continuous lane-keeping task on the highway, since they are most frequently
happened events on the road in daily life and will easily lead to huge losses in both health
injuries and economics.

Three important parts compose this dissertation. The first part describes the
research-oriented methodologies for the analysis of human cognitive responses based on EEG
signals to support further applications. The second part describes methods for identification of
transient brain cognitive responses of drivers related to Red/Yellow/Amber traffic-light events.
The last part focuses on developing methods to monitor alertness level of drivers
accompanying changes in driving performances and to explore the relationship between brain
activities, and human cognitive states. Each of these parts is described in a separate chapter.

In this chapter, the necessity of developing technologies for driving safety has been
described, including statistical reports of road traffic injuries, preventions of traffic accidents

11



by governments and vehicle-manufactories, and problems of monitoring driver’s cognitive
states related to driving errors, which suggested the direction of the thesis.

In Chapter 2, we proposed advanced signal processing methodologies for the analysis of
brain activities related to cognitive states, including virtual reality technology, EEG
measurement system, independent component analysis, temporal matching filter, moving
averaged power spectral analysis, correlation analysis, and fuzzy neural network model.

In Chapter 3, we describe the system architectures focusing on identification of
event-related brain potentials related to driver’s transient cognitive responses on traffic-light
stimuli, including details of the traffic-light experimental setup, analysis of EEG data using
ICA and temporal matching filter, and classification of EEG pattern related to
Red/Yellow/Amber stimuli using fuzzy neural networks. Some discussions and conclusion
remarks are also included.

In Chapter 4, we propose models for aceurately and continuously monitoring level of
driver's alertness accompanying-changes-in-driver's performance in a lane-keeping driving
task on the virtual-reality-based highway scene: The EEG-based estimation system combines
EEG power spectrum, independent component analysis, correlation analysis for adaptive
feature selection, and linear regression models and fuzzy neural network estimators. The
relationship among EEG power spectrum, driver’s alertness level and driving performance are
discussed in detail.

In Chapter 5, contributions of this thesis are summarized with final conclusions. Some

further applications using the proposed methodologies are also illustrated.
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2. Methodology

In this chapter, a brief overview of the advanced EEG-based biomedical signal
processing methodologies for identifying/monitoring driver’s cognitive states is presented. We
propose quantitative techniques for ongoing assessment of both the transient event-related
brain dynamics and the level of alertness of drivers by investigating the non-invasively
recorded EEG brain dynamics in two cognitive driving tasks. Fig. 2-1 shows the whole
system architecture consisted of four major parts. (1) The virtual reality technology is used to
construct an interactive driving environment for performing two cognitive driving tasks, the
visual traffic-light stimulated experiment and the driver’s alertness estimating experiment on
highway. (2) The NeuroScan 40-channel EEG measurement system is used to non-invasively
collect multidimensional high-fidelity EEG signals. (3) The advanced signal processing
technologies are proposed to remove non-brain-artifacts, locate optimal positions to wire EEG
electrodes, and extract effective features,-including ‘independent component analysis, power
spectral analysis, correlation analysis,; and adaptive feature selecting mechanism. (4) An
individual fuzzy neural network model for each subject is used to classify the transient

cognitive responses or to monitor the driving performance related to driver’s cognitive states.
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Figure 2-1.  The system architecture of the EEG-based driver’s cognitive-state monitoring system. It consists of four major parts: (1)

Virtual-reality-based driving simulator. (2) The NeuroScan EEG measurement system. (3) Advanced signal-processing unit. (4)

Fuzzy-neural-network classifier or estimator.
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2.1. Virtual-Reality-based Driving Environment

Public security has become an important issue, especially, the safe manipulation and
control of various machines and vehicles such that the authorities can keep emphasizing the
strict training of human operators. Currently, such a training process usually relies on the
actual machines or vehicles in real sites. This not only has high demands in space, time, and
money to perform such a training job, but also leads to another phase of the public security
problem. To tackle the above dilemma, the worldwide trend is to use the virtual-reality (VR)
technology [59-63] to meet the requirements of public security in training and censoring of
human operators. In this way, the operator can feel that he/she is controlling a real machine or
vehicle to achieve the goal of real training and censoring.

The VR technology provides a realistic safety environment, which allows subjects to
make on-line decisions by directly interacting with:.a virtual object rather than monotonic
auditory and visual stimuli. The VR"is also an excellent candidate for brain research on
real-time tasks because of its low‘cost, saving time; less space, and condition control to avoid
the risk of operating on the actual machines, and thus extends the applications of possible
brain computer interfaces to general populations, not limited to lock-in patients.

In this thesis, we apply the dynamic VR technology to design a well-controlled, virtual
driving environment for the cognitive tasks experiments as shown in Fig. 2-2 [61-63]. The
high-fidelity interactive 3D scene was developed by the VR development software,
WorldToolKit (WTK) library and application programmer’s interface (API) [64]. The detailed
development diagram of the VR-based scene is shown in Fig. 2-3. It consists of four major
components: (1) The textures of the created objects; (2) the corresponding parameters
between created objects; (3) the objective dynamic equations of the 3D models; and (4) the
control unit to link all the sub-models with the help of WTK library and APIs. To build a
realistic driving environment as the test bed for the cognitive tasks, we first create models of

15



various objects (such as cars, roads, and trees, etc.) for the scene and setup the corresponding
positions, attitudes, and other relative parameters between objects. Then, we calculate the
parameters of the dynamic equations among these virtual objects and build a complete scene
of full functionality with the aid of the high-level C-based API program. Finally, we link the
virtual-reality-based driving scene to the EEG measurement/recording system to
synchronously provide necessary stimuli and triggering signals for the driving task. Fig. 2-4
and 2-5 show the virtual-city scene for the traffic-light experiment and the highway scene for

the lane-keeping experiment, respectively.
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Figure 2-2.

The virtual-reality-based dynamic driving simulation laboratory.
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Figure 2-3.

dynamic models and shapes of the 3D objects in the VR scene are created and linked to the

WTK library to form a complete interactive VR simulated scene.

Dynamic
Model

Flowchart of the VR-based highway scene development environment. The
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Figure 2-4.  Virtual city deye}ibped_jqr the 1:“\:(r]‘g,r.-based dynamical driving simulator.

Figure 2-5. Virtual-reality-based highway scene
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2.2. EEG Measurement System

In this thesis, the EEG/EOG/ECG physiological signals were detected and recorded
using the NeuroScan (Scan NuAmps Express System) made by Compumedics Ltd., VIC,
Australia. The SCAN NuAmps Express is a fully functional research grade 40-channel digital
EEG and ERP recording system. This system allows user to record EEG and conduct spectral
analysis, coherence and topographic mapping, where evoked potentials (EP) and event related
potentials (ERP) can be recorded, averaged and processed in real-time. Event related spectral
analysis, coherence and time frequency measures can be computed. Amplitude and latency
measures, peak detection and comparative statistics are provided. Additionally, it also
provides a full research grade data processing tool to remove noise and artifacts or decompose
complex signals. The whole Scan NuAmps Express System consists of three major
components: a NuAmp digital amplifiery a SCAN aequisition and analyzing software, and a
multidimensional array of physiological sensors on the scalp based on international 10-20
system as shown in Fig. 2-6.

NuAmps: The NuAmps is a 40-channel monopolar digital amplifier for recording high
quality physiological signals. These can be accessed via the high density cap connector or the
individual Touch Proof connectors on the face of the amplifier. It was designed as a portable
system that obtains power from a laptop computer via USB interface. The power supply of the
computer uses the isolation transformer to meet FDA patient safety guidelines for leakage
current. The NuAmps is designed to record from Sintered Ag/AgCl electrodes which provide
the highest quality and most durable electrical interface. Either individual or cap based
electrode systems can be used. NuAmps is a DC amplifier with a maximum sampling rate of
1000 Hz and has an 8 bit stimulus and a 4 bit response input that allows integration of the
trigging signals for recording ERPs. The NuAmps also has the facility to support TTL iunput
signals from external devices.
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SCAN: The SCAN software allows for automation of acquisition and data processing.
Real time scalp impedance measurement is included, ensuring fast and simple set up times.
All acquired data can be exported for subsequent analysis and a direct import to Matlab
software is provided. The SCAN software is capable of computing bipolar derivations and
different referencing schemes. Reference and ground channels are included in the count of the
40 channels of NuAmp. In additional to EEG and ERP, other physiological measure can be
recorded such as ECG, EMG and EOG.

The SCAN NuAmps Express system requires two computers to be fully operational, one
for SCAN and the NuAmps and the other for the virtual reality (VR) system. The connections
to the equipment are as follows: The laptop running SCAN connects to the NuAmps via a
USB connection. The VR computer connects to the NuAmps via a DB25 pin connector and
pigtail converter cable. All of the above cables have an isolation to meet the FDA

requirements for leakage current-of patient connected devices.
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Figure 2-6. The Scan NuAmp Express System consists of (a) 40-channel NuAmp
monopolar digital amplifier, (b) a Scan recording/analyzing software, (c) sintered Ag/AgCl
electrodes forming a multidimensional array on the scalp based on (d) international 10-20

system.
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2.3. Independent Component Analysis (ICA)

The problem of blind source separation of recorded multi-channel signals into sums of
temporally independent sources had been posed some years earlier. In 1994, Comon proposed
the first approaches to blind source separation by minimizing the third and fourth-order
correlations among the observed variables and achieved limited success in simulations [65].
In 1996, Cardoso, Bell, and Sejnowski generalized this approach, demonstrating a simple
neural network algorithm that used joint information maximization or “infomax” as a training
criterion [66-67]. By using a compressive nonlinearity to transform the data and then
following the entropy gradient of the resulting mixtures, they were able to demonstrate
unmixing of ten recorded voice and music sound sources that had been mixed with different
weights in ten simulated microphone schannels. Their algorithm used only minimal
assumptions about the nature of the sources to be separated. Mixing weights (and thus scalp
projections) of individual components were assumed to be fixed, and the time courses of the
sources mutually independent. In“1996,”Makeig and-ect al further extended the applications of
blind decomposition to biomedical time" series analysis by applying the infomax ICA
algorithm to decomposition of EEG and event-related potential (ERP) data and reported the
use of ICA to monitor alertness [49]. This first report demonstrated segregation of eye
movements from brain EEG phenomena, and separation of EEG data into constituent
components defined by spatial stability and temporal independence. Subsequent technical
reports by Ghahremani et al. [68] and Makeig et al. [69] demonstrated successful separation
of six simulated EEG sources mixed into six simulated EEG channels using a realistic
three-shell head model. Unmixing performance of the ICA algorithm was shown to degrade
gracefully in the presence of noise added to simulate sensor noise or additional small EEG
sources.

Use of temporal independence as a separation criterion is a novel approach. In contrast,
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other EEG decompositions are based on physically modeling the supposed sources [70-71] or
on PCA [72]. Makeig et al. evaluated the relative strengths and limitations of the statistical
independence criterion using simulations [69]. ICA was successful in separating behaviorally
related ERP components in an auditory detection task [73] and several complex visual evoked
ERP data sets [43-44, 74-76]. Jung et al. also demonstrated that ICA can also be used to
remove artifacts from continuous or event-related (single-trial) EEG data prior to averaging
[48, 77-78]. Vigario et al. used a somewhat different ICA algorithm, supported the use of ICA
for identifying artifacts in MEG data [79]. Meanwhile, widespread interest in ICA has led to
multiple applications to biomedical data as well as to other fields [49, 80]. Most relevant to
EEG analysis, McKeown et al. demonstrated the effectiveness of ICA in separating
functionally independent components of functional magnetic resonance imaging (fMRI) data
[81].

Four main assumptions underlie ICA decomposition of EEG data: (1) Signal conduction
times are equal, and summation-of currénts-at-the scalp electrodes is linear, both reasonable
assumptions for currents carried to. the scalp electrodes by volume conduction at EEG
frequencies [82]. (2) Spatial projections of components are fixed across time and conditions.
(3) Source activations are temporally independent of one another across the input data. (4)
Statistical distributions of the component activation values are not Gaussian. (In contrast,
PCA assumes that the sources have a Gaussian distribution). The spatial stationarity of the
component scalp maps, assumed in ICA, is compatible with the observation made in large
numbers of functional imaging reports that performance of particular tasks increases blood
flow within small (~cm’) discrete brain regions [83]. Since functional hemodynamic imaging
experiments typically show metabolic brain increases in defined tasks occur in relatively
small cortical areas, EEG sources reflecting task-related information processing may

generally assumed to sum activity from compact and spatially stationary generators. However,
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spatial stationarity may not apply to some spontaneously generated EEG phenomena such as
spreading depression or sleep spindles [84]. To fulfill the temporal independence assumption
used by ICA, response components must be activated with temporally independent time
courses. For this to occur, the functional degree of independence of different regions of
synchronous neural activity, generating the EEG signals, must be expressed in the data.
Typically, this means that sufficient numbers of time points need to be used during training.
The joint problems of electroencephalographic (EEG) source segregation, identification,
and localization are very difficult since the EEG data collected from any point on the human
scalp includes activity generated within a large brain area, and thus, problem of determining
brain electrical sources from potential patterns recorded on the scalp surface is
mathematically underdetermined. In this thesis, an application of the concept of
non-stationary ICA for EEG decomposition is proposed. This is a complex problem, both
theoretically and computationally with a tradeoff between the benefits of more complex
methods of analysis and their complexity.-.Normally, more complex methods require more
restrictive assumptions to be beneficial: In this thesis, we attempt to completely separate the
twin problems of source identification (What) and source localization (Where) by using a
generally applicable ICA. Thus, the artifacts including the eye-movement (EOGQG),
eye-blinking, heart-beating (EKG), muscle-movement (EMG), and line noises can be
successfully separated from EEG activities. The ICA algorithm was carried out with the
“infomax” principle [85-86], where the beauty of the “infomax”™ approach to blind separation
or ICA is the close fit of the “infomax™ assumptions to the nature of the EEG data which had
been demonstrated in many reports [48, 77-81, 85-86]. The ICA is a statistical “latent

variables” model with generative form:
x(t)=As(t), 2.1

where A is a linear transform called a mixing matrix and the S, are statistically mutually
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independent. The ICA model describes how the observed data are generated by a process of

mixing the components S, . The independent components S; (often abbreviated as 1Cs) are

latent variables, meaning that they cannot be directly observed. Also the mixing matrix A are

assumed to be unknown. All we observed are the random variables X;, and we must estimate

both the mixing matrix and the S; using the X;.

Therefore, given time series of the observed data X(t)= [Xl(t) X,(t) -+ Xy (t )]T in

N-dimension, the ICA is to find a linear mapping W such that the unmixed signals u(t) are

statically independent.
u(t)=w x(t) (2.2)
Supposed the probability density function of the observations X can be expressed as:
p(x)=|det(W )p(u), (2.3)

The learning algorithm can be derived using the maximum likelihood formulation with the

log-likelihood function derived as:
N
L(uW )=log|det(W )|+ > log p;(u;). (2.4)
i=1

Thus, an effective learning algorithm using natural gradient to maximize the log-likelihood

with respect to W gives:

AW o FEUW )y =[1—p(upn v, (2.5)
oW
where the nonlinearity
2p(u) ap(u;) apuy) '
o(u)=— ou  _|__ou AL (2.6)
p(u) | p(u) pCuy)
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and W'W rescales the gradient, simplifies the learning rule and speeds the convergence

considerably. It is difficult to know a priori the parametric density function p(u), which

plays an essential role in the learning process. If we choose to approximate the estimated
probability density function with an Edgeworth expansion or Gram-Charlier expansion for
generalizing the learning rule to sources with either sub- or super-Gaussian distributions, the

nonlinearity ¢(u) can be derived as:

u —tanh(u): for super - Gaussian sources,

p(u) = { 2.7)

u +tanh(u): for sub - Gaussian sources,

Then,

| —tanh(U)u™ —uu’ W: - i
W ={[ tanh(u)u —uu ]\N super - Gaussian (2.8)

[I +tanh(U)u’ ~uu’ ]\N :sub - Gaussian

Since there is no general definition for-sub-and super-Gaussian sources, if we choose
p(u)= %(N (1,1)+ N(-1, 1)) and. p(U)="N(0,1)sech’(u) for sub- and super-Gaussian,
respectively, where N(,u,az) is a normal distribution. The learning rules differ in the sign

before the tanh function and can be determined using a switching criterion as:

k. = 1:super - gaussian
AW o [I — Ktanh(u)u’ —uuT}N, where{ ‘ ber-& o, (2.9)
K, =—1:sub - gaussian

where
K = sign(E{sec h*(u. )}E{uf}— E {tanh(u, )ui}), (2.10)

as the elements of N-dimensional diagonal matrix K. After ICA training, we can obtain 33

ICA components U(t) decomposed from the measured 33-channel EEG data x(t).
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Xl (t ) Wl,l W1,2 W1,33
X, (1)

W W
P uy(t) ] T fug(t) (2.11)

W
x(t)= =W u(t)=] 7 fu(t)+

X33(t ) W33,1 W33,2 W33,33

Fig. 2-7 shows the scalp topographies of ICA mixing matrix W™ corresponding to each ICA
component by spreading each w;; into the plane of the scalp, which provides spatial
information about the contribution of each ICA component (brain source) to the EEG
channels, e.g., eye activity was projected mainly to frontal sites, and the drowsiness-related
potential is on the parietal lobe to occipital lobe, etc. We can observe that the most artifacts
and channel noises included in EEG recordings are effectively separated into ICA components
1 and 4 as shown in Fig. 2-7 and the ICA components 5, 11, and 13 may be considered as

effective “sources” related to drowsiness in the VR-based driving experiment.

Figure 2-7.  Scalp topography of ICA mixing matrix W™ of 33 ICA components trained by
EEG data.
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2.4. Power Spectral Analysis

Analysis of changes in spectral power and phase can characterize the perturbations in the
oscillatory dynamics of ongoing EEG. Applying such measures to the activity time courses of
separated independent component sources avoids confounds caused by miscancellation of
positive and negative potentials from different sources to the recording electrodes, and by
misallocation to the recording electrodes activity that originates in various and commonly
distant cortical sources. Fig. 2-8 shows the diagram of moving-average power spectral
analysis [87] for one single ICA component, which was decomposed from 33 channels of the

EEG signals at sampling rate (2, =250 Hz. The time series of the single ICA component u;(t)

was first divided into several epochs using a 750-point Hanning window with 250-point

overlap, i.e., stepping in 2 seconds at samplingrate (2, =250 Hz.
p,,(t)=h(t)u(t+500(m=1)), (2-12)
wheret=1,2, ..., 750, m is the index ‘of m epoch, and N-point Hanning window is

0.54-0.46 2t 0<t<N-1
h(t):{ COS( Al—l) (2_13)

0 otherwise

Windowed 750-point epochs were sub-divided into several 125-point frames using Hanning

windows again, with 25-point step size.
0,(t)=h(t)p,(t+25(n-1)), (2-14)

where t =1, 2, ..., 125, and n is the index of n" frames. Each frame was extended to 256
points by zero-padding for using a 256-point Fast Fourier Transform (FFT) to calculate its
power spectrum, where the frequency resolution is near 1 Hz by using a 256-point FFT to the

data with 250Hz sampling rate.
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()= (1) @19)

In this study, there will be many times of wake-sleep cycles in one session of our experiment.
Previous studies show that cortical regions produce low amplitude, fast oscillations during
waking [88-89]. In contrast, the onset of sleep is marked by high-amplitude, slow cortical
oscillations in different frequency bands [90-91]. Therefore, the averaged power spectrum of
each epoch was normalized by using logarithmic scaling method in Eq. (2-16) to linearize
these expected transient multiplicative effects of subcortical systems involved in wake-sleep
regulation of EEG amplitudes [88, 92].

5m(k)=NiZongm(un(k)2) (2-16)

t n=1

Completing the all epochs of the,single ICA component, we obtained the power spectrum

time series P,(m,k), where m-is the index of time-stepping, and Kk is the index of kg
frequency index, of iy, ICA component Ui(t)-for'a session consisted of ICA bandpower
estimated at 40 frequencies (40 data points presenting from 0.98 to 39.1 Hz) stepping at 2s
(500-point, an epoch) time intervals. The same procedure of power spectrum analysis was
applied to all 33 ICA components and other 33 EEG channels for comparisons. Finally, a
median filtering using a moving averaged 90-s window in Eq. (2-17) was used to further
minimize the presence of artifacts in the ICA/EEG signals and to match the time stamp of the
driving error index.

a(n,k)zMszﬁi(mm—l,k) (2-17)

p m=1
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Figure 2-8.  Moving-average log power spectral.analysis for EEG/ICA signals.

2.5. Correlation Analysis

Supposed the time series of the driving ‘error index stepping in 2 seconds after 90-s

moving averaged window was SDPI(n), and the time-frequency series of i ICA component

after 90-s moving averaged window was p,(n,k), where n is the time stepping size in 2

seconds and K is the frequency index k=1, 2, ..., 40. In order to find the relationship between

the brain activities and subject’s driving performance, and to quantify the level of the subject’s

drowsiness, we computed the correlation coefficient between the time course of minute-scale

fluctuations in driving performance and the concurrent changes in the ICA spectrum of EEG

signals by using the Pearson Correlation Coefficient defined as:

> (P.(n,k)—-P(k))(SDPI(n)—SDPI)
CC(ik)=—n _ —,  (2-18)
\/Z(Pi(n,k)—Pi(k))z\/Z(SDPI(n)—SDPI)Z
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The CC(i,k) forms a correlation spectrum related to i, ICA component and kg, frequency

index and is a statistical measure of the linear relationship between two random variables, the
driving error index SDPI(n), and ICA power spectrum p.(n,k), where SDPIl and P,(k)
(related to ky, frequency index) are the expected values of SDPI(n) and p;(n,k), respectively.

Therefore, the correlation coefficients between the driving performance and the ICA

component i in the frequency band K can be expressed as:

C1,1 C1,2 e C1,40
. Cc Cc .o C
cC(ik)=| > 72> . 7 (2-19)
C33,1 C33,2 e C33,40

Fig. 2-9 (a) and (b) show an example of changes in a single frequency 10 Hz in ICA
components 11 and 13 of subject 3 with the minute-scale fluctuation of the driving error index
(Fig. 2-9 (¢)) in one lane-keeping driving session, Note that the fluctuations in the driving
error index change slowly in minute sc¢ales,-which alse can be found in the previous study [40,
51] in an auditory detection task. We can also observe the concurrent changes in the power
spectrum in single frequency, e.g. 10 Hz in ICA components 11 and 13 shown in Fig. 2-9 (a)
and (b), respectively. We then calculate the correlation coefficient between the time series of
the driving error index and the concurrent changes in the power spectrum in single frequency
using Eq. (2-18) and obtain a correlation coefficient corresponding to that single frequency.
Completing all the frequency (1-40Hz), we get the correlation spectra related to the ICA
components 11 and 13 are shown in Fig. 2-9 (d). Fig. 2-10 shows the resulting correlation
spectra of subject 3 in 33 ICA components. The horizon axis indexes frequency bands
between 1 and 40 Hz and the vertical axis indexes the ICA components. The correlation
spectra shows a strong evidence between fluctuations in ICA bandpower of frequency bands

within 9 to 25 Hz and driving performance with high positive correlations in ICA components
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11 and 13. As driving error increases, so does ICA bandpower.

Power Changes in 10 Hz in ICA Components 11 (L) and 13 (R)
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Figure 2-9.  Fluctuations in the driving error index and concurrent changes in power
spectrum of ICA components and their corresponding correlation spectrum. (a) and (b) shows
the changes of power spectrum in 10 Hz with time of the ICA components 11 and 13 of
subject 3 after 90-s moving-average spectral analysis. (¢) The smoothed 90-s driving error
index. (d) Correlation coefficients from 1-40 Hz forming a correlation spectrum of the ICA

components 11 and 13.
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2.6. Self-cOnstructing Neuro-Fuzzy Inference Network

(SONFIN)

We develop a Self-cOnstructing Neural Fuzzy Inference Network called SONFIN shown
in Fig. 2-11, which is a general connectionist model of a fuzzy logic system. The SONFIN
can always find its optimal structure and parameters automatically. Both the structure and
parameter identification schemes are done simultaneously during on-line learning without any
assignment of fuzzy rules in advance. The SONFIN can always construct itself with an
economic network size, and the learning speed as well as the modeling ability is well

appreciated. Comparing with other neural networks [93-94] in different areas including
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control, communication, and signal processing, the on-line learning capability of the SONFIN
has been demonstrated. This 6-layered network realizes a fuzzy model of the following form:
Rulei : IF X7 is Aj1 and ... and X, is Ain
THEN y is mgi + ajiXj + ..., (2-20)

where Ajj is a fuzzy set, Mo; 1s the center of a symmetric membership function on Yy, and aji is a
consequent parameter. Unlike the traditional TSK model where all the input variables are used
in the output linear equation, only the significant ones are used in the SONFIN; i.e., some a;iS
in the above fuzzy rules are zero.

Each node in Layer 1, which corresponds to one input variable, only transmits input
values to the next layer directly. Each node in Layer 2 corresponds to one linguistic label
(small, large, etc.) of one of the input variables in Layer 1. A node in Layer 3 represents one
fuzzy logic rule and performs precondition matching of a rule. The number of nodes in Layer
4 is equal to that in Layer 3, and the result (firing strength) calculated in Layer 3 is normalized
in this layer. Layer 5 is called the consequent-layer. Two types of nodes are used in this layer,
and they are denoted as blank and shaded circles in Fig. 2-11, respectively. The node denoted
by a blank circle (blank node) is the essential node representing a fuzzy set of the output
variable. The shaded node is generated only when necessary. One of the inputs to a shaded
node is the output delivered from Layer 4, and the other possible inputs (terms) are the
selected significant input variables from Layer 1. Combining these two types of nodes in
Layer 5, we obtain the whole function performed by this layer as the linear equation on the
THEN part of the fuzzy logic rule in Eq. (2-20). Each node in Layer 6 corresponds to one
output variable. The node integrates all the actions recommended by Layer 5 and acts as a
defuzzifier to produce the final inferred output.

Two types of learning, structure and parameter learning are used concurrently for

constructing the SONFIN. The structure learning includes both the precondition and
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consequent structure identification of a fuzzy if-then rule. Here the precondition structure
identification corresponds to the input-space partitioning and can be formulated as a
combinational optimization problem with the following two objectives: to minimize the
number of rules generated and to minimize the number of fuzzy sets on the universe of
discourse of each input variable. As to the consequent structure identification, the main task is
to decide when to generate a new membership function for the output variable and which
significant terms (input variables) should be added to the consequent part (a linear equation)
when necessary. For the parameter learning based upon supervised learning algorithms, the
parameters of the linear equations in the consequent parts are adjusted by either LMS or RLS
algorithms and the parameters in the precondition part are adjusted by the back-propagation
algorithm to minimize a given cost function.

The SONFIN can be used for,normal operation at any time during the learning process
without repeated training on the-input-output patterns when on-line operation is performed.
There are no rules (i.e., no nodes in-the-network -except the input-output nodes) in the
SONFIN initially. They are created dynamically.as learning proceeds upon receiving on-line
incoming training data by performing the following learning processes simultaneously: 1)
input/output space partitioning; 2) construction of fuzzy rules; 3) optimal consequent structure
identification; 4) parameter identification. In the above, learning processes 1), 2), and 3)

belong to the structure learning phase and 4) belongs to the parameter learning phase.
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Figure 2-11.

The network structure of SONFIN.
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3. Classifications of the Transient Brain

Dynamics in Single Trials

Accidents caused by errors and failures in human performance among these fatalities
have a high rate causing death, especially when driving through the crossroad. A key problem
of causing failures is the inability to dynamically quantify cognitive changes in the human
capacity to perform such a work. In recent studies [40, 95-102], many researchers had
proposed to develop quantitative techniques for ongoing assessment of cognitive effort,
engagement and workload, by investigating the neurobiological mechanisms underlying
electroencephalographic (EEG) brain dynamics events. A way to determine the relationship
between different stimuli and human cognitive responses accompanying correct, incorrect and
absent motor responses is the use.of event-related brain potential (ERP) signals. An ERP
signal can be observed with some latency-(e.g., P300) as the stimulus event is given or
removed to a subject. We can observe ERP signals in many different stimuli such as audio,
vision, pain, electric shock, emotion changes, etc. However, current applications of
EEG-based brain research work have limitations due to the signal processing methods are
incapable of extracting the relevant information caused by many artificial sources for EEG
signals, such as eye movements, eye blinks, cardiac signals, muscle noise, and line noise.
Thus, the recent brain computer interface (BCI) works [6-14] have focused on the feasibility
studies of on-line averaging and biofeedback methods in order to choose characters or move a
cursor on a computer screen.

In this chapter, we develop methods for analyzing single-trial electrical recordings from
the human scalp and make it possible to optimally combine multidimensional information

obtained from an array of scalp electrodes and to model the dynamics of the underlying brain
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networks. This method dramatically increases the amount of transient dynamic cognitive state
information that support information seeking and attention, decision-making, response
selection, and anticipation of expected consequences. We also design a detailed experimental
procedure and a complete analyzing method to detect, acquire, and analyze relationship of
human cognitive responses to different events by the use of ERP signals in the traffic-light
simulation experiments, which can be applied to on-line vehicle driving-safety system. First,
we construct a Red/Green/Amber traffic-light scene based on the interactive virtual reality
(VR) technology. We also use the Independent Component Analysis (ICA) to remove a wide
variety of artifacts based on blind source separation and to extract the representative features.
Then, we design a novel temporal filter to solve the time-alignment problem between single
trials and thus increasing the recognition rate of the ERP events. The Principle Component
Analysis (PCA) is further used toireduce the feature dimension for realistic applications.
Finally, we develop a Self-cOnstructing: Neural' Fuzzy Inference Network (SONFIN) to
classify the recorded ERP signals. This results. and-know-how can also be generalized to
develop computational approaches to analyze neural activity associated with human cognition
under kinesthetic/visual/auditory stimuli in EEG experiments and to translate or interpret

EEG patterns appropriate for artificial devices as control signals of driving-safety system.
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3.1. Virtual-Reality-Based Traffic-Light Experiment

In this thesis, we focus on the detecting and analyzing of the responses of brain activities
to the traffic-light events (Red-Green-Amber) in a stoplight detection task since they are the
most frequently happened events when driving on the roads and have a high fatality rate when
drivers ignore and run the stoplight. A virtual-city scene shown in Fig. 2-4 was first developed
based on the virtual reality (VR) technology, which allows subjects to make on-line decisions
in a dynamic environment involving interaction with virtual objects to look at on-line cue
recognition. For convenient analysis and avoiding additional visual-cue noise, the traffic-light
driving simulation in the virtual city is simplified to have three kinds of traffic-light stimuli,
the red, green, and amber lights, which are displayed at center on a color XVGA 15” monitor
(304.1-mm wide and 228.1-mm high).: The , VR-based traffic light simulative sequences
contain 150 events for each session as shown in Fig.:3-1, where the event allotment ratios are
30%, 60%, and 10% for red, green, and amber traffic lights, respectively. Therefore, there are
totally 45 red-light events, 90 green-light events, and 15 amber-light events in a driving
session. Previous study had showed that the stimulus needs to be presented both rarely and
task relevantly in order to evoke event-related potentials [103-104]. A similar response occurs
in a VR driving world, such that each single stimulus was designed to appear in random
intervals between 1.7, 2.1, and 2.3 seconds and lasts for 300 ms. The onset time of the
traffic-light stimuli and the subject’s response time to the target is triggered by the VR
program and recorded synchronously with continuous EEG signals in the EEG measurement

system.
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3.2. Subject’s Protocols

A total of ten subjects (ages from 20 to 40 years) participated in the VR-based
traffic-light driving experiments where EEG signals were simultaneously recorded. Each
subject participated in six simulated work sessions on the same time in a day. For each session,
the subject started with a 5~10 minutes training session to practice the operation in this
experiment. Subjects reported that this amount of training was sufficient to train participants
to asymptote on the task. Participants were then fitted with an EEG electrode cap to record the
physiological EEG signals. After practicing, the subject started a 10-min visual traffic-light
detection tasks (10~15 minutes break between sessions) and was asked to decelerate/stop the
car when he/she detected a red light, to accelerate the car when he/she saw a amber light, and

do nothing (keep constant speed) when he/she saw the green light.

uVv

T
300(ms) . ' G
R
=

-200(ms) 10 l()(ms)
\ 3

Epoch (Trial) |

Time (ms)

Figure 3-1.  Traffic-light stimulus sequences, where G, R, Y representing the Green-light,
Red-light, and Amber-light events, respectively, and R B is the subject’s response to the
Red-light (e.g., braking the car), and L B is the subject’s response to the Amber-light (e.g.,
speeding up the car).
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3.3. EEG Data Collection

During each visual traffic-light detection session, the 31-channel EEG and 4-channel
EOG using sintered Ag/AgCl electrodes with an unipolar reference at right earlobe were
simultaneously recorded by the Scan NuAmps Express system (Compumedics Ltd., VIC,
Australia). All the EEG/EOG channels were located based on a modified International 10-20
system based on the relationship between the location of an electrode and the underlying area
of cerebral cortex. Before data acquisition, the contact impedance between EEG electrodes
and scalp was calibrated to be less than 5kQ. The EEG data were recorded with 16-bit
quantization level at a sampling rate 1 KHz and down-sampled to 500 Hz for the simplicity of
data processing. Then EEG data were preprocessed using a simple low-pass filter with a
cut-off frequency of 50 Hz to remove the line noise (60 Hz and its harmonics) and other
high-frequency noise for further analysis. Finally, we successfully collected more than 700
successful ERP events of one subject in a driving experiment. Fig. 3-2 shows an example of
the collected time series of EEG signals of subject 1 The red/green/amber traffic-light stimuli
were marked as red, green, and yellow lines, respectively. The subject’s correctly responded
target responses were also observed followed the target stimuli, i.e. a blue line was observed
about 300-ms fallen behind the red-light stimulus at 25.7 second, and a cyan line was also
observed about 350-ms fallen behind the amber-light stimulus at 23.2 second. To further
analyzing the relationship between the visual traffic-light stimuli and the subject’s
corresponding response, the synchronously measured continuous EEG signals are separated
into several epochs/trials where an epoch or a trial contains the sampled EEG data from —200
ms to 1000 ms with a light stimulus given at 0 ms and were connected together as shown in
Fig. 3-3 for the analysis of traditional time-domain overlap-added averaged methods or ICA
algorithm. The extracted single-trial epochs for the red light stimuli at Pz channel and their
time-domain overlap-added average (black line) were shown in Fig. 3-4 (a). Note that the ERP,
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P300, was clearly observed. Fig. 3-4 (b) shows the single-trial ERP-image plots of correctly
responded target response data at Pz channel (occipital site) from a red-light visual stimulus.
The subject’s response time (black line) is very time-locked to the P300 ERP corresponding to
red-light stimulus. Fig. 3-5 shows the time-domain overlap-added averaged ERP signals for
three kinds of traffic-light stimuli in Pz channel. We can observe that the ERPs related to
different traffic-lights have apparent differences. Although wusing the time-domain
overlap-added averaged method can successfully observe the appealing differences between
ERPs related to different stimuli, it costs much time to collect enough epochs (at least 30 trials)
before performing such time-domain overlap-added averaged algorithm and can not be used
for online applications. Therefore, in this thesis, we introduce a new single-trial analyzing
method based on ICA algorithm to deal with the prior-average problem of time-domain
overlap-added averaged method without loss any information of the original ERP signals.

Fig. 3-6 shows the scalp topography of:the. time series of averaged epochs for one
stimulus (red light) of subject 1-Theiresults-demonstrated that the active brain responses to
significant events or external stimuliinveolve synchronized oscillations in local field potentials
in a number of brain regions as reported in previous studies [15-16]. These brain dynamic
events appear to begin in the frontal cortex, implying they carry or channel top-down
information about intention, including attentional focus, to sensorimotor brain areas [18]
triggering other dynamic events that carry or channel bottom-up information from sensory to
response-selection areas [83]. The analyzing results in Figs. 3-2 to 3-6 calibrate the successful

design of the visual traffic-light detection tasks.
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Figure 3-3.  Extracted epochs (dashed intervals) for one stimulus (red right) and subject’s

response (right button).
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Figure 3-4.  (a) Observed epochs (trials) for the red light stimuli at Pz channels and their
time-domain overlap-added average (black line). Note that the ERPs, P300, was clearly
observed. (b) Single-trial ERP-image plots of correctly responded target response data at Pz
channel (occipital site) from a red-light visual stimulus. The subject’s response time (black

line) is very time-locked to the P300 ERP corresponding to Red-light stimulus.
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Figure 3-5. Time-domain overlap-added averaged ERP signals for three kinds of

traffic-light stimuli in Pz channel.

Figure 3-6.  Scalp topography of the time series of an averaged epoch for one stimulus (red
light). These results show that active brain responses to significant events or external stimuli
involve synchronized oscillations in local field potentials in a number of brain regions [28-29].
These brain dynamic events appear to begin in the frontal cortex, implying they carry or
channel top-down information about intention, including attentional focus, to sensorimotor
brain areas triggering other dynamic events that carry or channel bottom-up information from

sensory to response-selection areas.
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3.4. Data Analysis

Fig. 3-7 shows the system flowchart for processing the ERP signals. After collecting
high-fidelity EEG signals, a low-pass filter is first used to remove the line noise and higher
frequency (>50Hz) noise. A first calibration based on time-domain overlap-added averaged
ERP and ERP image is perform to demonstrate the validity of the collected EEG signals. In
order to remove a wide variety of artifacts and for the applications of on-line use, unlike
traditional time-domain overlap-added averaged methods for processing ERP data, the
measured ERP signals are further analyzed using ICA algorithm (described in Chapter 2-3) in
single trials. The ICA is also used to select possible ERP features related to the traffic-light
stimuli based on the time sequences of the ERPs and the corresponding scalp distribution of
the ICA components. After extraction,ofithe, single-trial ERP signal, we design a novel
temporal matching filter to solve the time-alignment problem caused by the variations of
subject’s response in each single trial. ‘The PCA algorithm is then applied to the filtered ERP
data to reduce dimension and select the representative components. Finally, we develop a
fuzzy neural network (FNN) model (Chapter 2-6) compared to Learning Vector Quantization
method (LVQ) and Back-propagation Neural Network model (BPNN) to on-line classify the
ERP data corresponding to different stimuli. The classified results can be used as control and

feedback commands in vehicle safety-driving systems.

Artifact Removal - -
Useful Components Dimension
Selection Reduction
y A
i i Outputs
EEG ___@__ Matching | [oo ] i) Bpe Ll (red/
Signal [} Filter g g ENN | green/
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EEG . ' . .
Recording Data Analysis Classification

Figure 3-7.  Flowchart of ERP data analysis in the visual traffic-light detection experiment.
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3.4.1. ICA Decompositions of the ERP Data

The brief schematic depiction of the decomposition by ICA is shown in Fig. 3-8. In our
experiment, we assume that the multi-channel EEG recordings are mixtures of underlying
brain sources and artificial signals. As discussion in Chapter 2-3, we suppose that the number
of sources is the same as the number of sensors by assuming that the source numbers
contributing to the scalp EEG are statistically independent; that is, if there are N sensors, the
ICA algorithm can separate N source components. The conduction of the EEG sensors is
assumed to be instantaneous and linear such that the measured mixing signals are linear and
the propagation delays are negligible. We also assume that the signal source of muscle activity,
eye, and, cardiac signals are not time locked to the sources of EEG activity which is regarded
as reflecting synaptic activity of cortical neurons. Therefore, the time courses of the sources
are assumed to be independent. Fhe important fact used to distinguish a source, S, from
mixtures, Xj, is that the activity of each source-is statistically independent of the other sources,
1.e., the mutual information between any two Soutees, S;i and Sj, is zero. The task of ICA
algorithm is to recover a version, of the original sources S by finding a square matrix W that
inverts the mixing process linearly and save the identical scale and permutation. For EEG
analysis, the rows of the input matrix X are the EEG signals recorded at different electrodes,

the rows of the output data matrix u = WX are time courses of activation of the ICA

components, and the columns of the inverse matrix W™ give the projection strengths of the
respective components onto the scalp sensors. The scalp topographies of the components
provide information about the location of the sources (e.g., eye activity should project mainly
to frontal sites, and the visual event-related potential is on the center to posterior area, etc.).
“Corrected” EEG signals can then be derived as X = Wu, where u is the matrix of activation

waveforms U.
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Figure 3-8.  Schematic'depiction of [CA decomposition of EEG signals.

3.4.2. Temporal Matching Filter

For single-trial analysis of ERP signals in time domain, the amplitude and latency of
ERP (P300) is an important parameter for the ERP classification. Due to the time varying and
non-stationary property of P300 in each single trial of the same stimulus, one frequent
happened problem concerning classification is the time-alignment problem defined as the time
varying of the latency in P300. There are many psychophysiological factors leading to the
time-alignment phenomenon of the single-trial ERP signals for one subject, such as the
cognitive state of the subject at that moment, the different response behavior for each trial of
the subject, etc. The time-alignment problem caused by the different time lags of subject’s
response for the same kind of stimuli in different epoch will lead to serious problems when

extracting representative features for the same group of ERP data (i.e., the single trial ERP
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signals caused by the same stimulus could be classified into different principles in PCA due to
the time alignment problem.) and decrease the recognition rate. To solve such a problem, we
process the single-trial EPR signals with short-term techniques using maximum magnitude of
cross-correlation function and propose a novel temporal matching filter. Fig. 3-9 shows the
concept diagram of this matching filter. After collecting high-fidelity ERP signals, the
temporal matching filter is selected by averaging the first N single trials as the standard
pattern of P300 for each subject. Then we calculate the cross-correlation value between the
matching filter and subsequent single trial, and find out the maximum magnitude of
cross-correlation function. Finally, the original single-trial sequence is shifted to a new time
sequence according to the maximum cross-correlation value. Detailed algorithms are listed
below:

1. Given the input single-trial source component u; (i is the trial index), we calculate

N
the average of the first'N trials by IT:ZUi as the standard pattern of the
i=1

matching filter.
2. Find the maximum cross-correlation coefficients between the standard pattern U

and subsequent single trials by calculating k; =arg maxu,, (k) , where
i

uxcorr (k) = Z_:U(j)ul(J + k) *

3. Rearrange the time series of each single-trial by U, (j)=u,(j+k;) as a new input

sampled trial.
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Figure 3-9. The use of Matching Filter for temporal alignment of the single-trial ERP.

3.4.3. Principle Component Analysis (PCA)
Given the observed zero-mean data matrix X(t)z[xl(t) X, (t) - XN(t)]T , the

principle component analysis (PCA) isi:sto find an orthogonal NxN matrix

P= [p1 P, - Py ] , P, 18 a NxF wvector, that determines a transformation of
variable, X (t) = PY(t), such that the néw variables Y (t) = [yl(t) y,(t) ... Yy (t)] are
uncorrelated and arranged in order of decreasing variances.

Let S, = XX / (N —=1) be the covariance matrix of X(t) and let D be a diagonal matrix
with the eigenvalues 4,,...,4, of S, , where A4, >24,>2...24, =20 . The desired
orthogonal matrix P is one that makes S, diagonal by performing D =P'S, P where P’s
columns are the corresponding unit eigenvectors p,,..., Py of S, . The unit eigenvectors

P,,..., Py are then called the principle components of the data. The kg, principle component
p, determines the new variable y,(t) in the following way: Let the entries in p, express
as Py = [pLk Py oo pN’k]T . The equation X(t)=PY(t) shows that
Y (t)=p¢ X(t)= P X (1) + Py X () + ..+ py Xy (t). Thus, y,(t) isa linear combination
of the original variables, X(t),...,X,(t), using the entries in the eigenvector p, as
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weights. Using a cutoff on the first Ky, principle components, the observed data matrix may

thus be reduced in its dimensionality from N to K without much loss of information [93].

3.4.4. Learning Vector Quantization (LVQ)

The Learning Vector Quantization is a supervised competitive learning algorithm from
vector quantization (VQ) and Self-Organizing Map (SOM) algorithm by Kohonen [105-106],
which has the network to "discover" structure in the data by finding how the data are clustered.
The goal of LVQ algorithm is to approximate the distribution of a class using a reduced
number of codebook vectors where the algorithm seeks to minimize classification errors. The
algorithm is associated with the neural network class of learning algorithms, though works
significantly  differently compared to conventional feed-forward networks like
Back-propagation. The neural network for learningvector quantization consists of two layers:
an input layer and an output layer. It represents a set of reference vectors, the coordinates of
which are the weights of the connections leading from the input neurons to an output neuron.
Hence, one may also say that each output neuron corresponds to one reference vector. The
learning method of learning vector quantization is often called competition learning, because
it works as follows [107]: For each training pattern the reference vector that is closest to it is
determined. The corresponding output neuron is also called the winner neuron. The weights of
the connections to this neuron - and this neuron only: the winner takes all - are then adapted.
The direction of the adaptation depends on whether the class of the training pattern and the
class assigned to the reference vector coincide or not. If they coincide, the reference vector is
moved closer to the training pattern; otherwise it is moved farther away. This movement of
the reference vector is controlled by a parameter called the learning rate. It states as a fraction
of the distance to the training pattern how far the reference vector is moved. Usually the

learning rate is decreased in the course of time, so that initial changes are larger than changes
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made in later epochs of the training process. Learning may be terminated when the positions

of the reference vectors do hardly change anymore.

3.4.5. Back-propagation Neural Network Model (BPNN)

Another algorithm which has hugely contributed to neural network fame is the
back-propagation algorithm [93, 108]. The principal advantages of back-propagation are
simplicity and reasonable speed. Back-propagation is well suited to pattern
recognition/classification problems. In essence, the back-propagation network is a perceptron
with multiple layers, a different threshold function in the artificial neuron, and a more robust
and capable learning rule. Back-propagation can train multilayer feed-forward networks with
differentiable transfer functions to perform function approximation, pattern association, and
pattern classification. The term back-propagation refers to the process by which derivatives of
network error, with respect to network weights and biases, can be computed. This process can
be used with a number of different optimization strategies. The architecture of a multilayer
network is not completely constrained by the problem to be solved. The number of inputs to
the network is constrained by the problem, and the number of neurons in the output layer is
constrained by the number of outputs required by the problem. However, the number of layers
between network inputs and the output layer and the sizes of the layers are up to the designer.
The two-layer sigmoid/linear network can represent any functional relationship between

inputs and outputs if the sigmoid layer has enough neurons.

3.5. Results and Discussions

In this thesis, we propose a novel ICA-based temporal matching filter for analyzing the
single-trial event-related brain potentials (ERP) without first averaging over trials as input

features of the FNN classifiers and apply this method to recognize the different transient brain
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responses stimulated by red/green/amber traffic-light events. After collecting 31-channel EEG
signal, the time-domain overlap-added averaged method was used to calibrate the correctness
of the extracted ERP signals for three kinds of stimuli in Pz channel are shown in Fig. 3-2 to
Fig. 3-6. We can find that the averaged ERP signal in this traffic-light experiment is similar to
the general visual ERP signal, where the event related potentials, P300 were clearly observed.
Scalp topography of the time series of an averaged epoch for one stimulus (red light) show
that active brain responses to significant events or external stimuli appear to begin in the
frontal cortex including attentional focus to sensorimotor brain areas and from sensory to
response-selection areas as shown in Fig. 3-6. The averaged EEG responses of three events in
Fig. 3-5 are very different and can be used as the features in single trials for further
classification. More detailed results are discussed below including artifact removal using ICA,

effect with/without matching filter, and comparisons of linear and nonlinear classifiers.

3.5.1. Artifact Removal Using:ICA

The measured ERP signals are first analyzed using ICA algorithm trained in single trials
as described in Eq. (2-9) in Chapter 2. For EEG analysis, the rows of the input matrix X are
the cascade-connection ERP signals recorded at different electrodes, the rows of the output
data matrix U=WX are time courses of activation of the ICA components, and the columns of
the inverse matrix, W™, give the projection strengths of the respective components onto the
scalp sensors. The scalp topographies of the components provide evidence for their biological

origin (e.g., eye activity should project mainly to frontal sites). In general, corrected EEG

signals can then be derived as X =W , where U is the matrix of activation waveforms U,
with rows representing artifactual sources set to zero. After training, we can obtain 31 ICA
components from 31-channels EEG data. Fig. 3-10 (a) shows the averaged ERP signals for 31

channels, where each line presents one-channel averaged ERP signal (from -200 ms to
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1000ms, with stimulus given at 0 ms). The amplitude of artifacts (EOG, etc.) is larger than
ERP (P300) and its position on scalp is apparently observed. The detailed influence can be
further observed in Pz channel in single trials shown in Fig. 3-10 (b). The horizontal axis is
time scale from —200 ms to 800 ms, the vertical axis is trial index, and the amplitude of each
single trial is shown in color bar. The artifact can be observed almost in each single trial and
the ERP, P300, related to visual traffic-light stimuli is destroyed by the artifact noise. The
topographic maps of the obtained 31 ICA components after training are shown in Fig. 3-11,
where the orders of the ICA components were sorted by the variances of time courses of the
activations of ICA components. That is, the former ICA components are more effective to the
ERP signals, and vice versa. The major artifact, i.e., eye-blinking, is separated in ICA
components 1 and 7, visual evoked ERPs are separated into component 4. We can observe
that most artifacts and representative visual ERP signals (P300) are effectively separated into
ICA components 1 and 4 after JCA processing shown in Fig. 3-12. The artifact (EOG) is
obviously observed by spatial pesition-on-scalp.and-amplitude in time scale. The separated
noise-free ERPs (P300) in single trials are easily observed in ICA component 4. The same
phenomenon could also be observed at other channels. Therefore, component 4 can be
regarded as the major source of visual ERP signals to analyze human‘s perception of
traffic-light events. Comparing ERP signals at the original Pz channel (Fig. 3-12, left block)
and the re-projection from ICA component 4 to Pz channel, we can also find out that the ERP
signal obtained from the analysis of ICA algorithm in single trial is more clear and noise-free
than the original one. This experimental result encourages us to design an on-line application

in single-trial assessment of drivers’ cognitive states for the vehicle safety-driving system.
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Figure 3-10. (a) The absolute values of the averaged ERP signals for 31 channels, where
each line presents one-channel averaged ERP signal (from -200 ms to 1000ms, with stimulus
given at 0 ms). The amplitude of artifacts (EOG, etc.) is larger than ERP (P300) and its
position is apparently observed at frontal sites on scalp. (b) The ERP image in single trials
observed in Pz channel. Note that the eye-blinking artifact is propagated to the occipital site

(Pz) and seriously influenced the collected ERP signals related to visual stimuli.
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Figure 3-11.  The scalp topography of the ICA mixing matrix W™, where the orders of the
ICA components were sorted by the variances of the activations of ICA components. The
major artifact, i.e., eye-blinking, is separated in ICA components 1 and 7, visual evoked ERPs

are separated into component 4.
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Figure 3-12. Diagram of artifact removal based on ICA algorithm. The left block shows the “polluted” ERPs at Pz channels. The visual evoked
ERPs (P300) and the eye-blinking artifacts can successfully be separated into two major parts, P300 at middle-down block and artifacts at

middle-top block, which were re-projected back from ICA components 4 and 1.
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3.5.2. Effects With/Without Temporal Matching Filter

The single-trial ERP signals in time-domain analysis are first filtered by a temporal
matching filter (discussed in Chapter 3.4.2) before fed into PCA algorithm. After passing
through the temporal matching filter (as shown in Fig. 3-9) and using PCA to reduce the
feature dimensions, the selected first 50 PCA components (ERP data ranged from 0 ms to 800
ms) were then trained by LVQ and SONFIN to learn the relationship of ERP responses
between different traffic-light stimulus. Fig. 3-13 (a) and (b) showed the classification results
using LVQ and SONFIN, respectively. We can obviously observe that the recognition rate
gets a significant increase up to 10 % with temporal matching filter both in LVQ and SONFIN.
We also demonstrate that the recognition rate by our proposed SONFIN is 10% better than

that by LVQ.

Classification Result of SONFIN with/without Matching Filter

1 - - . : :
! ! ! ! —e— SONFIN(NF)
! ! ! ! —A— SONFIN
095 —— =g -~-—-—=-—--r---°9---
| | |
| | |

Recognition Rate
Recognition Rate

Subjects Subjects
(a) LVQ (b) SONFIN

Figure 3-13.  Comparisons of classification results with/without (NF) temporal matching

filter using (a) LVQ and (b) SONFIN classifiers, respectively.
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3.5.3. Performance Comparisons of LVQ, BP, and SONFIN Classifiers

There are totally 10 subjects participating in our traffic light simulation experiments. The

collected ERP data were divided into two parts for training and testing purposes. We removed

the subjects with the highest and lowest recognition rates. Table 3-1 and Fig. 3-14 show the

testing recognition results of remaining eight subjects by three classifiers (LVQ, BP, and

SONFIN). We can observe that the recognition rate using SONFIN is always higher than

those using BP and LVQ. The result is reasonable because the SONFIN has the advantages of

combining the fuzzy reasoning, discriminative power, learning abilities, and flexibility of

neural networks. Table 3-1 also reveals that the nonlinear classifier (BP) always has higher

classification rates than the linear one (LVQ).

Table 3-1. Classification rates of jthree | lin€ar/nonlinear classifiers with/without temporal

matching filters for 8 subjects in-the'VR-based traffic-light motion simulation experiments.

Without Temporal Matching-Filter

With Temporal Matching Filter

LVQ BP SONFIN LVQ BP SONFIN
S1 0.76 0.77 0.81 0.85 0.91 0.93
S2 0.61 0.69 0.74 0.70 0.76 0.86
S3 0.62 0.76 0.79 0.72 0.77 0.83
S4 0.71 0.70 0.78 0.79 0.78 0.83
S5 0.58 0.62 0.64 0.70 0.71 0.73
S6 0.68 0.70 0.73 0.74 0.81 0.85
S7 0.58 0.68 0.71 0.83 0.85 0.87
S8 0.60 0.66 0.69 0.68 0.73 0.79

Average | 0.64+0.07 | 0.70+0.06 | 0.74+£0.06 | 0.75+0.06 | 0.79+£0.07 | 0.84+0.06
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Classification Result of BP, LVQ & SONFIN
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Figure 3-14. Classification results’ of trafficslight-stimulated ERP with/without (NF)
temporal matching filter using LVQ, BP, and SONFIN classifiers, respectively.

3.6. Conclusion Remarks

In this chapter, we developed a quantitative analysis technique for ongoing assessment of
drivers’ cognitive responses by investigating the neurobiological information underlying EEG
brain dynamics in traffic-light motion simulation experiments. It consists of a virtual-reality
(VR) motion-simulation driving platform and an EEG signal detection and analysis system.
The use of dynamic VR technology not only provides dynamic motion (i.e., kinesthetic or
so-called proprioceptive) stimuli in addition to conventional audio/visual ones, but also
extends the applications of possible safety-driving prototypes to general population (not
limited to lock-in patients) by allowing subjects to interact directly with virtual objects. We
proposed a detailed experimental design and data-processing procedures for measuring and

analyzing ERP signals. The experimental results show that the proposed signal processing
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procedures can analyze ERP signals in single trials correctly without using traditional
time-domain overlap-added method. After applying ICA algorithm, we obtained a correct,
clear, and noise-free ERP signals in single trials. We also designed a new temporal matching
filter to solve the time alignment problem and increase the recognition rate up to 10 %. After
using PCA to reduce the feature dimensions and save computation cost, we classified these
ERP features using LVQ, BP or SONFIN classifiers. Classification results show that the
proposed SONFIN can achieve a high recognition rate about 85% on average. These
high-accuracy classification results can be further transformed as the control/monitoring

signals of on-line brain computer interfaces in the safety-driving systems.
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4. Estimating Driving Performance Based

on EEG/ICA Power Spectrum

Accidents caused by driver’s drowsiness behind the steering wheel have a high fatality
rate because of the marked decline in the driver’s abilities of perception, recognition and
vehicle control abilities while sleepy. Preventing such accidents caused by drowsiness is
highly desirable but requires techniques for continuously detecting, estimating, and predicting
the level of alertness of drivers and delivering effective feedbacks to maintain their maximum
performance. A well-designed active safety system might effectively avoid accidents caused
by drowsiness at the wheel in advance by way of accurate and non-intrusive monitoring
driver's alertness level, particularly,if this measure could be further used to predict changes in
driver's performance capacity. Although many.researches have proposed EEG-based methods
on the detection of driver’s vigilance; there-are,still ' many difficulties in developing such a
system such as lacks of significant index  for detecting drowsiness objectively, the
contamination of EEG activities by the complicated noise interferences in a dynamic driving
environment, and the large individual variability in EEG dynamics accompanying loss of
alertness such that we could not accurately estimate or predict individual changes in alertness
and performance.

In this chapter, the scope of current study is to develop the biomedical signal processing
technologies to examine neural activity correlated with fatigue/drowsiness, which can be used
to online monitor/estimate driver’s cognitive state (alertness) combined further with a
bio-feedback system to maintain driver’s high performance. Our research investigates the
feasibility of using multi-channel EEG data to estimate and predict non-invasively the

continuous fluctuations in human global level alertness indirectly by measuring the driving
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performance expressed as deviation between the center of the vehicle and the center of the
cruising lane, in a very realistic driving task. We first use the virtual-reality (VR) technology
to construct an interactive freeway driving environment for lane-keeping experiment to
indirectly quantify driver’s drowsiness level by continuously measuring fluctuations in
driving errors and concurrent changes of the EEG power spectrum. The VR allows subjects to
interact directly with a virtual environment rather than monotonic auditory and visual stimuli,
and is an excellent strategy for brain research on interactive and realistic tasks because of its
low cost and avoiding risk of operating on the actual machines. After collecting the
multi-stream brain potentials, four computational approaches were proposed to extract
effective features as well as linear regression model or a Self-cOnstructing Neuro-Fuzzy
Inference Network (SONFIN) model [94] to estimate and predict the individual driver’s
driving performance. The first approach focuses on using the principal components from the
power spectrum of only 2-channel 'EEG 'signals. as input features of the estimators (as
suggested in Section 4.6.1). The following-three, approaches introduce a new generally
applicable Independent Component Analysis.algorithm [85-86] to isolate and remove a wide
variety of EEG artifacts and to locate optimal positions to wire EEG electrodes. The ICA
method is based on spatial filtering and does not rely on having a "clean" reference channel. It
effectively decomposes multiple-channel EEG data into spatially-fixed and temporally
independent components. Clean EEG signals can then be derived by eliminating the
contributions of artifactual sources with their time courses are generally temporally
independent from and differently distributed than sources of EEG activity. Optimal EEG
electrodes can also be obtained by examining the center position from the scalp topography of
the ICA mixing matrix. Therefore the second approach takes the advantage of the ICA
algorithm in the training process and uses a few frequency bandpower of only 2-channel EEG

data as inputs features in the testing application, whereas the third approach uses the
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bandpower of 2 most important ICA components as input features in order to achieve higher
predicting accuracy. In the last approach, we propose a novel adaptive feature extracting
mechanism to solve the reliable and sorting problem [109-111] of ICA components for
realizing an on-line monitoring system based on the correlation analysis between the
time-frequency power spectra of ICA components and the driving error index for selecting
effective frequency bands in ICA components as features of estimators. We then take
advantages of fuzzy reasoning and the discriminative power, learning abilities, and flexibility
of neural networks as a good candidate to complement the traditional methods by building a
Self-cOnstructing Neuro-Fuzzy Inference Network (SONFIN) model to online estimate and

predict the individual driver’s driving performance.

4.1. Virtual-Reality {VR)-based Lane-Keeping Driving

Experiment

We build a VR-based high-fidelity 3D.interactive highway scene as shown in Fig. 4-1 by
using the emulation software, WorldToolKit (WTK) library and application programmer’s
interface (API). The detailed development diagram of the VR-based scene is shown in Fig.
2-3. The VR-based four-lane highway scene as shown in Fig. 2-5 is projected on a
120°-surround screen (304.1-cm wide and 228.1-cm high), which is 350 cm away from the
driving cabin. The four lanes from left to right are separated by a median stripe. The distance
from the left side to the right side of the road is equally divided into 256 points (digitized into
values 0-255), where the width of each lane and the car is 60 units and 32 units, respectively.
The refresh rate of highway scene was set properly to emulate a car driving at a fixed speed of
100 km/hr on the highway. The car is randomly drifted (triggered from the WTK program and

the on-set time is recorded) away from the center of the cruising lane to mimic the
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consequences of a non-ideal road surface. The subject’s performance is defined as the
deviations between the center of the vehicle and the center of the cruising (3rd) lane and it
was continuously and simultaneously measured by the WTK program and recorded in the
physiological measurement system accompanying with EEG/EOG/ECG physiological

signals.

Figure 4-1.  The dynamic driving simulation laboratory consists of the virtual-reality-based

360°-surrounding screen and a six-degree-of-freedom motion platform.

4.2. Subject’s Protocol

The circumstances in which drowsiness-related accidents usually happen should be taken
into account. It has been known that the drowsiest time often occurs from late midnight to
early morning, and mid-afternoon hours. Young drivers have no increased risk during the
afternoon. Drivers over 45 years old on the other hand have fewer night time crashes, with a
peak at 7 a.m., and are more likely to have such crashes during the mid-afternoon [20, 55-56].

During these periods, alertness may easily diminish within one-hour monotonous working. In
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this chapter, we design a drowsiness monitoring experiment at the early afternoon hours after
lunch for doing the highway-driving simulation. All the subjects were instructed to keep the
car at the center of the cruising lane by controlling the steering wheel. For each session, the
subject started with a 15 ~ 45-minute calibration procedure and then was asked to drive the
car continuously for 45 minutes. The EEG/EOG/ECG data and the driving performance were
measured and recorded simultaneously. Participants then returned on different days to
complete the second 45-min driving session or the third session if necessary. We had collected
successfully EEG data of 16 subjects (ages from 20 to 35 years) participated in the proposed
VR-based driving task. We select participants who had two or more micro-sleeps checked by
video recordings in both driving sessions for further analysis. Based on these criteria, five

subjects (10 sessions) were selected for further modeling and cross-session testing.

4.3. Data Acquisition

The acquisition of the physiological data uses 33 sintered Ag/AgCl EEG/EOG electrodes
with an unipolar reference at right earlobe and 2 ECG channels in bipolar connection placed
on the chest. All the EEG/EOG channels were located based on a modified International
10-20 system based on the relationship between the location of an electrode and the
underlying area of cerebral cortex. Before data acquisition, the contact impedance between
EEG electrodes and scalp was calibrated to be less than 5kQ. We use the Scan NuAmps
Express system (Compumedics Ltd., VIC, Australia) to simultaneously record the
EEG/EOG/ECG data and the deviation between the center of the vehicle and the center of the
cruising lane triggered by the WTK program. The EEG data were recorded with 16-bit
quantization level at a sampling rate of 500 Hz and the recording are down-sampled to 250 Hz
for the simplicity of data processing. Then EEG data were preprocessed using a simple
low-pass filter with a cut-off frequency of 50 Hz to remove the line noise (60 Hz and its
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harmonics) and other high-frequency noise for further analysis.

4.4. Drowsiness Measurement

To quantify the level of the subject’s alertness and find the relationship between the EEG
signals and subject’s cognitive state, we measure the driving error e(t) defined as the deviation
from the left railing to the center of the vehicle on freeway. Previous study [112] and our pilot
study demonstrate when the subject starts to fall into micro-sleep or asleep during the
lane-keeping task, the car will drift away from the center of the cruising lane rapidly and hit
the railing of the freeway easily in a few seconds. Thus, the e(t) is a good performance index
to indirectly measure the driver’s drowsiness level. The recorded e(t) time series was first
normalized by subtracting the center position of the cruising lane, ey, using Eq. (4-1), where ey
is the value having the maximum frequency in'the histogram distribution of e(t) depending on
each subject’s driving habit as shown in Fig: 4-2 (a).-Thus, the subject’s driving error index

(SDPI) in Eq. (4-2) to smooth™-€({)" using a ausal 90-s square moving-average filter

advancing at 2-sec steps as shown in Fig. 4-2 (b) to eliminate variance at cycle lengths shorter
than 1-2 minutes since the fluctuates of drowsiness level with cycle lengths were longer than
4 minutes [51, 67]. Experimental results shows when the subject is drowsy (checked from

video recordings and subject’s reports), the driving error index increases, and vice versa.

~ X x>0
e(t)=|e(t)—eh , where |X|={ (4-1)
-X Xx<0
and
1 M, +2(t-1)02
SDPI(t)=— Y E[M, +2(t-1)2, -i], (4-2)

e i=142(t-1)0,

where Me = 90x£2, n=1, 2, ...,N, is the 90-s moving-average windows.
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Figure 4-2.  (a) The VR-based freeway scene. (b) Example of the driving performance
index. Note that the red dashed line means the “dangerous” boundary. When the driving
performance is larger than 32 (red line), the target car entirely crossed the lane line to other

traffic lane and will easily lead to accidents.

4.5. Data Analysis

After collecting 33-channe1' EEG su,inlalls ""énd‘drji‘;\/ing deviations in a 45-min simulated
driving session, we proposed fo{Ir_,nstlraLt_é.:'g;iE:'s:—'fc')';Extt_“z_iélt effective features in order to find the
relationship between driver’s alertﬁéés level” from EEG power spectrum and concurrent
changes in driving performance based on ICA, power spectrum analysis, correlation analysis,
and the linear regression model or the FNN estimator. The developments of these four

approaches were based on a compromise between computational cost and estimation accuracy

for an online real-time application. More descriptions are given in the following session.

45.1. Estimating Driving Performance Using 2-Channel EEG Power

Spectrum

In this strategy, we use a least-square linear regression model [113] to estimate/predict
the subject’s driving performance based on the information available in log power spectrum of

2-channel EEG signals. The training flowchart of data analysis for estimating the level of
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alertness based on the EEG power spectrum was shown in Fig. 4-3. For each subject, after
collecting 33-channel EEG signals and driving deviations in a 45-min simulated training
session, the EEG data were first preprocessed using a simple low-pass filter with a cut-off
frequency of 50 Hz to remove the line noise and other high-frequency noise. Then, we
calculate the moving-average log power spectrum of all 33-channel EEG data using Egs.
(2-12) to (2-17) as described in Chapter 2.4. The correlation coefficients between the
smoothed subjects’ driving error index and the log power spectra of all 33-channel EEG
signals at each frequency band are further evaluated to form a correlation spectrum. The log
power spectra of 2-channel EEG signals with the highest correlation coefficients are further
selected as the effective features (as suggested in Section 4.6.1). We then applied
Karhunen-Loeve Principal Component Analysis (PCA) to decompose the selected log power
spectra of 2-channel EEG signals+and extract the directions of largest variance for each
session. The PCA is a linear transformation, which can find the principal coordinate axes of
samples such that along the new axes,-the-sample” variances are extremes (maxima and
minima), and uncorrelated. Using a cutoff on the ‘spread along each axis, a sample may thus
be reduced in its dimensionality [114]. The principal axes and the variance along each of them
are given by the eigenvectors and associated eigenvalues of the dispersion matrix. In our study,
projections (PCA components) of the EEG log spectral data on the subspace formed by the
eigenvectors corresponding to the largest 50 eigenvalues were then used as inputs to train the
individual linear regression models for each subject. The parameters of the 50-orders linear
regression model were trained iteratively by minimizing the least-square-error cost function
between the actual driving error index and the estimated output of the linear regression model.
After training, the parameters of the PCA model (eigenvectors) were used to project features
in the testing sessions so that all data were processed in the same way for the same subject

before feeding to the estimation models. The parameters of the linear regression model were
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also held to estimate the time courses of the actual driving error index in the testing session.
Each model was trained using the features only extracted on the training session and tested on
a separate testing session from the same subject for each of the five selected subjects.

In the testing session, the subject was wired with the selected 2-channel EEG electrodes,
which is determined from the training process. The collected 2-channel EEG data were first
preprocessed using the same low-pass filter. After moving-average power spectral analysis,
for each 45-min driving session stepping at 2-sec time intervals and frequency range from 1 to
40 Hz, we obtained the selected time series of the log power spectrum for 2-channel EEG data
consisting of 1350-point EEG power estimations. Then the 80 frequency bandpower (2*40Hz)
were passed through the PCA model. The first 50 entries of the output time series of the PCA

components were fed into the linear regression model to estimate the actual driving errors.

Moving- EEG Log
EEG Noise Averaged | Power Spectra» Correlation
™ Removal Spectral Analysis
Analysis
Selected Selected
electe PCA - .
EEG Ch 1 Linear Subject’s
e PCA Components» Regression -  Driving
Model Performance

Figure 4-3.  Flowchart of the training process for estimating subject’s driving errors. (1). A
low-pass filter was used to remove the line noise and higher frequency (>50Hz) noise. (2).
Moving-averaged spectral analysis was used to calculate the EEG log power spectrum of each
channel advancing at 2-sec steps. (3). Two EEG channels with higher correlation coefficients
between subject’s driving performance and EEG log power spectrum were further selected.
(4). Principal Component Analysis was trained and used to decompose selected features and
extract the representative PCA-components as the input vectors for the linear regression
models. (5). The linear regression models were trained in one training session and used to
continuously estimate and predict the individual subject’s driving performance in the testing

session.
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4.5.2. Driving Performance Estimation Using Critical Bandpower of
Optimal 2-channel EEG Signals based on Independent Component
Analysis

In this strategy, we proposed the ICA-based method for estimating the subject’s driving
performance using the critical bandpower of optimal 2-channel EEG signals centered at the
effective ICA components. Fig. 4-4 shows the flowchart of the proposed signal processing
procedure. In the training process, the collected 33-channel EEG signals was first applied to
train the ICA model. By applying ICA algorithm to the EEG recorded from the scalp surface,
we attempt to achieve the twin goals: removing artifacts and possible source separation based
on stabilities of ICA spatial weighting matrices and temporal independence between artifacts
and EEG signals. The effectiveness for remeving eye blinking and other artifacts by using

ICA had been demonstrated in the many studies as, described in Chapter 2.3. Thus, some

“artifact” sources in the ICA components were removed and the remaining ICA components

were projected back to the EEG:¢hannels to get the “corrected” EEG signals. Then, we

calculate the moving-average log power spectra of both the ICA components and “corrected”

EEG channels. The correlation coefficients between the smoothed time series of subject’s

driving error index and the power spectra of the ICA components at each frequency band are

further evaluated to form a correlation spectrum. The 2 ICA components having the highest
correlation coefficients in some critical bands were determined and marked as “drowsiness”
sources. Then, we selected the corresponding 2 EEG channels with the marked critical bands
at the centered positions of the “drowsiness” sources based the scalp topography of ICA
mixing matrix. Finally, the selected critical bands in 2 EEG channels were used as the input
features to train the linear regression models. Once a linear regression model has been
developed for each driver, this method uses only selected critical bandpower of 2-channel
EEG signals of the individual subject, and does not require further collection or analysis of
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operator performance in the testing session.
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Figure 4-4.  Signal Flowchart;of the drowsiness estimation system based on the bandpower

of the 2-channel EEG signal centered in the effective ICA components.

4.5.3. Estimating Driving Performance Using 2 Optimal ICA Components

Fig. 4-5 shows the signal flowchart for estimating driver’s performance using effective
bandpower of 2 ICA components. In the training session, after collecting 33-channel EEG
signals and driving deviations in a 45-min simulated driving session, the ICA algorithm is
first trained to remove a wide variety of artifacts. Then, we calculate the moving-average log
subband power spectra of all 33 ICA components. The correlation coefficients between the
smoothed subject’s driving performance and the subband power spectra of all ICA
components at each frequency band are further evaluated to form a correlation spectrum. The
normalized log subband power spectra of 2 ICA components with the highest correlation

coefficients in some critical bands are further selected manually as the input features of the
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linear regression model to estimate the individual subject’s driving performance. In order to
achieve maximum estimating accuracy, the ICA mixing matrix and the manually selected

critical bandpower were reserved in the testing session.

Power Spectra A
33-Channels 33ICA of 33 ICA H
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2 ICA Components <

Figure 4-5.  Signal Flowchart of'drowsiness estimation system based on the bandpower of
optimal 2-ICA components with highest correlation coefficients between time series of

subject’s driving error index and:the power spectra of the ICA components.

45.4. 1CA-based Automatic Feature Extraction for Driving Performance

Estimation

In this strategy, we proposed a novel adaptive feature selection mechanism (AFSM) for
the automatic ICA-based alertness estimation system using fuzzy neural networks for online
applications. The block diagram of data analysis is given in Fig. 4-6. After collecting
33-channel EEG signals X(t) and driving error index (SDPI) in a 45-min simulated driving
session, the ICA algorithm is first trained to distinguish the EEG signals from artifact noise,
i.e., removing a wide variety of artifacts. Then, we calculate the normalized moving-average
log bandpower spectra of all 33 ICA components. The correlation coefficients between SDPI

and the bandpower spectra of all ICA components at each frequency band are further
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evaluated to form a correlation spectrum. We use the AFSM to select the log bandpower
spectra of the ICA components with the highest correlation coefficients in some critical bands
as the input features of the linear regression model and SONFIN to estimate the individual

subject’s driving performance. Detailed description of the proposed AFSM are given as

follows:
33-channel
EEG data
X(t)
l Effective frequency bands
and ICA components
ICA Algorithm
A
X(D=W u(t) :
Adaptive SONFIN
(Driving
ICA Feature Performance
components Selection Estimator)
U(t) T T
A
Power Correlation Driving performance
Spectral > Analysis ——
Estimation ICA (SDPI)

Figure 4-6.  Signal flowchart of the adaptive alertness estimation system.

Adaptive Feature Selection Mechanism

Signal features in many studies are extracted according to experience and become a
problem when applied for an on-line monitoring system. To solve this problem, an adaptive
feature extracting mechanism is developed to extract useful frequency bands of representative
ICA components according to the information of the correlation coefficients between log
bandpower of ICA components and driving error index (SDPI). In this session, to extract the
most representative ICA component and frequency bands, we first sort the correlation

coefficients CC(i,k) in Eq. (2-19) in frequency bands k for each component i in descending
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order by:

SC(ik)=sort(CC(i k)= [mkax(cc:(i,k) mkin(CC(i,k)J, i=1,2,...,33. (4-3)
The corresponding matrix indices K(i,k) is:

K(ik)=arg sokrt(CC(i,k)):[arg max(CC(i,k) - arg mkin(CC(i,k)J (4-4)
where the first five frequency bands with the largest correlation coefficients of Iy, component
are expressed as SC(i,1)~SC(i,5) with frequency band index recorded in K(i,k), k=1~5.

We then sort the SC(i, k) in descending order in the column direction to select the ICA

components having the maximum value in the summations of the largest 5 correlation

coefficients in frequency bands as:

E(i):soirt(%i SC(i,k)j, i=1,2, .33, (4-5)

where the component indices in K(1,k) is alse updated. Therefore, the first 2 ICA components
with 5 largest correlation coefficients in-the-frequency bands can be derived as %(1) and
SC(2) with matrix index K(i,k), i = 1~27and k = 1~5. An example of the adaptive feature

selection mechanism for subject-3 is given in Fig. 4-7.
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Figure 4-7.  Example of the adaptive feature selection mechanism for subject-3. Note that
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the band power of ICA components 11 and 14 in frequency bands 10-14 Hz are selected as

input feature of the estimators.

4.6. Results and Discussions

4.6.1. Relationship between the EEG Spectrum and Subject Alertness

To investigate the relationship of minute-scale fluctuations in driving performance to
concurrent changes in the EEG spectrum, we measured correlations between changes in the
EEG power spectrum and driving performance by computing the correlation coefficients
between the two time series at each EEG frequency. We refer to the results as forming a
correlation spectrum. For each EEG site and frequency, we then computed spectral
correlations for each session separately_ and.averaged the results across all 10 sessions. Fig.
4-8 (A) showed the results for 40 frequencies. between 1 and 40Hz. Note that the mean
correlation between performance and EEG power is predominantly positive at all EEG
channels below 20 Hz. We also investigated the" spatial distributions of these positive
correlations by plotting the correlations “between EEG power spectrum and driving
performance, computed separately at dominant frequency bins, 7, 12, 16 and 20Hz (cf. Fig.
4-8 (A) on the scalp (Fig. 4-8 (B). As the results in Fig. 4-8 (A) show the correlation
coefficients plotted on the scalp maps are predominantly positive. The correlations are
particularly strong at central and posterior channels, which are similar to the results of
previous studies in the driving experiments [32, 34, 114]. The relatively high correlation
coefficients of EEG log power spectrum with driving performance suggests that using EEG
log power spectrum may be suitable for drowsiness (micro-sleep) estimation, where the
subject’s cognitive state might fall into stage one of the non-rapid-eye-movement (NREM)
sleep. To be practical for routine use during driving or in other occupations, EEG-based

cognitive assessment systems should use as few EEG sensors as possible to reduce the
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preparation time for wiring drivers and computational load for estimating continuously the
level of alertness in near real time. According to the correlations shown in Fig. 4-8 (B), we
believe it is adequate to use the EEG signals at sites Cz and Pz to assess the alertness level of
drivers continuously.

Next, we compared correlation spectra for individual sessions to examine the stability of
this relationship over time and subjects. Fig. 4-9 and 4-10 plot correlation spectra at sites Fz,
Cz, Pz and Oz, of two separate driving sessions for extreme cases from subjects A (best) and
B (worst), respectively. The relationship between EEG power spectrum and driving
performance is stable within the subjects, especially below 20 Hz. However, the relationship
is variable from subject to subject (contrast Fig. 4-9 and 4-10). The time interval between the
training and testing sessions of the lane-keeping experiments distributes over one day to one
week long for the selected five subjects. The relationship between minute-scale fluctuations in
driving performance and concurrent changes in the. EEG spectrum appears to be stable within
different sessions from the same subjeet; but-differs between subjects.

The above analyses provide strong. and converging evidence that changes in subject
alertness level indexed by driving performance during a driving task are strongly correlated
with the changes in the EEG power spectrum at several frequencies at central and posterior
sites. This relationship is relatively variable between subjects, but stable within subjects,
consistent with the findings from a simple auditory target detection task reported in [40, 51].
These findings suggest that information available in the EEG can be used for real-time
estimation of changes in alertness of human operators performing monitoring tasks. However,
for maximal accuracy the estimation algorithm should be capable of adapting to individual

differences in the mapping between EEG and alertness.
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Figure 4-8.  Correlation spectra. Correlations between EEG power and driving performance,
computed separately for 40 EEG frequencies between 1 and 40 Hz. (A) Grand mean
correlation spectra for 10 sessions on 5 subjects. (B) Scalp topographies of the correlations at

dominant frequencies at 7, 12, 16 and 20 Hz.
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Figure 4-9.  Correlation spectra between the EEG power spectrum and the driving
performance at Fz, Cz, Pz, and Oz channels in two separate driving sessions from Subject A

(best case). Note that the relationship between EEG power spectrum and driving performance

is stable within this subject.
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Figure 4-10. Correlation spectra between the EEG power spectrum and the driving
performance at Fz, Cz, Pz, and Oz channels in two separate driving sessions from Subject B
(worst case). Note that the relationship between EEG power spectrum and driving
performance is stable within this subject, especially below 20 Hz. However, the relationship is

variable from subject to subject (contrast Fig. 4-9 and 4-10).
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4.6.2. EEG-based Driving Performance Estimation/Prediction

In order to estimate/predict the subject’s driving performance based on the information

available in the EEG power spectrum at sites Cz and Pz, a single 50-orders linear regression

N=50
model y= Zai X; +a, with a least-square-error cost function is used, where Yy is the desired
i-1

output, X is the input feature, N is the order (N=50 in this case), a;’s are the parameters, and
ao=1 is the constant. The input features are selected from the first 50 PCA-reduced EEG
power spectra of two EEG channels (Cz and Pz) that showed the highest correlation between
the EEG power spectrum and the driving performance because using all 33 channels may
introduce more unexpected noise. Table 4-1 shows the driving performance estimation results
using one single linear regression model for all subjects in the training and testing session.
The resulting correlation rate between actual and estimated driving performance are not good
enough (1=0.486 in the testing session) due to the large individualities between subjects. This
result is consistent with previous: studies“[40, 42, 49, 67]. Therefore, we have to build an
individual model for each subject (as discussed in Section 4.6.1). The resulting estimation
driving performance using individual model for each subject are also shown in Table 4-1.
Comparing to using one single model for all subjects, the correlation rate using individual
model for each subject dramatically increased up to 10%. Fig. 4-11 plots the estimated and
actual driving performance of a session from Subject 3. The linear regression model in this
figure is trained with and tested against the same session, i.e. within-session testing. As can
been seen, the estimated driving performance matched extremely well with the actual driving
performance (r = 0.88). When the model was tested against a separate test session from the
same subject as shown in Fig. 4-12, the correlation between the actual and estimated driving

performance though decreased but remained high (r=0.7). Across ten sessions, the mean

correlation coefficient between actual driving performance time series and within-session
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estimation is 89%, whereas the mean correlation coefficient between actual driving
performance and cross-session estimation is 57.8%. Our results demonstrated that it is
feasible to accurately estimate driving errors based on multi-channel EEG power spectrum
estimation and principal component analysis algorithm. The computational methods we
employed in this study were well within the capabilities of modern real-time embedded digital
signal processing hardware to perform in real time using one or more channels of EEG data.
Once an estimator has been developed for each driver, based on limited pilot testing, the
method uses only spontaneous EEG signals from the individual, and does not require further
collection or analysis of operator performance. The proposed methods thus might be used to

construct and test a portable embedded system for a real-time alertness monitoring system.

Table 4-1. Comparisons of -driving performance estimation using one single linear

regression model for all five subjects.-and using individual model for each subject. Note that

the input features are PCA-reduced EEG power spectrum from 1-40Hz in Cz and Pz channels.

Sub-1 Sub-2 Sub-3 Sub-4 Sub-5 Average

Single Training 76% 70% 66% 74% 80% 73.2%
Model Testing 65% 42% 51% 41% 44% 48.6%
Individual | Training 89% 85% 88% 89% 94% 89 %
Model Testing | 69% | 59% | 70% | 46% | 45% 57.8%
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Figure 4-11. Driving performance estimates for a training session from Subject 3, based on
a linear regression (red line) of PCA-reduced EEG log spectra at two scalp sites, overplotted
against actual driving performance time series for the session (solid line). The correlation
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Figure 4-12. Driving performance estimates for a testing session of Subject 3, based on a
linear regression (red line) of PCA-reduced EEG log spectra from a separate training session
from the same subject, overplotted against actual driving performance time series of the test
session (solid line). The correlation coefficient between the two time series is I = 0.7. Note

that the training and testing data in this study were completely disjoined.
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4.6.3. Relationship between the ICA Spectrum and Driving Performance

After ICA training and analysis of log subband power spectrum for each ICA
components/EEG channels, we computed the spectral correlations between changes in the
ICA/EEG log subband power spectrum and driving performance by computing the correlation
coefficients between the two time series at each frequency band. Fig. 4-13 shows the resulting
correlation spectra of subject 3 in (a) 33 EEG channels and (b) 33 ICA components. The
horizon axis indexes frequency bands between 1 and 40 Hz and the vertical axis indexes the
EEG channels/ICA components. In Fig. 4-13 (a), the correlation spectra show a strong
evidence between fluctuations in EEG bandpower of frequency bands within 10~14Hz and
driving performance with high positive correlations in most EEG channels. As driving error
increases, so does EEG bandpower. We also investigated these relationships by plotting the
correlations between bandpower .of 33 ICA components and the driving performance. A
similar monotonic relationship exists in a wide frequency band; especially the frequency
bands from 9 to 25 Hz in ICA components 11-and 13-achieve a high positive correlation. Fig.
4-13 (c) and (d) show the spatial distributions in scalp topographies of weighting matrices for
dominant ICA component 11 that was centered on Pz (28th) channel and ICA component 13
that was centered on P4 (29™) /02 (33th) channels. The correlations are particularly strong at
central and posterior areas, which are similar to the results of previous studies in the driving
experiments [32, 34, 115]. The relatively high correlation coefficients of near « -band (8-13
Hz) with driving performance suggests that alpha band frequencies (8-13 Hz) may be suitable
for drowsiness (micro-sleep) estimation, where the subject’s cognitive state might fall into
stage one of the non-rapid-eye-movement (NREM) sleep. Next, we compared correlation
spectra for individual subject to examine the stability of this relationship over the
cross-sessions and cross-subjects. Fig. 4-14 shows the correlation spectra of subject 2.

Comparing to subject 3, the characteristics of EEG measurements near « -band are consistent
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but they differ in ICA components. By checking the dominant components 8 and 17 that have
the highest correlation coefficients shown in Fig. 4-14 (b) and their spatial distributions of
weighting matrices shown in Figs. 4-14 (¢) and (d), we can observe that it is suitable to place
the electrodes of non-invasive EEG measurement at parietal lobe and occipital lobe for the
drowsiness estimation. For practice and routine application, EEG-based cognitive assessment
systems should use as fewer EEG sensors as possible to reduce the preparation time for device
wiring and computational cost for continuous alertness level estimation in near real time.
According to the analysis shown in Figs. 4-13 and 4-14, we believe it is adequate to use the

EEG signals at central and posterior sites to assess the alertness level of subjects continuously.
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Correlations between EEG/ICA Log Bandpower and Driving Performance
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Figure 4-13. Correlation spectra between smoothed driving performance and log subband
power spectra of (a) 33 EEG channels and (b) 33 ICA components for frequencies between 1
and 40 Hz of Subject-3. It is observed that the subband power spectra between frequency
bands 10~14Hz have high positive correlation with driving performance in most EEG
channels and both 11" and 13"™ ICA components. Figs. 4-13 (c) and (d) show the scalp
topographies of weighting matrices for dominant ICA component 11 that was centered on Pz

(28™) channel and ICA component 13 that was centered on P4 (29™) /O4 channels.
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Correlations between EEG/ICA Log Bandpower and Driving Performance
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Figure 4-14. Correlation spectra between smoothed driving performance and log subband
power spectra of (a) 33 EEG channels and (b) 33 ICA components for frequencies between 1
and 40 Hz of Subject-2. It is observed that the subband power spectra between frequency
bands 8~13Hz have high positive correlation with driving performance in most EEG channels
and both 8" and 17" ICA components. Figs. 4-14 (c) and (d) show the scalp topographies of
weighting matrices for dominant ICA component 8 that was centered on CPz (22th)/Fz

channels and ICA component 17 that was centered on Pz (28™) /Oz channels.
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4.6.4. Noise Segmentation and Selection of Optimal Frequency Bands

During driving simulation, the subjects move their hands, torso, head, and eyes, which
will create huge muscle movement, eye movement, and blink artifacts to the non-invasive
measurement of brain potentials. The other noise includes the movement of the 6-DOF
motion platform and line noise. Assume these noises of muscle activity, eye, and, cardiac
signals are not time locked to the EEG activity, i.e., they are temporal independent; it is very
suitable to use ICA to separate the EEG signals from the “mixed” recordings other than using
low pass filter. In this chapter, after ICA training, we can obtain 33 ICA components u(t)
decomposed from the measured 33-channel EEG data X(t). Fig. 4-15 shows the scalp
topographies of ICA weighting matrix corresponding to each ICA component by spreading
each w;; into the plane of the scalp, which provides information about the location of the
sources, e.g., eye activity was projected mainly to.frontal sites, and the drowsiness-related
potential is on the parietal lobe to occipital lobe, etc.-We can observe that the most artifacts
and channel noises included in EEG recordings are effectively separated into ICA components
1, 2, and 3 as shown in Fig. 4-15. The ICA components 8, 11, and 17 may be considered as
effective “sources” related to drowsiness, which will be examined by the correlation analysis.
It is more conservative estimation to just remove possible artifact components than choosing
“sources” components only in avoidance of making erroneous judgments. Thus, the
“corrected” EEG signals can be obtained by re-projection from the ICA components after

removing possible “artifact” components using Eq. (4-6) as follows:

4
x,(t) Wi, W1,2/ W 33
X (t) Wi, W ( W, 33
x(t)=] .7 [=Wu(t)=| . ju(t)+ /_/ u(t)+--+| 7 Juu(t)  (4-6)
/
X33(t ) W3, I/W33,2 Wi 33

Besides, the ICA can be used to locate possible positions of the “drowsiness” sources.

Fig. 4-16 shows the resulting correlation spectra of subject 2 in 33 ICA components. The
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horizon axis indexes frequency bands between 1 and 40 Hz and the vertical axis indexes the
ICA components. The correlation spectra shows a strong evidence between fluctuations in
ICA bandpower of frequency bands within 4 to 25 Hz and driving performance with high
positive correlations in ICA components 8 and 17. As driving error increases, so does ICA
bandpower. Fig. 4-17 show the spatial distributions in scalp topographies of weighting
matrices for dominant ICA component 8 that was centered near CPz (22™) channel and ICA
component 17 that was centered on Pz (28") /Oz (32™) channels. The correlations are
particularly strong at central and posterior areas, which are similar to the results of previous
studies in the driving experiments [32, 34]. For practice and routine application, EEG-based
cognitive assessment systems should use as fewer EEG sensors as possible to reduce the
preparation time for device wiring and computational cost for continuous alertness level
estimation in near real time. According to the anmalysis shown in Figs. 4-16 and 4-17, the
relatively high correlation coefficients with driving performance suggest that it is adequate to
use the EEG signals at center position-of-dominant ICA components to assess the alertness

level of subjects continuously.
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Figure 4-15.  Scalp topography of ICA weighting matrix W;; by spreading each w;; into the
plane of the scalp corresponding to the ju ICA components based on International 10-20

system.
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Figure 4-16. Correlation spectra between smoothed driving performance and log power
spectra of 33 ICA components of Subject-2. It is observed that the bandpower spectra between
frequency bands 8~12Hz have highest positive correlation with driving performance in both

8™ and 17" ICA components.
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Figure 4-17. Scalp topographies of ICA weighting matrices for dominant components 8 and
17. Note that the CPz channel and Pz channels are at the center position of these two ICA

components, respectively.

In this section, we compared the correlation between log subband power spectra and
driving error for each frequency bands and: individual ICA component to find the optimal
subbands and localizations of eléctrodes according to the scalp topographies of ICA weighting
matrices. Previous studies [40, 49-52] showed that it is not applicable to use full EEG
frequency bands to accurately estimate individual changes in vigilance and driving error
because of the artifacts and individual variability in EEG dynamics accompanying loss of
alertness. Even though information about alertness may be distributed over the entire EEG
spectrum. Table 4-2 shows the correlation coefficients between different frequency bands of
the ICA component 11 or 13 and the driving error of subject-3 in different experimental
sessions. The ICA weighting matrices after training were held and used in the testing sessions
on different days. The results show the better frequency bands of ICA components 11 and 13
are from 10 to 14 Hz with the correlation rate up to 0.94. Table 4-3 lists the correlation results
for training and testing sessions using frequency bands within 10~14 Hz in single ICA
component. The statistical evidence shows that the ICA components 11 and 13 have the

highest correlation coefficients than the other components (components 5, 24, 26, 29, and 31)
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and their scalp topographies shown in Figs. 4-14 (¢) and (d) demonstrated that the most alpha
waves with positive correlation related to micro-sleep could be observed at occipital and
central sites. Table 4-4 shows the optimal 2 ICA components and frequency bands ranges
corresponding to different subjects according to the higher correlation coefficients between
the log subband power spectra and the driving performance. The best frequency bands are 5-9
Hz both in 17" and 28" ICA components for subject 1, and 8-12 Hz both in 17" and 8"
components for subject 2, etc. Table 4-4 demonstrated that the better frequency bands and the
ICA components are not the same for different subjects.

The above analyses provide strong and converging evidence that changes in subject
alertness level indexed by driving error during a driving task are strongly correlate with the
changes in the ICA power spectrum at several frequencies located at central and posterior
sites. This relationship is stable over time in different sessions of the same subject, but
relatively variable between subjects. These results are consistent with the findings from a
simple auditory target detection task reported.in-[-18,/83]. These findings suggest that maximal
accuracy the estimation algorithm should be capable of adapting to individual differences in

the mapping between EEG and alertness..
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Table 4-2. The correlation coefficients between the log subband power spectra and the

driving error of subject 3 corresponding to different frequency bands from 8 to 15 Hz of ICA

component 11 and 13 in the training and testing sessions using the same ICA weighting

matrices obtained from the training session.

Band
8 Hz 9 Hz 10Hz | 11Hz | 12Hz | 13Hz | 14Hz | 15Hz
ICA
Component Index
Training 0.82 0.89 0.92 0.92 0.92 0.92 0.89 0.87
Testing-1 0.86 0.88 0.88 0.88 0.87 0.86 0.83 0.82
Com 11
Testing-2 0.79 0.87 0.90 0.92 0.91 0.91 0.86 0.78
Testing-3 0.78 0.90 0.93 0.93 0.93 0.94 0.94 0.91
Training 0.77 0.88 0.90 0.91 0.92 0.91 0.90 0.86
Testing-1 0.87 0.90 0.90 0.89 0.88 0.87 0.84 0.80
Com 13
Testing-2 0.75 0.87 0.87 0.90 0.90 0.88 0.85 0.79
Testing-3 0.76 0.89 0.91 0.92 0.93 0.92 0.92 0.89

Table 4-3. The correlation coefficients between log subband power spectra and the

driving error of subject 3 using five best frequency bands (from 10 to14 Hz) corresponding to

different single ICA component. The same ICA weighting matrices obtained from the training

session were used for testing session performed in the other day.

ICA component 5 11 13 24 26 29 31
Training 0.84 0.93 0.92 0.82 0.89 0.82 0.79
Testing 0.80 0.92 0.91 0.82 0.88 0.78 0.78
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Table 4-4. The optimal 2 ICA components and frequency band ranges corresponding to

different subjects according to the higher correlation coefficients between log subband power

spectra and the driving performance.

Subject Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
ICA Components 17, 28 17, 8 11, 13 4,5 22,25
Bands 5-9 Hz 8-12 Hz 10-14 Hz 4-8 Hz 8-12 Hz

4.6.5. Drowsiness Estimation Based on Log Bandpower of ICA

Components

In this study, we use a 10-order least-square linear regression model [113, 116] to
estimate the subject’s driving error based on the information obtained from the subband power
spectra analysis of ICA components. The linear tégression model attempts to model the
relationship between the selected input features X by fitting a linear equation y=AX+b to the
observed output data yqy at each sampled data point. i'e., given the input data set X and desired
output data Yyq at each data point, the least-squared linear regression method is to find an
optimal parameter set {A, b}, such that y=AX+b, subjected to minimizing the squared error
cost function & = Xyg-y)°>. We used only 2 ICA components that performed the highest
correlation between the ICA subband power spectrum and the driving error such that the most
artifacts can be removed and the available information of drowsiness estimation is extracted.
After moving-average spectra analysis of ICA components, we obtain the time series
(stepping at 2 seconds), with a 40-point data set presenting bandpower of 1-40 Hz frequencies
for each single ICA component. We also collected the corresponding smoothed driving error
for each session. We selected 5-point bandpower of each component (e.g., 10-14 Hz in ICA
component 11 for subject 3) and totally 10-point bandpower for 2 most important ICA

components as the input data X of linear regression model. After training process, we get the

93




optimal parameter {A, b} iteratively such that the output y=AX+b of the linear regression
model is very closed to observed output (driving error, Yg) with minimum & = Z(yd-y)z. The
model was trained on one session and tested on the other session for each subject. The ICA
weighting matrices obtained from the training sessions were used to spatially filter the
features in the testing sessions so that all data were processed in the same way for the same
subject before feeding to the estimation models. Fig. 4-18 plots the estimated and actual
driving error of training/testing sessions from subject 3. The linear regression model in this
figure is trained with one session (within-session) and tested against a separated session, i.e.
cross-session testing. As can been seen, the estimated driving error matched well with the
actual driving error with correlation coefficient r=0.93 in the training and r=0.92 in the testing.
Fig. 4-19 plots the training/testing results of subject 2. The estimated driving error compared
with the actual driving error is 1=0:91 in the training and r=0.89 in the testing. Table 4-5
shows the statistics across ten=sessions for five.selected subjects. The mean correlation
coefficient between actual driving error. time-series and within training session estimation is
0.908, whereas the mean correlation ‘coefficient between actual driving error and cross testing
session estimation is 0.848. These results suggest that continuous ICA-based driving error
estimation using a small number of frequency bands is feasible, and can give accurate

information about minute-to-minute changes in operator’s alertness.

Table 4-5. Driving performance estimation using total 10 frequency bands in 2 dominant

ICA components (5 frequency bands for each ICA component) as input features of the linear

regression model for five subjects.

Subject 1 Subject2 | Subject3 | Subject4 | Subject5 Average
Training 91% 91% 93% 89% 90% 90.8 %
Testing 77% 89% 92% 86% 80% 84.8%

94
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Figure 4-18. Driving performance estimates for training/testing sessions of subject 3, based
on a linear regression model (red line) with subband log power spectra at frequency bands
10~14 Hz of ICA components 11 and 13 selected according to Table 4-4, overplotted against
actual driving performance time series for the session (blue line). The correlation coefficient

between the two time series is r=0.93, il the tr;cli‘n‘ing session and r=0.92 in the testing session.
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Figure 4-19. Driving performance estimates for training/testing sessions of subject 2, based
on a linear regression model (red line) with subband log power spectra at frequency bands
8~12 Hz of ICA components 8 and 17 selected according to Table 4-4, overplotted against
actual driving performance time series for the session (blue line). The correlation coefficient

between the two time series is r=0.91 in the training session and r=0.89 in the testing session.
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4.6.6. Drowsiness Estimation Based on EEG Log Bandpower

Experimental results discussed in the above sections demonstrated that it is feasible to
accurately estimate driving error accompanying loss of alertness based on ICA algorithm and
subband power spectrum analysis of multi-channel EEG signals. Since the proposed
ICA-based drowsiness estimation method is a little complicated, we propose a alternative
method to balance the tradeoff between accuracy of alertness monitoring and computational
cost in this section. It uses only 10 frequency bands of 2 EEG channels located at central
electrode positions of the 2 ICA components which have the better correlation coefficients
between log subband power spectra and the driving error of the subject. This method needs
multi-channel EEG signals to calculate their ICA weighting matrices in the training session
which is used to locate the positions of 2 EEG electrodes and optimal frequency bands, and
does not require collecting the EEG signals of the other EEG channels except the 2 selected
ones in the testing sessions.

Table 4-6 shows the correlation coefficients between the log subband power spectra and
the driving error of subject 3 using frequency bands from 10 to14 Hz of EEG channels located
at Fz, FCz, Cz, CPz, P3, Pz, and P4 in the training/testing session. Comparing to the results of
using ICA components listed in Table 4-3, the correlation coefficients is somewhat lower due
to artifacts and other noise. We may observe that the results using Pz and P4, which are the
central electrodes of ICA components 11 and 13, are better than the results by using other
channels. The driving error estimation of subject 3 based on a linear regression model with
frequency bands 10~14 Hz of EEG channels Pz and P4 as inputs (total 10 frequency bands)
are shown in Fig. 4-20. The correlation coefficient between estimated and actual driving error
is r=0.91 in the training session and r=0.87 in the testing session, which is just a little lower
than those using corresponding ICA components. Table 4-7 shows the optimal 2 EEG

channels and associated frequency band ranges of different subjects selected according to the
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cortical locations corresponding to ICA components selected from Table 4-4. Table 4-8 shows
the driving error estimation using total 10 frequency bands (5 for each EEG channel) as input
features of linear regression model for five subjects. The mean correlation coefficient between
actual driving error time series and within training session estimation is 0.882, whereas the
mean correlation coefficient between actual driving error and cross testing session estimation
is 0.79. Comparing Table 4-5 and Table 4-8, the accuracies of training and testing with ICA
technique are a little better than those without ICA. This result suggests a compromise

between computational cost and estimation accuracy.

Table 4-6. The correlation coefficients between log subband power spectra and driving

error of subject 3 using bandpower in frequency bands from 10 tol4 Hz corresponding to

different single EEG channel in the tfaining/testing-session.

Index of EEG Channels Ez FCz Cz CPz P3 Pz P4
Training 0.75 0.77 0.77 0.78 0.74 0.80 0.79
Testing 0.67 0.69 0:69 0.72 0.69 0.77 0.72

Table 4-7. The optimal 2 EEG channels and the associated frequency band ranges

corresponding to different subjects based on central electrode positions of 2 ICA components
which have the better correlation coefficients between the log subband power spectra and the

driving performance.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
Bands 5-9 Hz 8-12 Hz 10-14 Hz 4-8 Hz 8-12 Hz
EEG Channels 01, 02 CPz, Pz Pz, P4 01, 02 P3, 01
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Table 4-8. Driving error estimation using total 10 frequency bands (5 for each EEG

channel) as input features of the linear regression model for five subjects.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 | Average
Training 78% 90% 91% 88% 94% 88.2%
Testing 68% 86% 84% 84% 73% 79%

Driving Performance Estimation of Subject-3 Using Linear Regression Model
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Figure 4-20. Driving error estimates for.training/testing sessions of subject 3, based on a
linear regression model (red line) with subband log power spectra at frequency bands 10~14
Hz of EEG channels Pz and P4 (selected according to Table 4-7), overplotted against actual
driving error time series for the session (blue line). The correlation coefficient between the

two time series is 1=0.91 in the training session and r=0.87 in the testing session.

4.6.7. AFSM-based Driving Performance Estimation/Prediction

We also proposed a novel adaptive feature selection mechanism (AFSM) to solve the
reliable and sorting problem of ICA components based on the correlation analysis between the
time-frequency power spectra of ICA components and the driving performance. To reduce the
computational loading within the capabilities of modern real-time embedded digital signal
processing hardware for continuously estimating the level of alertness in near real time, we

limited finally the number of the selected ICA components and the frequency bands of each
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components to be two and five, respectively, by using AFSM. Table 4-9 shows the number of
ICA components and optimal frequency bands selected manually and those by AFSM. Note
that both selected ICA components and the frequency bands are almost the same but slightly
different for each subject between manually selecting and AFSM. To verify the correctness
and effectiveness of the AFSM method, the selected log bandpower spectra of the ICA
components in these critical bands were feed as the input features of the linear regression
models. We also used the Self-cOnstructing Neuro-Fuzzy Inference Network (SONFIN) [94]
model to estimate and predict the individual driver’s driving performance by taking the
advantages of fuzzy reasoning and learning abilities, and flexibility of neural networks. Fig.
4-21 shows the driving performance estimation for training/testing sessions of subject 3,
based on SOFNIN models (red line) with input features selected by AFSM method according
to Table 4-10, overplotted against actual driving performance time series for the session (blue
line). The correlation coefficient-between the two time series is r=0.96 in the training session

and r=0.94 in the testing session.

Table 4-10 shows the comparison tesults: of driving performance estimation. Although
the correlation coefficients between the two time series based on AFSM methods using linear
regression models are somewhat lower than those selected manually. The adaptive feature
selection mechanism has the advantages of saving time, and cost when the whole system is
applied for on-line alertness monitoring. Table 4-11 shows the estimating results based on
AFSM methods using SONFIN. Compared to the results using linear regression models, using
fuzzy neural network models can achieve higher estimating results as shown in Fig. 4-21 for

subject-3, and can compensate the slightly loss using AFSM in real-time applications.
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Table 4-9. The optimal 2 ICA components and frequency bands selected manually and by

AFSM corresponding to different subjects according to the higher correlation coefficients

between log bandpower spectra and the driving performance.

Subject 1 | Subject 2 | Subject3 | Subject4 | Subject 5
ICA Components 17, 28 17, 8 11, 13 4,5 22,25
Manual
Freq. Bands 5-9 Hz 8-12Hz | 10-14Hz | 4-8 Hz 8-12 Hz
ICA Components 17,28 17,8 11,13 4,5 22,25
AFSM
Freq. Bands 4-8 Hz 8-12Hz | 10-14Hz | 5-9Hz 9-13 Hz

Table 4-10. Driving performance estimation using total 10 frequency bands in 2

dominant ICA components selected manually and by AFSM methods shown in Table 4-9, as

input features of the linear regression models for five subjects.

Sub=1:4, Sub-2 | Sub-3 | Sub-4 | Sub-5 | Average

Linear Training | 91% 91% 93% 89% 90% 90.8%
Manual

Regression | Testing 77% 89% 92% 86% 80% 84.8%

Lincar | Training |.88% | 91%-| 93% | 88% | 84% | 88.8%

AFSM

Regression | Testing /}:72% | -89% | 82% | 80% | 76% | 81.8%

Table 4-11. Driving performance estimation using total 10 frequency bands in 2

dominant ICA components selected by AFSM methods shown in Table 4-9, as input features

of the linear regression models and SONFIN for five subjects.

Sub-1 | Sub-2 | Sub-3 | Sub-4 | Sub-5 | Average

Linear Training | 88% 91% 93% 88% 84% 88.8%

Regression | Tegting | 72% | 89% | 82% | 80% | 76% | 81.8%
AFSM

Training | 89% 92% 96% 87% 91% 91%
SONFIN

Testing 84% 89% 94% 83% 85% 87%
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Figure 4-21. Driving performance estimation for training/testing sessions of subject 3, based
on SOFNIN models (red line) with input features selected by AFSM method according to
Table 4-9, overplotted against actual driving performance time series for the session (blue
line). The correlation coefficient between the two time series is 1=0.96 in the training session

and r=0.94 in the testing session.
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4.7. Conclusion Remarks

In this chapter, we demonstrated a close relationship between minute-scale changes in
driving performance and the EEG/ICA power spectrum. This relationship appears stable
within individuals across sessions, but is somewhat variable between subjects. Four
computational approaches were proposed to select effective features for drowsiness
estimation based on the compromise of computational cost and estimating accuracies. The
first approach combined EEG power spectrum estimation, correlation analysis, PCA, and
linear regression to continuously indirectly estimate/predict fluctuations in human alertness
level indexed by driving performance measurement, deviation between the center of the
vehicle and the center of the cruising lane. Our results demonstrated that it is feasible to
accurately estimate driving errors based; on:multi-channel EEG power spectrum estimation
and principal component analysis‘algerithm. The computational methods we employed in this
study were well within the capabilities~of modern real-time embedded digital signal
processing hardware to perform in.real time using one or more channels of EEG data. Once an
estimator has been developed for each driver, based on limited pilot testing, the method uses
only spontaneous EEG signals from the individual, and does not require further collection or
analysis of operator performance. The proposed methods thus might be used to construct and
test a portable embedded system for a real-time alertness monitoring system. The other two
approaches used ICA, power spectrum analysis, correlation analysis, and the linear regression
model in a virtual-reality based driving environment. Experimental results show that the
proposed analysis methods are feasible to accurately estimate individual driving error
accompanying loss of alertness by linear regression model with 10 subband log power spectra
near « -bands of 2 ICA components as inputs. Averaged accuracies of training and testing
session for 5 subjects are 90.8% and 84.8%, respectively. We also propose an alternative
method to save computational cost by selecting only 2 EEG channels located at central
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electrodes of the corresponding ICA components. Average accuracies of training and testing
session for 5 subjects are 88.2% and 79%, respectively. Although the accuracy is somewhat
lower than those using ICA components, its does not require to collect more EEG channels
data in testing session. Thus, this approach suggests a compromise between computational
cost and estimation accuracy. Therefore, the proposed methods can be used to construct and
test on an online portable embedded system for a real-time alertness monitoring system. In the
last approach, we proposed a novel adaptive feature selection mechanism to solve the sorting
problem of the ICA components and to extract useful frequency bands as input features.
Experimental results show that the average accuracies of training and testing session for five
subjects can achieve high to 88.8% and 81.8% as well as 91% and 87%, by using linear
regression model and fuzzy neural network models, respectively. Although the accuracy using
AFSM-based linear regression model is lower than those selected manually, the
computational methods we employed in this study were well within the capabilities of modern
real-time embedded digital signal processing-hardware to perform in real time alertness

monitoring system.
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5. Conclusions

In this thesis, we develop quantitative techniques that combine independent component
analysis, temporal matching filter, time frequency spectrum analysis, correlation analysis,
adaptive feature selection mechanism, and fuzzy neural network models for ongoing
assessments of the transient event-related brain dynamics and the level of alertness of drivers
by investigating the neurobiological mechanisms underlying non-invasively recorded
multidimensional electroencephalographic (EEG) brain dynamics in the virtual-reality-based
cognitive driving tasks. We then apply these methodologies to the issue of driving safety and
focus on two most frequent happened events on the roads, the visual traffic-light detection
task and the continuous lane-keeping driving task in order to maintain the subject’s maximum
driving performance for preventingithe traffic accidents and extend the applications of brain
research to general populations (not limited to-lock-in patients). In this thesis, we have made
significant progresses in several-aspects.—(1)-The use of virtual-reality technology not only
allows subjects to interact directly ‘with virtual objects, but also provides a well-controlled
realistic experimental environment to avoid the risk of operating on the real world. (2) The
computational approaches are capable of providing high spatial and temporal resolutions by
using multidimensional EEG information obtained from an array of scalp electrodes and to
model the dynamics of the underlying brain networks. (3) Comparing to the traditional
time-domain overlap-added averaged methods, the introduced ICA algorithm can analyze
brain activities in single trials correctly without first averaging on trials. The temporal
independence and spatial stability make ICA to effectively remove non-brain artifacts to
increase the amount of information contained in the EEG recordings and to find out the
optimal location to wire EEG electrodes. (4) The proposed temporal matching filter can solve

the time-alignment problems between trials and increase the recognition rates of ERP
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classification. (5) We also use the moving-average time-frequency spectral analysis to avoid
confounds caused by miscancellation of positive and negative potentials from different
sources to the recording electrodes, and characterize the perturbations in the oscillatory
dynamics of ongoing EEG. (6) The use of the correlation analysis can provide objective
measurement of driver’s cognitive state and is helpful to extract effective features. (7) For
online applications, we proposed a novel adaptive feature selection mechanism combined
with the Self-cOnstructing Neuro-Fuzzy Inference Network model to accuracy identify the
transient brain response to different visual stimuli and estimate/predict the actual driving
performance of individual subjects.

Experimental results demonstrated that the proposed ICA-based methods can achieve a
high recognition rate on average up to 85% in classifications of the brain cognitive responses
related to visual traffic-light detection task. These high-accuracy results can be further
transformed as the control/monitoring signals of .on-line brain computer interfaces in the
driving-safety systems. Another-propesed-EEG-based technology for drowsiness estimation
also showed that it is feasible to. accurately “estimate individual driving performance
accompanying loss of alertness. In this study, we demonstrated a close relationship between
minute-scale changes in driving performance and the EEG power spectrum. This relationship
appears stable within individuals across sessions, but is somewhat variable between subjects.
We also propose four strategies to explore the optimal and economic way to select effective
EEG-based features. The first approach uses power spectrum of only 2 EEG channels, where
once an estimator has been developed for each driver, based on limited pilot testing, the
method uses only spontaneous EEG signals from the individual, and does not require further
collection or analysis of operator performance. Another approach apply the ICA algorithm in
the training session to locate the optimal position to wire EEG electrodes and uses 2 EEG

channels located at central electrodes of the selected ICA components. Averaged accuracies
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for 5 subjects achieve 79% using fuzzy neural network model. This method dramatically
increases the accuracy than the first one and does not require collecting more EEG channels
data in testing session. The third approach directly uses 10 log bandpower of 2 optimal ICA
components as input features and achieves the maximum averaged accuracies to 84.8%. For
the purpose of the online application, we proposed an automatic feature selecting mechanism
combined with SONFIN to estimating driving performance and the averaged accuracies for
five subjects can achieve high to 87%. Although the accuracy using adaptive feature selection
mechanism is lower than those selected manually, the computational methods we employed in
this study were well within the capabilities of modern portable embedded digital signal

processing hardware to perform in real time alertness monitoring system.
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