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基於腦波之駕駛員認知反應估測 
及其在安全駕駛的應用 

 
研究生：吳瑞成 指導教授：林進燈 博士 

國立交通大學電機與控制工程學系（研究所）博士班 

 

摘    要 

    在這篇論文裡，我們發展先進的生醫訊號處理技術，結合獨立成份分析演算法、腦

波頻譜分析、相關係數分析及模糊類神經網路，在虛擬實境技術所建構的認知駕駛實驗

環境中，透過非侵入式記錄的腦波電位分析，來辨識人腦對事件刺激的暫態反應以及估

測駕駛者的精神警覺程度。並且應用此分析技術去動態量測駕駛員的精神認知狀態變

化，與相對應的認知、辨識、車輛控制能力及駕駛行為的改變，以維持駕駛員的高效能

表現，並防止駕駛員在開車時，因過失及失誤所造成的意外事故。 

    我們首先提出一個新的基於獨立成份分析之時態匹配濾波器，去分析單次事件相關

腦電位，過濾人為雜訊的干擾，並改進傳統時域疊加方法的缺點，最後利用模糊類神經

網路模型去識別駕駛員看到紅綠燈號誌所產生的相對應腦波暫態反應。實驗結果驗證利

用多維腦電位訊號去辨識人的精神認知狀態與對事件刺激所造成的腦波暫態反應是可

行的，我們所提出的方法可以提高所量測之腦波暫態反應的訊號品質，以達到較高的辨

識率。 

    我們也提出一個新的基於獨立成份分析之適應性特徵值選擇機制，可以從腦波頻譜

中選取最有效的獨立成份及具代表性的頻段作為特徵值，對每一個駕駛員建立個別的模

糊類神經網路模型，去探索在疲勞或失神時，腦波的活動特性以及所伴隨的駕駛行為變

化。實驗結果顯示，人的腦波頻譜變化與開車行為表現之間的關係非常密切，我們所提

出的方法不但可以去除大部分人為雜訊的干擾，並且能夠估測最佳的頭皮位置來放置腦

波偵測器，以精確的估測駕駛者的精神警覺程度與實際的開車行為變化。此腦波訊號分

析技術未來可以利用可攜式嵌入式系統來實現一個線上精神狀態監控系統，以應用到日

常生活中。 
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EEG-Based Assessment of Driver Cognitive 
Responses and Its Application to Driving Safety

 
Student：Ruei-Cheng Wu Advisor：Dr. Chin-Teng Lin 

Department (Institute) of Electrical and Control Engineering  

National Chiao Tung University 
 

Abstract 

    In this thesis, we develop advanced biomedical signal-processing technologies that 

combine independent component analysis (ICA), power spectrum analysis, correlation 

analysis, and fuzzy neural network (FNN) models to assess the event-related transient brain 

dynamics and the level of alertness of drivers by investigating the neurobiological 

mechanisms underlying non-invasively recorded electroencephalographic (EEG) signals in 

the virtual-reality-based cognitive driving tasks. The developed techniques are then applied 

for dynamically quantifying driver’s cognitive responses related to perception, recognition, 

and vehicle control abilities with concurrent changes in the driving performance to maintain 

their maximum performance in order to prevent accidents caused by errors and failures for 

driving safety. 

   We first propose a novel ICA-based temporal matching filter for analyzing the single-trial 

event-related brain potentials (ERP) without using conventional trial-averaging results as 

input features of the FNN classifiers and apply this method to recognize the different transient 

brain responses stimulated by red/green/amber traffic-light events. Experimental results 

demonstrate the feasibility for identifying multiple streams of EEG signals related to human 

cognitive states and responses to task events. Our proposed methods can dramatically increase 

the quantity and quality of momentary cognitive information and achieve high recognition 

rates. 

    We also develop a new ICA-based adaptive feature-selecting mechanism to extract most 

effective bandpower from EEG power spectrum and build an individual FNN model for each 

subject to further examine the neural activities correlated with fluctuations in human alertness 

level accompanying changes in the driving performance in the lane-keeping driving tasks. 
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Experimental results show a closed relationship between changes in EEG power spectrum and 

the subject’s driving performance. Our proposed models also can effectively remove most 

non-brain artifacts and locate optimal positions to wire EEG electrodes such that it is possible 

to accurately estimate/predict the continuous fluctuations in human alertness level indexed by 

measuring the driving performance quantitatively. The computational methods are well within 

the capabilities of modern digital signal processing hardware to perform in real time and thus 

might be used to construct and test on a portable embedded system for an online alertness 

monitoring system in the future. 
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1. Introduction 

    Many disasters and near-disasters have resulted from loss of alertness, lack of attention, 

or poor decision-making on the part of ship navigators, airplane pilots, railroad engineers, 

truck and auto drivers, and plant monitors. Catastrophic errors can be caused by momentary 

lapses in alertness and attention during periods of relative inactivity. Unfortunately, as sixty 

years of research in human vigilance and attention has shown, humans are not well-suited to 

maintaining alertness and attention under monotonous conditions, particularly during the 

normal sleep phase of their circadian cycle. Yet most operative interfaces today simply 

assume that an alert and attending operator is always present and available to solve 

unexpected problems and can make decision and perform essential tasks that cannot be 

automated. Our society thus becomes more and more vulnerable to circadian alertness issues. 

This motivates us to develop the advanced biomedical signal-processing techniques and to 

build a human cognitive-state monitoring system to assist operators working in an interactive 

monitoring or control environment in maintaining a high sustained cognitive capacity while 

minimizing performance lapses and errors of interpretation, and to demonstrate the feasibility 

of detecting and modeling, in near real time via multiple streams of psychophysiological 

information such as electroencephalogram (EEG) and event-related potential (ERP) that 

organize operators’ cognitive states and responses to task events. 

    In this chapter, a brief overview of methods to assess brain activities related to human 

cognitive states is presented, including the study of the transient brain dynamics, the relations 

of brain dynamics to the changes in the cognitive states of human operators, and problems of 

monitoring driver’s cognitive states related to driving errors, which suggested us the direction 

of developing advanced biomedical signal processing methodologies and application for 

diving safety issues. 



 2

1.1. Assessment of Brain Activities to Human Cognitive 

States 

    The human electroencephalogram (EEG), first studied by Berger in the 1920’s, 

represents macroscopic oscillatory and non-oscillatory brain potentials thought to be 

generated mostly by synchronous post-synaptic currents in large populations of neurons in the 

cortex. It is a completely non-invasive measurement of brain function by analyzing the scalp 

electrical activity generated by brain networks that can be applied repeatedly in patients, 

normal adults, and children with no risks or limitations. For three generations it has been 

known that abundant information regarding cognitive states such as alertness and arousal is 

available in EEG recordings. However, relatively little has been done to capture this 

information in near-real time until the advent of computers fast enough to adequately process 

the data and signal processing methods capable of extracting the relevant information. For the 

past thirty years, the dominant analysis method for human cognitive studies has been the 

averaged evoked response or event-related potential (ERP). Measures of the EEG spectrum 

have been widely used only to identify stages of sleep. Now that adequate computing power 

and signal processing algorithms are available, it is of both practical and theoretical interest to 

know what information about changes in waking human cognitive capacity and behavior is 

available in complex EEG signals. 

 

1.1.1. Study of the Transient Brain Dynamics 

    Several groups have attempted to relate brain potentials recorded non-invasively from 

the human scalp to speculate a cause and effect relationship between EEG and certain stimuli 

or tasks. These studies have used the EEG spectrogram or the Event-Related brain Potential 

(ERP)-liked measuring techniques for comparing the complex EEG data to independent task, 
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performance or subjective rating measures [1-19]. An early effort in this direction, 

Pfurtscheller and Araniber first reported a method for quantifying the average transient 

suppression of alpha band (circa 10-Hz) activity following stimulation [3]. In the last decade, 

researchers studying Pfurtscheller's event-related desynchronization (ERD, spectral amplitude 

decreases), and event-related synchronization (ERS, spectral amplitude increases) in a variety 

of narrow frequency bands (4-40 Hz) have reported on their systematic dependencies on task 

and cognitive state variables as well as on stimulus parameters [4]. For example, Williamson 

et al. reported that, given a visually presented arithmetic problem to compute mentally, the 

resulting subject alpha-band ERD resolved only when the calculation was complete [5]. 

    Typically, psychologists calculated averaged Event-Related Potential (ERP) methods by 

applying simple measures of peak amplitudes and latencies in ERP averages at single scalp 

channels and focused on the feasibility studies of brain computer interface (BCI) and 

biofeedback methods in order to choose characters or move a cursor on a computer screen 

[6-14]. These response averaging, reducing EEG data sets to one or more averaged ERPs, has 

been the dominant mode of EEG data analysis in cognitive studies for nearly 40 years. The 

ERP is accomplished by computing averaging epochs (recording periods) of EEG time-locked 

to repeated occurrences of sensory, cognitive, or motor events [15-18]. Averaged ERPs 

evoked by brief unattended visual stimuli consist of a sequence of positive and negative peaks 

that are generally assumed to reflect activity in individual visual cortical processing regions 

[19]. In this view, response averaging attempts to remove background EEG activity or 

unrelated noises, whose time course is presumed to be independent of experimental events, as 

well as artifactual potentials produced by eye and muscle activity, and reflect only activities 

which are consistently associated with the stimulus processing in a time-locked way. 
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1.1.2. Monitoring of Human Cognitive State 

    During the past 10 years, several scientific researches in electrophysiological analysis 

had been reported to investigate the feasibility of accurately estimating shifts in an operator’s 

global level of alertness by monitoring the changes in the physiological signals. These 

methods can be further categorized into two main fields. One focuses on detecting physical 

changes during drowsiness by image processing techniques, such as average of eye-closure 

speed, percentage of eye-closure over time, eye tracking as quantization of drowsiness level, 

driver’s head movements, and steering wheel angle [20-28]. These methods can be further 

classified as being either direct contact by attaching sensors to the driver’s body or 

non-contact types by using optical sensors or video cameras to detect vigilance changes and 

achieve a satisfactory recognition rate. However, these parameters vary in different 

environmental situations and driving conditions, it would be necessary to devise different 

detection logic for different types of vehicles. Recently, Van Ordan and et al. further 

compared these eye-activity based methods to EEG-based methods for alertness estimates in a 

compensatory visual tracking task [29]. It showed that although these eye-activity variables 

are well correlated with the subject performance, those eye-activity based methods require a 

relatively long moving averaged window aiming to track slow changes in vigilance, whereas 

the EEG-based method can use a shorter moving averaged window to track second-to-second 

fluctuations in the subject error in a visual compensatory task [40, 49-52]. 

    The other field focuses on measuring physiological changes of drivers, such as heart rate 

variability (HRV) and electroencephalogram (EEG), as a means of detecting the human 

cognitive states [30-34]. It has been known that abundant information in 

electroencephalogram (EEG) recording can relate with drowsiness, arousal, sleep, and 

attention [35]. Previous psychophysiological studies show that typical sleep rhythm regulated 

by the circadian process can be divided into non-rapid-eye-movement (NREM) sleep and 
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rapid-eye-movement (REM) sleep [36-37]. NREM sleep is further subdivided into stages 1-4. 

In the first part of falling into sleep (micro-sleep at NREM), increasing amplitudes of slow 

alpha waves of the EEG signals were observed with positive correlation at occipital sites (O1 

and O2) and negative correlation at central sites (C3 or C4) [38-39]. While approaches based 

on EEG signals have the advantages for making accurate and quantitative judgments of 

alertness levels, relatively little information has been captured in real time until signal 

processing methods and computer power are fast enough to extract the relevant information 

from the EEG [40]. Thus, it is practicable and appealing to know what information about 

human cognitive state and behavior are available through analyzing complex EEG signals. 

 

1.2. Statement of the Problem 

    Although EEG-based technologies had been studied and applied in cognitive analysis by 

many psychologists and brain researchers for nearly 40 years. There are still many problems 

and limitations existing in analyzing the EEG signals and in practical applications. To achieve 

a reliable and applicable assessment of human cognitive states by investigating the 

neurobiological mechanisms underlying non-invasively recorded electroencephalographic 

(EEG) brain dynamics in the cognitive driving tasks, the following issues should be 

investigated. 

 

1.2.1. Spatial Resolution and Source Localization 

    Comparing with other physiological signals, such as heart rate variability (HRV), 

galvanic skin response (GSR), and functional magnetic resonance imaging (fMRI), the EEG 

has the advantage of high temporal resolution (up to several KHz) and easy implementation to 

the subjects. However, previous studies used simple measures of peak amplitudes and 

latencies in ERP averages at single or fewer scalp channels, the spatial resolution of the EEG 
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signals distributed on the scalp is difficult to be obtained and is incapable of extracting the 

relevant information. Thus, the possible source localization, which can be used to wire as few 

as electrodes, related to the external stimulus or the nidus can not be determined, either. 

 

1.2.2. Single-Trial Analysis 

    Current ERP-based studies attempt to use response overlap-added averaging method in 

time domain to reducing EEG data sets to one or more averaged ERPs in order to remove the 

background EEG activity or unrelated noises. However, previous studies had showed 

evidences from humans and animals experiments, suggesting that averaging ERPs data from a 

number of experimental trials only conceals rather than reveals the essential nature of 

event-related brain dynamics [41-44]. Because of the physics of volume conduction, 

potentials arising through partial synchronization of neural activity, or from artifacts produced 

by muscle activity or eye movements, all contribute to the signal recorded from nearly any 

scalp electrodes. Another disadvantage of the trial-averaging method is that it needs to collect 

many trials first in order to increase the signal-to-noise ratio and thus, is hard to be used in 

real-time application. 

 

1.2.3. Inter-trial Time-alignment Problem 

    For single-trial analysis of ERP signals in time domain, the amplitude and latency of the 

ERP is an important factor for the classification of ERPs. The time-alignment problem is 

defined as estimating the time lag of ERP latency due to the time-varying and non-stationary 

properties of the ERPs in single trials related the same stimulus. There are many 

psychophysiological factors leading to the time-alignment phenomenon of the single-trial 

ERP signals for one subject, such as the cognitive state of the subject at that moment, and the 

different response behavior for each trial of the subject, etc. The time-alignment problem 
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caused by the different time lags of subject’s response in different epoch for the same stimulus 

will lead to serious problems for identifying the ERPs and decrease the recognition rate. 

 

1.2.4. Artifact Removal 

    One of the important problem of applying EEG-based method to driving task or other 

applications is artifact handling due to the non-invasively measuring manner of EEG signals. 

During the period of collecting the EEG signals, subjects move their hands, torso, head, and 

eyes, which will create huge muscle movement, eye-blinking artifacts, heart rate, and other 

line noise. Using low pass filtering method or the trial-averaging method will not remove 

them but mask them only. The other method uses regressions in the time or frequency domain 

to derive effective parameters characterizing the spread of EOG noises in the EEG channels 

[45-46]. However, regressing out EOG activity, which also contains brain signals [47], 

inevitably involves subtracting a portion of the relevant EEG signals and tends to 

overcompensate for blink artifacts and may introduce new artifacts into EEG records due to 

the difference between the spatial EOG-to-EEG transfer functions for blinks and saccades. 

Regression also cannot be used to remove muscle noise or line noise, either, since these have 

no reference channels [48]. 

 

1.2.5. Cross-Subject’s Individual Variability 

    Details of brain dynamics may be as variable between subjects as details of brain shape 

and orientation. Thus, measures defined a priori and applied uniformly to data from groups of 

subjects cannot have the statistical power of measures customized to the relevant features of 

individual subject brain signals such that it is difficult to build a single model to accurately 

estimate or predict individual changes in alertness and performance of all the subjects [40, 

49-52]. 



 8

 

1.2.6. Objective Performance Evaluation 

    Current brain research uses subjective reports, questionnaires, and the judgments based 

on the expert’s knowledge to determine the subject’s cognitive states, such as level of 

drowsiness, and level of motion sickness, etc. An objective statistic measure is needed to 

quantify the human performance improvement related to subject’s cognitive states and to 

study the objective criterion for evaluating the overall task performance of system operator(s). 

 

1.2.7. Online Application 

    In order to apply the developed EEG-based methods for online applications outside the 

psychophysiology laboratory, the proposed signal processing technologies will have the 

limitations of less computational cost and use as few as EEG electrodes to be easily 

implemented on a portable real-time embedded system. Therefore, there is a compromise 

between computational cost and system accuracy. 

 

1.3. Preventions of Road Traffic Accidents 

    During the past years, driving safety has received increasing attention in public security. 

The road traffic injuries constitute a major public health and are predicted to increase if it is 

not addressed adequately and requires more concerted efforts for effective and sustainable 

preventions. The major risk factors for road driving safety can be roughly classified in two 

catalogs. One is the environmental influences, such as the enforcement of traffic rules; defects 

in road design, layout, and maintenance; inadequate visibility to difficultly detect vehicles and 

other road users; vehicle factors including braking, handling, and maintenance; insufficient 

vehicle crash protection for occupants and for those hit by vehicles; and the use of seat-belts 

and child restraints. Another factors related to driver’s behaviors including the violation of 
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traffic regulations; the detection of targets in the periphery of the eye; the estimation of speed 

and distance; presence of alcohol, medicinal or recreational drugs; the processing of 

information by the brain; fatigue/micro-sleep; delay in detecting crash; and other 

physiological factors associated with age and sex that have a bearing on crash risk. 

    Although many governments and vehicle manufacturers try to make the use of 

information and publicity on their own to prevent road traffic accidents including strategies to 

address rates of speed, alcohol consumption; promotion of using helmets and seat belts, or 

improvement of design and layout of the road, enhancements of vehicle structures and etc. Yet 

the knowledge currently exists to take action on a number of fronts to prevent these needless 

deaths, disabilities, immense loss, and suffering they cause. It is still wide held that the major 

responsibility of the road crashes still rely on driver’s errors. Therefore, preventing such 

accidents is highly desirable but requires techniques to reduce the number of traffic conditions 

causing death or injury or to prevent accidents before they happen such as eliminating 

situations that the driver is in insecure essentials. The key points of preventing accidents 

caused by driver’s errors and failures behind the steering wheel related to the driving safety 

can be roughly recognized into two aspects: the identification of transient brain dynamic 

responses and the continuous estimation of driver’s alertness level, which support information 

seeking and attention, decision-making, response selection, and anticipation of expected 

consequences. 

 

1.3.1. Accidents Related to Driver’s Transient Response 

    The human cognitive states accompanying incorrect/absent motor responses or slow 

responses in driving tasks on the roads may easily triggers an accident and lead to disastrous 

consequences as an underlying cause. An impaired driver will not take evasive action prior to 

a collision, where almost 30% of accidents could be avoided by means of reducing the driver 
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related reaction time by just 0.5 sec, and thus the reductions in traffic crash losses from 

reducing crashes attributable to driver impairment far exceed reductions from any other 

potential countermeasure [53]. 

 

1.3.2. Accidents Caused by Driver’s Loss of Alertness 

    Previous studies have showed that drivers’ fatigue has been implicated as a causal factor 

in many accidents because of the marked decline in the drivers’ abilities of perception, 

recognition and vehicle control abilities while sleepy [54-56]. The National Highway Traffic 

Safety Administration (NHTSA) conservatively estimates that 100,000 police-reported 

crashes are the direct result of driver fatigue each year [57]. This results in an estimated 1,550 

deaths, 71,000 injuries and $12.5 billion in monetary losses. The National Sleep Foundation 

(NSF) also reported in 2002 [58] that 51% of adult drivers had driven a vehicle while feeling 

drowsy and 17% had actually fallen asleep. The National Transportation Safety Board found 

that 58 percent of 107 single-vehicle roadway departure crashes were fatigue-related in 1995, 

where the truck driver survived and no other vehicle was involved. 

    Driving under the influences of drowsiness will cause (a) longer reaction time, which 

will produce effects on crash risk, particularly at high speeds; (b) vigilance reduction 

including non-responses or delaying responding where performance on attention-demanding 

tasks declines with drowsiness; (c) deficits in information processing, which will reduce the 

accuracy and correctness in decision-making tasks. 

    Therefore, the leading response should be to persuade road users to adopt “error-free” 

behavior and maintain the human high performance in the context of road traffic safety 

certainly. Developing accurate and continuous techniques for both identifying driver’s 

transient cognitive responses related to environmental stimuli and continuously detecting, 

estimating, and predicting driver’s alertness level would be highly desirable, particularly if 
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this measure could be further used to predict changes in driver's performance capacity in order 

to deliver effective feedbacks to maintain their maximum performance. 

 

1.4. Object and Overview of the Thesis 

    The objects of this thesis are to develop advanced biomedical signal processing 

methodologies to quantify the level of the human cognitive state with concurrent changes in 

the driving performance. To achieve these goals, we develop methodologies that combine 

independent component analysis (ICA), power spectrum analysis, correlation analysis, and 

fuzzy neural network (FNN) models for ongoing assessment of the transient event-related 

brain dynamics and the level of alertness of drivers by investigating the neurobiological 

mechanisms underlying non-invasively recorded multidimensional electroencephalographic 

(EEG) brain dynamics in the cognitive driving tasks. We then apply these methods to the field 

of the driving safety, and focus on two major applications, the visual traffic-light detection 

task and the continuous lane-keeping task on the highway, since they are most frequently 

happened events on the road in daily life and will easily lead to huge losses in both health 

injuries and economics. 

    Three important parts compose this dissertation. The first part describes the 

research-oriented methodologies for the analysis of human cognitive responses based on EEG 

signals to support further applications. The second part describes methods for identification of 

transient brain cognitive responses of drivers related to Red/Yellow/Amber traffic-light events. 

The last part focuses on developing methods to monitor alertness level of drivers 

accompanying changes in driving performances and to explore the relationship between brain 

activities, and human cognitive states. Each of these parts is described in a separate chapter. 

    In this chapter, the necessity of developing technologies for driving safety has been 

described, including statistical reports of road traffic injuries, preventions of traffic accidents 
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by governments and vehicle-manufactories, and problems of monitoring driver’s cognitive 

states related to driving errors, which suggested the direction of the thesis. 

    In Chapter 2, we proposed advanced signal processing methodologies for the analysis of 

brain activities related to cognitive states, including virtual reality technology, EEG 

measurement system, independent component analysis, temporal matching filter, moving 

averaged power spectral analysis, correlation analysis, and fuzzy neural network model. 

    In Chapter 3, we describe the system architectures focusing on identification of 

event-related brain potentials related to driver’s transient cognitive responses on traffic-light 

stimuli, including details of the traffic-light experimental setup, analysis of EEG data using 

ICA and temporal matching filter, and classification of EEG pattern related to 

Red/Yellow/Amber stimuli using fuzzy neural networks. Some discussions and conclusion 

remarks are also included. 

    In Chapter 4, we propose models for accurately and continuously monitoring level of 

driver's alertness accompanying changes in driver's performance in a lane-keeping driving 

task on the virtual-reality-based highway scene. The EEG-based estimation system combines 

EEG power spectrum, independent component analysis, correlation analysis for adaptive 

feature selection, and linear regression models and fuzzy neural network estimators. The 

relationship among EEG power spectrum, driver’s alertness level and driving performance are 

discussed in detail. 

    In Chapter 5, contributions of this thesis are summarized with final conclusions. Some 

further applications using the proposed methodologies are also illustrated. 
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2. Methodology 

    In this chapter, a brief overview of the advanced EEG-based biomedical signal 

processing methodologies for identifying/monitoring driver’s cognitive states is presented. We 

propose quantitative techniques for ongoing assessment of both the transient event-related 

brain dynamics and the level of alertness of drivers by investigating the non-invasively 

recorded EEG brain dynamics in two cognitive driving tasks. Fig. 2-1 shows the whole 

system architecture consisted of four major parts. (1) The virtual reality technology is used to 

construct an interactive driving environment for performing two cognitive driving tasks, the 

visual traffic-light stimulated experiment and the driver’s alertness estimating experiment on 

highway. (2) The NeuroScan 40-channel EEG measurement system is used to non-invasively 

collect multidimensional high-fidelity EEG signals. (3) The advanced signal processing 

technologies are proposed to remove non-brain artifacts, locate optimal positions to wire EEG 

electrodes, and extract effective features, including independent component analysis, power 

spectral analysis, correlation analysis, and adaptive feature selecting mechanism. (4) An 

individual fuzzy neural network model for each subject is used to classify the transient 

cognitive responses or to monitor the driving performance related to driver’s cognitive states. 

 



 14

 

 

 

ICA/PCA

Time/Frequency 
Analysis

Feature 
Extraction

x1 xnx2

y1 ymy'1 y'm

x1x1 xnxnx2x2

y1 ymy1 ymy'1 y'mEEG

Input 
Features

Advanced Signal 
Processing Units Classifier/ 

Estimator

Red/Yellow/Amber 
Events/

Driving Performance

NeuroScan
Express

Virtual-Reality-based 
Driving Scene

ICA/PCA

Time/Frequency 
Analysis

Feature 
Extraction

x1 xnx2

y1 ymy'1 y'm

x1x1 xnxnx2x2

y1 ymy1 ymy'1 y'mEEG

Input 
Features

Advanced Signal 
Processing Units Classifier/ 

Estimator

Red/Yellow/Amber 
Events/

Driving Performance

NeuroScan
Express

Virtual-Reality-based 
Driving Scene

 

 

Figure 2-1. The system architecture of the EEG-based driver’s cognitive-state monitoring system. It consists of four major parts: (1) 

Virtual-reality-based driving simulator. (2) The NeuroScan EEG measurement system. (3) Advanced signal-processing unit. (4) 

Fuzzy-neural-network classifier or estimator. 
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2.1. Virtual-Reality-based Driving Environment 

    Public security has become an important issue, especially, the safe manipulation and 

control of various machines and vehicles such that the authorities can keep emphasizing the 

strict training of human operators. Currently, such a training process usually relies on the 

actual machines or vehicles in real sites. This not only has high demands in space, time, and 

money to perform such a training job, but also leads to another phase of the public security 

problem. To tackle the above dilemma, the worldwide trend is to use the virtual-reality (VR) 

technology [59-63] to meet the requirements of public security in training and censoring of 

human operators. In this way, the operator can feel that he/she is controlling a real machine or 

vehicle to achieve the goal of real training and censoring. 

    The VR technology provides a realistic safety environment, which allows subjects to 

make on-line decisions by directly interacting with a virtual object rather than monotonic 

auditory and visual stimuli. The VR is also an excellent candidate for brain research on 

real-time tasks because of its low cost, saving time, less space, and condition control to avoid 

the risk of operating on the actual machines, and thus extends the applications of possible 

brain computer interfaces to general populations, not limited to lock-in patients. 

    In this thesis, we apply the dynamic VR technology to design a well-controlled, virtual 

driving environment for the cognitive tasks experiments as shown in Fig. 2-2 [61-63]. The 

high-fidelity interactive 3D scene was developed by the VR development software, 

WorldToolKit (WTK) library and application programmer’s interface (API) [64]. The detailed 

development diagram of the VR-based scene is shown in Fig. 2-3. It consists of four major 

components: (1) The textures of the created objects; (2) the corresponding parameters 

between created objects; (3) the objective dynamic equations of the 3D models; and (4) the 

control unit to link all the sub-models with the help of WTK library and APIs. To build a 

realistic driving environment as the test bed for the cognitive tasks, we first create models of 
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various objects (such as cars, roads, and trees, etc.) for the scene and setup the corresponding 

positions, attitudes, and other relative parameters between objects. Then, we calculate the 

parameters of the dynamic equations among these virtual objects and build a complete scene 

of full functionality with the aid of the high-level C-based API program. Finally, we link the 

virtual-reality-based driving scene to the EEG measurement/recording system to 

synchronously provide necessary stimuli and triggering signals for the driving task. Fig. 2-4 

and 2-5 show the virtual-city scene for the traffic-light experiment and the highway scene for 

the lane-keeping experiment, respectively. 
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Figure 2-2. The virtual-reality-based dynamic driving simulation laboratory. 

 

 

 

Figure 2-3. Flowchart of the VR-based highway scene development environment. The 

dynamic models and shapes of the 3D objects in the VR scene are created and linked to the 

WTK library to form a complete interactive VR simulated scene. 
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Figure 2-4. Virtual city developed for the VR-based dynamical driving simulator. 

 

0              60     63            123     132              192 195           2550              60     63            123     132              192 195           255

 

Figure 2-5. Virtual-reality-based highway scene 
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2.2. EEG Measurement System 

    In this thesis, the EEG/EOG/ECG physiological signals were detected and recorded 

using the NeuroScan (Scan NuAmps Express System) made by Compumedics Ltd., VIC, 

Australia. The SCAN NuAmps Express is a fully functional research grade 40-channel digital 

EEG and ERP recording system. This system allows user to record EEG and conduct spectral 

analysis, coherence and topographic mapping, where evoked potentials (EP) and event related 

potentials (ERP) can be recorded, averaged and processed in real-time. Event related spectral 

analysis, coherence and time frequency measures can be computed. Amplitude and latency 

measures, peak detection and comparative statistics are provided. Additionally, it also 

provides a full research grade data processing tool to remove noise and artifacts or decompose 

complex signals. The whole Scan NuAmps Express System consists of three major 

components: a NuAmp digital amplifier, a SCAN acquisition and analyzing software, and a 

multidimensional array of physiological sensors on the scalp based on international 10-20 

system as shown in Fig. 2-6. 

    NuAmps: The NuAmps is a 40-channel monopolar digital amplifier for recording high 

quality physiological signals. These can be accessed via the high density cap connector or the 

individual Touch Proof connectors on the face of the amplifier. It was designed as a portable 

system that obtains power from a laptop computer via USB interface. The power supply of the 

computer uses the isolation transformer to meet FDA patient safety guidelines for leakage 

current. The NuAmps is designed to record from Sintered Ag/AgCl electrodes which provide 

the highest quality and most durable electrical interface. Either individual or cap based 

electrode systems can be used. NuAmps is a DC amplifier with a maximum sampling rate of 

1000 Hz and has an 8 bit stimulus and a 4 bit response input that allows integration of the 

trigging signals for recording ERPs. The NuAmps also has the facility to support TTL iunput 

signals from external devices. 
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    SCAN: The SCAN software allows for automation of acquisition and data processing. 

Real time scalp impedance measurement is included, ensuring fast and simple set up times. 

All acquired data can be exported for subsequent analysis and a direct import to Matlab 

software is provided. The SCAN software is capable of computing bipolar derivations and 

different referencing schemes. Reference and ground channels are included in the count of the 

40 channels of NuAmp. In additional to EEG and ERP, other physiological measure can be 

recorded such as ECG, EMG and EOG. 

    The SCAN NuAmps Express system requires two computers to be fully operational, one 

for SCAN and the NuAmps and the other for the virtual reality (VR) system. The connections 

to the equipment are as follows: The laptop running SCAN connects to the NuAmps via a 

USB connection. The VR computer connects to the NuAmps via a DB25 pin connector and 

pigtail converter cable. All of the above cables have an isolation to meet the FDA 

requirements for leakage current of patient connected devices. 



 21

 

    

 (a) (b) 

   

 (c) (d) 

Figure 2-6. The Scan NuAmp Express System consists of (a) 40-channel NuAmp 

monopolar digital amplifier, (b) a Scan recording/analyzing software, (c) sintered Ag/AgCl 

electrodes forming a multidimensional array on the scalp based on (d) international 10-20 

system. 
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2.3. Independent Component Analysis (ICA) 

    The problem of blind source separation of recorded multi-channel signals into sums of 

temporally independent sources had been posed some years earlier. In 1994, Comon proposed 

the first approaches to blind source separation by minimizing the third and fourth-order 

correlations among the observed variables and achieved limited success in simulations [65]. 

In 1996, Cardoso, Bell, and Sejnowski generalized this approach, demonstrating a simple 

neural network algorithm that used joint information maximization or “infomax” as a training 

criterion [66-67]. By using a compressive nonlinearity to transform the data and then 

following the entropy gradient of the resulting mixtures, they were able to demonstrate 

unmixing of ten recorded voice and music sound sources that had been mixed with different 

weights in ten simulated microphone channels. Their algorithm used only minimal 

assumptions about the nature of the sources to be separated. Mixing weights (and thus scalp 

projections) of individual components were assumed to be fixed, and the time courses of the 

sources mutually independent. In 1996, Makeig and et al further extended the applications of 

blind decomposition to biomedical time series analysis by applying the infomax ICA 

algorithm to decomposition of EEG and event-related potential (ERP) data and reported the 

use of ICA to monitor alertness [49]. This first report demonstrated segregation of eye 

movements from brain EEG phenomena, and separation of EEG data into constituent 

components defined by spatial stability and temporal independence. Subsequent technical 

reports by Ghahremani et al. [68] and Makeig et al. [69] demonstrated successful separation 

of six simulated EEG sources mixed into six simulated EEG channels using a realistic 

three-shell head model. Unmixing performance of the ICA algorithm was shown to degrade 

gracefully in the presence of noise added to simulate sensor noise or additional small EEG 

sources. 

    Use of temporal independence as a separation criterion is a novel approach. In contrast, 
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other EEG decompositions are based on physically modeling the supposed sources [70-71] or 

on PCA [72]. Makeig et al. evaluated the relative strengths and limitations of the statistical 

independence criterion using simulations [69]. ICA was successful in separating behaviorally 

related ERP components in an auditory detection task [73] and several complex visual evoked 

ERP data sets [43-44, 74-76]. Jung et al. also demonstrated that ICA can also be used to 

remove artifacts from continuous or event-related (single-trial) EEG data prior to averaging 

[48, 77-78]. Vigario et al. used a somewhat different ICA algorithm, supported the use of ICA 

for identifying artifacts in MEG data [79]. Meanwhile, widespread interest in ICA has led to 

multiple applications to biomedical data as well as to other fields [49, 80]. Most relevant to 

EEG analysis, McKeown et al. demonstrated the effectiveness of ICA in separating 

functionally independent components of functional magnetic resonance imaging (fMRI) data 

[81]. 

    Four main assumptions underlie ICA decomposition of EEG data: (1) Signal conduction 

times are equal, and summation of currents at the scalp electrodes is linear, both reasonable 

assumptions for currents carried to the scalp electrodes by volume conduction at EEG 

frequencies [82]. (2) Spatial projections of components are fixed across time and conditions. 

(3) Source activations are temporally independent of one another across the input data. (4) 

Statistical distributions of the component activation values are not Gaussian. (In contrast, 

PCA assumes that the sources have a Gaussian distribution). The spatial stationarity of the 

component scalp maps, assumed in ICA, is compatible with the observation made in large 

numbers of functional imaging reports that performance of particular tasks increases blood 

flow within small (≈cm3) discrete brain regions [83]. Since functional hemodynamic imaging 

experiments typically show metabolic brain increases in defined tasks occur in relatively 

small cortical areas, EEG sources reflecting task-related information processing may 

generally assumed to sum activity from compact and spatially stationary generators. However, 
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spatial stationarity may not apply to some spontaneously generated EEG phenomena such as 

spreading depression or sleep spindles [84]. To fulfill the temporal independence assumption 

used by ICA, response components must be activated with temporally independent time 

courses. For this to occur, the functional degree of independence of different regions of 

synchronous neural activity, generating the EEG signals, must be expressed in the data. 

Typically, this means that sufficient numbers of time points need to be used during training. 

    The joint problems of electroencephalographic (EEG) source segregation, identification, 

and localization are very difficult since the EEG data collected from any point on the human 

scalp includes activity generated within a large brain area, and thus, problem of determining 

brain electrical sources from potential patterns recorded on the scalp surface is 

mathematically underdetermined. In this thesis, an application of the concept of 

non-stationary ICA for EEG decomposition is proposed. This is a complex problem, both 

theoretically and computationally with a tradeoff between the benefits of more complex 

methods of analysis and their complexity. Normally, more complex methods require more 

restrictive assumptions to be beneficial. In this thesis, we attempt to completely separate the 

twin problems of source identification (What) and source localization (Where) by using a 

generally applicable ICA. Thus, the artifacts including the eye-movement (EOG), 

eye-blinking, heart-beating (EKG), muscle-movement (EMG), and line noises can be 

successfully separated from EEG activities. The ICA algorithm was carried out with the 

“infomax” principle [85-86], where the beauty of the “infomax” approach to blind separation 

or ICA is the close fit of the “infomax” assumptions to the nature of the EEG data which had 

been demonstrated in many reports [48, 77-81, 85-86]. The ICA is a statistical “latent 

variables” model with generative form: 

 )t()t( sAx = , (2.1) 

where A is a linear transform called a mixing matrix and the is  are statistically mutually 
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independent. The ICA model describes how the observed data are generated by a process of 

mixing the components is  . The independent components is  (often abbreviated as ICs) are 

latent variables, meaning that they cannot be directly observed. Also the mixing matrix A are 

assumed to be unknown. All we observed are the random variables ix , and we must estimate 

both the mixing matrix and the is  using the ix . 

    Therefore, given time series of the observed data [ ]TN )t(x)t(x)t(x)t( L21=x  in 

N-dimension, the ICA is to find a linear mapping W such that the unmixed signals u(t) are 

statically independent. 

 )t()t( xWu =  (2.2) 

Supposed the probability density function of the observations x can be expressed as: 

 )(p)det()(p uWx = , (2.3) 

The learning algorithm can be derived using the maximum likelihood formulation with the 

log-likelihood function derived as: 
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Thus, an effective learning algorithm using natural gradient to maximize the log-likelihood 
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and WW T  rescales the gradient, simplifies the learning rule and speeds the convergence 

considerably. It is difficult to know a priori the parametric density function )(p u , which 

plays an essential role in the learning process. If we choose to approximate the estimated 

probability density function with an Edgeworth expansion or Gram-Charlier expansion for 

generalizing the learning rule to sources with either sub- or super-Gaussian distributions, the 

nonlinearity )( uϕ  can be derived as: 
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Since there is no general definition for sub- and super-Gaussian sources, if we choose 

( )1) (-1,1) (1,2
1 NN)(p +=u  and )(hsecN)(p uu 2(0,1)=  for sub- and super-Gaussian, 

respectively, where ( )2σµ ,N  is a normal distribution. The learning rules differ in the sign 

before the tanh function and can be determined using a switching criterion as: 

 [ ]
⎩
⎨
⎧

−=
=

−−∝
 gaussian  -sub : 1

gaussian-super : 1   
 where,

i

i

κ
κ

∆ WuuuuKIW TT)tanh( , (2.9) 

where 

 { } { } { }( )iiiii u)utanh(EuE)u(hsecEsign −= 22κ , (2.10) 

as the elements of N-dimensional diagonal matrix K. After ICA training, we can obtain 33 

ICA components u(t) decomposed from the measured 33-channel EEG data x(t). 
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Fig. 2-7 shows the scalp topographies of ICA mixing matrix W-1 corresponding to each ICA 

component by spreading each wi,j into the plane of the scalp, which provides spatial 

information about the contribution of each ICA component (brain source) to the EEG 

channels, e.g., eye activity was projected mainly to frontal sites, and the drowsiness-related 

potential is on the parietal lobe to occipital lobe, etc. We can observe that the most artifacts 

and channel noises included in EEG recordings are effectively separated into ICA components 

1 and 4 as shown in Fig. 2-7 and the ICA components 5, 11, and 13 may be considered as 

effective “sources” related to drowsiness in the VR-based driving experiment. 

 

 

Figure 2-7. Scalp topography of ICA mixing matrix W-1 of 33 ICA components trained by 

EEG data. 
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2.4. Power Spectral Analysis 

    Analysis of changes in spectral power and phase can characterize the perturbations in the 

oscillatory dynamics of ongoing EEG. Applying such measures to the activity time courses of 

separated independent component sources avoids confounds caused by miscancellation of 

positive and negative potentials from different sources to the recording electrodes, and by 

misallocation to the recording electrodes activity that originates in various and commonly 

distant cortical sources. Fig. 2-8 shows the diagram of moving-average power spectral 

analysis [87] for one single ICA component, which was decomposed from 33 channels of the 

EEG signals at sampling rate 250=sΩ  Hz. The time series of the single ICA component ui(t) 

was first divided into several epochs using a 750-point Hanning window with 250-point 

overlap, i.e., stepping in 2 seconds at sampling rate 250=sΩ  Hz. 

 ))m(t(u)t(h)t(p im 1500 −+= , (2-12) 

where t = 1, 2, …, 750, m is the index of mth epoch, and N-point Hanning window is 
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Windowed 750-point epochs were sub-divided into several 125-point frames using Hanning 

windows again, with 25-point step size. 

 ))n(t(p)t(h)t(q mn 125 −+= , (2-14) 

where t = 1, 2, …, 125, and n is the index of nth frames. Each frame was extended to 256 

points by zero-padding for using a 256-point Fast Fourier Transform (FFT) to calculate its 

power spectrum, where the frequency resolution is near 1 Hz by using a 256-point FFT to the 

data with 250Hz sampling rate. 
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In this study, there will be many times of wake-sleep cycles in one session of our experiment. 

Previous studies show that cortical regions produce low amplitude, fast oscillations during 

waking [88-89]. In contrast, the onset of sleep is marked by high-amplitude, slow cortical 

oscillations in different frequency bands [90-91]. Therefore, the averaged power spectrum of 

each epoch was normalized by using logarithmic scaling method in Eq. (2-16) to linearize 

these expected transient multiplicative effects of subcortical systems involved in wake-sleep 

regulation of EEG amplitudes [88, 92]. 
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Completing the all epochs of the single ICA component, we obtained the power spectrum 

time series )k,m(p~i , where m is the index of time-stepping, and k is the index of kth 

frequency index, of ith ICA component ui(t) for a session consisted of ICA bandpower 

estimated at 40 frequencies (40 data points presenting from 0.98 to 39.1 Hz) stepping at 2s 

(500-point, an epoch) time intervals. The same procedure of power spectrum analysis was 

applied to all 33 ICA components and other 33 EEG channels for comparisons. Finally, a 

median filtering using a moving averaged 90-s window in Eq. (2-17) was used to further 

minimize the presence of artifacts in the ICA/EEG signals and to match the time stamp of the 

driving error index. 
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Figure 2-8. Moving-average log power spectral analysis for EEG/ICA signals. 

 

2.5. Correlation Analysis 

    Supposed the time series of the driving error index stepping in 2 seconds after 90-s 

moving averaged window was SDPI(n), and the time-frequency series of ith ICA component 

after 90-s moving averaged window was )k,n(ip , where n is the time stepping size in 2 

seconds and k is the frequency index k = 1, 2, …, 40. In order to find the relationship between 

the brain activities and subject’s driving performance, and to quantify the level of the subject’s 

drowsiness, we computed the correlation coefficient between the time course of minute-scale 

fluctuations in driving performance and the concurrent changes in the ICA spectrum of EEG 

signals by using the Pearson Correlation Coefficient defined as: 
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The CC(i,k) forms a correlation spectrum related to ith ICA component and kth frequency 

index and is a statistical measure of the linear relationship between two random variables, the 

driving error index SDPI(n), and ICA power spectrum )k,n(ip , where SDPI  and )k(pi  

(related to kth frequency index) are the expected values of SDPI(n) and )k,n(ip , respectively. 

Therefore, the correlation coefficients between the driving performance and the ICA 

component i in the frequency band k can be expressed as: 
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Fig. 2-9 (a) and (b) show an example of changes in a single frequency 10 Hz in ICA 

components 11 and 13 of subject 3 with the minute-scale fluctuation of the driving error index 

(Fig. 2-9 (c)) in one lane-keeping driving session. Note that the fluctuations in the driving 

error index change slowly in minute scales, which also can be found in the previous study [40, 

51] in an auditory detection task. We can also observe the concurrent changes in the power 

spectrum in single frequency, e.g. 10 Hz in ICA components 11 and 13 shown in Fig. 2-9 (a) 

and (b), respectively. We then calculate the correlation coefficient between the time series of 

the driving error index and the concurrent changes in the power spectrum in single frequency 

using Eq. (2-18) and obtain a correlation coefficient corresponding to that single frequency. 

Completing all the frequency (1-40Hz), we get the correlation spectra related to the ICA 

components 11 and 13 are shown in Fig. 2-9 (d). Fig. 2-10 shows the resulting correlation 

spectra of subject 3 in 33 ICA components. The horizon axis indexes frequency bands 

between 1 and 40 Hz and the vertical axis indexes the ICA components. The correlation 

spectra shows a strong evidence between fluctuations in ICA bandpower of frequency bands 

within 9 to 25 Hz and driving performance with high positive correlations in ICA components 
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11 and 13. As driving error increases, so does ICA bandpower. 
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 (c) (d) 

Figure 2-9. Fluctuations in the driving error index and concurrent changes in power 

spectrum of ICA components and their corresponding correlation spectrum. (a) and (b) shows 

the changes of power spectrum in 10 Hz with time of the ICA components 11 and 13 of 

subject 3 after 90-s moving-average spectral analysis. (c) The smoothed 90-s driving error 

index. (d) Correlation coefficients from 1-40 Hz forming a correlation spectrum of the ICA 

components 11 and 13. 
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Figure 2-10. Canonical correlation spectral matrix of subject-3. Note that the higher 

correlation coefficients appear in 9-25 Hz in ICA components 11 and 13, respectively. 

 

2.6. Self-cOnstructing Neuro-Fuzzy Inference Network 

(SONFIN) 

    We develop a Self-cOnstructing Neural Fuzzy Inference Network called SONFIN shown 

in Fig. 2-11, which is a general connectionist model of a fuzzy logic system. The SONFIN 

can always find its optimal structure and parameters automatically. Both the structure and 

parameter identification schemes are done simultaneously during on-line learning without any 

assignment of fuzzy rules in advance. The SONFIN can always construct itself with an 

economic network size, and the learning speed as well as the modeling ability is well 

appreciated. Comparing with other neural networks [93-94] in different areas including 
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control, communication, and signal processing, the on-line learning capability of the SONFIN 

has been demonstrated. This 6-layered network realizes a fuzzy model of the following form: 

 Rule i : IF x1 is Ai1 and … and xn is Ain 

 THEN y is m0i + ajixj + …, (2-20) 

where Aij is a fuzzy set, m0i is the center of a symmetric membership function on y, and aji is a 

consequent parameter. Unlike the traditional TSK model where all the input variables are used 

in the output linear equation, only the significant ones are used in the SONFIN; i.e., some ajis 

in the above fuzzy rules are zero. 

    Each node in Layer 1, which corresponds to one input variable, only transmits input 

values to the next layer directly. Each node in Layer 2 corresponds to one linguistic label 

(small, large, etc.) of one of the input variables in Layer 1. A node in Layer 3 represents one 

fuzzy logic rule and performs precondition matching of a rule. The number of nodes in Layer 

4 is equal to that in Layer 3, and the result (firing strength) calculated in Layer 3 is normalized 

in this layer. Layer 5 is called the consequent layer. Two types of nodes are used in this layer, 

and they are denoted as blank and shaded circles in Fig. 2-11, respectively. The node denoted 

by a blank circle (blank node) is the essential node representing a fuzzy set of the output 

variable. The shaded node is generated only when necessary. One of the inputs to a shaded 

node is the output delivered from Layer 4, and the other possible inputs (terms) are the 

selected significant input variables from Layer 1. Combining these two types of nodes in 

Layer 5, we obtain the whole function performed by this layer as the linear equation on the 

THEN part of the fuzzy logic rule in Eq. (2-20). Each node in Layer 6 corresponds to one 

output variable. The node integrates all the actions recommended by Layer 5 and acts as a 

defuzzifier to produce the final inferred output. 

    Two types of learning, structure and parameter learning are used concurrently for 

constructing the SONFIN. The structure learning includes both the precondition and 
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consequent structure identification of a fuzzy if-then rule. Here the precondition structure 

identification corresponds to the input-space partitioning and can be formulated as a 

combinational optimization problem with the following two objectives: to minimize the 

number of rules generated and to minimize the number of fuzzy sets on the universe of 

discourse of each input variable. As to the consequent structure identification, the main task is 

to decide when to generate a new membership function for the output variable and which 

significant terms (input variables) should be added to the consequent part (a linear equation) 

when necessary. For the parameter learning based upon supervised learning algorithms, the 

parameters of the linear equations in the consequent parts are adjusted by either LMS or RLS 

algorithms and the parameters in the precondition part are adjusted by the back-propagation 

algorithm to minimize a given cost function. 

    The SONFIN can be used for normal operation at any time during the learning process 

without repeated training on the input-output patterns when on-line operation is performed. 

There are no rules (i.e., no nodes in the network except the input-output nodes) in the 

SONFIN initially. They are created dynamically as learning proceeds upon receiving on-line 

incoming training data by performing the following learning processes simultaneously: 1) 

input/output space partitioning; 2) construction of fuzzy rules; 3) optimal consequent structure 

identification; 4) parameter identification. In the above, learning processes 1), 2), and 3) 

belong to the structure learning phase and 4) belongs to the parameter learning phase. 
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Figure 2-11. The network structure of SONFIN. 
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3. Classifications of the Transient Brain 

Dynamics in Single Trials 

    Accidents caused by errors and failures in human performance among these fatalities 

have a high rate causing death, especially when driving through the crossroad. A key problem 

of causing failures is the inability to dynamically quantify cognitive changes in the human 

capacity to perform such a work. In recent studies [40, 95-102], many researchers had 

proposed to develop quantitative techniques for ongoing assessment of cognitive effort, 

engagement and workload, by investigating the neurobiological mechanisms underlying 

electroencephalographic (EEG) brain dynamics events. A way to determine the relationship 

between different stimuli and human cognitive responses accompanying correct, incorrect and 

absent motor responses is the use of event-related brain potential (ERP) signals. An ERP 

signal can be observed with some latency (e.g., P300) as the stimulus event is given or 

removed to a subject. We can observe ERP signals in many different stimuli such as audio, 

vision, pain, electric shock, emotion changes, etc. However, current applications of 

EEG-based brain research work have limitations due to the signal processing methods are 

incapable of extracting the relevant information caused by many artificial sources for EEG 

signals, such as eye movements, eye blinks, cardiac signals, muscle noise, and line noise. 

Thus, the recent brain computer interface (BCI) works [6-14] have focused on the feasibility 

studies of on-line averaging and biofeedback methods in order to choose characters or move a 

cursor on a computer screen. 

    In this chapter, we develop methods for analyzing single-trial electrical recordings from 

the human scalp and make it possible to optimally combine multidimensional information 

obtained from an array of scalp electrodes and to model the dynamics of the underlying brain 
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networks. This method dramatically increases the amount of transient dynamic cognitive state 

information that support information seeking and attention, decision-making, response 

selection, and anticipation of expected consequences. We also design a detailed experimental 

procedure and a complete analyzing method to detect, acquire, and analyze relationship of 

human cognitive responses to different events by the use of ERP signals in the traffic-light 

simulation experiments, which can be applied to on-line vehicle driving-safety system. First, 

we construct a Red/Green/Amber traffic-light scene based on the interactive virtual reality 

(VR) technology. We also use the Independent Component Analysis (ICA) to remove a wide 

variety of artifacts based on blind source separation and to extract the representative features. 

Then, we design a novel temporal filter to solve the time-alignment problem between single 

trials and thus increasing the recognition rate of the ERP events. The Principle Component 

Analysis (PCA) is further used to reduce the feature dimension for realistic applications. 

Finally, we develop a Self-cOnstructing Neural Fuzzy Inference Network (SONFIN) to 

classify the recorded ERP signals. This results and know-how can also be generalized to 

develop computational approaches to analyze neural activity associated with human cognition 

under kinesthetic/visual/auditory stimuli in EEG experiments and to translate or interpret 

EEG patterns appropriate for artificial devices as control signals of driving-safety system.  
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3.1. Virtual-Reality-Based Traffic-Light Experiment 

    In this thesis, we focus on the detecting and analyzing of the responses of brain activities 

to the traffic-light events (Red-Green-Amber) in a stoplight detection task since they are the 

most frequently happened events when driving on the roads and have a high fatality rate when 

drivers ignore and run the stoplight. A virtual-city scene shown in Fig. 2-4 was first developed 

based on the virtual reality (VR) technology, which allows subjects to make on-line decisions 

in a dynamic environment involving interaction with virtual objects to look at on-line cue 

recognition. For convenient analysis and avoiding additional visual-cue noise, the traffic-light 

driving simulation in the virtual city is simplified to have three kinds of traffic-light stimuli, 

the red, green, and amber lights, which are displayed at center on a color XVGA 15” monitor 

(304.1-mm wide and 228.1-mm high). The VR-based traffic light simulative sequences 

contain 150 events for each session as shown in Fig. 3-1, where the event allotment ratios are 

30%, 60%, and 10% for red, green, and amber traffic lights, respectively. Therefore, there are 

totally 45 red-light events, 90 green-light events, and 15 amber-light events in a driving 

session. Previous study had showed that the stimulus needs to be presented both rarely and 

task relevantly in order to evoke event-related potentials [103-104]. A similar response occurs 

in a VR driving world, such that each single stimulus was designed to appear in random 

intervals between 1.7, 2.1, and 2.3 seconds and lasts for 300 ms. The onset time of the 

traffic-light stimuli and the subject’s response time to the target is triggered by the VR 

program and recorded synchronously with continuous EEG signals in the EEG measurement 

system. 
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3.2. Subject’s Protocols 

    A total of ten subjects (ages from 20 to 40 years) participated in the VR-based 

traffic-light driving experiments where EEG signals were simultaneously recorded. Each 

subject participated in six simulated work sessions on the same time in a day. For each session, 

the subject started with a 5~10 minutes training session to practice the operation in this 

experiment. Subjects reported that this amount of training was sufficient to train participants 

to asymptote on the task. Participants were then fitted with an EEG electrode cap to record the 

physiological EEG signals. After practicing, the subject started a 10-min visual traffic-light 

detection tasks (10~15 minutes break between sessions) and was asked to decelerate/stop the 

car when he/she detected a red light, to accelerate the car when he/she saw a amber light, and 

do nothing (keep constant speed) when he/she saw the green light. 

 

 

 

Figure 3-1. Traffic-light stimulus sequences, where G, R, Y representing the Green-light, 

Red-light, and Amber-light events, respectively, and R_B is the subject’s response to the 

Red-light (e.g., braking the car), and L_B is the subject’s response to the Amber-light (e.g., 

speeding up the car). 
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3.3. EEG Data Collection 

    During each visual traffic-light detection session, the 31-channel EEG and 4-channel 

EOG using sintered Ag/AgCl electrodes with an unipolar reference at right earlobe were 

simultaneously recorded by the Scan NuAmps Express system (Compumedics Ltd., VIC, 

Australia). All the EEG/EOG channels were located based on a modified International 10-20 

system based on the relationship between the location of an electrode and the underlying area 

of cerebral cortex. Before data acquisition, the contact impedance between EEG electrodes 

and scalp was calibrated to be less than 5kΩ. The EEG data were recorded with 16-bit 

quantization level at a sampling rate 1 KHz and down-sampled to 500 Hz for the simplicity of 

data processing. Then EEG data were preprocessed using a simple low-pass filter with a 

cut-off frequency of 50 Hz to remove the line noise (60 Hz and its harmonics) and other 

high-frequency noise for further analysis. Finally, we successfully collected more than 700 

successful ERP events of one subject in a driving experiment. Fig. 3-2 shows an example of 

the collected time series of EEG signals of subject 1. The red/green/amber traffic-light stimuli 

were marked as red, green, and yellow lines, respectively. The subject’s correctly responded 

target responses were also observed followed the target stimuli, i.e. a blue line was observed 

about 300-ms fallen behind the red-light stimulus at 25.7 second, and a cyan line was also 

observed about 350-ms fallen behind the amber-light stimulus at 23.2 second. To further 

analyzing the relationship between the visual traffic-light stimuli and the subject’s 

corresponding response, the synchronously measured continuous EEG signals are separated 

into several epochs/trials where an epoch or a trial contains the sampled EEG data from –200 

ms to 1000 ms with a light stimulus given at 0 ms and were connected together as shown in 

Fig. 3-3 for the analysis of traditional time-domain overlap-added averaged methods or ICA 

algorithm. The extracted single-trial epochs for the red light stimuli at Pz channel and their 

time-domain overlap-added average (black line) were shown in Fig. 3-4 (a). Note that the ERP, 
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P300, was clearly observed. Fig. 3-4 (b) shows the single-trial ERP-image plots of correctly 

responded target response data at Pz channel (occipital site) from a red-light visual stimulus. 

The subject’s response time (black line) is very time-locked to the P300 ERP corresponding to 

red-light stimulus. Fig. 3-5 shows the time-domain overlap-added averaged ERP signals for 

three kinds of traffic-light stimuli in Pz channel. We can observe that the ERPs related to 

different traffic-lights have apparent differences. Although using the time-domain 

overlap-added averaged method can successfully observe the appealing differences between 

ERPs related to different stimuli, it costs much time to collect enough epochs (at least 30 trials) 

before performing such time-domain overlap-added averaged algorithm and can not be used 

for online applications. Therefore, in this thesis, we introduce a new single-trial analyzing 

method based on ICA algorithm to deal with the prior-average problem of time-domain 

overlap-added averaged method without loss any information of the original ERP signals. 

    Fig. 3-6 shows the scalp topography of the time series of averaged epochs for one 

stimulus (red light) of subject 1. The results demonstrated that the active brain responses to 

significant events or external stimuli involve synchronized oscillations in local field potentials 

in a number of brain regions as reported in previous studies [15-16]. These brain dynamic 

events appear to begin in the frontal cortex, implying they carry or channel top-down 

information about intention, including attentional focus, to sensorimotor brain areas [18] 

triggering other dynamic events that carry or channel bottom-up information from sensory to 

response-selection areas [83]. The analyzing results in Figs. 3-2 to 3-6 calibrate the successful 

design of the visual traffic-light detection tasks. 
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Figure 3-2. An example of the recorded raw data of EEG signals with synchronous onset 

times of three kinds of the traffic-light stimuli and two kinds of subject’s responses. The onset 

time of the red/green/amber traffic lights are presented as red, green, and yellow lines, and the 

subject’s responses, pressing a right button for a red light and a left button for an amber light, 

are presented as blue and cyan lines, respectively. 
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Figure 3-3. Extracted epochs (dashed intervals) for one stimulus (red right) and subject’s 

response (right button).  
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(a) 

 

(b) 

Figure 3-4. (a) Observed epochs (trials) for the red light stimuli at Pz channels and their 

time-domain overlap-added average (black line). Note that the ERPs, P300, was clearly 

observed. (b) Single-trial ERP-image plots of correctly responded target response data at Pz 

channel (occipital site) from a red-light visual stimulus. The subject’s response time (black 

line) is very time-locked to the P300 ERP corresponding to Red-light stimulus. 
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Figure 3-5. Time-domain overlap-added averaged ERP signals for three kinds of 

traffic-light stimuli in Pz channel. 

 

 

Figure 3-6. Scalp topography of the time series of an averaged epoch for one stimulus (red 

light). These results show that active brain responses to significant events or external stimuli 

involve synchronized oscillations in local field potentials in a number of brain regions [28-29]. 

These brain dynamic events appear to begin in the frontal cortex, implying they carry or 

channel top-down information about intention, including attentional focus, to sensorimotor 

brain areas triggering other dynamic events that carry or channel bottom-up information from 

sensory to response-selection areas. 
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3.4. Data Analysis 

    Fig. 3-7 shows the system flowchart for processing the ERP signals. After collecting 

high-fidelity EEG signals, a low-pass filter is first used to remove the line noise and higher 

frequency (>50Hz) noise. A first calibration based on time-domain overlap-added averaged 

ERP and ERP image is perform to demonstrate the validity of the collected EEG signals. In 

order to remove a wide variety of artifacts and for the applications of on-line use, unlike 

traditional time-domain overlap-added averaged methods for processing ERP data, the 

measured ERP signals are further analyzed using ICA algorithm (described in Chapter 2-3) in 

single trials. The ICA is also used to select possible ERP features related to the traffic-light 

stimuli based on the time sequences of the ERPs and the corresponding scalp distribution of 

the ICA components. After extraction of the single-trial ERP signal, we design a novel 

temporal matching filter to solve the time-alignment problem caused by the variations of 

subject’s response in each single trial. The PCA algorithm is then applied to the filtered ERP 

data to reduce dimension and select the representative components. Finally, we develop a 

fuzzy neural network (FNN) model (Chapter 2-6) compared to Learning Vector Quantization 

method (LVQ) and Back-propagation Neural Network model (BPNN) to on-line classify the 

ERP data corresponding to different stimuli. The classified results can be used as control and 

feedback commands in vehicle safety-driving systems. 
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Figure 3-7. Flowchart of ERP data analysis in the visual traffic-light detection experiment. 
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3.4.1. ICA Decompositions of the ERP Data 

    The brief schematic depiction of the decomposition by ICA is shown in Fig. 3-8. In our 

experiment, we assume that the multi-channel EEG recordings are mixtures of underlying 

brain sources and artificial signals. As discussion in Chapter 2-3, we suppose that the number 

of sources is the same as the number of sensors by assuming that the source numbers 

contributing to the scalp EEG are statistically independent; that is, if there are N sensors, the 

ICA algorithm can separate N source components. The conduction of the EEG sensors is 

assumed to be instantaneous and linear such that the measured mixing signals are linear and 

the propagation delays are negligible. We also assume that the signal source of muscle activity, 

eye, and, cardiac signals are not time locked to the sources of EEG activity which is regarded 

as reflecting synaptic activity of cortical neurons. Therefore, the time courses of the sources 

are assumed to be independent. The important fact used to distinguish a source, si, from 

mixtures, xi, is that the activity of each source is statistically independent of the other sources, 

i.e., the mutual information between any two sources, si and sj, is zero. The task of ICA 

algorithm is to recover a version, of the original sources S by finding a square matrix W that 

inverts the mixing process linearly and save the identical scale and permutation. For EEG 

analysis, the rows of the input matrix X are the EEG signals recorded at different electrodes, 

the rows of the output data matrix u = WX are time courses of activation of the ICA 

components, and the columns of the inverse matrix W-1 give the projection strengths of the 

respective components onto the scalp sensors. The scalp topographies of the components 

provide information about the location of the sources (e.g., eye activity should project mainly 

to frontal sites, and the visual event-related potential is on the center to posterior area, etc.). 

“Corrected” EEG signals can then be derived as X = W-1u, where u is the matrix of activation 

waveforms u. 
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Figure 3-8. Schematic depiction of ICA decomposition of EEG signals. 

 

3.4.2. Temporal Matching Filter 

    For single-trial analysis of ERP signals in time domain, the amplitude and latency of 

ERP (P300) is an important parameter for the ERP classification. Due to the time varying and 

non-stationary property of P300 in each single trial of the same stimulus, one frequent 

happened problem concerning classification is the time-alignment problem defined as the time 

varying of the latency in P300. There are many psychophysiological factors leading to the 

time-alignment phenomenon of the single-trial ERP signals for one subject, such as the 

cognitive state of the subject at that moment, the different response behavior for each trial of 

the subject, etc. The time-alignment problem caused by the different time lags of subject’s 

response for the same kind of stimuli in different epoch will lead to serious problems when 

extracting representative features for the same group of ERP data (i.e., the single trial ERP 
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signals caused by the same stimulus could be classified into different principles in PCA due to 

the time alignment problem.) and decrease the recognition rate. To solve such a problem, we 

process the single-trial EPR signals with short-term techniques using maximum magnitude of 

cross-correlation function and propose a novel temporal matching filter. Fig. 3-9 shows the 

concept diagram of this matching filter. After collecting high-fidelity ERP signals, the 

temporal matching filter is selected by averaging the first N single trials as the standard 

pattern of P300 for each subject. Then we calculate the cross-correlation value between the 

matching filter and subsequent single trial, and find out the maximum magnitude of 

cross-correlation function. Finally, the original single-trial sequence is shifted to a new time 

sequence according to the maximum cross-correlation value. Detailed algorithms are listed 

below: 

1. Given the input single-trial source component ui (i is the trial index), we calculate 

the average of the first N trials by ∑
=

=
N

i
iuu

1
 as the standard pattern of the 

matching filter. 

2. Find the maximum cross-correlation coefficients between the standard pattern u  

and subsequent single trials by calculating )(maxarg kuk xcorr
j

i = , where 

)()()(
1

kjujuku
M

j
ixcorr += ∑

=

. 

3. Rearrange the time series of each single-trial by )()('
iii kjuju +=  as a new input 

sampled trial. 
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Figure 3-9. The use of Matching Filter for temporal alignment of the single-trial ERP. 

 

3.4.3. Principle Component Analysis (PCA) 

    Given the observed zero-mean data matrix [ ]TN )t(x)t(x)t(x)t(X L21= , the 

principle component analysis (PCA) is to find an orthogonal N×N matrix 

[ ]NpppP L21= , ip  is a N×1 vector, that determines a transformation of 

variable, )t(PY)t(X = , such that the new variables [ ])t(y)t(y)t(y)t(Y NK21=  are 

uncorrelated and arranged in order of decreasing variances. 

    Let )N(XXS T
X 1−=  be the covariance matrix of X(t) and let D be a diagonal matrix 

with the eigenvalues N,, λλ K1  of XS  , where 021 ≥≥≥≥ Nλλλ K . The desired 

orthogonal matrix P is one that makes XS  diagonal by performing PSPD X
T=  where P’s 

columns are the corresponding unit eigenvectors Np,,p K1  of XS . The unit eigenvectors 

Np,,p K1  are then called the principle components of the data. The kth principle component 

kp  determines the new variable )t(yk  in the following way: Let the entries in kp  express 

as [ ]Tk,Nk,k,k pppp L21= . The equation )t(PY)t(X =  shows that 

)t(xp)t(xp)t(xp)t(Xp)t(y Nk,Nk,k,
T
kk +++== K2211 . Thus, )t(yk  is a linear combination 

of the original variables, )t(x,),t(x NK1 , using the entries in the eigenvector kp  as 



 51

weights. Using a cutoff on the first Kth principle components, the observed data matrix may 

thus be reduced in its dimensionality from N to K without much loss of information [93]. 

 

3.4.4. Learning Vector Quantization (LVQ) 

    The Learning Vector Quantization is a supervised competitive learning algorithm from 

vector quantization (VQ) and Self-Organizing Map (SOM) algorithm by Kohonen [105-106], 

which has the network to "discover" structure in the data by finding how the data are clustered. 

The goal of LVQ algorithm is to approximate the distribution of a class using a reduced 

number of codebook vectors where the algorithm seeks to minimize classification errors. The 

algorithm is associated with the neural network class of learning algorithms, though works 

significantly differently compared to conventional feed-forward networks like 

Back-propagation. The neural network for learning vector quantization consists of two layers: 

an input layer and an output layer. It represents a set of reference vectors, the coordinates of 

which are the weights of the connections leading from the input neurons to an output neuron. 

Hence, one may also say that each output neuron corresponds to one reference vector. The 

learning method of learning vector quantization is often called competition learning, because 

it works as follows [107]: For each training pattern the reference vector that is closest to it is 

determined. The corresponding output neuron is also called the winner neuron. The weights of 

the connections to this neuron - and this neuron only: the winner takes all - are then adapted. 

The direction of the adaptation depends on whether the class of the training pattern and the 

class assigned to the reference vector coincide or not. If they coincide, the reference vector is 

moved closer to the training pattern; otherwise it is moved farther away. This movement of 

the reference vector is controlled by a parameter called the learning rate. It states as a fraction 

of the distance to the training pattern how far the reference vector is moved. Usually the 

learning rate is decreased in the course of time, so that initial changes are larger than changes 
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made in later epochs of the training process. Learning may be terminated when the positions 

of the reference vectors do hardly change anymore. 

 

3.4.5. Back-propagation Neural Network Model (BPNN) 

    Another algorithm which has hugely contributed to neural network fame is the 

back-propagation algorithm [93, 108]. The principal advantages of back-propagation are 

simplicity and reasonable speed. Back-propagation is well suited to pattern 

recognition/classification problems. In essence, the back-propagation network is a perceptron 

with multiple layers, a different threshold function in the artificial neuron, and a more robust 

and capable learning rule. Back-propagation can train multilayer feed-forward networks with 

differentiable transfer functions to perform function approximation, pattern association, and 

pattern classification. The term back-propagation refers to the process by which derivatives of 

network error, with respect to network weights and biases, can be computed. This process can 

be used with a number of different optimization strategies. The architecture of a multilayer 

network is not completely constrained by the problem to be solved. The number of inputs to 

the network is constrained by the problem, and the number of neurons in the output layer is 

constrained by the number of outputs required by the problem. However, the number of layers 

between network inputs and the output layer and the sizes of the layers are up to the designer. 

The two-layer sigmoid/linear network can represent any functional relationship between 

inputs and outputs if the sigmoid layer has enough neurons. 

 

3.5. Results and Discussions 

    In this thesis, we propose a novel ICA-based temporal matching filter for analyzing the 

single-trial event-related brain potentials (ERP) without first averaging over trials as input 

features of the FNN classifiers and apply this method to recognize the different transient brain 
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responses stimulated by red/green/amber traffic-light events. After collecting 31-channel EEG 

signal, the time-domain overlap-added averaged method was used to calibrate the correctness 

of the extracted ERP signals for three kinds of stimuli in Pz channel are shown in Fig. 3-2 to 

Fig. 3-6. We can find that the averaged ERP signal in this traffic-light experiment is similar to 

the general visual ERP signal, where the event related potentials, P300 were clearly observed. 

Scalp topography of the time series of an averaged epoch for one stimulus (red light) show 

that active brain responses to significant events or external stimuli appear to begin in the 

frontal cortex including attentional focus to sensorimotor brain areas and from sensory to 

response-selection areas as shown in Fig. 3-6. The averaged EEG responses of three events in 

Fig. 3-5 are very different and can be used as the features in single trials for further 

classification. More detailed results are discussed below including artifact removal using ICA, 

effect with/without matching filter, and comparisons of linear and nonlinear classifiers. 

 

3.5.1. Artifact Removal Using ICA 

    The measured ERP signals are first analyzed using ICA algorithm trained in single trials 

as described in Eq. (2-9) in Chapter 2. For EEG analysis, the rows of the input matrix X are 

the cascade-connection ERP signals recorded at different electrodes, the rows of the output 

data matrix u=WX are time courses of activation of the ICA components, and the columns of 

the inverse matrix, W-1, give the projection strengths of the respective components onto the 

scalp sensors. The scalp topographies of the components provide evidence for their biological 

origin (e.g., eye activity should project mainly to frontal sites). In general, corrected EEG 

signals can then be derived as ûWX̂ 1−= , where û  is the matrix of activation waveforms u, 

with rows representing artifactual sources set to zero. After training, we can obtain 31 ICA 

components from 31-channels EEG data. Fig. 3-10 (a) shows the averaged ERP signals for 31 

channels, where each line presents one-channel averaged ERP signal (from -200 ms to 
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1000ms, with stimulus given at 0 ms). The amplitude of artifacts (EOG, etc.) is larger than 

ERP (P300) and its position on scalp is apparently observed. The detailed influence can be 

further observed in Pz channel in single trials shown in Fig. 3-10 (b). The horizontal axis is 

time scale from –200 ms to 800 ms, the vertical axis is trial index, and the amplitude of each 

single trial is shown in color bar. The artifact can be observed almost in each single trial and 

the ERP, P300, related to visual traffic-light stimuli is destroyed by the artifact noise. The 

topographic maps of the obtained 31 ICA components after training are shown in Fig. 3-11, 

where the orders of the ICA components were sorted by the variances of time courses of the 

activations of ICA components. That is, the former ICA components are more effective to the 

ERP signals, and vice versa. The major artifact, i.e., eye-blinking, is separated in ICA 

components 1 and 7, visual evoked ERPs are separated into component 4. We can observe 

that most artifacts and representative visual ERP signals (P300) are effectively separated into 

ICA components 1 and 4 after ICA processing shown in Fig. 3-12. The artifact (EOG) is 

obviously observed by spatial position on scalp and amplitude in time scale. The separated 

noise-free ERPs (P300) in single trials are easily observed in ICA component 4. The same 

phenomenon could also be observed at other channels. Therefore, component 4 can be 

regarded as the major source of visual ERP signals to analyze human‘s perception of 

traffic-light events. Comparing ERP signals at the original Pz channel (Fig. 3-12, left block) 

and the re-projection from ICA component 4 to Pz channel, we can also find out that the ERP 

signal obtained from the analysis of ICA algorithm in single trial is more clear and noise-free 

than the original one. This experimental result encourages us to design an on-line application 

in single-trial assessment of drivers’ cognitive states for the vehicle safety-driving system. 
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(a) 

 

(b) 

Figure 3-10. (a) The absolute values of the averaged ERP signals for 31 channels, where 

each line presents one-channel averaged ERP signal (from -200 ms to 1000ms, with stimulus 

given at 0 ms). The amplitude of artifacts (EOG, etc.) is larger than ERP (P300) and its 

position is apparently observed at frontal sites on scalp. (b) The ERP image in single trials 

observed in Pz channel. Note that the eye-blinking artifact is propagated to the occipital site 

(Pz) and seriously influenced the collected ERP signals related to visual stimuli. 
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Figure 3-11. The scalp topography of the ICA mixing matrix W-1, where the orders of the 

ICA components were sorted by the variances of the activations of ICA components. The 

major artifact, i.e., eye-blinking, is separated in ICA components 1 and 7, visual evoked ERPs 

are separated into component 4. 
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Figure 3-12. Diagram of artifact removal based on ICA algorithm. The left block shows the “polluted” ERPs at Pz channels. The visual evoked 

ERPs (P300) and the eye-blinking artifacts can successfully be separated into two major parts, P300 at middle-down block and artifacts at 

middle-top block, which were re-projected back from ICA components 4 and 1. 
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3.5.2. Effects With/Without Temporal Matching Filter 

    The single-trial ERP signals in time-domain analysis are first filtered by a temporal 

matching filter (discussed in Chapter 3.4.2) before fed into PCA algorithm. After passing 

through the temporal matching filter (as shown in Fig. 3-9) and using PCA to reduce the 

feature dimensions, the selected first 50 PCA components (ERP data ranged from 0 ms to 800 

ms) were then trained by LVQ and SONFIN to learn the relationship of ERP responses 

between different traffic-light stimulus. Fig. 3-13 (a) and (b) showed the classification results 

using LVQ and SONFIN, respectively. We can obviously observe that the recognition rate 

gets a significant increase up to 10 % with temporal matching filter both in LVQ and SONFIN. 

We also demonstrate that the recognition rate by our proposed SONFIN is 10% better than 

that by LVQ. 
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Figure 3-13. Comparisons of classification results with/without (NF) temporal matching 

filter using (a) LVQ and (b) SONFIN classifiers, respectively. 
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3.5.3. Performance Comparisons of LVQ, BP, and SONFIN Classifiers 

    There are totally 10 subjects participating in our traffic light simulation experiments. The 

collected ERP data were divided into two parts for training and testing purposes. We removed 

the subjects with the highest and lowest recognition rates. Table 3-1 and Fig. 3-14 show the 

testing recognition results of remaining eight subjects by three classifiers (LVQ, BP, and 

SONFIN). We can observe that the recognition rate using SONFIN is always higher than 

those using BP and LVQ. The result is reasonable because the SONFIN has the advantages of 

combining the fuzzy reasoning, discriminative power, learning abilities, and flexibility of 

neural networks. Table 3-1 also reveals that the nonlinear classifier (BP) always has higher 

classification rates than the linear one (LVQ).  

 

Table 3-1. Classification rates of three linear/nonlinear classifiers with/without temporal 

matching filters for 8 subjects in the VR-based traffic-light motion simulation experiments. 

 Without Temporal Matching Filter With Temporal Matching Filter 

 LVQ BP SONFIN LVQ BP SONFIN 

S1 0.76 0.77 0.81 0.85 0.91 0.93 

S2 0.61 0.69 0.74 0.70 0.76 0.86 

S3 0.62 0.76 0.79 0.72 0.77 0.83 

S4 0.71 0.70 0.78 0.79 0.78 0.83 

S5 0.58 0.62 0.64 0.70 0.71 0.73 

S6 0.68 0.70 0.73 0.74 0.81 0.85 

S7 0.58 0.68 0.71 0.83 0.85 0.87 

S8 0.60 0.66 0.69 0.68 0.73 0.79 

Average 0.64±0.07 0.70±0.06 0.74±0.06 0.75±0.06 0.79±0.07 0.84±0.06
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Figure 3-14. Classification results of traffic-light-stimulated ERP with/without (NF) 

temporal matching filter using LVQ, BP, and SONFIN classifiers, respectively. 

 

3.6. Conclusion Remarks 

    In this chapter, we developed a quantitative analysis technique for ongoing assessment of 

drivers’ cognitive responses by investigating the neurobiological information underlying EEG 

brain dynamics in traffic-light motion simulation experiments. It consists of a virtual-reality 

(VR) motion-simulation driving platform and an EEG signal detection and analysis system. 

The use of dynamic VR technology not only provides dynamic motion (i.e., kinesthetic or 

so-called proprioceptive) stimuli in addition to conventional audio/visual ones, but also 

extends the applications of possible safety-driving prototypes to general population (not 

limited to lock-in patients) by allowing subjects to interact directly with virtual objects. We 

proposed a detailed experimental design and data-processing procedures for measuring and 

analyzing ERP signals. The experimental results show that the proposed signal processing 



 61

procedures can analyze ERP signals in single trials correctly without using traditional 

time-domain overlap-added method. After applying ICA algorithm, we obtained a correct, 

clear, and noise-free ERP signals in single trials. We also designed a new temporal matching 

filter to solve the time alignment problem and increase the recognition rate up to 10 %. After 

using PCA to reduce the feature dimensions and save computation cost, we classified these 

ERP features using LVQ, BP or SONFIN classifiers. Classification results show that the 

proposed SONFIN can achieve a high recognition rate about 85% on average. These 

high-accuracy classification results can be further transformed as the control/monitoring 

signals of on-line brain computer interfaces in the safety-driving systems. 
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4. Estimating Driving Performance Based 

on EEG/ICA Power Spectrum 

    Accidents caused by driver’s drowsiness behind the steering wheel have a high fatality 

rate because of the marked decline in the driver’s abilities of perception, recognition and 

vehicle control abilities while sleepy. Preventing such accidents caused by drowsiness is 

highly desirable but requires techniques for continuously detecting, estimating, and predicting 

the level of alertness of drivers and delivering effective feedbacks to maintain their maximum 

performance. A well-designed active safety system might effectively avoid accidents caused 

by drowsiness at the wheel in advance by way of accurate and non-intrusive monitoring 

driver's alertness level, particularly if this measure could be further used to predict changes in 

driver's performance capacity. Although many researches have proposed EEG-based methods 

on the detection of driver’s vigilance, there are still many difficulties in developing such a 

system such as lacks of significant index for detecting drowsiness objectively, the 

contamination of EEG activities by the complicated noise interferences in a dynamic driving 

environment, and the large individual variability in EEG dynamics accompanying loss of 

alertness such that we could not accurately estimate or predict individual changes in alertness 

and performance. 

    In this chapter, the scope of current study is to develop the biomedical signal processing 

technologies to examine neural activity correlated with fatigue/drowsiness, which can be used 

to online monitor/estimate driver’s cognitive state (alertness) combined further with a 

bio-feedback system to maintain driver’s high performance. Our research investigates the 

feasibility of using multi-channel EEG data to estimate and predict non-invasively the 

continuous fluctuations in human global level alertness indirectly by measuring the driving 
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performance expressed as deviation between the center of the vehicle and the center of the 

cruising lane, in a very realistic driving task. We first use the virtual-reality (VR) technology 

to construct an interactive freeway driving environment for lane-keeping experiment to 

indirectly quantify driver’s drowsiness level by continuously measuring fluctuations in 

driving errors and concurrent changes of the EEG power spectrum. The VR allows subjects to 

interact directly with a virtual environment rather than monotonic auditory and visual stimuli, 

and is an excellent strategy for brain research on interactive and realistic tasks because of its 

low cost and avoiding risk of operating on the actual machines. After collecting the 

multi-stream brain potentials, four computational approaches were proposed to extract 

effective features as well as linear regression model or a Self-cOnstructing Neuro-Fuzzy 

Inference Network (SONFIN) model [94] to estimate and predict the individual driver’s 

driving performance. The first approach focuses on using the principal components from the 

power spectrum of only 2-channel EEG signals as input features of the estimators (as 

suggested in Section 4.6.1). The following three approaches introduce a new generally 

applicable Independent Component Analysis algorithm [85-86] to isolate and remove a wide 

variety of EEG artifacts and to locate optimal positions to wire EEG electrodes. The ICA 

method is based on spatial filtering and does not rely on having a "clean" reference channel. It 

effectively decomposes multiple-channel EEG data into spatially-fixed and temporally 

independent components. Clean EEG signals can then be derived by eliminating the 

contributions of artifactual sources with their time courses are generally temporally 

independent from and differently distributed than sources of EEG activity. Optimal EEG 

electrodes can also be obtained by examining the center position from the scalp topography of 

the ICA mixing matrix. Therefore the second approach takes the advantage of the ICA 

algorithm in the training process and uses a few frequency bandpower of only 2-channel EEG 

data as inputs features in the testing application, whereas the third approach uses the 
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bandpower of 2 most important ICA components as input features in order to achieve higher 

predicting accuracy. In the last approach, we propose a novel adaptive feature extracting 

mechanism to solve the reliable and sorting problem [109-111] of ICA components for 

realizing an on-line monitoring system based on the correlation analysis between the 

time-frequency power spectra of ICA components and the driving error index for selecting 

effective frequency bands in ICA components as features of estimators. We then take 

advantages of fuzzy reasoning and the discriminative power, learning abilities, and flexibility 

of neural networks as a good candidate to complement the traditional methods by building a 

Self-cOnstructing Neuro-Fuzzy Inference Network (SONFIN) model to online estimate and 

predict the individual driver’s driving performance. 

 

4.1. Virtual-Reality (VR)-based Lane-Keeping Driving 

Experiment 

    We build a VR-based high-fidelity 3D interactive highway scene as shown in Fig. 4-1 by 

using the emulation software, WorldToolKit (WTK) library and application programmer’s 

interface (API). The detailed development diagram of the VR-based scene is shown in Fig. 

2-3. The VR-based four-lane highway scene as shown in Fig. 2-5 is projected on a 

120°-surround screen (304.1-cm wide and 228.1-cm high), which is 350 cm away from the 

driving cabin. The four lanes from left to right are separated by a median stripe. The distance 

from the left side to the right side of the road is equally divided into 256 points (digitized into 

values 0-255), where the width of each lane and the car is 60 units and 32 units, respectively. 

The refresh rate of highway scene was set properly to emulate a car driving at a fixed speed of 

100 km/hr on the highway. The car is randomly drifted (triggered from the WTK program and 

the on-set time is recorded) away from the center of the cruising lane to mimic the 
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consequences of a non-ideal road surface. The subject’s performance is defined as the 

deviations between the center of the vehicle and the center of the cruising (3rd) lane and it 

was continuously and simultaneously measured by the WTK program and recorded in the 

physiological measurement system accompanying with EEG/EOG/ECG physiological 

signals. 

 

 

Figure 4-1. The dynamic driving simulation laboratory consists of the virtual-reality-based 

360o-surrounding screen and a six-degree-of-freedom motion platform. 

 

4.2. Subject’s Protocol 

    The circumstances in which drowsiness-related accidents usually happen should be taken 

into account. It has been known that the drowsiest time often occurs from late midnight to 

early morning, and mid-afternoon hours. Young drivers have no increased risk during the 

afternoon. Drivers over 45 years old on the other hand have fewer night time crashes, with a 

peak at 7 a.m., and are more likely to have such crashes during the mid-afternoon [20, 55-56]. 

During these periods, alertness may easily diminish within one-hour monotonous working. In 
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this chapter, we design a drowsiness monitoring experiment at the early afternoon hours after 

lunch for doing the highway-driving simulation. All the subjects were instructed to keep the 

car at the center of the cruising lane by controlling the steering wheel. For each session, the 

subject started with a 15 ~ 45-minute calibration procedure and then was asked to drive the 

car continuously for 45 minutes. The EEG/EOG/ECG data and the driving performance were 

measured and recorded simultaneously. Participants then returned on different days to 

complete the second 45-min driving session or the third session if necessary. We had collected 

successfully EEG data of 16 subjects (ages from 20 to 35 years) participated in the proposed 

VR-based driving task. We select participants who had two or more micro-sleeps checked by 

video recordings in both driving sessions for further analysis. Based on these criteria, five 

subjects (10 sessions) were selected for further modeling and cross-session testing. 

 

4.3. Data Acquisition 

    The acquisition of the physiological data uses 33 sintered Ag/AgCl EEG/EOG electrodes 

with an unipolar reference at right earlobe and 2 ECG channels in bipolar connection placed 

on the chest. All the EEG/EOG channels were located based on a modified International 

10-20 system based on the relationship between the location of an electrode and the 

underlying area of cerebral cortex. Before data acquisition, the contact impedance between 

EEG electrodes and scalp was calibrated to be less than 5kΩ. We use the Scan NuAmps 

Express system (Compumedics Ltd., VIC, Australia) to simultaneously record the 

EEG/EOG/ECG data and the deviation between the center of the vehicle and the center of the 

cruising lane triggered by the WTK program. The EEG data were recorded with 16-bit 

quantization level at a sampling rate of 500 Hz and the recording are down-sampled to 250 Hz 

for the simplicity of data processing. Then EEG data were preprocessed using a simple 

low-pass filter with a cut-off frequency of 50 Hz to remove the line noise (60 Hz and its 
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harmonics) and other high-frequency noise for further analysis. 

 

4.4. Drowsiness Measurement 

    To quantify the level of the subject’s alertness and find the relationship between the EEG 

signals and subject’s cognitive state, we measure the driving error e(t) defined as the deviation 

from the left railing to the center of the vehicle on freeway. Previous study [112] and our pilot 

study demonstrate when the subject starts to fall into micro-sleep or asleep during the 

lane-keeping task, the car will drift away from the center of the cruising lane rapidly and hit 

the railing of the freeway easily in a few seconds. Thus, the e(t) is a good performance index 

to indirectly measure the driver’s drowsiness level. The recorded e(t) time series was first 

normalized by subtracting the center position of the cruising lane, eh, using Eq. (4-1), where eh 

is the value having the maximum frequency in the histogram distribution of e(t) depending on 

each subject’s driving habit as shown in Fig. 4-2 (a). Thus, the subject’s driving error index 

(SDPI) in Eq. (4-2) to smooth )t(e~  using a causal 90-s square moving-average filter 

advancing at 2-sec steps as shown in Fig. 4-2 (b) to eliminate variance at cycle lengths shorter 

than 1-2 minutes since the fluctuates of drowsiness level with cycle lengths were longer than 

4 minutes [51, 67]. Experimental results shows when the subject is drowsy (checked from 

video recordings and subject’s reports), the driving error index increases, and vice versa. 
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where Me = 90×Ωs, n=1, 2, …,N, is the 90-s moving-average windows. 
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(a) (b) 

Figure 4-2. (a) The VR-based freeway scene. (b) Example of the driving performance 

index. Note that the red dashed line means the “dangerous” boundary. When the driving 

performance is larger than 32 (red line), the target car entirely crossed the lane line to other 

traffic lane and will easily lead to accidents. 

 

4.5. Data Analysis 

    After collecting 33-channel EEG signals and driving deviations in a 45-min simulated 

driving session, we proposed four strategies to extract effective features in order to find the 

relationship between driver’s alertness level from EEG power spectrum and concurrent 

changes in driving performance based on ICA, power spectrum analysis, correlation analysis, 

and the linear regression model or the FNN estimator. The developments of these four 

approaches were based on a compromise between computational cost and estimation accuracy 

for an online real-time application. More descriptions are given in the following session. 

 

4.5.1. Estimating Driving Performance Using 2-Channel EEG Power 

Spectrum 

    In this strategy, we use a least-square linear regression model [113] to estimate/predict 

the subject’s driving performance based on the information available in log power spectrum of 

2-channel EEG signals. The training flowchart of data analysis for estimating the level of 
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alertness based on the EEG power spectrum was shown in Fig. 4-3. For each subject, after 

collecting 33-channel EEG signals and driving deviations in a 45-min simulated training 

session, the EEG data were first preprocessed using a simple low-pass filter with a cut-off 

frequency of 50 Hz to remove the line noise and other high-frequency noise. Then, we 

calculate the moving-average log power spectrum of all 33-channel EEG data using Eqs. 

(2-12) to (2-17) as described in Chapter 2.4. The correlation coefficients between the 

smoothed subjects’ driving error index and the log power spectra of all 33-channel EEG 

signals at each frequency band are further evaluated to form a correlation spectrum. The log 

power spectra of 2-channel EEG signals with the highest correlation coefficients are further 

selected as the effective features (as suggested in Section 4.6.1). We then applied 

Karhunen-Loeve Principal Component Analysis (PCA) to decompose the selected log power 

spectra of 2-channel EEG signals and extract the directions of largest variance for each 

session. The PCA is a linear transformation, which can find the principal coordinate axes of 

samples such that along the new axes, the sample variances are extremes (maxima and 

minima), and uncorrelated. Using a cutoff on the spread along each axis, a sample may thus 

be reduced in its dimensionality [114]. The principal axes and the variance along each of them 

are given by the eigenvectors and associated eigenvalues of the dispersion matrix. In our study, 

projections (PCA components) of the EEG log spectral data on the subspace formed by the 

eigenvectors corresponding to the largest 50 eigenvalues were then used as inputs to train the 

individual linear regression models for each subject. The parameters of the 50-orders linear 

regression model were trained iteratively by minimizing the least-square-error cost function 

between the actual driving error index and the estimated output of the linear regression model. 

After training, the parameters of the PCA model (eigenvectors) were used to project features 

in the testing sessions so that all data were processed in the same way for the same subject 

before feeding to the estimation models. The parameters of the linear regression model were 
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also held to estimate the time courses of the actual driving error index in the testing session. 

Each model was trained using the features only extracted on the training session and tested on 

a separate testing session from the same subject for each of the five selected subjects. 

     In the testing session, the subject was wired with the selected 2-channel EEG electrodes, 

which is determined from the training process. The collected 2-channel EEG data were first 

preprocessed using the same low-pass filter. After moving-average power spectral analysis, 

for each 45-min driving session stepping at 2-sec time intervals and frequency range from 1 to 

40 Hz, we obtained the selected time series of the log power spectrum for 2-channel EEG data 

consisting of 1350-point EEG power estimations. Then the 80 frequency bandpower (2*40Hz) 

were passed through the PCA model. The first 50 entries of the output time series of the PCA 

components were fed into the linear regression model to estimate the actual driving errors. 
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Figure 4-3. Flowchart of the training process for estimating subject’s driving errors. (1). A 

low-pass filter was used to remove the line noise and higher frequency (>50Hz) noise. (2). 

Moving-averaged spectral analysis was used to calculate the EEG log power spectrum of each 

channel advancing at 2-sec steps. (3). Two EEG channels with higher correlation coefficients 

between subject’s driving performance and EEG log power spectrum were further selected. 

(4). Principal Component Analysis was trained and used to decompose selected features and 

extract the representative PCA-components as the input vectors for the linear regression 

models. (5). The linear regression models were trained in one training session and used to 

continuously estimate and predict the individual subject’s driving performance in the testing 

session. 
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4.5.2. Driving Performance Estimation Using Critical Bandpower of 

Optimal 2-channel EEG Signals based on Independent Component 

Analysis 

    In this strategy, we proposed the ICA-based method for estimating the subject’s driving 

performance using the critical bandpower of optimal 2-channel EEG signals centered at the 

effective ICA components. Fig. 4-4 shows the flowchart of the proposed signal processing 

procedure. In the training process, the collected 33-channel EEG signals was first applied to 

train the ICA model. By applying ICA algorithm to the EEG recorded from the scalp surface, 

we attempt to achieve the twin goals: removing artifacts and possible source separation based 

on stabilities of ICA spatial weighting matrices and temporal independence between artifacts 

and EEG signals. The effectiveness for removing eye blinking and other artifacts by using 

ICA had been demonstrated in the many studies as described in Chapter 2.3. Thus, some 

“artifact” sources in the ICA components were removed and the remaining ICA components 

were projected back to the EEG channels to get the “corrected” EEG signals. Then, we 

calculate the moving-average log power spectra of both the ICA components and “corrected” 

EEG channels. The correlation coefficients between the smoothed time series of subject’s 

driving error index and the power spectra of the ICA components at each frequency band are 

further evaluated to form a correlation spectrum. The 2 ICA components having the highest 

correlation coefficients in some critical bands were determined and marked as “drowsiness” 

sources. Then, we selected the corresponding 2 EEG channels with the marked critical bands 

at the centered positions of the “drowsiness” sources based the scalp topography of ICA 

mixing matrix. Finally, the selected critical bands in 2 EEG channels were used as the input 

features to train the linear regression models. Once a linear regression model has been 

developed for each driver, this method uses only selected critical bandpower of 2-channel 

EEG signals of the individual subject, and does not require further collection or analysis of 
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operator performance in the testing session. 
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Figure 4-4. Signal Flowchart of the drowsiness estimation system based on the bandpower 

of the 2-channel EEG signal centered in the effective ICA components. 

 

4.5.3. Estimating Driving Performance Using 2 Optimal ICA Components 

    Fig. 4-5 shows the signal flowchart for estimating driver’s performance using effective 

bandpower of 2 ICA components. In the training session, after collecting 33-channel EEG 

signals and driving deviations in a 45-min simulated driving session, the ICA algorithm is 

first trained to remove a wide variety of artifacts. Then, we calculate the moving-average log 

subband power spectra of all 33 ICA components. The correlation coefficients between the 

smoothed subject’s driving performance and the subband power spectra of all ICA 

components at each frequency band are further evaluated to form a correlation spectrum. The 

normalized log subband power spectra of 2 ICA components with the highest correlation 

coefficients in some critical bands are further selected manually as the input features of the 
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linear regression model to estimate the individual subject’s driving performance. In order to 

achieve maximum estimating accuracy, the ICA mixing matrix and the manually selected 

critical bandpower were reserved in the testing session. 
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Figure 4-5. Signal Flowchart of drowsiness estimation system based on the bandpower of 

optimal 2-ICA components with highest correlation coefficients between time series of 

subject’s driving error index and the power spectra of the ICA components. 

 

4.5.4. ICA-based Automatic Feature Extraction for Driving Performance 

Estimation 

    In this strategy, we proposed a novel adaptive feature selection mechanism (AFSM) for 

the automatic ICA-based alertness estimation system using fuzzy neural networks for online 

applications. The block diagram of data analysis is given in Fig. 4-6. After collecting 

33-channel EEG signals x(t) and driving error index (SDPI) in a 45-min simulated driving 

session, the ICA algorithm is first trained to distinguish the EEG signals from artifact noise, 

i.e., removing a wide variety of artifacts. Then, we calculate the normalized moving-average 

log bandpower spectra of all 33 ICA components. The correlation coefficients between SDPI 

and the bandpower spectra of all ICA components at each frequency band are further 
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evaluated to form a correlation spectrum. We use the AFSM to select the log bandpower 

spectra of the ICA components with the highest correlation coefficients in some critical bands 

as the input features of the linear regression model and SONFIN to estimate the individual 

subject’s driving performance. Detailed description of the proposed AFSM are given as 

follows: 

 

 

Figure 4-6. Signal flowchart of the adaptive alertness estimation system. 

 

Adaptive Feature Selection Mechanism 

    Signal features in many studies are extracted according to experience and become a 

problem when applied for an on-line monitoring system. To solve this problem, an adaptive 

feature extracting mechanism is developed to extract useful frequency bands of representative 

ICA components according to the information of the correlation coefficients between log 

bandpower of ICA components and driving error index (SDPI). In this session, to extract the 

most representative ICA component and frequency bands, we first sort the correlation 

coefficients CC(i,k) in Eq. (2-19) in frequency bands k for each component i in descending 

ICA 
components 

u(t) 

ICA Algorithm 

x(t)=W u(t) 

Power 
Spectral 

Estimation 

33-channel 
EEG data 

x(t) 

Correlation

Analysis ICA 
Driving performance 

(SDPI) 

Adaptive 

Feature 

Selection 

Effective frequency bands 
and ICA components 

SONFIN 
(Driving 

Performance 
Estimator) 



 75

order by: 

 [ ])k,i(CC(min)k,i(CC(max))k,i((sort)k,i(
kkk

L== CCSC , i = 1, 2, …,33. (4-3) 

The corresponding matrix indices K(i,k) is: 

 [ ])k,i(CC(minarg)k,i(CC(maxarg))k,i((sortarg)k,i(
kkk

L== CCK  (4-4) 

where the first five frequency bands with the largest correlation coefficients of ith component 

are expressed as SC(i,1)~SC(i,5) with frequency band index recorded in K(i,k), k=1~5. 

    We then sort the SC(i, k) in descending order in the column direction to select the ICA 

components having the maximum value in the summations of the largest 5 correlation 

coefficients in frequency bands as: 

 ⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

5

15
1

ki
)k,i(sort)i( SCSC , i = 1, 2, …, 33. (4-5) 

where the component indices in K(i,k) is also updated. Therefore, the first 2 ICA components 

with 5 largest correlation coefficients in the frequency bands can be derived as )(SC 1  and 

)(SC 2  with matrix index K(i,k), i = 1~2 and k = 1~5. An example of the adaptive feature 

selection mechanism for subject-3 is given in Fig. 4-7. 

 

 

Figure 4-7. Example of the adaptive feature selection mechanism for subject-3. Note that 
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the band power of ICA components 11 and 14 in frequency bands 10-14 Hz are selected as 

input feature of the estimators. 

 

4.6. Results and Discussions 

4.6.1. Relationship between the EEG Spectrum and Subject Alertness 

    To investigate the relationship of minute-scale fluctuations in driving performance to 

concurrent changes in the EEG spectrum, we measured correlations between changes in the 

EEG power spectrum and driving performance by computing the correlation coefficients 

between the two time series at each EEG frequency. We refer to the results as forming a 

correlation spectrum. For each EEG site and frequency, we then computed spectral 

correlations for each session separately and averaged the results across all 10 sessions. Fig. 

4-8 (A) showed the results for 40 frequencies between 1 and 40Hz. Note that the mean 

correlation between performance and EEG power is predominantly positive at all EEG 

channels below 20 Hz. We also investigated the spatial distributions of these positive 

correlations by plotting the correlations between EEG power spectrum and driving 

performance, computed separately at dominant frequency bins, 7, 12, 16 and 20Hz (cf. Fig. 

4-8 (A) on the scalp (Fig. 4-8 (B). As the results in Fig. 4-8 (A) show the correlation 

coefficients plotted on the scalp maps are predominantly positive. The correlations are 

particularly strong at central and posterior channels, which are similar to the results of 

previous studies in the driving experiments [32, 34, 114]. The relatively high correlation 

coefficients of EEG log power spectrum with driving performance suggests that using EEG 

log power spectrum may be suitable for drowsiness (micro-sleep) estimation, where the 

subject’s cognitive state might fall into stage one of the non-rapid-eye-movement (NREM) 

sleep. To be practical for routine use during driving or in other occupations, EEG-based 

cognitive assessment systems should use as few EEG sensors as possible to reduce the 
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preparation time for wiring drivers and computational load for estimating continuously the 

level of alertness in near real time. According to the correlations shown in Fig. 4-8 (B), we 

believe it is adequate to use the EEG signals at sites Cz and Pz to assess the alertness level of 

drivers continuously. 

    Next, we compared correlation spectra for individual sessions to examine the stability of 

this relationship over time and subjects. Fig. 4-9 and 4-10 plot correlation spectra at sites Fz, 

Cz, Pz and Oz, of two separate driving sessions for extreme cases from subjects A (best) and 

B (worst), respectively. The relationship between EEG power spectrum and driving 

performance is stable within the subjects, especially below 20 Hz. However, the relationship 

is variable from subject to subject (contrast Fig. 4-9 and 4-10). The time interval between the 

training and testing sessions of the lane-keeping experiments distributes over one day to one 

week long for the selected five subjects. The relationship between minute-scale fluctuations in 

driving performance and concurrent changes in the EEG spectrum appears to be stable within 

different sessions from the same subject, but differs between subjects. 

    The above analyses provide strong and converging evidence that changes in subject 

alertness level indexed by driving performance during a driving task are strongly correlated 

with the changes in the EEG power spectrum at several frequencies at central and posterior 

sites. This relationship is relatively variable between subjects, but stable within subjects, 

consistent with the findings from a simple auditory target detection task reported in [40, 51]. 

These findings suggest that information available in the EEG can be used for real-time 

estimation of changes in alertness of human operators performing monitoring tasks. However, 

for maximal accuracy the estimation algorithm should be capable of adapting to individual 

differences in the mapping between EEG and alertness. 

 

 



 78

 

(A) 

 

(B) 

 

Figure 4-8. Correlation spectra. Correlations between EEG power and driving performance, 

computed separately for 40 EEG frequencies between 1 and 40 Hz. (A) Grand mean 

correlation spectra for 10 sessions on 5 subjects. (B) Scalp topographies of the correlations at 

dominant frequencies at 7, 12, 16 and 20 Hz. 
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Figure 4-9. Correlation spectra between the EEG power spectrum and the driving 

performance at Fz, Cz, Pz, and Oz channels in two separate driving sessions from Subject A 

(best case). Note that the relationship between EEG power spectrum and driving performance 

is stable within this subject. 

 

 

Figure 4-10. Correlation spectra between the EEG power spectrum and the driving 

performance at Fz, Cz, Pz, and Oz channels in two separate driving sessions from Subject B 

(worst case). Note that the relationship between EEG power spectrum and driving 

performance is stable within this subject, especially below 20 Hz. However, the relationship is 

variable from subject to subject (contrast Fig. 4-9 and 4-10). 
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4.6.2. EEG-based Driving Performance Estimation/Prediction  

    In order to estimate/predict the subject’s driving performance based on the information 

available in the EEG power spectrum at sites Cz and Pz, a single 50-orders linear regression 

model 0

50

1

axay
N

i
ii += ∑

=

=

 with a least-square-error cost function is used, where y is the desired 

output, x is the input feature, N is the order (N=50 in this case), ai’s are the parameters, and 

a0=1 is the constant. The input features are selected from the first 50 PCA-reduced EEG 

power spectra of two EEG channels (Cz and Pz) that showed the highest correlation between 

the EEG power spectrum and the driving performance because using all 33 channels may 

introduce more unexpected noise. Table 4-1 shows the driving performance estimation results 

using one single linear regression model for all subjects in the training and testing session. 

The resulting correlation rate between actual and estimated driving performance are not good 

enough (r=0.486 in the testing session) due to the large individualities between subjects. This 

result is consistent with previous studies [40, 42, 49, 67]. Therefore, we have to build an 

individual model for each subject (as discussed in Section 4.6.1). The resulting estimation 

driving performance using individual model for each subject are also shown in Table 4-1. 

Comparing to using one single model for all subjects, the correlation rate using individual 

model for each subject dramatically increased up to 10%. Fig. 4-11 plots the estimated and 

actual driving performance of a session from Subject 3. The linear regression model in this 

figure is trained with and tested against the same session, i.e. within-session testing. As can 

been seen, the estimated driving performance matched extremely well with the actual driving 

performance (r = 0.88).  When the model was tested against a separate test session from the 

same subject as shown in Fig. 4-12, the correlation between the actual and estimated driving 

performance though decreased but remained high (r≒0.7). Across ten sessions, the mean 

correlation coefficient between actual driving performance time series and within-session 
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estimation is 89%, whereas the mean correlation coefficient between actual driving 

performance and cross-session estimation is 57.8%. Our results demonstrated that it is 

feasible to accurately estimate driving errors based on multi-channel EEG power spectrum 

estimation and principal component analysis algorithm. The computational methods we 

employed in this study were well within the capabilities of modern real-time embedded digital 

signal processing hardware to perform in real time using one or more channels of EEG data. 

Once an estimator has been developed for each driver, based on limited pilot testing, the 

method uses only spontaneous EEG signals from the individual, and does not require further 

collection or analysis of operator performance. The proposed methods thus might be used to 

construct and test a portable embedded system for a real-time alertness monitoring system. 

 

 

Table 4-1. Comparisons of driving performance estimation using one single linear 

regression model for all five subjects and using individual model for each subject. Note that 

the input features are PCA-reduced EEG power spectrum from 1-40Hz in Cz and Pz channels. 

 Sub-1 Sub-2 Sub-3 Sub-4 Sub-5 Average 

Training 76% 70% 66% 74% 80% 73.2% Single 

Model Testing 65% 42% 51% 41% 44% 48.6% 

Training 89% 85% 88% 89% 94% 89 % Individual 

Model Testing 69% 59% 70% 46% 45% 57.8% 
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Figure 4-11. Driving performance estimates for a training session from Subject 3, based on 

a linear regression (red line) of PCA-reduced EEG log spectra at two scalp sites, overplotted 

against actual driving performance time series for the session (solid line). The correlation 

coefficient between the two time series is r = 0.88. 

 

 

Figure 4-12. Driving performance estimates for a testing session of Subject 3, based on a 

linear regression (red line) of PCA-reduced EEG log spectra from a separate training session 

from the same subject, overplotted against actual driving performance time series of the test 

session (solid line). The correlation coefficient between the two time series is r = 0.7. Note 

that the training and testing data in this study were completely disjoined. 
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4.6.3. Relationship between the ICA Spectrum and Driving Performance 

    After ICA training and analysis of log subband power spectrum for each ICA 

components/EEG channels, we computed the spectral correlations between changes in the 

ICA/EEG log subband power spectrum and driving performance by computing the correlation 

coefficients between the two time series at each frequency band. Fig. 4-13 shows the resulting 

correlation spectra of subject 3 in (a) 33 EEG channels and (b) 33 ICA components. The 

horizon axis indexes frequency bands between 1 and 40 Hz and the vertical axis indexes the 

EEG channels/ICA components. In Fig. 4-13 (a), the correlation spectra show a strong 

evidence between fluctuations in EEG bandpower of frequency bands within 10~14Hz and 

driving performance with high positive correlations in most EEG channels. As driving error 

increases, so does EEG bandpower. We also investigated these relationships by plotting the 

correlations between bandpower of 33 ICA components and the driving performance. A 

similar monotonic relationship exists in a wide frequency band; especially the frequency 

bands from 9 to 25 Hz in ICA components 11 and 13 achieve a high positive correlation. Fig. 

4-13 (c) and (d) show the spatial distributions in scalp topographies of weighting matrices for 

dominant ICA component 11 that was centered on Pz (28th) channel and ICA component 13 

that was centered on P4 (29th) /O2 (33th) channels. The correlations are particularly strong at 

central and posterior areas, which are similar to the results of previous studies in the driving 

experiments [32, 34, 115]. The relatively high correlation coefficients of near α -band (8-13 

Hz) with driving performance suggests that alpha band frequencies (8-13 Hz) may be suitable 

for drowsiness (micro-sleep) estimation, where the subject’s cognitive state might fall into 

stage one of the non-rapid-eye-movement (NREM) sleep. Next, we compared correlation 

spectra for individual subject to examine the stability of this relationship over the 

cross-sessions and cross-subjects. Fig. 4-14 shows the correlation spectra of subject 2. 

Comparing to subject 3, the characteristics of EEG measurements near α -band are consistent 
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but they differ in ICA components. By checking the dominant components 8 and 17 that have 

the highest correlation coefficients shown in Fig. 4-14 (b) and their spatial distributions of 

weighting matrices shown in Figs. 4-14 (c) and (d), we can observe that it is suitable to place 

the electrodes of non-invasive EEG measurement at parietal lobe and occipital lobe for the 

drowsiness estimation. For practice and routine application, EEG-based cognitive assessment 

systems should use as fewer EEG sensors as possible to reduce the preparation time for device 

wiring and computational cost for continuous alertness level estimation in near real time. 

According to the analysis shown in Figs. 4-13 and 4-14, we believe it is adequate to use the 

EEG signals at central and posterior sites to assess the alertness level of subjects continuously. 
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Figure 4-13. Correlation spectra between smoothed driving performance and log subband 

power spectra of (a) 33 EEG channels and (b) 33 ICA components for frequencies between 1 

and 40 Hz of Subject-3. It is observed that the subband power spectra between frequency 

bands 10~14Hz have high positive correlation with driving performance in most EEG 

channels and both 11th and 13th ICA components. Figs. 4-13 (c) and (d) show the scalp 

topographies of weighting matrices for dominant ICA component 11 that was centered on Pz 

(28th) channel and ICA component 13 that was centered on P4 (29th) /O4 channels. 
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Figure 4-14. Correlation spectra between smoothed driving performance and log subband 

power spectra of (a) 33 EEG channels and (b) 33 ICA components for frequencies between 1 

and 40 Hz of Subject-2. It is observed that the subband power spectra between frequency 

bands 8~13Hz have high positive correlation with driving performance in most EEG channels 

and both 8th and 17th ICA components. Figs. 4-14 (c) and (d) show the scalp topographies of 

weighting matrices for dominant ICA component 8 that was centered on CPz (22th)/Fz 

channels and ICA component 17 that was centered on Pz (28th) /Oz channels. 
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4.6.4. Noise Segmentation and Selection of Optimal Frequency Bands  

    During driving simulation, the subjects move their hands, torso, head, and eyes, which 

will create huge muscle movement, eye movement, and blink artifacts to the non-invasive 

measurement of brain potentials. The other noise includes the movement of the 6-DOF 

motion platform and line noise. Assume these noises of muscle activity, eye, and, cardiac 

signals are not time locked to the EEG activity, i.e., they are temporal independent; it is very 

suitable to use ICA to separate the EEG signals from the “mixed” recordings other than using 

low pass filter. In this chapter, after ICA training, we can obtain 33 ICA components u(t) 

decomposed from the measured 33-channel EEG data x(t). Fig. 4-15 shows the scalp 

topographies of ICA weighting matrix corresponding to each ICA component by spreading 

each wi,j into the plane of the scalp, which provides information about the location of the 

sources, e.g., eye activity was projected mainly to frontal sites, and the drowsiness-related 

potential is on the parietal lobe to occipital lobe, etc. We can observe that the most artifacts 

and channel noises included in EEG recordings are effectively separated into ICA components 

1, 2, and 3 as shown in Fig. 4-15. The ICA components 8, 11, and 17 may be considered as 

effective “sources” related to drowsiness, which will be examined by the correlation analysis. 

It is more conservative estimation to just remove possible artifact components than choosing 

“sources” components only in avoidance of making erroneous judgments. Thus, the 

“corrected” EEG signals can be obtained by re-projection from the ICA components after 

removing possible “artifact” components using Eq. (4-6) as follows: 
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    Besides, the ICA can be used to locate possible positions of the “drowsiness” sources. 

Fig. 4-16 shows the resulting correlation spectra of subject 2 in 33 ICA components. The 
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horizon axis indexes frequency bands between 1 and 40 Hz and the vertical axis indexes the 

ICA components. The correlation spectra shows a strong evidence between fluctuations in 

ICA bandpower of frequency bands within 4 to 25 Hz and driving performance with high 

positive correlations in ICA components 8 and 17. As driving error increases, so does ICA 

bandpower. Fig. 4-17 show the spatial distributions in scalp topographies of weighting 

matrices for dominant ICA component 8 that was centered near CPz (22th) channel and ICA 

component 17 that was centered on Pz (28th) /Oz (32th) channels. The correlations are 

particularly strong at central and posterior areas, which are similar to the results of previous 

studies in the driving experiments [32, 34]. For practice and routine application, EEG-based 

cognitive assessment systems should use as fewer EEG sensors as possible to reduce the 

preparation time for device wiring and computational cost for continuous alertness level 

estimation in near real time. According to the analysis shown in Figs. 4-16 and 4-17, the 

relatively high correlation coefficients with driving performance suggest that it is adequate to 

use the EEG signals at center position of dominant ICA components to assess the alertness 

level of subjects continuously. 
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Figure 4-15. Scalp topography of ICA weighting matrix wi,j by spreading each wi,j into the 

plane of the scalp corresponding to the jth ICA components based on International 10-20 

system. 
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Figure 4-16. Correlation spectra between smoothed driving performance and log power 

spectra of 33 ICA components of Subject-2. It is observed that the bandpower spectra between 

frequency bands 8~12Hz have highest positive correlation with driving performance in both 

8th and 17th ICA components. 
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CPz PzCPz Pz

 

Figure 4-17. Scalp topographies of ICA weighting matrices for dominant components 8 and 

17. Note that the CPz channel and Pz channels are at the center position of these two ICA 

components, respectively. 

 

    In this section, we compared the correlation between log subband power spectra and 

driving error for each frequency bands and individual ICA component to find the optimal 

subbands and localizations of electrodes according to the scalp topographies of ICA weighting 

matrices. Previous studies [40, 49-52] showed that it is not applicable to use full EEG 

frequency bands to accurately estimate individual changes in vigilance and driving error 

because of the artifacts and individual variability in EEG dynamics accompanying loss of 

alertness. Even though information about alertness may be distributed over the entire EEG 

spectrum. Table 4-2 shows the correlation coefficients between different frequency bands of 

the ICA component 11 or 13 and the driving error of subject-3 in different experimental 

sessions. The ICA weighting matrices after training were held and used in the testing sessions 

on different days. The results show the better frequency bands of ICA components 11 and 13 

are from 10 to 14 Hz with the correlation rate up to 0.94. Table 4-3 lists the correlation results 

for training and testing sessions using frequency bands within 10~14 Hz in single ICA 

component. The statistical evidence shows that the ICA components 11 and 13 have the 

highest correlation coefficients than the other components (components 5, 24, 26, 29, and 31) 
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and their scalp topographies shown in Figs. 4-14 (c) and (d) demonstrated that the most alpha 

waves with positive correlation related to micro-sleep could be observed at occipital and 

central sites. Table 4-4 shows the optimal 2 ICA components and frequency bands ranges 

corresponding to different subjects according to the higher correlation coefficients between 

the log subband power spectra and the driving performance. The best frequency bands are 5-9 

Hz both in 17th and 28th ICA components for subject 1, and 8-12 Hz both in 17th and 8th 

components for subject 2, etc. Table 4-4 demonstrated that the better frequency bands and the 

ICA components are not the same for different subjects. 

   The above analyses provide strong and converging evidence that changes in subject 

alertness level indexed by driving error during a driving task are strongly correlate with the 

changes in the ICA power spectrum at several frequencies located at central and posterior 

sites. This relationship is stable over time in different sessions of the same subject, but 

relatively variable between subjects. These results are consistent with the findings from a 

simple auditory target detection task reported in [18, 83]. These findings suggest that maximal 

accuracy the estimation algorithm should be capable of adapting to individual differences in 

the mapping between EEG and alertness.. 
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Table 4-2. The correlation coefficients between the log subband power spectra and the 

driving error of subject 3 corresponding to different frequency bands from 8 to 15 Hz of ICA 

component 11 and 13 in the training and testing sessions using the same ICA weighting 

matrices obtained from the training session. 

 

Band 

ICA 

Component Index 

8 Hz 9 Hz 10Hz 11Hz 12Hz 13Hz 14Hz 15Hz

Training 0.82 0.89 0.92 0.92 0.92 0.92 0.89 0.87 

Testing-1 0.86 0.88 0.88 0.88 0.87 0.86 0.83 0.82 

Testing-2 0.79 0.87 0.90 0.92 0.91 0.91 0.86 0.78 
Com 11 

Testing-3 0.78 0.90 0.93 0.93 0.93 0.94 0.94 0.91 

Training 0.77 0.88 0.90 0.91 0.92 0.91 0.90 0.86 

Testing-1 0.87 0.90 0.90 0.89 0.88 0.87 0.84 0.80 

Testing-2 0.75 0.87 0.87 0.90 0.90 0.88 0.85 0.79 
Com 13 

Testing-3 0.76 0.89 0.91 0.92 0.93 0.92 0.92 0.89 

 

 

Table 4-3. The correlation coefficients between log subband power spectra and the 

driving error of subject 3 using five best frequency bands (from 10 to14 Hz) corresponding to 

different single ICA component. The same ICA weighting matrices obtained from the training 

session were used for testing session performed in the other day. 

ICA component 5 11 13 24 26 29 31 

Training 0.84 0.93 0.92 0.82 0.89 0.82 0.79 

Testing 0.80 0.92 0.91 0.82 0.88 0.78 0.78 
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Table 4-4. The optimal 2 ICA components and frequency band ranges corresponding to 

different subjects according to the higher correlation coefficients between log subband power 

spectra and the driving performance. 

Subject Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

ICA Components 17, 28 17, 8 11, 13 4, 5 22, 25 

Bands 5-9 Hz 8-12 Hz 10-14 Hz 4-8 Hz 8-12 Hz 

 

4.6.5. Drowsiness Estimation Based on Log Bandpower of ICA 

Components 

    In this study, we use a 10-order least-square linear regression model [113, 116] to 

estimate the subject’s driving error based on the information obtained from the subband power 

spectra analysis of ICA components. The linear regression model attempts to model the 

relationship between the selected input features X by fitting a linear equation y=AX+b to the 

observed output data yd at each sampled data point. i.e., given the input data set X and desired 

output data yd at each data point, the least-squared linear regression method is to find an 

optimal parameter set {A, b}, such that y=AX+b, subjected to minimizing the squared error 

cost function ε = ∑(yd-y)2. We used only 2 ICA components that performed the highest 

correlation between the ICA subband power spectrum and the driving error such that the most 

artifacts can be removed and the available information of drowsiness estimation is extracted. 

After moving-average spectra analysis of ICA components, we obtain the time series 

(stepping at 2 seconds), with a 40-point data set presenting bandpower of 1-40 Hz frequencies 

for each single ICA component. We also collected the corresponding smoothed driving error 

for each session. We selected 5-point bandpower of each component (e.g., 10-14 Hz in ICA 

component 11 for subject 3) and totally 10-point bandpower for 2 most important ICA 

components as the input data X of linear regression model. After training process, we get the 
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optimal parameter {A, b} iteratively such that the output y=AX+b of the linear regression 

model is very closed to observed output (driving error, yd) with minimum ε = ∑(yd-y)2. The 

model was trained on one session and tested on the other session for each subject. The ICA 

weighting matrices obtained from the training sessions were used to spatially filter the 

features in the testing sessions so that all data were processed in the same way for the same 

subject before feeding to the estimation models. Fig. 4-18 plots the estimated and actual 

driving error of training/testing sessions from subject 3. The linear regression model in this 

figure is trained with one session (within-session) and tested against a separated session, i.e. 

cross-session testing. As can been seen, the estimated driving error matched well with the 

actual driving error with correlation coefficient r=0.93 in the training and r=0.92 in the testing. 

Fig. 4-19 plots the training/testing results of subject 2. The estimated driving error compared 

with the actual driving error is r=0.91 in the training and r=0.89 in the testing. Table 4-5 

shows the statistics across ten sessions for five selected subjects. The mean correlation 

coefficient between actual driving error time series and within training session estimation is 

0.908, whereas the mean correlation coefficient between actual driving error and cross testing 

session estimation is 0.848. These results suggest that continuous ICA-based driving error 

estimation using a small number of frequency bands is feasible, and can give accurate 

information about minute-to-minute changes in operator’s alertness. 

 

Table 4-5. Driving performance estimation using total 10 frequency bands in 2 dominant 

ICA components (5 frequency bands for each ICA component) as input features of the linear 

regression model for five subjects. 

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Average 

Training 91% 91% 93% 89% 90% 90.8 % 

Testing 77% 89% 92% 86% 80% 84.8% 
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(a) Training Session (b) Testing Session

Driving Performance Estimation of Subject-3 Using Linear Regression Model

(a) Training Session (b) Testing Session

Driving Performance Estimation of Subject-3 Using Linear Regression Model

 

Figure 4-18. Driving performance estimates for training/testing sessions of subject 3, based 

on a linear regression model (red line) with subband log power spectra at frequency bands 

10~14 Hz of ICA components 11 and 13 selected according to Table 4-4, overplotted against 

actual driving performance time series for the session (blue line). The correlation coefficient 

between the two time series is r=0.93 in the training session and r=0.92 in the testing session. 

 

(a) Training Session (b) Testing Session

Driving Performance Estimation of Subject-2 Using Linear Regression Model

(a) Training Session (b) Testing Session

Driving Performance Estimation of Subject-2 Using Linear Regression Model

 

Figure 4-19. Driving performance estimates for training/testing sessions of subject 2, based 

on a linear regression model (red line) with subband log power spectra at frequency bands 

8~12 Hz of ICA components 8 and 17 selected according to Table 4-4, overplotted against 

actual driving performance time series for the session (blue line). The correlation coefficient 

between the two time series is r=0.91 in the training session and r=0.89 in the testing session. 
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4.6.6. Drowsiness Estimation Based on EEG Log Bandpower 

    Experimental results discussed in the above sections demonstrated that it is feasible to 

accurately estimate driving error accompanying loss of alertness based on ICA algorithm and 

subband power spectrum analysis of multi-channel EEG signals. Since the proposed 

ICA-based drowsiness estimation method is a little complicated, we propose a alternative 

method to balance the tradeoff between accuracy of alertness monitoring and computational 

cost in this section. It uses only 10 frequency bands of 2 EEG channels located at central 

electrode positions of the 2 ICA components which have the better correlation coefficients 

between log subband power spectra and the driving error of the subject. This method needs 

multi-channel EEG signals to calculate their ICA weighting matrices in the training session 

which is used to locate the positions of 2 EEG electrodes and optimal frequency bands, and 

does not require collecting the EEG signals of the other EEG channels except the 2 selected 

ones in the testing sessions. 

    Table 4-6 shows the correlation coefficients between the log subband power spectra and 

the driving error of subject 3 using frequency bands from 10 to14 Hz of EEG channels located 

at Fz, FCz, Cz, CPz, P3, Pz, and P4 in the training/testing session. Comparing to the results of 

using ICA components listed in Table 4-3, the correlation coefficients is somewhat lower due 

to artifacts and other noise. We may observe that the results using Pz and P4, which are the 

central electrodes of ICA components 11 and 13, are better than the results by using other 

channels. The driving error estimation of subject 3 based on a linear regression model with 

frequency bands 10~14 Hz of EEG channels Pz and P4 as inputs (total 10 frequency bands) 

are shown in Fig. 4-20. The correlation coefficient between estimated and actual driving error 

is r=0.91 in the training session and r=0.87 in the testing session, which is just a little lower 

than those using corresponding ICA components. Table 4-7 shows the optimal 2 EEG 

channels and associated frequency band ranges of different subjects selected according to the 
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cortical locations corresponding to ICA components selected from Table 4-4. Table 4-8 shows 

the driving error estimation using total 10 frequency bands (5 for each EEG channel) as input 

features of linear regression model for five subjects. The mean correlation coefficient between 

actual driving error time series and within training session estimation is 0.882, whereas the 

mean correlation coefficient between actual driving error and cross testing session estimation 

is 0.79. Comparing Table 4-5 and Table 4-8, the accuracies of training and testing with ICA 

technique are a little better than those without ICA. This result suggests a compromise 

between computational cost and estimation accuracy. 

 

Table 4-6. The correlation coefficients between log subband power spectra and driving 

error of subject 3 using bandpower in frequency bands from 10 to14 Hz corresponding to 

different single EEG channel in the training/testing session. 

Index of EEG Channels Fz FCz Cz CPz P3 Pz P4 

Training 0.75 0.77 0.77 0.78 0.74 0.80 0.79 

Testing 0.67 0.69 0.69 0.72 0.69 0.77 0.72 

 

Table 4-7. The optimal 2 EEG channels and the associated frequency band ranges 

corresponding to different subjects based on central electrode positions of 2 ICA components 

which have the better correlation coefficients between the log subband power spectra and the 

driving performance. 

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Bands 5-9 Hz 8-12 Hz 10-14 Hz 4-8 Hz 8-12 Hz 

EEG Channels O1, O2 CPz, Pz Pz, P4 O1, O2 P3, O1 
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Table 4-8. Driving error estimation using total 10 frequency bands (5 for each EEG 

channel) as input features of the linear regression model for five subjects. 

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Average 

Training 78% 90% 91% 88% 94% 88.2% 

Testing 68% 86% 84% 84% 73% 79% 

 

(a) Training Session (b) Testing Session

Driving Performance Estimation of Subject-3 Using Linear Regression Model

(a) Training Session (b) Testing Session

Driving Performance Estimation of Subject-3 Using Linear Regression Model

 

Figure 4-20. Driving error estimates for training/testing sessions of subject 3, based on a 

linear regression model (red line) with subband log power spectra at frequency bands 10~14 

Hz of EEG channels Pz and P4 (selected according to Table 4-7), overplotted against actual 

driving error time series for the session (blue line). The correlation coefficient between the 

two time series is r=0.91 in the training session and r=0.87 in the testing session. 

 

4.6.7. AFSM-based Driving Performance Estimation/Prediction 

    We also proposed a novel adaptive feature selection mechanism (AFSM) to solve the 

reliable and sorting problem of ICA components based on the correlation analysis between the 

time-frequency power spectra of ICA components and the driving performance. To reduce the 

computational loading within the capabilities of modern real-time embedded digital signal 

processing hardware for continuously estimating the level of alertness in near real time, we 

limited finally the number of the selected ICA components and the frequency bands of each 
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components to be two and five, respectively, by using AFSM. Table 4-9 shows the number of 

ICA components and optimal frequency bands selected manually and those by AFSM. Note 

that both selected ICA components and the frequency bands are almost the same but slightly 

different for each subject between manually selecting and AFSM. To verify the correctness 

and effectiveness of the AFSM method, the selected log bandpower spectra of the ICA 

components in these critical bands were feed as the input features of the linear regression 

models. We also used the Self-cOnstructing Neuro-Fuzzy Inference Network (SONFIN) [94] 

model to estimate and predict the individual driver’s driving performance by taking the 

advantages of fuzzy reasoning and learning abilities, and flexibility of neural networks. Fig. 

4-21 shows the driving performance estimation for training/testing sessions of subject 3, 

based on SOFNIN models (red line) with input features selected by AFSM method according 

to Table 4-10, overplotted against actual driving performance time series for the session (blue 

line). The correlation coefficient between the two time series is r=0.96 in the training session 

and r=0.94 in the testing session. 

    Table 4-10 shows the comparison results of driving performance estimation. Although 

the correlation coefficients between the two time series based on AFSM methods using linear 

regression models are somewhat lower than those selected manually. The adaptive feature 

selection mechanism has the advantages of saving time, and cost when the whole system is 

applied for on-line alertness monitoring. Table 4-11 shows the estimating results based on 

AFSM methods using SONFIN. Compared to the results using linear regression models, using 

fuzzy neural network models can achieve higher estimating results as shown in Fig. 4-21 for 

subject-3, and can compensate the slightly loss using AFSM in real-time applications. 
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Table 4-9. The optimal 2 ICA components and frequency bands selected manually and by 

AFSM corresponding to different subjects according to the higher correlation coefficients 

between log bandpower spectra and the driving performance. 

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

ICA Components 17, 28 17, 8 11, 13 4, 5 22, 25 
Manual 

Freq. Bands 5-9 Hz 8-12 Hz 10-14 Hz 4-8 Hz 8-12 Hz 

ICA Components 17, 28 17, 8 11, 13 4, 5 22, 25 
AFSM 

Freq. Bands 4-8 Hz 8-12 Hz 10-14 Hz 5-9 Hz 9-13 Hz 

 

Table 4-10. Driving performance estimation using total 10 frequency bands in 2 

dominant ICA components selected manually and by AFSM methods shown in Table 4-9, as 

input features of the linear regression models for five subjects. 

 Sub-1 Sub-2 Sub-3 Sub-4 Sub-5 Average

Training 91% 91% 93% 89% 90% 90.8% 
Manual 

Linear 

Regression Testing 77% 89% 92% 86% 80% 84.8% 

Training 88% 91% 93% 88% 84% 88.8% 
AFSM 

Linear 

Regression Testing 72% 89% 82% 80% 76% 81.8% 

 

Table 4-11. Driving performance estimation using total 10 frequency bands in 2 

dominant ICA components selected by AFSM methods shown in Table 4-9, as input features 

of the linear regression models and SONFIN for five subjects. 

 Sub-1 Sub-2 Sub-3 Sub-4 Sub-5 Average

Training 88% 91% 93% 88% 84% 88.8% Linear 

Regression Testing 72% 89% 82% 80% 76% 81.8% 

Training 89% 92% 96% 87% 91% 91% 
AFSM 

SONFIN 
Testing 84% 89% 94% 83% 85% 87% 
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(a) Training Result 

 

(b) Testing Result 

Figure 4-21. Driving performance estimation for training/testing sessions of subject 3, based 

on SOFNIN models (red line) with input features selected by AFSM method according to 

Table 4-9, overplotted against actual driving performance time series for the session (blue 

line). The correlation coefficient between the two time series is r=0.96 in the training session 

and r=0.94 in the testing session. 
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4.7. Conclusion Remarks 

    In this chapter, we demonstrated a close relationship between minute-scale changes in 

driving performance and the EEG/ICA power spectrum. This relationship appears stable 

within individuals across sessions, but is somewhat variable between subjects. Four 

computational approaches were proposed to select effective features for drowsiness 

estimation based on the compromise of computational cost and estimating accuracies. The 

first approach combined EEG power spectrum estimation, correlation analysis, PCA, and 

linear regression to continuously indirectly estimate/predict fluctuations in human alertness 

level indexed by driving performance measurement, deviation between the center of the 

vehicle and the center of the cruising lane. Our results demonstrated that it is feasible to 

accurately estimate driving errors based on multi-channel EEG power spectrum estimation 

and principal component analysis algorithm. The computational methods we employed in this 

study were well within the capabilities of modern real-time embedded digital signal 

processing hardware to perform in real time using one or more channels of EEG data. Once an 

estimator has been developed for each driver, based on limited pilot testing, the method uses 

only spontaneous EEG signals from the individual, and does not require further collection or 

analysis of operator performance. The proposed methods thus might be used to construct and 

test a portable embedded system for a real-time alertness monitoring system. The other two 

approaches used ICA, power spectrum analysis, correlation analysis, and the linear regression 

model in a virtual-reality based driving environment. Experimental results show that the 

proposed analysis methods are feasible to accurately estimate individual driving error 

accompanying loss of alertness by linear regression model with 10 subband log power spectra 

near α -bands of 2 ICA components as inputs. Averaged accuracies of training and testing 

session for 5 subjects are 90.8% and 84.8%, respectively. We also propose an alternative 

method to save computational cost by selecting only 2 EEG channels located at central 
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electrodes of the corresponding ICA components. Average accuracies of training and testing 

session for 5 subjects are 88.2% and 79%, respectively. Although the accuracy is somewhat 

lower than those using ICA components, its does not require to collect more EEG channels 

data in testing session. Thus, this approach suggests a compromise between computational 

cost and estimation accuracy. Therefore, the proposed methods can be used to construct and 

test on an online portable embedded system for a real-time alertness monitoring system. In the 

last approach, we proposed a novel adaptive feature selection mechanism to solve the sorting 

problem of the ICA components and to extract useful frequency bands as input features. 

Experimental results show that the average accuracies of training and testing session for five 

subjects can achieve high to 88.8% and 81.8% as well as 91% and 87%, by using linear 

regression model and fuzzy neural network models, respectively. Although the accuracy using 

AFSM-based linear regression model is lower than those selected manually, the 

computational methods we employed in this study were well within the capabilities of modern 

real-time embedded digital signal processing hardware to perform in real time alertness 

monitoring system. 
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5. Conclusions 

    In this thesis, we develop quantitative techniques that combine independent component 

analysis, temporal matching filter, time frequency spectrum analysis, correlation analysis, 

adaptive feature selection mechanism, and fuzzy neural network models for ongoing 

assessments of the transient event-related brain dynamics and the level of alertness of drivers 

by investigating the neurobiological mechanisms underlying non-invasively recorded 

multidimensional electroencephalographic (EEG) brain dynamics in the virtual-reality-based 

cognitive driving tasks. We then apply these methodologies to the issue of driving safety and 

focus on two most frequent happened events on the roads, the visual traffic-light detection 

task and the continuous lane-keeping driving task in order to maintain the subject’s maximum 

driving performance for preventing the traffic accidents and extend the applications of brain 

research to general populations (not limited to lock-in patients). In this thesis, we have made 

significant progresses in several aspects. (1) The use of virtual-reality technology not only 

allows subjects to interact directly with virtual objects, but also provides a well-controlled 

realistic experimental environment to avoid the risk of operating on the real world. (2) The 

computational approaches are capable of providing high spatial and temporal resolutions by 

using multidimensional EEG information obtained from an array of scalp electrodes and to 

model the dynamics of the underlying brain networks. (3) Comparing to the traditional 

time-domain overlap-added averaged methods, the introduced ICA algorithm can analyze 

brain activities in single trials correctly without first averaging on trials. The temporal 

independence and spatial stability make ICA to effectively remove non-brain artifacts to 

increase the amount of information contained in the EEG recordings and to find out the 

optimal location to wire EEG electrodes. (4) The proposed temporal matching filter can solve 

the time-alignment problems between trials and increase the recognition rates of ERP 
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classification. (5) We also use the moving-average time-frequency spectral analysis to avoid 

confounds caused by miscancellation of positive and negative potentials from different 

sources to the recording electrodes, and characterize the perturbations in the oscillatory 

dynamics of ongoing EEG. (6) The use of the correlation analysis can provide objective 

measurement of driver’s cognitive state and is helpful to extract effective features. (7) For 

online applications, we proposed a novel adaptive feature selection mechanism combined 

with the Self-cOnstructing Neuro-Fuzzy Inference Network model to accuracy identify the 

transient brain response to different visual stimuli and estimate/predict the actual driving 

performance of individual subjects. 

    Experimental results demonstrated that the proposed ICA-based methods can achieve a 

high recognition rate on average up to 85% in classifications of the brain cognitive responses 

related to visual traffic-light detection task. These high-accuracy results can be further 

transformed as the control/monitoring signals of on-line brain computer interfaces in the 

driving-safety systems. Another proposed EEG-based technology for drowsiness estimation 

also showed that it is feasible to accurately estimate individual driving performance 

accompanying loss of alertness. In this study, we demonstrated a close relationship between 

minute-scale changes in driving performance and the EEG power spectrum. This relationship 

appears stable within individuals across sessions, but is somewhat variable between subjects. 

We also propose four strategies to explore the optimal and economic way to select effective 

EEG-based features. The first approach uses power spectrum of only 2 EEG channels, where 

once an estimator has been developed for each driver, based on limited pilot testing, the 

method uses only spontaneous EEG signals from the individual, and does not require further 

collection or analysis of operator performance. Another approach apply the ICA algorithm in 

the training session to locate the optimal position to wire EEG electrodes and uses 2 EEG 

channels located at central electrodes of the selected ICA components. Averaged accuracies 
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for 5 subjects achieve 79% using fuzzy neural network model. This method dramatically 

increases the accuracy than the first one and does not require collecting more EEG channels 

data in testing session. The third approach directly uses 10 log bandpower of 2 optimal ICA 

components as input features and achieves the maximum averaged accuracies to 84.8%. For 

the purpose of the online application, we proposed an automatic feature selecting mechanism 

combined with SONFIN to estimating driving performance and the averaged accuracies for 

five subjects can achieve high to 87%. Although the accuracy using adaptive feature selection 

mechanism is lower than those selected manually, the computational methods we employed in 

this study were well within the capabilities of modern portable embedded digital signal 

processing hardware to perform in real time alertness monitoring system. 
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