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摘  要 
 

 

給定一個圖 G，我們將圓石放在圖 G上的點，一步圓石移動定義為從 G

上的一點 v拿兩顆圓石然後放一個到與 v相鄰的點。如果 G上的一個圓石

分配方式 D，我們可以經由一序列的圓石移動後，對於任一 G中被選定的

點會存在至少有一顆圓石，則我們稱這個分配方式 D為可以解的。一連通

圖 G上的圓石分配數 f(G)是最少的圓石數，使得對於在 G上含有 f(G)個

圓石數的每種分配方式都是可以解的。如果 G上的一個圓石分配方式 D，

我們可以經由一序列的圓石移動後，對於 G中被選定的點 r會存在至少有

一顆圓石，則我們稱這個分配方式 D為 r-可以解的。一連通圖 G上的臨界

圓石分配數 cr(G)是對於 G上任何有選定分配方式中最小 r-可以分解的最

大圓石數。 

在此篇論文當中，我們首先從圓石分配數中的研究當中，整理出一些

已知的性質，然後我們也得到一些關於臨界圓石數的新結果，其中包括

圈，樹圖，彼得森圖及一些乘積圖等等的臨界圓石數。 
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Abstract

Given a distribution of pebbles on the vertices of a graph G, a pebbling step
(or pebbling move) takes two pebbles from one vertex and place one pebble on an
adjacent vertex. A distribution D of pebbles on the graph G is called solvable if,
starting from D, it is possible to place a pebble on any given vertex using a sequence
of pebbling steps. The pebbling number f(G) of a connected graph is the smallest
number of pebbles such that every distribution with f(G) pebbles on G is solvable.
A distribution D is r-solvable if there exists a sequence of pebbling steps which
begin from D and end in at least one pebble on the vertex r. The r-critical pebbling
number cr(G) is the largest size of a minimally r-solvable rooted distribution on G
for any r. In this thesis, we first derive several known results from the study of
pebbling numbers, and then we also obtain several new results on critical pebbling
numbers. The results are (1) cr(Cm) = f(Cm) − 1 if m ≡ 3 (mod 4), and f(Cm)
otherwise; (2) cr(T ) = 2d, where T is a tree and d is the diameter of T ; (3) cr(P ) = 6,
where P is the Petersen graph; (4) cr(Qn) = 2n, where Qn is an n-cube; and (5)
cr(C5¤C5) = 25.

ii



　  

Acknowledgement 

首先感謝指導教授傅恆霖老師，這兩年來細心的指導以及諄諄教誨。老師很

有耐心的與我討論問題，協助我解決問題，讓我在學習研究的過程中受益良多。 

其次，感謝黃大原老師、陳秋媛老師、翁志文老師等，在課業上的熱心幫助

和生活上的關心，也要感謝黃明輝學長、嚴志弘學長、張嘉芬學姊、郭志銘學長、

陳宏賓學長、詹棨丰學長的許多幫助，使得我在研究的過程中與資料的取得順利

不少，以及元勳、俊全、怡菁、采瑩、秋美、書于、景堯、冠成這些同學，和他

們一起遊玩、一起討論課業，讓我在交大的這兩年留下美好的回憶。 

最後要感謝我的家人，總是掛念我的生活、學業、健康，感謝他們背後的支

持，陪伴我一起走過這段充實的研究生涯。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iii 



Contents

Abstract (in Chinese) i

Abstract (in English) ii

Acknowledgement iii

Contents iv

List of Figures v

1 Introduction 1

2 Preliminaries 2

3 The Pebbling Numbers 7

3.1 Some Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 2-Pebbling and Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Diameter, Connectivity and Class 0 Graphs . . . . . . . . . . . . . . . . . 9

4 The Optimal Pebbling Numbers 10

4.1 The Known Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Bounds with Minimum Degree . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 The Cover Pebbling Numbers 12

5.1 The Known Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.2 Graph Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 The Critical Pebbling Numbers 15

6.1 Some Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.2 Weight and Greedy Pebbling Step . . . . . . . . . . . . . . . . . . . . . . . 16

6.3 The Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7 Conclusion 24

References 25

iv



List of Figures

1 P3¤P4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 A caterpillar with 5 joints. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Three rooted distributions on the graph P5. . . . . . . . . . . . . . . . . . 16

4 An r-ceiling and an r-insufficient rooted distribution on the fan F5. . . . . 16

5 The graph Cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Petersen graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7 An r-critical rooted distribution on C5¤C5. . . . . . . . . . . . . . . . . . 23

List of Tables

1 Some pebbling parameters of graphs. . . . . . . . . . . . . . . . . . . . . . 15

v



1 Introduction

The concept of pebbling graphs was first suggested by Lagarias and Saks [17, 22] to solve

a number theoretic conjecture proposed by Erdös and Lemke using the different method

which can be found in [18]. In 1987, Lagarias and Saks proposed the following question.

Suppose 2n pebbles are distributed onto vertices of an n-cube, is it always possible to move

one pebble to a specified vertex by a sequence of pebbling steps from any distribution of

2n pebbles? Note here that a pebbling step (or pebbling move) takes two pebbles from

one vertex and place one pebble on an adjacent vertex. Later, in [4], Chung was able

to show that the above game can be done and successfully used this tool to prove the

conjecture. This sets up further study of pebbling numbers, and has been developed by

many others including Hurlbert who published a survey of pebbling results in [15].

Moreover, several related topics of pebbling numbers, such as optimal pebbling num-

ber, cover pebbling number, and critical pebbling number are introduced and studied.

Since then, the study of pebbling numbers is getting familiar to the researchers especially

graph theorists.

In this thesis, we first derive several known results on the study of pebbling numbers,

and then we obtain several new results on critical pebbling numbers. The results are (1)

cr(Cm) = f(Cm) − 1 if m ≡ 3 (mod 4), and f(Cm) otherwise; (2) cr(T ) = 2d, where T

is a tree and d is the diameter of T ; (3) cr(P ) = 6, where P is the Petersen graph; (4)

cr(Qn) = 2n, where Qn is an n-cube; and (5) cr(C5¤C5) = 25.
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2 Preliminaries

First, we introduce that the terminologies and definitions of graphs. For details, the

readers may refer to the book ”Introduction to Graph Theory” by D. B. West [28].

A graph G is a triple consisting of a vertex set V (G), an edge set E(G), and a relation

that associates with each edge two vertices called its endpoints. A loop is an edge whose

endpoints are equal. Multiple edges are edges having the same pair of endpoints. A simple

graph is a graph having no loops or multiple edges. When u and v are the endpoints of

an edge, they are adjacent and are neighbors.

A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G)

and the assignment of endpoints to edges in H is the same as in G. A spanning subgraph

of G is a subgraph H with V (H) = V (G). A path is a simple graph whose vertices can

be ordered so that two vertices are adjacent if and only if they are consecutive in the list.

A graph G is connected if each pair of vertices in G belongs to a path; otherwise, G is

disconnected. In this thesis, we consider all of the graphs which are simple and connected.

A cycle is a graph with an equal number of vertices and edges whose vertices can

be placed around a circle so that two vertices are adjacent if and only if they appear

consecutively along the circle. A graph with no cycle is acyclic. A tree is a connected

acyclic graph.

A complete graph is a simple graph whose vertices are pairwise adjacent; the complete

graph with n vertices is denoted by Kn. A graph G is bipartite if V (G) is the union of two

disjoint independent sets called partite sets of G. A graph G is r-partite if V (G) can be

expressed as the union of r independent sets. A complete multipartite graph is a simple

graph of G whose vertices can be partitioned into sets so that u is adjacent to v if and

only if u and v belong to different sets of the partition. We use Kn1,n2,...,nr to denote the

complete r-partite graph with partite sets of sizes n1, n2, ..., nr. Note that if k = 2, it is

called complete bipartite graph.

A k-dimensional cube (hypercube or k-cube) Qk is the simple graph whose vertices are

the k-tuples with entries in {0,1} and whose edges are the pairs of k-tuples that differ in

exactly one position.

The wheel graph Wn is composed of a cycle consisting of n vertices, v1, v2, . . . , vn,

which are all connected to hub vertex v0, for a total of v = n + 1 vertices.

2



The Petersen graph is the simple graph whose vertices are the 2-element subsets of a

5-element set and whose edges are the pairs of disjoint 2-element subsets.

For any two graphs G and H, we define the Cartesian product of G and H, denoted

G¤H, is the graph with vertex set

V (G¤H) = {(u, v): u ∈ V (G), v ∈ V (H)},

and edge set

E(G¤H) = {((u, v), (u′, v′)): u = u′ and (v, v′) ∈ E(H) or v = v′ and (u, u′) ∈ E(G)}.

Clearly, 1-cube is K2, 2-cube is K2¤K2, and n-cube Qn is Qn−1¤K2. The m-by-n

grid is the Cartesian product Pm¤Pn. Figure 1, shows P3¤P4.

Figure 1: P3¤P4.

A complete m-ary tree with height h, denoted by Tm
h , is an m-ary tree satisfying that

v has m children for each vertex v not in the h-th level.

A tree T is called a caterpillar if the deletion of all pendent vertices of the tree results

in a path P ′. For convenience, we shall call a path P with maximum length which contains

P ′ a body of the caterpillar, and all the edges which are incident to pendent vertices are

the legs of the caterpillar T. Furthermore, the vertex v ∈ V (P ) is a joint of T provided

that degT (v) ≥ 3 or v is adjacent to the end vertices, Figure 2 is an example.

Suppose G is a connected graph. A pebbling distribution (simply called distribution)

D on G is a function D : V (G) → N ∪ {0} which assigns to every vertex of G a natural

number of pebbles or zero pebble. If D is a distribution on G and a is a vertex of G, then

D(a) be the number of pebbles on a in the distribution D. The size of the distribution

3



Figure 2: A caterpillar with 5 joints.

D is the number of pebbles in D, |D| = ∑
a∈V (G) D(a). If there are some pebbles on the

vertices of a graph G, a pebbling step is that one can remove two pebbles from one vertex

and place one pebble on an adjacent vertex. We say that a pebble can be moved to a

vertex r, the rooted vertex, if we can apply pebbling steps repeatedly (if necessary) so

that in the resulting distribution the vertex r has one pebble.

A distribution D is r-solvable if there exists a sequence of pebbling steps which begin

from D and end in at least one pebble on the vertex r. If D is r-solvable for any r, D is

called solvable. A distribution D is unsolvable if there is some vertex r for which D is not

r-solvable.

A rooted distribution is a distribution which identifies a vertex r of G as the rooted

vertex of G. We say that the rooted distribution D is solved if it has at least one pebble

on r, and solvable if there exists a sequence of pebbling steps staring with D and ending

with a solved distribution. We say that an un-rooted distribution is a global distribution.

A rooted distribution D is minimally r-solvable if D is r-solvable but the removal of

any one pebble makes D not r-solvable. A global distribution D is minimally solvable if D

is solvable but the removal of any one pebble makes D unsolvable. A rooted distribution

D is maximally r-unsolvable if D is not r-solvable but the addition of any one pebble

makes D r-solvable. A global distribution D is maximally unsolvable if D is unsolvable

but the addition of any one pebble makes D solvable.

The pebbling number f(G) of a graph G is one greater than the largest size of a

maximally unsolvable global distribution on G. Equivalently, f(G) is one greater than

the largest size of a maximally r-unsolvable rooted distribution on G for any r. Or

equivalently, is the smallest integer m, such that for any distribution of m pebbles to the

vertices of G, one pebble can be moved to a specified vertex, i.e. every distribution of m

pebbles on G is solvable.

4



A distribution is a k-pebbling if it is possible to move k pebbles to any given vertex

r after a sequence of pebbling steps. Let fk(T ) denote the smallest integer n such that

every distribution which at least n pebbles is k-pebbling.

We say that G satisfies the 2-pebbling property if two pebbles can be moved to a given

vertex when the total starting number of pebbles are 2f(G)−q+1, where q is the number

of vertices with at least one pebble.

The optimal pebbling number f ′(G) of a graph G is the smallest size of a minimally

solvable global distribution on G. Equivalently, f ′(G) is the least number k such that

there exists a solvable distribution of k pebbles on G.

We say that a distribution D on G is cover solvable if there exists a sequence of pebbling

steps starting with D and ending with a pebble on every vertex of G simultaneously.

The cover pebbling number γ(G) of G is the smallest integer n, such that for any

distribution of n pebbles to the vertices of G, one pebble can be moved to every vertex

simultaneously, i.e. every distribution of n pebbles on G is cover solvable.

Let a weight function ω be given that assigns an integer ω(v) to every vertex v of G.

We say that ω is positive if ω(v) > 0 for all v. The weighted cover pebbling numbers

γω(G) is the smallest integer k, such that for any distribution of k pebbles to the vertices

of G, ω(v) pebbles can be moved to every vertex v simultaneously.

So, we know that the cover pebbling number γ(G) is the weighted cover pebbling

numbers γω(G) with ω(v) = 1 for all v.

The r-critical pebbling number cr(G) is the largest size of a minimally r-solvable rooted

distribution on G for any r. If a minimally r-solvable rooted distribution on G has cr(G)

pebbles, then we call it an r-ceiling distribution.

The distance between the vertices a and b denoted by d(a, b). The pebbling step [a, b]

is an operation which remove two pebbles from the vertex a and place one pebble on the

adjacent vertex b. The pebbling step [a, b] is greedy if d(a, r) > d(b, r), and the rooted

distribution D is greedy if there is a solution of D which uses only greedy pebbling steps.

The weight of the rooted distribution D is defined as ω(D) =
∑

v∈V (G)

D(v)

2d(v,r)
. Therefore,

the weight ω(G) of G is the largest weight of any r-ceiling distribution on G.

In this thesis, we first derive several known results from the study of pebbling numbers,

and then we also obtain several new results on critical pebbling numbers. The results are

5



(1) cr(Cm) = f(Cm) − 1 if m ≡ 3 (mod 4), and f(Cm) otherwise; (2) cr(T ) = 2d, where

T is a tree and d is the diameter of T ; (3) cr(P ) = 6, where P is the Petersen graph; (4)

cr(Qn) = 2n, where Qn is an n-cube; and (5) cr(C5¤C5) = 25.
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3 The Pebbling Numbers

We review that the pebbling number f(G) of a graph G is one greater than the largest

size of a maximally unsolvable global distribution on G. Equivalently, f(G) is one greater

than the largest size of a maximally r-unsolvable rooted distribution on G for any r. Or

equivalently, is the smallest integer m, such that for any distribution of m pebbles to the

vertices of G, one pebble can be moved to a specified vertex, i.e. every distribution of

m pebbles on G is solvable. We start with some properties of the pebbling number of a

graph G, f(G).

3.1 Some Preliminary Results

First, we include some facts about f(G).

(F1) Breadth Lower Bound : f(G) ≥ n(G), where n(G) denotes the number of

vertices of G.

It follows by the fact that we place one pebble on every vertex of G except one.

Note that graphs whose pebbling number equals n(G) are said to be of Class 0, and

equals n(G) + 1 are said to be of Class 1.

(F2) Depth Lower Bound : f(G) ≥ 2diam(G), where diam(G) denotes the diameter of

G.

It follows by the fact that we place all the pebbles on a vertex which is at distance

diam(G) from another vertex.

(F3) Pigeonhole Upper Bound : f(G) ≤ (n(G)− 1)(2diam(G) − 1) + 1.

By pigeonhole principle, at least one vertex has 2diam(G) pebbles and thus the dis-

tribution is solvable.

Combining (F1), (F2) and (F3), we conclude that if d = diam(G) and n = n(G), then

max{n, 2d} ≤ f(G) ≤ (2d − 1)(n− 1) + 1.

(F4) Cut Lower Bound : f(G) > n(G), when G contains a cut vertex a.

7



Suppose not. Let A and B be two components of G − a, with v in A and r in B.

Then by placing 3 pebbles on v and 1 pebble on every other vertex except a and r,

we have a distribution which is not solvable.

Note that Class 0 graphs are 2-connected.

(F5) Spanning Subgraph : f(H) ≥ f(G), where H is spanning subgraph of G.

From the above properties (F1), (F2), · · · , (F5), we are able to obtain several nice

results :

• f(Kn) = n.

• f(Pn) = 2n−1.

• f(C5) = 5 and f(C6) = 8.

• f(P ) = 10 where P is the Petersen graph [5].

• If Ln is the line graph of the complete graph Kn, then f(Ln) =
(

n
2

)
[26].

Theorem 3.1.1. [21] For k ≥ 1, f(C2k) = 2k and f(C2k+1) = 2b2k+1

3
c+ 1.

Indeed, finding f(T ) needs some extra effort. We define a maximum path partition

P of a tree T . Suppose T is a tree with a given vertex v. T can be viewed as a directed

tree denoted by T ∗
v with edges directed toward the given vertex v, v is also called the

rooted vertex. Consider a partition P = (P1, P2, . . . , Pt) of the edges of T into P1, P2, . . .,

Pm such that pi ≥ pi+1 where pi = |Pi|, which is a set of nonoverlapping directed paths

and the union of which is T . A partition is said to majorize another if the nonincreasing

sequence of the path size majorize that of other; that is, (p1, p2, . . . , pt) ≥ (p′1, p
′
2, . . . , p

′
n)

if and only if pi ≥ p′i, where i = min{j : aj 6= bj}. A path partition is maximum if

no other path partition majorizes it. Now, we have the following beautiful result by D.

Moews.

Theorem 3.1.2. [20] Let T be a tree and r be the rooted vertex of T . If (p1, p2, . . . , pt)

is the nonincreasing sequence of a maximum path partition P = (P1, P2, . . . , Pt), then

f(T ) = (
t∑

i=1

2pi)− t + 1 and fk(T ) = k2p1 + (
t∑

i=2

2pi)− t + 1.

3.2 2-Pebbling and Products

Let Qn be the n-dimensional cube (simply called n-cube). Chung [4] gives the 2-Pebbling

property in order to prove the following theorems.

8



Review that G satisfies the 2-pebbling property if two pebbles can be moved to a

given vertex when the total starting number of pebbles are 2f(G)− q + 1, where q is the

number of vertices with at least one pebble. Note that both n-cube and paths satisfy the

2-pebbling property.

Theorem 3.2.1. [4] Suppose G satisfies the 2-pebbling property. Then the following holds:

(1) f(G¤Kt) ≤ tf(G).

(2) If f(G¤Kt) = tf(G), then G¤Kt satisfies the 2-pebbling property.

The conjecture about the pebbling number of the cartesian product of graph was posed

by Graham.

Conjecture 3.2.2. (Graham) f(G¤H) ≤ f(G)f(H).

For the n-cube Qn, Chung [4] proved f(Qn) = 2n. The above conjecture has been veri-

fied for several classes of graphs. First, by Theorem 3.2.1, we have f(Kn1¤Kn2¤ · · ·¤Knt) =

n1n2 . . . nt.

Theorem 3.2.3. [4] f(Pn1+1¤Pn2+1¤ · · ·¤Pnt+1) = 2n1+n2+...+nt.

Moreover, the conjecture also holds for, a cycle by a cycle [13, 14, 21], complete

bipartite graphs [8], fans and wheels [9], and trees [20].

3.3 Diameter, Connectivity and Class 0 Graphs

Theorem 3.3.1. [21] Let G be a graph with diameter 2, then G has the 2-pebbling prop-

erty.

Theorem 3.3.2. [21] If diam(G) = 2, then f(G) = n(G) or n(G) + 1.

Bukh recently obtained an upper bound of diameter 3 graphs as following.

Theorem 3.3.3. [2] If diam(G) = 3, then f(G) ≤ 3n/2, which is best possible.

Hurlbert et. al. can characterize Class 0 graphs of diameter two which are decided by

connectivity.

Theorem 3.3.4. [6] If diam(G) = 2 and κ(G) ≥ 3, then G is of Class 0.

Theorem 3.3.5. [6] If G is of Class 0, then κ(G) ≥ 2. In particular, if diam(G) = 2

and κ(G) = 1, then G is of Class 1.

9



4 The Optimal Pebbling Numbers

We review that the optimal pebbling number f ′(G) of a graph G is the smallest size of

a minimally solvable global distribution on G. Equivalently, f ′(G) is the least number k

such that there exists a solvable distribution of k pebbles on G.

4.1 The Known Results

For optimal pebbling numbers, it seems that to find its upper bounds is easier than to find

lower bounds. Clearly, in order to obtain an upper bound, it suffices to give a distribution

and show that it is solvable. But, finding a tight lower bound, we have to show that every

distribution with less pebbles is not solvable.

It is easy to see that f ′(G) ≤ 2d, where d is a diameter of G. The following general

upper bound for graphs on n vertices was proved in [3].

Corollary 4.1.1. If G is a connected graph of n vertices, then f ′(G) ≤ d2n/3e.

It was shown that the tight upper bound for paths f ′(P3t+r) = 2t+r, where 0 ≤ r ≤ 2

[21], and cycles f ′(C3t+r) = 2t + r, where 0 ≤ r ≤ 2 [3].

The Graham’s conjecture on pebbling number is still an open problem, but the anal-

ogous statement for optimal pebbling number is easier.

Theorem 4.1.2. [23] For any two graphs G and H, f ′(G¤H) ≤ f ′(G)f ′(H).

Even f(Qn) is known, f ′(Qn) is far from being determined.

Theorem 4.1.3. [19] f ′(Qn) = (4
3
)n+O(logn).

More known results about optimal pebbling are as following.

Theorem 4.1.4. [11] If Tm
h is an m-ary tree satisfying that v has m children for each

vertex v not in the h-th level, then f ′(Tm
h ) = 2h for each m ≥ 3.

We review that a tree T is called a caterpillar if the deletion of all pendent vertices

of the tree results in a path P ′. For convenience, we shall call a path P with maximum

length which contains P ′ a body of the caterpillar, and all the edges which are incident to

pendent vertices are the legs of the caterpillar T. Furthermore, the vertex v ∈ V (P ) is a

joint of T provided that degT (v) ≥ 3 or v is adjacent to the end vertices.

10



Theorem 4.1.5. [10] Let T be a caterpillar with P a body of T and |V (P )| = n. Let

α(v) = 2 if v is a joint of T and α(v) = 1 otherwise. Let P ′
1, P

′
2, · · · , P ′

m be 2-maximal sub-

paths of P with respect to α and Pi be a subpath between P ′
i and P ′

i+1 for i = 1, 2, . . . , m−1.

Then f ′(T ) = n−m−
m−1∑
i=1

b|v(Pi)|/3c.

4.2 Bounds with Minimum Degree

By Corollary 4.1.1, we have proved that f ′(G) ≤ d2n/3e for any connected graph G with

n vertices, with equality holds for paths and cycles. We will the find f ′(G) by adding the

consideration of minimum degree k.

Proposition 4.2.1. [3] Among n vertices graphs with minimum degree k, f ′(G) can be

as large as 2n/(k + 1).

Conjecture 4.2.2. Given k ∈ N , there exists n0 such that for all n ≥ n0, every connected

n vertices graph G with minimum degree k satisfies f ′(G) ≤ d2n/(k + 1)e.

If the case k = 2, the above Corollary 4.1.1 satisfies the above conjecture. It would

be interesting to deal with the case k = 3. We find the probabilistic argument in Alon [1]

as follows.

Theorem 4.2.3. If G is a connected graph with n vertices and minimum degree k, then

f ′(G) ≤ 2n
k+1

(1 + lnk+1
2

).
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5 The Cover Pebbling Numbers

We review that the cover pebbling number γ(G) of G is the smallest integer n such that

for any distribution of n pebbles to the vertices of G, one pebble can be moved to every

vertex simultaneously, i.e. every distribution of n pebbles on G is cover solvable.

Let a weight function ω be given that assigns an integer ω(v) to every vertex v of G.

We say that ω is positive if ω(v) > 0 for all v. The weighted cover pebbling number γω(G)

is the smallest integer k, such that for any distribution of k pebbles to the vertices of G,

ω(v) pebbles can be moved to every vertex v simultaneously.

5.1 The Known Results

First, by observation, we have γ(G) ≥ 2d(n− d + 1)− 1, for G be a graph with n vertices

and diameter d. Therefore, we have γ(Kn) = 2n−1, and γ(Pn) = 2n−1. If we denote that

the total weight by |ω| =
∑

v ω(v) and minω = minvω(v), then γω(Kn) = 2|ω| −minω,

(see [7]), for every positive weight function ω.

The fuse Fl(n) (l ≥ 2 and n ≥ 3) is the graph with n vertices v1, v2, . . . , vn, such that

the first l vertices form a path (or wick) from v1 to vl, and the remaining n - l vertices

are independent vertices (or sparks) and adjacent only to vl.

Theorem 5.1.1. [7] γ(Fl(n)) = (n− l + 1)2l − 1.

Example 5.1.2. F2(n) is a star with n vertices and γ(F2(n)) = 4n− 5.

Let T be an arbitrary tree and let V(T) be the vertex set of T . For v ∈ V (T ), we

define

s(v) =
∑

u∈V (T )

2d(u,v) and s(T ) = max
v∈V (G)

s(v),

where d(u, v) denotes the distance between u and v.

Suppose a positive weight function ω of T is given, we define

sω(v) =
∑

u∈V (T )

ω(u)2d(u,v) and sω(T ) = max
v∈V (T )

sω(v).

Clearly, γω(T ) ≥ sω(T ), for any T and any positive weight function ω. In fact, this

lower bound is tight.
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Theorem 5.1.3. [7] For any tree T and any positive weight function ω, we have

γω(T ) = sω(T ).

Theorem 5.1.4. (Stacking Theorem) [25] For any graph G and any positive weight func-

tion ω, we have

γω(G) = sω(G).

In the case of n-cube, we have the following result.

Theorem 5.1.5. [16] γ(Qn) = 3n.

The complete multipartite graphs and wheel graphs were considered in [27].

Theorem 5.1.6. γ(Kn1,n2,...,nr) = 4n1 + 2n2 + · · ·+ 2nr − 3, where n1 ≥ n2 ≥ · · · ≥ nr.

We review that the wheel graph Wn is composed of a cycle consisting of n vertices,

v1, v2, . . . , vn, which are all connected to hub vertex v0, for a total of v = n + 1 vertices.

Theorem 5.1.7. For n ≥ 3, γ(Wn) = 4n− 5 = 4v − 9.

The following cases, we discuss the cycles and certain graph products which considered

in [24].

Theorem 5.1.8. γ(Cn) = 2r + 2n−r+1 − 3, where r = n/2 if n is even and r = (n + 1)/2

if n is odd.

5.2 Graph Products

There are some known covering pebbling numbers of the graph products.

(1) For any graph G, γ(Pn¤G) ≤ (2n− 1)γ(G).

(2) γ(Cn¤G) ≤
{

(2(n/2)+1 + 2(n/2) − 3)γ(G) if n is even.
(2(n+1)/2 + 2(n+1)/2 − 3)γ(G) if n is odd.

In particular, taking G to be a single vertex, and we have the above Theorem 5.1.8.

(3) We define that G is good if γ(G) =
∑

u∈V (G)

2d(u,v) for some vertex v ∈ V (G).

(i) Suppose G and H are good. γ(G¤H) = γ(G)γ(H) ⇐⇒ G¤H is good.
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(ii) H = (¤iPni
)¤(¤jCmj

) is good.

• γ(H) =
∏

i γ(Pni
)
∏

j γ(Cmj
).

In particular,

γ(¤iPni
) =

∏
i(2

ni − 1).

γ(¤jCmj
) =

∏
j(2

rmj + 2mj−rmj +1 − 3), where rmj
= dmj/2e.

• γ(H¤Kn) = γ(H)γ(Kn).

• γ(H¤T ) = γ(H)γ(T ) for any tree T .

Example 5.2.1. Kn, Pn, Cn, and T are good.

Since Qn is isomorphic to ¤nP2, thus γ(Qn) = γ(¤nP2) =
∏

n(22 − 1) = 3n. Then we

can also use this result to prove Theorem 5.1.5.
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6 The Critical Pebbling Numbers

We review that the r-critical pebbling number cr(G) is the largest size of a minimally r-

solvable rooted distribution on G for any r. If a minimally r-solvable rooted distribution

on G has cr(G) pebbles, then we call it an r-ceiling distribution.

6.1 Some Preliminary Results

Lemma 6.1.1. Suppose that G is a graph with diameter d, then cr(G) ≥ 2d.

Proof.

Let a and b be two vertices with distance d. Let D be the rooted distribution where

a = r and D(b) = 2d. Clearly, this distribution is minimally r-solvable. So, we have

cr(G) ≥ 2d.

Lemma 6.1.2. [12] If G is a graph, then f(G) ≥ cr(G).

It is easy to show that cr(Kn) = 2, cr(Pn) = 2n−1 and cr(Kn1,n2,...,nr) = 4.

Table 1 shows that the numbers of the four pebbling parameters for four simple graphs.

41082

1329159

3532

51185

K3,2C7P4K5

( )f G

'( )f G

( )G

( )
r

c G

Table 1: Some pebbling parameters of graphs.

A solution of the rooted distribution D is called r-critical if it leaves one pebble on

r and no pebbles on any other vertex. A distribution D is r-excessive if D is r-solvable

and not r-critical, moreover, D is r-insufficient if it is not r-solvable. Note that for an

r-excessive distribution E, an r-critical distribution C and an r-insufficient distribution

I, we have that |I| ≥ |C| ≥ |E|. Figure 3 is an example of this three distributions.

Theorem 6.1.3. [20, 12] f(K1,n) = n + 2 and cr(K1,n) = 4 for n ≥ 4.
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E

C

I

r

r

r

3

4

5

Figure 3: Three rooted distributions on the graph P5.

By Lemma 6.1.2, f(G) ≥ cr(G) for any graph G. As a matter of fact Theorem 6.1.3

gives an example of a family of graphs G such that |f(G)−cr(G)| can be arbitrarily large.

Now, we consider the fan Fk which is obtained by joining a vertex to path Pk.

Theorem 6.1.4. [12] f(Fk) = k + 1 and cr(Fk) = k for k ≥ 4.

The example of an r-ceiling and an r-insufficient rooted distribution on the fan F5 are

shown in Figure 4.

2          1        1         1 r 3                   1         1 r

Figure 4: An r-ceiling and an r-insufficient rooted distribution on the fan F5.

Corollary 6.1.5. [12] If k is a positive integer, there exist graphs with r-critical pebbling

number k if and only if k 6= 3.

6.2 Weight and Greedy Pebbling Step

We review that the weight of the rooted distribution D is defined as ω(D) =
∑

v∈V (G)

D(v)

2d(v,r)
.

Therefore, the weight ω(G) of G is the largest weight of any r-ceiling distribution on G.

Theorem 6.2.1. [12] The fan Fk has weight k+1
4

.

Corollary 6.2.2. [12] There exist graphs with diameter 2 that have arbitrarily large

weight.
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Lemma 6.2.3. [12] If the rooted distribution E is obtained from the rooted distribution

D, then ω(E) ≤ ω(D) with equality holds only when a greedy pebbling step is used.

Proof.

Suppose E is obtained from D by the pebbling step [a, b]. If [a, b] is greedy and

d(a, r) = d, then d(b, r) = d− 1. E has two fewer pebbles on a and one additional pebble

on b. So,

ω(E) = ω(D)− 2
2d + 1

2d−1 = ω(D).

If [a, b] is not greedy and d(a, r) = d, then d(b, r) = e ≥ d. So,

ω(E) = ω(D)− 2
2d + 1

2e < ω(D).

Lemma 6.2.4. If D is r-critical and greedy, then ω(D) = 1.

Corollary 6.2.5. If ω(D) < 1, then D is r-insufficient.

Corollary 6.2.6. For any graph G, ω(G) ≥ 1.

Lemma 6.2.7. [12] If D is a rooted distribution on G, P is a path in G with end vertex

r, E is the rooted distribution on P induced from D, and ω(E) > 1, then D is r-excessive.

Proof.

Suppose that there are no pebbles on r and at most one pebble on every other vertex

on P . So, we have ω(E) < 1. Assume that E is not solved, then there exists a vertex

a of P such that ω(a) > 1. Therefore, we may put pebble from a towards r. Since

this pebbling step is greedy, by Lemma 6.2.3, the new rooted distribution E ′ obtained

from this pebbling step still satisfies ω(E ′) > 1. Then we continue in this way until we

reach a solved rooted distribution F . Since ω(F ) > 1, it yields F is r-excessive, so E

is r-excessive. Now, we use the same pebbling steps on D and conclude that D is also

r-excessive.
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6.3 The Main Results

Theorem 6.3.1. cr(Cm) =

{
f(Cm)− 1 if m ≡ 3 (mod 4), and
f(Cm) otherwise.

Proof.

Let Cm = (r, a1, a2, · · · , am−1), see Figure 5. Consider the two paths r, a1, · · · , am−1

and r, am−1, · · · , a1.

r

1
a

2
a

k
a

1k
a

2m
a

1m
a

…
…

…
…

Figure 5: The graph Cm.

Suppose that D is an r-critical rooted distribution on Cm. Then, by Lemma 6.2.7, we

have the following inequalies:




m−1∑
i=1

D(ai)

2i
≤ 1

m−1∑
i=1

D(ai)

2m−i
≤ 1.

=⇒





m−1∑
i=1

2m−1−iD(ai) ≤ 2m−1 . . . (1)

m−1∑
i=1

2i−1D(ai) ≤ 2m−1 . . . (2)

Summing up (1) and (2), we have

m−1∑
i=1

(2m−1−i + 2i−1)D(ai) ≤ 2m.

We assume that m = 2k + 1. If D is an r-critical rooted distribution on C2k+1 with

the number of pebbles at least f(C2k+1), then
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(2k + 2k+1)
2k∑
i=1

D(ai) +
2k∑

i=1,i 6={k,k+1}
(22k−i + 2i−1)D(ai) ≤ 22k+1.

Since
2k∑
i=1

D(ai) ≥ 2b2
k+1

3
c+ 1 = f(C2k+1),

(3 · 2k−1)(2b2k+1

3
c+ 1) +

2k∑

i=1,i6={k,k+1}
(22k−i + 2i−1)D(ai) ≤ 22k+1.

If k is odd, we have b2k+1

3
c = 2k+1−1

3
. This implies that

(3 · 2k−1)(2 · 2k+1−1
3

+ 1) +
2k∑

i=1,i6={k,k+1}
(22k−i + 2i−1)D(ai) ≤ 22k+1.

But, (3 · 2k−1)(2 · 2k+1−1
3

+ 1) = 2k(2k+1 − 1) + 3 · 2k−1 = 22k+1 − 2k + 3 · 2k−1 > 22k+1.

This is a contradiction. Thus, there is no r-critical distribution D on odd cycle with

more than f(C2k+1) pebbles, and we conclude that cr(C2k+1) ≤ f(C2k+1)− 1.

Moreover, by placing 2k+1−1
3

− 1 and 2k+1−1
3

+ 1 pebbles on vertices ak and ak+1,

respectively, we have an r-critical rooted distribution. Thus cr(C2k+1) = f(C2k+1)− 1, if

k is odd.

Now we consider the case when k is even.

Since cr(C2k+1) ≤ f(C2k+1) = 2b2k+1

3
c+1, and the distribution of b2k+1

3
c and b2k+1

3
c+1

pebbles on vertices ak and ak+1, respectively, we have an r-critical rooted distribution.

Thus cr(C2k+1) = f(C2k+1), if k is even.

For the case m = 2k, we also let ai, i = 1, 2, . . . , 2k − 1 be non-rooted vertices which

starting from a vertex adjacent to rooted vertex r and continuing around the cycle. By

a similar argument as above, we have cr(C2k) ≤ f(C2k) = 2k and an r-critical rooted

distribution which use 2k pebbles on vertex ak. Thus, cr(C2k) = f(C2k).

Theorem 6.3.2. Let T be a tree with diameter d. Then cr(T ) = 2d.

Proof.

Let T be a tree with diameter d. Therefore, there exists two vertices r, r′ ∈ V (T ) such

that d(r, r′) = d. Let r be the rooted vertex of T and the other of vertices are labeled by

aj,i where d(aj,i, r) = j, i ∈ {1, 2, . . .} and j ∈ {1, 2, . . . , d}.

Since D is an r-critical rooted distribution on T ,
d∑

m=1

D(Am)

2m
≤ 1 where D(Am) =

∑

k=1

D(am,k). For otherwise, if
d∑

m=1

D(Am)

2m
> 1, then there will be at least one pebble
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which can not be used. This implies that D is not r-critical. So,
d∑

m=1

D(Am)

2m
≤ 1 and

thus
d∑

m=1

D(Am) ≤
d∑

m=1

2d−mD(Am) ≤ 2d. Hence, cr(T ) ≤ 2d.

By Lemma 6.1.1, we have cr(T ) ≥ 2d. This concludes that cr(T ) = 2d.

Theorem 6.3.3. Let P be the Petersen graph. Then cr(P ) = 6.

Proof.

Let P be the Petersen graph with rooted vertex r and the other 9 vertices are labeled

by ai where d(ai, r) = 1, ∀i = {1, 2, 3}, and bj where d(bj, r) = 2, ∀j = {1, 2, 3, 4, 5, 6},
see Figure 6.

r

1
a

2
a

3
a

1
b

3
b

2
b

4
b

5
b

6
b

Figure 6: Petersen graph.

If D is an r-critical rooted distribution, then the following properties hold:

1. D(ai) ≤ 1 and D(bj) ≤ 3. For otherwise, D(ai) ≥ 2 or D(bj) ≥ 4, then it can not

satisfy the definition of r-critical pebbling number.

2. If D(ai) = 1, then D(ak) = 0 for i 6= k.

3. If D(bj) ≥ 2, then |bj| ≤ 3. For otherwise, |bj| ≥ 4 and D(bj) ≥ 2, then we will

find that there are two vertices bj such that D(ai) ≥ 2 by a pebbling step, this

contradicts property 1.

4. If D(bj) ≥ 2, then D(ai) = 0 where ai is adjacent to bj. For otherwise, D(ai) = 1

and D(bj) ≥ 2, then we have D(ai) = 2 by a pebbling step, this contradicts property

1.
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5. There exists at least one vertex v ∈ V (D) such that D(v) is even .

6. If D(v) = 3, then |v| ≤ 1, and D(v) ≥ 2 where |v| ≤ 3.

Now, we put the pebbles on the vertices. (b1, b3, b5) = (2, 1, 3) or (2, 2, 2). Then will

be a pebble on the rooted vertex r by a sequence of pebbling steps. So cr(P ) ≥ 6.

Therefore, we claim that cr(P ) ≤ 6. Thus, it suffices to show that 7 pebbles on P can

not satisfy the above properties.

Moreover, we partition 7 into positive integers not greater than 3 (as the cases).

Case 1 : (3,3,1)

It contradicts property 5.

Case 2 : (3,2,2)

First, without loss of generality, we put 2 pebbles on vertex b1 and put 3 pebbles

on one of the vertices in {b2,b3,· · ·,b6}. Clearly, 3 pebbles are not on b2, b3 or b6,

since it can not satisfy the definition of r-critical pebbling number. So, we suppose

3 pebbles on b4 and b5 is treated by the same way. Then the last 2 pebbles will be

put on b2, b3, b5 or b6. However, if we put 2 pebbles on either one of them, it will

not satisfy the definition of r-critical pebbling number.

Case 3 : (3,2,1,1)

First, without loss of generality, we put 2 pebbles are placed on b1 and 3 pebbles

on b4. Consider 1 pebble on a3, b2, b3, b5 or b6. However, if we put 1 pebble on a3,

b2 or b3, it will not satisfy the definition of r-critical pebbling number. So, we can

only put 1 pebble on b5 and b6, respectively. But, by a sequence of pebbling steps, 1

pebble on b5 will not be used. It will not satisfy the definition of r-critical pebbling

number.

Case 4 : (3,1,1,1,1)

It contradicts property 5.

Case 5 : (2,2,2,1)

First, without loss of generality, we put 2 pebbles on vertex b1. Since b1, b2, . . . , b6

form a cycle. So, there are three cases such that three vertices have 2 pebbles. The
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three subcases are (b1, b3, b5), (b1, b2, b3), and (b1, b4, b5). But, these subcases which

have 6 pebbles will put a pebble on r by a sequence of pebbling steps. Then the

7th pebble is unnecessary. This means that the rooted distribution D is excessive.

Thus, it will not satisfy the definition of r-critical pebbling number.

Case 6 : (2,2,1,1,1)

First, without loss of generality, we put 2 pebbles on vertex b1. We know that b2, b3

and b6 can not be put 2 pebbles on either one of them, since it can not satisfy the

definition of r-critical pebbling number. So, we suppose 2 pebbles on b4 (respectively

on b5). Then, the other three pebbles will be put on a3, b2, b3, b5 or b6 one for each

of three vertices. Again, this can not satisfy the definition of r-critical pebbling

number.

Case 7 : (2,1,1,1,1,1)

First, without loss of generality, we put 2 pebbles on vertex b1. Then, a1 must

has no pebble on it, otherwise it can not satisfy the definition of r-critical pebbling

number. Consider b3 and b6. One of them has 1 pebble and the other has no pebble.

We suppose that b3 has 1 pebble, then a2 must have no pebble on it. So, we just

remain only 4 vertices a3, b2, b4, and b5 to put 1 pebble on one of them. But, it will

not satisfy the definition of r-critical pebbling number either.

Case 8 : (1,1,1,1,1,1,1)

It contradicts property 5.

This concludes the proof.

Theorem 6.3.4. cr(Qn) = 2n.

Proof.

By Lemma 6.1.2, f(Qn) ≥ cr(Qn). Since f(Qn) = 2n ( see [4]), cr(Qn) ≤ 2n. Now,

by Lemma 6.1.1, since Qn is a graph with diameter n, so we have cr(G) ≥ 2n. Therefore,

cr(Qn) = 2n.

Theorem 6.3.5. cr(C5¤C5) = 25.
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Proof.

By Lemma 6.1.2, f(C5¤C5) ≥ cr(C5¤C5). Since f(C5¤C5) = 25 ( see [14]), cr(C5¤C5) ≤
25. Since we have an r-critical rooted distribution on C5¤C5, see Figure 7. Therefore,

cr(C5¤C5) = 25.

r

2
5

711

Figure 7: An r-critical rooted distribution on C5¤C5.

Finally, we consider that the analogous statement about Graham’s Conjecture for r-

critical pebbling number, cr(G¤H) ≤ cr(G)cr(H). But cr(C3) = 2, and cr(C3¤C3) ≥ 5.

So the inequality can not be satisfied. Therefore, the analog of Graham’s Conjecture on

pebbling number does not hold.
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7 Conclusion

In this thesis, we mainly study the critical pebbling number of several classes of graphs

and we are able to obtain several new results. The results are (1) cr(Cm) = f(Cm) − 1

if m ≡ 3 (mod 4), and f(Cm) otherwise; (2) cr(T ) = 2d, where T is a tree and d is the

diameter of T ; (3) cr(P ) = 6, where P is the Petersen graph; (4) cr(Qn) = 2n, where Qn

is an n-cube; and (5) cr(C5¤C5) = 25. It takes no time to realize that finding the critical

pebbling number of a graph is not easy at all. More properties have to be discovered. We

also wish that we can do a better job in the near future.
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