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Critical Pebbling Numbers of Graphs

Student: Tzung-Han Tsai Advisor: Hung-Lin Fu
Department of Applied Mathematics Department of Applied Mathematics
National Chiao Tung University National Chiao Tung University
Hsinchu, Taiwan 30050 Hsinchu, Taiwan 30050
Abstract

Given a distribution of pebbles on the vertices of a graph G, a pebbling step
(or pebbling move) takes two pebbles from one vertex and place one pebble on an
adjacent vertex. A distribution D of pebbles on the graph G is called solvable if,
starting from D, it is possible to place a pebble on any given vertex using a sequence
of pebbling steps. The pebbling number f(G) of a connected graph is the smallest
number of pebbles such that every distribution with f(G) pebbles on G is solvable.
A distribution D is r-solvable if there existsra. sequence of pebbling steps which
begin from D and end in at least‘one pebble on the vertex r. The r-critical pebbling
number ¢,(G) is the largest size of a minimally.r-solvable rooted distribution on G
for any r. In this thesis, we first derive several'known results from the study of
pebbling numbers, and then we also obtain several new results on critical pebbling
numbers. The results are (1) e (Crp) =f(Cm) —Lif m = 3 (mod 4), and f(Cp,)
otherwise; (2) ¢,(T') = 2%, where'Tlis a tree and d/is the diameter of T’ (3) ¢,.(P) = 6,
where P is the Petersen graph; (4) e (@n) = 2", where @, is an n-cube; and (5)
CT(C5DC5> = 25.
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1 Introduction

The concept of pebbling graphs was first suggested by Lagarias and Saks [17, 22] to solve
a number theoretic conjecture proposed by Erdos and Lemke using the different method
which can be found in [18]. In 1987, Lagarias and Saks proposed the following question.
Suppose 2" pebbles are distributed onto vertices of an n-cube, is it always possible to move
one pebble to a specified vertex by a sequence of pebbling steps from any distribution of
2" pebbles? Note here that a pebbling step (or pebbling move) takes two pebbles from
one vertex and place one pebble on an adjacent vertex. Later, in [4], Chung was able
to show that the above game can be done and successfully used this tool to prove the
conjecture. This sets up further study of pebbling numbers, and has been developed by
many others including Hurlbert who published a survey of pebbling results in [15].

Moreover, several related topics of pebbling numbers, such as optimal pebbling num-
ber, cover pebbling number, and critical pebblitig number are introduced and studied.
Since then, the study of pebbling numbers is getting familiar to the researchers especially
graph theorists.

In this thesis, we first derive several knowirtesults-on the study of pebbling numbers,
and then we obtain several new results on critical pebbling numbers. The results are (1)
cr(Cr) = f(Cp) —1if m = 3 (mod 4), and f(C,,) otherwise; (2) ¢.(T) = 2¢, where T
is a tree and d is the diameter of T'; (3) ¢,.(P) = 6, where P is the Petersen graph; (4)
¢ (Qn) = 2", where @, is an n-cube; and (5) ¢,(Cs0C5) = 25.



2 Preliminaries

First, we introduce that the terminologies and definitions of graphs. For details, the
readers may refer to the book ”Introduction to Graph Theory” by D. B. West [28].

A graph G is a triple consisting of a vertex set V(G), an edge set E(G), and a relation
that associates with each edge two vertices called its endpoints. A loop is an edge whose
endpoints are equal. Multiple edges are edges having the same pair of endpoints. A simple
graph is a graph having no loops or multiple edges. When u and v are the endpoints of
an edge, they are adjacent and are neighbors.

A subgraph of a graph G is a graph H such that V(H) C V(G) and E(H) C E(G)
and the assignment of endpoints to edges in H is the same as in G. A spanning subgraph
of G is a subgraph H with V(H) = V(G). A path is a simple graph whose vertices can
be ordered so that two vertices are adjacent if and only if they are consecutive in the list.
A graph G is connected if each pair of vertices in G belongs to a path; otherwise, G is
disconnected. In this thesis, we consider all of the graphs which are simple and connected.

A cycle is a graph with an equal number of vertices and edges whose vertices can
be placed around a circle so that two vertices are adjacent if and only if they appear
consecutively along the circle. A graph*with no cycle is acyclic. A tree is a connected
acyclic graph.

A complete graph is a simple graph whose vertices are pairwise adjacent; the complete
graph with n vertices is denoted by K,,. A graph G is bipartite if V(G) is the union of two
disjoint independent sets called partite sets of G. A graph G is r-partite if V(G) can be
expressed as the union of r independent sets. A complete multipartite graph is a simple
graph of G whose vertices can be partitioned into sets so that u is adjacent to v if and
only if u and v belong to different sets of the partition. We use K, 5, n, to denote the
complete r-partite graph with partite sets of sizes ni,ns,...,n,. Note that if £ = 2, it is
called complete bipartite graph.

A k-dimensional cube (hypercube or k-cube) Q) is the simple graph whose vertices are
the k-tuples with entries in {0,1} and whose edges are the pairs of k-tuples that differ in
exactly one position.

The wheel graph W, is composed of a cycle consisting of n vertices, vy, vs, ..., vy,

which are all connected to hub vertex vy, for a total of v = n + 1 vertices.



The Petersen graph is the simple graph whose vertices are the 2-element subsets of a
b-element set and whose edges are the pairs of disjoint 2-element subsets.

For any two graphs G and H, we define the Cartesian product of G and H, denoted
GUH, is the graph with vertex set

V(GOH) = {(u,v): ue V(G), v e V(H)},
and edge set
E(GOH) = {((u,v), (v/,v")): u=u"and (v,v") € E(H) or v=2"and (u,u') € E(G)}.

Clearly, 1-cube is K3, 2-cube is K3[JK5, and n-cube @, is Q,_1L0K5. The m-by-n
grid is the Cartesian product P,,[1P,. Figure 1, shows P3[1F;.

H
é b & d
X (x,d)
G 1y
z (z,d)
G H

Figure 1: P30P;.

A complete m-ary tree with height h, denoted by 77", is an m-ary tree satisfying that
v has m children for each vertex v not in the h-th level.

A tree T is called a caterpillar if the deletion of all pendent vertices of the tree results
in a path P’. For convenience, we shall call a path P with maximum length which contains
P’ a body of the caterpillar, and all the edges which are incident to pendent vertices are
the legs of the caterpillar T. Furthermore, the vertex v € V(P) is a joint of T provided
that degr(v) > 3 or v is adjacent to the end vertices, Figure 2 is an example.

Suppose G is a connected graph. A pebbling distribution (simply called distribution)
D on G is a function D : V(G) — N U {0} which assigns to every vertex of G a natural
number of pebbles or zero pebble. If D is a distribution on GG and a is a vertex of GG, then

D(a) be the number of pebbles on a in the distribution D. The size of the distribution

3



Figure 2: A caterpillar with 5 joints.

D is the number of pebbles in D, [D| =} .y, ) D(a). If there are some pebbles on the
vertices of a graph G, a pebbling step is that one can remove two pebbles from one vertex
and place one pebble on an adjacent vertex. We say that a pebble can be moved to a
vertex 7, the rooted vertex, if we can apply pebbling steps repeatedly (if necessary) so
that in the resulting distribution the vertex r has one pebble.

A distribution D is r-solvable if there exists a sequence of pebbling steps which begin
from D and end in at least one pebble onsthe wertex r. If D is r-solvable for any r, D is
called solvable. A distribution D is unsolvablesif-there is some vertex r for which D is not
r-solvable.

A rooted distribution is a distribution-which-identifies a vertex r of G as the rooted
vertex of G. We say that the rooted.distribution D is solved if it has at least one pebble
on r, and solvable if there exists a sequence of pebbling steps staring with D and ending
with a solved distribution. We say that an un-rooted distribution is a global distribution.

A rooted distribution D is minimally r-solvable if D is r-solvable but the removal of
any one pebble makes D not r-solvable. A global distribution D is minimally solvable if D
is solvable but the removal of any one pebble makes D unsolvable. A rooted distribution
D is maximally r-unsolvable if D is not r-solvable but the addition of any one pebble
makes D r-solvable. A global distribution D is maximally unsolvable if D is unsolvable
but the addition of any one pebble makes D solvable.

The pebbling number f(G) of a graph G is one greater than the largest size of a
maximally unsolvable global distribution on G. Equivalently, f(G) is one greater than
the largest size of a maximally r-unsolvable rooted distribution on G for any r. Or
equivalently, is the smallest integer m, such that for any distribution of m pebbles to the
vertices of (G, one pebble can be moved to a specified vertex, i.e. every distribution of m

pebbles on G is solvable.



A distribution is a k-pebbling if it is possible to move k pebbles to any given vertex
r after a sequence of pebbling steps. Let fi(T') denote the smallest integer n such that
every distribution which at least n pebbles is k-pebbling.

We say that G satisfies the 2-pebbling property if two pebbles can be moved to a given
vertex when the total starting number of pebbles are 2f(G) — ¢+ 1, where ¢ is the number
of vertices with at least one pebble.

The optimal pebbling number f'(G) of a graph G is the smallest size of a minimally
solvable global distribution on G. Equivalently, f'(G) is the least number k such that
there exists a solvable distribution of k£ pebbles on G.

We say that a distribution D on G is cover solvable if there exists a sequence of pebbling
steps starting with D and ending with a pebble on every vertex of G simultaneously.

The cover pebbling number v(G) of G is the smallest integer n, such that for any
distribution of n pebbles to the vertices of GG, one pebble can be moved to every vertex
simultaneously, i.e. every distribution of n-pebbles on G is cover solvable.

Let a weight function w be given thatjassignsian integer w(v) to every vertex v of G.
We say that w is positive if w(v)=>"0 for all“e. The= weighted cover pebbling numbers
7w (G) is the smallest integer k, such that forranyrdistribution of k& pebbles to the vertices
of G, w(v) pebbles can be moved to every vertex @ simultaneously.

So, we know that the cover pebbling number v(G) is the weighted cover pebbling
numbers v, (G) with w(v) = 1 for all v.

The r-critical pebbling number c,(G) is the largest size of a minimally r-solvable rooted
distribution on G for any r. If a minimally r-solvable rooted distribution on G has ¢, (G)
pebbles, then we call it an r-ceiling distribution.

The distance between the vertices a and b denoted by d(a, b). The pebbling step [a, b]
is an operation which remove two pebbles from the vertex a and place one pebble on the
adjacent vertex b. The pebbling step [a,b] is greedy if d(a,r) > d(b,r), and the rooted
distribution D is greedy if there is a solution of D which uses only greedy pebbling steps.

D
The weight of the rooted distribution D is defined as w(D) = Z ﬂ Therefore,

d(v,r) "
veV(G) 2
the weight w(G) of G is the largest weight of any r-ceiling distribution on G.

In this thesis, we first derive several known results from the study of pebbling numbers,

and then we also obtain several new results on critical pebbling numbers. The results are



(1) ¢, (Cp) = f(Cp) — 1if m = 3 (mod 4), and f(C,,) otherwise; (2) ¢.(T) = 2%, where
T is a tree and d is the diameter of T'; (3) ¢,.(P) = 6, where P is the Petersen graph; (4)
¢ (Qn) = 2", where @, is an n-cube; and (5) ¢,(C50C5) = 25.




3 The Pebbling Numbers

We review that the pebbling number f(G) of a graph G is one greater than the largest
size of a maximally unsolvable global distribution on G. Equivalently, f(G) is one greater
than the largest size of a maximally r-unsolvable rooted distribution on G for any r. Or
equivalently, is the smallest integer m, such that for any distribution of m pebbles to the
vertices of G, one pebble can be moved to a specified vertex, i.e. every distribution of

m pebbles on G is solvable. We start with some properties of the pebbling number of a
graph G, f(G).
3.1 Some Preliminary Results

First, we include some facts about f(G).

(F1) Breadth Lower Bound : f(G) > n(G), where n(G) denotes the number of
vertices of G.
It follows by the fact that wé place one-pebble on every vertex of GG except one.

Note that graphs whose pebbling number equals 7(G) are said to be of Class 0, and
equals n(G) + 1 are said to be of Class 1.

(F,) Depth Lower Bound : f(G) > 2%9™(®) where diam(G) denotes the diameter of
G.

It follows by the fact that we place all the pebbles on a vertex which is at distance

diam(G) from another vertex.

(F3) Pigeonhole Upper Bound : f(G) < (n(G) — 1)(24@™(@) — 1) + 1.

By pigeonhole principle, at least one vertex has 24%™(%) pebbles and thus the dis-

tribution is solvable.
Combining (F}), (F3) and (F3), we conclude that if d = diam(G) and n = n(G), then
maz{n,2%} < f(G) < (2% = 1)(n — 1) + 1.

(Fy) Cut Lower Bound : f(G) > n(G), when G contains a cut vertex a.



Suppose not. Let A and B be two components of G — a, with v in A and r in B.
Then by placing 3 pebbles on v and 1 pebble on every other vertex except a and r,

we have a distribution which is not solvable.

Note that Class 0 graphs are 2-connected.

(F5) Spanning Subgraph : f(H) > f(G), where H is spanning subgraph of G.

From the above properties (F}), (F3), ---, (F5), we are able to obtain several nice
results :
L4 f Kn) =n

e If L, is the line graph of the complete graph K, then f(L,) = (3) [26].

2k+1

Theorem 3.1.1. [21] For k > 1, f(Cap) = 2" anid f(Cory1) = 2|35 + 1.

Indeed, finding f(7') needs some extra effort: ‘We:define a maximum path partition
P of a tree T'. Suppose T is a tree with a given vertex v. T' can be viewed as a directed
tree denoted by T with edges directedtoward the.given vertex v, v is also called the
rooted vertex. Consider a partition P = (Py, Ps, ..., P;) of the edges of T into Py, Ps, ...,
P,, such that p; > p;y1 where p; = |P;|, which is a set of nonoverlapping directed paths
and the union of which is T'. A partition is said to majorize another if the nonincreasing
sequence of the path size majorize that of other; that is, (p1, pe,...,p:) = (P}, 05, .-, D))
if and only if p; > pl, where i = min{j : a; # b;}. A path partition is mazimum if
no other path partition majorizes it. Now, we have the following beautiful result by D.

Moews.

Theorem 3.1.2. [20] Let T be a tree and r be the rooted vertex of T. If (p1,p2,.--,Dt)

is the nonincreasing sequence of a mazximum path partition P = (P, Pa, ..., P,), then
t t

FT)=0_2") —t+1 and filT) = k2" + (D _27) —t+1.
=1 1=2

3.2 2-Pebbling and Products

Let @, be the n-dimensional cube (simply called n-cube). Chung [4] gives the 2-Pebbling

property in order to prove the following theorems.
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Review that G satisfies the 2-pebbling property if two pebbles can be moved to a
given vertex when the total starting number of pebbles are 2f(G) — ¢ + 1, where ¢ is the
number of vertices with at least one pebble. Note that both n-cube and paths satisfy the
2-pebbling property.

Theorem 3.2.1. [4] Suppose G satisfies the 2-pebbling property. Then the following holds:

(1) f(GUEK,) <tf(G).
(2) If f(GOK,) =tf(G), then GOK,; satisfies the 2-pebbling property.

The conjecture about the pebbling number of the cartesian product of graph was posed

by Graham.
Conjecture 3.2.2. (Graham) f(GOH) < f(G)f(H).

For the n-cube @,,, Chung [4] proved f(Q,) = 2". The above conjecture has been veri-
fied for several classes of graphs. First, by Theorem 3.2.1, we have f(K,,0K,,0---0K,,) =

ning ... Ny.
Theorem 3.2.3. [4] f( Py, 10P, 05 - EIP,, 4) =20 tnattne

Moreover, the conjecture also-holds fors—a-cycle by a cycle [13, 14, 21], complete

bipartite graphs [8], fans and wheels"{9}; and trees [20].

3.3 Diameter, Connectivity and Class 0 Graphs

Theorem 3.3.1. [21] Let G be a graph with diameter 2, then G has the 2-pebbling prop-

erty.
Theorem 3.3.2. [21] If diam(G) = 2, then f(G) =n(G) or n(G) + 1.

Bukh recently obtained an upper bound of diameter 3 graphs as following.
Theorem 3.3.3. [2] If diam(G) = 3, then f(G) < 3n/2, which is best possible.

Hurlbert et. al. can characterize Class 0 graphs of diameter two which are decided by

connectivity.
Theorem 3.3.4. [6] If diam(G) = 2 and k(G) > 3, then G is of Class 0.

Theorem 3.3.5. [6] If G is of Class 0, then (G) > 2. In particular, if diam(G) = 2
and k(G) =1, then G is of Class 1.



4 The Optimal Pebbling Numbers

We review that the optimal pebbling number f'(G) of a graph G is the smallest size of
a minimally solvable global distribution on G. Equivalently, f'(G) is the least number k
such that there exists a solvable distribution of k pebbles on G.

4.1 The Known Results

For optimal pebbling numbers, it seems that to find its upper bounds is easier than to find
lower bounds. Clearly, in order to obtain an upper bound, it suffices to give a distribution
and show that it is solvable. But, finding a tight lower bound, we have to show that every
distribution with less pebbles is not solvable.

It is easy to see that f'(G) < 2%, where d is a diameter of G. The following general

upper bound for graphs on n vertices was proved in [3].
Corollary 4.1.1. If G is a connected_graph ofmvertices, then f'(G) < [2n/3].

It was shown that the tight upper bound for paths ' (Ps;y,.) = 2t+7r, where 0 < r < 2
[21], and cycles f'(Csiy,) = 2t + 15 where 0L 7 < 2 [3)
The Graham’s conjecture on pebbling number is still an open problem, but the anal-

ogous statement for optimal pebbling numbet is ‘easier.

Theorem 4.1.2. [23] For any two graphs G and H, f'(GOH) < f'(G)f'(H).
Even f(Q,) is known, f'(Q,) is far from being determined.

Theorem 4.1.3. [19] f/(Q,) = ()0l
More known results about optimal pebbling are as following.

Theorem 4.1.4. [11] If T{" is an m-ary tree satisfying that v has m children for each

vertex v not in the h-th level, then f'(T7") = 2" for each m > 3.

We review that a tree T is called a caterpillar if the deletion of all pendent vertices
of the tree results in a path P’. For convenience, we shall call a path P with maximum
length which contains P’ a body of the caterpillar, and all the edges which are incident to
pendent vertices are the legs of the caterpillar T. Furthermore, the vertex v € V(P) is a

joint of T provided that degr(v) > 3 or v is adjacent to the end vertices.

10



Theorem 4.1.5. [10] Let T be a caterpillar with P a body of T and |V (P)| = n. Let
a(v) = 2 ifvis a joint of T and a(v) = 1 otherwise. Let P|, P}, ---, P! be 2-maximal sub-

paths of P with respect to o and P; be a subpath between P} and P/, fori=1,2,... ,m—1.

Then /(1) = n—m — 3" [[o(P)/3]

4.2 Bounds with Minimum Degree

By Corollary 4.1.1, we have proved that f'(G) < [2n/3] for any connected graph G with
n vertices, with equality holds for paths and cycles. We will the find f'(G) by adding the

consideration of minimum degree k.

Proposition 4.2.1. [3] Among n vertices graphs with minimum degree k, f'(G) can be

as large as 2n/(k + 1).

Conjecture 4.2.2. Given k € N, there exists ng such that for all n > ng, every connected

n vertices graph G with minimum degree k satisfies. f'(G) < [2n/(k + 1)].

If the case k = 2, the above Corollary 4.1:1 satisfies the above conjecture. It would
be interesting to deal with the case k =37 We fiiid the probabilistic argument in Alon [1]

as follows.

Theorem 4.2.3. If G is a connected graph with n vertices and minimum degree k, then

F(G) < 251+ Ink1).

11



5 The Cover Pebbling Numbers

We review that the cover pebbling number v(G) of G is the smallest integer n such that
for any distribution of n pebbles to the vertices of GG, one pebble can be moved to every
vertex simultaneously, i.e. every distribution of n pebbles on G is cover solvable.

Let a weight function w be given that assigns an integer w(v) to every vertex v of G.
We say that w is positive if w(v) > 0 for all v. The weighted cover pebbling number ~,(G)
is the smallest integer k, such that for any distribution of k£ pebbles to the vertices of G,

w(v) pebbles can be moved to every vertex v simultaneously.

5.1 The Known Results

First, by observation, we have v(G) > 2¢(n —d+ 1) — 1, for G be a graph with n vertices
and diameter d. Therefore, we have v(K,,) = 2n—1, and v(P,) = 2" —1. If we denote that
the total weight by |w| = Y w(v) and minw = min,w(v), then v,(K,) = 2|w| — minw,
(see [7]), for every positive weight funietion w.

The fuse Fy(n) (I > 2 and n >:3) is the graph with. n vertices vy, va, . .., v,, such that
the first [ vertices form a path (ot wick) from v; to v, and the remaining n - [ vertices

are independent vertices (or sparks) and+adjacent only to v;.
Theorem 5.1.1. [7] y(Fi(n)) = (n — 1 +1)2! — 1.
Example 5.1.2. F,(n) is a star with n vertices and y(Fy(n)) = 4n — 5.

Let T be an arbitrary tree and let V(T) be the vertex set of 7. For v € V(T), we
define

s(v) = Z 24wv) and s(T) = vg‘l/e%}é)s(v),
ueV(T)

where d(u,v) denotes the distance between u and v.

Suppose a positive weight function w of T is given, we define

Sw(v) = Z w(1)2%) and s, (T) = max s,(v).

WV (T) veV(T)

Clearly, 7,(T) > s,(T), for any T and any positive weight function w. In fact, this
lower bound is tight.

12



Theorem 5.1.3. [7] For any tree T and any positive weight function w, we have
Y (T) = 5,(T).

Theorem 5.1.4. (Stacking Theorem) [25] For any graph G and any positive weight func-

tion w, we have

1w(G) = 5u(G).
In the case of n-cube, we have the following result.
Theorem 5.1.5. [16] 7(Q,) = 3"
The complete multipartite graphs and wheel graphs were considered in [27].

ne) =4ny 4+ 2ng + -+ 4+ 2n, — 3, where ng >ng > -+ > n,.

.....

We review that the wheel graph W,, is composed of a cycle consisting of n vertices,

vy, Vg, . .., Uy, which are all connected:to hub vertex.vy, for a total of v = n + 1 vertices.
Theorem 5.1.7. Forn > 3, y(Wy,)=4n — 5 =40 9.

The following cases, we discuss the cyeles‘and certain graph products which considered

n [24].

Theorem 5.1.8. (C,,) = 2" + 2" — 3 where r =n/2 if n is even and r = (n+1)/2
if n1s odd.

5.2 Graph Products

There are some known covering pebbling numbers of the graph products.

(1) For any graph G, v(P,0G) < (2n — 1)v(G).

(2(n/2)+1 4 2m/2) _ 3I)V(G) if n is even.
(2) Y(GHG) < 1 (2+1/2 1 924+D/2 3)(@) if 1 is odd.

In particular, taking G to be a single vertex, and we have the above Theorem 5.1.8.

(3) We define that G is good if v(G) = Z 2142 for some vertex v € V(G).
ueV(G)

(i) Suppose G and H are good. v(GOH) = ~v(G)y(H) <= GUH is good.

13



(ii) H = (0; P,,)0(0;Cry,) s good.
o y(H) = IL;v(Pn) I1;7(Comy)-
In particular,
1(0ik,) = 12" - 1).
Y(0;Cm;) = I1;(2™ + 27 ~mi*t — 3) where 1, = [m;/2].
o Y(HOK,) = ~(H)y(Kn).

o v(HOT) = v(H)y(T) for any tree T

Example 5.2.1. K,,, P,, C,, and T are good.

Since @, is isomorphic to 0, P, thus v(Q,) = (0, ) =[], (2% — 1) = 3". Then we

can also use this result to prove Theorem 5.1.5.
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6 The Critical Pebbling Numbers

We review that the r-critical pebbling number c,.(G) is the largest size of a minimally r-
solvable rooted distribution on G for any r. If a minimally r-solvable rooted distribution

on G has ¢,.(G) pebbles, then we call it an r-ceiling distribution.

6.1 Some Preliminary Results
Lemma 6.1.1. Suppose that G is a graph with diameter d, then c.(G) > 2¢.

Proof.
Let a and b be two vertices with distance d. Let D be the rooted distribution where
a = r and D(b) = 2¢. Clearly, this distribution is minimally r-solvable. So, we have

¢ (G) > 24, 1

Lemma 6.1.2. [12] If G is a graph, then f(G) > ¢, (G).

It is easy to show that ¢,(K,) =2, ¢ () =2"" and ¢.(K,, ny...n,) =

Table 1 shows that the numbers of the four pebbling-parameters for four simple graphs.

Ks | Ps| C7 [Ksp2
8 |11 | 5
3] 5| 3
15129 | 13
8|10 | 4

f(G)
f(G)
7(G)
¢, (G)

NN IO N O

Table 1: Some pebbling parameters of graphs.

A solution of the rooted distribution D is called r-critical if it leaves one pebble on
r and no pebbles on any other vertex. A distribution D is r-excessive if D is r-solvable
and not r-critical, moreover, D is r-insufficient if it is not r-solvable. Note that for an
r-excessive distribution F, an r-critical distribution C' and an r-insufficient distribution

I, we have that |I| > |C| > |E|. Figure 3 is an example of this three distributions.
Theorem 6.1.3. [20, 12] f(K;,) =n+2 and ¢,(K;,,) =4 forn > 4.

15
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Figure 3: Three rooted distributions on the graph P;.

By Lemma 6.1.2, f(G) > ¢,(G) for any graph G. As a matter of fact Theorem 6.1.3
gives an example of a family of graphs G such that | f(G) — ¢, (G)| can be arbitrarily large.

Now, we consider the fan Fj which is obtained by joining a vertex to path F;.
Theorem 6.1.4. [12] f(Fi) =k +1 and ¢.(Fy) =k for k > 4.

The example of an r-ceiling and an r-insufficient rooted distribution on the fan Fj are

shown in Figure 4.

Figure 4: An r-ceiling and an r-insufficient rooted distribution on the fan Fj.

Corollary 6.1.5. [12] If k is a positive integer, there exist graphs with r-critical pebbling
number k if and only if k # 3.

6.2 Weight and Greedy Pebbling Step

We review that the weight of the rooted distribution D is defined as w(D) = Z
veV(G)
Therefore, the weight w(G) of G is the largest weight of any r-ceiling distribution on G.

Theorem 6.2.1. [12] The fan F}, has weight *+1,

Corollary 6.2.2. [12] There exist graphs with diameter 2 that have arbitrarily large
weight.

16



Lemma 6.2.3. [12] If the rooted distribution E is obtained from the rooted distribution

D, then w(E) < w(D) with equality holds only when a greedy pebbling step is used.

Proof.
Suppose E is obtained from D by the pebbling step [a,b]. If [a,b] is greedy and
d(a,r) = d, then d(b,7) = d — 1. E has two fewer pebbles on a and one additional pebble

on b. So,

Lemma 6.2.4. If D is r-critical and geeédy, then w(D) = 1.
Corollary 6.2.5. If w(D) < 1, then D is r=insufficient.
Corollary 6.2.6. For any graph G w(G)=-1-

Lemma 6.2.7. [12] If D is a rooted distribution on G, P is a path in G with end vertex

r, E is the rooted distribution on P induced from D, and w(FE) > 1, then D is r-excessive.

Proof.

Suppose that there are no pebbles on 7 and at most one pebble on every other vertex
on P. So, we have w(E) < 1. Assume that F is not solved, then there exists a vertex
a of P such that w(a) > 1. Therefore, we may put pebble from a towards r. Since
this pebbling step is greedy, by Lemma 6.2.3, the new rooted distribution E’ obtained
from this pebbling step still satisfies w(E’) > 1. Then we continue in this way until we
reach a solved rooted distribution F. Since w(F') > 1, it yields F is r-excessive, so E
is r-excessive. Now, we use the same pebbling steps on D and conclude that D is also

r-excessive. []
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6.3 The Main Results

Theorem 6.3.1. ¢,(C) _{ ;Egzg ~L ifm=3 (mod 4), and

Proof.
Let C,, = (r,a1,as, -+, an,_1), see Figure 5. Consider the two paths r,ay, -+, ap_1
and 7, a1, ,A1.

Ay a,

Figure 5: Thergraph'C,,.

Suppose that D is an r-critical rooted distribution on C,,. Then, by Lemma 6.2.7, we

have the following inequalies:

mz m D) < 2m L (1)

m—1

Zz@ 'Dia;) <271, (2)

=1

Summing up (1) and (2), we have

-1
(Qm—l—z’ + Qi_l)D(ai) S 2m.
1

3

(]
We assume that m = 2k + 1. If D is an r-critical rooted distribution on Cy;yq with

the number of pebbles at least f(Coyyq), then

18



2k 2k
2542503 "Da)+ Y. (2% +27)D(a;) < 22

i=1 i=1,i#{k,k+1}
2k ok+1
Since ZD(C”) >2| 3 |+ 1= f(Copyr),

i=1
2k
(3 . 2k71>(2t2’€T+1J + 1) + Z (22k’—i + Qi_l)D(ai) < 92k+1
i=1,i#{k,k+1}

If k& is odd, we have L2k3+1j = W% This implies that

2k
(3 . Qk—l)(Q . 2k+3171 + 1) + Z (22k—i + Qifl)D(ai) < 92k+1
i=1,i#{k,k+1}

But, (3-2F1)(2 +1) = 2F(2kHL — 1) + 3. 2F1 = 22k+1 _ ok 4 3. 9kl 5 92hFL

J2Ea
3
This is a contradiction. Thus, there is no r-critical distribution D on odd cycle with

more than f(Cyy1) pebbles, and we conclude that ¢, (Cory1) < f(Copyq) — 1.

Moreover, by placing % — 1 and % + 1 pebbles on vertices a; and a1,
respectively, we have an r-critical rogtéd distribution. Thus ¢, (Cogy1) = f(Cops1) — 1, if

k is odd.

Now we consider the case when k'is even:

Since ¢, (Cot1) < f(Copyr) = 2L2k3+1j F1andthe distribution of LZZ—HJ and L%J +1

pebbles on vertices a; and a1, respectively;-we have an r-critical rooted distribution.
Thus ¢, (Cors1) = f(Coxyr), if k is even.

For the case m = 2k, we also let a;, t = 1,2,...,2k — 1 be non-rooted vertices which
starting from a vertex adjacent to rooted vertex r and continuing around the cycle. By
a similar argument as above, we have ¢,.(Co,) < f(Cor) = 2% and an r-critical rooted

distribution which use 2 pebbles on vertex ay. Thus, ¢,(Co) = f(Coz). ]

Theorem 6.3.2. Let T be a tree with diameter d. Then c.(T) = 2.

Proof.
Let T be a tree with diameter d. Therefore, there exists two vertices r, 7" € V(T') such
that d(r,r") = d. Let r be the rooted vertex of T" and the other of vertices are labeled by

a;; where d(aj;,r) =7,i€{1,2,...} and j € {1,2,...,d}.

Am)

d
D
Since D is an r-critical rooted distribution on 7, Z D(Aw) < 1 where D(A,,) =
m=1

om
D(Aw)

d
D(ay, ). For otherwise, if Z o

k=1 m=1

> 1, then there will be at least one pebble
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d
D(A
which can not be used. This implies that D is not r-critical. So, Z % < 1 and

m=1
d d
thus Z D(A,) < Z 29"mD(A,,) < 2% Hence, ¢, (T) < 2%
m=1 m=1

By Lemma 6.1.1, we have ¢,(T) > 2¢. This concludes that c.(T) = 2%. ]

Theorem 6.3.3. Let P be the Petersen graph. Then c¢,.(P) = 6.

Proof.
Let P be the Petersen graph with rooted vertex r and the other 9 vertices are labeled
by a; where d(a;,r) = 1, Vi = {1,2,3}, and b; where d(b;,r) = 2, Vj = {1,2,3,4,5,6},

see Figure 6.

Figure 6: Petersen graph.

If D is an r-critical rooted distribution, then the following properties hold:
1. D(a;) <1 and D(b;) < 3. For otherwise, D(a;) > 2 or D(b;) > 4, then it can not
satisfy the definition of r-critical pebbling number.

2. If D(a;) = 1, then D(ag) = 0 for i # k.

3. If D(b;) > 2, then |b;| < 3. For otherwise, |b;| > 4 and D(b;) > 2, then we will
find that there are two vertices b; such that D(a;) > 2 by a pebbling step, this

contradicts property 1.

4. If D(bj) > 2, then D(a;) = 0 where q; is adjacent to b;. For otherwise, D(a;) =1
and D(b;) > 2, then we have D(a;) = 2 by a pebbling step, this contradicts property
1.
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5. There exists at least one vertex v € V(D) such that D(v) is even .
6. If D(v) = 3, then |v| <1, and D(v) > 2 where |v| < 3.

Now, we put the pebbles on the vertices. (by,bs,b5) = (2,1,3) or (2,2,2). Then will
be a pebble on the rooted vertex r by a sequence of pebbling steps. So ¢,.(P) > 6.

Therefore, we claim that ¢,.(P) < 6. Thus, it suffices to show that 7 pebbles on P can
not satisfy the above properties.

Moreover, we partition 7 into positive integers not greater than 3 (as the cases).

Case 1: (3,3,1)

It contradicts property 5.

Case 2 : (3,2,2)

First, without loss of generality, we put 2 pebbles on vertex b; and put 3 pebbles
on one of the vertices in {by,b3,s%+bs}. Cléarly, 3 pebbles are not on by, by or bg,
since it can not satisfy the definition ef #-critical pebbling number. So, we suppose
3 pebbles on b, and b5 is treated by the same way. Then the last 2 pebbles will be
put on by, bs, bs or bg. However, if we put 2 pebbles on either one of them, it will

not satisfy the definition of r-critical.pebbling number.

Case 3 : (3,2,1,1)

First, without loss of generality, we put 2 pebbles are placed on b; and 3 pebbles
on by. Consider 1 pebble on as, by, b3, b5 or bg. However, if we put 1 pebble on as,
by or bs, it will not satisfy the definition of r-critical pebbling number. So, we can
only put 1 pebble on b; and bg, respectively. But, by a sequence of pebbling steps, 1
pebble on b5 will not be used. It will not satisfy the definition of r-critical pebbling

number.
Case 4 : (3,1,1,1,1)

It contradicts property 5.
Case 5 : (2,2,2/1)

First, without loss of generality, we put 2 pebbles on vertex b,. Since by, bs, ..., bg

form a cycle. So, there are three cases such that three vertices have 2 pebbles. The
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three subcases are (by, b3, bs), (b1, b2, b3), and (b1, by, bs). But, these subcases which
have 6 pebbles will put a pebble on r by a sequence of pebbling steps. Then the
7th pebble is unnecessary. This means that the rooted distribution D is excessive.

Thus, it will not satisfy the definition of r-critical pebbling number.

Case 6 : (2,2,1,1,1)

First, without loss of generality, we put 2 pebbles on vertex b;. We know that by, b3
and bg can not be put 2 pebbles on either one of them, since it can not satisfy the
definition of r-critical pebbling number. So, we suppose 2 pebbles on by (respectively
on bs). Then, the other three pebbles will be put on as, b, bs, bs or bg one for each
of three vertices. Again, this can not satisfy the definition of r-critical pebbling

number.

Case 7 : (2,1,1,1,1,1)

ITITI T

First, without loss of generality, we put 2 pebbles on vertex b;. Then, a; must
has no pebble on it, otherwise it ean notisatisfy the definition of r-critical pebbling
number. Consider b3 and bg.=One of them has 1 pebble and the other has no pebble.
We suppose that b3 has 1 pebble; then“as must have no pebble on it. So, we just
remain only 4 vertices ag, bo, by, and bsto put 1 pebble on one of them. But, it will

not satisfy the definition of r-critical pebbling number either.

ITITITI T

Case 8 : (1,1,1,1,1,1,1)

It contradicts property 5.

This concludes the proof. ]

Theorem 6.3.4. ¢.(Q,) = 2".

Proof.
By Lemma 6.1.2, f(Q,) > ¢.(Qn). Since f(Q,) = 2" ( see [4]), ¢,(Q,) < 2. Now,

by Lemma 6.1.1, since @, is a graph with diameter n, so we have ¢,.(G) > 2". Therefore,

Cr(@n) = 2", [ |

Theorem 6.3.5. ¢.(C5;0C5) = 25.
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Proof.
By Lemma 6.1.2, f(C5;0C5) > ¢,(C50C5). Since f(C50C5) = 25 ( see [14]), ¢,.(C;0C5) <
25. Since we have an r-critical rooted distribution on C5UC5, see Figure 7. Therefore,

CT(O5|:|C5) = 25. |

11L 7

Figure 7: An r-critical rooted“distribution on C51C5.

Finally, we consider that the analogous statement about Graham’s Conjecture for r-
critical pebbling number, ¢,(GOH) < ¢,(G)c,(H). But ¢.(C3) = 2, and ¢,.(C380C3) > 5.
So the inequality can not be satisfied. Therefore, the analog of Graham’s Conjecture on

pebbling number does not hold.
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7 Conclusion

In this thesis, we mainly study the critical pebbling number of several classes of graphs
and we are able to obtain several new results. The results are (1) ¢,.(C,) = f(Cp,) — 1
if m = 3 (mod 4), and f(C,,) otherwise; (2) ¢,(T) = 2¢, where T is a tree and d is the
diameter of T'; (3) ¢,(P) = 6, where P is the Petersen graph; (4) ¢,(Q,) = 2", where @,
is an n-cube; and (5) ¢,.(C500C5) = 25. It takes no time to realize that finding the critical
pebbling number of a graph is not easy at all. More properties have to be discovered. We

also wish that we can do a better job in the near future.
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