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Two-Dimensional Patterns Generation
Problem with Many Symbols

student : Yi-Ching Wang Advisors : Dr. Song-Sun Lin

Department ( Institute ) of Applied Mathematics
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ABSTRACT

In this paper we discuss patterns generation problems with three symbols mainly.
The main result is to find some special transition matrix A, such that their spatial
entropy can be solved explicitly.
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1. Introduction

Lattices are important in scientifically modeling underlying spatial struc-
tures. Investigations in this field have covered phase transition [8], [11], [33],
(34], [31], [32], [35], [42], [43], [44], [45], chemical reaction [6], [7], [23], biol-
ogy (9], [10], [20], [21], [22], [28], [29], [30] and image processing and pattern
recognition [15], [16], [17], [18], [19], [24]. In the field of lattice dynamical
systems (LDS) and cellular neural networks (CNN), the complexity of the
set of all global patterns recently attracted substantial interest. In particular,
its spatial entropy has received considerable attention [1], [2], [5], [3], [4], [12],
[14], [13], [25], [26], [27], [36], [37], [38], [39], [40], [41].

The one dimensional spatial entropy A can be found from an associated
transition matrix T. The spatial entropy h equals logp(T), where p(T) is the
maximum eigenvalue of T.

In this paper, we study the two-dimensional patterns generation problems
with many symbols. We first recall the results of two symbols in [3], [4].

1.1. Transition Matrices and:Spatial Entropy

In two-dimensional situation, higher transition matrices have been dis-
covered in [27] and developed.systematically. in-[3] by studying the pattern
generation problem. For simplicity, %o symbols on 2 x 2 lattice Zyyo are
considered.

A transition matrix in thé horizontal (orwertical) direction

11 “a12 Az Aaig
Q21 Qg2 Q23 A4
A2 - )

a31 daz2 33 34
Q41 Q42 Q43 Q44

(1.1)

which is linked to a set of admissible local patterns on Zsyyo is considered,
where a;; € {0,1} for 1 < 4,5 < 4. The associated vertical (or horizontal)
transition matrix By is given by

bir b1z b1z by
bor bao Doz Doy
B, = 1.2
Sl S S 42
byr bap byz by
A, and B, are connected to each other as follows.
bir b1z | ba1 oo
bis bis | baz by Agq Ago
A, — = ; ; 1.3
? b3y b3z | ba1 s Agg Aoy |’ (13)
b3z b3s | sz by




and

a1 Qi | Ag1 A22

B, — 13 Q14 | A23 A2 . B2;1 32;2 1.4
31 a32 | A41 442 2:3 2;4
a33 a34 | A43 Q44

Notably if A, represents the horizontal (or vertical) transition matrix
then By represents the vertical (or horizontal) transition matrix. Results
that hold for A, are also valid for By. Therefore, for simplicity, only A, is
presented herein.

The recursive formulae for n-th order transition matrices A,, defined on
Zaxy are obtained in [4] as follows

bllAn;l leAn;2
bl3An;3 bl4An;4

b21 An;l b22An;2
b23An;3 b24An;4

At = 5 A bAns | oA bidns | (1.5)
bssAns bssApa | bisAns baaAna
whenever
s+ A 0
for n > 2, or equivalently,
Avern iR | @

for a € {1,2,3,4}.
The number of all admissible patterns defined on Z,,y, which can be
generated from A, is now defined by

Fm,n(A2) - |A7T_1|

o ' . (1.8)
= the sum of all entries in 2" x 2" matrix A]'" .
The spatial entropy h(A,) is defined as
1
h(Ag) = lim —IOng’n(Ag)
e min (1.9)

1
= lim —log|A™!|.
m,n—o0 MN

The existence of the limit (1.9) has been shown in [3], [12], [13]], [27]. When
h(As) > 0, the number of admissible patterns grows exponentially with the
lattice size m X n. In this situation, spatial chaos arises. When h(A,) = 0,

2



patterns formation occurs.

To compute the double limit in (1.9), n > 2 can be fixed initially and m is
allowed to tend to infinity as in [3] and [27]; then Perron-Frobenius theorem
is applied;

1
lim - log |A” ! = logp(A,,), (1.10)
which implies
1
h(A3) = lim —logp(A,), (1.11)
n—oo N

where p(A,,) is the maximum eigenvalue of matrix A,,.

1.2. Computation of Maximum Eigenvalue and Spatial
Entropy
A, is a 2™ X 2™ matrix, so computing p(A,,) is usually quite difficult when

n is large. However, for a class«0f A5, the wecursive formulae for p(A,,) can
be computed explicitly, along with alimiting’ equation to p* =exp(h(As)),

as in [3]. This class of A, hasthe form of [ % } , 1.e.,

B A
ALLB
A2—|:B A}’ (1.12)
where A= | @ 2 | B | % P21 00d 0 a5 b by, bs € {0, 1}
as a ) bg b ) , W3, Y, V2, V3 ) .

The results in [3] are recalled as follows.

Lemma 1.1. Let A and B be non-negative and non-zero m X m matrices,

respectively, and o and (3 are positive numbers. The mazimum eigenvalue of
A aB
6B A

15 then the maximum eigenvalue of

A+ \/afB. (1.13)

Theorem 1.2. Assume that Ay = 4 B and A = @ % nd
B A as a
b by

bs b

largest ergenvalue of

B = } where a,b,as,az,by, by € {0,1}. For n > 2, let A\, be the

A, — Al =0.

3



Then
)\n =Qy_1+ ﬁn—b

where oy, and Py satisfy the following recursive relations:

Qg1 = aoy + bG,
Brr1 = V(asoy + boBi)(asax + bsf),

for k>0, and ag = [y = 1.
Furthermore, the spatial entropy h(Asz) is equal to

logé,, where &, is the mazimum root of the following polynomials Q():
(I) if a9 = a3 = 1,

Q(E) =48%(E — a)’ + (v* — 40)(§ — a)® — 7% — 29(2b — ay)€ — (2b — ay)?,

where
Y= b2 +bg and § = bgbg.

(II) if o3 = 0 and CLng + CLng T 1,
Q&)= =lag 706 1as — b.
Moreover, if azaz = 0 and agbs + asbs = 0, then-h(A,) = 0.

The proofs of above two theoreins are shown in [3].

2. Three-Symbols Problems

In this section,we focus our study on three-symbols problems. We try to
generalize the result of Theorem 1.2 to the three-symbols cases.

2.1. Transition Matrices and Spatial Entropy

By the same reason as two symbols on lattice Zsyo, we take a transition



matrix Ay of three symbols on lattice Zsyo as

a1 G12 Q13| A4 Q15 Q16 | A17  A18 Q19
G21 (22 (23 | 24 G25 (26 | A27 A28 (29
31 (a32 (33 | 34 A35 (36 | Q37 (A33 (39
41 G4z Q43 | Q44 Q45 G46 | Qg7 A48 (49
A, = as1 G52 (53 | As4 G55 (56 | As7 A58 (59
ae1 G2 (A3 | g4 Ge5 (g6 | A7  A6g 69
Q71 Qr2 Qr3 | Q74 Qrs  Gre | Ar7  Arg 479
ag1 (g (g3 | Aga Ags 0(ge | Ag7 Agg AgY
| d91 Qg2 Q93 | Ggg Q95 Qge | Qg7 Agg A9y |
[ bin biz big | bor boo bog | b3y bsp bss ]
biy bis big | baa bas bag | bza D35 bsg (2- 1)
bi7 big big | bay bag bog | b3z bag bsg
bar bio bz | bsi bsy bsz | bsr b2 bes
= bag by s | bsa bss bse | bes bes  bes
ba7  big  bag 57 bsg thso | b7 bes  beg
br1 br2 g3 | bsy pbsa #Ds3'h o1 boo  bos
brs  brs <bre | bss “bgs bge | bos bos  bog
| brr  brg =bro | bgr bsg gy | 057 bog  bog i
A2;1 AQ;Z A2;3
- A2;4 A2;5 A2;6 )
B A2;7 A2;8 A2;9

which is linked to a set of admissible patterns on Zoy2, where a; ;, b; ; € {0,1}.
The recursive formulae for n+1-th order transition matrices A, defined
on Zgy (nt1) are

bllAn;l leAn;Q b13An;3 b21An;1 bQZAn;Q bQSAn;3 bBlAn;l b32An;2 b33An;3 i
b14An;4 blSAn;5 blGAn;G b24An;4 b25An;5 b26An;6 b34An;4 bSSAn;5 b36An;6
bi7An;r bigsApig bigAno | barAnr bagApnig bagAng | b37Apr bsgAng b3gAng
b41An;1 b42An;2 b43An;3 b51An;1 b52An;2 b53An;3 bﬁlAn;l b62An;2 bﬁBAn;S
Api1 = | bagAns basAns basAne | bsaAna bssAns  bseAns | beaAnia  besAnis  besAnis
barAnr bagApig bagAno | bsrAnr bsgAnis bsoAng | berAnr besAns  begAnio
br1Ana broAno brsAns | bsidAng bsaAne bgsAps | boiAna boaAne  bosdAns
braAna brsAns breAne | bgaAna bssAnss bgsAne | boaAna bosAns  bosAne
L b77An;7 b78An;8 b79An;9 b87An;7 bSSAn;S b89An;9 b97An;7 b98An;8 b99An;9 |
(2.2)
where
An;l An;2 An;3
An = An;4 An;5 An;6 > (23)
An;7 An;S An;Q

b}



for any n > 2.
The definition of spatial entropy h(Asz) of three symbols on lattice Zayo
is the same as two symbols which can also be proved as

h(As) = lim llogp(An), (2.4)

n—oo N
see [3].
2.2. Computation of Maximum Eigenvalues and En-
tropy

For three symbols, A, is a 3" x 3" matrix, so computing the maximum
eigenvalue of A,, (p(A,)) is harder than it is for two symbols. We begin with
the study of Ay of the form

A B C
A,=| B C A |, (2.5)
C._A B
where
a G2 13 b bis bi3 C Ci2 Ci13
A= 21 @ ax | ,B = bar bag . C = Co1 C C3 |,
a3; azz2 a b Thss b C31 C32 C
(2.6)
and a, b, ¢, a;j, by, cij € {0,1}, 1, 7 € {152,8}, 7 # j. Consider
A, B, C,
A,=| B, C, A, (2.7)
C, A, B,
Let A\, be the eigenvalue of A,,, and U,, be the corresponding eigenvector of
An,
ie.,
AU, =)\,U,, (2.8)
Un,
where U, = | v, |. Therefore,
Wn,
A, B, C, Uy, Up
B, C, A, Up | = A\ | Un (2.9)
C, A, B, Wy, W,



Assume
Up = Up = Wy,

then (2.9) implies
(An + B + Ch)u, = Ay,

and (2.11) are equivalent.

(2.10)

(2.11)
Conversely, under the assumption (2.10), (2.11) implies (2.9). Therefore, (2.8)

We first prove the following lemma which is a generalization of Lemma

1.1.
Lemma 2.1. Let Ay be given as in (2.5) and (2.6). If

a+b4+c =ap+bi+cia=a3+ b3+ ci3
= a9y + boy + ca1 = ags + bag + c23
= a3y + bg1 + c31 = aga + bz + c30

holds. Then
Anfl anl Cnfl

An + Bn + Cn = (a' +b+ C) anl Cnfl Anfl
Cn—l An—l Bn—l

(2.12)

(2.13)

Ay By (4

Proof. Let Ay = | By Cy Ay |, where A, B,, and Cy are given in (2.6).
Cy, Az B,

By (2.2),

[ An B?’L Cn

i C, A, B,

[ aA,_, 1281 a13Ch—1 | bAp_1 b12Bp—1 b13Ch_1 | cAp_1 c12Bn—1 c13Cn_1 |
a1 Brn_1 aCp_y a23An—1 | b21Bp—1 bCh_1 basAn—1 | c21Bn-1  cCr1 c23An—1
a31Cn—1 azaAn—1 aBn_1 b31Ch—1 b3aAn_1 bBh_1 c31C0n—1 c324An_1 cBp_1
bA,_1 b12Bp—1 b13C,—1 | cApn—1 c12Bp—1 c13Ch—1 | aAp_ a12B,—1 a13C,—1

= | baBp—1 0Ch basAn_1 | ca1Br—1 cCrhy c3An_1 | a1 Br_1 aCp_y a3 An_1
b31Ch—1 b3aAn_1 bBh_1 c310n—1 3041 cBy_1 a31Cp—1 az2An_1 aB,_1
cAn_1 c12Bn—1 c13Ch_1 | aAp_ a12Bn—1 a13Ch—1 | bAn_1 bioBn—1 b13C,_1
1 Br-1 cCh_y c23Ap—1 | a21Bp—1 aCp_1 a23An_1 | ba1Bp_1 bCph_1 basAp_1
| 3101 32401 cBha a31Cp1 azxAn_1 aBp, b31Cp—1  b32An_1 bBp 1
Now
(a4+b+c)An (a12 + b1+ c12)Byro1 (a13 + biz + ¢13)Cra

A +B,+C, = | (a21 +ba+c21)Broy (a+b+¢)Chy

(asy + b3y + ¢31)Cro1 (as2 + bsa + c32) Any

By the assumption (2.12), (2.13) follows. The proof is complete.

Now, we can prove our first theorem.

7
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Theorem 2.2. Assume (2.12) holds, and a + b+ ¢ > 1, then
h(As) =log(a + b+ c). (2.14)
Proof. Under the assumption (2.12) and by Lemma 2.1,

An—l Bn—l Cn—l
An + Bn + Cn = (CL +b+ C) Bn—l Cn—l An—l
Cnfl Anfl B

n—1
which implies
A= (a+b+c)\1, (2.15)
for any n > 3. Now
1 11
Ay + By +Co=(a+b+c)| 1 1 1
111
which implies
Ay =3(a+ b+ c). (2.16)
Combining (2.15) with (2.16);
Y =3 glatkl) ad) " (2.17)
Hence

i
h(As) = lim*=log X,

n—o00 N,
— lim AT log(a+ b+ c)
= log(a+b+c),

(2.14) follows. The proof is complete.

Remark 2.3. (i) It is of interest to study the case when A, is of the form
(2.5) but (2.12) fails. A lemma like Lemma 1.1 need to be established, some
progress has been made.

(ii) Result of Theorem 2.2 also holds for any number of symbols provides
that the assumptions like (2.12) hold.

Lemma 2.4. Let A and B be non-negative and non-zero n X n matrices, re-
spectively, and ay,as,as, and ay are positive numbers. The maximum eigen-
CL1A CLQB CLQB
value of | az3B ayB a1 A | is then the maximum eigenvalue of
agB CL1A a4B

2
V& +8
wA 4 “; 80205 (2.18)




Proof. Consider

alA - A (ZQB CLQB
(lgB CL4B - A CL1A =0.
agB CLlA CL4B - A

There are two cases:
Case L. If |a;A — A\| = 0, it is clear that A\ = a; A.
Case II. For |a; A — \| # 0, the last equation is equivalent to

(llA - A CLQB CLQB
0 (CL4B - /\) - CLQCLgB(CLlA - )\)_13 CL1A - CLQCL3B(CL1A - )\>_1B — 0,
0 0 P
where

P :[<CL4B — )\) — CLQCLgB((ZlA — )\)_IB] — [alA — GQ(IgB(CLlA — >\)_1B]
[(asB — \) — asazB(a; A — \) ;' B] a1 A — asaz B(a; A — \) "' B],

and we could simplify it to

11 —{[a1 A — asasB(a1 A — XY "B][(ayB=\) — agas B(a; A — \) "' B]'}?| = 0.
Then, we have

[T+ {[a1A — azasB(ay A — Nt Bl{(aiB — \) — asasB(a; A — \)"'B]7 '} =0
or [I —{[a1A — azazB(a; A — \) "' B][(asB — \) — asazB(a;A — \)"'B]~'}| = 0.
Since A and B are non-negative and ai,as, a3, and a4 are positive, veri-

a1A agB CI,QB
fying that the maximum eigenvalue A of | a3B a4B a1A | and a1 A +

CLgB CLlA CL4B
ag+4/ ai+8a2a3
2

B are equal is relatively easy. The proof is complete.

A B B a1 a9 Aas
Theorem 2.5. Assume that A, = | B B A | andA= 1| a3 a1 a1
B A B as aip Qy
bi by by
and B= | by by by | wherea;,b; €{0,1}, andi € {1,2,3,4}. Forn > 2,
bs by by
let A\, be the largest eigenvalue of
|A, — A\ =0.



Then
/\n = Qp_1 + ﬁn—lv (219)

where oy, and Py satisfy the following recursive relations:

ap =a10—1 + b1 Bk—1, (2.20)
1

Br 25{(%0%4 + b4fk—1) + [(as0u—1 + b4ﬁk71)2‘|’
8(asag—1 + baf—1)(asou_1 + bz)ﬁk—l)]%}, (2.21)

fork=1,2,....,n—1, and
Qo = 1750 = 2. (222)

Furthermore, the spatial entropy h(As) is equal to log€., where &, is the
maximum root of the following polynomials Q(&):

(I) if ay :bl = 1,

Ql(g) 554 — (2 + b4)§3 + (1 w e = 2b4 o= 2b2b3>52+

[(CL4 — b4) — 2b2(a3 e bg) i 2b3(a2 e b2)]£ — 2(@2 — bg)(ag — bg)
(2.23)

(II) if ay = 0, b1 = 1,
Qg(f) = 54 - b4§3 - (&4 + 2[)2[)3)52 — 2(@2()3 + Cbgbg)f - 2&2@3. (224)
(III) if a; = 1,b1 == 0,

Q3(8) = €% — 0a& — 2bobs. (2.25)

Proof. Since the structure of A, is special, it is easy to show that for any
k > 2, we get
Ay Br By
Hy= | B, Bx Ax |,
By, Ay By
and
Apt1 Bryr Bia
Hypn = | Bir Brwr Aggr |
Bii1 Agy1 Brpa
here
arAy  axBy,  axBy
Ak-i—l = Hk ® A = CL3B]C CL4Bk (llAk y (226)
azBy a1Ar  ayBy

10



and
biAr byBi byB:

Biyi=Hy®B= | bsB, byB, bA;, |, (2.27)
b3Bkz blAk b4Bk

Ay = A and By = B. We know that |A,, 11 — A\t =0, so
|An+1 + 2Bn+1 - An+1| - O (228)

Let
ap =1 and [y = 2. (2.29)

By induction on &, 1 < k < n, and using (2.26),(2.27),(2.28) and Lemma 2.4,
it is straightforward to derive

lakAn—k+1 + BeBn—k+1 — Ans1]| = 0, (2.30)
with ay and fj satisfy (2.20) and (2.21). In particular,
ap =101 + b1 30, (2.31)
B :%{(Cuan—l + 018y 4+ [(@ap 1 + baBn1)*+
8z -1k ba By i )30, 1 +bs8,1)]7}, (2.32)

and
)\n—f—l =0 ﬂn

This proves the first part of the theorem.

The remainder of the proof, demonstrates that h(Asy) = log\. where A, is
the maximum root of Q(\). There are three cases:

Case I. From (2.31), if a; = b; = 1, we have

ﬂn—l = 0p — Qp_1- (233)
Substituting (2.33) into (2.21), yields

1
Ayl — Oy 25{[@4 — by)ap_1 + by + [((ag — by)a 1 + b4an)2+

8((az — ba)an_1 + bacv)((az — bs)am_1 + bzan)]2}.  (2.34)

Now, let
[ F— (2.35)

Op—1

11



and after dividing (2.34) by «,,, we have

£ —1—1{[(a —b)l—f—b]—k[((a —b)i+b)2+
n+1 = ullas = b b 47 ) b
(2.36) can be written as the following iteration map:
£n+1 = Gl (én)a (237)
where
1 1 1 2
Gl(f) =1+ 5{[(@4 — b4)g + b4] + [((CL4 — b4)g + b4) +
S((a2 = ba)g + bo)((0 = b + W], (2.39)
We first observe the fixed poiut €, of G1(&) i.e., & = G1(&), is a root of
Q(S).
Indeed, by letting &, = &, r=.& in (2.36), we have
¢ —1—1{[((1 ) )l+b]+[((a —b )l—i—b )2—1-
« —gllas TR RS $0)g t
8((a2 = bo) £ FORN(os — ba) - + b)),

which gives us Q(&,) = 0. It can be proven that the maximum fixed point of
G1(§) or the maximum root &, of Q(§) = 0 satisfies 1 < &, < 2 and

En — & as n — 00, (2.39)

Details are omitted here for brevity. By (2.19),(2.33) and (2.35), we can also

prove
)\n—i-l
An

— &, as n — o0. (2.40)

Hence, h(T5) = log&..
Table 3.1 is to evaluate the value of \,, where 4as+2as3+as+1 =1,1 <17 <8,
and4bg+2b3+b4+1:j, 1 S] <8.

12



i~ | 1 2 3 4 5 6 7 8
8 2 2.2938 | 2.2056 | 2.5214 | 2.2056 | 2.5214 | 2.6180 3
7 1.7900 2 2 2.2599 2 2.2599 | 2.4142 | 2.7693
6 1.6180 2 2 2.3593 | 1.6180 2 2.3028 | 2.7321
5) 1 1 1.6956 2 1 1 2 2.4142
4 1.6180 2 1.6180 2 2 2.3593 | 2.3028 | 2.7321
3 1 1 1 1 1.6956 2 2 2.4142
2 1.6180 2 1.6180 2 1.6180 2 2 1
1 1 1 1 1 1 1 1.4142 2
Table 3.1
Case II. If a; = 0 and b; = 1, then, from (2.31), we have
Oy = ﬂn—l- (241)
Again, substituting (2.41) into (2.21) and letting &, = Bf: lead to
1 1 1
=z b by)?
3 2{(%5”_1 + by + [(a4£n_1 +b4)"+
1 1 1
8(az5 - o) (a3 03]}, (2.42)
gn—l gn—l

i'e'7 é-n = G2(§n—1)7 where

Gg(f) :%{@64% =5 b4 S 1 [(04% + b4)2+

S(a% 4 bQ)(a% + b))
The maximum fixed point &, of (2.43) is the maximum root of Q(§) = 0 in
(2.24). It can be also be proven that (2.39) and (2.40) holds in this case.
Table 3.2 is to show the value of \,, where 4as +2az+as+1=1,1 <7 <8,

and 4by +2bs +bs +1=7,1<j5 <8,

N|=

1. (2.43)

AV 1 2 3 4 ) 6 7 8
8 | 1.4142 | 1.8536 | 1.6956 | 2.1234 | 1.6956 | 2.1234 | 2.2695 | 2.7321
7 | 1.1892 | 1.5437 | 1.4945 | 1.8737 | 1.4945 | 1.8737 | 2.0907 | 2.5346
6 1 1.6180 | 1.5214 2 1 1.6180 2 2.5115
5 0 1 1.2599 | 1.6956 0 1 1.7693 | 2.2695
4 1 1.6180 1 1.6180 | 1.5214 2 2 2.5115
3 0 1 0 1 1.2599 | 1.6956 | 1.7693 | 2.2695
2 1 1.6180 1 1.6180 1 1.6180 | 1.7321 | 2.3028
1 0 1 0 1 0 1 1.4142 2
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Table 3.2
Case III. If a; = 1 and b; = 0, then, from (2.31), we have
Oy = Q1. (2.44)

Repeating the above steps, hence we get

_ b4 —+ \/ bi + 8a2a3 (2 45)
5 . .

&n

The maximum fixed point &, of (2.45) is the maximum root of Q(§) = 0 in
(2.25). The proof is complete.
Table 3.3 is to show the value of A,.

by | by | by | A
0O[0]O0| O
0,011
01T 100, 0
O | i
104 EI0%%. 0
ISR =T |
1, Mg 2
o e o o o
Table 3.3

3. Spatial Entropy of Cyclic Cases

In this section, we study the spatial entropy of A; when A, has certain cyclic

structure. Consider
A B C

A,=|C A B (3.1)
B C A

We first study A,B,and C with the following form, A, B,C € {E,I,J,J'},
where

111 1
E=|111|,7=1]0 =
111 0

O = O

0 01
0|, J=]0 0
1 10

o~ O
O = O
_ o O
o O =

Now, we have the following theorem for cyclic As.

14



Theorem 3.1. Assume Ay is of the form (3.1). Then

A

1
= lim A7,

n—oo

satisfies the limiting equation Q(X) as follows:

A | B | C | limiting equation Q(A) | .
O)|E|I]J Q2(N) A5
)[BT T Q00 X

(1) (i) [E| J | I Q2(N) X5
() [E[ T[T o8y N
V)| E|J 1 @3(}) A3
(Vi)|E|J|J Q1(N) A}

A | B | C | limiting equation Q(A) | A.
GO [T[E]J Q2(A) A3

(I ()| L] E]S Q1(A) M
(i) | I | J | E Q1(N) b
(iv) | T | J.FE @a()) ¥

A | B C | imiting equation Q(\) | A,
i) [T [E]|I Q3()) A3

(1) (i) [T [ B J Qa(N) X
(iii) [T | T J B 0.0\ X
(iv) [ J[J]E Qs(N) ¥

A | B | C | limiting equation Q(X) | A,
()| J BT Q1(N) Al

(V) Gi) [T [E[J Qs(\) X,

(i) [ [T [ E Qs(\) ¥
(iv)|J' | J|FE Q2(N) A5
where,

Qa(N) = X2 — A — 1, A5 = 125 2 1 618033988

Q3(N) = A3 — X2 — X\ — 1, N5 = 1.839286755.

Proof of Case(I)(i). Since the structure of A, is similar to (2.5), it is easy

to verify that (2.11) is also right to (3.1) and for any k& > 2, we have

A

Ej,
i
Iy

I
E,
S

i
Iy
Ej
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By (2.11), |A, — \u| =0, so
By + I+ Jp — A = 0. (3.4)

Let
Qp = 1 and 60 =1. (35)

By induction on k, 1 < k < n, and using (2.11), it is straightforward to derive
|k Bt + Biln-k + Jnr — Al =0, (3.6)

where ay and (3, satisfy the following recursive relations:

ap =1 + Br-_1, (3.7)
B =1 + 1,
and
)\n = 3an_2 + ﬁn_g + 1. (39)

By recursive formulae of (3.7)<and (3.8), we get

o= LA PR S L
%5(1 1 —2\/5),1_17 (3.10)
P J;O\/5<1 +2\/5)n+1 L5 —10\/5<1 —2\/5)n+1 n _51_0\/5(1 ! +2\/5)”1+
_5;5\/3(1_ 1—2\/3)71_1“' (3.11)

Substituting (3.10) and (3.11) into (3.9), we have

11455 1445 11 —-5V5 1—\/5)n_3

A
" 2(2 2<2

)n—3 +

—2. (3.12)

1++5

1
By (1.11), it is obvious that h(As) = lim —log A, = log . Thus it is

n—oo M,
clear that Q(\) = A\ — A\ — 1.
The proofs of the following cases is similar to Case(I)(i). The proof is com-
plete.

16
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