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二維網格模型中多符號的花樣生成問題 
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摘         要 

 

此篇論文主要是研究在二維網格模型下三個符號的花

樣生成問題。研究的主要目的是想找一些特別的置換矩陣 A2

而能將熵明確地算出來。 
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ABSTRACT 

In this paper we discuss patterns generation problems with three symbols mainly. 
The main result is to find some special transition matrix A2 such that their spatial 
entropy can be solved explicitly.   
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1. Introduction

Lattices are important in scientifically modeling underlying spatial struc-
tures. Investigations in this field have covered phase transition [8], [11], [33],
[34], [31], [32], [35], [42], [43], [44], [45], chemical reaction [6], [7], [23], biol-
ogy [9], [10], [20], [21], [22], [28], [29], [30] and image processing and pattern
recognition [15], [16], [17], [18], [19], [24]. In the field of lattice dynamical
systems (LDS) and cellular neural networks (CNN), the complexity of the
set of all global patterns recently attracted substantial interest. In particular,
its spatial entropy has received considerable attention [1], [2], [5], [3], [4], [12],
[14], [13], [25], [26], [27], [36], [37], [38], [39], [40], [41].

The one dimensional spatial entropy h can be found from an associated
transition matrix T. The spatial entropy h equals logρ(T), where ρ(T) is the
maximum eigenvalue of T.

In this paper, we study the two-dimensional patterns generation problems
with many symbols. We first recall the results of two symbols in [3], [4].

1.1. Transition Matrices and Spatial Entropy

In two-dimensional situation, higher transition matrices have been dis-
covered in [27] and developed systematically in [3] by studying the pattern
generation problem. For simplicity, two symbols on 2 × 2 lattice Z2×2 are
considered.

A transition matrix in the horizontal (or vertical) direction

A2 =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 , (1.1)

which is linked to a set of admissible local patterns on Z2×2 is considered,
where aij ∈ {0, 1} for 1 ≤ i, j ≤ 4. The associated vertical (or horizontal)
transition matrix B2 is given by

B2 =


b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

 , (1.2)

A2 and B2 are connected to each other as follows.

A2 =


b11 b12 b21 b22

b13 b14 b23 b24

b31 b32 b41 b42

b33 b34 b43 b44

 =

[
A2;1 A2;2

A2;3 A2;4

]
, (1.3)
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and

B2 =


a11 a12 a21 a22

a13 a14 a23 a24

a31 a32 a41 a42

a33 a34 a43 a44

 =

[
B2;1 B2;2

B2;3 B2;4

]
. (1.4)

Notably if A2 represents the horizontal (or vertical) transition matrix
then B2 represents the vertical (or horizontal) transition matrix. Results
that hold for A2 are also valid for B2. Therefore, for simplicity, only A2 is
presented herein.

The recursive formulae for n-th order transition matrices An defined on
Z2×n are obtained in [4] as follows

An+1 =


b11An;1 b12An;2 b21An;1 b22An;2

b13An;3 b14An;4 b23An;3 b24An;4

b31An;1 b32An;2 b41An;1 b42An;2

b33An;3 b34An;4 b43An;3 b44An;4

 , (1.5)

whenever

An =

[
An;1 An;2

An;3 An;4

]
, (1.6)

for n ≥ 2, or equivalently,

An+1;α =

[
bα1An;1 bα2An;2

bα3An;3 bα4An;4

]
, (1.7)

for α ∈ {1, 2, 3, 4}.
The number of all admissible patterns defined on Zm×n which can be

generated from A2 is now defined by

Γm,n(A2) = |Am−1
n |

= the sum of all entries in 2n × 2n matrix Am−1
n .

(1.8)

The spatial entropy h(A2) is defined as

h(A2) = lim
m,n→∞

1

mn
logΓm,n(A2)

= lim
m,n→∞

1

mn
log |Am−1

n |.
(1.9)

The existence of the limit (1.9) has been shown in [3], [12], [13]], [27]. When
h(A2) > 0, the number of admissible patterns grows exponentially with the
lattice size m × n. In this situation, spatial chaos arises. When h(A2) = 0,
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patterns formation occurs.
To compute the double limit in (1.9), n ≥ 2 can be fixed initially and m is

allowed to tend to infinity as in [3] and [27]; then Perron-Frobenius theorem
is applied;

lim
m→∞

1

m
log |Am−1

n | = logρ(An), (1.10)

which implies

h(A2) = lim
n→∞

1

n
logρ(An), (1.11)

where ρ(An) is the maximum eigenvalue of matrix An.

1.2. Computation of Maximum Eigenvalue and Spatial
Entropy

An is a 2n×2n matrix, so computing ρ(An) is usually quite difficult when
n is large. However, for a class of A2, the recursive formulae for ρ(An) can
be computed explicitly, along with a limiting equation to ρ∗ =exp(h(A2)),

as in [3]. This class of A2 has the form of

[
A B
B A

]
, i.e.,

A2 =

[
A B
B A

]
, (1.12)

where A =

[
a a2

a3 a

]
, B =

[
b b2

b3 b

]
and a, a2, a3, b, b2, b3 ∈ {0, 1}.

The results in [3] are recalled as follows.

Lemma 1.1. Let A and B be non-negative and non-zero m×m matrices,
respectively, and α and β are positive numbers. The maximum eigenvalue of[

A αB
βB A

]
is then the maximum eigenvalue of

A +
√

αβB. (1.13)

Theorem 1.2. Assume that A2 =

[
A B
B A

]
and A =

[
a a2

a3 a

]
and

B =

[
b b2

b3 b

]
where a, b, a2, a3, b2, b3 ∈ {0, 1}. For n ≥ 2, let λn be the

largest eigenvalue of

|An − λ| = 0.
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Then
λn = αn−1 + βn−1,

where αk and βk satisfy the following recursive relations:

αk+1 = aαk + bβk,

βk+1 =
√

(a2αk + b2βk)(a3αk + b3βk),

for k ≥ 0, and α0 = β0 = 1.
Furthermore, the spatial entropy h(A2) is equal to
logξ∗, where ξ∗ is the maximum root of the following polynomials Q(ξ):
(I) if a2 = a3 = 1,

Q(ξ) ≡ 4ξ2(ξ − a)2 + (γ2 − 4δ)(ξ − a)2 − γ2ξ2 − 2γ(2b− aγ)ξ − (2b− aγ)2,

where
γ = b2 + b3 and δ = b2b3.

(II) if a2a3 = 0 and a2b3 + a3b2 = 1,

Q(ξ) ≡ ξ3 − aξ2 − δξ + aδ − b.

Moreover, if a2a3 = 0 and a2b3 + a3b2 = 0, then h(A2) = 0.

The proofs of above two theorems are shown in [3].

2. Three-Symbols Problems

In this section,we focus our study on three-symbols problems. We try to
generalize the result of Theorem 1.2 to the three-symbols cases.

2.1. Transition Matrices and Spatial Entropy

By the same reason as two symbols on lattice Z2×2, we take a transition
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matrix A2 of three symbols on lattice Z2×2 as

A2 =



a11 a12 a13 a14 a15 a16 a17 a18 a19

a21 a22 a23 a24 a25 a26 a27 a28 a29

a31 a32 a33 a34 a35 a36 a37 a38 a39

a41 a42 a43 a44 a45 a46 a47 a48 a49

a51 a52 a53 a54 a55 a56 a57 a58 a59

a61 a62 a63 a64 a65 a66 a67 a68 a69

a71 a72 a73 a74 a75 a76 a77 a78 a79

a81 a82 a83 a84 a85 a86 a87 a88 a89

a91 a92 a93 a94 a95 a96 a97 a98 a99



=



b11 b12 b13 b21 b22 b23 b31 b32 b33

b14 b15 b16 b24 b25 b26 b34 b35 b36

b17 b18 b19 b27 b28 b29 b37 b38 b39

b41 b42 b43 b51 b52 b53 b61 b62 b63

b44 b45 b46 b54 b55 b56 b64 b65 b66

b47 b48 b49 b57 b58 b59 b67 b68 b69

b71 b72 b73 b81 b82 b83 b91 b92 b93

b74 b75 b76 b84 b85 b86 b94 b95 b96

b77 b78 b79 b87 b88 b89 b97 b98 b99



=

 A2;1 A2;2 A2;3

A2;4 A2;5 A2;6

A2;7 A2;8 A2;9

 ,

(2.1)

which is linked to a set of admissible patterns on Z2×2, where ai,j, bi,j ∈ {0, 1}.
The recursive formulae for n+1-th order transition matrices An+1 defined

on Z2×(n+1) are

An+1 =



b11An;1 b12An;2 b13An;3 b21An;1 b22An;2 b23An;3 b31An;1 b32An;2 b33An;3

b14An;4 b15An;5 b16An;6 b24An;4 b25An;5 b26An;6 b34An;4 b35An;5 b36An;6

b17An;7 b18An;8 b19An;9 b27An;7 b28An;8 b29An;9 b37An;7 b38An;8 b39An;9

b41An;1 b42An;2 b43An;3 b51An;1 b52An;2 b53An;3 b61An;1 b62An;2 b63An;3

b44An;4 b45An;5 b46An;6 b54An;4 b55An;5 b56An;6 b64An;4 b65An;5 b66An;6

b47An;7 b48An;8 b49An;9 b57An;7 b58An;8 b59An;9 b67An;7 b68An;8 b69An;9

b71An;1 b72An;2 b73An;3 b81An;1 b82An;2 b83An;3 b91An;1 b92An;2 b93An;3

b74An;4 b75An;5 b76An;6 b84An;4 b85An;5 b86An;6 b94An;4 b95An;5 b96An;6

b77An;7 b78An;8 b79An;9 b87An;7 b88An;8 b89An;9 b97An;7 b98An;8 b99An;9


,

(2.2)
where

An =

 An;1 An;2 An;3

An;4 An;5 An;6

An;7 An;8 An;9

 , (2.3)

5



for any n ≥ 2.
The definition of spatial entropy h(A2) of three symbols on lattice Z2×2

is the same as two symbols which can also be proved as

h(A2) = lim
n→∞

1

n
log ρ(An), (2.4)

see [3].

2.2. Computation of Maximum Eigenvalues and En-
tropy

For three symbols, An is a 3n × 3n matrix, so computing the maximum
eigenvalue of An (ρ(An)) is harder than it is for two symbols. We begin with
the study of A2 of the form

A2 =

 A B C
B C A
C A B

 , (2.5)

where

A =

 a a12 a13

a21 a a23

a31 a32 a

 , B =

 b b12 b13

b21 b b23

b31 b32 b

 , C =

 c c12 c13

c21 c c23

c31 c32 c

 ,

(2.6)
and a, b, c, aij, bij, cij ∈ {0, 1}, i, j ∈ {1, 2, 3}, i 6= j. Consider

An =

 An Bn Cn

Bn Cn An

Cn An Bn

 (2.7)

Let λn be the eigenvalue of An, and Un be the corresponding eigenvector of
λn,
i.e.,

AnUn = λnUn, (2.8)

where Un =

 un

vn

wn

. Therefore,

 An Bn Cn

Bn Cn An

Cn An Bn

 un

vn

wn

 = λn

 un

vn

wn

 . (2.9)
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Assume
un = vn = wn, (2.10)

then (2.9) implies
(An + Bn + Cn)un = λnun. (2.11)

Conversely, under the assumption (2.10), (2.11) implies (2.9). Therefore, (2.8)
and (2.11) are equivalent.

We first prove the following lemma which is a generalization of Lemma
1.1.
Lemma 2.1. Let A2 be given as in (2.5) and (2.6). If

a + b + c = a12 + b12 + c12 = a13 + b13 + c13

= a21 + b21 + c21 = a23 + b23 + c23

= a31 + b31 + c31 = a32 + b32 + c32

(2.12)

holds. Then

An + Bn + Cn = (a + b + c)

 An−1 Bn−1 Cn−1

Bn−1 Cn−1 An−1

Cn−1 An−1 Bn−1

 . (2.13)

Proof . Let A2 =

 A2 B2 C2

B2 C2 A2

C2 A2 B2

, where A2, B2, and C2 are given in (2.6).

By (2.2),

An =

 An Bn Cn

Bn Cn An

Cn An Bn



=



aAn−1 a12Bn−1 a13Cn−1 bAn−1 b12Bn−1 b13Cn−1 cAn−1 c12Bn−1 c13Cn−1

a21Bn−1 aCn−1 a23An−1 b21Bn−1 bCn−1 b23An−1 c21Bn−1 cCn−1 c23An−1

a31Cn−1 a32An−1 aBn−1 b31Cn−1 b32An−1 bBn−1 c31Cn−1 c32An−1 cBn−1

bAn−1 b12Bn−1 b13Cn−1 cAn−1 c12Bn−1 c13Cn−1 aAn−1 a12Bn−1 a13Cn−1

b21Bn−1 bCn−1 b23An−1 c21Bn−1 cCn−1 c23An−1 a21Bn−1 aCn−1 a23An−1

b31Cn−1 b32An−1 bBn−1 c31Cn−1 c32An−1 cBn−1 a31Cn−1 a32An−1 aBn−1

cAn−1 c12Bn−1 c13Cn−1 aAn−1 a12Bn−1 a13Cn−1 bAn−1 b12Bn−1 b13Cn−1

c21Bn−1 cCn−1 c23An−1 a21Bn−1 aCn−1 a23An−1 b21Bn−1 bCn−1 b23An−1

c31Cn−1 c32An−1 cBn−1 a31Cn−1 a32An−1 aBn−1 b31Cn−1 b32An−1 bBn−1


.

Now

An+Bn+Cn =

 (a + b + c)An−1 (a12 + b12 + c12)Bn−1 (a13 + b13 + c13)Cn−1

(a21 + b21 + c21)Bn−1 (a + b + c)Cn−1 (a23 + b23 + c23)An−1

(a31 + b31 + c31)Cn−1 (a32 + b32 + c32)An−1 (a + b + c)Bn−1

 .

By the assumption (2.12), (2.13) follows. The proof is complete.
Now, we can prove our first theorem.
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Theorem 2.2. Assume (2.12) holds, and a + b + c ≥ 1, then

h(A2) = log(a + b + c). (2.14)

Proof . Under the assumption (2.12) and by Lemma 2.1,

An + Bn + Cn = (a + b + c)

 An−1 Bn−1 Cn−1

Bn−1 Cn−1 An−1

Cn−1 An−1 Bn−1


which implies

λn = (a + b + c)λn−1, (2.15)

for any n ≥ 3. Now

A2 + B2 + C2 = (a + b + c)

 1 1 1
1 1 1
1 1 1

 .

which implies
λ2 = 3(a + b + c). (2.16)

Combining (2.15) with (2.16),

λn = 3(a + b + c)n−1. (2.17)

Hence

h(A2) = lim
n→∞

1

n
log λn

= lim
n→∞

n− 1

n
log(a + b + c)

= log(a + b + c),

(2.14) follows. The proof is complete.

Remark 2.3. (i) It is of interest to study the case when A2 is of the form
(2.5) but (2.12) fails. A lemma like Lemma 1.1 need to be established, some
progress has been made.
(ii) Result of Theorem 2.2 also holds for any number of symbols provides
that the assumptions like (2.12) hold.

Lemma 2.4. Let A and B be non-negative and non-zero n× n matrices, re-
spectively, and a1, a2, a3, and a4 are positive numbers. The maximum eigen-

value of

 a1A a2B a2B
a3B a4B a1A
a3B a1A a4B

 is then the maximum eigenvalue of

a1A +
a4 +

√
a2

4 + 8a2a3

2
B. (2.18)
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Proof . Consider

a1A− λ a2B a2B
a3B a4B − λ a1A
a3B a1A a4B − λ

= 0.

There are two cases:
Case I. If |a1A− λ| = 0, it is clear that λ = a1A.
Case II. For |a1A− λ| 6= 0, the last equation is equivalent to

a1A− λ a2B a2B
0 (a4B − λ)− a2a3B(a1A− λ)−1B a1A− a2a3B(a1A− λ)−1B
0 0 P

= 0,

where

P =[(a4B − λ)− a2a3B(a1A− λ)−1B]− [a1A− a2a3B(a1A− λ)−1B]

[(a4B − λ)− a2a3B(a1A− λ)−1B]−1[a1A− a2a3B(a1A− λ)−1B],

and we could simplify it to

|I −{[a1A− a2a3B(a1A−λ)−1B][(a4B−λ)− a2a3B(a1A−λ)−1B]−1}2| = 0.

Then, we have

|I + {[a1A− a2a3B(a1A− λ)−1B][(a4B − λ)− a2a3B(a1A− λ)−1B]−1}| = 0

or |I − {[a1A− a2a3B(a1A− λ)−1B][(a4B − λ)− a2a3B(a1A− λ)−1B]−1}| = 0.

Since A and B are non-negative and a1, a2, a3, and a4 are positive, veri-

fying that the maximum eigenvalue λ of

 a1A a2B a2B
a3B a4B a1A
a3B a1A a4B

 and a1A +

a4+
√

a2
4+8a2a3

2
B are equal is relatively easy. The proof is complete.

Theorem 2.5. Assume that A2 =

 A B B
B B A
B A B

 and A =

 a1 a2 a2

a3 a4 a1

a3 a1 a4


and B =

 b1 b2 b2

b3 b4 b1

b3 b1 b4

 where ai, bi ∈ {0, 1}, and i ∈ {1, 2, 3, 4}. For n ≥ 2,

let λn be the largest eigenvalue of

|An − λ| = 0.
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Then
λn = αn−1 + βn−1, (2.19)

where αk and βk satisfy the following recursive relations:

αk =a1αk−1 + b1βk−1, (2.20)

βk =
1

2
{(a4αk−1 + b4βk−1) + [(a4αk−1 + b4βk−1)

2+

8(a2αk−1 + b2βk−1)(a3αk−1 + b3βk−1)]
1
2}, (2.21)

for k = 1, 2, . . . , n− 1, and

α0 = 1, β0 = 2. (2.22)

Furthermore, the spatial entropy h(A2) is equal to logξ∗, where ξ∗ is the
maximum root of the following polynomials Q(ξ):
(I) if a1 = b1 = 1,

Q1(ξ) ≡ξ4 − (2 + b4)ξ
3 + (1− a4 + 2b4 − 2b2b3)ξ

2+

[(a4 − b4)− 2b2(a3 − b3)− 2b3(a2 − b2)]ξ − 2(a2 − b2)(a3 − b3).
(2.23)

(II) if a1 = 0, b1 = 1,

Q2(ξ) ≡ ξ4 − b4ξ
3 − (a4 + 2b2b3)ξ

2 − 2(a2b3 + a3b2)ξ − 2a2a3. (2.24)

(III) if a1 = 1, b1 = 0,

Q3(ξ) ≡ ξ2 − b4ξ − 2b2b3. (2.25)

Proof . Since the structure of A2 is special, it is easy to show that for any
k ≥ 2, we get

Hk =

 Ak Bk Bk

Bk Bk Ak

Bk Ak Bk

 ,

and

Hk+1 =

 Ak+1 Bk+1 Bk+1

Bk+1 Bk+1 Ak+1

Bk+1 Ak+1 Bk+1

 ,

here

Ak+1 = Hk � A =

 a1Ak a2Bk a2Bk

a3Bk a4Bk a1Ak

a3Bk a1Ak a4Bk

 , (2.26)
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and

Bk+1 = Hk �B =

 b1Ak b2Bk b2Bk

b3Bk b4Bk b1Ak

b3Bk b1Ak b4Bk

 , (2.27)

A2 = A and B2 = B. We know that |An+1 − λn+1| = 0, so

|An+1 + 2Bn+1 − λn+1| = 0. (2.28)

Let
α0 = 1 and β0 = 2. (2.29)

By induction on k, 1 ≤ k ≤ n, and using (2.26),(2.27),(2.28) and Lemma 2.4,
it is straightforward to derive

|αkAn−k+1 + βkBn−k+1 − λn+1| = 0, (2.30)

with αk and βk satisfy (2.20) and (2.21). In particular,

αn =a1αn−1 + b1βn−1, (2.31)

βn =
1

2
{(a4αn−1 + b4βn−1) + [(a4αn−1 + b4βn−1)

2+

8(a2αn−1 + b2βn−1)(a3αn−1 + b3βn−1)]
1
2}, (2.32)

and
λn+1 = αn + βn.

This proves the first part of the theorem.
The remainder of the proof, demonstrates that h(A2) = logλ∗ where λ∗ is
the maximum root of Q(λ). There are three cases:
Case I. From (2.31), if a1 = b1 = 1, we have

βn−1 = αn − αn−1. (2.33)

Substituting (2.33) into (2.21), yields

αn+1 − αn =
1

2
{[(a4 − b4)αn−1 + b4αn] + [((a4 − b4)αn−1 + b4αn)2+

8((a2 − b2)αn−1 + b2αn)((a3 − b3)αn−1 + b3αn)]
1
2}. (2.34)

Now, let

ξn =
αn

αn−1

(2.35)

11



and after dividing (2.34) by αn, we have

ξn+1 − 1 =
1

2
{[(a4 − b4)

1

ξn

+ b4] + [((a4 − b4)
1

ξn

+ b4)
2

+

8((a2 − b2)
1

ξn

+ b2)((a3 − b3)
1

ξn

+ b3)]
1
2}. (2.36)

(2.36) can be written as the following iteration map:

ξn+1 = G1(ξn), (2.37)

where

G1(ξ) =1 +
1

2
{[(a4 − b4)

1

ξ
+ b4] + [((a4 − b4)

1

ξ
+ b4)

2

+

8((a2 − b2)
1

ξ
+ b2)((a3 − b3)

1

ξ
+ b3)]

1
2}. (2.38)

We first observe the fixed point ξ∗ of G1(ξ), i.e., ξ∗ = G1(ξ∗), is a root of
Q(ξ).
Indeed, by letting ξn = ξn+1 = ξ∗ in (2.36), we have

ξ∗ − 1 =
1

2
{[(a4 − b4)

1

ξ∗
+ b4] + [((a4 − b4)

1

ξ∗
+ b4)

2

+

8((a2 − b2)
1

ξ∗
+ b2)((a3 − b3)

1

ξ∗
+ b3)]

1
2},

which gives us Q(ξ∗) = 0. It can be proven that the maximum fixed point of
G1(ξ) or the maximum root ξ∗ of Q(ξ) = 0 satisfies 1 ≤ ξ∗ ≤ 2 and

ξn → ξ∗ as n →∞. (2.39)

Details are omitted here for brevity. By (2.19),(2.33) and (2.35), we can also
prove

λn+1

λn

→ ξ∗ as n →∞. (2.40)

Hence, h(T2) = log ξ∗.
Table 3.1 is to evaluate the value of λ∗, where 4a2+2a3+a4+1 = i, 1 ≤ i ≤ 8,
and 4b2 + 2b3 + b4 + 1 = j, 1 ≤ j ≤ 8.
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i�j 1 2 3 4 5 6 7 8
8 2 2.2938 2.2056 2.5214 2.2056 2.5214 2.6180 3
7 1.7900 2 2 2.2599 2 2.2599 2.4142 2.7693
6 1.6180 2 2 2.3593 1.6180 2 2.3028 2.7321
5 1 1 1.6956 2 1 1 2 2.4142
4 1.6180 2 1.6180 2 2 2.3593 2.3028 2.7321
3 1 1 1 1 1.6956 2 2 2.4142
2 1.6180 2 1.6180 2 1.6180 2 2 1
1 1 1 1 1 1 1 1.4142 2

Table 3.1

Case II. If a1 = 0 and b1 = 1, then, from (2.31), we have

αn = βn−1. (2.41)

Again, substituting (2.41) into (2.21) and letting ξn = βn

βn−1
lead to

ξn =
1

2
{(a4

1

ξn−1

+ b4 + [(a4
1

ξn−1

+ b4)
2+

8(a2
1

ξn−1

+ b2)(a3
1

ξn−1

+ b3)]
1
2}, (2.42)

i.e., ξn = G2(ξn−1), where

G2(ξ) =
1

2
{(a4

1

ξ
+ b4 + [(a4

1

ξ
+ b4)

2+

8(a2
1

ξ
+ b2)(a3

1

ξ
+ b3)]

1
2}. (2.43)

The maximum fixed point ξ∗ of (2.43) is the maximum root of Q(ξ) = 0 in
(2.24). It can be also be proven that (2.39) and (2.40) holds in this case.
Table 3.2 is to show the value of λ∗, where 4a2 + 2a3 + a4 + 1 = i, 1 ≤ i ≤ 8,
and 4b2 + 2b3 + b4 + 1 = j, 1 ≤ j ≤ 8.

i�j 1 2 3 4 5 6 7 8
8 1.4142 1.8536 1.6956 2.1234 1.6956 2.1234 2.2695 2.7321
7 1.1892 1.5437 1.4945 1.8737 1.4945 1.8737 2.0907 2.5346
6 1 1.6180 1.5214 2 1 1.6180 2 2.5115
5 0 1 1.2599 1.6956 0 1 1.7693 2.2695
4 1 1.6180 1 1.6180 1.5214 2 2 2.5115
3 0 1 0 1 1.2599 1.6956 1.7693 2.2695
2 1 1.6180 1 1.6180 1 1.6180 1.7321 2.3028
1 0 1 0 1 0 1 1.4142 2

13



Table 3.2

Case III. If a1 = 1 and b1 = 0, then, from (2.31), we have

αn = αn−1. (2.44)

Repeating the above steps, hence we get

ξn =
b4 +

√
b2
4 + 8a2a3

2
. (2.45)

The maximum fixed point ξ∗ of (2.45) is the maximum root of Q(ξ) = 0 in
(2.25). The proof is complete.
Table 3.3 is to show the value of λ∗.

b2 b3 b4 λ∗
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1

1 1 0
√

2
1 1 1 2

Table 3.3

3. Spatial Entropy of Cyclic Cases

In this section, we study the spatial entropy of A2 when A2 has certain cyclic
structure. Consider

A2 =

 A B C
C A B
B C A

 (3.1)

We first study A,B,and C with the following form, A, B, C ∈ {E, I, J, J ′},
where

E =

 1 1 1
1 1 1
1 1 1

 , I =

 1 0 0
0 1 0
0 0 1

 , J =

 0 1 0
0 0 1
1 0 0

 , J ′ =

 0 0 1
1 0 0
0 1 0

 .

(3.2)
Now, we have the following theorem for cyclic A2.
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Theorem 3.1. Assume A2 is of the form (3.1). Then

λ∗ ≡ lim
n→∞

λ
1
n
n , (3.3)

satisfies the limiting equation Q(λ) as follows:

(I)

A B C limiting equation Q(λ) λ∗
(i) E I J Q2(λ) λ∗2
(ii) E I J ′ Q2(λ) λ∗2
(iii) E J I Q2(λ) λ∗2
(iv) E J J ′ Q1(λ) λ∗1
(v) E J ′ I Q3(λ) λ∗3
(vi) E J ′ J Q1(λ) λ∗1

(II)

A B C limiting equation Q(λ) λ∗
(i) I E J Q2(λ) λ∗2
(ii) I E J ′ Q1(λ) λ∗1
(iii) I J E Q1(λ) λ∗1
(iv) I J ′ E Q2(λ) λ∗2

(III)

A B C limiting equation Q(λ) λ∗
(i) J E I Q3(λ) λ∗3
(ii) J E J ′ Q2(λ) λ∗2
(iii) J I E Q1(λ) λ∗1
(iv) J J ′ E Q3(λ) λ∗3

(IV)

A B C limiting equation Q(λ) λ∗
(i) J ′ E I Q1(λ) λ∗1
(ii) J ′ E J Q3(λ) λ∗3
(iii) J ′ I E Q3(λ) λ∗3
(iv) J ′ J E Q2(λ) λ∗2

where,
Q1(λ) = λ− 1, λ∗1 = 1

Q2(λ) = λ2 − λ− 1, λ∗2 = 1+
√

5
2

∼= 1.618033988
Q3(λ) = λ3 − λ2 − λ− 1, λ∗3

∼= 1.839286755.

Proof of Case(I)(i). Since the structure of A2 is similar to (2.5), it is easy
to verify that (2.11) is also right to (3.1) and for any k ≥ 2, we have

Ak =

 Ek Ik Jk

Jk Ek Ik

Ik Jk Ek

 .
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By (2.11), |An − λn| = 0, so

|En + In + Jn − λn| = 0. (3.4)

Let
α0 = 1 and β0 = 1. (3.5)

By induction on k, 1 ≤ k ≤ n, and using (2.11), it is straightforward to derive

|αkEn−k + βkIn−k + Jn−k − λn| = 0, (3.6)

where αk and βk satisfy the following recursive relations:

αk =αk−1 + βk−1, (3.7)

βk =αk−1 + 1, (3.8)

and
λn = 3αn−2 + βn−2 + 1. (3.9)

By recursive formulae of (3.7) and (3.8), we get

αn =
5 +

√
5

10
(
1 +

√
5

2
)n+1 +

5−
√

5

10
(
1−

√
5

2
)n+1 +

−5− 3
√

5

10
(1− 1 +

√
5

2
)n−1+

−5 + 3
√

5

10
(1− 1−

√
5

2
)n−1, (3.10)

βn =
5 +

√
5

10
(
1 +

√
5

2
)n+1 +

5−
√

5

10
(
1−

√
5

2
)n+1 +

−5−
√

5

10
(1− 1 +

√
5

2
)n−1+

−5 +
√

5

10
(1− 1−

√
5

2
)n−1 + 1. (3.11)

Substituting (3.10) and (3.11) into (3.9), we have

λn =
11 + 5

√
5

2
(
1 +

√
5

2
)n−3 +

11− 5
√

5

2
(
1−

√
5

2
)n−3 − 2. (3.12)

By (1.11), it is obvious that h(A2) = lim
n→∞

1

n
log λn = log

1 +
√

5

2
. Thus it is

clear that Q(λ) = λ2 − λ− 1.
The proofs of the following cases is similar to Case(I)(i). The proof is com-
plete.
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