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Abstract

In this thesis, we describe the classical form of Darboux transformation of
KdV equation first. Next we discuss the Darboux transformation for AKNS
system which is convenient for us when we calculate KdV equation. It can
reduce the complexity successively. Finally, we give an example to figure out
one and two soliton solutions of KAV equation by using Darboux transformation
for AKNS system. We can also derive the eigenfunction and eigenvalue of

Schrédinger equation.
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1 Introduction

1.1 soliton theory

It is customary to start something on soliton theory with John Scott Russell’s descrip-
tion of "the great wave of translation”. The story of the soliton thus starts in 1834 on
the Canal near Edinburgh. Russell reported his discovery to the British Association
in 1844.

In 1895 Korteweg and de Vrise derived their equation describing the propagation
of waves variety of scale transformations which gave the Korteweg-de Vrise (KdV)

equation can be written in simplified form:
U — 6UUG = Upge = 0 (1)
It is easy to find a traveling wavessolutien of the form u(x,t) with any soliton book:
u(z,t) == 2r*sech?[k(x — 10) — 4x>t] (2)

The obtained solution of the KdV: equation describes the propagation of a solitary
wave moving with constant velocity 4+%}its amplitude and velocity are proportional

to each other.

1.2 Darboux transformation and KdV

In 1882, G.Darboux have studied a second order linear differential equation (one

dimension Schrédinger equation ) of eigenvalue problem.

—Pue + u(@)d = KO (3)

Where u(x) is the function given definitely and & is a constant. Darboux have found
the following facts : suppose u(x) and ¢(z, k) are satisfy (3), for any given constant

Ao, let f(x) = é(x, ko) , then f is a solution of (3) with kK = kg, and by
ut = u —2(Inf)ze (4)
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Lo g, ) (5)

gb(l)(.l’,li) = Qsm(x?/i) - ¥

The function u™ and ¢ must satisfying the same form of(3)
—0L + u (@) = otV (6)

This means that the transformation (4) and (5) must be satisfy (3) by f(x) = ¢(z, ko),
where (u,¢) is transformed into (u™,¢"). It is very important to notice that (u,¢)
and (uM,¢™)) satisfy the same form of (3). This is the classical Darboux transforma-

tion.
(u,¢) — (utV, ) (7)

where, f # 0 are invalid here.

The fundamental important of theIKKdV equations in the contemporary view, is de-
fined by the remarkable discovery of Gardner GreensKruskal and Miura [2]. In their
work the ingenious idea to relaté the solution u(x;t) of the KdV equation to the evo-

lution the spectral data of the linear Schrodinger operator,

—02 + u(x,t)

was first introduced .

In 1968 Lax [1] explained in a very transparent way the greater part of the result

of [2] by introducing the following operator :
L=—-04+u(z,t) A= —40°+ 6ud, + 3u, (8)
He noted that the commutator of L and A gives exactly the RHS of (1), i.e.,
[A, L] = 6uuy — Uy (9)

where [A, L] = AL — LA is a commutator, and the operators L and A are called a Lax
pair (which proof in Appendix A ). Hence, the KAV equation may be represented
in the following form:

oL =[A L] (10)
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usually called the Lax equation. Equation (10) is equivalent to the consistency con-

dition for the following system of partial differential equations:

bo=2xo —QPuz + UG =A@
O = Ao Or = —4Ppzs + 6UD, + Uz

The equivalence follows form the fact the system (11) means that

Li¢p+ Loy = Lyp + LAY = Mo + Aoy = NAp = ALo (12)
where A is independent of t and which yield
Lt¢ - [Aa L]¢

Therefore L; = [A, L] if and only if L; = 6uu, — Uz, thus the KAV equation is of
the form (1) and its scattering problem is of the form L¢ = A¢.

The first equation of (11) is covariant, withyrespect to the action of Darboux transfor-
mation (4), (5) and it is easy to=verify that the same is true for the second equation
of (11). The covariance of the system (L1)-allows one to create new solutions of KdV
equation, starting form some know golution u(x,t) for which we are able to solve (11)
explicitly. When & = kg, let f(x) = ¢(a; &) ithen o) = ¢, (2, k) — Ljﬁgb(m, k), where
¢(x, k) and ¢(x, ko) are some pair of solutions of (11), satisfies the system of differen-
tial equations of the same structure with u replaced by u!)(z, ), where vV (z, x) is
one soliton solution of KdV equation. The consistency of the system satisfied by ¢
shows that uY(x, k) is a new solution of the KAV equation. Looking for the N-times
repeated Darboux transformation we shall obtain an infinite family of the solutions
of the KdV equation. For a given N these solutions are of the form first discovered

by Wahlquist [3].

ut™M(z, k) = u = 205mW (¢, 62, 61 ... ¢IM) (13)
where ¢, .- ¢ are fixed linearly independent solutions of (11) and the Wron-
skian determinant W of N functions ¢™), ¢®) ... (V) is defined by

1) 4@ ) 7o
W((b ,¢ ,"',(]5 ):det(A), AZJ:F Z,j:1,2,...7N
x



In particular, for example : taking u = 0 for the simplest starting solution of the KdV

equation and choosing ¢(!)(x, \) in the form
f(@) = ¢W(x, N) = coth[r(z — x0) — 4K%], N = —K> (14)

we get the
ut = —2k%sech?[k(x — x0) — 4K%] (15)

Next, we want to introduce AKNS system and discuss Darboux transformation of
AKNS system. Finally, we will give some argument whose result will tell us how to

construct Darboux matrix.



2 AKNS and Darboux transformation

2.1 2x2 AKNS system

In order to popularize Lax pair of the MKdv equation to the general situation, V. E.
Zakharov, A. B. Shabat [4] and M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. segur
[5] study a kind of more general Lax pair, now we call AKNS system. In this paper,
we only consider 2x2 AKNS system.

Consider Lax pair of AKNS form

=UP =AJO + PP

. (16)
(IDt:Vd):Z;”:OVj/\m_]CI)
where
—iA oF 1B <5 0 0
v=| " 1 v= Nb Sl I S I (17)
roaA . =A O r 0

where V; are 2 x 2 matrix, ¢ = q¢(@,t), r = r(ayt) and A, B, C are function of x, t
and A with A\; = 0. The integrability condition of (16) is ®,; = ®;,., which is

U —V,+ U, V]=0. (18)

It is deduced from integrability condition that we have

A, =qC —1rB
B, =q — 2i\B — 2¢A, (19)
Cx =Tt + 22)\0 + 27”14

and
@ = By + 2i\B + 2Aq

(20)
re = Cyp — 2iNC — 2rA

We can choose A, B, and C as a polynomial of A

A= iaj)\"j, B = i bj)\nij, C= i Cj)\nij (21)
j=0 j=0 j=0
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Take (21) into (20) abd (19), then equating the coefficients of the powers of A, we

find
bOZCOZO, CLO’IZO

@z = qc; — 1b;
bja + 2ibj11 + 2qa; =0
Cjx — 21Cj41 — 2ra; =0
qr = bn,x + 2qa,

Tt = Cpg — 2Ty

The following things will be explained in Appendix B. For n = 3, we have
A= oo\ + g\ + (%aoqr + ag) A\ + %alqr — %ao(qm — q.7) + a3
B = iagg\? + (ianq — %aoqz)A +iaaq + 500’ — %oqqx — 100zn (22)

C = iapgrA\? + (ioqr + %aorx))\ + inr+ %aorzq + %alu — %aorm

and

(23)
re = —200(rese — 6qrry) + %al(rm — 2r2q) +iagr, — 2037
Using (23) to obtained some special cases.
(1)KdV equation : Take a1 = ay = a3 = 0, o9 = —4i, ¢ = —u and r = —1, we

have

Uy — OUU, + Uggy = 0
(2)MKdAV equation : Take a; = g = a3 = 0, o9 = —4i, ¢ = —u and r = Fu, we
have



2.2 Darboux transformation of AKINS system

Now, we cconsider Lax pair of AKNS form of (16).

Definition 2.1 Let D(z,t,\) is 2 X 2 matriz, if P and ® were given, where ® is any
solution of (16), that ®) = D® satisfy the same linear equation form of (16).

o) = yMpM) = \JpM L pHHD)
(24)
) = YW = PO Vjﬂ) =i p(1)

where PY is 2 x 2 matriz with the diagonal element are zero, then we call the
transformation (P, ®) — (PM, ®W1)) is Darboux transformation of AKNS system,

and D( z, t, X ) is Darboux matriz

Note, the elements of PM) should satisfy (20). by. Definition 2.1. Next, we take
®M) = D into the (24) then we can get thefeprésentation of UM, V(1)

U= pyp=r+p,p!

25
VO = DViDrY %D, D! (25)

where UM, V() must be satisfy the form

U — v 4 [ v =0

this is integrability conditions of (24). By Definition 2.1, we can see the Darboux
matrix that make the transformation (U, V, ®) = (UM, V) oM)

Proposition 2.1 If D is Darbour matriz of (16), DV is Darbouzr matriz of (24),
then DV D is also Darbouz matriz of (16).

Now at first discuss about the Darboux matrix with A is order one, there is no harm
in supposing it have the \I — S form, so D = Al — S, here S is a 2 X 2 matrix, and

I is identity matrix.



Next, we want to construct the Darboux matrix, but it is important that we should
know how to construct matrix S.
Lead out the differential equations satisfied of matrix S now, by the first equation of

(24) and ®Y) = D®.
(AT + PDDW = (AJ + PW)(AT — S)® (26)
RHS : (\1J = MJS + AP — PLS)®

LHS : o) = (A = 8)®), = (M®, — S,® — S®,) = (A — S)(AJ + P)® — S, ®
(27)

(27) corresponding to the arbitrary solutions of (16) are established, so consider the

coefficient of A\
RY'— p 1 [J%8] (28)

this is the representation of P’.

Consider the constant term

S, =PMNS_Sp=pPS—SP+.JS?>—-SJS

then
Sy +[S,JS+P]=0 (29)

This is the first differential equation satisfied of S.

By the second equation of (24), we have

(I)gl) _ Z V}(U)\m—j@(l) — Z ‘/}(1))\m_j (/\] — S)(I)
=0 =0

= (M = 5)®),
— )\[@t—St(I)—S(I)t

= (A[=8)> VA" 7d — 5,0

J=0



consider the coefficients of A™1, \™ ... X, then we can get the following:

v Z v,
(30)
Via=Vin+VVS = sV,
by (30), we can get
VI =V 4+ S Viw SISEL, (1< <m) (31)
At the same time, we can also get the second differential equation satisfied of S.
S, =V sy, (32)
Substitute (31) into (32),
Si o= (V> [WpmgS19851)S — SV,
JET
= VBt YAVLIA S)SEs SV,
Mo’
= [Vi, S| DTS, 5157
j=1
then .
Si+(8, Y Vst =0 (33)
=0
Lemma 2.1 A\I-S is Darboux matriz of (16), when matriz S satisfy
Sy +[9,JS+P]=0 (34)
S, ) Vs =0 (35)
=0

and under the Darboux transformation constructed by \I — S, PY) = P +[J, S].

This shows that in order to construct Darboux matrix, we need to solve the S of the

nonlinear partial differential equations (34), (35).

10



Next, following the lemma to give a method who to construct the once Darboux
matrix. If the elements of P are satisfy (20), we take the different complex number
A1, Ao, Let A = diag(A1, \2). Suppose h; is the column vector of the solution of (16)
with A = \;. Define H = (hy, hy). When det(H) # 0

S=HAH ', X[ -S=X —-HAH! (36)

Lemma 2.2 By (36), AI-S is Darboux matriz of (16)

Next chapter will to work that how to construction Darboux matrix and KdV equation

solution.

11



3 Darboux transformation of the KdV and AKNS

hierarchy

We want to talk about and execute Darboux transformation of the KdV equation.

Consider Lax pair of AKNS form of (16), where we take the (17) and choose ¢ = —u

and r = —1.
—IN —u A B
U= , V= (37)
-1 A C —-A
where A B and C choose from (22) and take a; = g = a3 = 0, ag = —4i.
A= —uy + 2i\u — 4303
B = —uy, — 2u® + 2idu, + 4\%u (38)

C = 2u — 4)\>

a
First, we construct Darboux mattix by (36): Let ( ) be the solution of (16) with

a —2iX008 ). . ) ..
A = Ao. We can prove 5 i5'solution of (16) with A = —\q. ( prove is in
Appendix C)
Let
Y — 21\
A=| 70 N (39)
0 —Xo 6 g
then
“h— L A 1
M—7 —3t+2XN
S=HAH'= (40)
—1 )\0 + %
where 7 = M. Then Darboux matrix is
Oé(.ﬁlj" tu )‘0)

12



. . . 1 1 i
Atidg — = — 2=
e L T A
0 —i 1 —iA+iN — F
First, it is easy to show
—iAtido— 7 — T+ 20k
1)_1 = —)\2 i )\3 s and
—1 iNidg — £
u— 25+ 22k —oul 42l —ang L 4 2ingu — 200 Ly — ax2l
;j 0T uT -+ ;; 07? + 21 ol 07—_2 0T
D, =
1 .
so that
R Y 400 L —ix —u®
UY =DUD '+ D, D' = 7 T =
—1 i\ -1 2

VW =DpVvD '+ DD =

then we can get that

1 i
M = 4 +2(= — 2X—
u u+ (7_2 07_)

(44)

Where we can see property of D by (42) , D can make U and U’ have the same lower

left element —1 and diagonal elements except for upper right —u change to —u(". So

D is the Darboux matrix.

13



u) can also be expressed as another form. We know a(z,t,\o) = —B.(z,t, Xo) +

’l.)\()ﬁ(l', ta >\0)

Thus,

u = —u 42

B(x,t, \o) )a

iNof(x,t, o) — Bul(z,t, Ao)
ﬂ(ﬂf, t, )\0)

Be(x,t, )\0))

ﬁ(xa ta AO) 5

= u—=2(Inp(x,t,X0))ws

= u+2< )a:

u —2(

This is v — u™™ = u — 2(In B(x, t, \o) )ag-Similarly, we can use above method to do

multisoliton solution.

a®

We know
5(1)

) — D(X\ o) ( ; ) by way of the Definition 2.1.

1)
ot
We want to claim that the eigenfunction &) = < 40 ) which is also satisfy (16)

with u replaced by u™). So that

14



(1
= [D( A0 D7 (A d0) + DA A)UD ™ (A \o)] ( ;m )
(1)
TN
_ g (6@>

Q.
The thing deserve to be mentioned, ‘the-®-= < 5 ), B(x,t, \) satisfy Schrodinger

equation which is

because

a, = —ida—uf (47)
B = —a+i\g (48)

Derivatives of (48) is By, = —ag + i\, then substitute (47) into B, = —ay + A6,

15



. So, we can get (45).

Moreover, if we can choose some A which make f(x,t, o) — 0 with + — oo.
Then A? is called eigenvalue of Schrodinger equation with corresponding eigenfunc-

tion f(x,t,\) and wu is the potential energy.
Next, we will use the above argument to get example. In such examples, we will

get two soliton solutions and find the eigenfunction and the eigenvalue of Schrodinger

equation.

16



4 The solution of KdV equation and some result

Now, consider Lax pair of AKNS form

o, =

—IA —u
P
-1 M]

(49)
A B
Cc A

q)t: q)

where A, B, C come from (38). We take u = 0 because u = 0 is a trivial solution

of KdV equation. First, we want to construct the Darboux matrix by (39), (40). To

o
construct the Darboux matrix, we must solve ¢ = < ) which satisfies

—iA 0
o, = ®
{—1 i)\}

(50)
= 0
(I)t = (I)
—4)\2 43
a ¢ e—i)xz—4i)\3t
It is easy to get &, = 5 = CQei’\”‘w‘st L e , where ¢, ¢
1
are constants.
First, we choose A = A\g. Define 7 = M.
041(1'7 ta )‘0)
CpeMoTHANGE | €1 —idoz—4ixjt
o 21
= ¢ oo z—4iXgt
We get Darboux matrix by (41). It is easy to get u(*) by ut) = 2(;12 — 2@')\0%)
—16 ky®
u(l) = Fo €1 Ce (51)

2
<2 Cs /ﬁoeﬁo (x—4t1402) + ¢ e—ng (m—4tn02)>

17



, c
Where kg = i)\g, and C—; = 2Kgeroro We get

uM = —2k2sech? ko(T — o) — 4(ko)3t 52
0

where zg is any real value. Next, we want to solve a(®) and g by &) = D®.
a® iAtido—1 L —ani
_ 0 T 7_2 07- 9
ﬁ(l) 1 —Z)\ + Z)\O — % 62

&%) . an
where &y = ( ) are different from ® = ( )
Ba Bs

o 5 e—i)\x—4i)\3t

More precisely, &5 = = | e . 3

62 0462)\1‘-!—41)\ t = £'3_e—z)\a:—4z>\ t
20X

where c3, ¢4 are constants. Note that ¢; # ¢3 and ¢y # ¢4. Thus,

1) ) , 1 1 1
ax, t, ) = (IA+iNg — ;)Oéz(l’,t, A+ (= — 2)\0;)52(90,15, A) (53)
T

B2, t, ) = agz,t,\) 4+ (—iX +i\g — %)ﬁz(x,t, \) (54)

2(ko + K)[rercse™ — Kocacze ™ + (ko — K)[ercze™? — degesrrge™ 2]

Wz, t,\) = —
/B ( ] ) 2H[202/€0€K0(174tno) _'_Clefﬁo(ﬁfﬁlt:‘io)]

(55)

where My = (ko — k) (4tKk2 + 4tkko — T +4tK%), My = (ko + k) (4tkE — Atkrg — x4 4tK2),
and k =\

18



Ko (—Cg Co -+ Cq 64)

2 Co e*lﬁg (4tn027:1:>/{0 + cy eng (425/4027‘%)

ﬁ(l) (‘7:7 t? )\0) = —2

(56)

we can see that 1) (z, \g) — 0 as  — Fo00. We know that S0 (z,t, \) is the eigen-
function and \Z is the eigenvalue of this equation W (2,1, Xo)+uM () BV (2,1, \) =
A2BW (z,t, Ag) with ulV) is one soliton solution (52).

Next, we use the same method to do again. Now, we must to solve

iy
o — phgm _ | T TV g
1A

cpgl) — yWeM

By @) = D®, we can easy to solve the/Haxipair of AKNS form. Let A = \; (note
by oW (et \)

= 5(1)(37, ) and Darboux ma-

that A\g # A;). We can also constriict anothet 7

trix DM,
i+ in 2w - 2
D = (57)
~ 1
1 Cidin — L
LA+ 1AL 7'(1)
Therefore,
—iN —u®
U® D(I)U(l)(D(l))—l+D(1)(D(1))_1 [ A U/\ ] (589)
—1 1
V@ — D(l)v(l)(D(l))fl + Dil)(D(l))—l (59)

19



1 1
2 _ ) 2
U = —u’ +2((—3)" — 2\ —=
((T(l) ) 17_(1) )
3 3
16(ko + ml)[ﬁ(cge_U + 4r2c2eY) + i(élligcge_v + V) + dkoki (K2 — K2))]
_ C3C4 C1Co
2(ko + K1) Ko o~ (Fo—k1)Wa _ ﬁe(nofﬁl)m X 4"60f€167(ﬁ0+m)wl _ Le(nom)wl]
Rop —R1 Ci1Cy CoC3 C1C3 CoCy

where we take this

Ko = 1)
K1 = 1\
U = 2ki(z — 4tk7)
V o= —2ko(x — 4tK])
W, = 4ligt — dtkok1 + 4tm% -

Wy = Akt +Atkor £4tkT — @

Next, we want to get a(?, 32 by dRL="pDOGN =DM DP.

' ] 1 1 2 i . , .
52 _ IA+ 1A — —(D (T(l)) - 2)\1_7(1) IA+ 1Ny — % T% — 2)\0% s
! “iA N = (1—1> 1 —iA+iXg— & s
-

Q3 (€3] Qo
where ®3 = ( ) are different from &, = ( ) and &, = ( > )
B3 B B2

s
‘ Qs cse iIAx—41\°t
ore precisely, @3 = - iNe+4iN3t | Co  —idz—diN3t
03 cg€ + 93¢

where cs5, ¢g is constant. Note that ¢; # ¢3 # ¢5 and ¢y # ¢4 # cg

By the same way, we can evaluate and write 3 (z,¢,\) in Appendix D.

20



In particular, we can write

2%0(0205 — 6106)(/\(2) — /\%)[204/116“1(%_41%%) + 636—/{1(1—4151-;%)]

5(2) ('I:Cv ta )‘0) =

2(ky + /io)[K101646_Sl — /~€00203651] — (k1 — /10)[4%0:‘{10204652 — 01036_52]
(60)

and

B (2, \) = —2r1 (a5 — e306) (K} — Rg)[2caroe™ ) 4 ¢yemrole )

2(k1 + Iio)[/i1€1046_sl — /100203651] — (k1 — ﬁo)[4/£0/$16204652 — 01036_52]

(61)

where

S1 = (ko — K1) (4N3t + 4tAA; + 4EAT + 1)
Sy = (ko + k1) (AN2t — 4tAA; + 4tX2 + 1)

we can see that 32 (x,t, \g) — Q:and 3% (@, t4\;) >0 with + — +00. We know that
BA (x,t, \o), BP(z,t, \) are the eigenfunictions and A2, \? are the corresponding the

eigenvalues. Moreover, they satisfy the corresponding equations

— B2 (1, ho) + u® (2) 8P (2, Ao) = ABP (.1, Ao) (62)
ﬁa(v?t) (l’, t? )\1) + U(Z) (.’L’)B@) (ZZ', tu )\1) = )\%6(2) (CC, t7 >\1> (63)

with u® is two soliton solution respectively. Finally, we can use the same method to

get more solutions of KdV equation.
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5 Conclusion

In this thesis, we start from trivial solution and apply the Darboux transformation
for AKNS system. It can reduce the complexity, so it is convenient for us to figure
out one and two soliton solutions of KdV equation. In addition, we write down the

form of eigenfunction and eigenvalue of Schrodinger equation.
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6 Appendix

Appendix A

Proof: where D = %, L=—-D*+u(x,t) and A= —4D3 + 6uD + 3u,

Therefore, by elementary calculus,

L= —D*¢ + ud
AL$ = (4D° — 4uD? — 12u, D?* — 120y, D — 4ty — 6uD? + 6u®D + Guu, — 3u,D? + 3uu,) o

and

LA¢ = (4D° — 6uD? — 12u,D? — 6uyy D — 3ty D? — 6tpe D — Sy, — 4uD? + 6u?D + 3uu, )¢

Therefore
(AL — LAY = (—uger F.6uuy )

for all sufficiently smooth ¢. Therefore
(AR LAY =Tmumm +Hbuu,

and

Ly = u

Appendix B

we know by = ¢y =0, ag, = 0, so choose ag = g
b]’@ + 2ibj+1 + 2qaj =0 (64)

Cjax — 2iCj+1 — 27"@1‘ =0 (65)

substitution ag = ag, by = ¢o = 0 into (64) , (65), then we have by = iqay, ¢1 = iray.

substitution b; = iqag, ¢; = iroy into a;, = qc; — rbj, because a1 , = 0 then a; = oy,
by the same way

. 1 . 1 1
by = 1ai1q — 5004y = C2=10qT + 5007y == Q2 = 50047 + o
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then use again

_ i 2 1 i
by = iqeq + 50" T — 501G — 00 s
_ i 2 1 i
C3 = 1021 + 5QT"q + 50017y — 70072y

az = %qu?“ - ﬁao((ﬁ“ag — qer) + a3

Take a;, b;, ¢; into (21), we can get (22)

Appendix C

a
Proof: since ( 8 ) is solution of Lax pair (16) that when A = Ay

ap =N — uf (66)
A — _ mma N (67)

&3]
suppose (

) is solution of Lax pair (16) that when A = — )\,
1

Q1. "= iAo = ub (68)
Praz = —a1—iXb (69)
where choose = 3, we differentiate the (69) with respect to x then ., = —ay, —

iXof,, we differentiate the (67) with respect to x and substitution (66) into this
equation, then 3,, = —A\203 + uf3

Bre = —01z— 1Ny
“MB+uf = —idos +uf —irfe
“NBHuB = —idoon 4+ uf — ido(—a + ief3)
then

a1 = 04—22/\05
< (6%} > ( o — 22)\05 )
SO =
B f
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Appendix D

We write 83 (x,t,\) = %, where

where

B:

(=K1 +ng)(—4tfig2—4tn1 n0—4tn12+x)

— 2¢c3e K1 Co Ko

7(H0+H1)(74t1€02+4t111 H074tﬁ12+$)

— e Ki Cq

Ko+FK1 )(—4tn02+4tn1 H0—4tl€12+$)

4,%12026( Ko ¢4

—K1 +ng)(—4t502—4tn1 ,‘i()—4tfi12+£1))

2:‘11201 6_( Cy

—4trg?+4t —4tr;?
. 402 e(noer)( ko2+4tkg Ko K1 +x)l€0264 K

(—R1+I€0)(—4t1€g2—4tli1 Ro—4tl€12+a§) 2

— 2cge Ko cs

+ 2’{/0 ¢ 6—(—&1+H0)(—4tl€()2—4tl‘i1 HU—4tli12+x)

(Iig+l€])(f4tlﬁ202+4tli1 Ko—4tk 2+:p)

(Y

Ko Ci € c3.

2c1c3¢6(Ko — Rl ) [KE—H e (R g R L+ Kkgki et

)
) 2

[K*Kobit Kroki (Ko + k1) + Kikgle ™

4CQC4C5 (KJO — Ry

crcscs (ko — Kk R (K Ry) S kikole™™

3 2.2

FoRD T k2 kok (Ko + K1) + kKik]e 2

8cacyce(ko — K1)k

3 Es

degeses(ko + k1) [P Ko — K2Ro(Ko — K1) + Krghi)e

K%Ky — Kk (Ko — K1) + Kokale B

2

)l

( )l
2c1ca¢5(Ko + K1) [k
(Ko + k1) [K2 ko + Kko(ko — K1) — Kok e
( )l

4dereqcs (ko + k1) [P K1 + K2Ry (Ko — K1) — Kkgk2]e ™54

By = (k- ko — K1) — 4t(k> — Kkj — K?)
By = —a(k+ Ko+ k1) +4t(k* + K+ K3)

Es = ax(k+ ko — k1) — 4t(K> + K3 — KY)

By, = —2(k— Ko+ K1)+ 4t(k> — K + K3)
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