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摘 要       

 
　 這篇論文我們首先探討比較基本的 KdV 方程式的 Darboux 變換。 接下來討

論在 AKNS 系統上的 Darboux 變換, 而這 AKNS 系統的好處在於降低計算的複雜

度使我們計算 KdV 方程式較為便利。 最後我們將給一個例子使用 AKNS 系統上的

Darboux 變換計算出一些 KdV 方程式的孤立子的解。 我們也寫下當 Schördinger 

equation 的 potential energy 為孤立子解的 eigenvalue 和 eigenfunction 的

表示式。 

 

 

 

 
 

 

 

 

 

 

 



Darboux transformation of the

KdV equation

Student: Chun-Ying Juan Advisor: Jiin-Chang Shaw

Department of Applied Mathematics

National Chiao Tung University

Hsinchu, Taiwan, R.O.C.

Abstract

In this thesis, we describe the classical form of Darboux transformation of

KdV equation first. Next we discuss the Darboux transformation for AKNS

system which is convenient for us when we calculate KdV equation. It can

reduce the complexity successively. Finally, we give an example to figure out

one and two soliton solutions of KdV equation by using Darboux transformation

for AKNS system. We can also derive the eigenfunction and eigenvalue of

Schrödinger equation.
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1 Introduction

1.1 soliton theory

It is customary to start something on soliton theory with John Scott Russell’s descrip-

tion of ”the great wave of translation”. The story of the soliton thus starts in 1834 on

the Canal near Edinburgh. Russell reported his discovery to the British Association

in 1844.

In 1895 Korteweg and de Vrise derived their equation describing the propagation

of waves variety of scale transformations which gave the Korteweg-de Vrise (KdV)

equation can be written in simplified form:

ut − 6uux + uxxx = 0 (1)

It is easy to find a traveling wave solution of the form u(x,t) with any soliton book:

u(x, t) = −2κ2sech2[κ(x− x0)− 4κ3t] (2)

The obtained solution of the KdV equation describes the propagation of a solitary

wave moving with constant velocity 4κ2, its amplitude and velocity are proportional

to each other.

1.2 Darboux transformation and KdV

In 1882, G.Darboux have studied a second order linear differential equation (one

dimension Schrödinger equation ) of eigenvalue problem.

−φxx + u(x)φ = κφ (3)

Where u(x) is the function given definitely and κ is a constant. Darboux have found

the following facts : suppose u(x) and φ(x, κ) are satisfy (3), for any given constant

λ0, let f(x) = φ(x, κ0) , then f is a solution of (3) with κ = κ0, and by

u(1) = u− 2(lnf)xx (4)
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φ(1)(x, κ) = φx(x, κ)− fx
f
φ(x, κ) (5)

The function u(1) and φ(1) must satisfying the same form of(3)

−φ(1)
xx + u(1)(x)φ(1) = κφ(1) (6)

This means that the transformation (4) and (5) must be satisfy (3) by f (x) = φ(x, κ0),

where (u,φ) is transformed into (u(1),φ(1)). It is very important to notice that (u,φ)

and (u(1),φ(1)) satisfy the same form of (3). This is the classical Darboux transforma-

tion.

(u, φ)→ (u(1), φ(1)) (7)

where, f 6= 0 are invalid here.

The fundamental important of the KdV equation, in the contemporary view, is de-

fined by the remarkable discovery of Gardner,Green,Kruskal and Miura [2]. In their

work the ingenious idea to relate the solution u(x,t) of the KdV equation to the evo-

lution the spectral data of the linear Schrödinger operator,

−∂2
x + u(x, t)

was first introduced .

In 1968 Lax [1] explained in a very transparent way the greater part of the result

of [2] by introducing the following operator :

L = −∂2
x + u(x, t) A = −4∂3

x + 6u∂x + 3ux (8)

He noted that the commutator of L and A gives exactly the RHS of (1), i.e.,

[A, L] = 6uux − uxxx (9)

where [A, L] = AL−LA is a commutator, and the operators L and A are called a Lax

pair (which proof in Appendix A ). Hence, the KdV equation may be represented

in the following form:

∂tL = [A, L] (10)
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usually called the Lax equation. Equation (10) is equivalent to the consistency con-

dition for the following system of partial differential equations:

{
 Lφ = λφ

φt = Aφ
←→

{
−φxx + uφ = λφ

φt = −4φxxx + 6uφx + 3uxφ
(11)

The equivalence follows form the fact the system (11) means that

Ltφ + Lφt = Ltφ + LAφ = λtφ + λφt = λAφ = ALφ (12)

where λ is independent of t and which yield

Ltφ = [A, L]φ

Therefore Lt = [A, L] if and only if Lt = 6uux − uxxx, thus the KdV equation is of

the form (1) and its scattering problem is of the form Lφ = λφ.

The first equation of (11) is covariant with respect to the action of Darboux transfor-

mation (4), (5) and it is easy to verify that the same is true for the second equation

of (11). The covariance of the system (11) allows one to create new solutions of KdV

equation, starting form some know solution u(x,t) for which we are able to solve (11)

explicitly. When κ = κ0, let f (x) = φ(x, κ0) then φ(1) = φx(x, κ) − fx
f
φ(x, κ), where

φ(x, κ) and φ(x, κ0) are some pair of solutions of (11), satisfies the system of differen-

tial equations of the same structure with u replaced by u(1)(x, κ), where u(1)(x, κ) is

one soliton solution of KdV equation. The consistency of the system satisfied by φ(1)

shows that u(1)(x, κ) is a new solution of the KdV equation. Looking for the N-times

repeated Darboux transformation we shall obtain an infinite family of the solutions

of the KdV equation. For a given N these solutions are of the form first discovered

by Wahlquist [3].

u(N)(x, κ) = u− 2∂2
xlnW (φ(1), φ(2), φ(3), · · ·φ(N)) (13)

where φ(1), · · · , φ(N), are fixed linearly independent solutions of (11) and the Wron-

skian determinant W of N functions φ(N), φ(N), · · · , φ(N) is defined by

W(φ(1), φ(2), · · · , φ(N)) = det(A), Aij =
di−1φj

dxi−1 i, j = 1, 2, . . . , N

4



In particular, for example : taking u = 0 for the simplest starting solution of the KdV

equation and choosing φ(1)(x, λ) in the form

f(x) = φ(1)(x, λ0) = coth[κ(x− x0)− 4κ3] , λ0 = −κ2 (14)

we get the

u(1) = −2κ2sech2[κ(x− x0)− 4κ3t] (15)

Next, we want to introduce AKNS system and discuss Darboux transformation of

AKNS system. Finally, we will give some argument whose result will tell us how to

construct Darboux matrix.
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2 AKNS and Darboux transformation

2.1 2×2 AKNS system

In order to popularize Lax pair of the MKdv equation to the general situation, V. E.

Zakharov, A. B. Shabat [4] and M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. segur

[5] study a kind of more general Lax pair, now we call AKNS system. In this paper,

we only consider 2×2 AKNS system.

Consider Lax pair of AKNS form

Φx = UΦ = λJΦ + PΦ

Φt = V Φ =
∑m

j=0 Vjλ
m−jΦ

(16)

where

U =

[
−iλ q

r iλ

]
, V =

[
A B

C −A

]
J =

[
−i 0

0 i

]
, P =

[
0 q

r 0

]
(17)

where Vj are 2 × 2 matrix, q = q(x, t), r = r(x, t) and A, B, C are function of x, t

and λ with λt = 0. The integrability condition of (16) is Φxt = Φtx, which is

Ut − Vx + [U, V ] = 0. (18)

It is deduced from integrability condition that we have

Ax = qC − rB

Bx = qt − 2iλB − 2qA,

Cx = rt + 2iλC + 2rA

(19)

and
qt = Bx + 2iλB + 2Aq

rt = Cx − 2iλC − 2rA
(20)

We can choose A, B, and C as a polynomial of λ

A =
n∑

j=0

ajλ
n−j, B =

n∑
j=0

bjλ
n−j, C =

n∑
j=0

cjλ
n−j (21)
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Take (21) into (20) abd (19), then equating the coefficients of the powers of λ, we

find
b0 = c0 = 0, a0,x = 0

aj,x = qcj − rbj

bj,x + 2ibj+1 + 2qaj = 0

cj,x − 2icj+1 − 2raj = 0

qt = bn,x + 2qan

rt = cn,x − 2ran

The following things will be explained in Appendix B. For n = 3, we have

A = α0λ
3 + α1λ

2 + (1
2α0qr + α2)λ + 1

2α1qr − i
4α0(qrx − qxr) + α3

B = iα0qλ
2 + (iα1q − 1

2α0qx)λ + iα2q + i
2α0q

2r − 1
2α1qx − i

4α0qxx

C = iα0rλ
2 + (iα1r + 1

2α0rx)λ + iα2r + i
2α0r

2q + 1
2α1rx − i

4α0rxx

(22)

and

qt = − i
4α0(qxxx − 6rqqx)− 1

2α1(qxx − 2q2r) + iα2qx + 2α3q

rt = − i
4
α0(rxxx − 6qrrx) + 1

2α1(rxx − 2r2q) + iα2rx − 2α3r

(23)

Using (23) to obtained some special cases.

(1)KdV equation : Take α1 = α2 = α3 = 0, α0 = −4i, q = −u and r = −1, we

have

ut − 6uux + uxxx = 0

(2)MKdV equation : Take α1 = α2 = α3 = 0, α0 = −4i, q = −u and r = ±u, we

have

qt ± 6q2qx + qxxx = 0
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2.2 Darboux transformation of AKNS system

Now, we cconsider Lax pair of AKNS form of (16).

Definition 2.1 Let D(x,t,λ) is 2 × 2 matrix, if P and Φ were given, where Φ is any

solution of (16), that Φ(1) = DΦ satisfy the same linear equation form of (16).
Φ

(1)
x = U (1)Φ(1) = λJΦ(1) + P (1)Φ(1)

Φ
(1)
t = V (1)Φ(1) =

∑m
j=0 V

(1)
j λm−jΦ(1)

(24)

where P (1) is 2 × 2 matrix with the diagonal element are zero, then we call the

transformation (P, Φ) −→ (P (1), Φ(1)) is Darboux transformation of AKNS system,

and D( x, t, λ ) is Darboux matrix

Note, the elements of P (1) should satisfy (20) by Definition 2.1. Next, we take

Φ(1) = DΦ into the (24) then we can get the representation of U (1), V (1)

U (1) = DUD−1 + DxD
−1

V (1) = DV D−1 + DtD
−1

(25)

where U (1), V (1) must be satisfy the form

U
(1)
t − V (1)

x + [U (1), V (1)] = 0

this is integrability conditions of (24). By Definition 2.1, we can see the Darboux

matrix that make the transformation (U, V, Φ) =⇒ (U (1), V (1), Φ(1))

Proposition 2.1 If D is Darboux matrix of (16), D(1) is Darboux matrix of (24),

then D(1)D is also Darboux matrix of (16).

Now at first discuss about the Darboux matrix with λ is order one, there is no harm

in supposing it have the λI − S form, so D = λI − S, here S is a 2 × 2 matrix, and

I is identity matrix.
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Next, we want to construct the Darboux matrix, but it is important that we should

know how to construct matrix S.

Lead out the differential equations satisfied of matrix S now, by the first equation of

(24) and Φ(1) = DΦ.

(λJ + P (1))Φ(1) = (λJ + P (1))(λI − S)Φ (26)

RHS : (λ2IJ − λJS + λP (1)I − P (1)S)Φ

LHS : Φ
(1)
x = ((λI − S)Φ)x = (λIΦx − SxΦ− SΦx) = (λI − S)(λJ + P )Φ− SxΦ

(27)

(27) corresponding to the arbitrary solutions of (16) are established, so consider the

coefficient of λ

P (1) = P + [J, S] (28)

this is the representation of P ′.

Consider the constant term

Sx = P (1)S − SP = PS − SP + JS2 − SJS

then

Sx + [S, JS + P ] = 0 (29)

This is the first differential equation satisfied of S.

By the second equation of (24), we have

Φ
(1)
t =

m∑
j=0

V
(1)
j λm−jΦ(1) =

m∑
j=0

V
(1)
j λm−j(λI − S)Φ

= ((λI − S)Φ)t

= λIΦt − StΦ− SΦt

= (λI − S)
m∑

j=0

Vjλ
m−jΦ− StΦ.
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consider the coefficients of λm+1, λm, . . ., λ, then we can get the following:

V
(1)
0 = V0

V
(1)
j+1 = Vj+1 + V

(1)
j S − SVj

(30)

by (30), we can get

V
(1)
j = Vj +

∑j
k=1[Vj−k, S]Sk−1, (1 ≤ j ≤ m) (31)

At the same time, we can also get the second differential equation satisfied of S.

St = V (1)
m − SVm (32)

Substitute (31) into (32),

St = (Vm +
m∑

j=1

[Vm−j, S]Sj−1)S − SVm

= VmS +
m∑

j=1

[Vm−j, S]Sj − SVm

= [Vm, S] +
m∑

j=1

[Vm−j, S]Sj

then

St + [S,
m∑

j=0

VjS
m−j] = 0 (33)

Lemma 2.1 λI-S is Darboux matrix of (16), when matrix S satisfy

Sx + [S, JS + P ] = 0 (34)

St + [S,

m∑
j=0

VjS
m−j] = 0 (35)

and under the Darboux transformation constructed by λI − S, P (1) = P + [J, S].

This shows that in order to construct Darboux matrix, we need to solve the S of the

nonlinear partial differential equations (34), (35).
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Next, following the lemma to give a method who to construct the once Darboux

matrix. If the elements of P are satisfy (20), we take the different complex number

λ1, λ2. Let Λ = diag(λ1, λ2). Suppose hi is the column vector of the solution of (16)

with λ = λi. Define H = (h1, h2). When det(H) 6= 0

S = HΛH−1, λI − S = λI −HΛH−1 (36)

Lemma 2.2 By (36), λI-S is Darboux matrix of (16)

Next chapter will to work that how to construction Darboux matrix and KdV equation

solution.
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3 Darboux transformation of the KdV and AKNS

hierarchy

We want to talk about and execute Darboux transformation of the KdV equation.

Consider Lax pair of AKNS form of (16), where we take the (17) and choose q = −u

and r = −1.

U =

[
−iλ −u

−1 iλ

]
, V =

[
A B

C −A

]
(37)

where A, B and C choose from (22) and take α1 = α2 = α3 = 0, α0 = −4i.

A = −ux + 2iλu− 4iλ3

B = −uxx − 2u2 + 2iλux + 4λ2u

C = 2u− 4λ2

(38)

First, we construct Darboux matrix by (36). Let

(
α

β

)
be the solution of (16) with

λ = λ0. We can prove

(
α− 2iλ0β

β

)
is solution of (16) with λ = −λ0. ( prove is in

Appendix C )

Let

Λ =

[
λ0 0

0 −λ0

]
, H =

[
α α− 2iλ0β

β β

]
(39)

then

S = HΛH−1 =


−λ0 − i

τ
i
τ 2 + 2λ0

1
τ

−i λ0 + i
τ

 (40)

where τ =
β(x, t, λ0)
α(x, t, λ0)

. Then Darboux matrix is

12



D =

[
i 0

0 −i

]
(λI − S) =

 iλ + iλ0 − 1
τ

1
τ 2 − 2λ0

i
τ

1 −iλ + iλ0 − 1
τ

 (41)

First, it is easy to show

D−1 = 1
λ2 − λ2

0


−iλ + iλ0 − 1

τ − 1
τ 2 + 2λ0

i
τ

−1 iλ + iλ0 − 1
τ

, and

Dx =


u− 1

τ 2 + 2λ0
i
τ −2u1

τ + 2 1
τ 3 − 4λ0

i
τ 2 + 2iλ0u− 2λ0

i
τ 2 − 4λ2

0
1
τ

0 u− 1
τ 2 + 2λ0

i
τ



so that

U (1) = DUD−1 + DxD
−1 =

 −iλ u− 2
τ 2 + 4λ0

i
τ

−1 iλ

 =

[
−iλ −u(1)

−1 iλ

]
(42)

V (1) = DV D−1 + DxD
−1 =

[
A[u(1)] B[u(1)]

C[u(1)] −A[u(1)]

]
(43)

then we can get that

u(1) = −u + 2(
1

τ 2 − 2λ0
i

τ
) (44)

Where we can see property of D by (42) , D can make U and U ′ have the same lower

left element −1 and diagonal elements except for upper right −u change to −u(1). So

D is the Darboux matrix.
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u(1) can also be expressed as another form. We know α(x, t, λ0) = −βx(x, t, λ0) +

iλ0β(x, t, λ0).

Thus,

u(1) = −u + 2(
1

τ 2 − 2λ0
i

τ
)

= −u + 2((
1

τ
)x + u)

= u + 2(
1

τ
)x

= u + 2(
α(x, t, λ0)

β(x, t, λ0)
)x

= u + 2(
iλ0β(x, t, λ0)− βx(x, t, λ0)

β(x, t, λ0)
)x

= u− 2(
βx(x, t, λ0)

β(x, t, λ0)
)x

= u− 2(lnβ(x, t, λ0))xx

This is u → u(1) = u − 2(ln β(x, t, λ0))xx. Similarly, we can use above method to do

multisoliton solution.

We know

(
α(1)

β(1)

)
= D(λ, λ0)

(
α

β

)
by way of the Definition 2.1.

We want to claim that the eigenfunction Φ(1) =

(
α(1)

β(1)

)
which is also satisfy (16)

with u replaced by u(1). So that

14



(
α(1)

β(1)

)
x

=

(
D(λ, λ0)

(
α

β

))
x

= D(λ, λ0)x

(
α

β

)
+ D(λ, λ0)

(
α

β

)
x

= D(λ, λ0)x

(
α

β

)
+ D(λ, λ0)U

(
α

β

)

=
[
D(λ, λ0)xD

−1(λ, λ0) + D(λ, λ0)UD−1(λ, λ0)
]
D(λ, λ0)

(
α

β

)

=
[
D(λ, λ0)xD

−1(λ, λ0) + D(λ, λ0)UD−1(λ, λ0)
]( α(1)

β(1)

)

= U (1)

(
α(1)

β(1)

)

The thing deserve to be mentioned, the Φ =

(
α

β

)
, β(x, t, λ) satisfy Schrödinger

equation which is

−βxx + uβ = λ2β (45)

because

(
α

β

)
x

=

[
−iλ −u

−1 iλ

](
α

β

)
(46)

αx = −iλα− uβ (47)

βx = −α + iλβ (48)

Derivatives of (48) is βxx = −αx + iλβx, then substitute (47) into βxx = −αx + iλβx

15



. So, we can get (45).

Moreover, if we can choose some λ which make β(x, t, λ0) → 0 with x → ∞.

Then λ2 is called eigenvalue of Schrödinger equation with corresponding eigenfunc-

tion β(x, t, λ) and u is the potential energy.

Next, we will use the above argument to get example. In such examples, we will

get two soliton solutions and find the eigenfunction and the eigenvalue of Schrödinger

equation.
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4 The solution of KdV equation and some result

Now, consider Lax pair of AKNS form

Φx =

[
−iλ −u

−1 iλ

]
Φ

Φt =

[
A B

C −A

]
Φ

(49)

where A, B, C come from (38). We take u = 0 because u = 0 is a trivial solution

of KdV equation. First, we want to construct the Darboux matrix by (39), (40). To

construct the Darboux matrix, we must solve Φ =

(
α

β

)
which satisfies

Φx =

[
−iλ 0

−1 iλ

]
Φ

Φt =

[
−4iλ3 0

−4λ2 4iλ3

]
Φ

(50)

It is easy to get Φ1 =

(
α1

β1

)
=

(
c1 e−iλ x−4 iλ3t

c2e
iλx+4iλ3t + c1

2iλ
e−iλx−4iλ3t

)
, where c1, c2

are constants.

First, we choose λ = λ0. Define τ =
β1(x, t, λ0)
α1(x, t, λ0)

.

τ =
c2e

iλ0x+4iλ3
0t +

c1

2iλ0

e−iλ0x−4iλ3
0t

c1 e−iλ0 x−4 iλ0
3t

We get Darboux matrix by (41). It is easy to get u(1) by u(1) = 2( 1
τ 2 − 2iλ0

1
τ )

u(1) =
−16 κ0

3c1 c2(
2 c2 κ0eκ0 (x−4 tκ0

2) + c1 e−κ0 (x−4 tκ0
2)
)2

. (51)
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Where κ0 = iλ0, and c1
c2

= 2κ0e
2κ0x0 . We get

u(1) = −2κ2
0sech

2[κ0(x− x0)− 4(κ0)
3t] (52)

where x0 is any real value. Next, we want to solve α(1) and β(1) by Φ(1) = DΦ.

(
α(1)

β(1)

)
=

 iλ + iλ0 − 1
τ

1
τ 2 − 2λ0

i
τ

1 −iλ + iλ0 − 1
τ

( α2

β2

)

where Φ2 =

(
α2

β2

)
are different from Φ1 =

(
α1

β1

)
.

More precisely, Φ2 =

(
α2

β2

)
=

(
c3 e−iλ x−4 iλ3t

c4e
iλx+4iλ3t + c3

2iλ
e−iλx−4iλ3t

)

where c3, c4 are constants. Note that c1 6= c3 and c2 6= c4. Thus,

α(1)(x, t, λ) = (iλ + iλ0 −
1

τ
)α2(x, t, λ) + (

1

τ 2 − 2λ0
i

τ
)β2(x, t, λ) (53)

β(1)(x, t, λ) = α2(x, t, λ) + (−iλ + iλ0 −
1

τ
)β2(x, t, λ) (54)

β(1)(x, t, λ) = −2(κ0 + κ)[κc1c4e
M1 − κ0c2c3e

−M1 ] + (κ0 − κ)[c1c3e
M2 − 4c2c3κκ0e

−M2 ]

2κ[2c2κ0e
κ0(x−4tκ0) + c1e

−κ0(x−4tκ0)]
(55)

where M1 = (κ0−κ)(4tκ2
0 +4tκκ0−x+4tκ2), M2 = (κ0 +κ)(4tκ2

0−4tκκ0−x+4tκ2),

and k = iλ
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β(1)(x, t, λ0) = −2
κ0 (−c3 c2 + c1 c4 )

2 c2 e−κ0 (4 tκ0
2−x)κ0 + c1 eκ0 (4 tκ0

2−x)
(56)

we can see that β(1)(x, λ0)→ 0 as x→ ±∞. We know that β(1)(x, t, λ0) is the eigen-

function and λ2
0 is the eigenvalue of this equation−β

(1)
xx (x, t, λ0)+u(1)(x)β(1)(x, t, λ0) =

λ2
0β

(1)(x, t, λ0) with u(1) is one soliton solution (52).

Next, we use the same method to do again. Now, we must to solve

Φ(1)
x = U (1)Φ(1) =

[
−iλ −u(1)

−1 iλ

]
Φ(1)

Φ
(1)
t = V (1)Φ(1)

By Φ(1) = DΦ, we can easy to solve the Lax pair of AKNS form. Let λ = λ1 (note

that λ0 6= λ1). We can also construct another τ (1) =
α(1)(x, t, λ1)

β(1)(x, t, λ1)
and Darboux ma-

trix D(1).

D(1) =


iλ + iλ1 − 1

τ (1) ( 1
τ (1) )2 − 2λ1

i
τ (1)

1 −iλ + iλ1 − 1
τ (1)

 (57)

Therefore,

U (2) = D(1)U (1)(D(1))−1 + D(1)
x (D(1))−1 =

[
−iλ −u(2)

−1 iλ

]
(58)

V (2) = D(1)V (1)(D(1))−1 + D(1)
x (D(1))−1 (59)
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Where

u(2) = −u(1) + 2((
1

τ (1)
)2 − 2λ1

i

τ (1)
)

=
16(κ0 + κ1)[

κ3
0

c3c4

(c2
3e

−U + 4κ2
1c

2
4e

U) +
κ3

1

c1c2

(4κ2
0c

2
2e

−V + c2
1e

V ) + 4κ0κ1(κ
2
0 − κ2

1)]

2(κ0 + κ1)

κ0 − κ1

[
κ0

c1c4

e−(κ0−κ1)W2 − κ1

c2c3

e(κ0−κ1)W2 ] + [
4κ0κ1

c1c3

e−(κ0+κ1)W1 − 1

c2c4

e(κ0+κ1)W1 ]

where we take this

κ0 = iλ0

κ1 = iλ1

U = 2κ1(x− 4tκ2
1)

V = −2κ0(x− 4tκ2
0)

W1 = 4κ2
0t− 4tκ0κ1 + 4tκ2

1 − x

W2 = 4κ2
0t + 4tκ0κ1 + 4tκ2

1 − x

Next, we want to get α(2), β(2) by Φ(2) = D(1)Φ(1) = D(1)DΦ.

Φ(2) =

 iλ + iλ1 − 1
τ (1) ( 1

τ (1) )2 − 2λ1
i

τ (1)

1 −iλ + iλ1 − 1
τ (1)

 iλ + iλ0 − 1
τ

1
τ 2 − 2λ0

i
τ

1 −iλ + iλ0 − 1
τ

( α3

β3

)

where Φ3 =

(
α3

β3

)
are different from Φ1 =

(
α1

β1

)
and Φ2 =

(
α2

β2

)
.

More precisely, Φ3 =

(
α3

β3

)
=

(
c5 e−iλ x−4 iλ3t

c6e
iλx+4iλ3t + c5

2iλ
e−iλx−4iλ3t

)

where c5, c6 is constant. Note that c1 6= c3 6= c5 and c2 6= c4 6= c6

By the same way, we can evaluate and write β(2)(x, t, λ) in Appendix D.
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In particular, we can write

β(2)(x, t, λ0) =
2κ0(c2c5 − c1c6)(λ

2
0 − λ2

1)[2c4κ1e
κ1(x−4tκ2

1) + c3e
−κ1(x−4tκ2

1)]

2(κ1 + κ0)[κ1c1c4e
−S1 − κ0c2c3e

S1 ]− (κ1 − κ0)[4κ0κ1c2c4e
S2 − c1c3e

−S2 ]
(60)

and

β(2)(x, t, λ1) =
−2κ1(c4c5 − c3c6)(κ

2
1 − κ2

0)[2c2κ0e
κ0(x−4tκ2

0) + c1e
−κ0(x−4tκ2

0)]

2(κ1 + κ0)[κ1c1c4e
−S1 − κ0c2c3e

S1 ]− (κ1 − κ0)[4κ0κ1c2c4e
S2 − c1c3e

−S2 ]
(61)

where

S1 = (κ0 − κ1)(4λ2
0t + 4tλ0λ1 + 4tλ2

1 + x)

S2 = (κ0 + κ1)(4λ2
0t− 4tλ0λ1 + 4tλ2

1 + x)

we can see that β(2)(x, t, λ0)→ 0 and β(2)(x, t, λ1)→ 0 with x→ ±∞. We know that

β(2)(x, t, λ0), β(2)(x, t, λ1) are the eigenfunctions and λ2
0, λ2

1 are the corresponding the

eigenvalues. Moreover, they satisfy the corresponding equations

− β(2)
xx (x, t, λ0) + u(2)(x)β(2)(x, t, λ0) = λ2

0β
(2)(x, t, λ0) (62)

− β(2)
xx (x, t, λ1) + u(2)(x)β(2)(x, t, λ1) = λ2

1β
(2)(x, t, λ1) (63)

with u(2) is two soliton solution respectively. Finally, we can use the same method to

get more solutions of KdV equation.
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5 Conclusion

In this thesis, we start from trivial solution and apply the Darboux transformation

for AKNS system. It can reduce the complexity, so it is convenient for us to figure

out one and two soliton solutions of KdV equation. In addition, we write down the

form of eigenfunction and eigenvalue of Schrödinger equation.
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6 Appendix

Appendix A

Proof: where D = ∂
∂x

, L = −D2 + u(x, t) and A = −4D3 + 6uD + 3ux

Therefore, by elementary calculus,

Lφ = −D2φ + uφ

ALφ = (4D5 − 4uD3 − 12uxD
2 − 12uxxD − 4uxxx − 6uD3 + 6u2D + 6uux − 3uxD

2 + 3uux)φ

and

LAφ = (4D5 − 6uD3 − 12uxD
2 − 6uxxD − 3uxD

2 − 6uxxD − 3uxxx − 4uD3 + 6u2D + 3uux)φ

Therefore

(AL− LA)φ = (−uxxx + 6uux)φ

for all sufficiently smooth φ. Therefore

(AL− LA) = −uxxx + 6uux

and

Lt = ut

Appendix B

we know b0 = c0 = 0, a0,x = 0, so choose a0 = α0

bj,x + 2ibj+1 + 2qaj = 0 (64)

cj,x − 2icj+1 − 2raj = 0 (65)

substitution a0 = α0, b0 = c0 = 0 into (64) , (65), then we have b1 = iqα0, c1 = irα0.

substitution b1 = iqα0, c1 = irα0 into aj,x = qcj − rbj, because a1,x = 0 then a1 = α1,

by the same way

b2 = iα1q − 1
2
α0qx =⇒ c2 = iα1r + 1

2
α0rx =⇒ a2 = 1

2
α0qr + α2
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then use again

b3 = iα2q + i
2
α0q

2r − 1
2
α1qx − i

4
α0qxx

c3 = iα2r + i
2
α0r

2q + 1
2
α1rx − i

4
α0rxx

a3 = 1
2
α1qr − i

4
α0(qrx − qxr) + α3

Take ai, bi, ci into (21), we can get (22)

Appendix C

Proof: since

(
α

β

)
is solution of Lax pair (16) that when λ = λ0

αx = −iλ0α− uβ (66)

βx = −α + iλ0β (67)

suppose

(
α1

β1

)
is solution of Lax pair (16) that when λ = −λ0

α1,x = iλ0α1 − uβ1 (68)

β1,x = −α1 − iλ0β1 (69)

where choose β = β1, we differentiate the (69) with respect to x then βxx = −α1,x −
iλ0βx, we differentiate the (67) with respect to x and substitution (66) into this

equation, then βxx = −λ2
0β + uβ

βxx = −α1,x − iλ0βx

−λ2
0β + uβ = −iλ0α1 + uβ − iλ0βx

−λ2
0β + uβ = −iλ0α1 + uβ − iλ0(−α + iλ0β)

then

α1 = α− 2iλ0β

so

(
α1

β1

)
=

(
α− 2iλ0β

β

)
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Appendix D

We write β(2)(x, t, λ) = A
2κB , where

B = − 2 c3 e(−κ1+κ0 )(−4 tκ0
2−4 tκ1 κ0−4 tκ1

2+x)κ1 c2 κ0

− e−(κ0+κ1 )(−4 tκ0
2+4 tκ1 κ0−4 tκ1

2+x)κ1 c1

+ 4 κ1
2c2 e(κ0+κ1 )(−4 tκ0

2+4 tκ1 κ0−4 tκ1
2+x)κ0 c4

+ 2 κ1
2c1 e−(−κ1+κ0 )(−4 tκ0

2−4 tκ1 κ0−4 tκ1
2+x)c4

− 4 c2 e(κ0+κ1 )(−4 tκ0
2+4 tκ1 κ0−4 tκ1

2+x)κ0
2c4 κ1

− 2 c2 e(−κ1+κ0 )(−4 tκ0
2−4 tκ1 κ0−4 tκ1

2+x)κ0
2c3

+ 2 κ0 c1 e−(−κ1+κ0 )(−4 tκ0
2−4 tκ1 κ0−4 tκ1

2+x)c4 κ1

+ κ0 c1 e−(κ0+κ1 )(−4 tκ0
2+4 tκ1 κ0−4 tκ1

2+x)c3 .

A = 2c1c3c6(κ0 − κ1)[κ
3 + κ2(κ0 + κ1) + κκ0κ1]e

E1

− 4c2c4c5(κ0 − κ1)[κ
2κ0κ1 + κκ0κ1(κ0 + κ1) + κ2

1κ
2
0]e

−E1

+ c1c3c5(κ0 − κ1)[κ
2 + κ(κ0 + κ1) + κ1κ0]e

E2

− 8c2c4c6(κ0 − κ1)[κ
3κ0κ1 + κ2κ0κ1(κ0 + κ1) + κκ2

0κ
2
1]e

−E2

− 4c2c3c6(κ0 + κ1)[κ
3κ0 − κ2κ0(κ0 − κ1) + κκ2

0κ1]e
E3

+ 2c1c4c5(κ0 + κ1)[κ
2κ1 − κκ1(κ0 − κ1) + κ0κ

2
1]e

−E3

− 2c2c3c5(κ0 + κ1)[κ
2κ0 + κκ0(κ0 − κ1)− κ2

0κ1]e
E4

+ 4c1c4c6(κ0 + κ1)[κ
3κ1 + κ2κ1(κ0 − κ1)− κκ0κ

2
1]e

−E4

where

E1 = x(κ− κ0 − κ1)− 4t(κ3 − κ3
0 − κ3

1)

E2 = −x(κ + κ0 + κ1) + 4t(κ3 + κ3
0 + κ3

1)

E3 = x(κ + κ0 − κ1)− 4t(κ3 + κ3
0 − κ3

1)

E4 = −x(κ− κ0 + κ1) + 4t(κ3 − κ3
0 + κ3

1)
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