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Abstract

A subgraph in an edge-colored graph is multicolored if all its edges receive distinct
colors. In this thesis, we first prove that a complete graph on 2m (m # 2) vertices
Ko, can be properly edge-colored with 2m — 1 colors in such a way that the edges
of Ko, can be partitioned into m multicolored isomorphic spanning trees. Then,
for the complete graph on 2m + 1 vertices, we give a proper edge-coloring with
2m + 1 colors such that the edges of Ko, 11 can be partitioned into m multicolored
Hamiltonian cycles. In the second part, wefirst prove that if Ks,, admits a (2m—1)-
edge-coloring such that any two,¢olors induce a 2:factor with each component a 4-
cycle, then Ko, can be decompesed into-n:-isomorphic multicolored spanning trees.
As a consequence, we prove the existence of two isomorphic multicolored spanning
trees in Koy, for each (2m—1)-edge-coloring of Ko7 As to the complete graph of
odd order, we find two multicelored umicyelicisomorphic subgraphs in Koy, 11 for
each (2m+1)-edge-coloring of Kopmg1-
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1 Introduction

Graph decomposition and graph coloring are two of the most important topics in the
study of graph theory. Graph decomposition deals with the partition of the edge set of a
graph GG into subsets each induces a graph in the list of prescribed subgraphs of G and
graph coloring studies the assignments of colors onto the vertex set of G or the edge set of
G or both or some well-understood areas. Either one of them has made a strong impact
to make graph theory more interesting and useful through the years.

The research on combining these two topics together starts at observing a subgraph
in an edge-colored graph which has many colors. A subgraph whose edges are of distinct
colors is known as a rainbow subgraph, see [9] for references. This research was developed
from the edge-colorings of the complete graphs.

In 1991, Alon, Brualdi and Shader [2] first showed that in any edge-coloring of K,
such that each color class forms a ¢omplete bipartite graph, there is a spanning tree of
K, with distinct colors. Some years dater, in 1996, Brualdi and Hollingsworth [3] proved
the existence of two edge-disjoint multicolored spanning trees in any edge-coloring of Ko,,.
Then, they conjectured that a full partition inte'multicolored spanning trees is always
possible. Not before long, in 2001, J. Krussel, S. Marshal and H. Verral [7] showed the
existence of three multicolored spanning trees about above conjecture, and it stopped.
No one could do a better job till now. How about adding a condition that these spanning
trees are isomorphic mutually? In 2002, G. M. Constantine [5] proposed two conjectures.
One of them is that any proper (2n — 1)-edge-coloring of K, allows a partition of the
edges into multicolored isomorphic spanning trees. The other one is a weaker version of
above by giving an edge-coloring ourselves and partitioning it. Moreover, Constantine
proved the latter conjecture on the order a power of two or five times a power of two.

It is not a coincidence that decomposing the complete graph with even order into
spanning trees. Because it is easy to decompose K5, into n Hamiltonian paths. But,
how about the complete graph of odd order? Due to the chromatic index, it is natural
to partition the graph into either unicyclic subgraphs or Hamiltonian cycles which is the

best. In 2005, Constantine [6] partitioned Ks,1 into n multicolored Hamiltonian cycles



by a given (2n + 1)-edge-coloring if n is a prime. And he proposed a new conjecture
that for any (2n + 1)-edge-coloring of K, 1, the edges can be partition into multicolored
unicyclic isomorphic subgraphs.

In this thesis, the main results are that for the complete graphs of even and odd order,
we give each of them a proper edge-coloring and partitioned them into multicolored iso-
morphic spanning trees and multicolored Hamiltonian cycles, respectively. Furthermore,
for an arbitrary edge-coloring of the complete graphs G using x'(G) colors, we show that
there exist two multicolored isomorphic spanning trees in G when |V(G)| = 2n and there

exist two multicolored unicyclic isomorphic subgraphs in G when |V(G)| = 2n + 1.

1.1 Preliminaries

In this section, we first introduce the terminologies and definitions of graphs. For details,
the readers may refer to the book “Introduction torGraph Theory” by D. B. West.|§]

A graph G is a triple consistingof a vertex set' ¥/ (G), an edge set E(G), and a relation
that associates with each edge two vertices'called its endpoints. A loop is an edge whose
endpoints are equal. Multiedges aré.edges having the same pair of endpoints. A simple
graph is a graph without loops or multiedges. In this thesis, all the graphs we consider
are simple. The size of the vertex set V(G), |V (G)|, is called the order of G, and the size
of the edge set E(G), |E(G)|, is called the size of G.

If e = (u,v) (uv in short) is an edge of G, then e is said to be incident to u and v.
We also say that u and v are adjacent to each other. For every v € V(G), N(v) denotes
the neighborhood of v, that is, all vertices of N(v) are adjacent to v. The degree of v,
deg(v) = |N(v)|, is the number of neighbors of v.

A subgraph of a graph G is a graph H such that V(H) C V(G) and E(H) C E(G)
and the assignment of endpoints to edges in H is the same as in G. A spanning subgraph
of G is a subgraph H with V(H) = V(G). A matching of size k in G is a subgraph of k
pairwise disjoint edges. If a matching covers all vertices of G, then it is a perfect matching.

A factor of a graph G is a spanning subgraph of G. A k-factor is a spanning subgraph

with each degree equal to k. Then a 1-factor and a perfect matching are almost the same



thing.

A cycle is a graph with an equal number of vertices and edges whose vertices can
be placed around a circle so that two vertices are adjacent if and only if they appear
consecutively along the circle. A cycle with n vertices is denoted by C,,. A Hamiltonian
graph is a graph with a spanning cycle, also called a Hamiltonian cycle.

A graph with no cycle is acyclic. A tree is a connected acyclic graph. A spanning tree
is a spanning subgraph that is a tree, and a graph with exactly one cycle is unicyclic.

A complete graph is a simple graph whose vertices are pairwise adjacent; the complete
graph with n vertices is denoted by K,. A graph G is bipartite if V(G) is the union of
two disjoint independent sets called partite sets of G. A graph G is m-partite if V(G) can
be expressed as the union of m independent sets. A complete bipartite graph is a bipartite
graph such that two vertices are adjacent if and only if they are in different partite sets.
When the sets have the sizes s and ¢, the complete bipartite graph is denoted by Kj,. If
the sets have the same size n, thescomplete bipartite graph is called balanced, which is
denoted by K, ,. Similarly, the complete m-partite graph is denoted by K, 5, .. and
the balanced complete m-partite graph*is denoted by K,,,) where each partite set has n
vertices.

An isomorphism from a graph G to a graph H is a bijection f : V(G) — V(H) such
that wv € F(G) if and only if f(u)f(v) € E(H). We say “G is isomorphic to H”, written
G = H, if there is an isomorphism from G to H.

A proper k-edge coloring of a graph G is a mapping from E(G) into a set of colors
{1,2,...,k} such that incident edges of G receive distinct colors. An h-total-coloring of
a graph G is a mapping from V(G) U E(G) into a set of colors {1,2,...,h} such that
(i) adjacent vertices in G receive distinct colors, (ii) incident edges in G receive distinct
colors, and (iii) any vertex and its incident edges receive distinct colors. The chromatic
index of a graph G, x/(G), is the minimum number k for which G has a proper k-edge
coloring.

A subgraph in an edge colored graph is said to be multicolored if no two edges have

the same color.



Let S be an n-set. A latin square of order n based on S is an n x n array such that
01
110

is a latin square of order 2 based on {0, 1} = Z,. Since this latin square corresponds to a

each element of S occurs in each row and each column exactly once. For example,

group table of (Zy, +), the latin square is also known as a 2-group latin square.

For convenience, we denote a latin square of order n based on S by L = [ [;; | where
l;; € Sandi,j € Z,. Let L =[1;; | and M = [ m;; | be two latin squares of order
n. Then L = [[;; | and M = [ m;; | are a pair of orthogonal latin squares, denoted by
L 1 M, if and only if {({;;,m;;)| 1 <i,j <n}=5xS.

Let L =1[1;; | and M = [ m;; | be two latin squares of order | and m respectively.
Then the direct product of L and M is a latin square of order [-m : L x M = [ h;; |
where hy, = ( lap, Mmeq ) provided that o = ma + ¢ and y = mb + d. For example, let L
be the 2-group latin square, then L x L is a latin square of order 4 based on Zs X Z, as

in Figure 1.

0= 1(0,0) (01 [(1,0) | (1,1)

1 [€0,1)(0,0)|(1,1)}(1,0)

2 1(1,0)|(1,1)|(0,0)|(0,1)

3 |(1,1)[(1,0)](0,1)](0,0)

Figure 1: 2-group latin square of order 4

A transversal of a latin square of order n is a set of n entries from each column and each
row such that these n entries are all distinct. For example, in L x L, {ho o, h12, ho3, h31}
is a transversal. It is not difficult to see L x L does have 4 disjoint transversals. Clearly,
if a latin square of order n has n disjoint transversals, then it has an orthogonal latin
square.

A latin square L = [l;;] is commutative if [; ; = ;; for each pair of distinct ¢ and j
and L is idempotent if l;; = 1,7 =1,2,---,n. Furthermore, L is circulant if l; ; = ;-1 ;11

where the indeices 7, j are taken modulo n. Now, let V(K,,) = {v1,v9,---,v,} and the

4



edge v;v; is colored with [; ; where L = [l; ;] is an idempotent commutative latin square,
then we obtain an n-edge-coloring of K,,. We note here that an idempotent commutative
latin square of order n exists if and only if n is odd.

A similar idea shows that a latin square of order n corresponds to an n-edge-coloring
of the complete bipartite graph K, . Let {uy,ua, -+, u,} and {vy,vq,---,v,} be the two
partite sets of K, , and the edge u;v; be colored with [; ; where L = [l; ;] is a latin square

, we have a proper n-edge-coloring of I, .

1.2 Known Results

First, we consider the total coloring and the edge coloring of the complete graph.
Theorem 1.1. [8] Vn € Z, X' (Ks,) =2n — 1 and x'(Kaps1) = 2n + 1.
Theorem 1.2. [10] If m is an odd pesitive integér, then K., has an m-total coloring.

Theorem 1.3. If m is an positive integer, then K., » has an m-edge coloring. In par-
ticular, if V(Kpnm) = AU B whére Ai="{a5a9y: - 50} and B = {by, by, -, by}, then
by letting o(a;b;) = j — i (mod m) we have an m-edge coloring of K, using colors

0,1,2,---, m— 1.

From theorem 1.1, it is natural to ask if there exists a partition of the edges of an
edge-colored K5, into multicolored subgraphs each has 2m — 1 edges. Here are three

conjectures related to this problem.

Conjecture 1.4. (Constantine, Weak version) [5] For any positive integer m, m > 2,
there exists a proper (2m-1)-edge coloring of K5, such that all edges can be partitioned

into m isomorphic multicolored spanning trees.

Conjecture 1.5. (Brualdi-Hollingsworth) [3] If m > 2, then in any proper edge coloring
of Ky, with 2m — 1 colors, all edges can be partitioned into m multicolored spanning

trees.



Conjecture 1.6. (Constantine, Strong version) [5] If m > 2, then in any proper edge
coloring of Ky, with 2m — 1 colors, all edges can be partitioned into m isomorphic

multicolored spanning trees.
For the first conjecture, we give an example for m = 3 as follow:

Example 1.7.

I T T
c: 35 46 12
24 15 36
c: 25 34 16
ci: 26 13 45
cs: 14 .23 56

Figure 2: 3 multicglored isomorphic spanning trees in Kg

By looking at the example on Kg. (see Figures2 ), we can see the i-th row denotes the
edges which are colored with ¢; and they-th column denotes the edges of a multicolored
spanning tree for 1 < i <5 and 1 < j < 3. Therefore, we have a parallelism as defined in
Cameron [4], with an additional property due to color. Indeed, it is a double parallelism
of K,, one present in the rows of the array (perfect matchings) and the other in the
columns that consist of edge disjoint isomorphic spanning trees. Due to this fact, we
say that the complete graph Kj,, admits a multicolored tree parallelism (MTP), if there
exists a proper (2m—1)-edge-coloring of K, for which all edges can be partitioned into m
isomorphic multicolored spanning trees. The following known result provides an infinite

number of complete graphs which admit MTP.

Theorem 1.8. [5, Constantine] If m # 1 or 3 and K, admits an MTP, then for all

r>1, Koy, admits an MTP.

However, if the coloring is arbitrary, then the problem becomes very difficult. Only

partial results have been obtained so far.



Theorem 1.9. [7, Krussel et al.] If m > 2, then in any proper edge coloring of Ky, with

2m — 1 colors, there exist three edge-disjoint multicolored spanning trees.

Lemma 1.10. [3] In any proper edge coloring of Ks with 7 colors, all edges can be

partitioned into 4 isomorphic multicolored spanning trees.

Theorem 1.11. [3] If m > 2, then in any proper edge coloring of Ka,, with 2m—1 colors,

there exist two edge-disjoint multicolored spanning trees.

On the other direction, we can also consider the complete graph of odd order. Since
X' (Kom+1) = 2m + 1, the maximal size of multicolored subgraph of (2m+-1)-edge-colored
Koyt is 2m+1. So, it’s natural to ask if there also exists a partition of the edges of Ko, 11
into subgraphs of size 2m + 1 which are colored with 2m + 1 colors, and the following

result is known.

Theorem 1.12. [6, Constantine| If n is @m odd prime, then K, admits a multicolored

Hamiltonian cycle parallelism (MHCP).
In fact, Constantine proposed a’stronger conjecture.

Conjecture 1.13. (Constantine) [6] Any proper coloring of the edges of a complete graph
on an odd number of vertices allows a partition of the edges into multicolored isomorphic

unicyclic subgraphs.



2 Multicolored Subgraph Parallelism

2.1 Existence of Multicolored Tree Parallelism

We prove Conjecture 1.4 in this section and the following lemma is essential.
Lemma 2.1. The complete graph K5 admits an MTP.

Proof. Let V(Ki3) = {1,2,---,12} and the colors are C,Cy,---,Cqy. Let (i,7) be the
edge with endpoints ¢ and j. Figure 3 and Figure 4 show the construction of an MTP of
Kio. [ |

C: (2,11 (1,12) (6,7) (3,8 (4,9 (5,10
Cx: (2,9) (5,8)2%6,12) (441) (3,100 (1,7)
C: (4,7 (3,9 (6,10)- (1,8 (5,11) (2,12)
Ca: (1,10) €3,11) (5,9) (6,8) 2,7) (4,12)
GCs: (2,8 (&10) ¢1,11) (5,.71.7(6,9) (3,12)
Co: (5,12) (3,70 (478 (2,100 (1,9) (6.11)
Cr: (3,5 (4,6) (1,2) (911 (10,12) (7,8)
Cs: (2,4 (1,5 (3,6) (810) (7,11) (9,12)
Co: (2,5 (3,4 (L,6) (811) (9,10) (7.12)
Co: (2,6) (1,3) (4,5 (812) (7,9) (10,11)

Cu: (1,4) (2,3) (56) (7,100 (8,9 (11,12)

Figure 3: MTP of K,



Figure 4: 6 multicelored isomerphic spanning trees in K

Now, we are ready for the main regult.
Theorem 2.2. For m # 2, Ky, admits an MTP.

Proof. By Theorem 1.8, it suffices to prove that if m is an odd integer, then K5, admits
an MTP.

Let Ky, be defined on the set AU B where A ={a;|i € Z,,} and B ={b; | i € Z,,}.
For convenience, let G; =< A > and G =< B >. Since m is odd, by Theorem 1.2, G,

has a total coloring 7= which uses m colors, 1,2, ---,m. Now, define an edge-coloring ¢ of

K, as follows:

a) For each edge a;a, € E(Gh), let p(a;jar) = m(ajay);

(

(b) For each edge b;b, € E(G2), let o(bjby) = m(ajay);
(c) For each edge a;b;,i € Zy,, let ¢(a;b;) = 7(a;); and
(

d) For each edge a;by,j # k, let p(a;by) = m +t where t = k — j (mod m) and
te{1,2,-,m—1}.



Clearly, ¢ is a (2m — 1)-edge-coloring of Ks,,. It is left to decompose K,, into m
multicolored isomorphic spanning trees. First, for each i € {1,2,3,---,m}, let T; be
defined on the set AU B and E(T;) = {aiGi+2t (mod m)s bibitat—1 (mod m), DiGitat—1 (mod m),
Ait1bigot (mod m) |t = 1,2, -, mT_l} U {a;b;}. Then, it is easy to check that T} is a span-
ning tree of Ks,, and also 7; is multicolored. Furthermore, 7; and 7} are isomorphic follows
by the permutation of AU B defined by mapping a; into a; and b; into b; respectively.

Now, if m is not an odd integer, then 2m = 2! - m’ and ¢t > 2. In case that m’ = 1,
t must be at least 3. Then it is direct consequence of Theorem 1.8. On the other hand,
m’ > 3. Thus Ky, admits an MTP by using doubling construction obtained in [5] except
when m’ = 3 and t = 2. Since this case can be handled by Lemma 2.1, we conclude the

proof. ]

We note here that the above theorem proves the weaker conjecture of Constantine and
the result has been included in a paper written jointly with S. Akbari, A. Alipour and H.

L. Fu [1] which is to appear in SIAM J:of Discrete Math.
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2.2 Existence of Multicolored Hamiltonian Cycle Parallelism

To extend the study of parallelism to the other graph, Ks,, 1 deserves to be considered
first. Since X'(Kami1) = 2m + 1, the multicolored subgraph we consider has 2m + 1
edges. Thus, a multicolored Hamiltonian cycle in K5,,.1 is the best candidate for the
subgraphs. In this section, we shall prove that for each positive integer m, there exists a
(2m—+1)-edge-coloring of Ky, for which all edges can be partitioned into multicolored
Hamiltonian cycles. Obviously, any two Hamiltonian cycles are isomorphic and therefore

we have another parallelism if exists.

Definition 2.3. We call K5,,.; admits a multicolored Hamiltonian cycle parallelism
(MHCP) if there exists a (2m+1)-edge-coloring of Ky,,1; for which all edges can be

partitioned into m multicolored Hamiltonian cycles.

For the convenience in the proof ef our main result, we need a special circulant latin

square M.
Definition 2.4. M = [m,;;] is a circulant-latin square of order odd n with 1st row
(55,2, 583,00, 251

Figure 5 shows M of order 7.

1/5(2/6/3|7|4
512161317141
21613174115
6137|4152
3/714|1/5/2/|6
7141151263
41115/2(6(3|7

Figure 5: Circulant latin square of order 7

Using M, we have a proper n-edge-coloring of K, ,, where {uy, ug, -, u,} and {vy, va,
.-+, v, } are the two partite sets of K, ,,. This coloring has an extra property that for 1 <
J < n, the edges in {u1v;, usv;41, UsVj42, - - -, UpVjtn_1} form a perfect matching and they

receive distinct colors. (Here, the indices ¢ of v; are taken modulo n and i € {1,2,---,n}.)

11



We note here that if we permute the entries of M, we obtain another n-edge-coloring
of K, , which has the same property as above.

In order to prove the main theorem, we also need the following lemma.

Lemma 2.5. Let v be a composite odd integer and n is the smallest prime which is a
factor of v, say v =mn. Then K, has an mn-edge-coloring such that the edge-colored

n(m—1)

Koy can be partitioned into multicolored Hamiltonian cycles if K,, admits an

MHCP.

Proof. We prove the lemma by giving an mn-edge-coloring ¢. Since K, defined on
{z; | i € Zn,} admits an MH C’P,llet i be such an edge-coloring using the colors
0,1,---,m —1. Let V(Kp@mn) = U V; where V; = {x;; | j € Z,} and L = [l ] be
a circulant latin square of order n aZS: ?ieﬁned before Figure 5. Now, we have an mn-edge-
coloring of Ky, () by letting o(zq5%cq). 2l g+ fifaqx.) - n. Therefore, the edges in K,
joining a vertex of V, to a vertex éf Vj, denoted (V,,;V.), are colored with the entries in
L + pu(xq.) - n. It is not difficult to see that ¢ is a proper coloring of Ki,). Now, it
is left to show that the edges of Ky can bepartitioned into multicolored Hamiltonian
cycles.

Let C' = (co,c1,¢2, ++, Cm—1) = (Ta(0), Ta(1), " Ta@m-1)) (0 is a permutation of Z,,)
be a multicolored Hamiltonian cycle in K, obtained from tlhe MHCP of K,,. Define
Cmn) to be the subgraph induced by the set of edges in mLJ (Vag), Va@+1))- Now, if we
let S(ro,r1,---,7m-1) be the set of perfect matchings in zT/Oa(O),Va(l)), (Va@ys Va@))
(Vam—2), Vaim-1)) and (Vagm—1), Va(o)) respectively where the perfect matching in (Vo).
Va@+1)), 1 =0,1,2,--- . m — 1, is the set of edges To(;)aZa(i+1),, With b —a = r; (mod n),
i € Ly, then S(ro,r1,- -+, 7pm—1) is a 2-factor of C,). Moreover, by the edge-coloring
we use for Ky, S(ro,71,-+, m-1) is indeed a multicolored 2-factor. Hence, we can
partition the edges of C,,(,) into n multicolored 2-factors due to the fact that r; € Z,.
Note that S(ro,71, -, rm—1) and S(ry, ry, - - -, 7., ;) are edge-disjoint 2-factors if and only

if r; # r for each i € Z,,.

So, the proof follows by selecting (rg,ry, -, 7m-1) € Z" properly in order that each

12



m—1
2-factor S(rg,r1, -+, m_1) is a Hamiltonian cycle. Observe that if Z r; is not a multiple
of n, then S(rg,71, -, 7m_1) is a Hamiltonian cycle. (n is a priniz.o) Therefore, we let
(0,0,---,0,1),(1,1,---,1,2),--+,and (n—1,n—1,--- ,n—1,0) be the n m-tuples we need
provided that n is not a factor of m-i7+ 1 forz=20,1,2,---,n — 1. On the other hand,
assume that n | m - j + 1 for some j € Z,.(Here, note that such j occurs at most once.)
If € {1,2,---,n — 2}, then replace (j,7,---,7,j+ 1) and (j+1,j+1,---,j+1,j+2)
with (4,7,--+,7,7+ 1,7+ 1) and (j+1,7+1,---,7+1,7,j+2) respectively. Otherwise, if
j = n—1, then replace (n—2,n—2,--- ., n—2,n—2,n—1)and (n—1,n—1,--- ,n—1,n—1,0)
with (n—2,n—2,--- n—1,n—1,n—1)and (n—1,n—1,---,n—2,n—2,0) respectively.
This implies that in either case, we have a partition of the edges of Cy,,) into n edge-
disjoint multicolored Hamiltonian cycles. Moreover, since K, can be partitioned into
mT’l Cin(n)’s, by a similar argument, we have a partition of the edges of K,,(,) into mT’l n

multicolored Hamiltonian cycles. ]

As an example, if m = n =3, then the three® multicolored Hamiltonian cycles
are S(0,0,1) = (20,0, 21,0, 72,0, Toas 1,05 TETTTH; T1g2s T22), S(1,1,2) = (200, 21,1, Ta,2,
Zo,1,21,2, 22,0, $0,27$1,0,ZE2,1), 5(2, 2, 0) 7, («’150,0,301,2, T2.1,%0,2, 1,1, 22,0, $0,1,$1,0,$2,2)- In
case that m = 5 and n = 3, then we have 6 multicolored Hamiltonian cycles. For each
Cs(3), we have three multicolored Hamiltonian cycles of type S(0,0,0,0,1), 5(1,1,1,2,2),
and S(2,2,2,1,0).

Now, in order to partition the edges of an 9-edge-colored Ky into 4 Hamiltonian cycles,
we combine S(0,0, 1) with the three cliques (K3) induced by the three partite sets Vi, V3
and V3, to obtain a 4-factor. Since these K3’s can be edge-colored with {4,5,6},{7,8,9}
and {1,2, 3} respectively, we have an edge-colored 4-factor with each color occurs exactly
twice. Thus, if this 4-factor can be partitioned into two multicolored Hamiltonian cycles,
then we conclude that Ky admits an M HCP. Figure 6 shows how this can be done.

Notice that in the induced subgraphs < V; >, < V5 > and < V5 > we have exactly
one edge from each graph which is not included in the cycle with solid edges. Therefore,

we may first color the edges in < Vi >, < V5 > and < V3 > respectively and then adjust
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Figure 6: Two multicolored Hamiltonian cycles of Ky

the colors in (V1,V3), (Va, V3) and (V3, V]) respectively in order to obtain a multicolored

Hamiltonian cycle. For example, if the color of x¢ ¢z 2 is 5 instead of 4, then we permute
1165

the entries in [6 [ 5 | 4 | by using (4,5), and thus the latin square used to color (Va, V3)
546
5 6 4 . . . . . .
becomes [6 | 4 [ 5 | . This is an essential trick we shall use when n is a larger prime.
i[5 6

Theorem 2.6. For each odd integerv = 3, Ky admits an MHCP.

Proof. The proof is by induction ofi w. By Theorem 1.12, the assertion is true for v is a
prime. Therefore, we assume that v is a composite odd integer and the assertion is true for
each odd order u < v. Let n be the smallest prime such that v =n-m and V(K,) = U V
where V; = {x;; | j € Zy,}, i € Zy,. By induction, K,, admits an M HCP and hence [i(:,i(n)
can be partitioned into mT_l Cin(n)’s each admits M HCP. Moreover, by Lemma 2.5, each
MHCP of Cy,» contains a multicolored Hamiltonian cycle S(0,0,---,0,1). Here, the
edge-coloring of K,,(,) is induced by the coloring ¢ of K,,, i.e., if v;v; is an edge of K,,
with color ¢(v;v;) =t € Z,,, then the colors of the edges in (V;,V;) are assigned by using
M +tn where M is a circulant latin square of order n as defined before Figure 5. We note
here again that permuting the entries of a latin square M + tn may give another coloring,
but the coloring is still a proper coloring.

So, in order to obtain an M HCP of K,, we first give a v-edge-coloring of K, and
then adjust the coloring if it is necessary. Since K,,,) has an mn-edge-coloring ¢, the

edge-coloring u of K, can be defined as follows: (a) pl, - =¥ and (b) pl_,, . = i,i=

14



1,2,---,m, where 1; is an n-edge-coloring of K, such that K,, can be partitioned into ”T_l
multicolored Hamiltonian cycles. Moreover, the images of v; are 1 +tn,2+tn,---, n+1tn
where t € Z,, and t is a color not occurs in the edges incident to v; € V(K,,). (Here, the
colors used to color the edges of K,, are 0,1,2,---,m — 1.)

It is not difficult to check now pu is a v-edge-coloring of K,. We shall revise p by
permuting the colors in (V;, V;11) for some ¢ and finally obtain the edge-coloring we need.

m—1
For convenience, let the edges of K, be partitioned into C’fi()n), 07(5()”), s C’( (721) )

each contains a multicolored Hamiltonian cycle EM, E?) ... ECF of type S(0,0,---,0,1)

and the edges of each K, induced by V;,7 = 1,2,---,m, be partitioned into ”T_l multi-

colored Hamiltonian cycles DM D@ ... D3, Since m > n, we consider the 4-factors

E® U DY where i = 1,2,---, 251, Starting from i = 1, we shall partition the edges of

E® U DM into two Hamiltonian cycles such that both of them are multicolored. By
the idea explained in Figure 6, we firstiobtain two Hamiltonian cycles from E® U DM
by a similar way, see Figure 7 for-example. ‘For.the:purpose of obtaining multicolored
Hamiltonian cycles, we adjust the colers by permuting the colors in (V;,V;y1) to make
sure the first cycle does contain each color exactly once. Then, the second one is clearly
multicolored. Now, following the same process, we partition the edges of E? U D@ ...,
and E("2) U D("2) into two multicolored Hamiltonian cycles respectively. We remark
here that if permuting entries of a latin square is necessary, then we can keep doing the

m—1

same trick since C’S()n), c? ,C’r(ng) are edge-disjoint subgraphs of K. (The per-

m(n) "
mutations are carried out independently.) This concludes that after all the permutations

v—1
2

are done, we obtain a v-edge-coloring of K, such that K, can be partitioned into

multicolored Hamiltonian cycles. ]

As a conclusion, we use Figure 7 to explain how our idea works. The edge xy was
colored with 26 originally by using the circulant latin square of order 5 mentioned before
Figure 5. But, 26 occurs in the Hamiltonian cycle with solid edges already. Therefore, we
use (26, 30) to permute the square to obtain the edge-coloring we would like to have. After
adjusting the colors of zw, 2w’ and ab respectively, we have two multicolored Hamiltonian

cycles as desired.
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Figure 7: Two multicolored Hamiltonian cycles of K3
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3 The Existence of Multicolored (Rainbow) Subgraphs

3.1 Multicolored spanning trees in Ky,

Now, we consider a special edge-coloring of Ks,, with 2m — 1 colors such that for any
two colors form an Cy-factor. Let L be the 2-group latin square defined earlier in Section
1.2. In what follows, we show that L™ = L x L X --- x L based on Zs" has 2" disjoint

transversals for each n > 2.
Proposition 3.1. L™ has 2" disjoint transversals for each n > 2.

Proof. The proof is by induction on n and by Figure 2, n = 2 is true.

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
(0,0)|(0,1){(1,0)|(1,1) 0](0,0)[(0,1)|(1,0)[(1,1) (0,0)(0,1)|(1,0)| (1,1) (0,0)[(0,1)|(1,0)|(L,1)

(=)
(=)
(=)

,_
—_
—_
—_

(0,1)[(0,0)(1,1){(1,0) (0,1)[(0,0)|(1,1)|(1,0) (0,1)|(0,0)|(L,1)|(1,0) (0,1)[(0,0)| (1,1){(1,0)

N

(1,0)[(1,1)](0,0)|(0,1)

[\

(1,0)[(1,1){(0,0)|(0,1)

\®}

(1,0),(1,1){(0,0)| (0,1) 21(1,0)|(1,1){(0,0) | (0,1)

oY)

(1,1)(1,0)|(0,1){(0,0)

Ao Al A As

1)

(1,1)((1,0) |10.1)[(0,0)

w

(1,1)1(150){(0,1)](0,0) 31(1,1)|(1,0)|(0,1)|(0,0)

Figure 8: 4“transversals in L?

Assume that the assertion is true for each k > 2. Let L* = [I,,®)] and LF*! =
Lo" | L
L" | Lo
(0, Ls™) (a (k+1)-dim. vector) and L* = [fs] where T, = (1, 1,,%). We

)

By definition of direct product, we have L*® = [map] where mg, =

shall use the set of 2% disjoint transversals in L* to construct 2¢! disjoint transversals in
e+

Let {A; | i=0,1,2,---,2F — 1} be the set of disjoint transversals obtained in L* by
induction hypothesis. W.L.O.G. we may let A; be the transversal which contains the entry
lo;™,i=0,1,2,---,2% — 1. Now, we shall use Ay; and Ag;1, i =0,1,2,---, 281 — 1, to
construct four disjoint transversals in L**!. For convenience, we explain the construction
by using Ay and A;.

Since Ag(respectively A;) is a transversal in L*, the corresponding entries in Lo* form

a transversal, so are the corresponding entries in L;*. Let the corresponding transversals
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of Ay in Lo* and L;* be Z0,0 and Zl,o respectively. Similarly, let the corresponding
transversals of A; be ZOJ and ZM respectively. Note that for 0 < r,s <1, Zr,s has 2F
entries one from each row and from each column. Now, for 0 < 7, s < 1, we split 4, , into
two parts: ers(u) is the set of entries from the first to the 2~ '-th row of ers, and Zm(l)
is the other half. By defining By, B, By and Bs as in Figure 9, we have four transversals
in L**1 as desired.

Since for i = 1,2,---,251 — 1, A, and ZQHI can also be used to construct four

transversals in L**!, we have a set of 2! transversals in LFT!. By the reason that

Ag, Ay, -+, Agk_; are disjoint transversals, we conclude the proof. [
A (u) A (W A () A (W
0,0 1,1 1,0 0,1
A D A A (D) 1 (1
1,1 AO,g)) 0,1 ](0)
AW A W A (1) AW
0,1 1,0 'y 0,0
A a0 1. () A ()
A],O 0,1 0,0 1,1

Bo Bi B- Bs

Figure 9: 4 transversals in L**! constructed from Ay and A,

Lemma 3.2. Let pu be a (2m — 1)-edge-coloring of Kap,, m > 2, such that for any two
colors induce a 2-factor with each component a 4-cycle, then (a) 2m = 2™ for some n > 2
and (b) Ko, contains a clique K of order 2, 1 < k <n —1 such that {u(e) | e € E(K)}

is a (28 —1)-set, i.e., p|, is a (2% — 1)-edge-coloring of K.

Proof. First, we claim that (b) is true. The proof is by induction on n. Clearly, it is
true when n = 2. By hypothesis, let H be a clique of order 2", h < k, and pl,, is a
(2" — 1)-edge-coloring of H. W.L.O.G. let V(H) = {z1, 73, , 2o} and the colors used
in H be {c1,¢9,-+,¢con_1}. Since p is a (2m—1)-edge-coloring of K, each color occurs
around each vertex. Let cyn be a color not used in H. Then, we have aset H', HNH = ¢,

H' = {y1,y2,- -, yon} such that u(zsy;) = con fori =1,2,--- 2" Now, by the reason that
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any two colors induce a Cy-factor, we conclude that pu|,, is also a (2" — 1)-edge-coloring
of H', moreover, pu(z;z;) = pu(yy;) for 1 < i # j < 2" Therefore, the complete bipartite
graph Kon on = (H, H') has a 2"-edge-coloring following by the same reason. This implies

that p| is a (2! — 1)-edge-coloring of the clique induced by H U H'. So, we have the

HUH'
proof of (b).

Suppose 2m = 2" - p where p is an odd integer and p # 1. Using above argument,
we can find the biggest clique G of order 2° which uses 2° — 1 colors. Then we partition
the vertices of Kj,, into two sets X and Y where X = V(G), and let |Y| = ¢. Here, we
notice that ¢ < 2°. Consider these 2° — 1 colors used in coloring the edges of GG, in total,
there are (2° — 1)(2""! - p) edges which use these colors. But, we have used these colors
in G. Hence, there remains 2°7'(2° — 1)(£ — 1) edges to be colored by using these colors.
Since the edges between X and Y can’t be colored with any of these colors, they have to
be in Y. But, since ¢ < 2%, 2571(2° — IY(F—=1)'= (g), a contradiction. This implies that

p =1, and we have the proof of (a). ]

Now, we are ready to prove the main result.

Theorem 3.3. Let p be a (2m — 1)-edge-coloring of Ko, m > 2, such that for any two
colors induce a 2-factor with each component a 4-cycle. Then the edges of Ka,, can be

partitioned into m isomorphic multicolored spanning trees.

Proof. By lemma 3.2, 2m = 2" for some n > 2. We prove the theorem by induction on
n. By Lemma 1.10, n = 3 is true.

Assume that the assertion is true for each k > 3 and consider Kyky1.

From the process of the proof of Lemma 3.2, it must exist two disjoint cliques of
order 2% with 2¥ — 1 colors in Kyki1. Let V(Kqe11) = AU B where A, B are the vertex
sets of the two cliques. Consider the colors of the edges between A and B. Let A =
{ag,a1,...,a9x_1}, B = {bo,b1,...,boex_1}, and define an array M = [m, ;| by p(a;b;) =
m; ;. It’s clear that M is a latin square, furthermore, M = LF. By Proposition 3.1, M has
2% disjoint transversals. This implies that there are 2¥ perfect matchings in the complete

bipartite graph induced by AU B. Since the two cliques induced by A and B respectively
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have 2¥~! isomorphic spanning trees of order 2¥, respectively. Thus, by assigning a perfect
matching to each spanning tree, we obtain 2¥ spanning trees of order 2¥*!. Moreover,

these spanning trees are isomorphic and multicolored. [
Now, we are ready to consider K, with an arbitrary (2m — 1)-edge-coloring.

Theorem 3.4. Let ¢ be an arbitrary (2m-1)-edge-coloring of Ko,,. Then there exist two

1somorphic multicolored spanning trees in Koy, for m > 3.
Proof. Let V(Ky,,) = {z;| i € Zay,}. We split the proof into two cases.

Case 1. There exists a 4-cycle (xg, x1, 2, x3) such that p(xex;) = b, p(xexs) = ¢, and
©(xox3) = p(r122) = a. Then the two isomorphic multicolored spanning trees can

be obtained by the following figure.

T>:

Figure 10: Two isomorphic spanning trees

Case 2. If any two colors of this edge-coloring induce a Cy-decomposition of Ks,,, then

we have the proof by Theorem 3.3. [
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3.2 Multicolored unicyclic spanning subgraphs in K,
Since x'(Kami1) = 2m + 1, we consider Ky, 1 with a proper (2m + 1)-edge-coloring.

Theorem 3.5. For any positive integer m, given an arbitrary proper (2m+1)-edge-coloring

of Koy, there exists a pair of multicolored isomorphic unicyclic spanning subgraphs of

K2m+1-

Proof. For each (2m+1)-edge-coloring K, 1, we observe that each vertex of Ko, 1 is
missing one color (exactly) of the color-set Zs,, 11, and each color of the color-set occurs
exactly m times. Therefore, if u and v are two distinct vertices, then their corresponding
missing colors are distinct. So, without loss of generality, we may let V(Kapi1) = Zom1,
and at vertex ¢ € Zg,, 11, the color missing is i.

Now, we can construct two multicolored subgraphs. In the first graph, we use the star
with center 0 which has 2m edges. Then delete éne edge 02’ which is colored 7¢” £ 0.
Let this star be H;. Now, by adding an edge yy" (colored t) and an edge xz’ (colored 0),
we have the desired subgraph G| = H; - yy’ 4 xa2’. 'The second graph can be obtained by
a similar way, which is from the star H,*with center ¢ by deleting one edge 0t. Let 0t be
of color a. Then, adding an edge (different' from 0t) of color a and the edge 0x’ we have
the desired second subgraph G, = Hy + 0t + 0.

Clearly, these two graphs are multicolored and the unique cycle in them are both a
triangle. Since they are spanning subgraphs, we have a pair of multicolored isomorphic

unicyclic spanning subgraphs of Ko, 1. [

Figure 11 depicts the construction of G; and G4 in the proof.
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G2

Figure 11: Two multicolored isomorphic unicyclic spanning subgraphs
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4 Conclusion

In this thesis, we have obtained the following four main results:
1. A multicolored tree parallelism for K,,,, m > 3.
2. A multicolored Hamiltonian cycle parallelism for Ko, 1, m > 2.

3. The existence of two isomorphic multicolored spanning trees in an (2m — 1)-edge-

colored K,,.

4. The existence of two isomorphic multicolored unicyclic spanning subgraphs in an

(2m + 1)-edge-colored Koy 1.

From the results, we are able to prove the weaker conjecture (Conjecture 1.4) posed
by Constantine. But, we are very far from werifying the other conjectures. Hopefully, this

task can be done in the near future:
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