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Abstract

We study codes with more combinatorial properties involved than
algebraic properties. These include super imposed codes, Reed-Muller
Codes, Punctured Reed-Muller Codes, Hexacode, Extended Golay Code
and Convolutional Codes, most of them are related to the incidence
structure on the projective geometries, affine geometries, or some ranked

posets.
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Introduction

Definition 1.0.1. Let S denote a set of symbols. A subset C' C S™ is called a code
of length n on S. The elements in C' are called codewords. The number of codewords

in C is called the size of C.

The thesis is about chapter 2, chapter 3, chapter 4 and chapter 5. We introduce
four conclusions of the relation between geometries and codes. The first conclusion
is the relation between projective geometries and super imposed codes. The second
conclusion is the relation between affine geometries and super imposed codes. The
third conclusion is the relation between affine geometries and Reed-Muller codes.
The last conclusion is the relation between projective geometries and punctured-
Reed-Muller codes. The remaining chapters introduce the Hadamard matrices, bent

functions, Hexacode, extended binary Golay code and convolutional codes.

To study codes with good properties is a fascinated work in mathematics and also
has many real world applications, for examples, from wire or wireless communication,
experimental designs, biological group testings etc. The propose of this thesis is to
study codes with more combinatorial properties involved than algebraic properties.
In fact, most of the codes introduced in the thesis are related to the projective spaces

and affine spaces, or some ranked posets. All of the results in this thesis are classical.



We collect results in different places and describe them in uniform and more realiz-
able ways. We provide examples for a definition, and list some codes explicitly, e.g.

Hexacodes in Chapter 7. The thesis is organized as follows.

In chapter 2, we define b%super-imposed codes and disjunct matrices, which can
be used to construct error-tolerable designs for non-adaptive group testing, which has
applications to the screening of DNA sequence, and the corresponding decoding algo-
rithm is efficient. In chapter 3 we introduce a class of posets, called pooling spaces,
which serves as the unified frame of the construction of many pooling designs. In chap-
ter 4 and chapter 5, we introduce the Reed-Muller codes and punctured Reed-Muller
codes respectively. These are classical codes but we give the connection of them with
the posets in chapter 3. In the last three chapters, we introduce Hadamard matrices
and bent functions, Hexacodes and Extended Binary Golay code, and convolutional

codes respectively.

The following notations are used throughout the thesis.

Definition 1.0.2. For = = (zy,29,...,27,),y = (Y1,Y2,-.-,Yn) € S", define the

distance O(z,y) to be the number of different positions in x,y. That is
Ow,y) = [{i | zi # yi}l.
Definition 1.0.3. For C' C S", the minimum distance of C' is defined by

d(C) := min{0(z,y) | x # y in C}.



Super imposed Codes

Throughout this chapter, set S={0,1}. For z=(z1,22,...,2,), y=(Y1,Y2;- - - ,Yn)E S™,
define the Boolean sum = Uy by

(xUy); = for 1 <i <n.
1, else

2.1 Definition

Definition 2.1.1. A code C' C {0, 1}" is b%-super-imposed if for any distinct code-
words x, z', 2%, ..., 2% € C , there are at least d positions with 1 values in the

codeword z and 0 values in the Boolean sum z' Uz2 U --- U 2P,
We give an example as following.

Example 2.1.2. A code C' = {(0,1,1),(1,1,0),(1,0,1)} is a 1'-super-imposed code.
Suppose we choose x = (0,1,1) and z' = (1,1,0). Then in the third position = has
value 1 and 2! has value 0. Similarly for other choices of distinct elements z and z*

in C.

Definition 2.1.3. Let C' = {z},2%,...,2™} C {0,1}" and T C {1,2,...,m}. We

define the output o(T') of T with respect to C'is |J 2. In convention, define o(f)) =
ier

(0,0,...,0).



Definition 2.1.4. Let C denote a b%-super-imposed code with codewords of length
n. Set

b

JC={o(T) | T C{1,2,...,m} with |T| < b}.

With the motivation from linear algebra. We give the following definition.

Definition 2.1.5. A code C" C {0,1}" is a b—union code of dimension m if there

b
exists a subset C' C C” of size m such that C' = JC and C’ has size

m m m
+ +oot
0 1 b

The set C'is called a basis of C'. C" is called the b—union code spanned by C.

Theorem 2.1.6. Let C' denote a b-super-imposed code with codewords of length n
b
and size m. Then |JC is an m-dimensional b—union code with the basis set C' and

manimum distance at least d. O

Proof. Suppose U # V are two subsets of {1,2,...,m} with size at most b. Then

there exists i € (U — V) U (V — U). Without loss of generality, say i € U — V. Since

C'is a b?-super-imposed code, there are d positions with 1 values in ' and 0 values

in |J #7. Then there are at least d positions with 1 values in |J 27/ and 0 values in
JEV jEU

U #?. Hence 9(o(U),0(V)) > d. O

JeEV
2.2 Disjunct matrices

Sometimes it is convenient to describe a code by a matrix. So we give some definitions

for the code as following.

Definition 2.2.1. An n x s 0l-matrix is b%disjunct if the set of its columns forms a

be-super-imposed code.



Definition 2.2.2. Suppose U, V' be two families consisting of subsets of {1,2,...,m}.
The incidence matriz M between U and V is an |U| x |V| matrix with rows and

columns indexed by U,V respectively such that

1, if a Cb;
My, = forae Uandbe V .
0, else

Theorem 2.2.3. Fiz three integers 1 < u < v < m. Let V be the family of all the
v-subsets of {1,2,...,m}, and let U be the family of all the u-subsets of {1,2,...,m}.

The incidence matriz between the U and V is u'-disjunct and (u — 1)"~“*-disjunct

. . m
with size X
U v

2 ...,z% €V, choose a; € x — ' for each

Proof. For x € V and any other 2!, x
i =1,2,...,u. Choose y € U such that {as,as,...,a,} C y C z. Because a; € y
and a; & z', y ¢ a* for each ¢ = 1,2,...,u. This proves that M is u'-disjunct. As
the above proof, there exists a (u — 1)-subset w such that w C z and w ¢ 2* for
t=1,2,...,u — 1. Observe that there are v — u + 1 elelments y with w C y C x.

v—u+1

Because w C y and w ¢ 2*, y € 2*. This proves that M is (u — 1) -disjunct. O

2.3 Decoding

Given a b—union code and its basis C, we give an efficient way to determine how a

codeword can be write as a boolean sum of elements in C.
Definition 2.3.1. For z,y € {0,1}", define z—y € {0,1}" by

1, ifx; =1andy, =0;

(x—y); = forall 1 <i<mn,

0, else

and define x C y if

ri=1—y =1 forall1 <i<n.



Theorem 2.3.2. Let C = {C1,Cy,...,Cp} C {0,1}" be a b¥-super-imposed code,
T C{1,2,...,m} with |T| <b and u € {0,1}". Set

U= | et m) a0 < (T
Then the following (1)-(2) hold.
(1) Suppose d(o(T),u) < |%2|. Then T =U, hence o(T) = o(U).
(2) Suppose O(o(T),u) < d—1 and |[U| <b. Then o(T) = u if and only if o(U) = u.
Proof. (1) (T' CU) Pick j € T. Then C; C o(T'). Hence

2(Cj—u,0) < 9(o(T)—u,0)

IN

9(o(T), u)

7

IA

Hence 7 € U.
(T 2 U) Suppose j ¢ T. Hence 9(C;—o(T),0) > d by the be-super-imposed

assumption. Then

I(Cj—u,0) > 9(Cj—o(T),0) — d(o(T),u)

-1
a1

2

Y]

V

Hence j ¢ U.
(2) Suppose T' # U. Then 0(o(T),u) > [4L] by (1). In particulur, o(T) # w.
b
Because C' is a b%-super-imposed code with codewords of length n, then |JC has

minimum distance at least d by Theorem 2.1.6. Hence 9(o(U),o(T")) > d. Then

9(o(U), u)

vV

9(o(U),o(T)) — 9(o(T), u)
> d—(d—1)=1.

Hence o(U) # wu. O



Suppose u=0o(T) in Theorem 2.3.2 is the codeword in the b—union code spanned
by C. Then u=0(U) is the way to write u as a boolean sum of elements in C. Some

7errors” of the codewords are also allowed.

2.4 Remarks

b-super-imposed codes were introduced in 1964 by W. H. Kautz and R. C. Singleton
[9], and the concept of b¥-super-imposed codes were introduced by A. J. Macula
[12].  As stated in Section 2.2 a b-disjunct matrix is a b?-super-imposed code in
matrix language. The b%disjunct matrix can be used to construct an error-tolerable
design for non-adaptive group testing, which has applications to the screening of DNA
sequence, and the corresponding decoding algorithm is efficient. See [3], [6] for details.

A be-disjunct matrix is also called a pooling design.

The constructions of b-disjunct matrices were given by many authors, e.g. [11],
[12], [13], [4]. Theorem 2.2.3 is a special case of [7]. The algorithm in Theorem 2.3.2

was given in [6]. See [4] for more results of this line of study.



Pooling spaces

We constructed disjunct matrices from the lattice of subsets of a given set in Theorem

2.2.3. We generalize the idea to poset in this chapter.

3.1 Preliminaries

We now give the basic definitions and properties of a partially ordered set. The expert

may want to skip the remaining of this section and go to the next section.

Let P denote a finite set. By a partial order on P, we mean a binary relation <

on P such that

i) <z VYV z€P,

(i) r<yandy<z — z<z V x,y,z € P,
(ii) z<yandy<z — x=y V x,y € P.

By a partially ordered set (or poset, for short), we mean a pair (P, <), where P is a
finite set, and where < is a partial order on P. By abusing notation, we will suppress

reference to <, and just write P instead of (P, <).



Let P denote a poset, with partial order <, and let x and y denote any elements
in P. As usual, we write x < y whenever x < y and x # y, and write x £ y whenever
r < y is not true. We say y covers x whenever x < y, and there is no z € P such
that © < z < y. A poset can be described by a diagram in which the elements are
corresponding to dots, and y covers & whenever dot y is placed above dot x with an
edge connecting them. See Fig. 1 for the diagram of the poset with five elements
{0,w,x,y, z}, and w, z covers 0; y covers w, x; z covers w, x respectively. Note 0, w,y

is a direct chain of length 2.

>
<

w \ / x
(@)
0

Figure 1. A poset.

An element x € P is said to be minimal (resp. mazimal) whenever there is no
y € P such that y < x (resp. < y). Let min(P) (resp. max(P)) denote the set of all
minimal (resp. maximal) elements in P. Whenever min(P) (resp. max(P)) consists
of a single element, we denote it by 0 (resp. 1), and we say P has the least element 0

(resp. the greatest element 1).

Throughout the chapter 2 we assume P is a poset with the least element 0. By
an atom in P, we mean an element in P that covers 0. We let Ap denote the set of
atoms in P. By a rank function on P, we mean a function rank from P to the set of
nonnegative integers such that rank(0) = 0, and such that for all z,y € P, y covers z
implies rank(y) — rank(xz) = 1. Observe the rank function is unique if it exists. P is

said to be ranked whenever P has a rank function. In this case, we set

rank(P) := max{rank(z)|x € P},

9



P, .= {z|z € P,rank(x) =i},
and observe Py = {0}, P, = Ap. Observed P is ranked if and only if for any =z € P

every direct chain from 0 to z has the same length.

Let P denote any finite poset, and let S denote any subset of P. Then there is a
unique partial order on S such that for all z,y € S, x <y in S if and only if z < y
in P. This partial order is said to be induced from P. By a subposet of P, we mean a
subset of P, together with the partial order induced from P. Pick any x,y € P such

that © < y. By the interval [z,y], we mean the subposet
[z,y] :=={zlz € Pz <z <y}

of P.

P is said to be atomic whenever for each element x of P, x is the join of atoms
in the interval [0, z]. Suppose P is atomic and & < y are two elements in P. Observe

the atoms in the interval [0, z] is a proper subset of atoms in the interval [0, y].

Let P denote any poset, and S be a subset of P. Fix z € P. Then z is said to
be an upper bound (resp. lower bound) of S, if z > = (resp. z < x) for all z € S.
Suppose the subposet of upper bounds (resp. lower bounds) of S has a unique minimal
(resp. maximal) element. In this case we call this element the least upper bound or
join (resp. the greatest lower bound or meet) of S. If S = {x1,29,...,2:} we write
1V x9V---Vx, for the join of S and 1 A xg A - -+ A x; for the meet of S. P is said
to be meet semi-lattice (resp. join semi-lattice) whenever P is nonempty, and = A y
(resp. x V y) exists for all x,y € P. A meet semi-lattice (resp. join semi-lattice) has

a 0 (resp. 1). A meet and join semi-lattice is called a lattice.

Suppose P is a lattice. Then P is said to be upper semi-modular (resp. lower

semi-modular ) whenever for all z,y € P,

y covers T Ay — x V Yy covers x

(resp. = Vy covers x — y covers x Ay).

10



P is said to be modular whenever P is upper semi-modular and lower semi-modular.

3.2 Definitions

Now we can give the main definition of the chapter as following.

Definition 3.2.1. Let P be a ranked poset. For any w € P, define
wr={y=>wl|yePr}
P is said to be a pooling space whenever w™ is atomic for all w € P.

In particular, a pooling space is atomic. It is immediate from the definition that
if P is a pooling space, then so is w* for any w € P. The following theorem is a

generalization of Theorem 2.2.3.

Theorem 3.2.2. Let P be a pooling space with rank D > 1. Fix an element x € Pp
and fiz an integer b (1 < b < D). Let T C Pp be a subset such that |T| < b and
x & T. Then there exists an element y € [0,2] N B, such that y £ z for all z € T.

Proof. We prove the theorem by induction on D. If D = 1 then b = 1 and the theorem
holds by setting y = . In general, pick an element z € T. Then x # z by assumption.
Since z is the least upper bound of [0,2] N P, and x £ z, z is not an upper bound
of [0,z] N P,. Hence we can pick an element w € [0,z] N P; such that w £ z. Then
T Nw" has at most b — 1 elements. In the pooling space w™, the element x and the
elements of TNw™ all have rank D — 1, and the elements of w™ N P, have rank b — 1.
Hence by induction, we can choose y € [w, z] N P, such that y £ u for all u € TNw™.
Note that clearly y £ u for all w € T'\ w*. This proves the theorem. O

11



3.3 The contractions of a graph

Many examples of pooling spaces were given in [7]. These are related the Hamming
matroid, the attenuated space, and six classical polar spaces. Among these examples
there is a common property: each interval is modular. In this section we will construct
pooling spaces without modular intervals. Throughout the section let G' denote a

simple connected graph on n vertices.

Definition 3.3.1. Let P = P(G) denote the set of partitions A of the vertex set
V(@) such that the subgraph induced by each block of A is connected. For A, B € P,
define

A < B <= Ais arefinment of B.

The poset (P(G), <) is called the poset of contractions of G.

Example 3.3.2. Let G denote a graph with the vertex set {w,x,y, z} and edge set
{wz,7y,yz,zw}, i.e. G is the 4-cycle Cy. Then the poset P(G) is as in Fig. 2. We
delete the single element blocks in the notation of a partition. e.g. the notation 0 is
used to denote the partition with four blocks {w}, {z}, {y}, {z}, and Wz is used to
denote the partition with three blocks {w,z}, {y}, {z}. The poset is a lattice, but
not a modular lattice. This is because the join of the elements wz yz and Ty zw is
wzyz, which covers wzx yz, but Ty zZw does not covers the element 0 which is the meet
of the elements wZ yz and Ty zZw. Observe the subposet induced on wzt is P(Cs),

the poset of contractions of a triangle.

12



Figure 2. P(Cy).

Lemma 3.3.3. P(G) is a ranked poset of rank n — 1. The rank i elements are those

elements in P(G) with n — i blocks for 0<i <n — 1.

Proof. For D € P(G) with n — ¢ blocks define the rank of D to be i, where 0 < i <
n — 1. We claim this is a rank function. Suppose that B covers A and rank(A) = i.
Since A is a proper refinement of B, rank(B) > ¢ + 1 and there are two blocks in A
that are contained in the same block of B. Let C' be an element in P(G) that glues
these two blocks of A. Then A < C' < B and rank(C) = rank(A) + 1. This shows
C = B and rank(B) =i + 1. O

Theorem 3.3.4. P(G) is a pooling space of rank n — 1.

Proof. P(G) is ranked by previous lemma. From previous lemma and the definition
each atom in P(G) contains n — 1 blocks, one block containing two adjacent vertices
and each of the remaining n — 2 blocks containing a single vertex. By identifying the
atoms with the edges of G we find each element A € P(G) is the join of those edges
contained in the subgraph of G induced by A. This shows that P(G) is atomic. More
generally, for B € P(G), the poset BT is also atomic. This is because the subposet
BT is isomorphic to the poset P(Bg) of contractions of Bg, where Bg is the graph
with the vertex set B, and for two distinct blocks x,y € B x is adjacent to y whenever

some vertex in z is adjacent to some vertex in y. O

13



Remark 3.3.5. Let G = K,, denote the complete graph on n vertices. Then the
elements in P = P(K,,) are all the partitions of the vertex set of K,,. S(n, k) := | Py
is called the Stirling number of the second kind. 1t is well known that S(n, k) can be

solved by the recurrence relation
S(n,k)=Sn—-1,k—1)+kS(n—1,k) for1<k<n-1

with initial condition S(n,0) = 0 for n > 1, and S(n,n) = 1 for n > 0. See [2,

Section 8.2] for details.

3.4 Finite fields

Before going farther, we need some background on finite fields. Recall that a finite
field F, is a set of g elements containing 0,1 with two binary relations 4 , - , such
that (F, , +,0) and (F; , -, 1) are abelian groups, and +, - satisfy distribute law,
where F:=F, — {0}.

We give some examples as following.

Example 3.4.1. {0, 1,2, 3} is not a finite field under ususal + , - (mod 4), since 2

does not have the multiplication inverse.
Example 3.4.2. F; = {0,1,z,2 + 1} is a finite field under + , - (mod 2 + z + 1).

It is well-known that the finite field F, of ¢ elements is unique up to isomorphism,

and ¢ = p” for some prime p. There are two ways to describe F:
(i) F,={ao+amz+ar®+ - +a_12" | a; € Z,},

(11) Fq = {07 1777727 e 77q_2}'

The + defined in (i) is as usual, and - is defined mod some irreducible polynomial
g(z) € F,[z] of degree r, e.g. g(x) = 2> + x + 1 in Example 3.4.2. The - defined in
(i) is as usual with the condition v¢~! = 1 and the + is defined mod g(z). v is called

a primitive element of Fy.

14



Example 3.4.3. F; = {0,1,2,2 + 1} = {0, 1,2, 2%} (mod 2* + z + 1).

Example 3.4.4. I ={0,1,2,3,4} = {0,1,2,2% 23} (mod 5).

Note 3.4.5. F) is the set of solutions of z(z4™* — 1) = 0.

Note 3.4.6. Suppose g = p" for some prime p. Then F} is a vector space over F},.

Lemma 3.4.7. Suppose T' C F,m is a subspace over F,. Then 1" is a subspace over

F, for any v € Fpm.

Proof. This is clear for v = 0. Suppose v # 0, and suppose oy, as, ..., q is a basis

of T. Then yay,vas, ..., yay is a basis of T m

3.5 Projective and affine geometries

We introduce two more examples of pooling spaces in this section.

Definition 3.5.1. The projective geometry PG(n,q) is the poset consisting of all
subspaces of F' with order defined by inclusion. The elements in P; are referred to

the i-subspaces of F! for i = 0,1,2,-++ n.

The following is from linear algebra.
Note 3.5.2. dim(U + V)+dim(U N V)=dim(U)+dim(V') for U,V € PG(n,q).
Definition 3.5.3. Consider the n-dimensional space F' where ¢ is a prime or a prime

n
power. Let denote the number of k-subspaces of F'. In convention, define

k

q

=0,if k>nork<O.
k

q

We list a few properties for

15



Lemma 3.5.4.

N B e D1 e D EE Ut I S G A

k (" =gt =1)---(¢—1)

q

Proof. We prove the statement by induction on k.

= 1 is clear since {0} is the only one subspace of dimension 0,

q
and

q
since there are ¢" — 1 nonzero vectors in F;' and each 1-subspace containing g — 1

nonzero vectors.
In general, by counting the number of pairs (W, V), where W C V are (k — 1)-

subspaces, k-subspaces respectively in two ways, we find

n n—k4+1 n k
k—1 1 k k—1
q q q q
Hence
n n—=k+1
k—1 1
n _ q q
k
q
k—1
q
(=D =1) (g =)
(" =D —=1)---(¢—1)
by induction hypothesis. O]
Lemma 3.5.5.
n n
= for 0 <k <n.
n—=k
q q
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Proof. By Lemma 3.5.4,

n _ (@@= =) (- 1) (g )
n—k (@ * =Dt =1 (g=1) (¢F=D( =1 (¢—1)

(" =D(¢" ' =1)--- (""" =1)
(¢" = DAt =1)-- (¢ —1)

n
q
O
Lemma 3.5.6.
k k—1 . k—1
_ =q" " for 0 <r <k.
T r r—1
q q q
Proof.
k k—1
r r
q q
(" D@ =1 (" =1 (-1 -1 (" 1)
(¢"=1(g=1)--(g—1) (=g =1)-(¢—1)
_ (-1 - (=1 -
= =1 - 1)
kE—1
—_ qkfr
r—1
q
O

The following theorem will be used in the next section to construct super-imposed

codes.

Theorem 3.5.7. Fiz integers 0 < r < k < n. Let A, Ay, Ay, ..., Ay be distinct

k-subspaces of F'. Then there are at least

k—1 k—2
d:=q"" —(b—1)g" (3.5.1)
r—1 r—1
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r-subspaces of A which are not contained in each A; fori=1,2,--- b.

Proof. To obtain the maximum elements of r-subspaces in AN A;, we assume dim(AN
and the dimension of (AN A;) N (AN A,) is k — 2. Hence there are at least

k k—1 E—1 k—2
e = || - — (b 1) - )
r r r r
q q q q
k—1 k—2
— qkfr o (b . 1)qk7r71
r—1 r—1
q q
r-subspaces of A which are not contained in each A; for i =1,2,--- ,b. O]

Corollary 3.5.8. In Theorem 3.5.7. If1 < r < %, then b = q" + 1 is the largest

integer such that d > 0. If r =1, then b = q is the largest integer such that d > 0.

Proof. Suppose r > 1. Then d > 0 <

k—1 k—2
b—1 < ¢ /
r=1 r—1
q q
(=12 =1)---(¢F T —1)
(@2 =D 2 =1)-- ("7 = 1)
_ald -1
(¢Fr—1)
_ dma—dttd
qk:—r -1
gl =1
qk—r _ 1 + q
Since
k
r< —,
=9
q(¢t—1)
0< <1
qkfr _ 1

18



Hence b < ¢" + 1.

Suppose r = 1. Then

d>0 <= b—1<q

— b<yq.
[
b<g, r=1;
Note 3.5.9. Since 2 , we can choose A, Ay, Ay, -+, Ay
b< =q+1, 1>2

1
q
such that AN A; # AN A; for i # j, dim(ANA;)=k — 1 for every i=1,2,---,b and

their meet is a (k — 2)—subspace. Then there are exactly d r-subspaces of A which

are not contained in any A; for i =1,2,--- b and d is defined in (3.5.1).
Now we consider the relation of projective geometry.

Definition 3.5.10. Let F}' denote an n-dimensional vector space over a finite field
Fy, where g is the number of elements in the field. Let P = P(F}') denote the poset

with element set
P={u+W |u€F;and W C F is a subspce} U {0},

where () denote the empty set. The order is defined by inclusion. Note that P is a
geometric lattice of rank n + 1. P is called the affine geometry and is denoted by
AG(n,q). The elements in P; are referred to the affine (i — 1)-subspaces of F}' for
1=1,2,--- ;n+ 1. We say the affine subspaces u + W and v + W are parallel for

u,v € F',) W C F" is a subspace.
We immediately have the following lemma.

Lemma 3.5.11. Suppose uq,us € Fq” and Wy, Wy C F; are subspaces. Then uy +
Wi = us + Wy if and only if W, = Wy and uy — us € Wi m|
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Now we have a similar version of Theorem 3.5.7

Lemma 3.5.12. Let A denote an affine k-subspaces of . Then the number of affine

r-subspaces contained in A is

q
where r < k. These affine r-subspaces in A are partitioned into

k

r
q

classes, each class consisting of ¢*~" parallel affine subspaces. |

Theorem 3.5.13. Fix integers 1 < r < k < n. Let A, Ay, As,..., Ay be distinct

affine k-subspaces of F;'. Then there are at least

k k—1

d:=q¢"" E LY (3.5.2)
r r
q q
affine r-subspaces contained in A and not contained in any of A; fori=1,2,--- b.
Proof. There are
qkfr k
r

q
affine r-subspaces contained in A, some of them in some affine subspace A N A; for

each i = 1,2,--- ,b to be deducted. AN A; takes maximal coverage of these affine
r-subspaces when ANA; is an affine (k—1)-subspace, and in this situation the number

of these affine r-subspaces is

(k—1)—r k=1
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Corollary 3.5.14. In Theorem 3.5.13, if 0 < r < g, then b = q"*1 is the largest

integer such that d > 0; if r =0, then b = q — 1 is the largest integer such that d > 0.

Proof. d >0 +—

k E—1
b < ¢ /
T T
q q
(" =D —1)--- (" —1)
= q
(@' =D(¢"2=1)--(¢"7 = 1)
_ad-1)
(¢ —1)
_ g
qkfr 1
ol =1
- qk:—r -1 + q
Since
k
D<r<—=
r 2,
Then
=it
q(kq_ ) =
q- " —1

Hence 0 < b < ¢

Suppose r = 0. Then

d>0 <= b<yq

— b<qg-1

]

. b<q-—1, r=0;
Note 3.5.15. Since and k& < n, we can choose A; to be an
b<q, r>1

affine k—subspace with the meet with A corresponding to each of the ¢ parallel affine
(k — 1)—subspaces in A. Then there is exactly d affine r—subspaces contained in A

and not contained in any of A; for i =1,2,--- ,b and d is defined in (3.5.2).
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3.6 Codes on projective and affine geometries

We are clearly to apply the results in the section 3.5 to construction of super-imposed

codes as following.

Definition 3.6.1. Let P,(n, k,r) denote the incidence matrix of the set of r-subspaces
and the set of k-subspaces in Fq” for 1 < r < k < n. The following corollary is
immediate from Theorem 3.5.7, Corollary 3.5.8 and Note 3.5.9.

Corollary 3.6.2. The columns of P,(n,k,r) form a b%-super-imposed code, but not

a b -super-imposed code, where b is a positive integer satisfying

b<g, r=1;
b<q+1, r>2

k <mn and d is defined in (3.5.1).

Definition 3.6.3. Let A,(n + 1,k + 1,7+ 1) denote the incidence matrix for of the
set of affine r-subspaces and the set of affine k-subspaces in F, s 0<r< k <n. The

following Corollary is immediate from Theorem 3.5.13, Corollary 3.5.14 and Note
3.5.15.

Corollary 3.6.4. The columns of A,(n + 1,k + 1,7 + 1) form a b-super-imposed

code, but not a b -super-imposed code, when b is a positive integer satisfying

b<q—1, r=0;
b<q, r>1,

k <n and d is defined in (3.5.2).
We set r =0 and b = g — 1 to obtain the following result.

Corollary 3.6.5. Let A,(3,2,1) be the incidence matriz of the set of affine 0-subspaces
and the set of affine 1-subspaces in F;. Then the columns of Ay(3,2,1) are (¢ —1)*-

super-imposed code. O
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3.7 Sperner’s theorem and EKR theorem

We list two interesting classical theorems in this section as following.

Theorem 3.7.1. (Sperner’s Theorem)Let M be an n X s 1-disjunct matriz. Then

s <

,_
s 3
|

Proof. Let P be the poset consisting of subsets of {1,2,--- ,n} with order defined by
inclusion. For each column x of M, identify = to the element {i | x; = 1} of P. Then
the set F' of columns of M becomes an antichain in P. (i.e. & € 2/ for any = # '.)
Set ay, == |{x € F | |[x| = k}| for k =0,1,2,--- ,n. Note |F| = i ag. Observe there
are n! maximal chains in P. Observe there are kl(n — k)! mainI;l:a(,)l chains containing
a fixed x € P with |z| = k. Observe for any chain L. |L N F| < 1. By counting the

pairs (z, L) where x € F, x € L and L is a maximal chain. We find

Zakk!(n — k)Nl <1-nl

k=0
Then
]
1 n
(033 S 1
=0 k
Hence .
n n
Z (073 <1
k=0 15]
Thus,
n n
S = Z (692 <
k=0 5]

]

Theorem 3.7.2. (EKR-Theorem) Let A be a collection of s distinct k-subsets of
{1,2,--- ,n}, where k < %, with the property that any two of the subsets have a
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nonempty intersection. Then
n—1

k—1

s <

Proof. For a permutation o of {1,2,--- ,n}, and T' € A, define o(T) := {o(z)|x € T’}
and A7 :={o(T)|T € A}. Set S; :=={i,i+1,--- ,i+k—1} modnfori=1,2---,n
and F':= {51,5,,---,S,}. Observe for each S; € F, there are 2k — 1 S; € F with
S; N S; # 0. These are S;_(5-1),5i—(k—2)," - * », Sit1,"*+Sitk—1. Divide these into k
boxes {Si_ -1y, Si41},{Si—k—2,Si42}, -+, {Si-1, Sizk-1},{Si}. Any two in the same
boxes have empty intersection. Hence we can choose only one. From this observation
we have [ANF| < k. Also |A? N F| < k for any permutation 0. We count (S, T, o)
in two ways, where S € F', T € A, ¢ is a permutation with ¢(7) =S, S € AN F
and T = o~1(S), in the orders S,T,0 and ¢,5,T to find

n-s-kl(n—k)!<n!-k.
Hence

(n—1)! n—1
R CE I Taal S

]

Definition 3.7.3. Let P be a ranked poset of rank n and 1 < k < n be an integer.
We say P has the k'* EK R property whenever any family F' C P, such that for any
x,y € F there exists a # 0 with a < z and a < y, we always have |F| < |[w™ N Py| for

some w € Pj.

Conjecture 3.7.4. EKR property holds on a geometric lattice.

3.8 Remarks

The name pooling spaces was given in [7]. Theorem 3.3.4 was proved in [8]. Theo-

rem 3.5.7 was given in [4] with a minor correction. Theorem 3.5.13 was given in [§].
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Theorem 3.7.1 and Theorem 3.7.2 are well known and have many different proofs.

We follow the proofs from [10, Chapter 6].
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4

Reed-Muller Codes

For the remaining of the thesis, we consider the codes defined with more algebraic

aspect, but it turns out these codes also have combinatorial meaning.

4.1 Linear Codes

Definition 4.1.1. A code C' C F? is a [n, k, d]-linear code (or [n, k|-linear code) if C

is a subspace of F' with dimension k& and minimum distance d.

Definition 4.1.2. For any = € C, the weight wt(x) of z is the number of nonzero

coordinates in x. The minimum weight wt(C') of C' is
wt(C) := min{w(z) |z € C, x # 0}.

In general the weight of an element in F7' depends on how the basis is chosen.
In the above definition the weight is associated with the standard basis of F'. We
might choose different basis and define the weight differently. Because the distance

of codewords have relation with the weight.

Note 4.1.3. The distance d(x,y) between the codeword x and y is wt(x — y) for any
x,y € C.
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Note 4.1.4. We say C is a linear code if and only if z —y € C' and ax € C for any

x,y € C' and scalar «.

Note 4.1.5. If C is linear code, then the weight wt(C) is equal to the minimum
distance d(C).

Note 4.1.6. The concept of weight of a code indeed depends on the chosen basis of

vector space.

4.2 Reed-Muller Codes

At first, we give the definition of the codes considered in this chapter.

Definition 4.2.1. We define R,,, :={f | f : F;* — F5 is a function}, where R,, is
called the Reed-Muller code of order m.

The following two notes are clear.

Note 4.2.2. The Reed-Muller code is a vector space under usual +,- operations of

functions.

Note 4.2.3. The Reed-Muller code of order m is a vector space over F; of dimension

2™ and |R,,| = 22".
We consider a few special functions in R,,.

Definition 4.2.4. For 1 < i < m, we define x; € R, such that for any u € FJ",

zi(u) = 1<=u; = 1, and define 1 € R,,, such that for any v € F}", 1(u) = 1.

Definition 4.2.5. z;,w;, - - - 73, € Ry, is called a monomial of degree j where1 < j <m

and 1 <'iy,19,- -+ ,%; < m are distinct integers. 1 is called a monomial of degree 0.

We identify 0,1,2,---,2™ — 1 with the elements in FJ" by using binary expressions,
eq. 0 =1(0,0,---,0), 1 = (1,0,---,0,0), 2 = (0,1,0,---,0,),---. We choose a
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standard basis fo,f1, -+, fom_1 of R,,, where f;(j) = 1if and only if j =i for 0 < i <
2™ — 1. We use the standard basis to express the codeword f € R,,, so the weight of

f has the following meaning.

Note 4.2.6. Suppose the function f € R,,. Then f? = f and the weight wt(f) is

equal to |f~1(1)].
We consider the weight of a monomial as following note.

Note 4.2.7. Suppose f = x5 - - - x,. Then

f_1(1> = {(171? 717ar+17a7"+27"' >am) ‘ Q; =0or 1}

is a affine (m — r)-subspace of FJ". Hence wt(z12zy---2,) = 27",

We find a basis of R,,.

Theorem 4.2.8. The set of monomials with degree less or equal m forms a basis of

the Reed-Muller code of order m.

m m m
Proof. There are + +oea 4 = 2" monomials and dim(R,,) = 2™.

0 1 m
It suffice to show monomials span R,,. Suppose f € R,,. Observe

f: Z H((L‘J+aj+1)

acf~1(1) j=1

Hence f is spanned by monomials. O
We consider Reed-Muller codes in the light of monomials.

Definition 4.2.9. RM (r,m):={f € R,, | [ is spanned by monomials of degree < r}
where r < m. RM/(r,m) is called the r-th Reed- Muller Code of order m. Let wt,,

denote the weight function on RM (r,m).

From Theorem 4.2.8 and Definition 4.2.9, we have
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Note 4.2.10. Since RM(r,m) is a linear code with codewords of length 2™, the

m m m
dimension is dimRM (r,m) = + 44
0 1 r

Theorem 4.2.11. The minimum distance d(RM (r,m)) is equal to 2™".

Proof. We have seen

Wty (x19 -+ ) = 2777
Hence d(RM (r,m)) < 2™ ". We prove
d(RM(r,m)) > 2™

by induction on m. Suppose m = 1.

Case 1: m = 1,7 = 0. f : F} — Fy(no z; appears) and f = 1. Hence
f71(1) = Fy. Then wt((f) =|f'(1)|=2=2m"".

Case 22 m=1,r=1. f #0 has wt;(f) > 1=2""".

Suppose for any 0 # f € RM(r,m), we have wt,,(f) > 2™". Choose any
fe€ RM(r,m+1). Say f = g+ Zymi1h where g € RM (r,m + 1) without z,,,1 and
h € RM(r —1,m+ 1) without ;.

Case 1: g = h #0. Then f = h(zy41) and
Whn1 (f) = Wy (h) > 2m= =1 = gm+i-r,

(Using h has at most r — 1 variables).

Case 2: g # h. Then

W1 (f) = wtm(g) + wty(g + h).

(To assign zp,1 =0 in wt,,(g) and 41 = 1 in wit,, (g + h)).
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Case 2.1: ¢ = 0. Hence h # 0 and
W1 () = wiin(h) > 277070 = gmHior,
Case 2.2: g # 0. Note g + h # 0, since g # h. Hence

wtm+1(f) = wtm(g) + wtm(g + h) > QmeT 4 gmeT om+1-r

Next, our goal is to prove
Wty (fs) = 2™ <= S is affine (m—r)—subspace (%)

where S C FJ", and

1, ifx €S,
fs(x) =

0, else

fs is called the characteristic function of S.
Remark 4.2.12. R,,={fs | S C FJ"}.
One direction is easier.

Theorem 4.2.13. Suppose S is an affine (m — r)-subspace in Fy*. Then wt(fs) =
2™~ and fs € RM(r,m).

Proof. Note wt(fs)=|f5*(1)|=]|S|=2""". Observe S is the solution space of a system
of r linear independent equations in m variables. Hence there exist a;;,b; € F5 such

that fort=1,2,--- ;rand 7 =1,2,--- ;m we have

(131,1'2,-.. 7wm) - S < Za’zjmj = bZ fOI‘ Z = ]_’27... 77"
j=1
Observe
fS - H[(Z CLijfL’j) — bz =+ 1]
i=1 j=1
and the degree of the monomial in the expansion of fg is less or equal r. O
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To prove the other direction, we need some facts as following notes.

Note 4.2.14. An affine k-subspace is the union of 2 parallel affine (k — 1)-subspaces
by Lemma 3.5.12.

Note 4.2.15. We say the disjunct union S;US; = S C Fy*if and only if fg = fg,+ fs,-

Theorem 4.2.16. The vectors in {fs | S is a affine (m — r)-subspace of F3"} span
RM((r,m).

Proof. 1t suffices to prove x; x;, - - - x;, is spanned by the characteristic function of

t
affine (m — r)-subspaces, where t < r. Observe x;,x;, - - z;,=fr for some affine
(m —t)-subspace T" and fr = fr, + fr, for some parallel affine (m — (¢ + 1))-subspaces
Ty,T,. Keeping doing this, we find x; x;, - - - z;, is the sum of some characteristic

t

functions of affine (m — r)-subspaces. O
Definition 4.2.17. An affine (m — 1)-subspace in F3" is called a hyperplane of Fj".

Theorem 4.2.18. Suppose T C F3* with |T| = 2%, Suppose |T N S| = 0,2~ or 2*

for any hyperplane S of F3*. Then T is an affine k-subspace of Fj".

Proof. We prove this by induction on m and m = 2 is clear. In general, we consider

the following 3 cases.

Case 1: T C S for some hyperplane S of F}". Then S = F;"~'. Let H be a
hyperplane of S. Then H is an affine (m — 2)-subspace of F}". We want to
show that |T'N H| = 0,21 or 2*. Observe there is an affine (m — 1)-subspace
S’ such that SNS’ = H. Hence |[TNH| =|TNSNS|=|TNS'| =0,2"" or 2F

by assumption. By induction, 7" is an affine k-subspace in S and then in F3".

Case 2: TNS = () for some hyperplane S of Fj". Then T' C S’ for the hyperplane
S" of Fy" parallel to S. So the result follows from Case 1.

Case 3: |T'N S| = 28! for all hyperplanes S of F§". Observe the case m = k is

clear, so suppose m # k. Then on the one hand
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m gm
TNSP?= L2 92(k-1) (2m — 1)22%~!
m—1 2m-t
S J—

and on the other hand

DTS = Y (Y fs(a)?
S

S a€eT

= ZZZfS(a)fs(b)
acT beT S

= >0 D Fsl@)fsv)+ D) fs(a)’
€T beTota S weT S

m—1 m
= |T|(|T]-1) , + [T

1
2 2

= 22—t 1)+ 2F@2m 1)

= ok[ok+tm-l igm=1l _ ok 4 om]
where the summations are over all hyperplanes S in F3". Hence
m =k,
a contradiction. O

Now we can show the other direction in ().

Theorem 4.2.19. Let f € RM(r,m) be the minimum weight vector. Then f = fs

for some affine (m — r)-subspace S in Fy".

Proof. By Theorem 4.2.11, wt(f) = 2™ ". Then f = fg for some S C F;" with
|S| = 2™7". We want to show that S is an affine (m — r)-subspace. Let H be a

hyperplane in F7". We want to show
ISNH|=0,2"""1or 2™,

and then apply Theorem 4.2.18 to say S is an affine (m — r)-subspace. Observe
F)" = HU H' where H' is parallel to H. Observe fy, fgr € RM(1,m) by Theorem
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4216 and 1 = fy + fgr, since HN H' = (. Hence ffy, ffw € RM(r+ 1,m). By
Theorem 4.2.11,
wt(ffy)=0or >2m -+

and

wt(f fgr) =0 or > 2m-(+D),

Since

= ()
= wt(ffu + ffu)
= wt(ffu) +wt(ffu),

We have wt(f fr) = 0,2™""! or 2™~". Hence

SN H| =0,2""""% or 277,

4.3 Decoding

We study the decoding of Reed-Muller codes in this section, we need the following

notation.
Definition 4.3.1. S, := {(¢1,¢2,+ -+ ,¢m) | ¢; = 1,7 € o} is an affine (m—|o|)—subspace
and z, = [] «; is a monomial, where o C [m] = {1,2,--- ;m}. Hence

1€0

Definition 4.3.2. 7 = [m] — o is called the complement of o, where o C [m]
We give an example as following.

Example 4.3.3. Suppose m = 6,0 = {1,2,3}. Since z, = x1x9w3 and z57 = x475%s,

we obtain S, = {(1,1,1,a,b,¢) | a,b,c € F»} and Sz = {(d,e, f,1,1,1) | d,e, f € F>}.
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By Definition 4.2.9, we have

Note 4.3.4. Suppose f € RM(r,m). Then f= > f,z, for some f, € F.

lo|<r,oC[m]

Lemma 4.3.5. Suppose u € F}" and 7 = {i | u; = 1}. Then for o,p C [m|, we have

om=level if o npnT =0
|Se N (u+5,)| =
0, else.

Proof. Observe
u+S,={(c1,¢2,- - ,em) |ci=1ifiepnT, ¢, =0if i e pNT7}

and

Se ={(c1,¢0, - o) |ci=1if i € o}

Hence if c N p N7 = (), we have

SeN(u+S,) ={(c1,¢0,- - yem) |ci=1ificoU(pNT), ; =0ifieanpnr}.

Then
1S, 1 (1 5,)] =271
when
ocNpNt=1».
Note
1Se N (u+S,)| =0
when

oNpNT 0.

]

Since this is not trivial, we give two examples as following for improving the sense

about Lemma 4.3.5.
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Example 4.3.6. Suppose u = 0,m = 5, 0 = {1,2} and p = {3,4}. We obtain
Se ={(1,1,¢c3,c4,¢5) | ¢; € Fo} and u+ S, = {(c1,¢2,1,1,¢5) | ¢; € Fy}. Hence

S, N (U + Sp) = {(1, 1,1, 17C5> | Cs € FQ}
loLpl

has cardinality 2 = 2™~

Example 4.3.7. Suppose u = (1,0,0),m = 3, 0 = {1,2} and p = {1}. We obtain
Sy ={(1,1,¢3) | 3 € Fo} and u+ S, = {(0, 2, ¢3) | c2,¢3 € F}. Hence

Sy N(u+S,) =0.

The following theorem is essentially a decoding of RM (r,m). This will be clear

later.
Theorem 4.3.8. Suppose f = >, f,x, € RM(r,m) for f, € Fy. Fiz o0 C [m)]
lp|<r,pClm]
with |o| = r. Then
fo= Y f(w) forall ue Fy". (%)
’LU€U+57
Proof.
Z flw) = Z Z fop(w)
weu+Sy weu+Sz |p|<r
= Z fo Z 5Ep(w)
|p‘§7‘ weuU+Sy
= D LlSnu+S)
lp|<r
= fo
since |.S, N (u + S7)| is even except p = ¢ by Lemma 4.3.5. O
2m 2m
Note 4.3.9. The size of u+ Sz is [{u + Sz | u € FJ'}| = pre e T 2™ for

the o, u in Theorem 4.3.8. (%) contains 2™ equations, one for each u € FJ". Some of

them are identical. There are 2™~" different equations.
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Note 4.3.10. For |o| = r — 1, the Theorem 4.3.8 does not hold.
We show how Theorem 4.3.8 is used in the decoding process as following.

Application 4.3.11. (Encoding and Decoding Processes)

f= Z fox, € RM(r,m) (original message)

lp|<7,pC[m]

— (f(0), f(1), f(2),---, f(2™ —=1)) (encoding f into a string of 0, 1)
— (f10), f(1), f(2),--  f(2" = 1))
(f is sending via a noisy channel to become f)

—  Compute f, = Z f'(t) for each |o| = r and each u + Sy.
tEu—i-S;
There are 2™ such f! according to different cosets u + Sy,

and we use majority to determine f,

m—=r

—1
(Assume the number of errors < |———| in the sending).
2

——  Setnew f as f — Z fyx, and new f' as f' — Z fotty

|o|=r |o|=r

and go to the previous step to determine those f, for |o] =7 — 1.

Keep doing this untill we get fj.

We also present an example of the decoding process for improving the sense about

the encoding and decoding processes.
Example 4.3.12. In RM(1,3), suppose the receiving codeword
(f/(0), (1), f(2),---, f(7)) = (1,1,0,0,0,1,0,0).

Assume the number of errors < 2= | = 1.
(i) We can find f, for |o| = 1 by the following steps.
Suppose o = {1},7 = {2,3}. First step is to find all u + Spo3) for u € Fy. We find

5{2,3} = {(Oa L, 1)7 (17 L, 1)}
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Then

{u + 5{2,3} | u e F23} - {{(07 L, 1)’ (17 1, 1)}7 {(07 0, 1)? (17 0, 1)}
,{(0,1,0),(1,1,0)},{(0,0,0),(1,0,0)}}
= {{677}7{47 5}?{273}7{071}}'

Second step is to compute the possible values of f{;; and use majority to determine

f{l}. Since
f{l} = Z f,(t>a

t€u+S{273}

the possible values of f{;, are
fl6)+f(7)=04+0=0, f/(4)+f(5)=0+1=1,
)+ f/3)=0+0=0o0r f/(0)+ f(1)=1+1=0.
Third step is to use majority to determine that
fay=0.

In the same way, we find that fro, =1 and fgs = 0.
(ii) Since

f - Z fpl‘pv

lp|<1,pC[m]

fo = f— f{1}$1 - f{2}1’2 - f{3}9€3
= f‘|‘[I)2 S RM(O,3)

Hence the new receiving codeword

(f”(o)a f//(1)7 f//(2>7 T 7f”(7))
= (1,1,0,0,0,1,0,0) + (0,0,1,1,0,0,1,1)

= (1,1,1,1,0,1,1,1).
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(iii) Go to previous step to find fy. Since o = (), then

{u+ Sz |ue K} = {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}},

then the possible values of fj are

f0)y=1, f"(1)y=1, f"(2)=1, f"(3)=1,

f"4)y=0, f"6)=1, f(6)=1o0r f(7) =1.
By using majority to determine that

Jfo=1
Hence
[ =fo+ finyx + froyxe + frayes = 14 x,

and

the 5th bit is error in the sending.

(1,1,0,0,1,1,0,0),

4.4 Recursive construction of RM(1,m)

We give another description of RM(1,m) as appeared in [10, Chapter 18] in this
section. We identity each function in RM (1, m) with its coordinates in the standard

basis.
Example 4.4.1. Suppose RM(1,1) is the 1-th Reed-Muller code of order 1. Then
RM(1,1) = {0,1,21,1+ 21}
= {(0,0),(1,1),(0,1),(1,0)}.
Example 4.4.2. Suppose RM(1,2) is the 1-th Reed-Muller code of order 2. Then
RM(1,2) = {0,1,21,1+x1,29,1 + 20,21 + 2, 1 + 1 + 22}
= {(0,0,0,0),(1,1,1,1),(0,1,0,1),(1,0,1,0),

(0,0,1,1),(1,1,0,0),(0,1,1,0), (1,0,0,1)}.
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Since we observe the rule between Example 4.4.1 and Example 4.4.2, we get the

general rule is as following.

Example 4.4.3. Suppose RM(1,m+1) is the 1-th Reed-Muller code of order m + 1.
Then

RM(1,m+1)
— {f]| f does not have , 1} U{f | f has zysi}
= {(c.c)[c€ RM(1,m)} U{(c,) | c € RM(1,m)}
— {(d,d,d,d),(d,d,d.d),(d,d,dd),(dddd]|deRM1m—1)}

where € is a vector obtained from ¢ by switching 0 and 1.

4.5 Covering radius

We give the definition of covering radius of a code in this section and determine the

lower bound of the covering radius of RM (r,m).

Definition 4.5.1. For C' C F}', we define d(z,C) :=min{d(z,y) | y € C} where
x € F} and p(C) =max{d(z,C) | x € F}'} is called the covering radius of C.

Example 4.5.2. Suppose C' = {(0,0,0), (1,1,1)}. Then the covering radius of C' is
p(C) =1.

The following notes show why the name covering radius is chosen.

Note 4.5.3. Suppose p(C) is the covering radius of C. Then |J Bcy41(x)=F3
zeC
where B;(x) :={y | d(z,y) < i}.

Note 4.5.4. The covering radius p(C') is minimum ¢ such that |J Bj1(x) = F3.
zeC

Theorem 4.5.5. p(RM(1,m)) > 2™t —2l21-1
Proof. Induction on m.
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If m =1, then 2" ' —2[%1"1 =1 — 1 = 0 and clearly p(RM(1,1)) > 0.

If m = 2, then 2™ 1 — 20511 =9 1 = 1. Since RM(1,2) # RM(2,2), we
have p(RM(1,2)) > 1. In general, consider in RM (1, m + 1). Choose u € R,;,_4
such that

d(u, RM(1,m — 1)) > 2m~2 — 2[5 1-1,
Set v = (u,u,u,u) € Ryy1. It remains to show

m—+1

d(v, RM(1,m +1)) > 2m — 2[5~ 1-1,
There are 4 cases of codewords in RM (1, m + 1).
Case 1:(¢,c,c,c) € RM(1,m+ 1) for c€ RM(1,m — 1).

d(v, (¢, ¢,¢,0))
= 3d(u,¢) + d(u,c)
= 3d(u,c) +2™ " —d(u,c)
= 2" 4 2d(u,c)

m—1

Z 2m—1 el 2(2m—2 i 2|— >

1—1)
_ om _ z(mTﬂ

= om_ol" 11,

Case 2:(¢,c,¢,¢) € RM(1,m+ 1) for c € RM(1,m —1).

d(v, (¢, ¢, ¢, )
= 2d(u,c)+ d(u,¢) + d(u,c)

= 3d(u,c) +d(u,c) (by d(u,¢) =d(u,c) and d(u,c) = d(u,c))

om _ gl 11

v

as in the Case 1.
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Similar for the remaining two cases (c,¢,c,¢), (¢, ¢¢c¢) € RM(1,m + 1) for

ce RM(1,m —1).
[l

Here we announced that we will know p(RM (1,m)) when m is even in section 6.1.
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Punctured Reed-Muller Codes

A punctured Reed-Muller code is a obtain from a Reed-Muller code by puncturing
the first position of each codeword. Since we use different language to define it, this

will not be clear at the first look.

5.1 Definition

Definition 5.1.1. Let F5[)\] denote the set of polynomials over F» with a variable \.
Fix a primitive element v € F3,, := Fom — {0}. For f € F5[)\], define

T; == {7" | the coefficient of A" in f(\) is 1}.
PRM (r,m) := Span{f(\) € F5[A] | T} is an affine (m — r) — subspace

of Fym over Fy or Ty U {0} is an (m — r) — subspace

of Fym over Fp }/ < X"t —1>

is called the r-th punctured Reed-Muller code of order m with codewords of length
2™ — 1. For f(\) € PRM(r,m), the weight of f is defined by

wt(f) :=|{ i | the coefficient of A\ in f is 1}].
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Of course, T+ depends on the choice of a primitive element v € Fyom. We omit the
mention of v if no confusion occurs. We refer the reader to Theorem 4.2.16 for the
name PRM (r,m) to be chosen. Here we give an example for correspondence relation

between RM (r,m) and PRM (r,m).

Example 5.1.2. Suppose Fys = {0,1,7,7%,...,7°}, where 7 is primitive element
satisfying 72 + v+ 1 =0. Then v = 1+, v* = v +17% 7> = 1 + v + 2, and
7% = 14 ~2. This gives an one to one correspondence between Fy; and Fy — {0}. The
following processes (a)-(e) provide an example of the map from f € RM(1,3) onto
f*e€ PRM(1,3).

(a) f =T tx2 € RM(1,3),

(b)

f o= (0,1, 1, 0, 0, 1,1, 0)
[T A=
1z 0 1 0 1 01 0 1
vy 4 0 0 1 1 0 0 1 1
¥ xz3 0 0 0 0O 1 1 1 1
Loy v 2%y

(encoding f into a string of 0,1 as in Application 4.3.11, the positions are
indexed correspondence to the binary number of F5. The last row shows the

way to index the positions by elements in F;);
(C) f* = (17 170707 17 170)

(delete the first position)

fr=0 1,0 0, 1 0, 1)
| R R |
A A e L



(reorder the string by the new index corresponding to F;);
(e) fF=1+XA+X+X
(write the string in polynomial form).

Observe

Tf* - {17’77’74776}
= {Ly,7+7%41+7%}
— {(1,0,0),(0,1,0),(0,1,1),(1,0,1)}

(1,0,0) +{(0,0,0),(1,1,0),(1,1,1),(0,0,1) }
is an affine 2-subspace. Hence f* € PRM(1,3).

In Example 5.1.2, we will have a complete correspondence between RM (1, 3) and

PRM(1,3).
Lemma 5.1.3. The minimum distance d(PRM (r,m)) is equal to 2™~ — 1.

Proof. This is immediate from Theorem 4.2.11 and Theorem 4.2.19. [

5.2 Cyclic Codes

We will show a punctured Reed-Muller code is cyclic. First we need a definition as

following.

Definition 5.2.1. A code C' C F}' is cyclic if
(cosc1, s enm1) € C = (cp—1,C0, €1, -+ ,Cn2) € C.
We give four examples as following.

Example 5.2.2. {0} is cyclic.
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Example 5.2.3. {(0,0,0,0),(1,1,1,1)} C F} is cyclic.
Example 5.2.4. F} is cyclic.

Example 5.2.5. {(0,0,0,0,0,0,0),(1,1,1,0,1,0,0),(0,1,1,1,0,1,0),
(0,0,1,1,1,0,1),(1,0,0,1,1,1,0),(0,1,0,0,1,1,1),(1,0,1,0,0,1, 1),
(1,1,0,1,0,0,1)} is cyclic. This code is not linear!

It is not easy to find a nontrivial code that are both linear and cyclic. We introduce
a way by polynomials. Usually we identity an element (ag,aq, - ,a, 1) € Fy with

the polynomial ag + aj\ + - - + ap_ A" L

Note 5.2.6. A linear code C' C FJ' is cyclic if and only if Af(A) € C mod (A" — 1)
for any f(\) € C. O

Lemma 5.2.7. A linear code C' C F}' is cyclic if and only if there exists a function

g\ X" = 1 such that C = {g(A\A(X) | h(X) € F3[\];deg(h()\)) < n — deg(g(\)) — 1}.

We skip the proof of the above lemma. It can be found in any standard textbook
of coding theory, for examples [14],[1]. Lemma 5.2.7 says a linear code C' C FJ' is

cyclic if and only if C' is a principle idea ring in Fy[\]/ < X" — 1 > .
Note 5.2.8. By Lemma 5.2.7, we obtain that dim(C) = n — deg(g(\)).

Note 5.2.9. As the notation in Definition 5.1.1, Ty = YTy and Thyoy U {0} =
V(Trx U{0}).

The following is the main theorem of the section.

Theorem 5.2.10. PRM (r,m) is cyclic when the coordinates are indexed by

1777727 e 7,}/27”*2'

Proof. We need to prove
f(A) € PRM(r,m) => Af(\) € PRM(r,m) mod (\*" ' —1).
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It suffices to assume Ty or Ty U {0} is an affine (m — r)-subspace and show
YT sny = Tagny or Y(Troy U{0}) = Tapny) U {0} is an (m — r)-subspace. This follows
from Lemma 3.4.7. ]

Example 5.2.11. We complete the Example 5.1.2 by a table.

RM(1,3) RM(1,3) PRM(1,3) PRM(1,3)
0 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) 0
1 (1,1,1,1,1,1,1,1) | (1,1,1,1,1,1,1) | T+ A+---+ X6
1+ x3 (1,1,1,1,0,0,0,0) | (1,1,0,1,0,0,0) T+ A+ A3
1+ (1,0,1,0,1,0,1,0) | (0,1,1,0,1,0,0) A+ AZ 4
1+ 21+ 2 (1,0,0,1,1,0,0,1) | (0,0,1,1,0,1,0) A2 A3 4N
l+z;+29+ 3| (1,0,0,1,0,1,1,0) | (0,0,0,1,1,0,1) A3+ AL \E
1+ 29 + 73 (1,1,0,0,0,0,1,1) | (1,0,0,0,1,1,0) 1T+ A4+ N
1+ x + 23 (1,0,1,0,0,1,0,1) | (0,1,0,0,0,1,1) A+ A2+ N6
1+, (1,1,0,0,1,1,0,0) | (1,0,1,0,0,0,1) 1+ X2+ )6
T (0,1,0,1,0,1,0,1) | (1,0,0,1,0,1,1) | 14+ X3+ 1>+ X6
Ty + Ty (0,1,1,0,0,1,1,0) | (1,1,0,0,1,0,1) | 1T+X+ A+ X6
Ty + Ty + T3 (0,1,1,0,1,0,0,1) | (1,1,1,0,0,1,0) | 1+ X+ A2+ X°
Ty + T3 (0,0,1,1,1,1,0,0) | (0,1,1,1,0,0,1) | A+ A2+ X3 + A6
x1 + 3 (0,1,0,1,1,0,1,0) | (1,0,1,1,1,0,0) | 1+ X2+ X34+ \?
To (0,0,1,1,0,0,1,1) | (0,1,0,1,1,1,0) | A+ X3+ A* + X5
T3 (0,0,0,0,1,1,1,1) | (0,0,1,0,1,1,1) | A2+ X+ 4+ X5+ X6

The codewords in the third column is obtained by truncating the codewords in
the second column and then reordering the coordinates by the the way switching
the positions (3,4) and permuting positions (4,6,5) as escribed in Example 5.1.1.
Observe from the table that if we set g(\) := 1+ X+ A then

PRM(1,3) = {g(Mh(A) [ h(A) € F[A], deg(h(})) < 3}.
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Note that PRM (1, 3) does not decrease in number from RM(1,3). This is true for
any PRM (r,m). However this is not easy to show.

5.3 Lucas Theorem
In the following two sections, we give some background information in order to find
the dimension of PRM (r,m) is section 5.5.

Lemma 5.3.1. (Lucas Theorem 1878) If p is a prime and 0 < a,b < p are integers,
then for n,ke N

np+a n a
= mod p.
kp+b k b
Proof. By binomial theorem,
np+a
np + a .
ST s oy
i=0 i

= Z (A4 1)

= (W+1D)"A+1)*mod p

Y N E M S

j=0 \.J s=0 \S

Comparing the coefficients of \***? in both sides, we find

np—+a n a
= mod p.
kp+0b k b

Corollary 5.3.2. If p is a prime and 0 < ng, kg < p are integers, then

no + nip + nop® + - - - nypt N ny N2 Ny

/{0 + /ﬁp + k2p2 + .- ktpt k /{1 kz kt

o

forng, k; e Nandi=0,1,2,--- .t
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Proof. By Lemma 5.3.1, then

(n1+nop+ -+ +np'p
(k1 +kop + - + k'

ng+n1p+n2p2+--~ntp ng
ko + kip + kap?® + - - - kyp! ko

~—

p

ny +ngp + -+ mp
mod p
ki + kop+ - 4 k'™

ny n2 Uz

mod p.

Il
> 3
S S

Note 5.3.3. By Corollary 5.3.2,

n un nq No n¢
pr— DR mod 2

ko ky ko ks

¢ ¢
for n =" 2'n; and k = > 2'k;, where n;, k; € {0, 1}.

i=0 =0

We give a summary as following.

t t
Note 5.3.4. Suppose n = Z 2in; and k = > 2k;, where n;, k; € {0,1}. Then the

=0
following (1) — (4) are equwalent by Note 5.3.3.
n
(1) =1 mod 2.
k

n;
(2) )1mod2f0ralli0,1,2,~~,t
n

(3) ki <ny (ng —k; <ny) foralli=0,1,2,--- ¢t
(4) There is no overflowing in compute n = k + (n — k) in binary system.

More generally, we have the following.
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Note 5.3.5. Suppose n = j; + jo + - - + jr. Then = 1 mod 2 if and only

Jilgel e !
if there is no overflowing in compute n = j; 4+ jo + - - - + jx in binary system.

Example 5.3.6. Let k = (0,0,1,1,1,1,0); = 4+8+16+32 = 60, n = (1,0,0,0,0,0, 1), =

1464 =65andn—k=(1,0,1,0,0,0,0)2 = 1 4+ 4 = 5. Since there is overflowing

n 65
over the summation n = k + (n — k) in binary system, we have =

k 60

0

mod 2.

5.4 Evaluation f(a) for f € PRM(r,m)

We give a theorem without proof. This is a generalization of Theorem 4.2.8.

Theorem 5.4.1. If V ={F | F:Ff — F,is a function}, where ¢ = 2™, then

the set {a]'al ---a* | 0 < j; < g — 1} is a basis of V over F,. O

Definition 5.4.2. For each s € {1,2,3,--- ,2™ — 1} and k < m, we define a polyno-

mial function Fg in V as

S

. J1,.J2 Jk
Fo(zy, 29, ,x) 1= E o B G EE
Jitiattig=s \J1J2 " Jk
3i>1
. S .
s s 1, if is odd;
where = J1J2 - Jk :

Jijac —galgl e gl
0, else

Note 5.4.3. Fy(x1, 29, ,xx) # (x1 + 22+ -+ - + x3)".

Lemma 5.4.4. F(x1,xo, -+ ,x1) = 0 if and only if there are at most (k— 1) 17s in

the binary expression of s.

Proof. (=>)Since {2'x} ---xl* | 0 < j; < 2™ — 1} is a linear independent set over

s!

Fym and then over Fy, we find =0in F; for all j1 +jo+ -+ jp = s.

j1!j2! "']k!
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Hence the binary expression of s has at most £ — 1 1’s by Note 5.3.5.

(<=)By Note 5.3.5, s can not be written as the sum of k positive integers without

s
overflowing in the binary expression. Hence each coefficient =0 1in (*).

Jije - Jk
Hence Fy(xq1, 29, - xx) = 0. O

Lemma 5.4.5. F(x1, 29, -+ ,xx) = Y_(b1x1+bowo+- - -+bpxy)®, where the summation

is over all b= (by, by, -+ ,by) € FF.

Proof. We prove by induction on k. For k = 1, observe Fy(x;) = 2§ and

Z (byz1)® = 7.

b1€F,

Before showing the general case we do the case k = 2 first for clarity. Observe

S S S

1 2 52 1
Fy(xy,m9) = 1Ty + xiry T4+ ] @
1 2 s—1
s—1 S
_ 7 _.S—1
= T1Lo
=1 1

and

Z (blﬂfl + bQ.TQ)S

(b1,b2)€F22

= Z (baxo)® + Z (x1 4 boxs)®  (according to by =0 or 1)

baeFy ba€Fy
s - § 7 s—1
= E (bQSCQ) + E g Z‘l<b2$2>
boEFy boeFy =0 1
s—1
o S—1 i,.85—1 S S
= x5+ ( [§ b '] Ty ") + a5 + § 1
i=1 ba€F> t ba€ Fy
s—1
o S—1 i ..8—1
= [ E b5 '] L1y
i=1 baE€Fy ¢
—1
X § % ,.5—1
= LT
=1 (4
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In general,

Lemma 5.4.6.

forse{1,2,---

Proof. Suppose

> (brwy + bowy + -+ byay)®

be FF
Z (bQCL’Q + b3l’3 + -+ bkCL’k)s
(ba,bz, by )EFF~1

- > (@1 +bomay + byws + - by’
(b2,b3, by )EFF™1

s—1

S ‘ .
Z Z . 1'311(521‘2 + byxg + -+ bk;xk;>s_]l
=1 (b, bery \J1

(the term is 0 when j; = 0, or s)

S .
| 1 Fajy (o, w3, -+ ) (by induction)
ji=1 \J1
s—1 .
S S—Nn !
L1 Z ( J ) 2l d? xi‘k
gl - !
ji=1 \J1 PRV, ol
J;i21
Fs(mlax% e 7xk)-
n
Let aq, i, -+, oy € Fom be linear dependent vectors over Fy. Then
Fs(a17a27"' 7ak) =0
m
,2m — 1},
k—1
aq,ag, -+ -, oy are linear dependent over Fy. We say o = > a;q; for
i=1
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some a; € Fy. Then

Fs(&lv Qg, - 7ak)
= Z (blal + 52012 + -+ bkak)s
bEFY
= Z (biag + bocay + -+ + bp_10—1)°
(bl,bQ,"',bk71)€F21€71
* ) [(a1 + br)ar + (a2 + ba)as + - - - + (ar—1 + bp—1)ap—1]*
(b1,ba, br—1)EFS !
= 2Fs(a17a27"' 7ak—1)
= 0.

O

Lemma 5.4.7. Suppose f(\) € PRM (r,m) such that Ty U {0} C Fom is a subspace

of dimension k :=m —r over Fy. Then

f(7°) = Fo(an, oa, - -+, i)

where v is a primitive element of F3", 1 < s < 2™ —1 and oy, a9, -+ ,a 1S a basis
of Tr U{0} over F,.

Proof. Suppose f = A 4 A% ... 4 \%k-1. Then Ty U {0} = {y%, 4%, ... A%k-1 0}

run through all possible linear combinations of oy, as, - -+ , . Then by Lemma 5.4.5,

f(’YS) _ (’Ys)dl + (,ys)dz S (,YS)ko_l +0

= Z (biag + bocg + - - + brag)®

b€F2k-

= Fy(on, a2, ,ag).
]

Corollary 5.4.8. Let v € Fom be a primitive element and 1 < s < 2™ — 1. Then
f(v*) =0 for all f € PRM(r,m) with Ty U{0} is a subspace of dimension k =m —r

over Fy if and only if there are at most (k — 1) 1's in the binary expression of s.
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Proof. (<=) This is clear from Lemma 5.4.4 and Lemma 5.4.7.
(=) By Lemma 5.4.4, it suffices to show Fy(ay, ag, -+ ,ap) = 0 for any oy, ag, -+ - ay, €

Fon. But the result is clear from Lemma 5.4.6 and Lemma 5.4.7. O

5.5 The dimension of PRM/(r,m)

Theorem 5.5.1.
PRM (r,m) = span{f(\) | TU{0} is an (m—r)—subspace over Fp}/ < \*" ~'—1 >

and

m m m
dim(PRM (r,m)) = + 4ot
0 1 r

Proof. Set
C = span { f(\) | Ty U{0} is an (m —r) — subspace of F}" over F; }.

Clearly C' C PRM (r,m) by Definition 5.1.1. We have known that the PRM (r,m) is
essentially the codewords obtained by puncturing the first coordinate of the codewords

in RM (r,m). Hence

m m m
dim(PRM (r,m)) < dim(RM (r,m)) = + 4t
0 1 r
To prove the theorem, it suffices to prove
m m m
dim(C') > + I
0 1 r

Similar to the proof of Theorem 5.2.10, we find C' is cyclic. Hence

C = {g(Nh(N) | deg(h(})) < dim(C) = 1)},
where g(\)[A?" "1 — 1. Since C is cyclic, we always can find a polynomial of degree
2™ —2in C. Hence dim(C) > 2™ — 1 — deg(g(A)). We need to prove

m m m
deg(g(N)) <2™ —1—] + +o ].
0 1 T
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This is equivalent to prove \>"~! — 1 has at least

m m m
é:: + +._|_
0 1 r

zero roots which are not zero roots of g(\). We need to check the number of 7* with
g(v*) # 0 is at least £. Since g(\) € C' it suffices to show that there are at least
¢ elements of the form ° with f(7°) # 0 for any f € C such that Ty U {0} is an
(m — r)-subspace of Fj" over F,. By Corollary 5.4.8, if the binary expression of s
contains at least m — r 1’s then we must have f(v*) # 0. The proof is finished since

number of such s is

m m m m m m
m—r m—r—+1 m T r—1 0

]

To end this section, we give some observations which are the main part of the

thesis.

Note 5.5.2. The map a — {0,a} gives a 1 — 1 correspondence between F3"* — {0}
and the 1—subspaces of Fj".

Note 5.5.3. From Theorem 5.5.1 and Note 5.5.2, PRM (r,m) can be realized as the
span of the columns of the incidence matrix of 1-subspaces and (m — r)—subspaces

of FJ".

Note 5.5.4. By Theorem 4.2.16, RM (r, m) can be realized as the span of the columns
of the incidence matrix of affine 0-subspaces(points) and affine (m — r)-subspaces of

Fp.
The following definition generalize PRM (r,m) and RM (r,m).

Definition 5.5.5. The projective geometric codes of order k over Fym is spanned by

the columns of the incidence matrix of 1-subspaces of Fy» and k-subspaces of Fim.

o4



The Euclidean geometric codes of order k over F;" is spanned by the columns of the

incidence matrix of points in F," and affine k-subspaces of F".

By the above definition, PRM (r,m) is a projective geometric code of order m —r

over F3, and RM(r,m) is an Euclidean geometric code of order m — r over Fj".

5.6 Remarks

In view of Section 3.5 and Note 5.5.3, Note 5.5.4, it is interesting to ask what the
linear span of a super-imposed code can be, and how to find a super-imposed subcode

of a given linear code?
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Hadamard matrices and bent

functions

We introduce Hadamard matrices and bent functions in this chapter and show their

links.

6.1 Hadamard matrices
Recall: R, :={f| f: F;* — F; is a function }.

Definition 6.1.1. For f € R,,, we define the function F' : F}* — R by F(u) =

S (—1)*vH ) where wov := uyvy + ugvy 4 - - - + UV, and f(v) € {0,1} is viewed
veEF"

as real numbers. F is called the Hadamard transform of f, where f(v) = (—1)/®) for

all v € Fj".
Hence f has value in Fy, f has value in {—1,1} and F has value in R.

Note 6.1.2. In matrix forms, H,, = [ (—1)uev ] and f = [ (—1)f@) ]

2m x2m 2mx1

— = Hmf is a matrix of size 2™ x 1.

Note 6.1.3. H,, is symmetric.
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We give the first three H,,.

1 1
Example 6.1.4. H, =
1 -1
2X%2
1 1 1 1
1 -1 1 -1
Example 6.1.5. Hy, = = H, ® H;.
1 1 -1 -1
1 -1 -1 1

4x4

Example 6.1.6.

1 1 1 1 1 1 1

1
1
1
1 -1 -1 1 1 -1 -1 1
1
1
1

1 -1 —1 | 1 1 -1
= Hy® H

8x8

= H,® H,

= Hy\® H ® H.

Definition 6.1.7. An n x n matrix H is a Hadamard matriz if H'H = nl.

Lemma 6.1.8. H,, is a Hadamard matriz.
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Proof.

(anHm)uv = Z(Hﬁq)uw(Hm)wv

_ Z (_l)wo(u—i-v)

wery"
2mif u = v
0, ifu#o,

where u,v € FJ". ]

We use the Hadamard transform of f to determine the distance from f to RM (1,m).

o™ + F(u)

Theorem 6.1.9. d(f, RM(1,m)) =min{ |u € Fy"'} forall f € R,,.

Proof. Suppose a is the number of (z1,xg,+ ,x,,) such that f — (w121 +ugxe + -+ -+
UmTm) = 1 and b is the number of (21, s, -+ , &,,) such that f — (uyzy + ugwg + - - +
UmTm) = 0, where u;, x; € Fy for i < i < m. Note a+b = 2™. Observe for any

u = (uy,ug, -+ ,upy) € 3",

d(f,urz1 + ugws + -+ + UpTp,)

= d(f — (U1$1 + U2T9 4+ umxm), O)

= a
o a+2"=b
=
om _ S (_1)f—(U1w1+U2J32+-~~+umccm)
- (1,22, ,Tm )EFT
B 2
2m — F(u)

2 Y

and
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d(f, 14+ umy + ugmg + - -+ + U Ty

= 2" —d(f,u1m1 + sy + -+ + UpTyy)
2" + F(u)
5 )

The theorem follows from this. O

Theorem 6.1.10. p(RM(1,m)) < 21 —2%~1 and equality holds if and only if there
exists f € Ry, with |F(u)| =% for allu € F3".

Proof. Fix f € R,,. Then

Z F(u)* = F'F  (in matrix form)

ueFy
= (Huf)'(Hinf)
= (/) Hy Huf
= 2°f'f
— “gm Z(_1)2f(u)

ueFQm
22m

Hence there exists u € Fj* such that F(u)? > 2™ Hence |F(u)] > 2%. Thus,

m

d(f,RM(1,m)) < % by Theorem 6.1.9. Hence

p(RM(1,m)) = max{d(f, RM(1,m)) | f € R} <2m ' —2%°1
The remaining is clear. 0
Corollary 6.1.11. p(RM(1,m)) = 2™"' — 2%~ where m is even.

Proof. This is clear from Theorem 4.5.5 and Theorem 6.1.10. [
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6.2 Bent functions

We introduce bent functions in this section and study their properties.
Definition 6.2.1. f € R,, is a bent function if d(f, RM(1,m)) = 2™+ — 251,
From Theorem 6.1.10, we have the following two properties.
Note 6.2.2. f € R, is a bent function if and only if |F(u)| = 2% for all u € FJ*.
Note 6.2.3. f is the farthest from the linear functions if f € R, is a bent function.
Note 6.2.4. By Corollary 6.1.11, we obtain p(RM(1,2)) = 1.
We give an example as following.

Example 6.2.5. Consider the codewords of RM(1,2) in Example 4.4.2. We obtain
0 =(0,0,0,0), 1 =(1,1,1,1), z; = (0,1,0,1), 25 = (0,0,1,1), 1 + 27 = (1,0,1,0),
14+ 2 =(1,1,0,0), 1 + 22 = (0,1,1,0) and 1 + 27 + 22 = (1,0,0,1). Any f €
Ry — RM(1,2) is a bent function in Rp.

The following theorem characterizes bent functions by using Hadamard matrices.

Theorem 6.2.6. f € R,, is bent if and only if the 2™ x 2™ matriz K with rows and

columns indexed by FY and wv-entry K, := (—1)f@*) is a Hadamard matriz.
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Proof. Observe

- Y
wery®
— Y (e e
weFy
= Z J/C\(u—l—w)]?(wjtv)
weF"
1 A~
wek"
1
= oo 22 (D (H)urwaFo)( Y (Hu)usug )
wekF" zekj" ye
1 U UJ oxr w—+v)o
= oo 2 (D (FDUHIEE) (Y (=)@TIE,)
UJEFQ xEF yGFm

= o 3 (Y () (R,

z€F ye " weFj"

2m
Sl S G S R VIR (6.2.1)

22m
zeF"

where u,v € FJ".
(=) Suppose f is a bent function. Then |F(z)|? = 2™ for all x € Fj". Hence by
6.2.1

(KtK)uv

— Z (_1)(U+v)ox

zeFg"

where u,v € FJ".
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(«<=) By Lemma 6.1.8, we obtain K'K = 2™]. Setting u = 0 in 6.2.1, we find

1 vox
(KtK)Ov = om Z(_l) |F:v|2

el

= 2_m Z (Hm)vxTz

1
=~ HmT vy
()

where T' is a column vector with columns indexed by F3" and entry |F,|? for each

x € Fy'. Then

2m 2m
2m
0 0
2m
T = 2"H 1| 0o =H,| o = ,
2m
2mx1
2mx1 2mx1

since the first column in H,, has all 1’s entries. Hence |F,|*> = 2™ for all z € F3".

Then |F,| = 2% for all z € Fy". By Note 6.2.2, f is a bent function. O

Our next goal is to prove that if f € R, is a bent function, then deg(f) < 3 with

only exception m = 2.

Lemma 6.2.7. Suppose f(x1,22, -+ , &) € Ry and g(y1,y2, -+ ,Yn) € Ry are bent

functions. Then

k’(iﬂhl‘g,"' y Ly Y1, Y2, * * - 7yn) = f(xlax%"' 7xm) +g(y17y27"' 7yn) S Rm-i—n

s a bent function.
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Proof. View w € Fy"™™ as w = (wy, wy) where w; € F3" and wy € Fy. Then

Kw) = 3 (=)t
v=(v1,v2)EFYT"

_ Z (_ 1)11110111 +waova+f(v1)+g(v2)
’U1€F2m,’UQEF2"

= (X ()3T (—aymentt)

U1€F2m 'UQEF;
= F(w)G(ws)
= (£27)(£2?)

m4+n

= j:22

for all w € F;"*". Hence k is a bent function. O
Definition 6.2.8. For a linear code C' C FJ", we define
Ct = {(t1,ta, - ,tm) | tici +taco+ - - Ftpmem = 0 for any ¢ = (c1, ¢, ,cm) € C}.
The following is from linear algebra.
Note 6.2.9. dim(Ct) = m—dim(C) for C C F3".
We give an example that C' N C+ # ().
Example 6.2.10. Suppose C={(0,0), (1,1)}C FZ. Then C+={(0,0),(1,1)}C F2.

Theorem 6.2.11. Suppose C C FJ" is a subspace. Then

Y Flu)=10] ) (=17

ueC veCt

Proof. Tt is clear for the case C' = {0}. Suppose C # 0 and fix v ¢ C. Define an onto
function ¢, : C' — Fy by t,(u) = wov. Then t, is linear and dim(ker(t,)) = dim(C)—
1. (In fact, C/ker(t,) = Fy.) Thus |t;1(0)| = [t;1(1)| = 2/, So, Y (—1)** = 0.

ueC
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Now

ZF<U> _ Z Z uov—i—f(v

ueC ueC veFy"

_ Z Z uov+f(v

veEF uelC

_ Z Z(_ uoerf('u + Z Z uov+f

veCL uel vgCL uelC

= Z (—1)/@|C| + Z (_1)f(v)(Z(_1)uov)

veCt vgCL ueC

= 101 ) (-

veC+t

The following Lemma is a similar version of Theorem 4.3.8.

Lemma 6.2.12. Suppose f = > f,x, € Ry, for some f, € 5. Then

pClm]

fa: Z f(’LU)

we(l,l,-,1)+S7

for any o C [m] with |o| < deg(f).

Proof. 1If deg(f) = |o|, then we have shown in Theorem 4.3.8,

Observe

we (1,1,---,1)+ S5
<~ w;=0forié¢o.

= 1,(w) =0 for any |p| > |o].

Hence the statement is true for any o with |o| < deg(f).

Theorem 6.2.13. If f € R,, is a bent function, then f € RM(%

18 even.
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Proof. Suppose f = > fox, for f, € F5. Let ¢ C {1,2,---,m} with |0 > F.
We want to show fgpg:[m%) with referring to notation in Definition 4.3.1, set C' =
(1,1,--+,1) + S5 Observe C' C FJ" is a subspace, |C| = 2l and |C*| = 2™7Il. Note
F(u) = C,2% for some C, € {—1,1}, since f is a bent function write (—1)* = C,
or equivalently C,, = 1—2t(u), where t(u) € F;. Then by Lemma 6.2.12 and Theorem

6.2.11,

ueC
B Zl_(_l)f(U)
ueC 2
_lep 1 #(w)
= 3 32
ueC
C] 1
= — F
2 2|0J_| Z (u)
ueCt
cl 1 .
- A Cu2
92 2’CJ_| Z
uecCt
= 2ot 9%t L olelE Y 4(u)
ueCt
= 0.
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Hexacode and Extended Binary
Golay Code

7.1 Hexacode

In this section, we fix a finite field Fy = {0,1,z,1 + 2} where the multiplication is
modulo 22 + z + 1.

Definition 7.1.1. The map — : Fy — F} is defined by

0=0,1=1,7=2+1, 2+1=2x
and — is called the conjugate map in F}.
The conjugate has similar properties as in C.

Note 7.1.2. a-a € Fy,ab=a-b,a+b=a+b and a = a for any a,b € F}.

Definition 7.1.3. For any (uy,us,--- ,uy,) € F, (v1,v9,--- ,v,) € F},
U OV = UV A+ Ul + v+ UpUy
is called the Hermition inner product of u and v.
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Definition 7.1.4.
HC = span{(1,0,0,1,2,7),(0,1,0,1,7,),(0,0,1,1,1,1)} C F?
is called the Hezacode over Fj.
Note 7.1.5. The length of HC' is 6 and the dimension of HC is 3 and HC+ = HC.
Lemma 7.1.6. The minimum distance d(HC') is 4.

Proof. Since HC* = HC, we obtain

1 0 0
01 0
0 01
HC = {(alaa2aa37&47a5aa6) ’ (a17a27a37a4aa57a6) = O}
1 11
T x 1
z x 1
6x3

Hence

d(HC) = the minimum wt(w) where 0 # w € HC

= o O

=the least number of rows in that are linear dependent

- o O =
O = O

Sl
8
—

6x3

Note 7.1.7. HC is [6, 3, 4]—linear code over Fy. Hence d =n — k + 1.
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Definition 7.1.8. An [n, k,d]—linear code with d = n — k + 1 is called a mazimum

distance separable code. (M DS code.)

Note 7.1.9. Let PHC be the code obtained by puncturing a coordinate of HC'
Then PHC is [5, 3, 3]—linear code.

Note 7.1.10. An [n, k,d]— linear code over Fj is perfect if

145+

n .
F | | @-D=q"
i=0 ?

Note 7.1.11. By direct computation we have that PHC' is perfect.
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Type (i) Type (i) Type (i)
(0,1,0,1,z,z) | (0,2,0,2,1,%) | (0,%,0,Z,x,1)
(0,1,7,2,0,1) | (0,2,1,7,0,z) | (0,7,2,1,0,T)
(z,2,0,1,0,1) | (1,7,0,2,0,2) | (x,1,0,7,0,7)
(0,1,1,0,z,%) | (0,z,2,0,7,1) | (0,Z,7,0,1,x)
0,1, 2,7,1,0) | (0,z,7,1,2,0) | (0,7,1,2,%,0)
(z,2,1,0,1,0) | (1,7, 2,0,2,0) | (x,1,7,0,7,0)
(1,0,0,1,2,%) | (x,0,0,2,7,1) | (%,0,0,Z,1,x)
(1,0,7,2,1,0) | (x,0,1,7,2,0) | (%,0,2,1,%,0)
(x,7,0,1,1,0) | (z,1,0,2z,2,0) | (1,2,0,7,%,0)
(1,0,1,0,7,z) | (z,0,2,0,1,7) | (%,0,%,0,z,1)
(1,0,2,7,0,1) | (x,0,7,1,0,2) | (%,0,1,2,0,7)
(z,7,1,0,0,1) | (z,1,2,0,0,2) | (1,z,7,0,0,T)

Type (it) Type (i7) Type (i7)
(Z,z,7,2,7,2) | (1,7,1,7,1,%) | (z,1,2,1,2,1)
(T, z,x,7,2,7) | (L,z,z,1,7,1) | (x,1,1,2,1,2)
(x,7,7,x,2,7) | (®1,1,Z,7,1) | (1,z,2,1,1,x)
(x,Z,2,7,7,2) | (7,1,7,1,1,7) | (1,z,1,2,2,1)

Type (it7) Type (it7) Type (ii7)
(0,0,1,1,1,1) | (0,0, z,z,x,2) | (0,0,Z,%, T, )
(1,1,0,0,1,1) | (z,,0,0,2,2) | (7,7,0,0,Z,T)
(1,1,1,1,0,0) | (z,z,2,2,0,0) | (7,7,7,7,0,0)

Type (iv) Type (iv) Type (iv)
(L,1,z,2,7,7) | (v,2,7,7,1,1) | (7,7,1,1,2,2)
(1,1,z,7,z,x) | (z,2,1,1,7,7) | (Z,Z,z,x,1,1)

Table 7.1 List all

nonzero elements of Hexacode.
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Type | Representative | Number of codewords
(1) (0,1,0,1,7, ) 36

(i7) | (Z,z,T, 2,7, x) 12

(zi2) | (0,0,1,1,1,1) 9

(w) | (1,1,z,2,%,T) 6

We divide the coordinates of each codeword into three blocks I, II, ITI, where block

I (resp. II) (resp. III) contains coordinates 1,2 (resp. 3,4) (resp. 5,6), like

( a? b? c7 d? 6’ f )
I mom

The codewords in each type are preserved by (a) a nonzreo scalor multiplication;
(b) the permutation of blocks I, II, II1, (¢) the switch of the two coordinates in each
of two blocks. Hence the number of type (i) codewords is 36, the number of type (i7)
codewords is 12, the number of type (ii¢) codewords is 9 and the number of type (iv)

codewords is 6.

Example 7.1.12. If (¢1, 9, ¢3,¢4,¢5,¢6) € HC, then
(zcy, xeo, T3, TCY, TCH, TCq), (€3, €4y €1, Ca, C5,Cg), (€1, Ca,Cy,C3, Co, C5)

all have the same type as (¢, o, c3, ¢4, ¢5,¢6) in HC.

7.2 Extended Binary Golay Code

We use Hexacode to define the extended binary Golay code in this section.

Definition 7.2.1. For a vector v = (uy,ug, -+ ,u,) € Fy', the parity of uis Y u; €
i=1
Fs.
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Definition 7.2.2. Let F;*® denoted the set of 4 x 6 matrices over Fj.

EBGC :={A€ F;* | (0,1,7,7)A € HC and each column of A

has the same parity as the first row}

is called the Eztended Binary Golay code. Parity(A), the parity of the first row of A,

is called the parity of A over F5.

Example 7.2.3. Suppose the matrix

o o o =
o o = O
o o O =
o o = O
= o O O
e N

4x6
over F;*®. Then (0,1,2,Z)A = (0,1,0,1,7, x) is the type (i) of HC and parity(A)=1
over F,. Hence A € EBGC.

The following property will be used later.

Note 7.2.4. Suppose

(07 1’:L‘7f> :y

for some y € {0,1,z,7}. The number of solution of such (a,b,c,d) € Fy has 2 with

odd parity and 2 with even parity over Fs.

Example 7.2.5. Suppose y = 0 in Note 7.2.4. Then

a 0 1
bl ol |1
¢l ol |1
d o] \1
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has even parity and

a 1 0
b 10 1
c N 0 |1
d 0 1

has odd parity over Fj.

Theorem 7.2.6. The EBGC is [24,12,8]|—linear code over Fy.

Proof. Clearly the codewords of EBGC' has length 24 = 4 x 6. We prove
dim(EBGC) = 12

by showing |EBGC| = 2'2. Note |HC| = 64 = 2°. First, we count those A € EBGC
with even parity over Fy. For each u € HC, to determine A with (0,1,z,7)A = u
and Parity(A)=0, there are two choices for each of the first 5 columns of A by Note
7.2.4, however there is only one choice for the last column to have parity 0 in the
first row. Hence there are 2'! such A € EBGC with parity(A) = 0. Similarly for the
number of A € EBGC with Parity(A) = 1. Hence

|EBGC| = 2*2.
Claim: d(EBGC) = 8. Fix A € EBGC with A # 0.

Case 1: Parity(A) = 0 and (0,1,2,7)A # 0: Since HC' is [6, 3, 4]—linear code,
by d(HC') = wt((0,1,z,7)A) > 4. And since the column of A has even weight,
wt(A) >4 x2=28.

Case 2: Parity(A) = 0 and (0,1,2,7)A = 0: Observe since the columns of A

1

1
has even weight and (0,1, z,7)A = 0, there is at least one column of A is

1

1
But the first row of A has even parity. Then A has at least 2 such columns.

Hence wt(A) > 8.
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Case 3: Parity(A) = 1 and (0,1,2,7)A # 0: Suppose wt(A) < 8. Since
parity(A) = 1, there are at most two kinds of weights of the columns in A,
one has weight 1 and the other has weight 3. In fact every column has weight
1, since we assume wt(A) < 8. Note that wt((0,1,x,7)A) > 4 by Note 7.1.7.
Hence the first row of A has weight 1. This implies wt((0,1,2,7)A) = 5. But
there is no Hexacodeword of weight 5 from Table 7.1. Then wt(A) > 8.

Case 4:Parity(A) = 1 and (0,1,2,7)A = 0: Each column has weight at least 1
and the parity of the first row of A is 1 such that there is at least a column of

weight 3. Hence A has weight at least 8.

]
7.3 Decoding in Extended Binary Golay Code
aq bl
a9 b2 4 4
Note 7.3.1. Suppose (0,1, z,7) =Dl 7. 48 and Y a; = > b; in F.
as b3 i=1 i=1
ay b4

Then a; = b; for all i or a; = b; for all i in F.

Note 7.3.2. With restriction to any 3 positions in the basis of HC', the 3 vectors are

still linear independent.

Note 7.3.3. We know each Hexacodeword from its three positions.

Suppose we receive a codeword A and assume at most 3 errors in A where

A e EBGC.

Decoding Algorithm

(1) Compute the parity on each column of A.
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Case 1: At least 4 columns with the same parity. Then these columns have

correct parity and they might still have errors in these columns.
Case 1.1: There are 4 columns with the same parity. Go to (2).

Case 2: 3 columns with odd parity and 3 columns with even parity. Guess any

one of the parity. Go to (2).

(2) Project the columns you think are correct in A into a partition of a Hexacodeword.
Since a Hexacodeword is unique determined by its three positions, this partition will
determine the complete Hexacodeword, possible with some correction. If there is no
such Hexacodeword in Table 7.1, then we have wrong guess in Case 2, so we guess
again the parity and do the process (2) again.

(3) Use the Hexacodeword obtained in (2) to determine the correct A by using the

correct parity information.

Example 7.3.4. Receive A = , and assume at most 3 errors

o o= O =
[ semigye > eI
O Oy e
© = B s
—= o o o
RO e —

4x6

in A. We do the following.

(1) Guess those columns with odd parity are with correct parity.
* 0 %« 0 0 =%
* 0 % 0 0 x

(2) Observe (0,1, x,7) = (%, T, *,x, T, *) is contained in type()
x 0 %« 1 0 =

* 1 % 0 1 =*

4%6
of HC in Table 7.1. Suppose the Hexacodeword is (0,7, 1, x, T, 0).
10 0001
001000 ,
(3) Hence A = , but the first row has parity 0. Hence guess
000100
010010

4%6
Wrongly, so we reguess again.
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(1) Guess those columns with even parity are with correct parity.

1 % 1 % % 1
0 = 1 = % O
(2) Observe (0,1, x,7) = (T, *, 1, %, %, ) is contained in type(7)
1 « 0 x % 0
0 « 0 % = it
X
of HC' in Table 7.1. Then the Hexacodeword is (7,0, 1, z,0,7).
1 01 101
001000 ' ' .
(3) Hence A = is correct by checking the parity.
10 0100
00 0O0O01

4x6

Note 7.3.5. Under at most 3 errors in the codeword A assumption, the decoding
algorithm will find the exact codeword A. The reason is the minimum distance of

EBGC is 8.

7.4 Remarks

The definition of extended binary Golay code is not standard. We refer the reader to
standard text books [14],[1] of coding theory for the definition.

1)



Convolutional Codes

A convolutional code is a code over rational functions. This will be clear after we see

some definitions and notations.

8.1 Definition
Definition 8.1.1.
F 2] :== {ao + a1x + agz® + -+ + a,2" | a; € Fy,n € NU{0}}
is the set of polynomials over F.
Definition 8.1.2.
Fy(x) == {f(@)/g(x) | f(x),9(x) € Fylz] and g(z) # O}
is the set of rational functions over F,. Note that F,(z) is a field.

Definition 8.1.3.

Fy((2)) :={> i’ | a; € Fy and M € Z}

=M

is the set of formal power series.

76



Note 8.1.4. F,(z) C F,((x)). F,(x) # F,((x)) since they have different cardinality.

Example 8.1.5.

1

_ -5 2 4

= 24+t o+t

8.2 Convolutional Code

We give the definition of convolutional code now.

Definition 8.2.1. A subspace C'V C F,(x)" with dimension k over F,(x) is called

an [n, k] — convolutional code.

Although a codeword is an element in Fj(x)", we prefer the basis of C'V' is chosen

from F,[z]".

Definition 8.2.2. G(z) € F,[z]**™ is a polynomial generating matriz (PGM) of CV
if the rows of G(x) span C'V.

Lemma 8.2.3. Let CV C F,(z)" be a k—subspace. Then there exists a basis
G1($)7 GQ(x)a e 7Gk<x> S FQ[$]H
of C'V.

Proof. Let
(g1 (x)/hi(x), gra(x)/haa(x), - -+, gin(x)/hin(2)),

(g21(2)/ho1 (), goz(x)/hoa(x), - - -, gon(x) /hon(2)),

(gr1 () [ hir (@) g2 () [Pk (), - -+, G () Tokn ()
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€ F,(z)" be a basis of CV, where g;;(),h;;j(x) € F,[z]. Let h(z) be the least common

multiple of h;;(z). Set Gi; = h(z) - Zij ((i) . Then
ij

~—

Gi(z) == (G (), Gia(), -+, Gin(T)) € Fyl2]",
and Gy(z),Ga(x),- - ,Gr(x) € F,[z]" is a basis of CV. O

Observe CV = {S(z)G(x) | S(x) € F,(x)*}. So we want G(z) as "simple” as
possible. The following identification is used when we want to apply C'V to real

world application.

Note 8.2.4. F,[z]F = FFlz].

Example 8.2.5. Suppose k = 3. Then

(1+z,1+2%z+2% =(1,1,0) + (1,0, Da + (0,1,0)z* + (0,0, 1)

8.3 Elementary rows and columns operations on
G(x)
Three elementary rows and columns operations (ERCQO’s) are as following:

(a) Interchange two columns(rows).

01

= det( ) =—1.
10
(b) Add a polynomial f(x) € F,[x] multiple a column(row) to another column(row).
0
= det( =1
flx) 1
(¢) Multiple a column(row) by a nonzero element o € F,
a 0
= det( ) = a.
0 1
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The matrices corresponding to ERCO’s are called elementary matrices. In the

] 0 1 1 0 a 0
2 x 2 cases, there are matrices of the forms , , where

1 0) \f@) 1/ \o 1
f(x) € Fy[z] and o € F,. The determinant of a elementary matrix is an element in

F,

0
Definition 8.3.1. An ¢ x ¢t matrix U(x) over F,[z] is unimodular if 0 # det(U(x)) €
F,
We will show that each unimodular matrix is the product of elementary matrices.
Theorem 8.3.2. (Smith normal form theorem(SNF)) Let G(x) be an k x n matriz
over Fyx]. Then G(z) can be reduced to
d1 (I)
dy(x) 0

kxn

by ERCO’s where dy(z)|ds(z)| - - - |ds(x) are monic polynomial over F,. The sequence
dy(x),ds(x), - ,ds(x) is called the sequence of invariant factors of G(x).

Gu(r) Gia(z) -+ Gia(z)
aQ aQ o Gy

Proof. Suppose G(x) = 21(7) 22(3;) 2n (@) . We do the following.
Gri(z) Gra(z) -+ Gpal)

kxn

(a) Using rows interchanging and column interchanging, we assume Gii(x) has

minimal degree.

(b) Reduce the degree of Gy;(x) for i > 2 by adding a polynomial multiple of the

first column to the ith column. Go to (a) until Gy;(z) = 0 for i > 2.
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(c) Similar to (a)~(b), we do until G;;1(x) = 0 for j > 2.

(d) After (c), it could be Gy;(z) # 0. So do (a),(b),(c) again and again, until
Ghi(z) =0 and Gj1(x) =0 for all 4,5 > 2.

(e) If Gi1(z) 1 Gyj(x) for some 1, j, then we add the first column to jth column
and then add a polynomial multiple of the first row to decrease the degree of
Gij(z) below the degree of Gi1(z). Repeat doing (a)~(e) until Gy1(x)|Gyj(x)

and G1;(x) is monic.

(f) Do (a)~(e) in the submatrix G'(x) where

GU(ZL‘) 0 cee 0

0

G(zr) =
G'(x)
0
kxn
U
A
Example 8.3.3. Suppose G(z) = -l . Then dy(z) = z and dy(z) = 0.
P
2x2

Corollary 8.3.4. An unimodular matriz is a product of elementary matrices.
Proof. Let U(x) be an t X t unimodular matrix. Then
dy(x) 0
da()
Ulx) = E(x) _ F(x),
0 di(z) txt

where E(z), F'(x) are product of elementary matrices. Hence

det(U(z)) = det(E(x))det(F(z))di(z)dy(x) - - - di(x) € F, — {0}.
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Thus

and

txt txt txt

We need more notations of matrices.

Definition 8.3.5. Let A be an n x m matrix, « C [n|] and § C [m]. We define
Ala | f] to be the submatrix of A with size |a| x |3], the rows in o and columns in

of A being chosen.

1 2 3 4 5
Example 8.3.6. Suppose A=|2 6 1 7 8 . Then
3101 2
3x5
4 5
A[1,3} [{2,4,5}] = L

2x3

Definition 8.3.7. Similarly to the Definition 8.3.5, we define (a)—(e) as the following.

Al= | 8]:= Al [n] | B].

(@)
(b)
(c) Aler| B):=Afa|p.
(d)
()

e



We quote a theorem without proof.

Theorem 8.3.8. (Cauchy Binet Theorem) Let A,B be the matrices of size n X m

and m X t, respectively. Then

det(ABla | 8]) = Z (detAla | w])(detBlw | 3])

wC[m],|w|=|q|

when o C [n], 5 C [t] with |o| = |0]. O
Note 8.3.9. We give two special cases of Cauchy Binet Theorem.

(a) Suppose o = {i} and § = {j}. Then (AB);; = kf:lAikBkj.

(b) Suppose o = [n], 8 = [t] and n =t = m. Then det(AB) = det(A)det(B).

Definition 8.3.10. detA[a | (] is called an |a|-minor when |a| = |3].

1 2
Example 8.3.11. Suppose A = . Then 1,2,3,4 are 1-minors and —2 is
Gt

. 2X2
2-minor.

Corollary 8.3.12. Let G(x) be an kxn matriz over F,|x]. Then the invariant factors

di(x),dy(z), - ,ds(z) of G(z) are unique. In fact,

ki(z)
di xXr) =
( ) ki,1($)
fori =1,2,--- s where ko(z) := 1 and k;(z) := the greatest common divisor of

i-minors of G(x).

Proof. Suppose G(z) = E(x)D(x)F(x) where

kxn

82



in smith normal form and E(z), F(x) are unimodular. By Theorem 8.3.8, kP (z) |
ki(x) where kP (z) is the greatest common divisor of i-minors of D(x). Note D(z) =

E(x)"'G(x)F(z)™" and E(x)~!, F(x)~! are polynomial matrices. Hence again,
ki(z) | k().

Thus for 1 <7 <s,

Then for 1 <i < s,

di xr) =
(x) Fa (@)
]
We see an example as following.
Example 8.3.13.
Tt | 7=
Suppose A(z) = » 1 a2
%’ NG
3x3
ki(z) = ged {x, 2% 2% 2, 1,2 2%, 2,2°} =1,
ky(z) = ged {w— 2% 2% — 2t 2t —2® 2% — 2t 2t — 2% 2% — 2t 0} =0 — 1,
ks(z) = o' —af —2° -2 - 20 —2t =0
1 r—1 0
Then d;(x) = 1= 1,ds(z) = T =% 1,ds(z) = L= 0. Hence, 1,2 — 1 are
x JR—

invariant factors.
In the following, we introduce some PG M of a C'V code which has good properties.

Definition 8.3.14. Let G(z) be a k x n PGM of some CV. Then the maximum

degree of k-minors of G(x) is called internal degree of G(x).
Example 8.3.15. Suppose G(z) = (1 + 22,1 + x + 2?). Then
int deg(G(r)) = max{deg(1 + z°),deg(1 + = + 2%)} = 2.
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10 1+=x
Example 8.3.16. Suppose G(x) = . Then

01 T
2x3

int deg(G(z)) = max{deg(1),deg(z),deg(—z — 1)} = 1.

Definition 8.3.17. A PGM G(z) is basic in CV if G(x) has the smallest internal
degree among all PGM of C'V'.

Before giving the characterization of basic PGM, we need some background from

linear algebra.

Definition 8.3.18. Let A be an n x n matrix. Then adj(A) is an n X n matrix

defined by (adj(A))y; = (1) A{j} | {i}).

1 3
Example 8.3.19. Suppose A = . Then adj(A) =

2.4 -2 1
2x2 2x2

Note 8.3.20. (Cramer’s Rule) A - adj(A) = adj(A) - A = det(A) - 1.

Example 8.3.21.

1 3 47953 4 =3 1 3
2 4 -2 1 -2 1 2 4
-2 0
= :det( ) ]2
0 -2 2 4

Theorem 8.3.22. Suppose G(x) is an k x n PGM of CV C F,(z)". Then the

following are equivalent.
(a) G(x) is basis.
(b) Invariant factor of G(x) are all 1’s.
(¢) ged of k-minors of G(x) is 1.
(d) rank(G(a)) = k for any « in the algebraic closure F,.
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(e) G(x) has right inverse over Fy[z].
(f) (predicable rule)y(x) = z(x)G(x), where y(x) € F,[z]*™ and z(z) € F,(z)"**
= z2(z) € F,[z]F**.

(9) G(z) can be extended to an n X n unimodular matriz by adding more rows.

Proof. (a) = (b) In SNF Theorem,
G(z)
= E(x)D(z)F(x)
dy(z) 0
e Fi(2)
= E(x) ds(x 0 1
0 dk(x) kxn
di () 0
dQ i
= E(x) % Fy(x),

kxk

where F(x) = (? Exi

(n — k) x n respectively. Then

) and F(x), Fy(x) are matrices over F,[z] of size k x n,

is a PGM of C'V with internal degree
int deg(G(x)) — deg (dy(x)da(x) - - - di(x)).
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Since G(x) is basic, dy(z) = da(x) = -+ = di(z) = 1.

(b) = (c¢) Let k;(x) be the ged of i-minors of G(z) and recall from Corollary

8.3.12, d;(z) = kkl(a(s)) Since d;(z) = 1 for all i, k;(z) = 1 for all i. In particular
i—1\T

k‘k(l') = 1.

(¢) = (e) Let my(x), ma(x), - ,mi(x) be the k-minors of G(z), where t =

n
( ) . By (¢) we can pick a;(z) € F,[z] such that
k

t

Z a;(x)m;(z) = 1.

i=1
By using Cramer’s Rule to a k x k invertible submatrix of G(z), for each 1,
there exists H;(x) € F,[z]"** (filled with 0 for those rows outside the k rows in
considering) such that

G(z)H;(z) = mi(x)1}.

Set H(z) = Z:Zt:laz(:v)Hl(az:) Then

(f) = (a) Suppose G'(z) is another PGM of CV. Then G'(x) = z(x)G(z) for
some z(z) € F,(z)"*. Then z(z) € F,[x]*** by (f). Hence by Cauchy Binet
Theorem, int deg(G'(z)) > int deg(G(x)).

(¢) = (d) Pick a € F,. Let P(z) € F,[x] be the minimal polynomial of a.

Then by assumption (c),

P(z) f det(G(z)[- | B])
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for some 5 C [n] with || = k. Hence

det(G(a)[— | A)) 0.
Then rank(G(a)) > k. Thus rank(G(«)) = k.

(d) = (c) Suppose ged of k-minors is P(x) # 1. Then

dl (l’) 0
o : dy ()
(x) ERCO's
0
where dj(z) # 1. Pick a € F, such that di(a) = 0. Then
di () 0
. _ da(e)
rank(G(«))=rank < k —1. We get a con-
0
0 dk(Oé)
tradiction.
(b) = (9)
G(z) = E(x)D(z)F(x)
_ Fi(x)
= E(x)(x 0)
FQ((L’)
= E@)F(r),
where

Fz) = Fi(z)
Fy(x)

and Fy(x),Fy(x) are matrices over Fy[z] of size k X n,(n — k) x n respectively.
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Set /() = | €
et G'(z) = . Observe
Fy(x)
E(x)Fi(x
S
E(x) 0
= F(z
— ()
is unimodular.
(9) = (b) Suppose G'(z) = =) is unimodular. Then G(z) = Iy (I, 0)G'(x).

Hence invariant factors of G(x) are all 1's.

We will introduce another PGM of a CV code with good property.
Definition 8.3.23.
(a) The degree of a row is the maximal degree among all entries.

(b) The external degree deg(G(x)) of G(x) € F,[x]**™ is the sum of degrees of the
rows of G(x).

(¢) G(z) is reduced if deg(FE(z)G(x)) > deg(G(z)) for any unimodular & x k matrix

Note 8.3.24. G(x) is reduced if the external degree of G(z) can not be reduced by

elementary rows operations (ERO’s).

Example 8.3.25. Suppose G(z) = (1 + 2? 1 + = + 2?)1x2. Observe the internal

degree and external degree are equal to 2.
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1 0 241
Example 8.3.26. Suppose G(z) = . Observe the internal degree

01 T
2x3

is equal to 1 and the external degree is equal to 2. Note G(z) is not reduced, since

1 0 z+1 , 1 -1 1
G(z) = ERO's ,
01 x 0 1 =«
2x3 2%3
1 -1 1
and deg( )=1<2.
0 1 =«
2x3

Definition 8.3.27. Let G(z) € F,[z]**" be a PGM of C'V. Let ey, e, - - , e be the
degrees of rows 1,2,--- |k respectively in G(x). By interchanging rows of G(z), we
assume e; < eg < --- < eg. The leading coefficients matrix G e Fq’”” is a matrix
with ij-entry

G = coefficients of % in Gy;(z),
where G;;(z) is the ij—entry of G(z).
Example 8.3.28.

1+x %) 1+ 22

G(z) =
T 24 2% 2423
2x3
_ 0 0 1
= e =2and ey =3, G =
011
2x3

Note 8.3.29.

(a) The coefficient of T2 *e of det(G(x)[— | B]) is det(G[— | B]).

(b) Internal degree of G(x) < External degree of G(z).

Theorem 8.3.30. Let G(x) be a k x n PGM of CV C Fy(x)". Then the following

are equivalent.
(a) G(z) is reduced.
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(b) rank(G) = k.
(c)ext deg(G(z)) =int deg(G(x)).

(d) For every nonzero z(x) € Fy[z]*, deg(z(x)G(z)) =maz e;j+deg(z;(x)) where
the mazimum is taking for all 1 < j <k such that z;(z) # 0, the j-th entry of

Proof. (a) = (b) Suppose rank(G) < k. Then there exists a nonzero vector

(1,9, ,ap) € th such that (o, ag,--- ,04)G = 0. Suppose ¢ is the largest
Gi(x)

integer such that oy # 0, and suppose G(z) = Gg'(az) , where deg(G;(x)) =
Gr()

e; and e < egp < --- < g, Set
Gi(z) = a1G1(2)2z® " + aGa(x)a® 2 + - - - + ,Gy(x) € Fy[z]".
Note that deg(G}(z)) <deg(G:(x)). Hence

Gi(z)

ext deg [ G'(x) < ext deg(G(x)),

a contradiction to G(z) being reduced.
(b) = (¢) Choose « C [n]| with || = k such that

det(@[~ | a]) £ 0,



the coefficient of z¢ ¢t "+ in det(G(z)[— | a]). Hence
int deg(G(z)) > ext deg(G(x)).
Thus, int deg(G(x)) =ext deg(G(x)).
(¢) = (a) Let E(x) be a k x k unimodular matrix.
ext deg(E(2)G(x)) > int deg(E(2)G(x))

= int deg(G(z))
= ext deg(G(x)).

deg(z(2)G(x)) = deg(z1(x)Gi(x) + 25(x)Ga(w) + - - + 2 () G ()
< max deg(z;(z)G,(x)) (8.3.1)
= deg(z:(x)G(x)) for some t € [k].
Set d :=deg(z(7)Gys(x)) and «; is the coefficient of z77¢ in z/(z). Note that
a; # 0 is the leading coefficient of z,(z), and (aq,aq, - ,a)G is the coefficient
row of 2 in z(z)G(x). Hence
(b) holds
— (Oél,QQ,'-',Oék)a%OfOI' any ((){17042,--'7O(k)7é0
< deg(z(x)G(z)) =d

<= Equality holds in (8.3.1).
[l

Definition 8.3.31. A PGM G(x) of C'V is minimal if it has minimal external degree
among all PGM of CV.

We now introduce the third good PGM.
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Theorem 8.3.32. APGM G(x) is minimal in C'V if and only if G(x) is reduced and

basic.

Proof. (<=) Let Gy(x) be a PGM of C'V. Then

ext deg(Go(x)) > int deg(Go(z))
> int deg(G(x)) (since G(x) is basic)

= ext deg(G(x)). (by Theorem 8.3.30(c))

(=) G(z) is clearly reduced. Suppose a basic PGM in C'V has internal degree my.
Choose a basic PGM Gg(x) with the least external degree among all PGM with
internal degree my.

Claim: Gg(x) is reduced in C'V.

Let E(x) be a k x k unimodular matrix. Since
int deg(E(z)Go(z)) = int deg(Go(x)) = my,

we have

ext deg(E(x)Go(z)) > ext deg(Go(x)).

This shows Gg(z) is reduced.

mo = int deg(Gop(x))

IA A
(‘D e
A B
& 5
o 92
Q K
G
= N

IN

ext deg(Go(x)) (since G(x) is minimal)
Go(z)) (since Go(z) is reduced)

I
=
=
o
@

PN

Then int deg(G(z)) = mp. So G(z) is basic. O
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1 1 11
Example 8.3.33. Suppose G(z)= . Then with C'V = row space

0 I+z = 1 -
X
of G(x) over Fy(z), we have e; = 0 and ey = 1, ext deg(G(z))=e;+es=1,and

det(G(x)[—|a])=1 + x, z, 1, =1, —z, 1 — x for any « with |a|] = 2. Hence int
deg((G(z)) = 1 is the ged of 2-minors of G(x). Hence G(z) is basic by Theorem
8.3.22, and is reduced by Theorem 8.3.30. Then G(z) is minimal by Theorem 8.3.32.

Definition 8.3.34. A degree of a C'V is the smallest possible internal degree of its
PGM:’s.

Corollary 8.3.35. A degree of C'V is the smallest external degree of its PGM. [

8.4 Forney Sequence and Free Distance

Theorem 8.4.1. The sequence of row degrees in increasing order are the same for

all minimal PGM's of C'V.

Proof. Let G(x),G'(z) be minimal PGM's with degree sequence {e; },{ fi} respectively

for : =1,2,--- ,k in increasing order.
Claim: e¢; < f; foralli =1,2,--- k.
To the contrary, let ¢ be the smallest integer such that f;<e;,. Note that

G'(z) = 2(2)G(x)

for some z(z)€F,(z)"*. In fact, z(x)€F,[z]"** by Theorem 8.3.22 (f) since G(x) is

basic and G'(z) € F,[x]**™. Suppose z(z)=(z;;(x))rxk. Since G(z) is reduced,
f; = max e; + deg(zj;(z))

for 1 < j < k where the maximum is taking over all ¢ with z;;(z) # 0 by Theorem
8.3.30 (d). Then
zij(x) =0
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if i > ¢tand j <t (if z;;(x) # 0, then f; > e; > e, > f; is a contradiction). Then the
first ¢ rows of G'(x) are spanned by the first ¢ — 1 rows. This is a contradiction to

G'(x) being a PGM. Similarly, f; <e; for all i. Then f; = e; for all i. [

Definition 8.4.2. The sequence of row degrees of a minimal PGM's of C'V in in-
creasing order is called the Forney sequence of C'V and ey is called the memory of

cv.
Definition 8.4.3. Fix L € NU{0}.
(CV)r:={f(z) € CV O Fyfa]" | deg(f(z)) < L}
Note that (CV)y is a linear code over F, with codewords of length (L + 1)n.
Definition 8.4.4. Let §;, be the dimension of (CV).

Theorem 8.4.5. Let C'V be a convolutional code with Forney sequence e;<es<--- <ey.

Then

k
(@), = > max{L+ 1 —e;,0}.
i=1
k
00 61+ZL’62+---+{B€
0> oyl =2 .
(b)2 our =

Proof.

(a)  Observe by Theorem 8.3.30 (d),
(CV)p = (CV) N EFy[z]"
= {2(2)G(2) € F,[z]" | 2(z) € F,[x]" with deg(z(z)G(x)) < L}

= {2(x)G(z) € Fy[a]" | 2(x) € F[a]F with josep e + deg(z()) < L}

where G(x) is a minimal PGM with Forney sequence eq, es, - - - , ;. Hence
k
dim((CV),) = Y max{L + 1 — ¢;,0}.
i=1
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k

x€1_|_l.€2+‘_.+$e
b
() (1_$)2

=@ 422+ ta)(l+z+2*+ )1l +z+a>+--)

0o k
= (Z max{L + 1 — e;,0})z"
0

i=1

L=
= Z (sLl'L.
L=0
0

Definition 8.4.6. For f(x) € CV N F,[z]", wt(f(z)) is the sum of the number of

nonzero coefficients in each position.
Example 8.4.7. wt(2 + z,2* + 2° + 25) =2+ 3 =5.
We now give the free distance of a C'V' code.
Definition 8.4.8. dge.(CV) := min wit(f) for all f(x) € CV N F,[z]".
Lemma 8.4.9.
min max

diee(CV) < 159 ¢ {1d(C) | Cis a [(L + 1)n,0r] — linear code over Fy.}

Proof. Observe dge.(CV) = min d((CV)), taking for all L > 0, and (C'V) is a

[(L + 1)n,dy]—linear code. Hence, we have proved the lemma. O
1 1 1 1
Example 8.4.10. Suppose G(x) = and C'V is the row space
0 142 « 1 -
X

of G(x) over Fy(x). Note that G(x) is minimal. Hence e; = 0,e2 = 1 and

Z(SLQ:L = (I+a)(l+a+2+ - )1+a+2+---)
L=0

(L +1)+ L)z*

1)+ I

(2L + 1)2".
L=0

Thus 6, = 2L+ 1. Since §p = 1, (CV)y = {(0,0,0,0),(1,1,1,1)} is a [4, 1]—code over
Fy with d((C'V)g) = 4. Thus, dge.(CV) < 4 by Lemma 8.4.9
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8.5 Wyner-Ash Convolutional Code

We consider a special C'V in this section.

Definition 8.5.1.

1 0 1+
1 1+ 22
G(r) = 1 1+ 2+ 22 (8.5.1)
0 1 1+z+a®+---+a™

(2m—1)x2m

c (FQ[Z,D(mel)XT"

where the last column contains the polynomials of degrees at most m and at least
1 with the constant term 1. Let WACYV,, denote the row space of G(x) over Fy(x).
Then WACYV,, is called the mth Wyner-Ash convolutional code.

Lemma 8.5.2. G(z) in (8.5.1) is basic.

Proof. This is clear from Theorem 8.3.22 since the determinant of the first 2™ — 1

columns is a (2™ — 1)-minors with value 1. O
Lemma 8.5.3. deg(WACYV,,) = m.
Proof. This is because of int deg(G(z))=m and G(z) is basic. O

It is clear that G(z) is not minimal. The following example gives a minimal PG M

of WACV,
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Example 8.5.4. For m = 2. Suppose

1 00 1+z
Glz)=10 10 1+ 22

00 1 1+z+a?
3x4
1 0 0 1+=z
ERO's —x 1 0 1+=x
—x 0 1 1
3x4
1 0 0 1+=
ERO's 0 11 T
—x 0 1 1
3x4
1 111
ERO's 0 11 =«
Bl U=l
3x4
Since
1 111

1111

extdeg(]0 1 1 z|)=0+1+1=2=int deg(G(x))=intdeg(|] 0 1 1 =z |),

z 01 1

1 1 11 1 111
011 =z is reduced by Theorem 8.3.30. 011 =z

x 0 1 1 x 0 1 1

1 111
8.5.2. Then 011 =z is minimal by Theorem 8.3.32.

z 0 1 1

We determine the free distance of WACYV,,.

Lemma 8.5.5. dge.(WACV,,) = 3.
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is basic by Lemma



Proof. dgee(WACV,,) < 3 is clear from the first row of G(z) in (8.5.1). Suppose
dree (W ACV,,) < 2. Say that z(z)G(x) has weight < 2, where z(x) € (Fy(z))?" L.
Then z(x) € (Fy[x])?" ! by Theorem 8.3.22 (f) and since G(z) is basic.

Case 1: If z(x) has only one nonzero entry. Then z(z)G(z) is a polynomial

multiple of a row of G(x). Hence wt(z(x)G(x))> 3, a contradiction.
Case 2: If z(x) has at least 3 nonzero entries. This is similar to Case 1.

Case 3: If z(x) has exactly 2 nonzero entries z;(x), z;(x) where ¢ < j. Then

0

0

zi(x)
(z)

<j

Note that z;(z)giom (x) + 2;(2)gjom (@) = 0. Since z(z)G(z) has weight at most 2.

Note that z;(z) = 2* and z;(x) = z° for some nonnegative integers a,b. Hence
Giom (1) + gjom (2)2” = 0.

Evaluating the lowest degree term, we find z* + 2 = 0. Hence a = b and

[Ea(gizm (.ZU) + gjom (I’)) = (0. Thus giom (l‘) = gjom (Z’), a contradiction.
O
Lemma 8.5.6. Every [2™,2™ — m]—linear code over Fy has minimal distance < 2.

Proof. Let C be a [2™,2™ — m|—linear code over Fy. Let H be a m x 2™ matrix over

F, with the rows chosen from a basis of C. Then

C = {(CLl,CLQ’ c. 7(1,27") | H - (a17a27 .. 7a2m)t _ 0}
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Observe

d(C) = the minimal number of linear dependent columns in H.
< 2
since either there are 2 same columns or the zero vector is a column of H. O

Theorem 8.5.7. The Forney sequence of WACYV,, is 0,0,---,0,1,1,--- |1, where

the number of 0's is 2™ — 1 — m and the number of 1's is m.

Proof. Note that e; +e3+- - -+ eam_1 =deg(WACV,,) = m. We have done if we know
all e; at most 1. Suppose some ¢; > 2. Then at least 2™ — m e; are 0. Recall that
om_1

dp = >, max{L+1—e;,0}. Hence

i=1
om_1

do = Z max{l —e;,0} > 2™ —m.
i=1

By Lemma 8.5.6 every [2™, dg]— linear code over Fy has minimum distance < 2. Now

by Lemma 8.4.9,

3 = divee(WACV:) < d(WACV,)o

IN

2,

where C' runs from all [2™, dy]— linear code, a contradiction. O

99



Bibliography

1]

8]
[9]

Richard E. Blahut, Algebraic Codes for Data Transmission, Cambridge Univer-
sity Press, Cambridge, 2003.

R. A. Brualdi, Introductory Combinatorics, 4™ Ed., Pearson Prentics Hall, New
Jersey, 2004.

D. Du and F. K. Hwang, Combinatorial Group Testing and Its Applications, 2"
Ed., World Scientific, Singapore, 2000.

A. G. D’yachkov, F. K. Hwang, A. J. Macula, P. A. Vilenkin, C. Weng, A
Construction of Pooling Designs with Some Happy Surprises, Journal of Com-

putational Biology, 12(8), 1127-1134, 2005.

P. Erdos, P. Frankl and D. Fiiredi, Families of finite sets in which no set is

covered by the union of r others. Israel J. Math. 51:79-89, 1985.

T. Huang and C. Weng, A note on decoding of superimposed codes, Journal of

Combinatorial Optimization, 7, 381-384, 2003.

T. Huang and C. Weng, Pooling spaces and non-adaptive designs. Discrete

Mathematics 282:163-169, 2004.
H. Huang, Y. Huang and C. Weng, More on Pooling Spaces, preprint.

W. H. Kautz and R. C. Singleton. Nonadaptive binary superimposed codes.
IEEFE Trans. Inform. Theory, 10:363-377, 1964.

100



[10] J. H. van Lint and R. M. Wilson, A Course in Combinatorics. Cambridge,
Victoria, 1992.

[11] A, J. Macula, A simple construction of d-disjunct matrices with certain constant

weights. Discrete Math. 162:311-312, 1996.

[12] A. J. Macula, Error-correcting nonadaptive group testing with d°-disjunct ma-

trices. Discrete Appl. Math. 80:217-222, 1997.

[13] H. Ngo and D. Du, New Constructions of Non-Adaptive and Error-Tolerance
Pooling Designs, Discrete Math., 243:161-170, 2002.

[14] Vera Pless, Introduction to the Theory of Error-Correcting Codes John Wiley &
Sons, Inc, New York, 1998.

101



