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中文摘要 
 
 

我們研究比較有組合性質的碼，如 super imposed codes, Reed-Muller 

Codes, Punctured Reed-Muller Codes, Hexacode, Extended Golay Code 

和 Convolutional Codes 等。我們探討這些碼和投影空間(projective 

geometries), 仿射空間(affine geometries),甚至一般的 ranked poset 

的關係。 
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Abstract 

 
We study codes with more combinatorial properties involved than 

algebraic properties. These include super imposed codes, Reed-Muller 

Codes, Punctured Reed-Muller Codes, Hexacode, Extended Golay Code 

and Convolutional Codes, most of them are related to the incidence 

structure on the projective geometries, affine geometries, or some ranked 

posets. 
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1

Introduction

Definition 1.0.1. Let S denote a set of symbols. A subset C ⊆ Sn is called a code

of length n on S. The elements in C are called codewords. The number of codewords

in C is called the size of C.

The thesis is about chapter 2, chapter 3, chapter 4 and chapter 5. We introduce

four conclusions of the relation between geometries and codes. The first conclusion

is the relation between projective geometries and super imposed codes. The second

conclusion is the relation between affine geometries and super imposed codes. The

third conclusion is the relation between affine geometries and Reed-Muller codes.

The last conclusion is the relation between projective geometries and punctured-

Reed-Muller codes. The remaining chapters introduce the Hadamard matrices, bent

functions, Hexacode, extended binary Golay code and convolutional codes.

To study codes with good properties is a fascinated work in mathematics and also

has many real world applications, for examples, from wire or wireless communication,

experimental designs, biological group testings etc. The propose of this thesis is to

study codes with more combinatorial properties involved than algebraic properties.

In fact, most of the codes introduced in the thesis are related to the projective spaces

and affine spaces, or some ranked posets. All of the results in this thesis are classical.
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We collect results in different places and describe them in uniform and more realiz-

able ways. We provide examples for a definition, and list some codes explicitly, e.g.

Hexacodes in Chapter 7. The thesis is organized as follows.

In chapter 2, we define bd-super-imposed codes and disjunct matrices, which can

be used to construct error-tolerable designs for non-adaptive group testing, which has

applications to the screening of DNA sequence, and the corresponding decoding algo-

rithm is efficient. In chapter 3 we introduce a class of posets, called pooling spaces,

which serves as the unified frame of the construction of many pooling designs. In chap-

ter 4 and chapter 5, we introduce the Reed-Muller codes and punctured Reed-Muller

codes respectively. These are classical codes but we give the connection of them with

the posets in chapter 3. In the last three chapters, we introduce Hadamard matrices

and bent functions, Hexacodes and Extended Binary Golay code, and convolutional

codes respectively.

The following notations are used throughout the thesis.

Definition 1.0.2. For x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Sn, define the

distance ∂(x, y) to be the number of different positions in x, y. That is

∂(x, y) := |{i | xi 6= yi}|.

Definition 1.0.3. For C ⊆ Sn, the minimum distance of C is defined by

d(C) := min{∂(x, y) | x 6= y in C}.
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2

Super imposed Codes

Throughout this chapter, set S={0,1}. For x=(x1,x2,. . . ,xn), y=(y1,y2,. . . ,yn)∈ Sn,

define the Boolean sum x ∪ y by

(x ∪ y)i :=





0, if xi = yi = 0;

1, else
for 1 ≤ i ≤ n.

2.1 Definition

Definition 2.1.1. A code C ⊆ {0, 1}n is bd-super-imposed if for any distinct code-

words x, x1, x2, . . . , xb ∈ C , there are at least d positions with 1 values in the

codeword x and 0 values in the Boolean sum x1 ∪ x2 ∪ · · · ∪ xb.

We give an example as following.

Example 2.1.2. A code C = {(0, 1, 1), (1, 1, 0), (1, 0, 1)} is a 11-super-imposed code.

Suppose we choose x = (0, 1, 1) and x1 = (1, 1, 0). Then in the third position x has

value 1 and x1 has value 0. Similarly for other choices of distinct elements x and x1

in C.

Definition 2.1.3. Let C = {x1, x2, . . . , xm} ⊆ {0, 1}n and T ⊆ {1, 2, . . . , m}. We

define the output o(T ) of T with respect to C is
⋃
i∈T

xi. In convention, define o(∅) =

(0, 0, . . . , 0).
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Definition 2.1.4. Let C denote a bd-super-imposed code with codewords of length

n. Set
b⋃

C := {o(T ) | T ⊆ {1, 2, . . . , m} with |T | ≤ b}.

With the motivation from linear algebra. We give the following definition.

Definition 2.1.5. A code C ′ ⊂ {0, 1}n is a b−union code of dimension m if there

exists a subset C ⊆ C ′ of size m such that C ′ =
b⋃

C and C ′ has size


 m

0


 +


 m

1


 + · · ·+


 m

b


 .

The set C is called a basis of C ′. C ′ is called the b−union code spanned by C.

Theorem 2.1.6. Let C denote a bd-super-imposed code with codewords of length n

and size m. Then
b⋃

C is an m-dimensional b−union code with the basis set C and

minimum distance at least d.

Proof. Suppose U 6= V are two subsets of {1, 2, . . . , m} with size at most b. Then

there exists i ∈ (U − V ) ∪ (V − U). Without loss of generality, say i ∈ U − V. Since

C is a bd-super-imposed code, there are d positions with 1 values in xi and 0 values

in
⋃

j∈V

xj. Then there are at least d positions with 1 values in
⋃

j∈U

xj and 0 values in
⋃

j∈V

xj. Hence ∂(o(U), o(V )) ≥ d.

2.2 Disjunct matrices

Sometimes it is convenient to describe a code by a matrix. So we give some definitions

for the code as following.

Definition 2.2.1. An n× s 01-matrix is bd-disjunct if the set of its columns forms a

bd-super-imposed code.
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Definition 2.2.2. Suppose U, V be two families consisting of subsets of {1, 2, . . . , m}.
The incidence matrix M between U and V is an |U | × |V | matrix with rows and

columns indexed by U, V respectively such that

Mab :=





1, if a ⊆ b;

0, else
for a ∈ U and b ∈ V .

Theorem 2.2.3. Fix three integers 1 ≤ u ≤ v ≤ m. Let V be the family of all the

v-subsets of {1, 2, . . . , m}, and let U be the family of all the u-subsets of {1, 2, . . . , m}.
The incidence matrix between the U and V is u1-disjunct and (u − 1)v−u+1-disjunct

with size


m

u


×


m

v


.

Proof. For x ∈ V and any other x1, x2, . . . , xu ∈ V , choose ai ∈ x − xi for each

i = 1, 2, . . . , u. Choose y ∈ U such that {a1, a2, . . . , au} ⊆ y ⊂ x. Because ai ∈ y

and ai 6∈ xi, y * xi for each i = 1, 2, . . . , u. This proves that M is u1-disjunct. As

the above proof, there exists a (u − 1)-subset w such that w ⊆ x and w * xi for

i = 1, 2, . . . , u − 1. Observe that there are v − u + 1 elelments y with w ⊆ y ⊆ x.

Because w ⊆ y and w * xi, y * xi. This proves that M is (u− 1)v−u+1-disjunct.

2.3 Decoding

Given a b−union code and its basis C, we give an efficient way to determine how a

codeword can be write as a boolean sum of elements in C.

Definition 2.3.1. For x, y ∈ {0, 1}n, define x−̇y ∈ {0, 1}n by

(x−̇y)i :=





1, if xi = 1 and yi = 0;

0, else
for all 1 ≤ i ≤ n,

and define x ⊆ y if

xi = 1 −→ yi = 1 for all 1 ≤ i ≤ n.

5



Theorem 2.3.2. Let C = {C1, C2, . . . , Cm} ⊆ {0, 1}n be a bd-super-imposed code,

T ⊆ {1, 2, . . . , m} with |T | ≤ b and u ∈ {0, 1}n. Set

U := {j | j ∈ {1, 2, . . . , m}, ∂(Cj−̇u, 0) ≤ bd− 1

2
c}.

Then the following (1)-(2) hold.

(1) Suppose ∂(o(T ), u) ≤ bd−1
2
c. Then T = U , hence o(T ) = o(U).

(2) Suppose ∂(o(T ), u) ≤ d−1 and |U | ≤ b. Then o(T ) = u if and only if o(U) = u.

Proof. (1) (T ⊆ U) Pick j ∈ T . Then Cj ⊆ o(T ). Hence

∂(Cj−̇u, 0) ≤ ∂(o(T )−̇u, 0)

≤ ∂(o(T ), u)

≤ bd− 1

2
c.

Hence j ∈ U .

(T ⊇ U) Suppose j 6∈ T. Hence ∂(Cj−̇o(T ), 0) ≥ d by the bd-super-imposed

assumption. Then

∂(Cj−̇u, 0) ≥ ∂(Cj−̇o(T ), 0)− ∂(o(T ), u)

≥ d− bd− 1

2
c

>
d− 1

2
.

Hence j 6∈ U .

(2) Suppose T 6= U . Then ∂(o(T ), u) > bd−1
2
c by (1). In particulur, o(T ) 6= u.

Because C is a bd-super-imposed code with codewords of length n, then
b⋃

C has

minimum distance at least d by Theorem 2.1.6. Hence ∂(o(U), o(T )) ≥ d. Then

∂(o(U), u) ≥ ∂(o(U), o(T ))− ∂(o(T ), u)

≥ d− (d− 1) = 1.

Hence o(U) 6= u.
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Suppose u=o(T ) in Theorem 2.3.2 is the codeword in the b−union code spanned

by C. Then u=o(U) is the way to write u as a boolean sum of elements in C. Some

”errors” of the codewords are also allowed.

2.4 Remarks

b-super-imposed codes were introduced in 1964 by W. H. Kautz and R. C. Singleton

[9], and the concept of bd-super-imposed codes were introduced by A. J. Macula

[12]. As stated in Section 2.2 a bd-disjunct matrix is a bd-super-imposed code in

matrix language. The bd-disjunct matrix can be used to construct an error-tolerable

design for non-adaptive group testing, which has applications to the screening of DNA

sequence, and the corresponding decoding algorithm is efficient. See [3], [6] for details.

A bd-disjunct matrix is also called a pooling design.

The constructions of bd-disjunct matrices were given by many authors, e.g. [11],

[12], [13], [4]. Theorem 2.2.3 is a special case of [7]. The algorithm in Theorem 2.3.2

was given in [6]. See [4] for more results of this line of study.
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3

Pooling spaces

We constructed disjunct matrices from the lattice of subsets of a given set in Theorem

2.2.3. We generalize the idea to poset in this chapter.

3.1 Preliminaries

We now give the basic definitions and properties of a partially ordered set. The expert

may want to skip the remaining of this section and go to the next section.

Let P denote a finite set. By a partial order on P, we mean a binary relation ≤
on P such that

(i) x ≤ x ∀ x ∈ P,

(ii) x ≤ y and y ≤ z −→ x ≤ z ∀ x, y, z ∈ P,

(iii) x ≤ y and y ≤ x −→ x = y ∀ x, y ∈ P.

By a partially ordered set (or poset, for short), we mean a pair (P,≤), where P is a

finite set, and where ≤ is a partial order on P. By abusing notation, we will suppress

reference to ≤, and just write P instead of (P,≤).

8



Let P denote a poset, with partial order ≤, and let x and y denote any elements

in P. As usual, we write x < y whenever x ≤ y and x 6= y, and write x 6< y whenever

x < y is not true. We say y covers x whenever x < y, and there is no z ∈ P such

that x < z < y. A poset can be described by a diagram in which the elements are

corresponding to dots, and y covers x whenever dot y is placed above dot x with an

edge connecting them. See Fig. 1 for the diagram of the poset with five elements

{0, w, x, y, z}, and w, x covers 0; y covers w, x; z covers w, x respectively. Note 0, w, y

is a direct chain of length 2.

c

c c

c c

@
@@

¡
¡¡

©©©©©©

HHHHHH

0

w x

y z

Figure 1. A poset.

An element x ∈ P is said to be minimal (resp. maximal) whenever there is no

y ∈ P such that y < x (resp. x < y). Let min(P ) (resp. max(P )) denote the set of all

minimal (resp. maximal) elements in P. Whenever min(P ) (resp. max(P )) consists

of a single element, we denote it by 0 (resp. 1), and we say P has the least element 0

(resp. the greatest element 1).

Throughout the chapter 2 we assume P is a poset with the least element 0. By

an atom in P, we mean an element in P that covers 0. We let AP denote the set of

atoms in P. By a rank function on P, we mean a function rank from P to the set of

nonnegative integers such that rank(0) = 0, and such that for all x, y ∈ P, y covers x

implies rank(y) − rank(x) = 1. Observe the rank function is unique if it exists. P is

said to be ranked whenever P has a rank function. In this case, we set

rank(P ) := max{rank(x)|x ∈ P},

9



Pi := {x|x ∈ P, rank(x) = i},

and observe P0 = {0}, P1 = AP . Observed P is ranked if and only if for any x ∈ P

every direct chain from 0 to x has the same length.

Let P denote any finite poset, and let S denote any subset of P. Then there is a

unique partial order on S such that for all x, y ∈ S, x ≤ y in S if and only if x ≤ y

in P. This partial order is said to be induced from P. By a subposet of P, we mean a

subset of P, together with the partial order induced from P. Pick any x, y ∈ P such

that x ≤ y. By the interval [x, y], we mean the subposet

[x, y] := {z|z ∈ P, x ≤ z ≤ y}

of P.

P is said to be atomic whenever for each element x of P, x is the join of atoms

in the interval [0, x]. Suppose P is atomic and x < y are two elements in P . Observe

the atoms in the interval [0, x] is a proper subset of atoms in the interval [0, y].

Let P denote any poset, and S be a subset of P. Fix z ∈ P. Then z is said to

be an upper bound (resp. lower bound) of S, if z ≥ x (resp. z ≤ x) for all x ∈ S.

Suppose the subposet of upper bounds (resp. lower bounds) of S has a unique minimal

(resp. maximal) element. In this case we call this element the least upper bound or

join (resp. the greatest lower bound or meet) of S. If S = {x1, x2, . . . , xt} we write

x1 ∨ x2 ∨ · · · ∨ xt for the join of S and x1 ∧ x2 ∧ · · · ∧ xt for the meet of S. P is said

to be meet semi-lattice (resp. join semi-lattice) whenever P is nonempty, and x ∧ y

(resp. x ∨ y) exists for all x, y ∈ P. A meet semi-lattice (resp. join semi-lattice) has

a 0 (resp. 1). A meet and join semi-lattice is called a lattice.

Suppose P is a lattice. Then P is said to be upper semi-modular (resp. lower

semi-modular ) whenever for all x, y ∈ P,

y covers x ∧ y −→ x ∨ y covers x

(resp. x ∨ y covers x −→ y covers x ∧ y).

10



P is said to be modular whenever P is upper semi-modular and lower semi-modular.

3.2 Definitions

Now we can give the main definition of the chapter as following.

Definition 3.2.1. Let P be a ranked poset. For any w ∈ P, define

w+ = {y ≥ w | y ∈ P}.

P is said to be a pooling space whenever w+ is atomic for all w ∈ P.

In particular, a pooling space is atomic. It is immediate from the definition that

if P is a pooling space, then so is w+ for any w ∈ P. The following theorem is a

generalization of Theorem 2.2.3.

Theorem 3.2.2. Let P be a pooling space with rank D ≥ 1. Fix an element x ∈ PD

and fix an integer b (1 ≤ b ≤ D). Let T ⊆ PD be a subset such that |T | ≤ b and

x 6∈ T. Then there exists an element y ∈ [0, x] ∩ Pb such that y � z for all z ∈ T.

Proof. We prove the theorem by induction on D. If D = 1 then b = 1 and the theorem

holds by setting y = x. In general, pick an element z ∈ T. Then x 6= z by assumption.

Since x is the least upper bound of [0, x] ∩ P1 and x 6≤ z, z is not an upper bound

of [0, x] ∩ P1. Hence we can pick an element w ∈ [0, x] ∩ P1 such that w 6≤ z. Then

T ∩ w+ has at most b− 1 elements. In the pooling space w+, the element x and the

elements of T ∩w+ all have rank D− 1, and the elements of w+ ∩Pb have rank b− 1.

Hence by induction, we can choose y ∈ [w, x]∩Pb such that y 6≤ u for all u ∈ T ∩w+.

Note that clearly y 6≤ u for all u ∈ T \ w+. This proves the theorem.

11



3.3 The contractions of a graph

Many examples of pooling spaces were given in [7]. These are related the Hamming

matroid, the attenuated space, and six classical polar spaces. Among these examples

there is a common property: each interval is modular. In this section we will construct

pooling spaces without modular intervals. Throughout the section let G denote a

simple connected graph on n vertices.

Definition 3.3.1. Let P = P (G) denote the set of partitions A of the vertex set

V (G) such that the subgraph induced by each block of A is connected. For A,B ∈ P ,

define

A ≤ B ⇐⇒ A is a refinment of B.

The poset (P (G),≤) is called the poset of contractions of G.

Example 3.3.2. Let G denote a graph with the vertex set {w, x, y, z} and edge set

{wx, xy, yz, zw}, i.e. G is the 4-cycle C4. Then the poset P (G) is as in Fig. 2. We

delete the single element blocks in the notation of a partition. e.g. the notation 0 is

used to denote the partition with four blocks {w}, {x}, {y}, {z}, and wx is used to

denote the partition with three blocks {w, x}, {y}, {z}. The poset is a lattice, but

not a modular lattice. This is because the join of the elements wx yz and xy zw is

wxyz, which covers wx yz, but xy zw does not covers the element 0 which is the meet

of the elements wx yz and xy zw. Observe the subposet induced on wx+ is P (C3),

the poset of contractions of a triangle.
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Figure 2. P (C4).

Lemma 3.3.3. P (G) is a ranked poset of rank n− 1. The rank i elements are those

elements in P (G) with n− i blocks for 0≤i ≤n− 1.

Proof. For D ∈ P (G) with n − i blocks define the rank of D to be i, where 0 ≤ i ≤
n− 1. We claim this is a rank function. Suppose that B covers A and rank(A) = i.

Since A is a proper refinement of B, rank(B) ≥ i + 1 and there are two blocks in A

that are contained in the same block of B. Let C be an element in P (G) that glues

these two blocks of A. Then A < C ≤ B and rank(C) = rank(A) + 1. This shows

C = B and rank(B) = i + 1.

Theorem 3.3.4. P (G) is a pooling space of rank n− 1.

Proof. P (G) is ranked by previous lemma. From previous lemma and the definition

each atom in P(G) contains n− 1 blocks, one block containing two adjacent vertices

and each of the remaining n− 2 blocks containing a single vertex. By identifying the

atoms with the edges of G we find each element A ∈ P (G) is the join of those edges

contained in the subgraph of G induced by A. This shows that P (G) is atomic. More

generally, for B ∈ P (G), the poset B+ is also atomic. This is because the subposet

B+ is isomorphic to the poset P (BG) of contractions of BG, where BG is the graph

with the vertex set B, and for two distinct blocks x, y ∈ B x is adjacent to y whenever

some vertex in x is adjacent to some vertex in y.
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Remark 3.3.5. Let G = Kn denote the complete graph on n vertices. Then the

elements in P = P (Kn) are all the partitions of the vertex set of Kn. S(n, k) := |Pk|
is called the Stirling number of the second kind. It is well known that S(n, k) can be

solved by the recurrence relation

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k) for 1 ≤ k ≤ n− 1

with initial condition S(n, 0) = 0 for n ≥ 1, and S(n, n) = 1 for n ≥ 0. See [2,

Section 8.2] for details.

3.4 Finite fields

Before going farther, we need some background on finite fields. Recall that a finite

field Fq is a set of q elements containing 0,1 with two binary relations + , · , such

that (Fq , + , 0) and (F ∗
q , · , 1) are abelian groups, and +, · satisfy distribute law,

where F ∗
q :=Fq − {0}.

We give some examples as following.

Example 3.4.1. {0, 1, 2, 3} is not a finite field under ususal + , · (mod 4), since 2

does not have the multiplication inverse.

Example 3.4.2. F4 = {0, 1, x, x + 1} is a finite field under + , · (mod x2 + x + 1).

It is well-known that the finite field Fq of q elements is unique up to isomorphism,

and q = pr for some prime p. There are two ways to describe Fq:

(i) Fq = {a0 + a1x + a2x
2 + · · ·+ ar−1x

r−1 | ai ∈ Zp},

(ii) Fq = {0, 1, γ, γ2, · · · , γq−2}.

The + defined in (i) is as usual, and · is defined mod some irreducible polynomial

g(x) ∈ Fq[x] of degree r, e.g. g(x) = x2 + x + 1 in Example 3.4.2. The · defined in

(ii) is as usual with the condition γq−1 = 1 and the + is defined mod g(x). γ is called

a primitive element of Fq.
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Example 3.4.3. F4 = {0, 1, x, x + 1} = {0, 1, x, x2} (mod x2 + x + 1).

Example 3.4.4. F5 = {0, 1, 2, 3, 4} = {0, 1, 2, 22, 23} (mod 5).

Note 3.4.5. Fq is the set of solutions of x(xq−1 − 1) = 0.

Note 3.4.6. Suppose q = pr for some prime p. Then Fq is a vector space over Fp.

Lemma 3.4.7. Suppose T ⊆ Fpm is a subspace over Fp. Then γT is a subspace over

Fp for any γ ∈ Fpm .

Proof. This is clear for γ = 0. Suppose γ 6= 0, and suppose α1, α2, . . . , αk is a basis

of T. Then γα1, γα2, . . . , γαk is a basis of γT.

3.5 Projective and affine geometries

We introduce two more examples of pooling spaces in this section.

Definition 3.5.1. The projective geometry PG(n, q) is the poset consisting of all

subspaces of F n
q with order defined by inclusion. The elements in Pi are referred to

the i-subspaces of F n
q for i = 0, 1, 2, · · · , n.

The following is from linear algebra.

Note 3.5.2. dim(U + V )+dim(U ∩ V )=dim(U)+dim(V ) for U, V ∈ PG(n, q).

Definition 3.5.3. Consider the n-dimensional space F n
q where q is a prime or a prime

power. Let


 n

k




q

denote the number of k-subspaces of F n
q . In convention, define


n

k




q

= 0, if k > n or k < 0.

We list a few properties for


n

k




q

.
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Lemma 3.5.4.

 n

k




q

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
for 0 ≤ k ≤ n.

Proof. We prove the statement by induction on k.
n

0




q

= 1 is clear since {0} is the only one subspace of dimension 0,

and 
n

1




q

=
qn − 1

q − 1

since there are qn − 1 nonzero vectors in F n
q and each 1-subspace containing q − 1

nonzero vectors.

In general, by counting the number of pairs (W,V ), where W ⊆ V are (k − 1)-

subspaces, k-subspaces respectively in two ways, we find


 n

k − 1




q


n− k + 1

1




q

=


n

k




q


 k

k − 1




q

.

Hence


n

k




q

=


 n

k − 1




q


n− k + 1

1




q
 k

k − 1




q

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)

by induction hypothesis.

Lemma 3.5.5. 
 n

k




q

=


 n

n− k




q

for 0 ≤ k ≤ n.
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Proof. By Lemma 3.5.4,

 n

n− k




q

=
(qn − 1)(qn−1 − 1) · · · (qk+1 − 1)

(qn−k − 1)(qn−k−1 − 1) · · · (q − 1)
· (qk − 1)(qk−1 − 1) · · · (q − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(1k−1 − 1) · · · (q − 1)

=


n

k




q

.

Lemma 3.5.6.
 k

r




q

−

 k − 1

r




q

= qk−r


 k − 1

r − 1




q

for 0 ≤ r < k.

Proof.

 k

r




q

−

 k − 1

r




q

=
(qk − 1)(qk−1 − 1) · · · (qk−r+1 − 1)

(qr − 1)(qr−1 − 1) · · · (q − 1)
− (qk−1 − 1)(qk−2 − 1) · · · (qk−r − 1)

(qr − 1)(qr−1 − 1) · · · (q − 1)

=
(qk − 1)− (qk−r − 1)

qr − 1
· (qk−1 − 1) · · · (qk−r+1 − 1)

(qr−1 − 1) · · · (q − 1)

= qk−r


 k − 1

r − 1




q

.

The following theorem will be used in the next section to construct super-imposed

codes.

Theorem 3.5.7. Fix integers 0 ≤ r < k ≤ n. Let A,A1, A2, . . . , Ab be distinct

k-subspaces of F n
q . Then there are at least

d := qk−r


 k − 1

r − 1




q

− (b− 1)qk−r−1


 k − 2

r − 1




q

(3.5.1)
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r-subspaces of A which are not contained in each Ai for i = 1, 2, · · · , b.

Proof. To obtain the maximum elements of r-subspaces in A∩Ai, we assume dim(A∩
Ai)=k − 1 for all i = 1, 2, · · · , b. If A ∩ Ai 6= A ∩ Aj, then (A ∩ Ai) + (A ∩ Aj) = A

and the dimension of (A ∩ Ai) ∩ (A ∩ Aj) is k − 2. Hence there are at least

d :=


k

r




q

−

k − 1

r




q

− (b− 1)(


k − 1

r




q

−

k − 2

r




q

)

= qk−r


 k − 1

r − 1




q

− (b− 1)qk−r−1


 k − 2

r − 1




q

.

r-subspaces of A which are not contained in each Ai for i = 1, 2, · · · , b.

Corollary 3.5.8. In Theorem 3.5.7. If 1 < r ≤ k
2
, then b = qr + 1 is the largest

integer such that d > 0. If r = 1, then b = q is the largest integer such that d > 0.

Proof. Suppose r > 1. Then d > 0 ⇔

b− 1 < q


k − 1

r − 1




q

/


k − 2

r − 1




q

= q · (qk−1 − 1)(qk−2 − 1) · · · (qk−r+1 − 1)

(qk−2 − 1)(qk−3 − 1) · · · (qk−r − 1)

=
q(qk−1 − 1)

(qk−r − 1)

=
qk − q − qk + qr

qk−r − 1
+ qr

=
q(qr−1 − 1)

qk−r − 1
+ qr.

Since

r ≤ k

2
,

0 <
q(qr−1 − 1)

qk−r − 1
< 1.
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Hence b ≤ qr + 1.

Suppose r = 1. Then

d > 0 ⇐⇒ b− 1 < q

⇐⇒ b ≤ q.

Note 3.5.9. Since





b ≤ q, r=1;

b ≤

 2

1




q

= q + 1, r≥2
, we can choose A,A1, A2, · · · , Ab

such that A ∩ Ai 6= A ∩ Aj for i 6= j, dim(A∩Ai)=k − 1 for every i=1,2,· · · , b and

their meet is a (k − 2)−subspace. Then there are exactly d r-subspaces of A which

are not contained in any Ai for i = 1, 2, · · · , b and d is defined in (3.5.1).

Now we consider the relation of projective geometry.

Definition 3.5.10. Let F n
q denote an n-dimensional vector space over a finite field

Fq, where q is the number of elements in the field. Let P = P (F n
q ) denote the poset

with element set

P = {u + W | u ∈ F n
q and W ⊆ F n

q is a subspce} ∪ {∅},

where ∅ denote the empty set. The order is defined by inclusion. Note that P is a

geometric lattice of rank n + 1. P is called the affine geometry and is denoted by

AG(n, q). The elements in Pi are referred to the affine (i − 1)-subspaces of F n
q for

i = 1, 2, · · · , n + 1. We say the affine subspaces u + W and v + W are parallel for

u, v ∈ F n
q , W ⊆ F n

q is a subspace.

We immediately have the following lemma.

Lemma 3.5.11. Suppose u1, u2 ∈ F n
q and W1,W2 ⊆ F n

q are subspaces. Then u1 +

W1 = u2 + W2 if and only if W1 = W2 and u1 − u2 ∈ W1.
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Now we have a similar version of Theorem 3.5.7

Lemma 3.5.12. Let A denote an affine k-subspaces of F n
q . Then the number of affine

r-subspaces contained in A is

qk−r


 k

r




q

,

where r < k. These affine r-subspaces in A are partitioned into


 k

r




q

classes, each class consisting of qk−r parallel affine subspaces.

Theorem 3.5.13. Fix integers 1 ≤ r < k ≤ n. Let A,A1, A2, . . . , Ab be distinct

affine k-subspaces of F n
q . Then there are at least

d := qk−r


 k

r




q

− bqk−r−1


 k − 1

r




q

(3.5.2)

affine r-subspaces contained in A and not contained in any of Ai for i = 1, 2, · · · , b.

Proof. There are

qk−r


 k

r




q

affine r-subspaces contained in A, some of them in some affine subspace A ∩ Ai for

each i = 1, 2, · · · , b to be deducted. A ∩ Ai takes maximal coverage of these affine

r-subspaces when A∩Ai is an affine (k−1)-subspace, and in this situation the number

of these affine r-subspaces is

q(k−1)−r


 k − 1

r




q

.
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Corollary 3.5.14. In Theorem 3.5.13, if 0 < r < k
2
, then b = qr+1 is the largest

integer such that d > 0; if r = 0, then b = q− 1 is the largest integer such that d > 0.

Proof. d > 0 ⇐⇒

b < q


k

r




q

/


k − 1

r




q

= q · (qk − 1)(qk−1 − 1) · · · (qk−r+1 − 1)

(qk−1 − 1)(qk−2 − 1) · · · (qk−r − 1)

=
q(qk − 1)

(qk−r − 1)

=
qk+1 − q − qk+1 + qr+1

qk−r − 1
+ qr+1

=
q(qr − 1)

qk−r − 1
+ qr+1

Since

0 < r <
k

2
,

Then
q(qr − 1)

qk−r − 1
< 1.

Hence 0 < b ≤ qr+1.

Suppose r = 0. Then

d > 0 ⇐⇒ b < q

⇐⇒ b ≤ q − 1

Note 3.5.15. Since





b ≤ q − 1, r=0;

b ≤ q, r≥1
and k ≤ n, we can choose Ai to be an

affine k−subspace with the meet with A corresponding to each of the q parallel affine

(k − 1)−subspaces in A. Then there is exactly d affine r−subspaces contained in A

and not contained in any of Ai for i = 1, 2, · · · , b and d is defined in (3.5.2).
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3.6 Codes on projective and affine geometries

We are clearly to apply the results in the section 3.5 to construction of super-imposed

codes as following.

Definition 3.6.1. Let Pq(n, k, r) denote the incidence matrix of the set of r-subspaces

and the set of k-subspaces in F n
q for 1 ≤ r ≤ k ≤ n. The following corollary is

immediate from Theorem 3.5.7, Corollary 3.5.8 and Note 3.5.9.

Corollary 3.6.2. The columns of Pq(n, k, r) form a bd-super-imposed code, but not

a bd+1-super-imposed code, where b is a positive integer satisfying





b ≤ q, r=1;

b ≤ q + 1, r≥2,

k ≤ n and d is defined in (3.5.1).

Definition 3.6.3. Let Aq(n + 1, k + 1, r + 1) denote the incidence matrix for of the

set of affine r-subspaces and the set of affine k-subspaces in F n
q 0 ≤ r ≤ k ≤ n. The

following Corollary is immediate from Theorem 3.5.13, Corollary 3.5.14 and Note

3.5.15.

Corollary 3.6.4. The columns of Aq(n + 1, k + 1, r + 1) form a bd-super-imposed

code, but not a bd+1-super-imposed code, when b is a positive integer satisfying





b ≤ q − 1, r=0;

b ≤ q, r≥1,

k ≤ n and d is defined in (3.5.2).

We set r = 0 and b = q − 1 to obtain the following result.

Corollary 3.6.5. Let Aq(3, 2, 1) be the incidence matrix of the set of affine 0-subspaces

and the set of affine 1-subspaces in F 2
q . Then the columns of Aq(3, 2, 1) are (q − 1)1-

super-imposed code. ¤
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3.7 Sperner’s theorem and EKR theorem

We list two interesting classical theorems in this section as following.

Theorem 3.7.1. (Sperner’s Theorem)Let M be an n× s 1-disjunct matrix. Then

s ≤

 n

bn
2
c


 .

Proof. Let P be the poset consisting of subsets of {1, 2, · · · , n} with order defined by

inclusion. For each column x of M , identify x to the element {i | xi = 1} of P . Then

the set F of columns of M becomes an antichain in P . (i.e. x * x′ for any x 6= x′.)

Set αk := |{x ∈ F | |x| = k}| for k = 0, 1, 2, · · · , n. Note |F | =
n∑

k=0

αk. Observe there

are n! maximal chains in P . Observe there are k!(n− k)! maximal chains containing

a fixed x ∈ P with |x| = k. Observe for any chain L. |L ∩ F | ≤ 1. By counting the

pairs (x, L) where x ∈ F , x ∈ L and L is a maximal chain. We find

n∑

k=0

αkk!(n− k)! ≤ 1 · n!.

Then
n∑

k=0

αk


n

k



−1

≤ 1.

Hence
n∑

k=0

αk


 n

bn
2
c



−1

≤ 1.

Thus,

s =
n∑

k=0

αk ≤

 n

bn
2
c




Theorem 3.7.2. (EKR-Theorem) Let A be a collection of s distinct k-subsets of

{1, 2, · · · , n}, where k ≤ n
2
, with the property that any two of the subsets have a
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nonempty intersection. Then

s ≤

n− 1

k − 1


 .

Proof. For a permutation σ of {1, 2, · · · , n}, and T ∈ A, define σ(T ) := {σ(x)|x ∈ T}
and Aσ := {σ(T )|T ∈ A}. Set Si := {i, i + 1, · · · , i + k− 1} mod n for i = 1, 2, · · · , n

and F := {S1, S2, · · · , Sn}. Observe for each Si ∈ F, there are 2k − 1 Sj ∈ F with

Si ∩ Sj 6= ∅. These are Si−(k−1),Si−(k−2),· · · ,Si, Si+1,· · · ,Si+k−1. Divide these into k

boxes {Si−(k−1), Si+1},{Si−k−2, Si+2},· · · , {Si−1, Si+k−1},{Si}. Any two in the same

boxes have empty intersection. Hence we can choose only one. From this observation

we have |A ∩ F | ≤ k. Also |Aσ ∩ F | ≤ k for any permutation σ. We count (S, T, σ)

in two ways, where S ∈ F , T ∈ A, σ is a permutation with σ(T ) = S, S ∈ Aσ ∩ F

and T = σ−1(S), in the orders S,T ,σ and σ,S,T to find

n · s · k!(n− k)! ≤ n! · k.

Hence

s ≤ (n− 1)!

(k − 1)!(n− k)!
=


n− 1

k − 1


 .

Definition 3.7.3. Let P be a ranked poset of rank n and 1 ≤ k ≤ n be an integer.

We say P has the kth EKR property whenever any family F ⊆ Pk such that for any

x, y ∈ F there exists a 6= 0 with a ≤ x and a ≤ y, we always have |F | ≤ |w+ ∩Pk| for

some w ∈ P1.

Conjecture 3.7.4. EKR property holds on a geometric lattice.

3.8 Remarks

The name pooling spaces was given in [7]. Theorem 3.3.4 was proved in [8]. Theo-

rem 3.5.7 was given in [4] with a minor correction. Theorem 3.5.13 was given in [8].
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Theorem 3.7.1 and Theorem 3.7.2 are well known and have many different proofs.

We follow the proofs from [10, Chapter 6].
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4

Reed-Muller Codes

For the remaining of the thesis, we consider the codes defined with more algebraic

aspect, but it turns out these codes also have combinatorial meaning.

4.1 Linear Codes

Definition 4.1.1. A code C ⊆ F n
q is a [n, k, d]-linear code (or [n, k]-linear code) if C

is a subspace of F n
q with dimension k and minimum distance d.

Definition 4.1.2. For any x ∈ C, the weight wt(x) of x is the number of nonzero

coordinates in x. The minimum weight wt(C) of C is

wt(C) := min{w(x) | x ∈ C, x 6= 0}.

In general the weight of an element in F n
q depends on how the basis is chosen.

In the above definition the weight is associated with the standard basis of F n
q . We

might choose different basis and define the weight differently. Because the distance

of codewords have relation with the weight.

Note 4.1.3. The distance ∂(x, y) between the codeword x and y is wt(x− y) for any

x, y ∈ C.
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Note 4.1.4. We say C is a linear code if and only if x− y ∈ C and αx ∈ C for any

x, y ∈ C and scalar α.

Note 4.1.5. If C is linear code, then the weight wt(C) is equal to the minimum

distance d(C).

Note 4.1.6. The concept of weight of a code indeed depends on the chosen basis of

vector space.

4.2 Reed-Muller Codes

At first, we give the definition of the codes considered in this chapter.

Definition 4.2.1. We define Rm :={f | f : Fm
2 −→ F2 is a function}, where Rm is

called the Reed-Muller code of order m.

The following two notes are clear.

Note 4.2.2. The Reed-Muller code is a vector space under usual +,· operations of

functions.

Note 4.2.3. The Reed-Muller code of order m is a vector space over F2 of dimension

2m and |Rm| = 22m
.

We consider a few special functions in Rm.

Definition 4.2.4. For 1 ≤ i ≤ m, we define xi ∈ Rm such that for any u ∈ Fm
2 ,

xi(u) = 1⇐⇒ui = 1, and define 1 ∈ Rm such that for any u ∈ Fm
2 , 1(u) = 1.

Definition 4.2.5. xi1xi2 · · · xij∈ Rm is called a monomial of degree j where 1 ≤ j ≤ m

and 1 ≤ i1, i2, · · · , ij ≤ m are distinct integers. 1 is called a monomial of degree 0.

We identify 0,1,2,· · · ,2m− 1 with the elements in Fm
2 by using binary expressions,

e.q. 0 = (0, 0, · · · , 0), 1 = (1, 0, · · · , 0, 0), 2 = (0, 1, 0, · · · , 0, ),· · · . We choose a

27



standard basis f0,f1,· · · ,f2m−1 of Rm, where fi(j) = 1 if and only if j = i for 0 ≤ i ≤
2m − 1. We use the standard basis to express the codeword f ∈ Rm, so the weight of

f has the following meaning.

Note 4.2.6. Suppose the function f ∈ Rm. Then f 2 = f and the weight wt(f) is

equal to |f−1(1)|.

We consider the weight of a monomial as following note.

Note 4.2.7. Suppose f = x1x2 · · · xr.Then

f−1(1) = {(1, 1, · · · , 1, ar+1, ar+2, · · · , am) | ai = 0 or 1}

is a affine (m− r)-subspace of Fm
2 . Hence wt(x1x2 · · ·xr) = 2m−r.

We find a basis of Rm.

Theorem 4.2.8. The set of monomials with degree less or equal m forms a basis of

the Reed-Muller code of order m.

Proof. There are


m

0


 +


m

1


 + · · ·+


m

m


 = 2m monomials and dim(Rm) = 2m.

It suffice to show monomials span Rm. Suppose f ∈ Rm. Observe

f =
∑

a∈f−1(1)

m∏
j=1

(xj + aj + 1).

Hence f is spanned by monomials.

We consider Reed-Muller codes in the light of monomials.

Definition 4.2.9. RM(r,m):={f ∈ Rm | f is spanned by monomials of degree ≤ r}
where r ≤ m. RM(r,m) is called the r-th Reed- Muller Code of order m. Let wtm

denote the weight function on RM(r,m).

From Theorem 4.2.8 and Definition 4.2.9, we have
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Note 4.2.10. Since RM(r,m) is a linear code with codewords of length 2m, the

dimension is dimRM(r,m) =


m

0


 +


m

1


 + · · ·+


m

r


 .

Theorem 4.2.11. The minimum distance d(RM(r,m)) is equal to 2m−r.

Proof. We have seen

wtm(x1x2 · · · xr) = 2m−r.

Hence d(RM(r,m)) ≤ 2m−r. We prove

d(RM(r,m)) ≥ 2m−r

by induction on m. Suppose m = 1.

Case 1: m = 1, r = 0. f : F 1
2 −→ F2(no xi appears) and f = 1. Hence

f−1(1) = F2. Then wt1(f) = |f−1(1)| = 2 = 2m−r.

Case 2: m = 1, r = 1. f 6= 0 has wt1(f) ≥ 1 = 2m−r.

Suppose for any 0 6= f ∈ RM(r,m), we have wtm(f) ≥ 2m−r. Choose any

f ∈ RM(r,m + 1). Say f = g + xm+1h where g ∈ RM(r,m + 1) without xm+1 and

h ∈ RM(r − 1,m + 1) without xm+1.

Case 1: g = h 6= 0. Then f = h(xm+1) and

wtm+1(f) = wtm(h) ≥ 2m−(r−1) = 2m+1−r.

(Using h has at most r − 1 variables).

Case 2: g 6= h. Then

wtm+1(f) = wtm(g) + wtm(g + h).

(To assign xm+1 = 0 in wtm(g) and xm+1 = 1 in wtm(g + h)).
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Case 2.1: g = 0. Hence h 6= 0 and

wtm+1(f) = wtm(h) ≥ 2m−(r−1) = 2m+1−r.

Case 2.2: g 6= 0. Note g + h 6= 0, since g 6= h. Hence

wtm+1(f) = wtm(g) + wtm(g + h) ≥ 2m−r + 2m−r = 2m+1−r.

Next, our goal is to prove

wtm(fS) = 2m−r ⇐⇒ S is affine (m−r)−subspace (∗)

where S ⊆ Fm
2 , and

fS(x) :=





1, if x ∈ S;

0, else

fS is called the characteristic function of S.

Remark 4.2.12. Rm={fS | S ⊆ Fm
2 }.

One direction is easier.

Theorem 4.2.13. Suppose S is an affine (m − r)-subspace in Fm
2 . Then wt(fS) =

2m−r and fS ∈ RM(r,m).

Proof. Note wt(fS)=|f−1
S (1)|=|S|=2m−r. Observe S is the solution space of a system

of r linear independent equations in m variables. Hence there exist aij, bi ∈ F2 such

that for i = 1, 2, · · · , r and j = 1, 2, · · · ,m we have

(x1, x2, · · · , xm) ∈ S ⇐⇒
m∑

j=1

aijxj = bi for i = 1, 2, · · · , r.

Observe

fS =
r∏

i=1

[(
m∑

j=1

aijxj)− bi + 1]

and the degree of the monomial in the expansion of fS is less or equal r.
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To prove the other direction, we need some facts as following notes.

Note 4.2.14. An affine k-subspace is the union of 2 parallel affine (k− 1)-subspaces

by Lemma 3.5.12.

Note 4.2.15. We say the disjunct union S1∪̇S2 = S ⊆ Fm
2 if and only if fS = fS1+fS2 .

Theorem 4.2.16. The vectors in {fS | S is a affine (m − r)-subspace of Fm
2 } span

RM(r,m).

Proof. It suffices to prove xi1xi2 · · ·xit is spanned by the characteristic function of

affine (m − r)-subspaces, where t ≤ r. Observe xi1xi2 · · · xit=fT for some affine

(m− t)-subspace T and fT = fT1 +fT2 for some parallel affine (m− (t+1))-subspaces

T1,T2. Keeping doing this, we find xi1xi2 · · ·xit is the sum of some characteristic

functions of affine (m− r)-subspaces.

Definition 4.2.17. An affine (m− 1)-subspace in Fm
2 is called a hyperplane of Fm

2 .

Theorem 4.2.18. Suppose T ⊆ Fm
2 with |T | = 2k. Suppose |T ∩ S| = 0, 2k−1 or 2k

for any hyperplane S of Fm
2 . Then T is an affine k-subspace of Fm

2 .

Proof. We prove this by induction on m and m = 2 is clear. In general, we consider

the following 3 cases.

Case 1: T ⊆ S for some hyperplane S of Fm
2 . Then S ∼= Fm−1

2 . Let H be a

hyperplane of S. Then H is an affine (m − 2)-subspace of Fm
2 . We want to

show that |T ∩H| = 0, 2k−1 or 2k. Observe there is an affine (m− 1)-subspace

S ′ such that S∩S ′ = H. Hence |T ∩H| = |T ∩S∩S ′| = |T ∩S ′| = 0, 2k−1 or 2k

by assumption. By induction, T is an affine k-subspace in S and then in Fm
2 .

Case 2: T∩S = ∅ for some hyperplane S of Fm
2 . Then T ⊆ S ′ for the hyperplane

S ′ of Fm
2 parallel to S. So the result follows from Case 1.

Case 3: |T ∩ S| = 2k−1 for all hyperplanes S of Fm
2 . Observe the case m = k is

clear, so suppose m 6= k. Then on the one hand
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∑
S

|T ∩ S|2 =


 m

m− 1




2

· 2m

2m−1
· 22(k−1) = (2m − 1)22k−1

and on the other hand

∑
S

|T ∩ S|2 =
∑

S

(
∑
a∈T

fS(a))2

=
∑
a∈T

∑

b∈T

∑
S

fS(a)fS(b)

=
∑
a∈T

∑

b∈T,b 6=a

∑
S

fS(a)fS(b) +
∑
a∈T

∑
S

fS(a)2

= |T |(|T | − 1)


m− 1

1




2

+ |T |

m

1




2

= 2k(2k − 1)(2m−1 − 1) + 2k(2m − 1)

= 2k[2k+m−1 − 2m−1 − 2k + 2m],

where the summations are over all hyperplanes S in Fm
2 . Hence

m = k,

a contradiction.

Now we can show the other direction in (∗).

Theorem 4.2.19. Let f ∈ RM(r,m) be the minimum weight vector. Then f = fS

for some affine (m− r)-subspace S in Fm
2 .

Proof. By Theorem 4.2.11, wt(f) = 2m−r. Then f = fS for some S ⊆ Fm
2 with

|S| = 2m−r. We want to show that S is an affine (m − r)-subspace. Let H be a

hyperplane in Fm
2 . We want to show

|S ∩H| = 0, 2m−r−1 or 2m−r,

and then apply Theorem 4.2.18 to say S is an affine (m − r)-subspace. Observe

Fm
2 = H ∪H ′ where H ′ is parallel to H. Observe fH , fH′ ∈ RM(1,m) by Theorem
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4.2.16 and 1 = fH + fH′ , since H ∩ H ′ = ∅. Hence ffH , ffH′ ∈ RM(r + 1,m). By

Theorem 4.2.11,

wt(ffH) = 0 or ≥ 2m−(r+1)

and

wt(ffH′) = 0 or ≥ 2m−(r+1).

Since

2m−r = wt(f)

= wt(ffH + ffH′)

= wt(ffH) + wt(ffH′),

We have wt(ffH) = 0, 2m−r−1 or 2m−r. Hence

|S ∩H| = 0, 2m−r−1 or 2m−r.

4.3 Decoding

We study the decoding of Reed-Muller codes in this section, we need the following

notation.

Definition 4.3.1. Sσ := {(c1, c2, · · · , cm) | ci = 1, i ∈ σ} is an affine (m−|σ|)−subspace

and xσ =
∏
i∈σ

xi is a monomial, where σ ⊆ [m] = {1, 2, · · · ,m}. Hence

Sσ = x−1
σ (1).

Definition 4.3.2. σ = [m]− σ is called the complement of σ, where σ ⊆ [m]

We give an example as following.

Example 4.3.3. Suppose m = 6, σ = {1, 2, 3}. Since xσ = x1x2x3 and xσ = x4x5x6,

we obtain Sσ = {(1, 1, 1, a, b, c) | a, b, c ∈ F2} and Sσ = {(d, e, f, 1, 1, 1) | d, e, f ∈ F2}.
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By Definition 4.2.9, we have

Note 4.3.4. Suppose f ∈ RM(r,m). Then f =
∑

|σ|≤r,σ⊆[m]

fσxσ for some fσ ∈ F2.

Lemma 4.3.5. Suppose u ∈ Fm
2 and τ = {i | ui = 1}. Then for σ, ρ ⊆ [m], we have

|Sσ ∩ (u + Sρ)| =




2m−|ρ∪σ|, if σ ∩ ρ ∩ τ = ∅;
0, else.

Proof. Observe

u + Sρ = {(c1, c2, · · · , cm) | ci = 1 if i ∈ ρ ∩ τ , ci = 0 if i ∈ ρ ∩ τ}

and

Sσ = {(c1, c2, · · · , cm) | ci = 1 if i ∈ σ}.

Hence if σ ∩ ρ ∩ τ = ∅, we have

Sσ ∩ (u + Sρ) = {(c1, c2, · · · , cm) | ci = 1 if i ∈ σ ∪ (ρ ∩ τ), ci = 0 if i ∈ σ ∩ ρ ∩ τ}.

Then

|Sσ ∩ (u + Sρ)| = 2m−|ρ∪σ|

when

σ ∩ ρ ∩ τ = ∅.

Note

|Sσ ∩ (u + Sρ)| = 0

when

σ ∩ ρ ∩ τ 6= ∅.

Since this is not trivial, we give two examples as following for improving the sense

about Lemma 4.3.5.

34



Example 4.3.6. Suppose u = 0,m = 5, σ = {1, 2} and ρ = {3, 4}. We obtain

Sσ = {(1, 1, c3, c4, c5) | ci ∈ F2} and u + Sρ = {(c1, c2, 1, 1, c5) | ci ∈ F2}. Hence

Sσ ∩ (u + Sρ) = {(1, 1, 1, 1, c5) | c5 ∈ F2}

has cardinality 2 = 2m−|σ∪ρ|.

Example 4.3.7. Suppose u = (1, 0, 0),m = 3, σ = {1, 2} and ρ = {1}. We obtain

Sσ = {(1, 1, c3) | c3 ∈ F2} and u + Sρ = {(0, c2, c3) | c2, c3 ∈ F2}. Hence

Sσ ∩ (u + Sρ) = ∅.

The following theorem is essentially a decoding of RM(r,m). This will be clear

later.

Theorem 4.3.8. Suppose f =
∑

|ρ|≤r,ρ⊆[m]

fρxρ ∈ RM(r,m) for fρ ∈ F2. Fix σ ⊆ [m]

with |σ| = r. Then

fσ =
∑

w∈u+Sσ

f(w) for all u ∈ Fm
2 . (∗)

Proof.

∑
w∈u+Sσ

f(w) =
∑

w∈u+Sσ

∑

|ρ|≤r

fρxρ(w)

=
∑

|ρ|≤r

fρ

∑
w∈u+Sσ

xρ(w)

=
∑

|ρ|≤r

fρ|Sρ ∩ (u + Sσ)|

= fσ,

since |Sρ ∩ (u + Sσ)| is even except ρ = σ by Lemma 4.3.5.

Note 4.3.9. The size of u + Sσ is |{u + Sσ | u ∈ Fm
2 }| =

2m

2m−|σ| =
2m

2r
= 2m−r for

the σ, u in Theorem 4.3.8. (∗) contains 2m equations, one for each u ∈ Fm
2 . Some of

them are identical. There are 2m−r different equations.
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Note 4.3.10. For |σ| = r − 1, the Theorem 4.3.8 does not hold.

We show how Theorem 4.3.8 is used in the decoding process as following.

Application 4.3.11. (Encoding and Decoding Processes)

f =
∑

|ρ|≤r,ρ⊆[m]

fρxρ ∈ RM(r,m) (original message)

−→ (f(0), f(1), f(2), · · · , f(2m − 1)) (encoding f into a string of 0, 1)

−→ (f ′(0), f ′(1), f ′(2), · · · , f ′(2m − 1))

(f is sending via a noisy channel to become f ′)

−→ Compute f ′σ =
∑

t∈u+Sσ

f ′(t) for each |σ| = r and each u + Sσ.

There are 2m−r such f ′σ according to different cosets u + Sσ,

and we use majority to determine fσ

(Assume the number of errors ≤ b2
m−r − 1

2
c in the sending).

−→ Set new f as f −
∑

|σ|=r

fσxσ and new f ′ as f ′ −
∑

|σ|=r

fσxσ

and go to the previous step to determine those fσ for |σ| = r − 1.

Keep doing this untill we get f∅.

We also present an example of the decoding process for improving the sense about

the encoding and decoding processes.

Example 4.3.12. In RM(1, 3), suppose the receiving codeword

(f ′(0), f ′(1), f ′(2), · · · , f ′(7)) = (1, 1, 0, 0, 0, 1, 0, 0).

Assume the number of errors ≤ b2m−r−1
2

c = 1.

(i) We can find fσ for |σ| = 1 by the following steps.

Suppose σ = {1}, σ = {2, 3}. First step is to find all u + S{2,3} for u ∈ F 3
2 . We find

S{2,3} = {(0, 1, 1), (1, 1, 1)}
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Then

{u + S{2,3} | u ∈ F 3
2 } = {{(0, 1, 1), (1, 1, 1)}, {(0, 0, 1), (1, 0, 1)}

, {(0, 1, 0), (1, 1, 0)}, {(0, 0, 0), (1, 0, 0)}}
= {{6, 7}, {4, 5}, {2, 3}, {0, 1}}.

Second step is to compute the possible values of f{1} and use majority to determine

f{1}. Since

f ′{1} =
∑

t∈u+S{2,3}

f ′(t),

the possible values of f{1} are

f ′(6) + f ′(7) = 0 + 0 = 0, f ′(4) + f ′(5) = 0 + 1 = 1,

f ′(2) + f ′(3) = 0 + 0 = 0 or f ′(0) + f ′(1) = 1 + 1 = 0.

Third step is to use majority to determine that

f{1} = 0.

In the same way, we find that f{2} = 1 and f{3} = 0.

(ii) Since

f =
∑

|ρ|≤1,ρ⊆[m]

fρxρ,

f∅ = f − f{1}x1 − f{2}x2 − f{3}x3

= f + x2 ∈ RM(0, 3).

Hence the new receiving codeword

(f ′′(0), f ′′(1), f ′′(2), · · · , f ′′(7))

= (1, 1, 0, 0, 0, 1, 0, 0) + (0, 0, 1, 1, 0, 0, 1, 1)

= (1, 1, 1, 1, 0, 1, 1, 1).
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(iii) Go to previous step to find f∅. Since σ = ∅, then

{u + Sσ | u ∈ F 3
2 } = {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}},

then the possible values of f∅ are

f ′′(0) = 1, f ′′(1) = 1, f ′′(2) = 1, f ′′(3) = 1,

f ′′(4) = 0, f ′′(5) = 1, f ′′(6) = 1 or f ′′(7) = 1.

By using majority to determine that

f∅ = 1.

Hence

f = f∅ + f{1}x1 + f{2}x2 + f{3}x3 = 1 + x2,

and

(f(0), f(1), f(2), · · · , f(7)) = (1, 1, 0, 0, 1, 1, 0, 0),

the 5th bit is error in the sending.

4.4 Recursive construction of RM(1,m)

We give another description of RM(1,m) as appeared in [10, Chapter 18] in this

section. We identity each function in RM(1,m) with its coordinates in the standard

basis.

Example 4.4.1. Suppose RM(1, 1) is the 1-th Reed-Muller code of order 1. Then

RM(1, 1) = {0, 1, x1, 1 + x1}
= {(0, 0), (1, 1), (0, 1), (1, 0)}.

Example 4.4.2. Suppose RM(1, 2) is the 1-th Reed-Muller code of order 2. Then

RM(1, 2) = {0, 1, x1, 1 + x1, x2, 1 + x2, x1 + x2, 1 + x1 + x2}
= {(0, 0, 0, 0), (1, 1, 1, 1), (0, 1, 0, 1), (1, 0, 1, 0),

(0, 0, 1, 1), (1, 1, 0, 0), (0, 1, 1, 0), (1, 0, 0, 1)}.
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Since we observe the rule between Example 4.4.1 and Example 4.4.2, we get the

general rule is as following.

Example 4.4.3. Suppose RM(1,m+1) is the 1-th Reed-Muller code of order m+1.

Then

RM(1,m + 1)

= {f | f does not have xm+1} ∪ {f | f has xm+1}
= {(c, c) | c ∈ RM(1, m)} ∪ {(c, c) | c ∈ RM(1,m)}
= {(d, d, d, d), (d, d, d, d), (d, d, d, d), (d, d, d, d) | d ∈ RM(1,m− 1)},

where c is a vector obtained from c by switching 0 and 1.

4.5 Covering radius

We give the definition of covering radius of a code in this section and determine the

lower bound of the covering radius of RM(r,m).

Definition 4.5.1. For C ⊆ F n
2 , we define d(x,C) :=min{d(x, y) | y ∈ C} where

x ∈ F n
2 and ρ(C) =max{d(x,C) | x ∈ F n

2 } is called the covering radius of C.

Example 4.5.2. Suppose C = {(0, 0, 0), (1, 1, 1)}. Then the covering radius of C is

ρ(C) = 1.

The following notes show why the name covering radius is chosen.

Note 4.5.3. Suppose ρ(C) is the covering radius of C. Then
⋃

x∈C

Bρ(C)+1(x)=F n
2

where Bi(x) := {y | d(x, y) < i}.

Note 4.5.4. The covering radius ρ(C) is minimum i such that
⋃

x∈C

Bi+1(x) = F n
2 .

Theorem 4.5.5. ρ(RM(1,m)) ≥ 2m−1 − 2d
m
2
e−1.

Proof. Induction on m.
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If m = 1, then 2m−1 − 2d
m
2
e−1 = 1− 1 = 0 and clearly ρ(RM(1, 1)) ≥ 0.

If m = 2, then 2m−1 − 2d
m
2
e−1 = 2 − 1 = 1. Since RM(1, 2) 6= RM(2, 2), we

have ρ(RM(1, 2)) ≥ 1. In general, consider in RM(1,m + 1). Choose u ∈ Rm−1

such that

d(u, RM(1,m− 1)) ≥ 2m−2 − 2d
m−1

2
e−1.

Set v = (u, u, u, u) ∈ Rm+1. It remains to show

d(v, RM(1,m + 1)) ≥ 2m − 2d
m+1

2
e−1.

There are 4 cases of codewords in RM(1,m + 1).

Case 1:(c, c, c, c) ∈ RM(1,m + 1) for c ∈ RM(1,m− 1).

d(v, (c, c, c, c))

= 3d(u, c) + d(u, c)

= 3d(u, c) + 2m−1 − d(u, c)

= 2m−1 + 2d(u, c)

≥ 2m−1 + 2(2m−2 − 2d
m−1

2
e−1)

= 2m − 2d
m−1

2
e

= 2m − 2d
m+1

2
e−1.

Case 2:(c, c, c, c) ∈ RM(1,m + 1) for c ∈ RM(1,m− 1).

d(v, (c, c, c, c))

= 2d(u, c) + d(u, c) + d(u, c)

= 3d(u, c) + d(u, c) (by d(u, c) = d(u, c) and d(u, c) = d(u, c))

≥ 2m − 2d
m+1

2
e−1

as in the Case 1.
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Similar for the remaining two cases (c, c, c, c), (c, c, c, c) ∈ RM(1,m + 1) for

c ∈ RM(1,m− 1).

Here we announced that we will know ρ(RM(1,m)) when m is even in section 6.1.

41



5

Punctured Reed-Muller Codes

A punctured Reed-Muller code is a obtain from a Reed-Muller code by puncturing

the first position of each codeword. Since we use different language to define it, this

will not be clear at the first look.

5.1 Definition

Definition 5.1.1. Let F2[λ] denote the set of polynomials over F2 with a variable λ.

Fix a primitive element γ ∈ F ∗
2m := F2m − {0}. For f ∈ F2[λ], define

Tf := {γi | the coefficient of λi in f(λ) is 1}.

PRM(r,m) := Span{f(λ) ∈ F2[λ] | Tf is an affine (m− r)− subspace

of F2m over F2 or Tf ∪ {0} is an (m− r)− subspace

of F2m over F2 }/ < λ2m−1 − 1 >

is called the r-th punctured Reed-Muller code of order m with codewords of length

2m − 1. For f(λ) ∈ PRM(r,m), the weight of f is defined by

wt(f) := |{ i | the coefficient of λi in f is 1}|.
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Of course, Tf depends on the choice of a primitive element γ ∈ F2m . We omit the

mention of γ if no confusion occurs. We refer the reader to Theorem 4.2.16 for the

name PRM(r,m) to be chosen. Here we give an example for correspondence relation

between RM(r,m) and PRM(r,m).

Example 5.1.2. Suppose F23 = {0, 1, γ, γ2, . . . , γ6}, where γ is primitive element

satisfying γ3 + γ + 1 = 0. Then γ3 = 1 + γ, γ4 = γ + γ2, γ5 = 1 + γ + γ2, and

γ6 = 1+ γ2. This gives an one to one correspondence between F ∗
23 and F 3

2 −{0}. The

following processes (a)-(e) provide an example of the map from f ∈ RM(1, 3) onto

f ∗ ∈ PRM(1, 3).

(a) f = x1 + x2 ∈ RM(1, 3);

(b)

f = (0, 1, 1, 0, 0, 1, 1, 0)

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
1 x1 0 1 0 1 0 1 0 1

γ x2 0 0 1 1 0 0 1 1

γ2 x3 0 0 0 0 1 1 1 1

1 γ γ3 γ2 γ6 γ4 γ5

(encoding f into a string of 0, 1 as in Application 4.3.11, the positions are

indexed correspondence to the binary number of F 3
2 . The last row shows the

way to index the positions by elements in F ∗
23);

(c) f ∗ = (1, 1, 0, 0, 1, 1, 0)

(delete the first position)

(d)

f ∗ = (1, 1, 0, 0, 1, 0, 1)

↑ ↑ ↑ ↑ ↑ ↑ ↑
1 γ γ2 γ3 γ4 γ5 γ6
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(reorder the string by the new index corresponding to F ∗
23);

(e) f ∗ = 1 + λ + λ4 + λ6

(write the string in polynomial form).

Observe

Tf∗ = {1, γ, γ4, γ6}
= {1, γ, γ + γ2, 1 + γ2}
= {(1, 0, 0), (0, 1, 0), (0, 1, 1), (1, 0, 1)}
= (1, 0, 0) + {(0, 0, 0), (1, 1, 0), (1, 1, 1), (0, 0, 1)}

is an affine 2-subspace. Hence f ∗ ∈ PRM(1, 3).

In Example 5.1.2, we will have a complete correspondence between RM(1, 3) and

PRM(1, 3).

Lemma 5.1.3. The minimum distance d(PRM(r,m)) is equal to 2m−r − 1.

Proof. This is immediate from Theorem 4.2.11 and Theorem 4.2.19.

5.2 Cyclic Codes

We will show a punctured Reed-Muller code is cyclic. First we need a definition as

following.

Definition 5.2.1. A code C ⊆ F n
2 is cyclic if

(c0, c1, · · · , cn−1) ∈ C =⇒ (cn−1, c0, c1, · · · , cn−2) ∈ C.

We give four examples as following.

Example 5.2.2. {0} is cyclic.
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Example 5.2.3. {(0, 0, 0, 0), (1, 1, 1, 1)} ⊆ F 4
2 is cyclic.

Example 5.2.4. F n
2 is cyclic.

Example 5.2.5. {(0, 0, 0, 0, 0, 0, 0), (1, 1, 1, 0, 1, 0, 0), (0, 1, 1, 1, 0, 1, 0),

(0, 0, 1, 1, 1, 0, 1), (1, 0, 0, 1, 1, 1, 0), (0, 1, 0, 0, 1, 1, 1), (1, 0, 1, 0, 0, 1, 1),

(1, 1, 0, 1, 0, 0, 1)} is cyclic. This code is not linear!

It is not easy to find a nontrivial code that are both linear and cyclic. We introduce

a way by polynomials. Usually we identity an element (a0, a1, · · · , an−1) ∈ F n
2 with

the polynomial a0 + a1λ + · · ·+ an−1λ
n−1.

Note 5.2.6. A linear code C ⊆ F n
2 is cyclic if and only if λf(λ) ∈ C mod (λn − 1)

for any f(λ) ∈ C. ¤

Lemma 5.2.7. A linear code C ⊆ F n
2 is cyclic if and only if there exists a function

g(λ)|λn − 1 such that C = {g(λ)h(λ) | h(λ) ∈ F2[λ], deg(h(λ)) ≤ n− deg(g(λ))− 1}.

We skip the proof of the above lemma. It can be found in any standard textbook

of coding theory, for examples [14],[1]. Lemma 5.2.7 says a linear code C ⊆ F n
2 is

cyclic if and only if C is a principle idea ring in F2[λ]/ < λn − 1 > .

Note 5.2.8. By Lemma 5.2.7, we obtain that dim(C) = n− deg(g(λ)).

Note 5.2.9. As the notation in Definition 5.1.1, Tλf(λ) = γTf(λ) and Tλf(λ) ∪ {0} =

γ(Tf(λ) ∪ {0}).

The following is the main theorem of the section.

Theorem 5.2.10. PRM(r,m) is cyclic when the coordinates are indexed by

1, γ, γ2, · · · , γ2m−2.

Proof. We need to prove

f(λ) ∈ PRM(r,m) =⇒ λf(λ) ∈ PRM(r,m) mod (λ2m−1 − 1).
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It suffices to assume Tf(λ) or Tf(λ) ∪ {0} is an affine (m − r)-subspace and show

γTf(λ) = Tλf(λ) or γ(Tf(λ) ∪ {0}) = Tλf(λ) ∪ {0} is an (m− r)-subspace. This follows

from Lemma 3.4.7.

Example 5.2.11. We complete the Example 5.1.2 by a table.

RM(1, 3) RM(1, 3) PRM(1, 3) PRM(1, 3)

0 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 0

1 (1, 1, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1, 1) 1 + λ + · · ·+ λ6

1 + x3 (1, 1, 1, 1, 0, 0, 0, 0) (1, 1, 0, 1, 0, 0, 0) 1 + λ + λ3

1 + x1 (1, 0, 1, 0, 1, 0, 1, 0) (0, 1, 1, 0, 1, 0, 0) λ + λ2 + λ4

1 + x1 + x2 (1, 0, 0, 1, 1, 0, 0, 1) (0, 0, 1, 1, 0, 1, 0) λ2 + λ3 + λ5

1 + x1 + x2 + x3 (1, 0, 0, 1, 0, 1, 1, 0) (0, 0, 0, 1, 1, 0, 1) λ3 + λ4 + λ6

1 + x2 + x3 (1, 1, 0, 0, 0, 0, 1, 1) (1, 0, 0, 0, 1, 1, 0) 1 + λ4 + λ5

1 + x1 + x3 (1, 0, 1, 0, 0, 1, 0, 1) (0, 1, 0, 0, 0, 1, 1) λ + λ5 + λ6

1 + x2 (1, 1, 0, 0, 1, 1, 0, 0) (1, 0, 1, 0, 0, 0, 1) 1 + λ2 + λ6

x1 (0, 1, 0, 1, 0, 1, 0, 1) (1, 0, 0, 1, 0, 1, 1) 1 + λ3 + λ5 + λ6

x1 + x2 (0, 1, 1, 0, 0, 1, 1, 0) (1, 1, 0, 0, 1, 0, 1) 1 + λ + λ4 + λ6

x1 + x2 + x3 (0, 1, 1, 0, 1, 0, 0, 1) (1, 1, 1, 0, 0, 1, 0) 1 + λ + λ2 + λ5

x2 + x3 (0, 0, 1, 1, 1, 1, 0, 0) (0, 1, 1, 1, 0, 0, 1) λ + λ2 + λ3 + λ6

x1 + x3 (0, 1, 0, 1, 1, 0, 1, 0) (1, 0, 1, 1, 1, 0, 0) 1 + λ2 + λ3 + λ4

x2 (0, 0, 1, 1, 0, 0, 1, 1) (0, 1, 0, 1, 1, 1, 0) λ + λ3 + λ4 + λ5

x3 (0, 0, 0, 0, 1, 1, 1, 1) (0, 0, 1, 0, 1, 1, 1) λ2 + λ4 + λ5 + λ6

The codewords in the third column is obtained by truncating the codewords in

the second column and then reordering the coordinates by the the way switching

the positions (3, 4) and permuting positions (4, 6, 5) as escribed in Example 5.1.1.

Observe from the table that if we set g(λ) := 1 + λ + λ3 then

PRM(1, 3) = {g(λ)h(λ) | h(λ) ∈ F2[λ], deg(h(λ)) ≤ 3}.
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Note that PRM(1, 3) does not decrease in number from RM(1, 3). This is true for

any PRM(r,m). However this is not easy to show.

5.3 Lucas Theorem

In the following two sections, we give some background information in order to find

the dimension of PRM(r,m) is section 5.5.

Lemma 5.3.1. (Lucas Theorem 1878) If p is a prime and 0 ≤ a, b < p are integers,

then for n,k∈ N 
np + a

kp + b


 =


n

k





a

b


 mod p.

Proof. By binomial theorem,

np+a∑
i=0


np + a

i


 λi = (λ + 1)np+a

= (λ + 1)np(λ + 1)a

= (

p∑
i=0


p

i


 λi)n(λ + 1)a

≡ (λp + 1)n(λ + 1)a mod p

=
n∑

j=0


n

j


 λpj

a∑
s=0


a

s


 λs.

Comparing the coefficients of λkp+b in both sides, we find

np + a

kp + b


 =


n

k





a

b


 mod p.

Corollary 5.3.2. If p is a prime and 0 ≤ n0, k0 < p are integers, then

n0 + n1p + n2p

2 + · · ·ntp
t

k0 + k1p + k2p
2 + · · · ktp

t


 =


no

k0





n1

k1





n2

k2


 · · ·


nt

kt


 mod p

for ni, ki ∈ N and i = 0, 1, 2, · · · , t.

47



Proof. By Lemma 5.3.1, then


n0 + n1p + n2p

2 + · · ·ntp
t

k0 + k1p + k2p
2 + · · · ktp

t


 =


n0 + (n1 + n2p + · · ·+ ntp

t−1)p

k0 + (k1 + k2p + · · ·+ ktp
t−1)p




≡

n0

k0





n1 + n2p + · · ·+ ntp

t−1

k1 + k2p + · · ·+ ktp
t−1


 mod p

...

≡

n0

k0





n1

k1





n2

k2


 · · ·


nt

kt


 mod p.

Note 5.3.3. By Corollary 5.3.2,


n

k


 =


n0

k0





n1

k1





n2

k2


 · · ·


nt

kt


 mod 2

for n =
t∑

i=0

2ini and k =
t∑

i=0

2iki, where ni, ki ∈ {0, 1}.

We give a summary as following.

Note 5.3.4. Suppose n =
t∑

i=0

2ini and k =
t∑

i=0

2iki, where ni, ki ∈ {0, 1}. Then the

following (1)− (4) are equivalent by Note 5.3.3.

(1)


n

k


 ≡ 1 mod 2.

(2)


ni

ki


 ≡ 1 mod 2 for all i = 0, 1, 2, · · · , t

(3) ki ≤ ni (ni − ki ≤ ni) for all i = 0, 1, 2, · · · , t.

(4) There is no overflowing in compute n = k + (n− k) in binary system.

More generally, we have the following.
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Note 5.3.5. Suppose n = j1 + j2 + · · ·+ jk. Then
n!

j1!j2! · · · k! ≡ 1 mod 2 if and only

if there is no overflowing in compute n = j1 + j2 + · · ·+ jk in binary system.

Example 5.3.6. Let k = (0, 0, 1, 1, 1, 1, 0)2 = 4+8+16+32 = 60, n = (1, 0, 0, 0, 0, 0, 1)2 =

1 + 64 = 65 and n − k = (1, 0, 1, 0, 0, 0, 0)2 = 1 + 4 = 5. Since there is overflowing

over the summation n = k + (n − k) in binary system, we have


n

k


 =


65

60


 ≡ 0

mod 2.

5.4 Evaluation f (a) for f ∈ PRM(r,m)

We give a theorem without proof. This is a generalization of Theorem 4.2.8.

Theorem 5.4.1. If V = {F | F : F k
q −→ Fq is a function}, where q = 2m, then

the set {xj1
1 xj2

2 · · ·xjk

k | 0 ≤ ji ≤ q − 1} is a basis of V over Fq. ¤

Definition 5.4.2. For each s ∈ {1, 2, 3, · · · , 2m− 1} and k ≤ m, we define a polyno-

mial function FS in V as

Fs(x1, x2, · · · , xk) :=
∑

j1+j2+···+jk=s
ji≥1


 s

j1j2 · · · jk


 xj1

1 xj2
2 · · · xjk

k ,

where


 s

j1j2 · · · jk


 =

s!

j1!j2! · · · jk!
=





1, if


 s

j1j2 · · · jk


 is odd;

0, else

.

Note 5.4.3. Fs(x1, x2, · · · , xk) 6= (x1 + x2 + · · ·+ xk)
s.

Lemma 5.4.4. Fs(x1, x2, · · · , xk) = 0 if and only if there are at most (k − 1) 1’s in

the binary expression of s.

Proof. (=⇒)Since {xj1
1 xj2

2 · · · xjk

k | 0 ≤ ji ≤ 2m − 1} is a linear independent set over

F2m and then over F2, we find
s!

j1!j2! · · · jk!
= 0 in F2 for all j1 + j2 + · · · + jk = s.
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Hence the binary expression of s has at most k − 1 1’s by Note 5.3.5.

(⇐=)By Note 5.3.5, s can not be written as the sum of k positive integers without

overflowing in the binary expression. Hence each coefficient


 s

j1j2 · · · jk


 ≡ 0 in (∗).

Hence Fs(x1, x2, · · · xk) = 0.

Lemma 5.4.5. Fs(x1, x2, · · · , xk) =
∑

(b1x1+b2x2+· · ·+bkxk)
s, where the summation

is over all b = (b1, b2, · · · , bk) ∈ F k
2 .

Proof. We prove by induction on k. For k = 1, observe Fs(x1) = xs
1 and

∑

b1∈F2

(b1x1)
s = xs

1.

Before showing the general case we do the case k = 2 first for clarity. Observe

Fs(x1, x2) =


s

1


 x1x

s−1
2 +


s

2


 x2

1x
s−2
2 + · · ·+


 s

s− 1


 xs−1

1 x2

=
s−1∑
i=1


s

i


 xi

1x
s−i
2

and

∑

(b1,b2)∈F 2
2

(b1x1 + b2x2)
s

=
∑

b2∈F2

(b2x2)
s +

∑

b2∈F2

(x1 + b2x2)
s (according to b1 = 0 or 1)

=
∑

b2∈F2

(b2x2)
s +

∑

b2∈F2

s∑
i=0


s

i


 xi

1(b2x2)
s−i

= xs
2 + (

s−1∑
i=1

[
∑

b2∈F2

bs−i
2 ]


s

i


 xi

1x
s−i
2 ) + xs

2 +
∑

b2∈ F2

xs
1

=
s−1∑
i=1

[
∑

b2∈F2

bs−i
2 ]


s

i


 xi

1x
s−i
2

=
s−1∑
i=1


s

i


 xi

1x
s−i
2 .

50



In general,

∑

b∈F k
2

(b1x1 + b2x2 + · · ·+ bkxk)
s

=
∑

(b2,b3,··· ,bk)∈F k−1
2

(b2x2 + b3x3 + · · ·+ bkxk)
s

+
∑

(b2,b3,··· ,bk)∈F k−1
2

(x1 + b2x2 + b3x3 + · · ·+ bkxk)
s

=
s−1∑
j1=1

∑

(b1,b2,··· ,bk)∈F k−1
2


 s

j1


 xj1

1 (b2x2 + b3x3 + · · ·+ bkxk)
s−j1

(the term is 0 when j1 = 0, or s)

=
s−1∑
j1=1


 s

j1


 xj1

1 Fs−j1(x2, x3, · · · , xk) (by induction)

=
s−1∑
j1=1


 s

j1


 xj1

∑
j2+j3+···+jk=s−j1

ji≥1

(s− j1)!

j2!j3! · · · jk!
xj2

2 xj3
3 · · · xjk

k

= Fs(x1, x2, · · · , xk).

Lemma 5.4.6. Let α1, α2, · · · , αk ∈ F2m be linear dependent vectors over F2. Then

Fs(α1, α2, · · · , αk) = 0

for s ∈ {1, 2, · · · , 2m − 1}.

Proof. Suppose α1, α2, · · · , αk are linear dependent over F2. We say αk =
k−1∑
i=1

aiαi for
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some ai ∈ F2. Then

Fs(α1, α2, · · · , αk)

=
∑

b∈F k
2

(b1α1 + b2α2 + · · ·+ bkαk)
s

=
∑

(b1,b2,··· ,bk−1)∈F k−1
2

(b1α1 + b2α2 + · · ·+ bk−1αk−1)
s

+
∑

(b1,b2,··· ,bk−1)∈F k−1
2

[(a1 + b1)α1 + (a2 + b2)α2 + · · ·+ (ak−1 + bk−1)αk−1]
s

= 2Fs(α1, α2, · · · , αk−1)

= 0.

Lemma 5.4.7. Suppose f(λ) ∈ PRM(r,m) such that Tf ∪ {0} ⊆ F2m is a subspace

of dimension k := m− r over F2. Then

f(γs) = Fs(α1, α2, · · · , αk)

where γ is a primitive element of Fm
2 , 1 ≤ s ≤ 2m − 1 and α1, α2, · · · , αk is a basis

of Tf ∪ {0} over F2.

Proof. Suppose f = λd1 + λd2 + · · ·+ λd
2k−1 . Then Tf ∪{0} = {γd1 , γd2 , . . . , γd

2k−1 , 0}
run through all possible linear combinations of α1, α2, · · · , αk. Then by Lemma 5.4.5,

f(γs) = (γs)d1 + (γs)d2 + · · ·+ (γs)d
2k−1 + 0

=
∑

b∈F
2k

(b1α1 + b2α2 + · · ·+ bkαk)
s

= Fs(α1, α2, · · · , αk).

Corollary 5.4.8. Let γ ∈ F2m be a primitive element and 1 ≤ s ≤ 2m − 1. Then

f(γs) = 0 for all f ∈ PRM(r,m) with Tf ∪{0} is a subspace of dimension k = m− r

over F2 if and only if there are at most (k − 1) 1′s in the binary expression of s.
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Proof. (⇐=) This is clear from Lemma 5.4.4 and Lemma 5.4.7.

(=⇒) By Lemma 5.4.4, it suffices to show Fs(α1, α2, · · · , αk) = 0 for any α1, α2, · · ·αk ∈
F2m . But the result is clear from Lemma 5.4.6 and Lemma 5.4.7.

5.5 The dimension of PRM(r,m)

Theorem 5.5.1.

PRM(r,m) = span{f(λ) | Tf∪{0} is an (m−r)−subspace over F2}/ < λ2m−1−1 >

and

dim(PRM(r,m)) =


m

0


 +


m

1


 + · · ·+


m

r


 .

Proof. Set

C = span { f(λ) | Tf ∪ {0} is an (m− r)− subspace of Fm
2 over F2 }.

Clearly C ⊆ PRM(r,m) by Definition 5.1.1. We have known that the PRM(r,m) is

essentially the codewords obtained by puncturing the first coordinate of the codewords

in RM(r,m). Hence

dim(PRM(r,m)) ≤ dim(RM(r,m)) =


m

0


 +


m

1


 + · · ·+


m

r


 .

To prove the theorem, it suffices to prove

dim(C) ≥

m

0


 +


m

1


 + · · ·+


m

r


 .

Similar to the proof of Theorem 5.2.10, we find C is cyclic. Hence

C = {g(λ)h(λ) | deg(h(λ)) ≤ dim(C)− 1)},

where g(λ)|λ2m−1 − 1. Since C is cyclic, we always can find a polynomial of degree

2m − 2 in C. Hence dim(C) ≥ 2m − 1− deg(g(λ)). We need to prove

deg(g(λ)) ≤ 2m − 1− [


m

0


 +


m

1


 + · · ·+


m

r


].
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This is equivalent to prove λ2m−1 − 1 has at least

` :=


m

0


 +


m

1


 + · · ·+


m

r




zero roots which are not zero roots of g(λ). We need to check the number of γs with

g(γs) 6= 0 is at least `. Since g(λ) ∈ C it suffices to show that there are at least

` elements of the form γs with f(γs) 6= 0 for any f ∈ C such that Tf ∪ {0} is an

(m − r)-subspace of Fm
2 over F2. By Corollary 5.4.8, if the binary expression of s

contains at least m− r 1’s then we must have f(γs) 6= 0. The proof is finished since

number of such s is

 m

m− r


 +


 m

m− r + 1


 + · · ·+


m

m


 =


m

r


 +


 m

r − 1


 + · · ·+


m

0


 .

To end this section, we give some observations which are the main part of the

thesis.

Note 5.5.2. The map a → {0, a} gives a 1 − 1 correspondence between Fm
2 − {0}

and the 1−subspaces of Fm
2 .

Note 5.5.3. From Theorem 5.5.1 and Note 5.5.2, PRM(r,m) can be realized as the

span of the columns of the incidence matrix of 1-subspaces and (m − r)−subspaces

of Fm
2 .

Note 5.5.4. By Theorem 4.2.16, RM(r,m) can be realized as the span of the columns

of the incidence matrix of affine 0-subspaces(points) and affine (m− r)-subspaces of

Fm
2 .

The following definition generalize PRM(r,m) and RM(r,m).

Definition 5.5.5. The projective geometric codes of order k over Fqm is spanned by

the columns of the incidence matrix of 1-subspaces of Fqm and k-subspaces of Fqm .
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The Euclidean geometric codes of order k over Fm
q is spanned by the columns of the

incidence matrix of points in Fm
q and affine k-subspaces of Fm

q .

By the above definition, PRM(r,m) is a projective geometric code of order m− r

over F ∗
2m and RM(r,m) is an Euclidean geometric code of order m− r over Fm

2 .

5.6 Remarks

In view of Section 3.5 and Note 5.5.3, Note 5.5.4, it is interesting to ask what the

linear span of a super-imposed code can be, and how to find a super-imposed subcode

of a given linear code?
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6

Hadamard matrices and bent

functions

We introduce Hadamard matrices and bent functions in this chapter and show their

links.

6.1 Hadamard matrices

Recall: Rm := {f | f : Fm
2 −→ F2 is a function }.

Definition 6.1.1. For f ∈ Rm, we define the function F : Fm
2 −→ R by F (u) =

∑
v∈F m

2

(−1)u◦v+f(v) where u ◦ v := u1v1 + u2v2 + · · ·+ umvm and f(v) ∈ {0, 1} is viewed

as real numbers. F is called the Hadamard transform of f̂ , where f̂(v) = (−1)f(v) for

all v ∈ Fm
2 .

Hence f has value in F2, f̂ has value in {−1, 1} and F has value in R.

Note 6.1.2. In matrix forms, Hm =
[

(−1)u◦v
]
2m×2m

and f̂ =
[

(−1)f(v)

]
2m×1

=⇒ F = Hmf̂ is a matrix of size 2m × 1.

Note 6.1.3. Hm is symmetric.
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We give the first three Hm.

Example 6.1.4. H1 =


1 1

1 −1




2×2

Example 6.1.5. H2 =




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




4×4

= H1 ⊗H1.

Example 6.1.6.

H3 =




1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1




8×8

= H2 ⊗H1

= H1 ⊗H2

= H1 ⊗H1 ⊗H1.

Definition 6.1.7. An n× n matrix H is a Hadamard matrix if HtH = nI.

Lemma 6.1.8. Hm is a Hadamard matrix.
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Proof.

(H t
mHm)uv =

∑
w∈F m

2

(H t
m)uw(Hm)wv

=
∑

w∈F m
2

(Hm)wu(Hm)wv

=
∑

w∈F m
2

(−1)w◦(u+v)

=





2m, if u = v;

0, if u 6= v,

where u, v ∈ Fm
2 .

We use the Hadamard transform of f̂ to determine the distance from f to RM(1,m).

Theorem 6.1.9. d(f,RM(1,m)) =min{2m ± F (u)

2
| u ∈ Fm

2 } for all f ∈ Rm.

Proof. Suppose a is the number of (x1, x2, · · · , xm) such that f − (u1x1 +u2x2 + · · ·+
umxm) = 1 and b is the number of (x1, x2, · · · , xm) such that f − (u1x1 +u2x2 + · · ·+
umxm) = 0, where ui, xi ∈ F2 for i ≤ i ≤ m. Note a + b = 2m. Observe for any

u = (u1, u2, · · · , um) ∈ Fm
2 ,

d(f, u1x1 + u2x2 + · · ·+ umxm)

= d(f − (u1x1 + u2x2 + · · ·+ umxm), 0)

= a

=
a + 2m − b

2

=

2m − ∑
(x1,x2,··· ,xm)∈F m

2

(−1)f−(u1x1+u2x2+···+umxm)

2

=
2m − F (u)

2
,

and
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d(f, 1 + u1x1 + u2x2 + · · ·+ umxm)

= 2m − d(f, u1x1 + u2x2 + · · ·+ umxm)

=
2m + F (u)

2
.

The theorem follows from this.

Theorem 6.1.10. ρ(RM(1,m)) ≤ 2m−1−2
m
2
−1 and equality holds if and only if there

exists f ∈ Rm with |F (u)| = m
2

for all u ∈ Fm
2 .

Proof. Fix f ∈ Rm. Then

∑
u∈F m

2

F (u)2 = F tF ( in matrix form)

= (Hmf̂)t(Hmf̂)

= (f̂)tHm
tHmf̂

= 2mf̂ tf̂

= 2m
∑

u∈F m
2

(−1)2f(u)

= 22m.

Hence there exists u ∈ Fm
2 such that F (u)2 ≥ 2m. Hence |F (u)| ≥ 2

m
2 . Thus,

d(f, RM(1,m)) ≤ 2m − 2
m
2

2
by Theorem 6.1.9. Hence

ρ(RM(1, m)) = max{d(f,RM(1,m)) | f ∈ Rm} ≤ 2m−1 − 2
m
2
−1.

The remaining is clear.

Corollary 6.1.11. ρ(RM(1,m)) = 2m−1 − 2
m
2
−1 where m is even.

Proof. This is clear from Theorem 4.5.5 and Theorem 6.1.10.
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6.2 Bent functions

We introduce bent functions in this section and study their properties.

Definition 6.2.1. f ∈ Rm is a bent function if d(f, RM(1,m)) = 2m−1 − 2
m
2
−1.

From Theorem 6.1.10, we have the following two properties.

Note 6.2.2. f ∈ Rm is a bent function if and only if |F (u)| = 2
m
2 for all u ∈ Fm

2 .

Note 6.2.3. f is the farthest from the linear functions if f ∈ Rm is a bent function.

Note 6.2.4. By Corollary 6.1.11, we obtain ρ(RM(1, 2)) = 1.

We give an example as following.

Example 6.2.5. Consider the codewords of RM(1, 2) in Example 4.4.2. We obtain

0 = (0, 0, 0, 0), 1 = (1, 1, 1, 1), x1 = (0, 1, 0, 1), x2 = (0, 0, 1, 1), 1 + x1 = (1, 0, 1, 0),

1 + x2 = (1, 1, 0, 0), x1 + x2 = (0, 1, 1, 0) and 1 + x1 + x2 = (1, 0, 0, 1). Any f ∈
R2 −RM(1, 2) is a bent function in R2.

The following theorem characterizes bent functions by using Hadamard matrices.

Theorem 6.2.6. f ∈ Rm is bent if and only if the 2m × 2m matrix K with rows and

columns indexed by Fm
2 and uv-entry Kuv := (−1)f(u+v) is a Hadamard matrix.
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Proof. Observe

(KtK)uv

=
∑

w∈F m
2

Kt
uwKwv

=
∑

w∈F m
2

(−1)f(u+w) · (−1)f(w+v)

=
∑

w∈F m
2

f̂(u + w)f̂(w + v)

=
1

22m

∑
w∈F m

2

(HmF )u+w · (HmF )w+v (F = Hmf̂ and HmHm = 2mI)

=
1

22m

∑
w∈F m

2

(
∑

x∈F m
2

(Hm)u+w,xFx)(
∑

y∈F m
2

(Hm)w+v,yFy)

=
1

22m

∑
w∈F m

2

(
∑

x∈F m
2

(−1)(u+w)◦xFx)(
∑

y∈F m
2

(−1)(w+v)◦yFy)

=
1

22m

∑
x∈F m

2

∑
y∈F m

2

(
∑

w∈F m
2

(−1)w◦(x+y))(−1)u◦x+v◦yFxFy

=
2m

22m

∑
x∈F m

2

(−1)(u+v)◦x|Fx|2, (6.2.1)

where u, v ∈ Fm
2 .

(=⇒) Suppose f is a bent function. Then |F (x)|2 = 2m for all x ∈ Fm
2 . Hence by

6.2.1

(KtK)uv

=
∑

x∈F m
2

(−1)(u+v)◦x

=





2m, u = v;

0, u 6= v,

where u, v ∈ Fm
2 .
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(⇐=) By Lemma 6.1.8, we obtain KtK = 2mI. Setting u = 0 in 6.2.1, we find

(KtK)0v =
1

2m

∑
x∈F m

2

(−1)v◦x|Fx|2

=
1

2m

∑
x∈F m

2

(Hm)vxTx

=
1

2m
(HmT )v,

where T is a column vector with columns indexed by Fm
2 and entry |Fx|2 for each

x ∈ Fm
2 . Then

T = 2mH−1
m




2m

0

0
...

0




2m×1

= Hm




2m

0

0
...

0




2m×1

=




2m

2m

...

2m




2m×1

,

since the first column in Hm has all 1’s entries. Hence |Fx|2 = 2m for all x ∈ Fm
2 .

Then |Fx| = 2
m
2 for all x ∈ Fm

2 . By Note 6.2.2, f is a bent function.

Our next goal is to prove that if f ∈ Rm is a bent function, then deg(f) ≤ m
2

with

only exception m = 2.

Lemma 6.2.7. Suppose f(x1, x2, · · · , xm) ∈ Rm and g(y1, y2, · · · , yn) ∈ Rn are bent

functions. Then

k(x1, x2, · · · , xm, y1, y2, · · · , yn) := f(x1, x2, · · · , xm) + g(y1, y2, · · · , yn) ∈ Rm+n

is a bent function.
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Proof. View w ∈ Fm+n
2 as w = (w1, w2) where w1 ∈ Fm

2 and w2 ∈ F n
2 . Then

K(w) :=
∑

v=(v1,v2)∈F m+n
2

(−1)w◦v+k(v)

=
∑

v1∈F m
2 ,v2∈F n

2

(−1)w1◦v1+w2◦v2+f(v1)+g(v2)

= (
∑

v1∈F m
2

(−1)w1◦v1+f(v1))(
∑

v2∈F n
2

(−1)w2◦v2+g(v2))

= F (w1)G(w2)

= (±2
m
2 )(±2

n
2 )

= ±2
m+n

2

for all w ∈ Fm+n
2 . Hence k is a bent function.

Definition 6.2.8. For a linear code C ⊆ Fm
2 , we define

C⊥ := {(t1, t2, · · · , tm) | t1c1 + t2c2 + · · ·+ tmcm = 0 for any c = (c1, c2, · · · , cm) ∈ C}.

The following is from linear algebra.

Note 6.2.9. dim(C⊥) = m−dim(C) for C ⊆ Fm
2 .

We give an example that C ∩ C⊥ 6= ∅.

Example 6.2.10. Suppose C={(0, 0), (1, 1)}⊆ F 2
2 . Then C⊥={(0, 0),(1, 1)}⊆ F 2

2 .

Theorem 6.2.11. Suppose C ⊆ Fm
2 is a subspace. Then

∑
u∈C

F (u) = |C|
∑

v∈C⊥

(−1)f(v).

Proof. It is clear for the case C = {0}. Suppose C 6= 0 and fix v 6∈ C⊥. Define an onto

function tv : C −→ F2 by tv(u) = u◦v. Then tv is linear and dim(ker(tv)) = dim(C)−
1. (In fact, C/ker(tv) ∼= F2.) Thus |t−1

v (0)| = |t−1
v (1)| = 2|C|−1. So,

∑
u∈C

(−1)u◦v = 0.
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Now

∑
u∈C

F (u) =
∑
u∈C

∑
v∈F m

2

(−1)u◦v+f(v)

=
∑

v∈F m
2

∑
u∈C

(−1)u◦v+f(v)

=
∑

v∈C⊥

∑
u∈C

(−1)u◦v+f(v) +
∑

v 6∈C⊥

∑
u∈C

(−1)u◦v+f(v)

=
∑

v∈C⊥

(−1)f(v)|C|+
∑

v 6∈C⊥

(−1)f(v)(
∑
u∈C

(−1)u◦v)

= |C|
∑

v∈C⊥

(−1)f(v).

The following Lemma is a similar version of Theorem 4.3.8.

Lemma 6.2.12. Suppose f =
∑

ρ⊆[m]

fρxρ ∈ Rm for some fρ ∈ F2. Then

fσ =
∑

w∈(1,1,··· ,1)+Sσ

f(w)

for any σ ⊆ [m] with |σ| ≤ deg(f).

Proof. If deg(f) = |σ|, then we have shown in Theorem 4.3.8,

fσ =
∑

w∈(1,1,··· ,1)+Sσ

f(w).

Observe

w ∈ (1, 1, · · · , 1) + Sσ.

⇐⇒ wi = 0 for i 6∈ σ.

=⇒ xρ(w) = 0 for any |ρ| > |σ|.

Hence the statement is true for any σ with |σ| ≤ deg(f).

Theorem 6.2.13. If f ∈ Rm is a bent function, then f ∈ RM(m
2
,m), where m > 2

is even.
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Proof. Suppose f =
∑

ρ⊆[m]

fρxρ for fρ ∈ F2. Let σ ⊆ {1, 2, · · · ,m} with |σ| > m
2
.

We want to show fσ = 0 with referring to notation in Definition 4.3.1, set C =

(1, 1, · · · , 1) + Sσ. Observe C ⊆ Fm
2 is a subspace, |C| = 2|σ| and |C⊥| = 2m−|σ|. Note

F (u) = Cu2
m
2 for some Cu ∈ {−1, 1}, since f is a bent function write (−1)t(u) = Cu

or equivalently Cu = 1−2t(u), where t(u) ∈ F2. Then by Lemma 6.2.12 and Theorem

6.2.11,

fσ =
∑
u∈C

f(u)

=
∑
u∈C

1− (−1)f(u)

2

=
|C|
2
− 1

2

∑
u∈C

(−1)f(u)

=
|C|
2
− 1

2|C⊥|
∑

u∈C⊥

F (u)

=
|C|
2
− 1

2|C⊥|
∑

u∈C⊥

Cu2
m
2

= 2|σ|−1 − 2
m
2
−1 + 2|σ|−

m
2

∑

u∈C⊥

t(u)

= 0.
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7

Hexacode and Extended Binary

Golay Code

7.1 Hexacode

In this section, we fix a finite field F4 = {0, 1, x, 1 + x} where the multiplication is

modulo x2 + x + 1.

Definition 7.1.1. The map − : F4 −→ F4 is defined by

0 = 0, 1 = 1, x = x + 1, x + 1 = x

and − is called the conjugate map in F4.

The conjugate has similar properties as in C.

Note 7.1.2. a · a ∈ F2, ab = a · b, a + b = a + b and a = a for any a, b ∈ F4.

Definition 7.1.3. For any (u1, u2, · · · , un) ∈ F n
4 , (v1, v2, · · · , vn) ∈ F n

4 ,

u • v := u1v1 + u2v2 + · · ·+ unvn

is called the Hermition inner product of u and v.
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Definition 7.1.4.

HC = span{(1, 0, 0, 1, x, x), (0, 1, 0, 1, x, x), (0, 0, 1, 1, 1, 1)} ⊆ F 6
4

is called the Hexacode over F4.

Note 7.1.5. The length of HC is 6 and the dimension of HC is 3 and HC⊥ = HC.

Lemma 7.1.6. The minimum distance d(HC) is 4.

Proof. Since HC⊥ = HC, we obtain

HC = {(a1, a2, a3, a4, a5, a6) | (a1, a2, a3, a4, a5, a6)




1 0 0

0 1 0

0 0 1

1 1 1

x x 1

x x 1




6×3

= 0}.

Hence

d(HC) = the minimum wt(w) where 0 6= w ∈ HC

=the least number of rows in




1 0 0

0 1 0

0 0 1

1 1 1

x x 1

x x 1




6×3

that are linear dependent

= 4.

Note 7.1.7. HC is [6, 3, 4]−linear code over F4. Hence d = n− k + 1.

67



Definition 7.1.8. An [n, k, d]−linear code with d = n− k + 1 is called a maximum

distance separable code. (MDS code.)

Note 7.1.9. Let PHC be the code obtained by puncturing a coordinate of HC.

Then PHC is [5, 3, 3]−linear code.

Note 7.1.10. An [n, k, d]− linear code over Fq is perfect if

qk

b d−1
2
c∑

i=0


n

i


 (q − 1)i = qn.

Note 7.1.11. By direct computation we have that PHC is perfect.
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Type (i) Type (i) Type (i)

(0, 1, 0, 1, x, x) (0, x, 0, x, 1, x) (0, x, 0, x, x, 1)

(0, 1, x, x, 0, 1) (0, x, 1, x, 0, x) (0, x, x, 1, 0, x)

(x, x, 0, 1, 0, 1) (1, x, 0, x, 0, x) (x, 1, 0, x, 0, x)

(0, 1, 1, 0, x, x) (0, x, x, 0, x, 1) (0, x, x, 0, 1, x)

(0, 1, x, x, 1, 0) (0, x, x, 1, x, 0) (0, x, 1, x, x, 0)

(x, x, 1, 0, 1, 0) (1, x, x, 0, x, 0) (x, 1, x, 0, x, 0)

(1, 0, 0, 1, x, x) (x, 0, 0, x, x, 1) (x, 0, 0, x, 1, x)

(1, 0, x, x, 1, 0) (x, 0, 1, x, x, 0) (x, 0, x, 1, x, 0)

(x, x, 0, 1, 1, 0) (x, 1, 0, x, x, 0) (1, x, 0, x, x, 0)

(1, 0, 1, 0, x, x) (x, 0, x, 0, 1, x) (x, 0, x, 0, x, 1)

(1, 0, x, x, 0, 1) (x, 0, x, 1, 0, x) (x, 0, 1, x, 0, x)

(x, x, 1, 0, 0, 1) (x, 1, x, 0, 0, x) (1, x, x, 0, 0, x)

Type (ii) Type (ii) Type (ii)

(x, x, x, x, x, x) (1, x, 1, x, 1, x) (x, 1, x, 1, x, 1)

(x, x, x, x, x, x) (1, x, x, 1, x, 1) (x, 1, 1, x, 1, x)

(x, x, x, x, x, x) (x, 1, 1, x, x, 1) (1, x, x, 1, 1, x)

(x, x, x, x, x, x) (x, 1, x, 1, 1, x) (1, x, 1, x, x, 1)

Type (iii) Type (iii) Type (iii)

(0, 0, 1, 1, 1, 1) (0, 0, x, x, x, x) (0, 0, x, x, x, x)

(1, 1, 0, 0, 1, 1) (x, x, 0, 0, x, x) (x, x, 0, 0, x, x)

(1, 1, 1, 1, 0, 0) (x, x, x, x, 0, 0) (x, x, x, x, 0, 0)

Type (iv) Type (iv) Type (iv)

(1, 1, x, x, x, x) (x, x, x, x, 1, 1) (x, x, 1, 1, x, x)

(1, 1, x, x, x, x) (x, x, 1, 1, x, x) (x, x, x, x, 1, 1)

Table 7.1 List all nonzero elements of Hexacode.
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Type Representative Number of codewords

(i) (0, 1, 0, 1, x, x) 36

(ii) (x, x, x, x, x, x) 12

(iii) (0, 0, 1, 1, 1, 1) 9

(iv) (1, 1, x, x, x, x) 6

We divide the coordinates of each codeword into three blocks I, II, III, where block

I (resp. II) (resp. III) contains coordinates 1, 2 (resp. 3, 4) (resp. 5, 6), like

( a , b, c , d, e , f )

I II III
.

The codewords in each type are preserved by (a) a nonzreo scalor multiplication;

(b) the permutation of blocks I, II, III, (c) the switch of the two coordinates in each

of two blocks. Hence the number of type (i) codewords is 36, the number of type (ii)

codewords is 12, the number of type (iii) codewords is 9 and the number of type (iv)

codewords is 6.

Example 7.1.12. If (c1, c2, c3, c4, c5, c6) ∈ HC, then

(xc1, xc2, xc3, xc4, xc5, xc6), (c3, c4, c1, c2, c5, c6), (c1, c2, c4, c3, c6, c5)

all have the same type as (c1, c2, c3, c4, c5, c6) in HC.

7.2 Extended Binary Golay Code

We use Hexacode to define the extended binary Golay code in this section.

Definition 7.2.1. For a vector u = (u1, u2, · · · , un) ∈ F n
2 , the parity of u is

n∑
i=1

ui ∈
F2.
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Definition 7.2.2. Let F 4×6
2 denoted the set of 4× 6 matrices over F2.

EBGC := {A ∈ F 4×6
2 | (0, 1, x, x)A ∈ HC and each column of A

has the same parity as the first row}

is called the Extended Binary Golay code. Parity(A), the parity of the first row of A,

is called the parity of A over F2.

Example 7.2.3. Suppose the matrix

A =




1 0 1 0 0 1

0 1 0 1 0 1

0 0 0 0 0 0

0 0 0 0 1 1




4×6

over F 4×6
2 . Then (0, 1, x, x)A = (0, 1, 0, 1, x, x) is the type (i) of HC and parity(A)=1

over F2. Hence A ∈ EBGC.

The following property will be used later.

Note 7.2.4. Suppose

(0, 1, x, x)




a

b

c

d




= y

for some y ∈ {0, 1, x, x}. The number of solution of such (a, b, c, d) ∈ F 4
2 has 2 with

odd parity and 2 with even parity over F2.

Example 7.2.5. Suppose y = 0 in Note 7.2.4. Then



a

b

c

d




=




0

0

0

0




,




1

1

1

1



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has even parity and 


a

b

c

d




=




1

0

0

0




,




0

1

1

1




has odd parity over F2.

Theorem 7.2.6. The EBGC is [24, 12, 8]−linear code over F2.

Proof. Clearly the codewords of EBGC has length 24 = 4× 6. We prove

dim(EBGC) = 12

by showing |EBGC| = 212. Note |HC| = 64 = 26. First, we count those A ∈ EBGC

with even parity over F2. For each u ∈ HC, to determine A with (0, 1, x, x)A = u

and Parity(A)=0, there are two choices for each of the first 5 columns of A by Note

7.2.4, however there is only one choice for the last column to have parity 0 in the

first row. Hence there are 211 such A ∈ EBGC with parity(A) = 0. Similarly for the

number of A ∈ EBGC with Parity(A) = 1. Hence

|EBGC| = 212.

Claim: d(EBGC) = 8. Fix A ∈ EBGC with A 6= 0.

Case 1: Parity(A) = 0 and (0, 1, x, x)A 6= 0: Since HC is [6, 3, 4]−linear code,

by d(HC) = wt((0, 1, x, x)A) ≥ 4. And since the column of A has even weight,

wt(A) ≥ 4× 2 = 8.

Case 2: Parity(A) = 0 and (0, 1, x, x)A = 0: Observe since the columns of A

has even weight and (0, 1, x, x)A = 0, there is at least one column of A is




1

1

1

1




.

But the first row of A has even parity. Then A has at least 2 such columns.

Hence wt(A) ≥ 8.
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Case 3: Parity(A) = 1 and (0, 1, x, x)A 6= 0: Suppose wt(A) < 8. Since

parity(A) = 1, there are at most two kinds of weights of the columns in A,

one has weight 1 and the other has weight 3. In fact every column has weight

1, since we assume wt(A) < 8. Note that wt((0, 1, x, x)A) ≥ 4 by Note 7.1.7.

Hence the first row of A has weight 1. This implies wt((0, 1, x, x)A) = 5. But

there is no Hexacodeword of weight 5 from Table 7.1. Then wt(A) ≥ 8.

Case 4:Parity(A) = 1 and (0, 1, x, x)A = 0: Each column has weight at least 1

and the parity of the first row of A is 1 such that there is at least a column of

weight 3. Hence A has weight at least 8.

7.3 Decoding in Extended Binary Golay Code

Note 7.3.1. Suppose (0, 1, x, x)




a1

a2

a3

a4




= (0, 1, x, x)




b1

b2

b3

b4




and
4∑

i=1

ai =
4∑

i=1

bi in F2.

Then ai = bi for all i or ai = bi for all i in F2.

Note 7.3.2. With restriction to any 3 positions in the basis of HC, the 3 vectors are

still linear independent.

Note 7.3.3. We know each Hexacodeword from its three positions.

Suppose we receive a codeword A and assume at most 3 errors in A where

A ∈ EBGC.

Decoding Algorithm

(1) Compute the parity on each column of A.
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Case 1: At least 4 columns with the same parity. Then these columns have

correct parity and they might still have errors in these columns.

Case 1.1: There are 4 columns with the same parity. Go to (2).

Case 2: 3 columns with odd parity and 3 columns with even parity. Guess any

one of the parity. Go to (2).

(2) Project the columns you think are correct in A into a partition of a Hexacodeword.

Since a Hexacodeword is unique determined by its three positions, this partition will

determine the complete Hexacodeword, possible with some correction. If there is no

such Hexacodeword in Table 7.1, then we have wrong guess in Case 2, so we guess

again the parity and do the process (2) again.

(3) Use the Hexacodeword obtained in (2) to determine the correct A by using the

correct parity information.

Example 7.3.4. Receive A =




1 0 1 0 0 1

0 0 1 0 0 0

1 0 0 1 0 0

0 1 0 0 1 1




4×6

, and assume at most 3 errors

in A. We do the following.

(1) Guess those columns with odd parity are with correct parity.

(2) Observe (0, 1, x, x)




∗ 0 ∗ 0 0 ∗
∗ 0 ∗ 0 0 ∗
∗ 0 ∗ 1 0 ∗
∗ 1 ∗ 0 1 ∗




4×6

= (∗, x, ∗, x, x, ∗) is contained in type(i)

of HC in Table 7.1. Suppose the Hexacodeword is (0, x, 1, x, x, 0).

(3) Hence A =




1 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 1 0 0 1 0




4×6

, but the first row has parity 0. Hence guess

Wrongly, so we reguess again.
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(1) Guess those columns with even parity are with correct parity.

(2) Observe (0, 1, x, x)




1 ∗ 1 ∗ ∗ 1

0 ∗ 1 ∗ ∗ 0

1 ∗ 0 ∗ ∗ 0

0 ∗ 0 ∗ ∗ 1




4×6

= (x, ∗, 1, ∗, ∗, x) is contained in type(i)

of HC in Table 7.1. Then the Hexacodeword is (x, 0, 1, x, 0, x).

(3) Hence A =




1 0 1 1 0 1

0 0 1 0 0 0

1 0 0 1 0 0

0 0 0 0 0 1




4×6

is correct by checking the parity.

Note 7.3.5. Under at most 3 errors in the codeword A assumption, the decoding

algorithm will find the exact codeword A. The reason is the minimum distance of

EBGC is 8.

7.4 Remarks

The definition of extended binary Golay code is not standard. We refer the reader to

standard text books [14],[1] of coding theory for the definition.
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8

Convolutional Codes

A convolutional code is a code over rational functions. This will be clear after we see

some definitions and notations.

8.1 Definition

Definition 8.1.1.

Fq[x] := {a0 + a1x + a2x
2 + · · ·+ anx

n | ai ∈ Fq, n ∈ N ∪ {0}}

is the set of polynomials over Fq.

Definition 8.1.2.

Fq(x) := {f(x)/g(x) | f(x), g(x) ∈ Fq[x] and g(x) 6= 0}

is the set of rational functions over Fq. Note that Fq(x) is a field.

Definition 8.1.3.

Fq((x)) := {
∞∑

i=M

aix
i | ai ∈ Fq and M ∈ Z}

is the set of formal power series.
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Note 8.1.4. Fq(x) ( Fq((x)). Fq(x) 6= Fq((x)) since they have different cardinality.

Example 8.1.5.

1

x5(1− x2)
= x−5(1 + x2 + x4 + · · · )
= x−5 + x−3 + x−1 + x + x3 + · · · .

8.2 Convolutional Code

We give the definition of convolutional code now.

Definition 8.2.1. A subspace CV ⊆ Fq(x)n with dimension k over Fq(x) is called

an [n, k]− convolutional code.

Although a codeword is an element in Fq(x)n, we prefer the basis of CV is chosen

from Fq[x]n.

Definition 8.2.2. G(x) ∈ Fq[x]k×n is a polynomial generating matrix (PGM) of CV

if the rows of G(x) span CV .

Lemma 8.2.3. Let CV ⊆ Fq(x)n be a k−subspace. Then there exists a basis

G1(x), G2(x), · · · , Gk(x) ∈ Fq[x]n

of CV .

Proof. Let

(g11(x)/h11(x), g12(x)/h12(x), · · · , g1n(x)/h1n(x)),

(g21(x)/h21(x), g22(x)/h22(x), · · · , g2n(x)/h2n(x)),

...

(gk1(x)/hk1(x)gk2(x)/hk2(x), · · · , gkn(x)/hkn(x))
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∈ Fq(x)n be a basis of CV , where gij(x),hij(x) ∈ Fq[x]. Let h(x) be the least common

multiple of hij(x). Set Gij = h(x) · gij(x)

hij(x)
. Then

Gi(x) := (Gi1(x), Gi2(x), · · · , Gin(x)) ∈ Fq[x]n,

and G1(x), G2(x), · · · , Gk(x) ∈ Fq[x]n is a basis of CV .

Observe CV = {S(x)G(x) | S(x) ∈ Fq(x)k}. So we want G(x) as ”simple” as

possible. The following identification is used when we want to apply CV to real

world application.

Note 8.2.4. Fq[x]k ∼= F k
q [x].

Example 8.2.5. Suppose k = 3. Then

(1 + x, 1 + x2, x + x3) = (1, 1, 0) + (1, 0, 1)x + (0, 1, 0)x2 + (0, 0, 1)x3.

8.3 Elementary rows and columns operations on

G(x)

Three elementary rows and columns operations (ERCO’s) are as following:

(a) Interchange two columns(rows).

=⇒ det(


0 1

1 0


) = −1.

(b) Add a polynomial f(x) ∈ Fq[x] multiple a column(row) to another column(row).

=⇒ det(


 1 0

f(x) 1


) = 1.

(c) Multiple a column(row) by a nonzero element α ∈ Fq

=⇒ det(


α 0

0 1


) = α.
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The matrices corresponding to ERCO’s are called elementary matrices. In the

2 × 2 cases, there are matrices of the forms


0 1

1 0


 ,


 1 0

f(x) 1


 ,


α 0

0 1


, where

f(x) ∈ Fq[x] and α ∈ Fq. The determinant of a elementary matrix is an element in

Fq.

Definition 8.3.1. An t× t matrix U(x) over Fq[x] is unimodular if 0 6= det(U(x)) ∈
Fq.

We will show that each unimodular matrix is the product of elementary matrices.

Theorem 8.3.2. (Smith normal form theorem(SNF)) Let G(x) be an k × n matrix

over Fq[x]. Then G(x) can be reduced to



d1(x)

d2(x) 0
. . .

ds(x)

0

0
. . .

0




k×n

by ERCO’s where d1(x)|d2(x)| · · · |ds(x) are monic polynomial over Fq. The sequence

d1(x), d2(x), · · · , ds(x) is called the sequence of invariant factors of G(x).

Proof. Suppose G(x) =




G11(x) G12(x) · · · G1n(x)

G21(x) G22(x) · · · G2n(x)
...

Gk1(x) Gk2(x) · · · Gkn(x)




k×n

. We do the following.

(a) Using rows interchanging and column interchanging, we assume G11(x) has

minimal degree.

(b) Reduce the degree of G1i(x) for i ≥ 2 by adding a polynomial multiple of the

first column to the ith column. Go to (a) until G1i(x) = 0 for i ≥ 2.
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(c) Similar to (a)∼(b), we do until Gj1(x) = 0 for j ≥ 2.

(d) After (c), it could be G1i(x) 6= 0. So do (a),(b),(c) again and again, until

G1i(x) = 0 and Gj1(x) = 0 for all i, j ≥ 2.

(e) If G11(x) - Gij(x) for some i, j, then we add the first column to jth column

and then add a polynomial multiple of the first row to decrease the degree of

Gij(x) below the degree of G11(x). Repeat doing (a)∼(e) until G11(x)|Gij(x)

and G11(x) is monic.

(f) Do (a)∼(e) in the submatrix G′(x) where

G(x) =




G11(x) 0 · · · 0

0
... G′(x)

0




k×n

Example 8.3.3. Suppose G(x) =


 x x2

x3 x4




2×2

. Then d1(x) = x and d2(x) = 0.

Corollary 8.3.4. An unimodular matrix is a product of elementary matrices.

Proof. Let U(x) be an t× t unimodular matrix. Then

U(x) = E(x)




d1(x) 0

d2(x)
. . .

0 dt(x)




t×t

F (x),

where E(x), F (x) are product of elementary matrices. Hence

det(U(x)) = det(E(x))det(F (x))d1(x)d2(x) · · · dt(x) ∈ Fq − {0}.
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Thus

di = di(x) ∈ Fq − {0} for i = 1, 2, · · · , t

and

U(x) = E(x)




d1 0

1

1
. . .

0 1




t×t




1 0

d2

1
. . .

0 1




t×t

· · ·




1 0

1
. . .

1

0 dt




t×t

F (x).

We need more notations of matrices.

Definition 8.3.5. Let A be an n × m matrix, α ⊆ [n] and β ⊆ [m]. We define

A[α | β] to be the submatrix of A with size |α| × |β|, the rows in α and columns in β

of A being chosen.

Example 8.3.6. Suppose A =




1 2 3 4 5

2 6 1 7 8

3 1 0 1 2




3×5

. Then

A[{1, 3} | {2, 4, 5}] =


2 4 5

1 1 2




2×3

.

Definition 8.3.7. Similarly to the Definition 8.3.5, we define (a)−(e) as the following.

(a) A[− | β] := A[ [n] | β].

(b) A[α | −] := A[α | [m] ].

(c) A(α | β) := A[α | β].

(d) A(α | β] := A[α | β].

(e) A[α | β) := A[α | β].
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We quote a theorem without proof.

Theorem 8.3.8. (Cauchy Binet Theorem) Let A,B be the matrices of size n × m

and m× t, respectively. Then

det(AB[α | β]) =
∑

w⊆[m],|w|=|α|
(detA[α | w])(detB[w | β])

when α ⊆ [n], β ⊆ [t] with |α| = |β|. ¤

Note 8.3.9. We give two special cases of Cauchy Binet Theorem.

(a) Suppose α = {i} and β = {j}. Then (AB)ij =
m∑

k=1

AikBkj.

(b) Suppose α = [n], β = [t] and n = t = m. Then det(AB) = det(A)det(B).

Definition 8.3.10. detA[α | β] is called an |α|-minor when |α| = |β|.

Example 8.3.11. Suppose A =


1 2

3 4




2×2

. Then 1, 2, 3, 4 are 1-minors and −2 is

2-minor.

Corollary 8.3.12. Let G(x) be an k×n matrix over Fq[x]. Then the invariant factors

d1(x), d2(x), · · · , ds(x) of G(x) are unique. In fact,

di(x) =
ki(x)

ki−1(x)

for i = 1, 2, · · · , s where k0(x) := 1 and ki(x) := the greatest common divisor of

i-minors of G(x).

Proof. Suppose G(x) = E(x)D(x)F (x) where

D(x) =




d1(x)

d2(x) 0
. . .

ds(x)

0

0
. . .

0




k×n
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in smith normal form and E(x), F (x) are unimodular. By Theorem 8.3.8, kD
i (x) |

ki(x) where kD
i (x) is the greatest common divisor of i-minors of D(x). Note D(x) =

E(x)−1G(x)F (x)−1 and E(x)−1, F (x)−1 are polynomial matrices. Hence again,

ki(x) | kD
i (x).

Thus for 1 ≤ i ≤ s,

ki(x) = kD
i (x) = d1(x)d2(x) · · · di(x).

Then for 1 ≤ i ≤ s,

di(x) =
ki(x)

ki−1(x)
.

We see an example as following.

Example 8.3.13.

Suppose A(x) =




x x2 x3

x 1 x2

x2 x x3




3×3

.

k1(x) = gcd {x, x2, x3, x, 1, x2, x2, x, x3} = 1,

k2(x) = gcd {x− x3, x3 − x4, x4 − x3, x2 − x4, x4 − x5, x5 − x4, 0} = x− 1,

k3(x) = x4 − x6 − x5 − x5 − x6 − x4 = 0.

Then d1(x) =
1

1
= 1, d2(x) =

x− 1

1
= x − 1, d3(x) =

0

x− 1
= 0. Hence, 1, x − 1 are

invariant factors.

In the following, we introduce some PGM of a CV code which has good properties.

Definition 8.3.14. Let G(x) be a k × n PGM of some CV . Then the maximum

degree of k-minors of G(x) is called internal degree of G(x).

Example 8.3.15. Suppose G(x) = (1 + x2, 1 + x + x2). Then

int deg(G(x)) = max{deg(1 + x2), deg(1 + x + x2)} = 2.
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Example 8.3.16. Suppose G(x) =


1 0 1 + x

0 1 x




2×3

. Then

int deg(G(x)) = max{deg(1), deg(x), deg(−x− 1)} = 1.

Definition 8.3.17. A PGM G(x) is basic in CV if G(x) has the smallest internal

degree among all PGM of CV .

Before giving the characterization of basic PGM , we need some background from

linear algebra.

Definition 8.3.18. Let A be an n × n matrix. Then adj(A) is an n × n matrix

defined by (adj(A))ij := (−1)i+jA({j} | {i}).

Example 8.3.19. Suppose A =


1 3

2 4




2×2

. Then adj(A) =


 4 −3

−2 1




2×2

.

Note 8.3.20. (Cramer’s Rule) A · adj(A) = adj(A) · A = det(A) · I.

Example 8.3.21.


1 3

2 4





 4 −3

−2 1


 =


 4 −3

−2 1





1 3

2 4




=


−2 0

0 −2


 = det(


1 3

2 4


) · I2.

Theorem 8.3.22. Suppose G(x) is an k × n PGM of CV ⊆ Fq(x)n. Then the

following are equivalent.

(a) G(x) is basis.

(b) Invariant factor of G(x) are all 1’s.

(c) gcd of k-minors of G(x) is 1.

(d) rank(G(α)) = k for any α in the algebraic closure Fq.
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(e) G(x) has right inverse over Fq[x].

(f) (predicable rule)y(x) = z(x)G(x), where y(x) ∈ Fq[x]k×n and z(x) ∈ Fq(x)k×k

=⇒ z(x) ∈ Fq[x]k×k.

(g) G(x) can be extended to an n× n unimodular matrix by adding more rows.

Proof. (a) =⇒ (b) In SNF Theorem,

G(x)

= E(x)D(x)F (x)

= E(x)




d1(x) 0

d2(x)

d3(x) 0
. . .

0 dk(x)




k×n


F1(x)

F2(x)




= E(x)




d1(x) 0

d2(x)
. . .

0 dk(x)




k×k

F1(x),

where F (x) =


F1(x)

F2(x)


 and F1(x), F2(x) are matrices over Fq[x] of size k× n,

(n− k)× n respectively. Then

F1(x) =




d1(x)−1 0

d1(x)−1

. . .

0 dk(x)−1




k×k

E(x)−1G(x)

is a PGM of CV with internal degree

int deg(G(x))− deg (d1(x)d2(x) · · · dk(x)).
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Since G(x) is basic, d1(x) = d2(x) = · · · = dk(x) = 1.

(b) =⇒ (c) Let ki(x) be the gcd of i-minors of G(x) and recall from Corollary

8.3.12, di(x) =
ki(x)

ki−1(x)
. Since di(x) = 1 for all i, ki(x) = 1 for all i. In particular

kk(x) = 1.

(c) =⇒ (e) Let m1(x),m2(x), · · · , mt(x) be the k-minors of G(x), where t =
n

k


 . By (c) we can pick ai(x) ∈ Fq[x] such that

t∑
i=1

ai(x)mi(x) = 1.

By using Cramer’s Rule to a k × k invertible submatrix of G(x), for each i,

there exists Hi(x) ∈ Fq[x]n×k (filled with 0 for those rows outside the k rows in

considering) such that

G(x)Hi(x) = mi(x)Ik.

Set H(x) =
t∑

i=1

ai(x)Hi(x). Then

G(x)H(x) =
t∑

i=1

ai(x)G(x)Hi(x) = (
t∑

i=1

ai(x)mi(x))Ik = Ik.

(e) =⇒ (f) Suppose G(x)H(x) = Ik and y(x) = z(x)G(x). Then

z(x) = z(x) · Ik = z(x)G(x)H(x) = y(x)H(x) ∈ Fq[x]k×k.

(f) =⇒ (a) Suppose G′(x) is another PGM of CV . Then G′(x) = z(x)G(x) for

some z(x) ∈ Fq(x)k×k. Then z(x) ∈ Fq[x]k×k by (f). Hence by Cauchy Binet

Theorem, int deg(G′(x)) ≥ int deg(G(x)).

(c) =⇒ (d) Pick α ∈ Fq. Let P (x) ∈ Fq[x] be the minimal polynomial of α.

Then by assumption (c),

P (x) - det(G(x)[− | β])
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for some β ⊆ [n] with |β| = k. Hence

det(G(α)[− | β]) 6= 0.

Then rank(G(α)) ≥ k. Thus rank(G(α)) = k.

(d) =⇒ (c) Suppose gcd of k-minors is P (x) 6= 1. Then

G(x) ERCO′s−−−−−−→




d1(x) 0

d2(x)
. . . 0

0 dk(x)




where dk(x) 6= 1. Pick α ∈ Fq such that dk(α) = 0. Then

rank(G(α))=rank




d1(α) 0

d2(α)
. . . 0

0 dk(α)



≤ k − 1. We get a con-

tradiction.

(b) =⇒ (g)

G(x) = E(x)D(x)F (x)

= E(x)(Ik 0)


F1(x)

F2(x)




= E(x)F1(x),

where

F (x) =


F1(x)

F2(x)




and F1(x),F2(x) are matrices over Fq[x] of size k × n,(n − k) × n respectively.
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Set G′(x) =


G(x)

F2(x)


 . Observe

G′(x) =


E(x)F1(x)

F2(x)




=


E(x) 0

0 In−k


 F (x)

is unimodular.

(g) =⇒ (b) Suppose G′(x) =


G(x)

∗


 is unimodular. Then G(x) = Ik(Ik 0)G′(x).

Hence invariant factors of G(x) are all 1′s.

We will introduce another PGM of a CV code with good property.

Definition 8.3.23.

(a) The degree of a row is the maximal degree among all entries.

(b) The external degree deg(G(x)) of G(x) ∈ Fq[x]k×n is the sum of degrees of the

rows of G(x).

(c) G(x) is reduced if deg(E(x)G(x)) ≥ deg(G(x)) for any unimodular k×k matrix

E(x).

Note 8.3.24. G(x) is reduced if the external degree of G(x) can not be reduced by

elementary rows operations (ERO’s).

Example 8.3.25. Suppose G(x) = (1 + x2 1 + x + x2)1×2. Observe the internal

degree and external degree are equal to 2.
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Example 8.3.26. Suppose G(x) =


1 0 x + 1

0 1 x




2×3

. Observe the internal degree

is equal to 1 and the external degree is equal to 2. Note G(x) is not reduced, since

G(x) =


1 0 x + 1

0 1 x




2×3

ERO′s−−−−→


1 −1 1

0 1 x




2×3

,

and deg(


1 −1 1

0 1 x




2×3

) = 1 < 2.

Definition 8.3.27. Let G(x) ∈ Fq[x]k×n be a PGM of CV . Let e1, e2, · · · , ek be the

degrees of rows 1, 2, · · · , k respectively in G(x). By interchanging rows of G(x), we

assume e1 ≤ e2 ≤ · · · ≤ ek. The leading coefficients matrix G ∈ F k×n
q is a matrix

with ij-entry

Gij := coefficients of xei in Gij(x),

where Gij(x) is the ij−entry of G(x).

Example 8.3.28.

G(x) =


1 + x 2 1 + x2

x 2 + x3 x2 + x3




2×3

=⇒ e1 = 2 and e2 = 3, G =


0 0 1

0 1 1




2×3

.

Note 8.3.29.

(a) The coefficient of xe1+e2+···+ek of det(G(x)[− | β]) is det(G[− | β]).

(b) Internal degree of G(x) ≤ External degree of G(x).

Theorem 8.3.30. Let G(x) be a k × n PGM of CV ⊆ Fq(x)n. Then the following

are equivalent.

(a) G(x) is reduced.
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(b) rank(G) = k.

(c)ext deg(G(x)) =int deg(G(x)).

(d) For every nonzero z(x) ∈ Fq[x]k, deg(z(x)G(x)) =max ej+deg(zj(x)) where

the maximum is taking for all 1 ≤ j ≤ k such that zj(x) 6= 0, the j-th entry of

z(x).

Proof. (a) =⇒ (b) Suppose rank(G) < k. Then there exists a nonzero vector

(α1, α2, · · · , αk) ∈ F k
q such that (α1, α2, · · · , αk)G = 0. Suppose t is the largest

integer such that αt 6= 0, and suppose G(x) =




G1(x)

G2(x)
...

Gk(x)




k×n

, where deg(Gi(x)) =

ei and e1 ≤ e2 ≤ · · · ≤ ek. Set

G′
t(x) := α1G1(x)xet−e1 + α2G2(x)xet−e2 + · · ·+ αtGt(x) ∈ Fq[x]n.

Note that deg(G′
t(x)) <deg(Gt(x)). Hence

ext deg




G1(x)
...

Gt−1(x)

G′
t(x)

Gt+1(x)
...

Gk(x)




< ext deg(G(x)),

a contradiction to G(x) being reduced.

(b) =⇒ (c) Choose α ⊆ [n] with |α| = k such that

det(G[− | α]) 6= 0,
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the coefficient of xe1+e2+···+ek in det(G(x)[− | α]). Hence

int deg(G(x)) ≥ ext deg(G(x)).

Thus, int deg(G(x)) =ext deg(G(x)).

(c) =⇒ (a) Let E(x) be a k × k unimodular matrix.

ext deg(E(x)G(x)) ≥ int deg(E(x)G(x))

= int deg(G(x))

= ext deg(G(x)).

(b) ⇐⇒ (d)

deg(z(x)G(x)) = deg(z1(x)G1(x) + z2(x)G2(x) + · · ·+ zk(x)Gk(x))

≤ max deg(zj(x)Gj(x)) (8.3.1)

= deg(zt(x)Gt(x)) for some t ∈ [k].

Set d :=deg(zt(x)Gt(x)) and αi is the coefficient of xd−ei in zi(x). Note that

αt 6= 0 is the leading coefficient of zt(x), and (α1,α2,· · · ,αk)G is the coefficient

row of xd in z(x)G(x). Hence

(b) holds

⇐⇒ (α1, α2, · · · , αk)G 6= 0 for any (α1, α2, · · · , αk) 6= 0

⇐⇒ deg(z(x)G(x)) = d

⇐⇒ Equality holds in (8.3.1).

Definition 8.3.31. A PGM G(x) of CV is minimal if it has minimal external degree

among all PGM of CV .

We now introduce the third good PGM .
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Theorem 8.3.32. APGM G(x) is minimal in CV if and only if G(x) is reduced and

basic.

Proof. (⇐=) Let G0(x) be a PGM of CV . Then

ext deg(G0(x)) ≥ int deg(G0(x))

≥ int deg(G(x)) (since G(x) is basic)

= ext deg(G(x)). (by Theorem 8.3.30(c))

(=⇒) G(x) is clearly reduced. Suppose a basic PGM in CV has internal degree m0.

Choose a basic PGM G0(x) with the least external degree among all PGM with

internal degree m0.

Claim: G0(x) is reduced in CV .

Let E(x) be a k × k unimodular matrix. Since

int deg(E(x)G0(x)) = int deg(G0(x)) = m0,

we have

ext deg(E(x)G0(x)) ≥ ext deg(G0(x)).

This shows G0(x) is reduced.

m0 = int deg(G0(x))

≤ int deg(G(x))

≤ ext deg(G(x))

≤ ext deg(G0(x)) (since G(x) is minimal)

= int deg(G0(x)) (since G0(x) is reduced)

= m0.

Then int deg(G(x)) = m0. So G(x) is basic.
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Example 8.3.33. Suppose G(x)=


1 1 1 1

0 1 + x x 1




2×4

. Then with CV = row space

of G(x) over F2(x), we have e1 = 0 and e2 = 1, ext deg(G(x))=e1+e2=1,and

det(G(x)[−|α])=1 + x, x, 1, −1, −x, 1 − x for any α with |α| = 2. Hence int

deg((G(x)) = 1 is the gcd of 2-minors of G(x). Hence G(x) is basic by Theorem

8.3.22, and is reduced by Theorem 8.3.30. Then G(x) is minimal by Theorem 8.3.32.

Definition 8.3.34. A degree of a CV is the smallest possible internal degree of its

PGM ’s.

Corollary 8.3.35. A degree of CV is the smallest external degree of its PGM . ¤

8.4 Forney Sequence and Free Distance

Theorem 8.4.1. The sequence of row degrees in increasing order are the same for

all minimal PGM ′s of CV .

Proof. Let G(x),G′(x) be minimal PGM ′s with degree sequence {ei},{fi} respectively

for i =1,2,· · · ,k in increasing order.

Claim: ei ≤ fi for all i = 1, 2, · · · , k.

To the contrary, let t be the smallest integer such that ft<et. Note that

G′(x) = z(x)G(x)

for some z(x)∈Fq(x)k×k. In fact, z(x)∈Fq[x]k×k by Theorem 8.3.22 (f) since G(x) is

basic and G′(x) ∈ Fq[x]k×n. Suppose z(x)=(zij(x))k×k. Since G(x) is reduced,

fj = max ei + deg(zji(x))

for 1 ≤ j ≤ k where the maximum is taking over all i with zji(x) 6= 0 by Theorem

8.3.30 (d). Then

zij(x) = 0
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if i ≥ t and j ≤ t (if zji(x) 6= 0, then fj ≥ ei ≥ et > ft is a contradiction). Then the

first t rows of G′(x) are spanned by the first t − 1 rows. This is a contradiction to

G′(x) being a PGM . Similarly, fi ≤ ei for all i. Then fi = ei for all i.

Definition 8.4.2. The sequence of row degrees of a minimal PGM ′s of CV in in-

creasing order is called the Forney sequence of CV and ek is called the memory of

CV .

Definition 8.4.3. Fix L ∈ N ∪ {0}.

(CV )L := {f(x) ∈ CV ∩ Fq[x]n | deg(f(x)) ≤ L}.

Note that (CV )L is a linear code over Fq with codewords of length (L + 1)n.

Definition 8.4.4. Let δL be the dimension of (CV )L.

Theorem 8.4.5. Let CV be a convolutional code with Forney sequence e1≤e2≤· · ·≤ek.

Then

(a)δL =
k∑

i=1

max{L + 1− ei, 0}.

(b)
∞∑

L=0

δLxL =
xe1 + xe2 + · · ·+ xek

(1− x)2
.

Proof.

(a) Observe by Theorem 8.3.30 (d),

(CV )L = (CV )L ∩ Fq[x]n

= {z(x)G(x) ∈ Fq[x]n | z(x) ∈ Fq[x]k with deg(z(x)G(x)) ≤ L}
= {z(x)G(x) ∈ Fq[x]n | z(x) ∈ Fq[x]k with

max
1≤i≤k ei + deg(zi(x)) ≤ L}

where G(x) is a minimal PGM with Forney sequence e1, e2, · · · , ek. Hence

dim((CV )L) =
k∑

i=1

max{L + 1− ei, 0}.
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(b)
xe1 + xe2 + · · ·+ xek

(1− x)2

= (xe1 + xe2 + · · ·+ xek)(1 + x + x2 + · · · )(1 + x + x2 + · · · )

=
∞∑

L=0

(
k∑

i=1

max{L + 1− ei, 0})xL

=
∞∑

L=0

δLxL.

Definition 8.4.6. For f(x) ∈ CV ∩ Fq[x]n, wt(f(x)) is the sum of the number of

nonzero coefficients in each position.

Example 8.4.7. wt(2 + x, x4 + x5 + x6) = 2 + 3 = 5.

We now give the free distance of a CV code.

Definition 8.4.8. dfree(CV ) := min wt(f) for all f(x) ∈ CV ∩ Fq[x]n.

Lemma 8.4.9.

dfree(CV ) ≤ min
L≥0

max
C {d(C) | C is a [(L + 1)n, δL]− linear code over Fq.}

Proof. Observe dfree(CV ) = min d((CV )L), taking for all L ≥ 0, and (CV )L is a

[(L + 1)n, δL]−linear code. Hence, we have proved the lemma.

Example 8.4.10. Suppose G(x) =


1 1 1 1

0 1 + x x 1




2×4

and CV is the row space

of G(x) over F2(x). Note that G(x) is minimal. Hence e1 = 0, e2 = 1 and

∞∑
L=0

δLxL = (1 + x)(1 + x + x2 + · · · )(1 + x + x2 + · · · )

=
∞∑

L=0

((L + 1) + L)xL

=
∞∑

L=0

(2L + 1)xL.

Thus δL = 2L + 1. Since δ0 = 1, (CV )0 = {(0, 0, 0, 0), (1, 1, 1, 1)} is a [4, 1]−code over

F2 with d((CV )0) = 4. Thus, dfree(CV ) ≤ 4 by Lemma 8.4.9
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8.5 Wyner-Ash Convolutional Code

We consider a special CV in this section.

Definition 8.5.1.

G(x) =




1 0 1 + x

1 1 + x2

1 1 + x + x2

. . .
...

0 1 1 + x + x2 + · · ·+ xm




(2m−1)×2m

(8.5.1)

∈ (F2[x])(2m−1)×2m

where the last column contains the polynomials of degrees at most m and at least

1 with the constant term 1. Let WACVm denote the row space of G(x) over F2(x).

Then WACVm is called the mth Wyner-Ash convolutional code.

Lemma 8.5.2. G(x) in (8.5.1) is basic.

Proof. This is clear from Theorem 8.3.22 since the determinant of the first 2m − 1

columns is a (2m − 1)-minors with value 1.

Lemma 8.5.3. deg(WACVm) = m.

Proof. This is because of int deg(G(x))=m and G(x) is basic.

It is clear that G(x) is not minimal. The following example gives a minimal PGM

of WACV2
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Example 8.5.4. For m = 2. Suppose

G(x) =




1 0 0 1 + x

0 1 0 1 + x2

0 0 1 1 + x + x2




3×4

ERO′s−−−−→




1 0 0 1 + x

−x 1 0 1 + x

−x 0 1 1




3×4

ERO′s−−−−→




1 0 0 1 + x

0 1 1 x

−x 0 1 1




3×4

ERO′s−−−−→




1 1 1 1

0 1 1 x

x 0 1 1




3×4

.

Since

ext deg(




1 1 1 1

0 1 1 x

x 0 1 1


) = 0+1+1 = 2 = int deg(G(x)) = int deg(




1 1 1 1

0 1 1 x

x 0 1 1


),




1 1 1 1

0 1 1 x

x 0 1 1


 is reduced by Theorem 8.3.30.




1 1 1 1

0 1 1 x

x 0 1 1


 is basic by Lemma

8.5.2. Then




1 1 1 1

0 1 1 x

x 0 1 1


 is minimal by Theorem 8.3.32.

We determine the free distance of WACVm.

Lemma 8.5.5. dfree(WACVm) = 3.
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Proof. dfree(WACVm) ≤ 3 is clear from the first row of G(x) in (8.5.1). Suppose

dfree(WACVm) ≤ 2. Say that z(x)G(x) has weight ≤ 2, where z(x) ∈ (F2(x))2m−1.

Then z(x) ∈ (F2[x])2m−1 by Theorem 8.3.22 (f) and since G(x) is basic.

Case 1: If z(x) has only one nonzero entry. Then z(x)G(x) is a polynomial

multiple of a row of G(x). Hence wt(z(x)G(x))≥ 3, a contradiction.

Case 2: If z(x) has at least 3 nonzero entries. This is similar to Case 1.

Case 3: If z(x) has exactly 2 nonzero entries zi(x), zj(x) where i < j. Then

z(x)G(x) =




0

zi(x)

0

zj(x)

0

zi(x)gi2m(x) + zj(x)gj2m(x)




,

Note that zi(x)gi2m(x)+zj(x)gj2m(x) = 0. Since z(x)G(x) has weight at most 2.

Note that zi(x) = xa and zj(x) = xb for some nonnegative integers a, b. Hence

gi2m(x)xa + gj2m(x)xb = 0.

Evaluating the lowest degree term, we find xa + xb = 0. Hence a = b and

xa(gi2m(x) + gj2m(x)) = 0. Thus gi2m(x) = gj2m(x), a contradiction.

Lemma 8.5.6. Every [2m, 2m −m]−linear code over F2 has minimal distance ≤ 2.

Proof. Let C be a [2m, 2m−m]−linear code over F2. Let H be a m× 2m matrix over

F2 with the rows chosen from a basis of C⊥. Then

C = {(a1, a2, · · · , a2m) | H · (a1, a2, · · · , a2m)t = 0}.
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Observe

d(C) = the minimal number of linear dependent columns in H.

≤ 2,

since either there are 2 same columns or the zero vector is a column of H.

Theorem 8.5.7. The Forney sequence of WACVm is 0, 0, · · · , 0, 1, 1, · · · , 1, where

the number of 0′s is 2m − 1−m and the number of 1′s is m.

Proof. Note that e1 +e2 + · · ·+e2m−1 =deg(WACVm) = m. We have done if we know

all ei at most 1. Suppose some ei ≥ 2. Then at least 2m −m ei are 0. Recall that

δL =
2m−1∑
i=1

max{L + 1− ei, 0}. Hence

δ0 =
2m−1∑
i=1

max{1− ei, 0} ≥ 2m −m.

By Lemma 8.5.6 every [2m, δ0]− linear code over F2 has minimum distance ≤ 2. Now

by Lemma 8.4.9,

3 = dfree(WACVm) ≤ d(WACVm)0

≤ 2,

where C runs from all [2m, δ0]− linear code, a contradiction.
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