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A Study of Stamp Problem

Student: Chun-Chuan Chou Advisor: Hung-Lin Fu
Department of Applied Mathematics Department of Applied Mathematics
National Chiao Tung University National Chiao Tung University
Hsinchu, Taiwan 30050 Hsinchu, Taiwan 30050
Abstract

The so-called stamp problem is to produce a set of stamps with distinct values
such that we can obtain consecutive values by using distinct combinations of stamps
from the given set. For example, if we are allowed to use at most three stamps from
a set of stamps with value set {1,2,4}, then we have consecutive values 1,2,---,7.

By way of the notion mentioned above, we can extend the idea of stamp problem
to graph labeling in the following way : find a labeling of G, ¢ : V(G) — N, such
that for each value k € [1,3°,cya p(v)]; there exists a connected subgraph H
whose total value }° ) p(w)s= k. The labeling obtained above is called an
IC-coloring of G and the maximum valug of ‘an.I[C-coloring of G is the IC-index of
G.

In this thesis, we mainly study the dC-coloring of certain graphs and improve
their known upper bounds and/or leweryboumds, respectively. Moreover, we also
consider the case when o[V (G)]*=[1,| V(G) || and study whether the graph G has
an [C-coloring, if so, G is said to be sum=saturable.
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1 Introduction

Consider the following simple mathematical puzzle from Bolt’s book [2] : A country wishes
to issue a block of four stamps, each with the shape of an equilateral triangle of unit side
length. (illustrated in Figure 1) How should the values a,b, ¢ and d be assigned so that
one could get a connected group of stamps of total value k for each £ = 1,2,.--,10 7

This is the well-known Stamp Problem.

/b d

Figure 1;+Stamp problem.

It is easily verified that the seti{a, b, ¢, d} thust equal {1,2,3,4}. And, it is equivalent
to the problem of assigning positive integeriabels to the vertices of K(1,3) in such a way
that for each integer k = 1,2,---,10;.there is a_connected subgraph whose labels sum
to k. Moreover, we can think about this question for various classes of graphs in such
a way to assign integer labels to the vertices. For example, the complete graph K,,, the
cycle C,,, the path P,, ---, and so on, and each leads to a graph labeling problem of the

following type (Fink [3]).

Given a connected graph G having p vertices, is it possible to assign labels
1,2,---,p to the vertices in such a way that for each k =1,2,--- p(p+1)/2,

Y

G contains a connected subgraph whose labels sum to k 7

We find out that not every graph could label vertices in such a way. A labeling of a
graph G of order p is a bijection A : V(G) — [1,p], the integer A(v) is called the A-label
of v, and for each subgraph H of G, the sum > i ;) A(v) will be denoted by A(H) and

called the A-value of H. We will use the notation A, to represent Z§:1 j. If Mis a labeling



of a connected graph G of order p, and if, for each k£ € [1,A,], G has a connected subgraph
H of A-value k, then we say A is a saturating labeling of G, or G has a A — labeling. Any

graph for which a saturating labeling exists will be called a sum-saturable graph.

However, let’s consider another coloring type to the vertices of a graph G. Given a
function f : V(G) — N is called a coloring of G. Let H be a subgraph of G. We define
fs(H) = > ,cvm f(v). In particular, we denote f5(G) by S(f) if H = G. A function
f : V(G) — N is called an IC-coloring of G if for any integer k € [1,S5(f)], there is
a connected subgraph H of G such that fs(H) = k. Note that any connected graph
admits IC-coloring. For example, the function f : V(G) — N defined by f(v) =1 for all
v € V(G) is an IC-coloring with the sum S(f) = n. Here, for any integer k € [1,n], a
connected subgraph H of G with exactly k vertices will satisfy the condition f(H) = k.
The IC-index of a graph G, denoted by M (G), is defined to be

M(G) = max{S(f) |1f-is anilC-toloring of G'}.

Any IC-coloring f : V(G) — N for which“S(f).= M{G) will be called a maximum IC-
coloring of G. A maximum IC-coloring of a graph i§not necessarily unique, as illustrated

in Figure 2.

Figure 2: Two distinct maximum IC-colorings of C).

However, in any IC-coloring of a graph (G, one has to assign 1 to the vertices which is
not cut-vertices; otherwise, the number S(f) — 1 can not be obtained from any connected
subgraph of G. The problem of finding IC-coloring of finite graphs is related to the
postage stamp problem in the number theory, which has been extensively studied in the

literature [1, 4, 5, 6, 7]



1.1 Preliminaries

In this section, we first introduce the terminologies and definitions of graphs. For details,
the readers may refer to the book “Introduction to Graph Theory” by D. B. West [10].

A graph G is a triple consisting of a vertex set V(G), an edge set E(G), and a relation
that associates with each edge two vertices called its endpoints. A loop is an edge whose
endpoints are equal. Multiedges are edges having the same pair of endpoints. A simple
graph is a graph without loops or multiedges. In this thesis, all the graphs we consider
are simple. The cardinality of the vertex set V(G), |V(G)], is called the order of G, and
the cardinality of the edge set F(G), |E(G)], is called the size of G.

If e = (u,v) (uv in short) is an edge of G, then e is said to be incident to u and v.
We also say that u and v are adjacent to each other. For every v € V(G), N(v) denotes
the neighborhood of v, that is, all vertices of N(v) are adjacent to v. The degree of v,
deg(v) = |N(v)], is the number of neighbors of v."A cut-vertex of a graph G is a vertex
whose deletion will disconnect G.

An induced subgraph of a grapl (& is a subgraph obtained by deleting a set of vertices.
A spanning subgraph of G is a subgtaph H with V(H) = V(G). A matching of size k in
G is a subgraph of k pairwise vertex disjoint edges. If a matching covers all vertices of G,
then it is a perfect matching.

A factor of a graph G is a spanning subgraph of G. A k-factor is a spanning subgraph
with each degree equal to k. Then a 1-factor and a perfect matching are almost the same
thing.

A path is a simple graph whose vertices can be ordered so that two vertices are adjacent
if and only if they are consecutive in the list. And a path of order n is denoted by P,.

A cycle is a graph with an equal number of vertices and edges whose vertices can
be placed around a circle so that two vertices are adjacent if and only if they appear
consecutively along the circle. A cycle with n vertices is denoted by C,,. A Hamiltonian
graph is a graph with a spanning cycle, also called a Hamiltonian cycle. A wheel with n
spokes is obtained by the join operation C, + K;. It is denoted by W,,.

If G has a wu,v-path, then the distance from u to v, written by d(u,v), is the least



length of a u,v-path. The diameter of G is max, vev(@)d(u, v).

A graph with no cycle is acyclic. A tree is a connected acyclic graph. A spanning tree
is a spanning subgraph that is a tree.

Trees of diameter three are called double-star. These graphs have two central vertices
plus leaves. We will use DS(m,n) to denote the double-star whose two central vertices
have degrees m and n, respectively. (defined by [9])

A complete graph is a simple graph whose vertices are pairwise adjacent; the complete
graph with n vertices is denoted by K,. A graph G is bipartite if V(G) is the union of
two disjoint independent sets called partite sets of G. A graph G is m-partite if V(G) can
be expressed as the union of m independent sets. A complete bipartite graph is a bipartite
graph such that two vertices are adjacent if and only if they are in different partite
sets. When the sets have the sizes m and n, the complete bipartite graph is denoted by
K(m,n). Similarly, the complete n-pattite grapliis denoted by K(mq,ms,...,m,) when
the n partite sets have the sizes my, ma, = = ;m, . In:particular, the complete bipartite

graph K (1,n) is called star and is denoted by ST (n) for any n > 1.

1.2 Known Results
1.2.1 Saturating labeling
Fink showed that for any n > 4, the path P, is not sum-saturable[3] . However, all cycles,

Hamiltonian graphs, and complete bipartite graphs are sum-saturable according to the

following two results (Fink [3]).

Theorem 1.1. [3] If G is a 2-connected graph having either a I1-factor or a near-one-

factor, then G is sum-saturable.



Theorem 1.2. [3] A connected graph G of order p is sum-saturable if it has a vertex v

for which
(1) deg(v) > 1 + [loga(p — 1)], and

(2) there is a (proper) subset S of N(v) such that |S| = [loga(p — 1)] and G — S is

connected.

1.2.2 IC-coloring

In 1995, Penrice [8] introduced the concept of stamp covering of G as follows : for an
integer k > 0, alabeling f : V(G) — N is called a k-labeling if for any integer 7, 1 < j < k,
there exists a connected induced subgraph H of G with f;(H) = j. Then, M(G), the
stamp covering number of G, is the largest k € N _such that G has a k-labeling. He also

showed that

(1) M(K,)=2"-1.

(2) M(K(1,n)) = M(ST(n)) = 2"+ 2, foralln > 2.

(3) For positive integer n > 4, (n®*+6n —4)/4 < M(P,) <n(n+1)/2 — 1.

Around 10 years later, this notion was rediscovered by Salehi et al. [9] and the names
IC-coloring and IC-index take place of stamp covering and stamp covering number, re-

spectively. We list some of the results obtained so far.

Theorem 1.3. [9] For any integer n > 2, the IC-index of the complete bipartite graph
K(2,n) is3-2" + 1.

Theorem 1.4. [9] For any integer n > 8, the IC-index of the wheel W, satisfies the

following inequalities : 2" +2 < M(W,,) <2"+n(n—1)+ 1 forn > 3.

Theorem 1.5. [3, 8, 9] For any n > 3, n(n+1)/2 < M(C,) < n(n—1)+1. And

M(C,) =n(n—1)4+1 when n=3,4,5,6,8,9.



Observation 1.6. [9] If H is a subgraph of G, then M(H) < M(G).

Observation 1.7. [9] If v(G) is the number of connected induced subgraphs of G, then
M(G) < v(Q).

Observation 1.8. [9] If M(G) = p and v ¢ V(G), then M(G + v) > 2u+ 1. The
inequality is sharp when G is the complete graph. That is, M (K1) = 2M(K,) + 1.
However, there are cases when equality does not hold. Consider the graph G in Figure

3. The graph has exactly 12 non-empty connected induced subgraphs with M (G) = 12.
But, M (G +v) > 27.

/. -2

L ]

Q N q/

Figure 3: An example of Gand G + v.with M (G +v) #2M(G) + 1.

In this thesis, we shall first study the saturating labelings in Chapter 2. Mainly,
constructive labelings are given for those graphs which have good structures, for example,
complete multipartite graphs. Then, in Chapter 3, focus our effort in improving the upper
and/or lower bounds of the IC-index of some graphs obtained in an earlier paper by Salehi

et al.[9]



2 Saturating labelings of certain graphs

Though the complete graphs K,,, the complete bipartite graphs K(m,n), the complete
multipartite K (mq,ms,...m,) and Petersen graph satisfy with the conditions mentioned

in Theorem 1.1 and Theorem 1.2, we provide constructive proofs.

2.1 Constructive proofs of some graphs
Theorem 2.1. For any complete graph K,, K, is sum-saturable.
Proof. Let V(K,,) = {v1,v2,---,v,}, and define a labeling A : V(K,,) — N by A(v;) = 1,

for each i € [1,n]. Let k € [1,A,], where A, = > i = w It remains to show that

A is a saturating labeling.
(1) When 1 < k < n : The subgraph (\:i(k)) of K, is a single vertex.

(2) When k =n+1 for 1 <i<n=1: The subgraph of K, is consisted of two vertices,

which are A™!(n), and A\~*(4) such that the A-valiie of the subgraph is k.

(3) When k =n+ (n—1) 4+ for 1.<.¢ < n —2 " The subgraph of K, is consisted of
three vertices, which are A™*(n), \™(n — 1), and A7*(4) such that the A-value of the

subgraph is k.
We keep going on by this way:
(n-1) Whenk=n+(n—-1)+(n—-2)+---+3+ifor 1 <i<2: The subgraph of K,

is consisted of n — 1 vertices, which are A™'(n), A"} (n — 1), A"t (n — 2),---, A71(3),

and A~!(4) such that the A\-value of the subgraph is k.
(n) Whenk=n+(n—1)+(n—2)+---+3+2+1: The subgraph of K,, is K, itself.

Since K, is complete, any subgraph H induced by the vertices of K, is also connected.

Hence, K,, is sum-saturable. [



Theorem 2.2. For all positive integers m and n, the complete bipartite graph K(m,n) is

sum-saturable.

Proof. Assume that m > n, and let V,,, = {vy,v9, -+, v} and V,, = {1, Umso, s Uman }
be the two partite sets of K (m,n), with |V,,,| = m and |V,,| = n. Then we define a labeling
A V(K(m,n)) — N by MNv;) =i, for each i € [1,m +n]. Let Ay, = >, M40 =

(m+n)(m+n+1)
-

We proceed by induction on n. If |[Vi| =1, V] = {v,11} and AMvpme1) = m+ 1, and

Apg =Y MG = w We claim that K(m, 1) is sum-saturable.
(1) When k € [1,m + 1] : The subgraph (A\7(k)) of K(m,1) is a single vertex.

(2) When k= (m+1) +1, for 1 <i <m : The subgraph of K(m,1) is consisted of two
vertices, which are A™'(m + 1), and A~!(z) such that the A-value of the subgraph is

k.

(3) When k= (m+1)+m+i, for 1 <i <=1 The subgraph of K (m,1) is consisted
of three vertices, which are AT!(m/+4), A= (m),=and A~'(4)} such that the A\-value

of the subgraph is k.

We keep going on by the same way:

(m) When k = (m+1)+m+(m—1)+---+3+ifor 1 <i <2: The subgraph of K(m, 1)
is consisted of m vertices, which are A™*(m + 1), A"} (m), A\ (m — 1),---, A71(3),

and A7!(4) such that the A\-value of the subgraph is k.

(m+1) When k= (m+ 1) +m+--+3+2+1=A, =St = lmi2) . ppe

subgraph is K (m, 1) itself.

And we can easily check that any subgraph listed above is connected since every
subgraph listed above has two partite sets except subgraphs with only one vertex. Hence,
K (m,1) is sum-saturable.

Suppose K (m, k) is sum-saturable, then there exists a labeling A of G such that A\(v;) =

i, for each i € [1,m + k]. Suppose |V,,,| = m and |V,,| = k, and we use A, to denote

Z m+k : _ (m+k)(m+k+1)
i=1 1 = I E—



Consider the case when |V,,| = k+1. We assign a label m+k+1 to the vertex v, x11-
Since K(m, k) is sum-saturable, the subgraphs of K(m,k) with labels 1 to A, exist,
and the subgraphs of K(m, k) are connected. When k = A, + 4, for 1 <i < m +k,
we can find the subgraph H; of K(m,n) is consisted of a set of m + k vertices, which
1S {Vmtkt 1, Umtks Umtk—1, *** Umt1, Ums Ume1, = * 5 V2,01 } \ {U(m+k+1)—i} such that the A-
value of the subgraph is k. It is trivial that when k is equal to A, 41, the subgraph is G
itself. And we can easily check that the subgraphs mentioned above are connected since
every subgraph H; has also two partite sets . Thus, we know that the complete bipartite

graph K (m,n) is sum-saturable. ]

Corollary 2.3. For any n > 2, the star ST(n) is sum-saturable.
Proof. ST(n) is K(1,n).
Corollary 2.4. For any n> 3, the wheel W, is_sum-saturable.

Proof. Consider K(1,n) in Theorem 2.2.

Theorem 2.5. For all positive integersmy, ms, - <<,m,, the complete multipartite graph
K(my,mg, -+, my) is sum-saturable.
Proof. Assume that m; > my >, -+, > m,, and use V,,,, Vmay, ---, V,,,, to denote the

partite sets of the complete multipartite graph G = K (mq, ma, -+, m,) with |V,,,| = my,

|Vin,| = ma, -+, |Vin,| = my, and mq + mg + -+ - + m,, = p. Let A\ be the labeling that

ol
assigns the labels 1, 2, -+, my to the vertices of V,,,,, and (m; + 1), (my + 2), --+, (my
+ mg) to the vertices of V,,,,, and [(my + ma) + 1], [(my + ma) + 2], -+, [(my + m2) +
mg] to the vertices of V,,,, - -+, and [(my + mg + -++ + mp_1) + 1], [(Mm1 + mg + -+ +
Mp-1) + 2], -+ [(my + mg + -+ + my,_1) + my,] to the vertices of V,,, .

First, we only focus on the two partite sets V,,,, and V,,,. Aided by the preceding
proof of Theorem 2.2, we can easily check that G has a connected subgraph with A-value

ke [1, (m1+m2)(?1+m2+1)]. Then, we regard V,,, |J Vin, as a new partite set U;. Then,

proceeding to do another two partite sets U; and V,,,, we can also check that G has a

1 (m1+m2+m3)(m1+m2+m3+1)]
b .

connected subgraph with A-value k € | 5

9



Keeping going on by this technique mentioned above.

Finally, we view the union of V,,,, Vi.,, --+, Vin,_,as a new partite set U,,, o, and,
consider the two partite sets U,,, _o and V,, , we can still easily check that G has a
connected subgraph of A-value k € [1,A, = @].

Hence, we conclude that the complete multipartite graph K (mq,ma,...m,) is sum-

saturable. 1

Proposition 2.6. The Petersen graph is sum-saturable.

Figure 4: \-label of verticestof Petersen graph.

Proof. Let V(G) = {v1,vq,--+,v10}. and F = {ey, ea,e3,€4,e5}. Let A be a labeling of
G satisfying the condition that for each i € [1,5], one of the two vertices adjacent with

the edge e; has label 7 and the other has 11 — .

Let k € [1,A1p], and let g and r be the nonnegative integers satisfying k = 11q + r,

and 0 <r <10.
(1) If g = 0, there exists a single vertex v; such that A(v;) = i, for each i € [1,10].

(2) If ¢ > 1 and r > 1, let A(v;) = r, we can find the subgraph H; of G containing ¢
edges {€;j+1, €42, -, €j1q} of F plus vertex v; when 1 < j <5, where j + ¢ (mod
5). Also, when 6 < j < 10, we can find the subgraph H; of G containing ¢ edges
{e11-j+2, €144, -+, €11—j124} Of F plus vertex v; , where 11 — j + 2¢ (mod 5) for

q € [1,4]. One can check that H; and Hj are both connected subgraphs of G.

10



(3) If ¢ > 1 and r = 0, the subgraph Hy of G containing ¢ edges {ej,eq,--,e,} of F
such that A(Hy) = 11¢. And we can easily check that Hs is a connected subgraph

of (G since G is 2-connected.

Thus, the Petersen graph is sum-saturable. [

Fink [3] provided two sufficient conditions to check if a graph of order p is sum-

saturable; such as the followings :

(1) There exists v such that deg(v) > 1 4 [loga(p — 1)], and

(2) There is a (proper) subset S of N(v) such that |S| = [loga(p — 1)] and G — S is

connected.

In what follows, we shall check whether the double-star DS(m,n) is sum-saturable

using the two conditions.

Proposition 2.7. For 2 < m <Ipjthe double-star DS (m,n) is sum-saturable except

DS(2,2), which is a path Pj.

Proof. Let u and v be the central verticesiof DiS(m, n) with degree m and n, respectively.
We first check the vertex v because it is the vertex with maximum degree in the double-star
DS(m,n). For n > m, we have 2n —1 > m+n— 1. One can check that 2! > 2n —1 for
n > 4. Hence, we get the inequality : 27! > m+n—1. So, we have n—1 > logs(m+n—1).
It is equivalent that n — 1 > [loga(m +n — 1)]. Hence, the double-star DS(m,n) fits the

condition (1). That is,
n > 1+ [loga(m +n —1)], when n > 4.

Now we check the condition (2). When we let S C N(v)\{u} with |S| = [loga(m+n—
1)], DS(m,n) — S leads deg(v) to be at least 1. Hence, DS(m,n) — S is also connected.
So, DS(m,n) is sum-saturable when n > 4 and n > m.

Now, we check the double-star DS(2, 3) (see the left graph in Figure 5). It also satisfies

the sufficient condition (1) when we check vertex v. Now, let S = {y | deg(y) = 1 for any

11



vertex y € N(v)}. Then, G — S is connected satisfying condition (2) because |S| = 2 and
deg(v) = 3.
For DS(3,3), it follows by using the labelings in Figure 5.

Figure 5: A-labelings of DS(2,3), and DS(3,3).

2.2 Palmerworm PW (n)

It is worth of noting that we can not use Fink’s:conditions to show that DS(3,3) is
sum-saturable. Hence, it seems that there exists.some sum-saturable graphs in which
deg(v) < [loga(|V(G)| — 1)] fortany v € V(G). Fortunately, we find a graph called
palmerworm is sum-saturable, which is illustrated in Figure 6 . It is consisted with a
path P, and n — 2 vertices which are adjacent with the cut-vertices of P,. We can check

that deg(v) < [logs(|V(G)| —1)] for any v. Here, we denote the palmerworm by PW (n).

Figure 6: Palmerworm PW (8) containing a path Px.
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Figure 7: Labeling of Palmerworm PW (n).

Theorem 2.8. A graph G = PW(n) is sum-saturable.

Proof. Let V(G) = {v1,v9,v3, -+, 02,2} be the vertices of PW(n), and t = |loga(2n —
2)]. Then there exists a A labeling of PW(n) such'ag Figure 7. First, we label 1,2,4,-- -, 2¢

to the vertices v1,Uni1, Unio, *, Oprg, and Xuz) = 1 +2 = 3, Muvy) = 1+2+4 =

T, oo Muge1) = 14+ 2 4 -+ 12271 =98 1 respectively. Secondly, the vertices
Vg, U, Uon—2, Uap—3, - * +, Untts1 are respectively labeled with 2n — 2, 2n — 3, 2n — 4, 2n — 5,
-+, until vertex v,44+1 has been labeled; but avoiding 2°, 2!, - .-, 2! and the values given

previously, i.e. if the same label of some vertex is w, then we give w — 1 to it and then
going on. At last, the others are labeled with the remaining values randomly. Then we

can easily check that PW (n) is sum-saturable. ]
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= Y — D) = 4
avoiding 2° - 2* t=log,(2n—-2)=4

Figure 8: Labeling of Palmerworm PW (9).

Example 2.9. A graph G = PW(9) is sum-saturable, in which deg(v) < [log216] = 4
for any v € G. Let V(PW(9)) = {v1,v9,---,v16}. There exists a A labeling as illustrated
in Figure 8. Tt is necessary to check for any k € [1, Ag = 136], there exists a connected
subgraph H such that A(H) = k. When k &4l 16], the subgraph is a single vertex. Next,
when k € [14,17],[17,24], [24, 39],{39;70], [44, 85], [50, L02]and[59, 136], there still exists a
connected subgraph H such that MH )i="%. Hence, PW (9) is sum-saturable.

Therefore, to find a necessary and sufficient, condition for a graph to be sum-saturable

is an interesting open problem.
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3 Improved bounds of IC-index of some graphs

First, we consider the IC-index of the path P,. Since v(P,) = n(n+1)/2, the IC-index of
P, is less or equal to n(n+1)/2. And M(P,) has a lower bound (2+ [n/2])(n— |[n/2])+
|n/2] — 1 [9]. The more n becomes, the more difficult it is to find out the bounds of
[C-index of path P,. Hence, we will search for the labels of vertices by using computer.

Finally, we have a formulated type of the IC-coloring of path P,.

3.1 Path B,

Lemma 3.1. For anyn € N, M(P,) <n(n+1)/2 - 1.

Proof. Since P, is a path of order n, let V(P,) = {vy,vs, -+, v,}, where the vertices
vy, V9, -+, U, are sorted in order. Observe that v; and v, are the only two end-vertices
of P,, and every vertex other than vy3#, is a cutivertex. Suppose f is a maximum IC-
coloring of P, such that M(P,) ==u. Inorder to produce p — 1, we have to let f(v) =1
or f(v,) = 1. Without loss of generality, we let f(v;);= 1. And to produced pu — 2, we
have three cases : f(vy) =1, f(v,)'=1or f(v,) =2.

If f(vg) =1or f(v,) =1, 1is repeated, and hence M (P,) < n(n+1)/2—1.

If f(v,) = 2, we can also produce p— 3. To cover 3, 4, 5 and p— 4, p— 5, we consider

the following cases :

Figure 9: Label 1 and 2 assigned to the end-vertices of P,

Case 1. f(vg) =3:
We can produce 3, 4, and u — 4. In order to produce u — 5, we have to let f(v,_1) = 3
or f(vs) = 1. Since either 3 or 1 is repeated, we have the upper bound n(n +1)/2 — 1.
Case 2. f(v,-1) =3:
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We can produce 3, 5 and g — 5. To cover 4 and p — 4, we will have f(ve) = 3, which is
again repeated. Hence, M(P,) <n(n+1)/2 — 1.

Case 3. f(v;) =3for j#1 and n:

We can only produce the value 3. To cover 4, ; — 4 and p — 5, we will have three choices
for the pair vy and v,,_1, which are (3, 3), (2, 2), (4, 2). Thus, number 1, 2, or 3 will be

repeated in the three choices. Hence, we have improved the upper bound of M(P,). =

Aided by using computer, we have the following results. Without loss of generality,
let V(P,) = {vi,va,---,v,} and let the vertices are sorted from the left to the right. And

the IC-indices of P, are at least the sum of the vertices of P,.

(D)n=3: MP;))=1+3+2=6

2)n=4: MPy)>9=1+14+4+3=14+3+3+2

B)n=5: M(Ps)>13=14+1+4+4F83=14+3+1+6+2=14+5+3+2+2

() n=6: M(Ps)>17T=1+141+5406+4=14+14+4+4+4+3=1+1+

6 +4+3+2
B)n=7:M(P)>23=1+1+9+44+3+3+2=14+3+6+6+2+3+2
6) n=8: M(FP)>29=1+4+44+7+7+3+2+1
(Mn=9: M(P)>36=14+44+44+74+74+7+3+2+1
8) n=10: M(Py)>43=14+44+4+7+7+7T+7+3+2+1
9) n=11: M(P1)>250=14+4+4+74+7+7+74+7+3+2+1
(10) n=12: M(P2)>56=1+1+54+5+9+94+9+9+44+2+1+1
(11) n=13: M(P;3)>656=14+1+54+54+9+9+9+9+9+4+2+1+1
(12) n=14: M(Py)>T4=1+1+5+5+94+9+9+9+9+9+4+2+1+1

(13) n=15: M(P;5)>8 =1+1+5+5+9+94+9+9+9+9+9+4+2+

1+1

16



(14) n=16: M(Pyg) >91 =1+ 1+1+6+6+114+11 411411411 +11 +5

+2+1+1+1

(5) n=17: M(P7)>102=14+14+1+4+6+6+ 11 + 11 + 11 + 11 + 11 + 11 +

IM+5+2+1+1+1

Hence, the lower bounds of the IC-index of a path P, are M(Ps) = 6, M(P,) >
9, M(Ps) > 13, M(FPs) > 17,M(P;) > 23 for 4 < n < 7. We see the lower bounds of
M(P,) for n > 7 in this thesis is better than that of in paper [9]. From Lemma 3.1 and

the results of IC-coloring of P, presented above, we have the theorem below.

i+~ 2 gl

= / . -\ l—.—.—‘i. g -‘h?

iy
7
Yo

Figure 10: The|IC:coloring of the path P,

earlier value 33

value 36

Figure 11: The improved lower bound of path Py

Theorem 3.2. For any integer n > 8, ifn=4a+0b, 0 < b < 3, where a, b € N, then

4a* +Ta+2ab+3b—1< M(P,) <n(n+1)/2—1.

Proof. The type of the IC-coloring of the path P, is illustrated in Figure 10. Suppose
f is a labeling function that from the left to the right side, the labels are 1,1,---,1,a +
2,a+2,2a+3,2a+3,---,2a+3,a+1,2,1,1,---, 1, respectively, where both sides of 1s
occur a — 1 times, respectively, and 2a + 3 repeats 2a + b — 2 times. One can easily check

that f is an IC-coloring of P,,. And this is a better and improved lower bound when n > 8
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since (4a*+T7a+2ab+3b—1)— (n*+6n—4)/4 = a+b(6 —b)/4 > a > 2. For example(see
Figure 11), M(Py) > 33 in [9]. But we have M (Fy) > 36 here.

3.2 Cycle C,

Figure 12: Maximal IC-colorings of C5, Cy, Cs and Cj.

Let’s refer to [8], we know that M(CGp)'=m(n — 1)+ 1 for n = 3,4,5,6,8,9. And
we also find M (C7) > 39 by using .computer. We,alse, come up with a systematic way of
finding an IC-coloring of C,,. Since the graph'C;, has n(n — 1) + 1 connected subgraphs,
M(C,) < n(n—1)+1 by Observation1.7. Also, Fink[3] has presented a saturating labeling
of C,, with sum n(n+1)/2 as the lower bound-of M(C,,). Again, with the help of computer,
we have the following improved bounds about the cycles C), for n > 10. Without loss
of generality, let V(C,,) = {v1,v2, -, v,} and let the vertices are sorted clockwise. And

suppose that there exists an IC-coloring f of C, such that S(f) = f(v1)+f(va)+- - —+f(vn).
(1) n=3: M(Cs) =T.

(2) n=4: M(Cy) =13

(3) n=>5: M(Cs) = 21.

(4) n=6: M(Cs) = 31.

B)n=T7:43>M(C7) >39=1+1+7+114+6+104+3=14+34+2+7+8+8+10
=14+2+13+7+7+44+5=14+3+144+6+5+2+8=1+4+2+7+3+8+14 > 28.

Note that 43 and 28 are the known upper and lower bounds of IC-index of M (C?).
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(6) n=8: M(Cs) =57
(7) n=9: M(Cy) =173

(8) n=10: 91> M(Cy) >62=1+3+24+10+13+13+13+1+3+3 > 10(10+1)/2.

Note that 91 and 55 are the known upper and lower bounds of IC-index of M (Cy).

(9) n=11: 111 > M(Cyy) > 79 = 14+3+2+11+14+14+144+14+14+3+2 > 11(11+1)/2.

Note that 111 and 66 are the known upper and lower bounds of IC-index of M (C;).

(10) n=12: 133> M(Cps) > 87T =1+3+2+12+15+ 15+ 15+ 15+1+3+3+2 >
12(12 + 1)/2. Note that 133 and 78 are the known upper and lower bounds of
[C-index of M (C}a).

From the results listed above, we improve the lower bounds of IC-indices of C),. For

example, the lower bound 87 of M (Cjg)is better than 78 which is the trivial lower bound.

n:odd n:even

Figure 13: The IC-colorings of the cycle C,,
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Theorem 3.3. For n > 10, the lower bound of M(C,,) is :
(1) If nis odd, M(C,) > (n® +4n —T7)/2.

(2) If nis even, M(C,) > (n* +n+14)/2 +2|(n —9)/2].
Proof.

Case 1. If nis odd, M(C,) > (n*+4n —7)/2, which is obtained by labeling V' (C,,) with
1,3,2,n,(n+3),(n+3),--,(n+3),1,3,2,2,---,2 in circular order, where (n + 3)

repeated (n — 3)/2 times and 2 repeated (n —9)/2 times.

Case 2. If n is even, M(C,) > (n* + n + 14)/2 + 2|(n — 9)/2|, which is obtained by
labeling V(C,,) with 1,3,2,n,(n+3), (n+3),--+,(n+3),1,3,2,2,---,2,3,2,2,--+,2
in circular order, where (n+3) repeated (n—4)/2 times and 2 repeated | (n—10)/4]

and |(n — 8)/4] times, respectiyely.

We can easily check that they are satisfied with the property of IC-coloring. Hence, we

have an improved lower bound of TC-celoring of cycle C,. ]

Though we could not decide the IC-index.of ¢;,, we improve the lower bound of M (C,,)

which are better than the trivial lower bounds [9] : M(C,) > n(n +1)/2.
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3.3 Double-stars DS(m,n)

Review that a double-star has two central vertices plus leaves.(Figure 14 is an example.)
These graphs are trees of diameter three. For convenience, we use DS(m,n) to denote a
double-star whose two central vertices have degrees m and n, respectively. The following

result deserved to be mentioned first.

Figure 14x Double-star DS(2,n)

Lemma 3.4. [9] For2 < m < n, the IC-indéz of DS (m,n) is at least (2™ 1 +1)(2" 1 +1).

flu)=1 f('vl = a7t 11
Flu)=2 » i )= Z(Zm_l +1)
=1 2
P ‘ﬂ“)gm_l =T
* + - v

flu)=2" & 4 | Y rep=2-@rt+
[, )=2"" f,)=2"2(2"" +1)

Figure 15: Lower bound of double-star D.S(m,n)
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Lemma 3.5. If f is an IC-coloring of DS(m,n), then the value of any central vertex

must be the sum of some leaves.

Proof. Let v and v be the only two central vertices of D.S(m,n), respectively; f(u) and
f(v) be the labels of them. If f(u) = a is not the sum of some leaves, then the subgraph H
which satisfies f(H) = S(f) —a must be a disconnected subgraph since u is a cut-vertex.

Vertex v is the same case. Hence, we finish the lemma.

Proposition 3.6. For 2 < m < n, G = DS(m,n) has left and right central vertices, u and
v, which are the cut-vertices, and the others are the leaves. Let L = {uj, ug, -+, Upm_1}
and R = {vy,vq,- -+, v,_1} be the set of left and right leaves, respectively. Without loss of
generality, we assume (i) < f(us) < -+ < f(tm_r) and f(u) < f(02) < -+ < f(vr).

If fis a maximum IC-coloring of DS(m,n), then there does not exist
(1) f(u) = 216{1’27””_1} f(uy) for b<i < 7 <m= 1, and
(2) flu)= Zke{l,Z,m,l—l} flop) for TS T <k <n—1.

Proof. (1) By Lemma 3.4, M(DS{m,n)) =2 241)(2"! 4+ 1). One can easily check
that G has (27! +1)(2"' + 1) + m + n = 3 subgraphs.

First, we consider the left leaves. If j = m — 1, and ¢« = 1,2,---,m — 2. So,
flum—1) = Yictomny f(w) = flw) + f(uz) + -+ flupn—2) , then there are at
least 277! + 2 subgraphs of the same sums. Observe that when we choose less u; for
w; € {uy,usg,++, Up_o}, it produces more subgraphs of the same sums. For example, if
fum—1) = Yicqo,m-2y f(wi) = f(um-2), it produces 1+ 2™~32" subgraphs of the same
sums. Hence, it reduces the known lower bound (2"! + 1)(2""! + 1) since 2 < m < n.
Thus, f is not a maximum [C-coloring of DS(m,n).

The same interpretion for j = 2,3,---,m — 2

(2) The right leaves has the same result like the left ones .
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3.4 Corollaries of known results

We can decide the lower bounds of certain graphs by the results of the IC-index of
star ST (n) (proved by Penrice [8]) and the lower bound of the IC-index of double-star
DS(m,n) (proposed by [9]). The following two corollaries were proposed by Ebrahim
Salehi, Sin-Min Lee and Mahdad Khatirinejad [9], but did not give proper proofs yet.
Hence, we will give the proofs of them. Then, we will have a general lower bounds of

IC-index of the certain graphs.

Corollary 3.7. [9] If A = A(G) is the mazimum degree of a connected graph G, then
M(G) > 25 + 2.

Proof. Let u be the vertex with the maximum degree A of a connected graph G. Also,
we use N(u) to denote the set of the neighbors of vertex w. Hence, we have |N(u)]
= A. Observe that the subgraph Htinduced by.w and N(u) contains a star ST(A).
So, we get M(H) = 22 + 2 showed in Penrice [8]. “And by Observation 1.7, we have
M(G)> M(H) = 2% +2.

Corollary 3.8. For any triangle-free graph G with more than two wvertices, we have
M(G) > (2271 +1)(2°71 + 1), where A and & denote the mazimum and minimum degrees

of G, respectively.

Proof. Let u and v be the vertices with the maximum degree A and the minimum degree
0, respectively. According to the adjacency of vertex u and v, we consider the following
two cases :

Case 1. v and v are adjacent :

Observe the subgraph induced by the vertices set N(u)|J N(v) is the double-star
DS(A,6). Hence, it satisfies the inequality : M(G) > (22714 1)(2°~1 4+ 1). The bound is
very sharp. For example, a graph ST'(n) can be viewed as a double-star DS(1,n). And
they have the same IC-index 2" + 2.

Case 2. u and v are not adjacent :
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Since the vertex v with the minimum degree 0 is not adjacent with the vertex u, then
vertex u must be adjacent with a vertex z such that deg(z) > J. When we consider the
double-star DS(A,deg(z)), it will fit the inequality : M(G) > (2271 + 1)(249(=)=1 4 1).

And since deg(z) > 6, we get the inequality : M(G) > (2271 +1)(2071 + 1). ]

3.5 Improved lower bounds of some Graphs

The IC-index of complete bipartite graph K (m,n) is not decided yet so far. But [9] has
shown that for any integer n > 2, the IC-index of the complete bipartite graph K(2,n) is
3-2" + 1. It may give some information to prove M (K (m,n)). Here, we obtain a lower
bound of M(K(m,n)). Note that when m = 2, it is equal to M (K (2,n)) = 3-2" + 1.
When m =n =2, K(2,2) is a Cy, and we know M (K (2,2)) is equal to M(Cy) = 13.

Lemma 3.9. For any two integers 2 < m_< n, the IC-index of K(m,n) is at least

1+2"2(m+1)(m + 2).

Proof. Let A and B be the two partite sets.of K(m,n), where A = {uy,us,- -, u,} and
B = {vy,v9,---,v,}. There exists“an [C-coloring f such that f(u;) = 2i for 1 <i < m,
and f(v1) =1, f(ve) =2m+2, f(v;) =2 3afor3 < j <n, where a = f(u) + f(ug) +
oo+ fum) + f(v2) = (m+1)(m+2). Hence, we can easily check that f is an IC-coloring.

And the IC-index of K(m,n) is at least 1 4+ 2"72(m + 1)(m + 2). "

/ 2 A4 6 2m—4 2m—2 ZH?\|
s & @ L o i . I
{ ?!’2 ”3 Hm—l 1’”?_1 VJ‘H/

\ e

\\ //
A ' ;
v I v?\ v3 v—l n—1 1’1?
-\. L] L L] L L ] L ]
\ |
1 ~"~ 2m+2 | a 2a 2y 2"

Figure 16: IC-coloring of K(m,n)
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Lemma 3.10. For any integer a < b < ¢, the [C-indez of the complete tripartite K (a, b, c)

is at least 2°(1 + 2" 2(a + 1)(a + 2)).

Proof. Let A, B and C be the three partite sets of K(a,b,c), where A = {uy,ug, -+, uq}
and B = {vy,vq,- -+, 0} and C' = {wy,wy, -+, w.}. Let f be a labeling such that f(u;) =
20 for 1 < i < a,and f(v1) =1, f(v2) = 2a+ 2, f(v;) = 2273M for 3 < j < b, and
flwy) = 2N for 1 <k < ¢, where M = f(uy)+f(ug)+- -+ f(um)+f(v2) = (a+1)(a+2)
and N = f(ur)+ fluz)+ -+ f(ug) + f(v1) + fv2) + -+ f(vp) = 14+22(a+1)(a+2).
Hence, we can easily check that f is an IC-coloring. And the IC-index of the complete

tripartite M (K (a,b,c)) is at least 2¢(1 + 2°~2(a + 1)(a + 2)). ]

Figure 17: IC-coloring of the complete tripartite K (a,b, c)

Proposition 3.11. For any integer m; < my < --- < m,,, the IC-index of the complete

multipartite K (my, ma, -+, m,) is at least 27mn2mn=1...2M3(] 4 2m272(my + 1)(my + 2)).
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Wheels with n spokes, denoted by W,,, are obtained by the join operator C,, + K. It is
shown that the IC-index of W), satisfies the following inequalities [9] : 2" +2 < M(W,,) <

2" +n(n— 1)+ 1 for n > 3. Here, we have an improved lower bound of W,.
Theorem 3.12. For any integer n > 3, M(W,) > 2" + 5.

Proof. Observe that if n = 3, W3 is K4. Hence, M (W3) is equal to 15, which fits the
upper bound of M (W,,) tightly. Thus, we consider the case when n > 4. Let V(W) =
{vo, v1,v9, -+, v, } for n > 4. Let vy be the central vertex, and vertices vy, vq, -+, v, are
ordered clockwise. Then there exists an IC-coloring f such that f(vg) = 6, f(vy) = 2,
f(vg) = 1 and f(v;) = 27! for 3 < i < n. Thus, we can easily check that f is an

IC-coloring, and the IC-index of W, is at least 2" + 5. ]

Note that when n = 3, W3 is K4. So M(W3) = 2* — 1 = 15, which fits the upper
bound 2" 4+ n(n — 1) + 1. But we have M (W) .27, M(W5) > 46, and M (Ws) > 76,
which are the better lower bounds than the restlts obtained in [9] and Theorem 3.12.
Note that the values of central vertices of W for n < 6 are different from that of central

vertices of W,, when n > 7.

Figure 18: The central labels are 1 when n < 6 and 6 when n > 7.
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4 Conclusion

From the study of the Stamp Problem, we have noticed that the most difficulty part of
obtaining M (G), the IC-index, is knowing the exact upper bound. Even we can figure
out the number of distinct connected subgraphs of GG, we have no idea whether some
distinct connected subgraphs will come out with the same value from a labeling due to
the structure of the graph . Double-star is one of such graphs. So, to determine the
IC-index of a general graph is not going to be an easy work. It’s left a lot of works to
do. But, certainly, we should be able to do a better job in the near future after knowing

more inside of this topic.

27



References

1]

[10]

R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. monthly
87(1980), 206-210.

B. Bolt, Mathematical Cavalcade, Cambridge University Press, Cambridge, 1992.

J. F. Fink, Labelings that realize connected subgraphs of all conceivable values,

Congressus Numerantium 132 (1998), 29-37.

J. A. Gallian, A survey : recent results, conjectures, and open problems in labeling

graphs, J. Graph Theory 13 (1989), 491-504.

R. Guy, The postage Stamp Problem, Unsolved Problems in Number Theory, second
ed., Springer, New York 1994, 123-127.

R. L. Heimer and H. Langenbach, The-Stamp Problem, J. Recreational Math. 7
(1974), 235-250.

W. F. Lunnon, A postage stamp. problem;“€oniput. J. 12 (1969), 377-380.

S. G. Penrice, Some new graph labeling problems: a preliminary report, DIMACS
Tech. Rep. 95-26m (1995), 1-9.

E. Salehi, Sin-Min Lee and M. Khatirinejad, IC-Colorings and IC-Indices of graphs,
Discrete Mathematics 299 (2005), 297-310.

Douglas. B. West (2001), Introduction to graph theory, Upper Saddle River, NJ :

Prentice Hall.

28



	01 封面.doc
	02 書名頁.doc
	03 中文摘要.doc
	04 致謝詞.doc
	MPIG0.pdf

