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Abstract

CPMD is the program using'a-plane-wave/pseudopotential implementation
of density functional theory. It can calculate electronic properties. The aim of
this paper is to calculate the ground state energy of isolated Hy, HoO molecule,
and 32 water molecules(HggO32) by using the three methods in CPMD: optimize
wavefunction, optimize geometry and Car-Parrinello molecular dynamics and

then compare their computation process and results.
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1 Introduction

The aim of an electronic structure calculation is to calculate properties of a
system from only the knowledge of the component atoms. When done without explicit
recourse to experimental data (with the exception of the use of fundamental constants
and comparison with experimental results), these can be termed ab initio calculations.
Electronic structure calculations have been proved useful in many areas of condensed
matter physics and chemistry, especially with the rapid growth in computer power.
An alternative to wavefunction based methods, Density Functional Theory(DFT) has
become widely used. DFT provides an (in principle) exact method for calculating the

energy of a system of interacting electrons in terms of a set of single electron equations.

1.1 Density functional theory

Density functional theory(DETY) is develéped by Hohenberg and Kohn (1964)
and Kohn and Sham (1965). :Hohenberg and Kohn proved that the total energy,
including exchange and correlation, of an electron gas (even in the presence of a
static external potential) is a unique functional of the electron density. The minimum
value of the total-energy functional is-the ground-state energy of the system, and
the density that yields this minimum value is the exact single-particle ground-state
density. Kohn and Sham then showed how it is possible, formally, to replace the
many-electron problem by an exactly equivalent set of self-consistent one-electron

equations.

The Kohn-Sham total energy functional for a set of single occupied electronic

states 1; can be written

El{yi}] = Z/% {—%} Vihidr +/V¢on(7°)n(7’)d3r

e [n(r)n(r) 5 4,
+ g/md rd’r —I—EXC[TL(T)] +Ei0n({RI})v (1'1)

where Fj,, is the Coulomb energy associated with interactions among the nuclei(or

ions) at positions {R;}, Ve, is the static total electron-ion potential, n(r) is the
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electronic density in term of occupied single-particle orthonormal given by
n(r)=>_ |l (1.2)
and E,.[n(r)] is the exchange-correlation functional.

Only the minimum value of the Kohn-Sham energy functional has physical mean-
ing. At the minimum,the Kohn-Sham energy functional is equal to the ground-state

energy of the system of electrons with the ions in positions {R;}.

1.2 The Kohn-Sham equations

It is necessary to determine the set of wave functions v; that minimize the
Kohn-Sham energy functional. These are given by the self-consistent solutions to the
Kohn-Sham equations(Kohn and Sham,1965):

—h2 )
— V4 Vigu(r) Vg (r) + ch(T):| Ui(r) = ei(r), (1.3)

2m

where 1); is the wave function ‘of electronic state i, ¢; is the Kohn-Sham eigenvalue,
Vy is the Hartree potential of the electrons given by

Vars 62/ e (1.4)

=l

The exchange-correlation potential, Vx¢,is given formally by the functional derivative

oF Xc[n(T’ )]
Vxeo(lr) = —————= 1.5
R (15)
The Kohn-Sham equations represent a mapping of the interacting many-electron
system onto a system of noninteracting electrons moving in an affective potential
due to all the other electrons. If the exchange-correlation energy functional were
known exactly, then taking the functional derivative with respect to the density would

produce an exchange-correlation potential that included the effects of exchange and

correlation exactly.

The Kohn-Sham equations are a set of eigenequations, and the terms within the

bracket in Eq.(1.3) can be regarded as a Hamiltonian. The bulk of the work involved
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in a total-energy pseudopotential calculation is the solution of this eigenvalue problem

once an approximate expression for the exchange-correlation energy is given.

1.3 Local-Density approximation

The Hohenberg-Kohn theorem provides some motivation for using approximate
methods to describe the exchange-correlation energy as a function of the electron
density. The simplest method of describing the exchange-correlation energy of an
electronic system is to use the Local-density approximation(LDA). In the local-density
approximation the exchange-correlation energy of an electronic system is constructed
by assuming that the exchange-correlation energy per electron at a point r, in the
electron gas, exc(r), is equal to the exchange-correlation energy per electron in a
homogeneous electron gas that has the same density as the electron gas at point r.

Thus

Excln@P 2 Sy (1.6)
and
dExcln(r)] _-0ln(r)exo(r)]
on(r) on(r)
with

exc(r) =R n(r)]
where exc(r) is the exchange-correlation energy density(single variable) function of
uniform electron gas. The local-density approximation assumes that the exchange-
correlation energy functional is purely local. Several parameterizations exist for the
exchange-correlation energy of a homogeneous electron gas, all of which lead to total-

energy results that are very similar.

1.4 Bloch’s theorem

Bloch’s Theorem states that in a periodic solid each electronic wave function

can be written as the product of a cell-periodic part and a wavelike part,

i(r) = explik - r] fi(r) (1.7)
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The cell-periodic part of the wave function can be expanded using a basis set
consisting of a discrete set of plane waves whose wave vectors are reciprocal lattice

vectors of the crystal,

filr) = Z ¢i.qexpliG - r] (1.8)
a
where the reciprocal lattice vectors G are defined by G - I = 27m for all I where [
is a lattice vector of the crystal and m is an integer. Therefore each electronic wave
function can be written as a sum of plane waves,

hi(r) =Y ciprgeaplilk + G) -] (1.9)
G

When plane waves are used as a basis set for the electronic wave functions,the
Kohn-Sham equations assume a particularly simple form. Substitution of Eq.(1.9)

into (1.3) and integration over r gives the secular equation

> [%Vﬂ + G*ocar + Vien(G = G) + V(G — G') + Vxe(G = G')| ciprer = EiCigya-
“ (1.10)
In this form, the kinetic energy is diagonal, and the various potentials are described
in terms of their Fourier transferms. Sélutions of Eq.(1.10) proceeds by diagonaliza-
tion of a Hamiltonian matrix whose matrix elements Hj. ¢ +c are given by terms
in the brackets above. The size of the matrix is determined by the choice of cutoff
energy (h?/2m)|k + G.|* , and will be intractable large for systems that contain both
valence and core electrons. This is a severe problem, but it can be overcome by the

use of the pseudopotential approximation, as will be discussed in next section.

1.5 Pseudopotential approximation

Although Bloch’s theorem states that the electronic wave functions can be ex-
panded using a discrete set of plane wave, a plane-wave basis set is usually very poorly
suited to expanding electronic wave functions because a very large number of plane
wave needed to expand the tightly bound core orbitals and to follow the rapid oscilla-

tions of the wave functions of the valence electrons in the core region. An extremely

4



large plane-wave basis set would be required to perform an all-electron calculation,
and a vast amount of computational time would be required to calculate the elec-
tronic wave functions. The pseudopotential approximation allows the electronic wave

functions to be expanded using a much smaller number of plane-wave basis states.

It is well known that most physical properties of solids are dependent on the
valence electrons to a much greater extent than on the core electrons. The pseudopo-
tential approximation exploits this by removing the core electrons and by replacing
them and the strong ionic potential by a weaker pseudopotential that acts on a set of
pseudo wave functions rather than the true valence wave functions. An ionic poten-
tial, valence wave function and the corresponding pseudopotential and pseudo wave

function are illustrated schematically in Fig.1.

FIG.1. Schematic illustration of all-electron (solid lines) and pseudoelectron (dashed lines)
potentials and their corresponding wave function. The radius at which all-electron and

pseudoelectron values match is designated r..

1.6 Computational procedure with conventional matrix di-

agonalization

The sequence of steps required to carry out a total-energy pseudopotential cal-

culation with conventional matrix diagonalization techniques is shown in the flow



diagram in Fig.2. The procedure requires an initial guess for the electronic charge
density, from which the Hartree potential and the exchange-correlation potential can
be calculated. The Hamiltonian matrices for each of the k points included in the cal-
culation must be constructed, as in Eq.(1.10), and diagonalized to obtain the Kohn-
Sham eigenstates. These eigenstates will normally generate a different charge density
from the one originally used to construct the electronic potential, and hence a new set
of Hamiltonian matrices must be constructed using the new electronic potential. The
eigenstates of the new Hamiltonians are obtained, and the process is repeated until
the solutions are self-consistent. In practice the new electronic potentials generated by
the old and the new eigenstates, since this speeds the convergence to self-consistency.
To complete the total-energy calculation, tests should be performed to ensure that
the total energy is converged both as a function of the number of k points and as a

function of the cutoff energy for the plane-wave basis set.

Construct Vign given atomic numbers and
positions of ions

!
| Pick a cutoff for the plane-wave bosis set {e !k +6)< } |

| Pick o trial density n(zﬂ

] Calculate Vy (n) and Vyxc (n) Ii
!

Solve HY = [- h;gz +v;m+VH+vxcH;=£lP

by diagonalization of Hy+g, x+6'

‘ I 3
Calculate new n (1)
¥
(1S SOLUTION SELF-CONSISTENT ? )
Y Yes o | Generate New
| Compute Totol Energy—ﬂ Density n(r)

FIG.2. Flow chart describing the computational procedure for the calculation of the total energy of

a solid, using conventional matrix diagonalization.



2 CPMD program

CPMD is an ab initio electronic structure and molecular dynamics (MD) pro-
gram using a plane wave/pseudopotential implementation of density functional the-
ory. It is mainly targeted at Car-Parrinello MD simulations, but also supports wave-
function optimizations, geometry optimizations, Born-Oppenheimer MD, path inte-
gral MD, response functions, excited states and calculation of some electronic prop-

erties. In this paper we use CPMD version 3.9.2.

2.1 Optimize Wavefunction by DIIS

There are three methods available for optimizing wavefunction : preconditioned
conjugate gradient(PCG), steepest decent and direct inversion in the iterative sub-
space(DIIS). The default method (DIIS) is the most powerful method but sometimes
it needs some assistance from outside. We havelimplemented some empirical rules for
restarting the DIIS procedure in case that the optimization gets stuck. If the DIIS
converged gets stuck, stop the run and restart using preconditioned conjugate gra-
dient with line search(PCG MINIMIZE). Wavefunction optimizations for geometries
that are far from equilibrium are offen.difficult. If you are not really interested in
this geometry (e.g. at the beginning of a geometry optimization or this is just the
start of a MD) you can relax the convergence criteria to 1073 or 10~* and do some
geometry steps. After that, optimization will be easier. The aim of this method is to

find a better set of initial wavefunction.

2.1.1 DIIS Method

We start with the Kohn-Sham eigenvalue problem
Hyj = e, (2.1)
writing Eq.(2.1) for iteration i as
H'{th} = {e;} s} (2:2)
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Suppose that we have a set of trial vectors ¢* = {1/;}" of the iiteration as a sum

of the converged solution ¢! plus an error vector e':

¢ =" + €. (2.3)

The DIIS method assumes that a good approximation to the final solution ¢ in

subspace of ¢’ can be obtained in a least squares sense by writing
¢ =Y dig, (24)
i=1

where The coefficients d; are subject to the restriction

i d; =1, (2.5)
=1

and therefore

et = Z d;e’. (2.6)
i=1

When e™* = 0,then ¢"™"" = and convergence is achieved. In real-life appli-
cations, the number of degree of freedom is much larger than m. Therefore, in finite
number of iterations, the condition e™*%= 0 can be achieved only in a mean squares

sense. This leads to a set of m+Llinear-equations from which the d; can be calculated:

bi1r b ... by, 1 dy 0
bai w22 .. Doy 1 ds 0
bt bz .. bpm 1 dm 0

1 1 ... 1 0 —A 1

where the b; ; = el'e; and A is the Lagrangian multiplier arising from the previously
mentioned constraint. The error vectors e’ are not known, but within a quadratic

approximation they are given by
e’ =K g, (2.7)

where g and K are first and second derivatives of the energy density functional with

respect to the coefficients ¢. In the same approximation, K is constant and the new



trial vector becomes

¢ — ¢m+1 - }(7lgm+17 (28)

where the first derivative of the energy density functional is estimated to be

gt = Z dig'. (2.9)
i=1

In most applications, the matrix K is too large to be stored and inverted. There-
fore approximations are needed. Omne could choose K to be a constant diagonal
matrix. Another popular choice is to take K as the diagonal part of the Kohh-Sham

Hamiltonian in the plane-wave representation.

2.1.2 Wavefunction Optimization: Input File Format

For calculation we will need the input file 1-h2o0-wave.inp and the pseudo-
potential file H-MT-BLYP.psp , O-MT-BLYPE.psp. Now let’s have a look at the
input file. The input is organized [in sections, which start with &INAME and end
with &END. Everything outside those sections isignored. Also all keywords have
to be in upper case or else théy will' berignored.' The sequence of the sections does
not matter, nor does the order of keywords; except where noted in the manual. A

minimal input file must have a & CPMD, &SYSTEM and an &ATOMS section.

&INFO
Isolate water molecule.

Single point calculation.
&END

The input file starts with an (optional) &INFO section. This section allows you
to put comments about the calculation into the input file and they will be repeated

in the output file. This can be very useful to match input and output files.



&CPMD

OPTIMIZE WAVEFUNCTION

CONVERGENCE ORBITALS
1.0d-7

STRUCTURE BONDS ANGLES

&END

This first part of &CPMD section instructs the program to do a wavefunction
optimization (i.e. a single point calculation) with a convergence criterion 1.0d-7(the
default is 1.0d-5 for the wavefunction(ORBITALS)) and print structure informa-
tion(BONDS,ANGLES) at the end of the run.

&SYSTEM

SYMMETRY

1

CELL

200 1.0 1.0 00 00 00
CUTOFF

70.0

&END

The &SYSTEM section containswarieus parameters related to the simulations
cell and the representation of the electronic structure. The keyword SYMMETRY
defines the supercell symmetry type. You can put a number or a keyword in the
next line (i.e. 1: Simple CUBIC, 2: FACE CENTERED CUBIC (BCC), 3: BODY
CENTERED CUBIC (BCC) and for more details on the input syntax, please refer

to the CPMD manual). The keyword CELL specifies the size of the supercell. Six
b ¢

numbers in the following order have to be provided: a, 2,2, cosa, cosf3, cosy. For
cubic phases, a is the lattice parameter which describes the distance between the ad-
jacent corners of the cubic. It does not give the distance from an atom to its nearest
neighbor. Furthermore for cubic lattice, lattice constant a will be equal to b and c,
a = =~ =290° The last keyword CUTOFF defines the size of the basis set as

well as the plane wave cutoff.
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&DFT
FUNCTIONAL BLYP
GC-CUTOFF

1.0d-06
&END

The &DFT section is used to select the density functional and related param-
eters. In this case we go with the Becke-Lee-Yang-Parr(BLYP) functionals (default
is the local density approximation(LDA)).The keyword GC-CUTOFF specifies the
density cutoff for calculation of the gradient correction. The default value is 1078,

Experience showed that for a small CUTOFF value a bigger values have to be used.

&ATOMS
*O_MT_BLYP.psp KLEINMAN-BYLANDER
LMAX=P
1
100 100 100
*H_MT_BLYP.psp
LMAX=S
2
8.5 90 100
11.5 90 100
&END

Finally the & ATOMS section is needed to specify the number of atom and atom
coordinates and the pseudopotentials, that are used to represent them. In this case
we use the Becke-Lee-Yang-Parr(BLYP) pseudopotential basis. The detailed syntax
of the pseudopotential specification is a bit complicated. If yuo want to know more,

please refer to the Further Details of the Input section of the CPMD manual.

2.2 Optimize Geometry by GDIIS

Optimize Geometry causes the program to optimize the geometry and the wave-

function of the system. The geometry optimization using direct inversion in the itera-
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tive subspace(GDIIS) is not much else than repeated single point calculations, where
the positions of the atoms are updated according to the forces acting on them. Any
combination of methods for geometry optimization and wavefunction optimization is
allowed. Possible options for geometry optimization are GDIIS, RFO, BFGS, and
steepest descent. If you choose steepest descent for both, geometry variables and the
wavefunction, a combined method is used. For all other combinations a full wave-
function optimization is performed between changes of the ionic coordinates. The
default options are GDIIS and ODIIS. The quasi-Newton methods (GDIIS, RFO,
and BFGS) are using the BFGS method to update an approximate Hessian. At the
beginning of a run, the Hessian can either be initialized as a unit matrix HESSIAN

UNIT or with an empirical force field by default.

Geometry Optimization and Wavefuncion Optimization use the same method,
DIIS, to iterate vectors. The main difference of them is that Geometry Optimization
updates the positions of the atoms and uses BFGS method to update the Hessian

matrix each time as wavefunction.éonverge.

2.2.1 Geometry Optimization: | Input File Format

The input file of the wavefunction @ptimization and geometry optimization are

similar. The required changes in the input file are rather small (1-h20-geoopt.inp):

&CPMD

OPTIMIZE GEOMETRY XYZ

HESSIAN UNITY

CONVERGENCE ORBITALS
1.0d-7

CONVERGENCE GEOMETRY
3.0d-4

STRUCTURE BONDS ANGLES

&END

We have replaced WAVEFUNCTION with GEOMETRY and added the sub-
option XYZ to have CPMD write a ’trajectory’ of the optimization in a file name
GEO_OPT.zyz (so it can be visualized later). The keyword HESSIAN UNIT tells
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the CPMD program to set the initial approximate Hessian for a geometry optimiza-
tion constructed by simply a unit. Also, we specify the convergence parameter for

the ions(GEOMETRY) with 3 x 1074, Default value is 5 x 107,

2.3 Car-Parrinello Molecular Dynamics

The basic idea of the Car-Parrinello approach can be viewed to exploit the
quantum mechanical adiabatic time-scale separation of fast electronic and slow nu-
clear motion by transforming that into classical-mechanical adiabatic energy scale
separation in the framework of dynamical systems theory. In order to achieve this
goal the two-component quantum/classical problem is mapped onto a two-component
purely classical problem with two separate energy scales at the expense of loosing the
explicit time-dependence of the quantum subsystem dynamics. Furthermore, the cen-
tral quantity,(Wo|H|¥o), evaluated with some wavefunction ¥y, is certainly a function
of the nuclear positions { R;}. But 4t the same time it can be considered to be a func-
tional of the wavefunction ¥, and thus of-a set of-one-particle orbitals {¢;} used to
build up this wavefunction (being for instance a Slater determinant W = det{1;} or a
combination thereof). Now, in classicalmechanics the force on the nuclei is obtained
from the derivative of a Lagrangian with respect to the nuclear positions. This sug-
gests that a functional derivative with respect to the orbitals, which are interpreted
as classical fields, might yield the force on the orbitals, given a suitable Lagrangian.
In addition, possible constraints within the set of orbitals have to be imposed, such as
e.g. orthonormality (or generalized orthonormality conditions that include an overlap

matrix).

Car and Parrinello postulated the following class of Lagrangians

1 - 1 )
L= 5 Z i) + 3 ; MRS — (Uo|H|Wo) + cotzstraz’?is, (2.10)
N ~ _  potential energy orthonormatity

kinetic energy

to serve this purpose. The corresponding Newtonian equations of motion are obtained
from the associated Euler-Lagrange equations

d | OL oL
— | = == (2.11)
dt |OR I OR I
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d | OL oL
— | —| ==, (2.12)
dt Logy] ~ 0v

like in classical mechanics, but here for both the nuclear positions and the orbitals
and that the constraints are holonomic. Following this route of ideas, generic Car-

Parrinello equations of motion are found to be of the form

. 0 0 :
Mifty = =5 (Wl H| o) + 5 - {constraints) (2.13)
%5'__8<\I,‘H‘\Ij>+i{ traints} (2.14)
;= o0 0 0 D constraintsy, :

where p are the fictitious masses or inertia parameters assigned to the orbital degrees
of freedom; the units of the mass parameter y are energy times a squared time for
reasons of dimensionality. Note that the constraints within the total wavefunction

lead to constraint forces in the equations of motion. Note also that these constraints
constraints = constraints ({¢;},{Rr}), (2.15)

might be a function of both the set of orbitals {1} and the nuclear positions {R;}.
These dependencies have to bejtaken_into .aceount properly in deriving the Car-
Parrinello equations following from Eq.(2.10) using£q.(2.11)-(2.12). The correspond-

ing CP total energy (Hamiltonian) as constant of motion is

Buass = 5 3 (b 5 S8 + Bl{w), (o}, (2.16)

According to the Car-Parrinello equations of motion, the nuclei evolve in time
at a certain (instantaneous) physical temperature o ), M IR?,, whereas a "fictitious
temperature” oc S, u(t;]ih;) is associated to the electronic degrees of freedom. In
this terminology, ”"low electronic temperature” or ”cold electrons” means that the
electronic subsystem is close to its instantaneous minimum energy min gy, (Vo|H |¥y),
i.e. close to the exact Born-Oppenheimer surface. Thus, a ground-state wavefunction
optimized for the initial configuration of the nuclei will stay close to its ground state

also during time evolution if it is kept at a sufficiently low temperature.

The remaining task is to separate in practice nuclear and electronic motion such
that the fast electronic subsystem stays cold also for long times but still follows the

slow nuclear motion adiabatically (or instantaneously). Simultaneously, the nuclei are
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nevertheless kept at a much higher temperature. This can be achieved in nonlinear
classical dynamics via decoupling of the two subsystems and (quasi-) adiabatic time
evolution. This is possible if the power spectra stemming from both dynamics do not
have substantial overlap in the frequency domain so that energy transfer from the
"hot nuclei” to the "cold electrons” becomes practically impossible on the relevant
time scales. This amounts in other words to imposing and maintaining a metastability

condition in a complex dynamical system for sufficiently long times.

2.3.1 Molecular-dynamics Lagrangian

Car and Parrinello formulated their method in the language of molecular dy-
namics. Their essential step was to treat the electronic wavefunctions as dynamical
variables. Here Eq.(2.10), (2.13), and (2.14) are specialized to the case of a plane wave
basis within Kohn-Sham density functional theory. Specifically the functions ¢; are
replaced by the expansion coefficients (@) and the orthonormality constraint only
depends on the wavefunctions, 4iot, the tmielear peositions. The equations of motion

for the Car-Parrinello method -aré derived from this specific extended Lagrangian
- 1 ;
L=p Z Z [l (epiEas 5 Z MR} — E[{G} {Rr}], (2.17)
i G I

where p is a electron mass, M; are’the masses of the nuclei, E is the Kohn-Sham
energy functional, R; is the position of ion I. The Kohn-Sham energy functional
takes the place of the potential energy in a conventional Lagrangian formulation.

The electronic wave functions are subject to the constraints of orthonormality,

[ o = (2.18)

These constraints are incorporated in the molecular-dynamics Lagrangian by using

the method of Lagrange multipliers. The molecular-dynamics becomes

L=p> Y IC'i(G)|2+% > MRI-E{G} AR+ Ay (Z i (G)e(G) — 5z‘j> :
7 G I %, G
(2.19)

The Lagrange multipliers A;; ensure that wavefunctions remain normalized, while

the Lagrange multipliers A;;(i # j) ensure that the wavefunctions remain orthogonal.
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The Lagrange multiplier may be thought of as providing additional forces acting on

the wavefunctions, which ensure that the wavefunctions remain orthonormal.

2.3.2 Molecular-dynamics equations of motion

The Lagrangean in eq.(2.18) generates a dynamics for the parameters {c;}’s and

{R;}’s through the equations of motion:

. OF
péi(G) = — 5 (@) + ;Aijcj(c:) (2.20)
. OF

The forces needed in a CPMD calculation are the partial derivative of the Kohn-
Sham energy functional with respect to the independent variables, i.e. the wavefunc-
tion v; and the nuclear positions R;. The forces are calculated as the action of the
Kohn-Sham Hamiltonian on the wavefunction'=9F /0c;(G). The forces with respect
to the nuclear positions are —0&/0R;. The Lagrange multipliers add forces A;;c;(G)
to the force —0F/0ci(G). These forces ensure that the electronic wave functions
remain orthonormal as they propagate along their molecular-dynamics trajectories.
Because of the expansion of the electroni¢ wavefunction in plane waves, the orthonor-
mality constraint does not depend on the nuclear positions. For basis sets that depend
on the atomic positions (e.g. atomic orbital basis sets) or methods that introduce an

atomic position dependent metric the integration methods have to be adapted.

2.3.3 Numerical Integration

In a computer experiment we will not be able to generate the true trajectory
of a system with a given set of initial positions and velocities. For all potentials
used in real applications only numerical integration techniques can be applied. These
techniques are based on a discretization of time and a repeated calculation of the
forces on the particles. However, what we are looking for is a method with special

properties: long time energy conservation and short time reversibility. Long time
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energy conservation ensures that we stay on (in fact close) to the constant energy
hypersurface and the short time reversibility means that the discretize equations still
exhibit the time reversible symmetry of the original differential equations. Using these
methods, the numerical trajectory will immediately diverge from the true trajectory
(the divergence is exponential), but as they stay on the correct hypersurface, they
still sample the same microcanonical ensemble. On the other hand, a short time
accurate method will manage to stay close to the true trajectory for a longer time
and ultimately will also exponentially diverge but will not stay close to the correct

energy hypersurface and therefore will not give the correct ensemble averages.

Our method of choice is the velocity Verlet algorithm. It has the advantage that
it uses as basic variables positions and velocities at the same time instant ¢. The
velocity Verlet algorithm looks like a Taylor expansion for the coordinates:

R(t + dt) = R(t) + V(t)ot + %(&)2. (2.22)

This equation is combined with the update for the velocities

F(t+ o) + F(t)
2M

V(t+ot) = Vi(t)+ ot (2.23)

where dt is the length of the time step, R(t) is:the value at the present time step, and
R(t + dt) is the value at the next time step.

The velocity Verlet algorithm can easily be cast into a symmetric update procedure
that looks in pseudo code
V() = V() + (01/2M()) % F()
R(:) == R(:) + ot = V()
Calculate new forces F'(:)

V() :=V(E)+ (0t/2M () = F(:)

To perform a computer experiment the initial values for positions and velocities

have to be chosen together with an appropriate time step (discretization length) dt.
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2.3.4 Integration of equations of motion

The integrator used in the CPMD code is based on the velocity Verlet/rattle
algorithm. The velocity Verlet algorithm requires more operations and more storage
than the Verlet algorithm. However, it is much easier to incorporate temperature
control via velocity scaling into the velocity Verlet algorithm. In addition, velocity
Verlet allows to change the time step trivially and is conceptually easier to handle.
The equations of propagation may be integrated using the velocity Verlet algorithm

that takes the following form:

¢i(t + 6t) = ¢;(t) + 6ty (t) + 5

fz ZAZJC] ]

Gt +0t) = ¢(t) + —

Lfi(t) + fi(t + 6t)] + Z Asje; (t)]
5t?

R;(t +0t) = Ry(t) + 6tR(t) + 20T,

Fi(t)

Ri(t + 6t) =R (t)+ 25_]\/11 [F1(t) + Fi(t + ot)].

It is defined by the following equations

Ri(t 468) = Ri(2) + 25—MIF,( ) (2.24)

Ri(t+6t) = Ry(t) + 6tf%,(t + 6t)
Gi(t+0t) = ()+ fz()
Ei(t + 5t) = Ci( ) + (StCi(t + 5t)

ci(t+6t) = &(t+0t) + Y Xyei(t
j

calculate Fy(t+ 6t) : —OE/OR;
calculate f;(t + 6t) : —0E/0c}(G)

) ot
R[(i‘i‘(%) R[<t+§t) +—F](t—|—(5t>
2M;

it + 6t) = &(t 4 ot) + ﬁf,-(t + 0t)

&t +0t) = t+5t+z ci(t -+ at),
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where R;(t) and ¢;(t) are the atomic positions of particle I and the Kohn-Sham
orbital 7 at time t respectively. Here, F; are the forces on atom I, and f; are the
forces on Kohn-Sham orbital ¢« The matrices X and Y are directly related to the
Lagrange multipliers by

5t?
Xij - _2M fj (2'25>
Y = g—tA;?j. (2.26)
M

Notice that in the rattle algorithm the Lagrange multipliers to enforce the or-
thonormality for the positions A]fj and velocities Aj; are treated as independent vari-
ables. Denoting with C the matrix of wavefunction coefficients ¢;(G), the orthonor-

mality constraint can be written as

Clt+st)C(t+t) — 1 =0 (2.27)
[(Z*+XC]T [(3+XC} =0 (2.28)
CIC+ XCOI@+ CTCXT4 XXT - T=0 (2.29)
XX+ XBHIBIXE =] — A (2.30)

where the new matrices A;; = Gt + 0#)¢;(£+0t) and B,; = c! (t)&(t + 6t) have been
introduced in eq.(2.29). The unit matrix is denoted by the symbol I. By noting that
A =T+ 0(t?*) and B = I + O(dt), Eq.(2.29) can be solved iteratively using

1
X0 = S [1 = A4 X (1 = B)+ (I = B)X™ (X(”)ﬂ . (231)
and starting from the initial guess

X0 — %(1 A (2.32)

In Eq.(2.30) it has been made use of the fact that the matrices X and B are real
and symmetric, which follows directly from their definitions. Eq.(2.30) can usually

be iterated to a tolerance of 107% within a few iterations.

The rotation matrix Y is calculated from the orthogonality condition on the or-
bital velocities

el (t 4 0t)e;(t 4 0t) + i (t + 6t)¢;(t + 6t) = 0. (2.33)
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Applying Eq.(2.32) to the trial states C" 4+ Y'C' yields a simple equation for ¥

v =5@+QN, (2.34)

where Q; = ¢l (t + 5t)é’j(t + dt). The fact that Y can be obtained without iteration
means that the velocity constraint condition Eq.(2.32) is satisfied exactly at each time

step.

The procedure for performing a total-energy pseudopotential calculation using the
molecular dynamics technique is shown in the flow diagram of Fig.3 The procedure
requires an initial set of trial wavefunctions from which the Hartree potential and
the exchange-correlation potential can be calculated. The Hamiltonian matrices are
constructed, and from these the accelerations of the wavefunctions are calculated.
The equations of the motion for the electronic states are integrated, and the wave
functions are orthogonalized and normalized. The charge density generated by the
new set of wavefunctions is then calculated. This charge density used to construct
a new set of Hamiltonian matrices, and a further set of wavefunctions is obtained
by integration of the equations of maotion and orthonormalization of the resultant
wavefunctions. These iterations are repeated until-the wavefunctions are stationary.
The wavefunction are then linéar combinations 6f the Kohn-Sham eigenstates. The
Kohn-Sham energy functional is minimized and its value gives the total energy of the

system. The solution is identical to the solution that would be obtained by using
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matrix diagonalization techniques with the same basis states.

Construct Vion given atomic numbers and
positions of ions

!
Pick a cutoff for the plane-wave basis set
¥
Choose initial wave functions
¥
Calculate n (r)
¥
Calculate Vi (n) and Vxc(n)
P
Construct KOHN-SHAM Hamiltonian H
s
Calculate pé(c) = %@ " XJ: Asjc;(G)
MRy = —g—g
! A
Integrate equations of motion
y
Orthogonalize and normalize
wave functions
!
(ARE WAVE FUNCTIONS STATIONARY? )
+ YES NO
—

Compute Total Energy |

FIG.3. Flow chart describing the computational procedure for the calculation of the total energy of

a solid with molecular dynamic.

2.3.5 Car-Parrinello Molecular Dynamics: Input File Format

For the CP-MD job you need a new input file, 7-h20-cpmd.inp, which should
be copied into the same directory, where you started the wavefunction optimization

run. If you compare it to the previous input files, you will find, that the only changes
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are again only in the & CPMD section of the input file.

&CPMD
MOLECULAR DYNAMICS CP
RESTART WAVEFUNCTION COORDINATES LATEST
MAXSTEP
500
TIMESTEP
2.0
STRUCTURE BONDS ANGLES
&END

The keyword MOLECULAR DYNAMICS CP defines the job type. RESTART
[OPTION] this keyword controls what data is read(at the beginning) from the latest
restart file (which is named RESTART.1 by default). A list of different OPTIONS
can be specified (i.e. WAVEFUNCTION: Read old wavefunction from restart file,
COORDINATES: Read old coordinates frém restart file, VELOCITIES: Read
old ionic,wavefunction and (celf)velocities from restart file, LATEST: Restart from
the latest restart file as indicated in file - LATEST; ALL: Restart with all fields of
RESTART file, etc.). MAXSTEP limits the/MD to 500 steps(default is 10000
steps) and the equations of motion will be solved for a time step of 2 atomic units

(1 a.u. = 0.0241888428 femtoseconds).
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3 Procedure

An outline of the three procedures for the CPMD program is given below:

Read data from input file.

A

Choose the methed for calculation.

In this paper we have three choices:

1. Optimize Wavefunction(WFOPTS.F)
2. Optimize Geometry(GMOPTS.F)

3. Molecular Dynamic CP(MDPT.F)

A

Y

Print-out Time and Date

PMAXMEM.F: Print memory allocation.
TIPRLF: Print timing info.

DATUMLE: Print date.

TIIMEX.F: Exit if the job time limit is

reached.

A 4

Allocate memory
FNLAOC.F

v

Approximation

Optimize Wavefunction
(RWFOPT.F)

Optimize Geometry
(GEOPT.F)

Molecular Dynamic CP
(MDMAIN.F)

Initialization of the run

v

le

The main loop
for approximation and

Print-out Final result

¥

Deallocate memory
FNLDEALOC.F

The CPMD program starts with reading the input files, setting up the factors,

which are applied to the computation, and the environment, e.g.the number of plane

waves for wavefunction cutoff, super cell etc. First,decide which method, Optimize

Wavefunction, Optimize Geometry, or Molecular Dynamic CP, will be used to com-

pute the ground state energy. After that, allocate the memory for approximation, and

give the initial guess for the electron structure. When the approximation completes,

deallocate the memory and print out the total running time.
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3.1 Optimize Geometry: Procedure

3.1.1 GEOPT.F: Initialization

RHOE PSI SIZE.F:
Allocate electronic density
array(RHOE) and electronic
potential(PSI) size.

v ZHRWEF: Read data
INITRUN.F » (Wavefunction) from
restart file.
v b
DETDOF.F : Calculate PHFAC.F: Calculate
Degree of freedom (GLIB) Phase Factors.
Total atomic masses (PATOT) *

Atomic masses(PMALL) ]
WRGEO.F: Print-out

¢ atomic coordinate.
HESSIN.F: Initial Hessian is l’
the unit matrix then symmetize GEOFILE.F: Write
the matrix. data(VELP, TAUO) in
l GEOFILE.

WRGEO.F: Print-out atomic |

coordinate.

TOL INIT.F: Initialization of

electronic convergence criteria.

Initialization starts with allocating electronic density array and electronic poten-
tial size. Second, check whether the data comes from the restart file. Then, find
phase factors, atomic masses, and degree of freedom etc.. Subsequently, set either
unit matrix as the initial Hessian matrix or an empirical force field by default, and

then symmetrize the matrix. Finally, specify the electronic convergence criteria.
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3.1.2 GEOPT.F: The main loop for approximation

Print for Geometry Optimization heading.

¥

The main loop for optimization of geometry starts.

A

v

Loop for preoptimization of wavefunction starts.

‘_

+

Update the wavefunctions
v

Check whether wavefunction is converged
¥

Print for wavefunctions optimization

Are wavelunctions

converged?

Write wavefunction in restart file.

¥
Using BFGS methods update the

Hessian matrix. Calculate Force and
Coordinate change.
v

Print for geometry optimization and

calculate energy change.
v

Store the nuclear positions.
3

Using GDIIS methods calculate new

set of wavefunction.
v

Determind the energy change and the

wavefunction gradient tolerance for

the next step.

¥

Orthogonalize a set of wavefunction

no

Are the gradients
stationary?

Write a set of wavefunction

into restart file.

!

GNODIM.F: Calculation
GNORM and GNMAX

v

FINALPF: Print-out Final

by Gram-Schmidt orthogonalization.

25
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After the initialization, calculate a new set of wavefunctions by using ODIIS sub-
routine repeatedly until the wavefunctions are stationary. After that, start the geom-
etry optimization by using BFGS method to update the Hessian matrix and calculate
new forces and coordinate changes. A set of wavefunctions are calculated again by
DIIS method and check the convergence of gradient and orthogonalize a set of wave-
functions by Gram-Schmidt method. These routines repeat until both the set of
wavefunction and the gradient are stationary. The evolution of computation will be

printed out in each iteration.

Print-out the final result: store data into the restart file and GEOMETRY file,
and calculate the values, GNORM(Norm of Gradient) and GNMAX (maximum com-
ponent). Then, print-out final result, the total energy and computational information,

in the output file.
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3.2 Car-Parrinello Molecular Dynamics: Procedure

3.2.1 MDMAIN.F': Initialization

RHOE PSI SIZE.F: Allocate
electronic density array(RHOE) and

electronic potential(PSI) size.

v

RESETAC.F: Reset accumulator

v

INITRUN.F : It’s the same with

optimize geometry.

Y

-
+

b

DETDOEF : Calculate
Degree of freedom (GLIB)
Total atomic masses (PATOT)
Atomic masses(PMALL)

v

RESCAL.F: Rescalse velocities

—

EKINPP.F:
Calculate kinetic

energy of the ions

-
-5

h 4

FORCEDR: Calculate gradient(C2)

v

RORTVE: Calculate constraint
matrix velocities{ GAMY).

v

WRGEO.F: Print-out atomic

coordinate

v

WRITE IREC.F: Store data

ZHRWE.F: Read data
(Wavefunction) from

restart file.

|

PHFAC.F: Calculate

Phase Factors.

v

WRGEO.F: Print-out

atomic coordinate.

:

GEOFILE.F: Write
data(VELP. TAUO) in
GEOFILE.

The program starts with allocating electronic density array and electronic po-

tential size. After that, reset accumulator, save initial positions and reset the time

counter, and then give the starting configuration i.e.read data from the restart file,

calculate phase factor etc, which are the same as the previous method. Subsequently,
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give the kinetic energy of the ions. Then, calculate the potential and the force on
the ions as well as the electronic force and electronic density. Finally, calculate the

constraint matrix velocities.
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3.2.2 MDMAIN.F: The main loop for approximation

The main loop for MD using velocity verlet. DoI=1, MAXSTEP ¢

v
MY SYNC.F: Synchronisation of all processor.
v
VELUPLF: Update velocities.
v
POSUPLF: Update the positions for velocity verlet.
v
PHFAC.F: Calculate Phase Factor.
v
POSUPA_F: Update the positions.
v
FORCEDR.F: Calculate forces
v
VELUPLF: Final update for velocities
v

RORTV.F: Check orthogonality condition for

wavefunction velocities.

v
EKINPP.F: Calculate kinetic energy for ions.
v
REKINE.F: Calculate fictitious kinetic energy of the

electron.

v
WRPRINT MD.F: Print out the evolution of the
accumulators every time step.

v
DCOPY.F: Store new ionics positions.

1=MAXSTEP no

|

PACCAF: Print “Averaged Quantities”

v

CSIZE.F: Calculate GEMAX. CNORM

v

GSIZE.F: Calculate GNMAX, GNORM

v

FINALPF: Print-out “Final Relult”
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The procedure starts with synchronizing all processors. From the initialization,
we have the initial guess for the electron structure. The structure of the algorithm
for the wavefunctions is given below
1. Update velocities VELP(:) = VELP(:) + (6t/2m) « FION(:)

Update positions TAUP(:) = TAUO(:) + 6t « VELP(:)

Calculate Lagrange multiplier L

Position constraints TAUO(:) = TAUP(:) + L+ TAUO(:)

Calculate forces FION(:) = H « TAUO(:)

Final update for velocities VELP(:) = VELP(:) + (dt/2m) « FION(:)
Velocities constraints VELP(:) = VELP(:) + L+ TAUO(:)

N O e W

Now we have a new set of wavefunctions to calculate kinetic energy for ions, mean
squared displacement of the atoms from the initial coordinates, and fictitious kinetic
energy of the electrons. At each time step, print out the evolution of the accumulators
and store the new ionics positions. Perform the procedure stated above repeatedly un-
til the approximation reaches the maximum time step. Then, print out the averaged
quantities values in the output file and:calculate GEMAX(maximum component of
electronic gradient), CNORM (norm of electronic gradient), GNMAX (maximum com-
ponent) and GNORM(Norm of. Gradient).- Finally, print the final total energy and

computational information in the output-file:
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4 Discussion and Output File Format

4.1 Optimize wavefunction: Output file format

With the input file 1-h20-wave.inp,

&INFO
Isolate water molecule.
Single point calculation.
&END
&CPMD
OPTIMIZE WAVEFUNCTION
CONVERGENCE ORBITALS
1.04-7
STRUCTURE BONDS ANGLES
&END
&DFT
FUNCTIONAL BLYP
GC-CUTOFF
1.04-06
&END
&SYSTEM
SYMMETRY
1
CELL
20.0 1.0 1.0 0.0 0.0 0.0
CUTOFF
70.0
&END
&ATOMS
*0_MT_BLYP.psp KLEINMAN-BYLANDER
LMAX=P
1
10.0 10.0 10.0
*H_MT_BLYP.psp

LMAX=S

2

8.5 9.0 10.0

11.5 9.0 10.0
&END

31



we get the output file 7-h20-wave.out. Let’s have a closer look at the contents of this
file.

PROGRAM CPMD STARTED AT: Sat Jun 23 17:01:30 2007

FhERdE  EARERE FhER  kERE RRAREE
EANERKE  AREEARE  RERKERRERE  REREEAE

Fk% 4 kEE kk kEsk Rk kR fokx
#k B4 kEEk  kk k& EE E *%
Fk EhkERRE bk ET T *k
Fkx Bk Ak $k #k k& Fkx
ETT I T Tt £t Fh kEdkEik
AkkxkE  kH Hk % kEdEEE
VERSION 3.9.2
COPYRIGHT

IBM RESEARCH DIVISION
MPI FESTKOERPERFORSCHUNG STUTTGART

The CPMD consortium
WWW:  http://www.cpmd.org
Mailinglist: cpmd-list@pmd.org
E-mail: cpmd@cpmd.org

**% Jun 9 2007 -- 15:13:18 ***

THE INPUT FILE IS: 1-h20-wave. inp
THIS JOB RUNS ON: yui.am.nctu.edu. tw
THE CURRENT DIRECTORY IS:

I root /CPMD/ SOURCE
THE TEMPORARY DIRECTORY IS:

I root /CPMD/ SOURCE
THE PROCESS ID IS: 3650
THE JOB WAS SUBMITTED BY: root

We start with the header, where you can see, when the run was started, what
version on CPMD you were using, and when it was compiled. Here we have some

technical information about the environment, where this job was running.

kkckkckokkkokokokkokokokokokokokokckok kkokk sk ok sk skk sk sk sk ks osk sk sk okskosk sk sk ok oskosk ok k ok kR kkok ksk ok skkksk sk sk sk sk ok ok sk sk sk sk sk sk sk ok ok
*# INFO - INFO - INFO - INFO - INFO - INFO - INFO - INFO - INFO - INFO - INFO #*
dkckkkokkckkkkkokkkok kR Rk kokokokskskckkkoRkokRoRckokokkokk sk kok Rk kkokokkkkckkokkkokokkokkk kR kkk sk ksk k%
* Isolate water molecule. *

* Single point calculation. *
kokkkkokokkkkokkdkkokckokkokkkkkokkkdkokkskkokokkkkkkkkkckskkkkkkkkkkkkkkokskkkskkkkokkkkkkkkkkkkkk
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Here we see the contents of the &INFO section copied to the output.

SINGLE POINT DENSITY OPTIMIZATION

PATH TO THE RESTART FILES: A
GRAM- SCHMIDT ORTHOGONALIZATION

MAXIMUM NUMBER OF STEPS: 10000 STEPS
PRINT INTERMEDIATE RESULTS EVERY 10001 STEPS
STORE INTERMEDIATE RESULTS EVERY 10001 STEPS
NUMBER OF DISTINCT RESTART FILES: 1
TEMPERATURE 1S CALCULATED ASSUMING EXTENDED BULK BEHAVICR
FICTITIOUS ELECTRON MASS: 400.0000
TIME STEP FOR ELECTRONS: 5.0000
TIME STEP FOR IONS: 5.0000

CONVERGENCE CRITERIA FOR WAVEFUNCTION CPTIMIZATION:  1.0000E-07
WAVEFUNCTION OPTIMIZATION BY PRECONDITIONED DIIS

THRESHOLD FOR THE WF-HESSIAN IS 0.5000
MAXIMUM NUMBER OF VECTORS RETAINED FOR DIIS: 10
STEPS UNTIL DIIS RESET ON POOR PROGRESS: 10

FULL ELECTRONIC GRADIENT IS USED
SPLINE INTERPOLATION IN G-SPACE FOR PSEUDOPOTENTIAL FUNCTIONS
NUMBER OF SPLINE POINTS: 5000

This section now gives you a summary of the parameters read in from the &CPMD

section, or their respective default settq1$s h
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EXCHANGE CORRELATION FUNCTIONALS
LDA EXCHANGE: SLATER (ALPHA = 0.,66667)
LDA CORRELATION: LEE, YANG & PARR
[C.L. LEE, W. YANG, AND R.G. PARR, PRB 37 785 (1988)]
GRADIENT CORRECTED FUNCTIONAL

DENSITY THRESHOLD: 1.00000E-06
EXCHANGE ENERGY

[A.D. BECKE, PHYS. REV, A 38, 3098 (1988)]

PARAMETER BETA: 0,004200

CORRELATION ENERGY
[LYP: C.L. LEE ET AL, PHYS. REV. B 37, 785 (1988)]

Lt DETSPI THE NEW SIZE OF THE PROGRAM IS 1636/ 42832 kBYTES ***

k. ATOMS *F*rErfrirfhhdrissststssss

NE TYPE X(bohr) Y(bohr) Z(bohr) MBL

1 0 10.000000 10.000000 10.000000 3

2 H &.500000 9.000000 10.000000 3

3 H 11.500000 9.000000 10.000000 3

g

NUMBER OF STATES: 4

NUMBER OF ELECTRONS: 8.00000

CHARGE: 0.00000

ELECTRON TEMPERATURE(KELVIN): 0.00000
OCCUPATION

2.0 2.0 2.0 2.0

| Pseudopotential Report Thu Nov 30 13:19:26 1995 |
Atomic Symbol s
Atomic Number o B
Number of core states sl
Number of valence states 2
Rz

| Number of Mesh Points ; 631 |

| Pseudoatom Total Energy -15.775323 |

This part of the output tells you which and how many atoms and electrons are
used, what functional and what pseudopotentials were used, and what the values of

some related parameters are.
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“““““ * SQUPERCELL ######fsfxsssssssnsnrsrssss

SYMMETRY :
LATTICE CONSTANT(a.u.):

SIMPLE CUBIC
20.00000

CELL DIMENSION: 20.0000 1.0000 1.0000 0.0000 0.0000 0.0000

VOLUME(OMEGA IN BOHRA3): §000. 00000
LATTICE VECTOR Al(BOHR): 20.0000 0.0000 0.0000
LATTICE VECTOR A2(BOHR): 0.0000 20.0000 0.0000
LATTICE VECTOR A3(BOHR): 0.0000 0.0000 20.0000
RECIP, LAT. VEC. BI(2Pi/BOHR): 0.0500 0.0000 0.0000
RECIP, LAT. VEC. B2(2Pi/BOHR): 0.0000 0.0500 0.0000
RECIP, LAT. VEC. B3(2Pi/BOHR): 0.0000 0.0000 0.0500
REAL SPACE MESH: 108 108 108
WAVEFUNCTION CUTOFF(RYDBERG): 70.00000
DENSITY CUTOFF(RYDBERG): (DUAL= 4.00) 280.00000
NUMBER OF PLANE WAVES FOR WAVEFUNCTION CUTOFF: 39559
NUMBER OF PLANE WAVES FOR DENSITY CUTOFF: 316426

““““““ FRRFFRRRFRRFRRRRFRF K RERRRRERERRRRFEEEE

*#*% RINFORCE| THE NEW SIZE OF THE PROGRAM IS 33968/ 74424 KBYTES ***
LA FFTPRP| THE NEW SIZE OF THE PROGRAM IS 73584/ 112216 KBYTES ***

GENERATE ATOMIC BASIS SET

0 SLATER ORBITALS
25 ALPHA=  2.2458 OCCUPATION= 2.00
2P ALPHA=  2.2266 OCCUPATION= 4.00
H SLATER ORBITALS
18 ALPHA=  1.0000 OCCUPATION= 1.00

This part of the output presents the settings read in from the &SYSTEM section

of the input file and some deri:yed pa;raggléters. o

(K+E14L4N+X) TOTAL ENERGY = -16.76192374 A.U.
() KINETIC ENERGY = 13.19562960 A.U.
(E1=A-S4R) ELECTROSTATIC ENERGY = -11.08250703 A.U.
(3) ESELF = 12.63317221 A.U.
(R) ESR = 0.88954969 A.U.
(L) LOCAL PSEUDOPOTENTIAL ENERGY = -16.49021572 A.U.
(N) N-L PSEUDOPOTENTIAL ENERGY = 2.02457900 A.U.
(X) EXCHANGE-CORRELATION ENERGY = -4.40940959 A.U.

GRADIENT CORRECTION ENERGY = -0.25322421 A.U.

After some output to report the setup of the initial guess for the electron structure,
we now see a summary of the various energy contribution to the total energy of the
system, based on the initial guess. Now the program is ready to start the wavefunction

optimization.

Starting from the initial guess based on atomic wavefunctions the wavefunction

for the total system is now calculated with an optimization procedure. You can follow
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the progress of the optimization in the output file.

NFI GEMAX CNORM ETOT DETOT TCPU
1 4.077E-02 4.719E-03 -16.761924 0.000E+00 3.05
2 2.362E-02 1.922E-03 -17.060918  -2.990E-01 3.05
3 1.189E-02 8.83BE-04 -17.125082  -6.416E-02 3.05
4 5.113E-03 4.252E-04 -17.138541  -1.346E-02 3.10
5 3.353E-03 1.652E-04 -17.140948  -2.407E-03 3.10

[]

18 5.360E-07 2.894E-08 -17.141714  -7.373E-11 3.17
19 2.004E-07 1.353E-08 -17.141714  -1.238E-11 3.17
20 1.102E-07 6.425E-09 -17.141714  -3.077E-12 3.15
21 4.590E-08  3.263E-09 -17.141714 1.954E-13 3.14

The columns have the following meaning;:

NFI : Step number (number of finite iterations)
GEMAX : largest off-diagonal component

CNORM : average of the off-diagonal components
ETOT : total energy

DETOT : change in total energyito the previoli‘sr step
) ] = < k. =
TCPU : (CPU) time for thisstep .« ‘q

and you can see that the calculation "étops ‘éqfte‘r‘“the convergence criterion of 1.0d-7

has been reached for the GEMAX value
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R it i R e e e P e S e 2 T

* ¥
¥ FINAL RESULTS ¥
* ¥

R it i R e e e P e S e 2 T

R it i R e e e P e S e 2 T

. ATOMIC COORDINATES .
R it i R e e e P e S e 2 T
1 0 10.000000 10.000000 10.000000
2 H 8.500000 9.000000 10.000000
3 H 11.500000 9.000000 10.000000

R it i R e e e P e S e 2 T

ELECTRONIC GRADIENT:
MAX. COMPONENT =  4.59033E-08 NORM = 3.26286E-09

TOTAL INTEGRATED ELECTRONIC DENSITY

IN G-SPACE = 8.000000

IN R-SPACE = 8.000000
(K+EL4+L+N+X) TOTAL ENERGY = -17.14171423 AU,
(K) KINETIC ENERGY = 12.93978690 A.U.
(El1=A-S4R) ELECTROSTATIC ENERGY = -11.34014526 A.U.
(S) ESELE = 12.63317221 A.U.
(R) ESR = 0.88954969 A.U.
(L) LOCAL PSEUDOPOTENTIAL ENERGY = -16.23946339 A.U.
(N) N-L PSEUDOPOTENTIAL ENERGY = 1.70818774 A.U.
(X) EXCHANGE-CORRELATION ENERGY = -4.21008022 A U.
GRADIENT CORRECTION ENERGY = -0.25011122 A.U.

Here we have the final summary of the results from our single point calculation.

<<<<< ASSUMED BONDS >»>>>
2<-> 1 3 <> 1
TOTAL NUMBER OF MOLECULAR STRUCTURES: 1

BONDS
ATOM 1 ATOM 2 TYPE 1 TYFE 2 DISTANCE (BOHR, ANGSTROM)
2 1 H 0 1.80278 0.95399
3 1 H 0 1.80278 0.95399
ANGLES
ATOM NUMBERS ATOM TYPES BOND ANGLES(DEGREES)
2 1 3 H 0 H 112.6199

e Y L T I ST T I L]

Since we have requested the output print structure information at the end of run

you can see them in title ASSUMED BONDS.
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BIG MEMORY ALLOCATIONS

SCR 7108197 PSI 2590058
YF 2590058 XF 2550058
PME 1582440 RHOE 1295029
GK 949278 RHOPS 632852
SCG 632852 VES 632852

[PEAK NUMBER 78] PEAK MEMORY 25048782 = 200.4 MBytes

LRt i PR L LR LR LR LR L L RS A LR R A LR R LR AR LA AR A S R RS R L EEE L L]

* #
* TIMING #*
* #

LRt i PR L LR LR LR LR L L RS A LR R A LR R LR AR LA AR A S R RS R L EEE L L]

SUBROUTINE CALLS CPU TIME ELAPSED TIME
FWEET 110 14.41 14,50
GCENER 22 14.14 14.19
INVFET 89 11.47 11.60
S_INVFFT 88 6.40 6.52
XCENER 22 5.41 5.40
S_FWEFT 46 3.82 3.93
FFT-G/S 268 Sl 3.00
GRADEN 22 2.54 2.62
ODIIS 21 2,25 2.27
PHASE 159 1.96 2.04
VPSI 24 1.28 1.28
RHOOFR 21 1.10 1.13
ATRHO 1 1.04 1.08
VOFRHOA 22 1.04 0.99
VOFRHOB 22 0.91 0.92
EICALC 22 0.68 0.69
NLIN 2 0.39 0.40
FORMEN 2 0.26 0.26
RGGEN 1 0.20 0.24
NUMPW 1 0.18 0.19
TOTAL TIME 72.59 73.25

LRt i PR L LR LR LR LR L L RS A LR R A LR R LR AR LA AR A S R RS R L EEE L L]

CPU TIME : 0 HOURS 1 MINUTES 13.20 SECONDS
ELAPSED TIME : 0 HOURS 1 MINUTES 13.94 SECONDS

PROGRAM CPMD ENDED AT:  Sat Jun 23 17:02:44 2007

In the final part of the output, we see some statistics regarding memory and CPU
time usage. This is mainly of interest for CPMD developers, but it does not hurt to

have an occasional look and see if the numbers are reasonable. Please note, that the
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retrieval of this information is highly platform dependent, and that on some platforms

the output may be bogus or very unreliable.

4.2 Optimize geometry: Output file format

With the input file 1-h20-geoopt.inp,

&CPMD
OPTIMIZE GEOMETRY XYZ
HESSIAN UNITY
CONVERGENCE ORBITALS
1.04-7
CONVERGENCE GEOMETRY
3.0d-4
STRUCTURE BONDS ANGLES
&END
&DFT
FUNCTIONAL BLYP
GC-CUTOFF
1.0d4-06
&END
&SYSTEM
SYMMETRY
1
CELL
20.0 1.0 1.0 0.0 0.0 0.0
CUTOFF
70.0
&END
&ATOMS
*0_MT_BLYP.psp KLEINMAN-BYLANDER
LMAX=P
1
10.0 10.0 10.0
*H_MT_BLYP.psp

LMAX=S

2

8.5 9.0 10.0

11.5 9.0 10.0
&END
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we get the output file 1-h20-geoopt.out.

OPTIMIZATION OF ICONIC POSITIONS

PATH TO THE RESTART FILES: o
GRAM-SCHMIDT ORTHOGONALIZATION

MAXIMUM NUMBER OF STEPS: 10000 STEPS
PRINT INTERMEDIATE RESULTS EVERY 10001 STEPS
STORE INTERMEDIATE RESULTS EVERY 10001 STEPS
STORE INTERMEDIATE RESULTS EVERY 10001 SELF-CONSISTENT STEPS
NUMBER OF DISTINCT RESTART FILES: 1
TEMPERATURE IS CALCULATED ASSUMING EXTENDED BULK BEHAVIOR
FICTITIOUS ELECTRON MASS: 400.0000
TIME STEP FOR ELECTRONS: 5.0000
TIME STEP FOR IONS: 5.0000

CONVERGENCE CRITERIA FOR WAVEFUNCTION OPTIMIZATION:  1.0000E-07
WAVEFUNCTION OPTIMIZATION BY PRECONDITIONED DIIS

THRESHOLD FOR THE WF-HESSIAN IS 0.5000
MAXIMUM NUMBER OF VECTORS RETAINED FOR DIIS: 10
STEPS UNTIL DIIS RESET ON POOR PROGRESS: 10

FULL ELECTRONIC GRADIENT IS USED
CONVERGENCE CRITERIA FOR GEOMETRY OPTIMIZATION: 3.000000E-04
GEOMETRY OPTIMIZATION BY GDIIS/BFGS
SIZE OF GDIIS MATRIX: 5
GEOMETRY CPTIMIZATION IS SAVED ON FILE GEO_COPT.xyz
INITIAL HESSIAN IS UNIT MATRIX
SPLINE INTERPOLATION IN G-SPACE FOR PSEUDOPOTENTIAL FUNCTIONS
NUMBER OF SPLINE POINTS: 5000

As you can see from the first ":'pa‘rt_. of the output file (1-h20-geoopt.out), CPMD

TLE
L

has recognized the job type, our convergence parameter and the request to write a

GEO_OPT.zxyz file.

40



= GECMETRY OPTIMIZATION =

NFI GEMAX CNORM ETOT DETOT TCRU
EWALD| SUM IN REAL SPACE QVER 1*# 1* 1 CHIS
1 4.082E-02 4.702E-03 -16.768409  -1.677E+01 3.02
2 2.360E-02 1.912E-03 -17.066259  -2.978E-01 3.04
3 1.190E-02 8.789E-04 -17.130679  -6.442E-02 3.06
4 5.077E-03  4.267E-04 -17.144081  -1.340E-02 3.07
5 3.466E-03 1.677E-04 -17.146522 -2.441E-03 3.06
[-]
17 1.236E-06  5.355E-08 -17.147317  -2.701E-10 3.k
18 5.729E-07  2.745E-08 -17.147317  -6.422E-11 3.14
19 1.931E-07 1.291E-08 -17.147317  -1.323E-11 3.14
20 1.106E-07 6.200E-09 -17.147317 5.862E-13 3.22
21 3.672E-08 2.932E-09 -17.147317  -2.931E-12 3.22
RESTART INFORMATION WRITTEN ON FILE . [RESTART . 1
ATOM COORDINATES GRADIENTS ( -FORCES)

1 0 10.0000 10.0000 10.0000 1.219E-13 -3.294E-02 8.541E-13

2 H 8.5000 9.0000 10.0000 6.981E-03 1.771E-02 1.728E-15

3 H 11.5000 9.0000 10.0000 -6.981E-03 1.771E-02 2.505E-15
FILE ./GEQ_OPT.xyz EXISTS, NEW DATA WILL BE APPENDED

B S T g S e Ry e gy

*sx TOTAL STEP MR. 21 GEOMETRY STEP NR. 1 aes
**+ GNMAX= 3.293683E-02 ET0T=  -17.147317 ***
*2+ GNORM= 1.417885E-02 DETOL=  0.000E«00 ***
#+* (NSTR="0.000000E+00 TCPU= 65.80 *=

e L R R R R R AR AR
[-]

e S R R R R R AR AR
**% TOTAL STEP NR. 130 GEOMETRY STEP NR. 8 ***
*5 GNMAX= 2.112504E-04 [1.34E-03]  EIOT=  -17.149541 ***
*4% GNORM= 1.153189E-04 DEIOT=  -7.227E-07 ***
*%% (NSTR=_0.000000E+00 TCPU= 37.40 **%

B S T g S e Ry e gy

= END OF GECMETRY OPFTIMIZATION =

In the following output you can see, that an almost identical wavefunction opti-
mization takes place. After printing the positions and forces of the atoms, however,
you see a small report block and then another wavefunction optimization starts. The
numbers for GNMAX, GNORM, and CNSTR stand for the largest absolute compo-
nent of the force on any atom, average force on the atoms, and the largest absolute

component of a constraint force on the atoms respectively.
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La bt e R R R PR R LR R LR R EEEREEEEEEEEEREEEREE S A 2 R 2 o bttt ]
* *
* FINAL RESULTS ,
* *

La bt e R R R PR R LR R LR R EEEREEEEEEEEEREEEREE S A 2 R 2 o bttt ]

ATOM COORDINATES GRADIENTS (-FORCES)

1 0 10.0000 10.0950 10.0000 -7,705E-11 2.839E-05 -2.877E-09
2 H 8.5477 B8.9580 10.0000 -1.217E-04 -2.113E-04 2.569E-10
3 H 11.4523 8.9580 10.0000 1.217E-04 -2.112E-04 -1,342E-09

FEEFFFFFERRFRFFRRRRRR R RR RO R R R R R R R R A

ELECTRONIC GRADIENT:

MAX. COMPONENT =  6.08B59E-08 NORM =  5.42925E-09
NUCLEAR GRADIENT:
MAX. COMPONENT =  2.11250E-04 NORM =  1.15319E-04

TOTAL INTEGRATED ELECTRONIC DENSITY

IN G-SPACE = 8.000000

IN R-SPACE = §.000000
(KHEI+L+N+X) TOTAL ENERGY = -17.14954112 A.U.
(K) KINETIC ENERGY = 12.82168498 A.U.
(E1=A-S4R) ELECTROSTATIC ENERGY = -11.42593635 A.U.
(8) ESELF = 12.63317221 A.U.
(R) ESR = 0.81399784 A.U.
(L) LOCAL PSEUDOPCTENTIAL ENERGY = -16.08651050 A.U,
(N) N-L PSEUDOPOTENTIAL ENERGY = 1.73103901 A.U.
(X) EXCHANGE - OORRELATION ENERGY = -4,18981825 A.U.
GRADIENT CORRECTION ENERGY = -0.24918638 A.U.

At the end of the geometry optimization, you can see that the forces and the total

energy have significantly decreased from their start values as it is to be expected.

42



4.3 Car-Parrinello Molecular Dynamics : Output file format

With the input file 7-h20-cpmd.inp,

&CPMD
MOLECULAR DYNAMICS CP
RESTART WAVEFUNCTION COORDINATES LATEST

MAXSTEP
500
TIMESTEP
2.0
STRUCTURE BONDS ANGLES
&END
&DFT
FUNCTIONAL BLYP
GC-CUTOFF
1.0d-06
&END
&SYSTEM
SYMMETRY
1
CELL
20.0 1.0 1.0 0.0 0.0 0.0
CUTOFF
70.0
&END
&ATOMS
*0_MT_BLYP.psp KLEINMAN-BYLANDER
LMAX=P
1
10.0 10.0 10.0
*H_MT_BLYP.psp
LMAX=S
2
8.5 9.0 10.0
11.5 9.0 10.0
&END
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we get the output file 1-h20-cpmd.out.

CAR-PARRINELLO MOLECULAR DYNAMICS

PATH TO THE RESTART FILES: ot
RESTART WITH OLD ORBITALS

RESTART WITH OLD ION POSITIONS

RESTART WITH LATEST RESTART FILE

ITERATIVE ORTHOGONALIZATION

MAXIT: 30

EPS: 1.00E-06
MAXTMUM NUMBER OF STEPS: 500 STEPS
PRINT INTERMEDIATE RESULTS EVERY 10001 STEPS
STORE INTERMEDIATE RESULTS EVERY 10001 STEPS
STORE INTERMEDIATE RESULTS EVERY 501 SELF-CONSISTENT STEPS
NUMBER OF DISTINCT RESTART FILES: 1

TEMPERATURE IS CALCULATED ASSUMING EXTENDED BULK BEHAVIOR

The header is unchanged up to the point where the settings from the &CPMD
section are printed. As you can see, the program has recognized the RESTART and
the MAXSTEP keywords.

TIME STEP FOR ELECTRONS: 2.0000
TIME STEP FOR IONS: 2.0000
TRAJECTORIES ARE SAVED ON FILE

ELECTRON DYNAMICS: THE TEMPERATURE IS NOT CONTROLLED

ION DYNAMICS: THE TEMPERATURE IS NOT CONTROLLED
SPLINE INTERPOLATION IN G-SPACE FOR PSEUDOPOTENTIAL FUNCTIONS
NUMBER OF SPLINE POINTS: 5000

This part of the output tells us, that the TIMESTEP 2.0 keyword was recognized
(the default is 5.0 a.u., cf. the wavefunction output file), and that there will be no

temperature control, i.e. we will do a microcanonical (NVE-ensemble) simulation.

RV30| WARNING! NO WAVEFUNCTION VELOCITIES

RESTART INFORMATION READ ON FILE . /RESTART . 1

Here we get notified, that the program has read the requested data from the restart
file. The warning about the missing wavefunction velocities is to be expected, since

they will only be available when the restart was written by a previous Car-Parrinello
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MD run.

NFI EKINC  TEMPP EKS ECLASSIC EHAM DIS  TCFU
1 0.00000 0.1 -17.14172 -17.14171 -17.14171  0.456E-09 3.1%8
FILE . /TRATECTORY EXISTS, NEW DATA WILL BE APPENDED

2 0.00000 0.6 -17.14172 -17.14171 -17.14171  0.727E-08 3.13

3 0.00000 e -17.14173 -17.14171 -17.14171  0.367E-07 3.12

4 0.00000 2.2 -17.14174 -17.14171 -17.14171  0.113E-06 3.13

5 0.00000 3.4 -17. 14175 -17.14171 -17.14171  0.280E-06 3.11

6 0.00000 4.9 -17.14176 -17.14171 -17.14171  0.578E-06 3.14

7 0.00000 6.6 -17.14178 -17.14172 -17.14171 0. 106E-05 3.13

& 0.00000 8.5 -17.14180 -17.14172 -17.14171 0. 180E-05 3.14

9 0.00000 10.6 -17.14182 -17.14172 -17.14171  0.286E-05 3.12

10 0.00000 129 -17.14184 -17.14172 -17.14171  0.432E-05 o1 2

11 0.00000 15.4 -17.14186 -17.14172 -17.14171  0.628E-05 3.14

12 0.00001 18.0 -17.14189 -17.14172 -17.14171  0.881E-05 307
[+

491 0.00005 85.3 -17.14257 -17.14176 -17.14171  0.474E-02 3.13

492 0.00005 85.3 -17.14257 -17.14176 -17.14171  0.487E-02 3.14

493 0.00005 85.4 -17.14257 -17.14176 -17.14171  0.499E-02 3.16

494 0.00004 85.4 -17.14257 -17.14176 -17.14171  0.511E-02 3.13

495 0.00004 85.6 -17.14257 -17.14176 -17.14171  0.524E-02 3.13

496 0.00004 85.8 -17.14257 -17.14176 -17.14171  0.536E-02 3.14

497 0.00004 86.1 -17.14257 -17.14176 -17.14171  0.548E-02 3.13

498  0.00004 86.5 -17.14258 -17.14176 -17.14171  0.560E-02 3.13

499 0.00004 86.9 -17.14258 -17.14176 -17.14171  0.573E-02 3.13

3.15

500 0.00004 &7.5 -17.14259 -17.14175 -17.14171  0.585E-02

"1
]

After some more output, we 'alre‘aidyidir_sg&ssed for the wavefunction optimization,

2

this is now part of the energy suin{n@ry for a CariParrinello—MD run. The individual

columns have the following meaning: “

NFI : Step number (number of finite iterations)

EKINC . (fictitious) kinetic energy of the electronic (sub-)system (K.)

TEMPP  : Temperature (= kinetic energy (K;ons) / degrees of freedom)
for atoms(ions)

EKS : Kohn-Sham Energy (Fks), equivalent to the potential energy
in classical MD

ECLASSIC : Equivalent to the total energy in a classical MD
(ECLASSIC = Kions + Exs)

EHAM : total energy, should be conserved (Eyan = Kee + Kions + Exs)
DIS : mean squared displacement of the atoms from the initial coordinates.
TCPU : (CPU) time needed for this step.
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L EEER R AR R AR R R R R LR E R a R R L L R Ll

AVERAGED QUANTITIES *

ELECTRON KINETIC ENERGY
IONIC TEMPERATURE
DENSITY FUNCTIONAL ENERGY

CLASSICAL ENERGY
(CONSERVED ENERGY

NOSE ENERGY ELECTRONS

NOSE ENERGY IONS

CONSTRAINTS ENERGY

ION DISPLACEMENT

CPU TIME

L EEER R AR R AR R R R R LR E R a R R L L R Ll

MEAN VALUE +/- RMS DEVIATION
<> [<x2>-<x>N21F4(1/2)
0.648097E-04 0.320661E-04
126.01 67.44
-17.142976 0.670291E-03
-17.141779 0.321361E-04
-17.141714 0.337175E-06

0. 000000 0.00000

0.000000 0.00000

0. 000000 0.00000
0.171616E-01 0.163121E-01

3.1304

Finally we get a summary of some averages and root mean squared deviations

for some of the monitored quantities. This is quite useful to detect unwanted energy

drifts or too large fluctuations in the simulation.

4.4 Computational tests and results

Comparison of the resultstaken by Optimize Wavefunction, Optimize Geometry

and Molecular Dynamic CP algorithms. . All eriergies are in Hartree atomic units

(a.u.).
Atomic Coordinates (BONDS)
. CPU
Isolate hydrogen molecule | Number of | Total Energy | Convergence | CPU Time

(H2) Iterrations (-E) Criterion (Seconds) (Il\\d/[c]‘an;;r:) Ao % L 2
Optimize Wavefunction 10 1.13245953 | 1.87E-08 7.08 68.1 H 8.25999 | 7.558904 | 7.558904
H 6.85782 | 7.558904 | 7.558904
Optimize Geometry 26 1.13245953 | 4.61E-08 15.83 67.8 H B8.28560 | 7.558904 | 7.558904
H 6.83220 | 7.558904 | 7.558904
Optimize Geometry 18 1.132896 | 4.45E-08 9.55 67.6 H 8.28560 | 7.558904 | 7.558904
with RESTART H 6.83220 | 7.558904 | 7.558904
Molecular Dynamic CP 300 1.1328668 | 5.15B-04 | 157.75 66.0 H 8.29188 | 7.558904 | 7.558904
with Times Step 2 a.u. H 6.82593 | 7.558904 | 7.558904
Molecular Dynamic CP 400 1.1326409 | 7.80E-04 | 157.63 66.0 H 8.30519 | 7.558904 | 7.558904
with Times Step 2 a.u. H 6.81261 7.558904 | 7.558904

Table 1: Isolated hydrogen(Hs) molecule

46




Atomic Coordinates (BONDS)

. : CPU
Isolate water molecule | Number of | Total Energy | Convergence | CPU Time

(H20) lterrations | (-E) Criterion | (Seconds) &%”;‘t’g) Aom | X Y z
0] 10.00 10.00 10.00
Optimize Wavefunction 21 17.1417142 | 4.59E-08 73.25 200.4 H 8.50 9.00 10.00
H 11.50 9.00 10.00
0] 10.0000 | 10.0950 10.00
Optimize Geometry 130 17.1495411 | 6.09E-08 41539 1979 H 8.5477 8.9580 10.00
H 11.4523 8.9580 10.00
Optimize Geometry 0] 10.0000 |  10.1001 10.00
with RESTART 100 17.1444542 | 6.13E-08 311.94 192.8 H 8.53%4 8.9535 10.00
H 11.4606 8.9535 10.00
Molecular Dynamic CP 0] 10.0000 9.9923 10.00
with Times Step 2 a.u. 300 17.142586 | 4.66E-04 | 1562.36 | 179.2 H 8.4455 8.9241 10.00
H 11.5545 8.9241 10.00

Table 2: Isolated water(H>0) molecule
Atomic Coordinates (BONDS)
Isolate water molecule | Number of | Total Energy | Convergence | CPU Time CHY

(H20) Tterrations (-E) Criterion (Seconds) (’;:1%”;3;) Atom £ Y z
0] 10.00 10.00 10.00
Optimize Wavefunction 23 162078185 | 9.91E-08 81.34 200.4 H 9.50 9.00 10.00
H 10.50 9.00 10.00
0] 10.0000 [  10.0985 10.00
Optimize Geometry 340 17.1444535 | 5.74E-08 | 1071.45 | 1979 H 8.5403 8.9508 10.00
H 11.4597 8.9508 10.00
Optimize Geometry 0 10.0000 |  10.0985 10.00
with RESTART 319 17.1444535 | 5.21E-08 997 192.8 H 8.5403 8.9508 10.00
H 11.4597 8.9508 10.00
Molecular Dynamic CP 0] 10.0000 11.1299 10.00
with Times Step 2 a.u, 500 16.59683 | 2.90E-02 | 1542.86 | 179.2 H 26120 -0.0023 10.00
H 17.3880 -0.0023 10.00

Table 3: Isolated water(H0) molecule when the position of the atom is not set properly at the

beginning
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CPU

32 water molecules Number of | Total Energy | Convergence | CPU Time Y
(H64032) Iterrations (-B) Criterion | (Seconds) (MBytes)

Optimize Wavefunction 19 551.05080 | 6.56E-06 | 1103.89 | 1409.4
Optimize Geometry 1676 551.25513 | 6.06E-06 | 91131.41 | 15553
Optimize Geometry
with RESTART 1571 551.25444 | 6.85E-06 | 84432.37 | 1274.3
Molecular Dynamic CP
with Times Step 2 a.u. 2000 551.15608 | 5.62E-04 | 124388.7| 686.8

Table 4: 32 water molecule(HgsO32)

FIG.5. Isolated water(H20O) molecule
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systems calculation, in comparison ulations for large molecules (Table 4).
Nonetheless, the ground-state energy calculated is not the best lowest figure because
the method does not measure and change atomic position. Unlike the first method,
Geometry optimization and Molecular dynamic CP measure and change atomic posi-
tion in all iterations until the best optimal position is found (Table 3). As a result, the
ground-state energy calculated by Wavefunction optimization will not be the optimal
value if the position of the atom in an input file is not set properly at the beginning
(Table 3). However, the method is suitable for finding the initial set of wavefunction
which then will be applied to Geometry optimization and Molecular dynamic CP
methods. The two steps process of calculation is more efficient and faster than any
single method alone. For example, Geometry optimization that read the wavefunc-

tion value from a restart file required fewer iterations than the one that did not read

the value.
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Molecular dynamic CP is suitable for large molecules calculation since it requires
much smaller CPU memory than Geometry optimization. Molecular dynamic CP
takes up ~ 600 Mbytes CPU memory while Geometry optimization takes up twice
the CPU memory, ~ 1200, for the same water 32 molecules(Hg O32) ground energy
calculation. In addition, Molecular dynamic CP will not check convergence value but
will calculate accordingly to steps set by the user in an input file. The method focuses

more on changes in energy values in the system through time.
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A Appendix

A.1 Optimize Geometry Procedure: Initialization

RHOE_ PSI _SIZE.F: Allocate RHOE and
PSI size. RHOE is electronic density array,
PSI is electronic potential and FFT.
OUTPUT: IL. RHOE, IT. PSI

v
DYNIT.F: Setting time step function e.g.
DT ELEC.DT2 ELEC, DT IONS,
DT2 IONS etc.

v
GIVE_SCR_INITRUN.F: Specify atray size.
v

INITRUN.F

Y

4
i

v
DETDOFEF : Calculate degree of freedom
(GLIB), Total atomic masses (PATOT),
Atomic masses (PMALL), The weight factor
for penalty function (CSIGM). Get total
number of parameters to be optimized

v

HESSIN.F: Initialization the Hessian matrix

4

READ _IREC.F: General file format

v
ZHRWEFE.F: Read data form restart file
v
PHFAC.F: Calculate phase factors
v
WRGEO.F: Print-out “ATOMIC
COORDINATE"™
¥

GEOFILEF: Store data (TAUO,VELP)
in GEOFILE

is the unit matrix

UNITMZX.F: Initial Hessian matrix

v

SYMMAT.F: Symmetrize the matrix

g
¥

3
PUTTAU.F: Transform the 3-D of atomic
coordinate (TAUO) into 1-D{XPAR)

v
WRGEO.F: Print-out “ATOMIC
COORDINATE"”

v

TOL_INIT.F: Initialization of electronic
convergence criteria

v
WRPRINT GEOPT.F: Print the first line
“GEOMETRY OPTIMIZATION™

o1




A.2 Optimize Geometry Procedure: Main Loop

The main loop for optimization of geometry starts. |+
¥

&

Loop for preoptimization of wavefunction starts.

¥

TOL_CHK FORCE.F: Check if forces

.

on ions need to be calculated

FORCEDR_ F: Calculate forces

v

¥

UPDWE.F: Update the wavefunctions

HESELE.F: Calculate the diagonal
approximation to the 2™ derivative
matrix (HO)

¥

ODIIS.F: Optimize wavefunction
by DIIS method

v

TESTEX.F: Exit if the maximum

number of step is reached

v

>
il

¥

TOL_CHK_CNVGRAD.F: Check
if wavefunctions is not converged

based on gradient

¥

TOL_CHK CNVENER.F: Check if
wavefunctions is not converged based

01 energy

PREORTHO.F: Orthogonalize a set

of wavefunction (C0)

¥

v

WRPRINT WFOPT.F: Print for

wavefunctions optimization

ORTHO.F: Orthogonalize a set of

wavefunction (C0)

Are wavefunctions no

converged?

(§8) Loop for GEOPT

Are the gradients

stationary?

(§88) Print-Out Final result
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(§§) Loop for GEOPT

ZHWWE.F: Store wavefunction in restart file

v

PUTTAU.F: Transform the 3-D of atomic
coordinate(TAUO) into 1-D(XPAR)

v

HESSUP.F: Using BFGS method to update the nuclear

v

HESSOUT.F: Store nuclear HESSIAN on file

¥

GNODIM.F: Calculate NORM of gradient(GNORM)
and MAX. Component{GNMAX)

¥
WRPRINT GEOPT.F: Print for geometry
optimization
v
TESTEX.F: Exit if the maximum number of step is
reached
v
DCOPY.F: Store nuclear position
v

RGDIIS.F: Using GDIIS methods to calculate a new

set of wavefunction.

v

GETTAU.F: Get XPAR in TAUO

¥

GEOFILE.F: Write the GEOMETRY file

¥

TOL DET GRA.F: Determine the wavefunction

gradient tolerance for the next step

¥

TOL _DET ENER.F: Determine the wavefunction

energy change tolerance

¥

UPDATSYM.F: Update symunetry operations

¥

PHFAC.F: Update phase factors

v

ORTHO.F: Orthogonalize a set of wavefunction (C0)
by Gram-Schmidt method.
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(§88§) Print-Out Final result

WV30.F: Write wavefunction in

version 3.0 format

ZHWWE.F: Write wavefunction in restart file »

aa
el

v

PUTTAU.F: Transform the 3-D of atomic
coordinate(TAUO) into 1-D(XPAR)

v
GNODIM.FE: Calculate GNORM and GNMAX
v

.| WRGEOFF: Print Coordinate

and Gradient

FINALPF: Print-out final result part

¥

WRENER.F: Print total energy

A

Y

GEOFILE.F: Write the GEOMETRY file

o4



A.3 Molecular Dynamics CP Procedure: Initialization

RHOE PSI SIZE.F: Allocate RHOE and
PSI size. RHOE is electronic density array.
PSIis electronic potential and FFT.
OUTPUT: IL._ RHOE, IL. PSI

v

GIVE _SCR_MDMAIN.F: Specify array

size.

¥

RESETAC.F: Reset accumulator

v

INITRUN.F :

Y

READ IREC.F: General file format

[]

ZHRWE.F: Read data from restart file

¥

PHFAC.F: Calculate phase factors

¥

WRGEO.F: Print-out “ATOMIC
COORDINATE”

v

GEOFILE.F: Store data (TAUO,VELP)
in GEOFILE

-t
el

DETDOEFE.F: DETDOFE.F : Calculate degree
of freedom(GLIB). Total atomic masses
(PATOT), Atomic masses(PMALL), The

weight factor for penalty

v

RVSCAL.F: Rescale velocities

EKINPPF: Calculate kinetic energy of
"| the ions (EKINP)

-t
el

ZCLEANF: Set wavefunetion(C0) =0

¥

FORCEDR: Calculate forces(C2), The total
energy, The electronic forces. the potential,

the force on ions

v

RORTV.F: Setting Constraints matrix

velocities

Y

OVLAPF: Compute the overlap matrix

(overlap constraints)

v

ROTATE.F: Rotation matrix

r-

k.

WRGEO.F: Print “Atomic Coordinate™

v

FILEOPEN.F: Open file

v

WRITE IREC.F: Store data in file

95




A.4 Molecular Dynamics CP Procedure: Main Loop

The main loop for MD using velocity verlet.

Y

v

MY SYNC.F: Synchonisation of all processor

v

VELUPLF: Update velocities (VELP)

¥

v

POSUPLF: Update of the positions for velocity
verlet (TAUP)

RORTHO.F: Orthogonalization
routine (GAM., CM)

v

v

PHFAC.F: Calculate Phase factors

OVLAPF: Compute the overlap

matrix (overlap constraints)

v

v

POSUPA F: Update of the position (C2)

ROTATE.F: Rotation matrix

r

h

FORCEDR.F: Calculate forces(C2). The total
energy, the electronic forces, the potential, the

force on ions

}

v
VELUPLF: Final update for velocities (VELP) OVLAPF: Compute the overlap
v matrix (overlap constraints)

RORTV.F: Check orthogonality condition for

wavefunction velocities (GAMY)

v

ROTATE.F: Rotation matrix

le

+¢

GEOFILE.F: Write GEOFILE

v

EKINPPEF: Calculate kinetic energy of the ions
(EKINP)

v

DISPP.F: Mean square displacement of
difference species ions (DISA)

v

REKINE.F: Compute fictitious kinetic energy
of the electron (EKINC)

v

WRPRINT_MD.F: Print-out the evolution of

the accumulators every time step

v

PACCA.F: Calculate and print (at the end of

run) average quartities values

o6

Y

PRINTPF: Store ionic coordinate

and velocities for statistics in files

L 3

TESTEX.F: Exit if the maximum

number of step is reached

v

DCOPY.F: Store ionics positions

yes

1o

(§888) Print-Out Final result




(§§§8) Print-Out Final result

PACCALF: Print out “Averaged Quantities’

v
PROJA.F: Projection

-
-

Y

OVLAPF: Compute the overlap

matrix (overlap constraints)

v

ROTATE F: Rotation matrix

h 4

CSIZE.F: Calculate GEMAX, CNORM

v

GSIZE F: Calculate GNMAX, GNORM

v

FINALPFT: Print out Final Result

WRGEO.F: Print atomic

h 4

coordinate

L]

WRENER.F: Print Total energy

v

PSTRUC.F: Print Structure

H

PBONDS.F: Print BONDS

¥

PANGLES.F: Print ANGLES

o7
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