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Fourier Coefficients, Lyapunov

Exponents, Invariant Measures and Chaos

Student : Huan-Hsun Hsu Advisor : Jong Juang

Department of Applied Mathematics
National Chiao Tung University
Hsinchu, Taiwan, R.O.C.

ABSTRACT

A complex and unpredictable frequency spectrum of a signal has long been seen in
physics and engineering as an indication of-a chaotic signal. The first step to
understand such phenomenon mathematically was taken up by Chen, Hsu, Huang and
Roque-Sol. In particular, they look -for possible connections between chaotic
dynamical systems and the behavior of its Fourier coefficients. Among other things,
they found variety of sufficient conditions on the Fourier coefficients of the n-th
iterate f" of an interval map f , for which the topological entropy of f s
positive. In this thesis, we explore the relationship between the Fourier coefficients
of an interval map and its Lyapunov exponent and invariant measure. Specifically,
the relationships between those three quantities of two family of interval maps,
piecewise linear maps admitting a Markov partition and quadratic family, are
considered.
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1. INTRODUCTION

Three common tasks are of great interest in a signal analysis. The first one is
the elimination of a high frequency noise. It is usually done by first expressing f
as a trigonometric series

ft) =ap+ Zak cos kt + by sin kt
k
and then set the high frequency-coefficients (the aj and by for large k) equal to
zero. The second one is data compression, the idea here is to send a signal in such
a way it requires minimal data transmission. This is done by expressing f as a
trigonometric series, as above, and then send only those coefficients ajs and b} s
that are greater (in absolute value) than a particular tolerance. The third is to
decide if the signal is chaotic. This is usually done by ”seeing” its frequency do-
main. If it is "complex” and "unpredictable”, then it is an indication of a chaotic
signal. Therefore, the knowledge of Fourier coefficients can give enough information
to understand and control the main components of a given signal. Such concept
was first established in the work.of Chen, Hsu, Huang and Roque-Sol[4]. Among
other things, they found variety of sufficient conditions on the Fourier coeflicients
of the n-th iterate f™ of an interval map f; for'which the topological entropy of

f is positive. For completeness, we record one of théir main results in the following.

Theorem 1.1. (Main Theorem 1 of [4]) Let f : [0,1] — [0, 1] be a C° function
such that f has finitely many extremal points and there exists an integer-valued

function ¢ : NU {0} — NU {0} such that ¢ grows exponentially:

1
lim —log¢(n) > a > 0, for some a >0

n—oo n

and that
1
lim —log|p(n)al )| > 0, where aj; is the k'™ Fourier coefficient of f"
n—oo N
then
1
hiop(f) = lim —log Vi(f") >’ >0, for some o > 0.
n—oo n

Consequently, f is chaotic in the sense of Li-Yorke.

However, in practical, other than a few selective cases, it is generally difficult
to compute the Fourier coefficients of the n-th iterate of f™. Moreover, the pos-
itivity of the topological entropy of a noninvertible map f, as often the cases in

one-dimensional map, does not guarantee the chaotic behavior of f on an invariant
1



set for which its measure is positive. Consider the quadratic map f(z) = pz(l —x)
on [0,1]. Clearly, f has a large window begging near u = 3.839(see e.g., [11]). For
those p's, the topological entropy of f is positive for having a periodic point of
period s, where s is not of the form s = 2"(see e.g.,[5]). While f has an attracting
period three orbits for which its attracting set has a measure of 1. Thus, no com-
puter can pick up the chaotic behavior of such f. Inspired by their work [4], the
purpose of this work is to explore the relationship between the Fourier coefficients of
an interval map and its Lyapunov exponent and invariant measure. The thread to
connect three quantities is through Rokhlin formula(see Theorem 2.2.3). Moreover,
due to the difficulty in getting the (absolutely continuous) invariant measures, we
restrict to two family of interval maps : piecewise linear maps admitting a Markov
partition and quadratic. In both cases, some sufficient conditions on their corre-
sponding Fourier coeflicients are obtained to ensure the positivity of their Lyapunov
exponents. An example of the piecewise linear map admitting a Markov partition
is given as an application to such results.

We conclude this introductory segtion.by mentioning the organization of the
thesis. Some definitions and basic results from'.Fourier theory and ergodic theory

are recorded in Section 2. The main results are recorded in Section 3.

2. PRELIMINARIES

2.1. Fourier Series.

We begin with giving some definitions and basic results, which can be found in
[6, 7, 10].

A function is said to be T-periodic if it is defined for all real x and if there is

some positive number T" such that f(z + T) = f(z) for all z.

Definition 2.1.1. Let f be an integrable function on [a,b] with f(a) = f(b).
The k' Fourier coefficient of f is defined by

1 b —orika
ay = b—a/a f(z)e e da. (2.1.1)
The Fourier series of f is given formally by
S(f)(x) = ape Ta (2.1.2)
k=—oc0

Theorem 2.1.1. (i) If f is continuous on [a,b] and ar = 0 for all k € Z, then
2



f = 0. (#) The Fourier series can be integrated term by term. That is, for all
we have fo‘” ft)dt =537 ak fow e2™ ikt dt, the intergrated series being uniformly

convergent on every interval, even if the Fourier series of f diverges.

Theorem 2.1.2. Suppose that f is a continuous function on [a, b] with f(a) = f(b)

o0

and that the Fourier series of f is absolutely convergent, Z lak| < oo. Then

k=—oc0
K
the Fourier series converges uniformly to f, that is, lim Z ape™ kT = f (x)
K—oo [
uniformly in z.
Theorem 2.1.3. Let
1 o= sin 27wkx
Bl(x):f;;T. (2.1.3)

(B is called the Bernoulli function of order 1.)

Then By (z) =z — [z] — £ if 2 is not an integer.([z] is the greatest integer < x.)

2.2. Ergodic Theory.
In this subsection, we will give definition of measure-preserving transformations

and some of their basic preperties(see e.g.+[2, 3,85 13]).

Definition 2.2.1.  Suppose (Xi;Biimi); (Xg;02,mo) are probability spaces.
(a) A transformation T : X" =.X5 is measurable if T71(82) C Bi(ie., if By €
B2 then T~(Bg) € 31) (b) A transformation T : X; — X, is measure-preserving
if T is measurable and my (T~ 1(Bz)) = ma(B3) for any By € (5.

Definition 2.2.2. Let (X, 3, m) be a probability space. A measure-preserving
transformation T of (X, 3, m) is called ergodic if the only members B of 3 with
T~Y(B) = B satisfy m(B) = 0 or m(B) = 1.

The first major result in ergodic theory was proved in 1931 by G.D. Birkhoff.

Theorem 2.2.1. (Birkhoff Ergodic Theorem) Let (X,3,m) be a o-finite
space. Suppose T : (X,3,m) — (X, 3,m) is measure-preserving and f € L'(m).
Then

n—1
1 .
(a) — E f(T?(x)) converges a.e. to a function f* € L' (m).
n
§=0

(b) f* oT = f* ae.
3



(c) If m(X) < oo, then [ f*dm = [ fdm.

1
(d) If T is ergodic, then f* = m(X) / fdm a.e.

In particular, if (X, 3, m) is a probability space and T is ergodic we have

n—1
S 7T (@)
Tim. F"T = / fdm ae., for all f € L'(m).

Let M (X) be the collection of all probability measures defined on the measurable
space (X, 8(X)), where 5(X) is the smallest o-algebra containing all open subsets

of X and the smallest o-algebra containing all closed subsets of X. Let

M(X,T) = {p € M(X)|u(T~H(B)) = u(B) for all B € B(X)}. (2.2.1)

Theorem 2.2.2. If T : X — X is a continuous transformation of a compact

space, then M(X,T) is non-empty.

Definition 2.2.3. Let f #*R — R be a:C'ifunction. For each point g define the

Lyapunov exponent of zg,A(zg), as follows:

Mro) = T log(IFE ) )

1 .
= Jim ~ Zolog|f'(zj)|, where z; = 7 (x). (2.2.2)
j:

The following theorem is direct consequences of Theorem 2.2.1, Theorem 2.2.2,

and (2.2.2).

Theorem 2.2.3. (Rokhlin Formula) Let f : I = [0,1] — I be continuous.
Then for any p € M([0,1], f), we have that

/Amww=/mwﬁmmm> (2.2.3)
0 0

2.3. Invariant Measures.
In this subsection, we introduce the notions of the Frobenius-Perron Operator

and (absolutely continuous) invariant measures (see [1, 2, 3], for more details).
4



Let f: 1 — I, AC I, then we have that
Prob{z € A} = / PdA,
A

where A is the normalized Lebesgue measure on I, v is probability density function
of z. If we want to know the probability of f(z) lies in A, we must know the
probability density function of f(z). We denote the probability density function by
¢(x). Thus, we have the following:

Prob{f(z) € A} Prob{z € f71(A)}

= / wd\
/ pd.

For f is nonsingular (i.e. A(A) =0 = A(f1(A)) = 0), we construct an new mea-
sure p defined by p(A) = ff—lA dA. Hence, p < A. Then, by the Radon-Nykodym

Theorem, we can ensure the existence of ¢.

Definition 2.3.1. (Frobénius-Perron Operator) Suppose ¢(x) € L' and
f defined on I is nonsingular.yThen defined Pp: L! — L' by

d
Pryj(x) = — / WdAs-for-any measurable setA € T
" Fgea ()

By the following theorem, we can construct an invariant measure for f.

Theorem 2.3.1. Ppyp* = ¢* a.e., if and only if the measure p(A4) = /T/J*d)\
is f—invariant, i.e., if and only if u(f~1(A)) = pu(A) for all measurable sets A.

We next give a certain type of continuous piecewise linear maps that possesses
an absolutely continuous invariant measure. Let f : I = [0,1] — I is a continuous
piecewise linear map such that

f’(x):ﬁj, IL’EIj:[b] 1,b] ]—1
Here 0 =bg < by < by <...<by_1<b, =1. (231)

For such f, Frobenius-Perron Operator , Psi(x), can be reduced to

-1
Pf’(/} Z |chp/ J}il )|Xf(bj—17bj)(x)'

5



Let B = {bo, b1, ..., b} be the set of endpoints of the interval ;.

Definition 2.3.2. The intervals I;, j = 1,...,m, form a Markov partition if
f(B) C B.

If {I,;} forms a Markov partition. Then we can introduce a topological Markov
chain corresponding to a graph G that has n vertices and edges joining vertices j
and k if and only if f(I;) D int(Iy), interior of I;. Denote by A the correspond-
ing transition matrix. The following theorem gives an explicit construction of the
density function of the absolutely continuous invariant measure admitted by a con-

tinuous piecewise linear map on a Markov partition.

Theorem 2.3.2. Suppose f is a continuous piecewise linear map satisfying (2.2.4)

and admits a Markov partition. Let the matrix

) 1 1 1

B :dzag(w—ﬂ,@,...,w)/l. (2.3.2)
Then the following hold true:

(i) A =1 1is a left eigenvalue of B and'its corresponding left eigenvector has non-
negative components.

(i4) Let d = (di,da,...,d,,) be 'the normalized left eigenvector, i.e., Z;”:ldj .
length(I;) = 1, of left eigenvalue 1. Then p(z) = d;j, © € I}, is a density func-

tion of the absolutely continuous invariant measure admitted by f.

Theorem 2.3.3. (Tsujii, [11]) For any 8 < 2, there exists a subset E, con-
taining 4, of parameter [0, 4] with the properties:

(i)Leb([4 — €,4] — E) < € for sufficiently small € > 0,

(7)The quadratic map f,(x) = px(1—z) admits an absolutely continuous invariant
measure m,,, where p € I, and

(#4)m,, converges to the measure my4 as a tends to 4 on the set E.

3. MAIN RESULTS

We start with considering the following class of functions.



Definition 3.1. The notation a; = O(ﬁ) as |k| — oo means that there ex-

ist positive constants ¢; and co such that

C1 C2
“’S(M:S]Eq

] , for all k.

Definition 3.2. Let f be integrable on [0,1]. Then f is said to be of the class

O(7z) if ar, = O(7z) as |k| — oo. Here ay, is the k™" Fourier coefficient of f.

Proposition 3.1. Let f € C?[0,1], £(0) = f(1), f”(0) = f”(1) and f'(0) # f'(1).
Moreover, f'(1) — f'(0) # fol f"(z)e?"*7dz. Then f is of the class O(35).

Proof. The estimate on the Fourier coefficients is proved by integrating by parts

twice for k # 0. Specifically, we have that

1
ap = /f(a:)e””kxdx
0
f(x)€727rik:z
—2mik

f/ (x)e—Qwikz 1
472 k2

1
3 e 47T;k2 /(; f//(x)e—%rikxdx
f@) =F40)

it i —2mikx
= e ~47r2k2/0 ' (x)e dzx.

1 1 1
/ —2mikx
d
M 2m'k/0 Flwe ‘

Since
1 1
|/ f//(x)e—Qwik:tdw| S/ |f//($)‘d$ < 07
0 0
we have

|f/(1) _ fI(O) B j‘ol f//(x)e—27rikxdx|

1f'(1) = f'(0)| +C
4m2k2 '

4m2k2

<lagl <

Remark 3.1. The quadratic map f,(x) = pz(l — z) is of the class 0(1712)

Proposition 3.2. Let f be a continuous piecewise linear function such that
(2.2.4) holds. Assume, further, that f(0) = f(1). Then f is of the class O(75).

Proof. Assume that

fle)=px)+c¢,xel;,j=1,2, ..., m.
7



Then

1 mo b, |

a = / f(gg)eﬂm‘kzdx: E / (ﬂijer)e—zmkmdx
0 — b,
j=17"%-1

1 g —2mika |bj 1 < —2mikb; —2mikb;_q
= 5 D2 (Bt e)e Y )b o Y B — e
j=1 =
1 . —2mikb; —2mikb;i_1
= 21.2 Zﬂj(e I —e i-1)
472k =
1 n )
= ywoyE Z(ﬂj _ ﬂj_‘rl)e*Qﬂ'lkb]" where 8y = 1 = 0. (3.1)
j=0

The first term in the second equality above vanishes since f is continuous and

f(0) = fF(1). O

Proposition 3.3. Let f be continuous on [0,1] with f(0) = f(1) and be of the
class O(7z). Let |k| > 1. Suppose that the k' Fourier coefficient aj, of f is equal

to
m

G 20 ik,
E e s (3.2)

27:2 J
1= 472k

where a;,7 = 0,1,...,m, are some constant numbérs and 0 = by < b1 < b <
vee < b1 < by, = 1. Then thelterm=-by-term differentiation of the Fourier series
o0 m
) _ 1
E are®™ ke of f converges amnd equals to g a;(x —b; — [z —bj] — 5) except

k=—o0 7=0
possibly at x = b;, 7 =0, ...,m.

oo
Proof. Using Theorem 2.1.2, we see that f(z) = Z a,e2™**  Now, consider

k=—o0

that the series

oo
E 2rikaye?™ kT

k=—o00 k

M8
7|

i m
( E @6—271'1/(717]' )eQ‘ka
=0

G oL e2mik(z—b;)

I=0 LT

"L 1 = sin27k(z — b;)
- a3 sttleoty

7=0 k=1



Remark 3.2. If f satisfies the assumption in (2.2.4). Then the Fourier coefficient
ar of f can be written as in (3.2) with a; = (8; — Bj4+1), j = 0,1,...,m. Here
Bo = Bm+1 = 0. We shall call a; the normalized j-mode of the the k" Fourier
coefficient aj. Note that a; is independent of k. Should no confusion arise, we shall

just call a; the normalized j-mode of the Fourier series of f.

(oo}
Proposition 3.4. (i) If f(z) = pz(l —x) = Z ape®™*  then f'(x) =
k=—oc0
o0
Z omikare?™*® except possibly at x = 0 or 1. (ii) Suppose f is a continuous
k=—o0

piecewise linear function such that (2.2.4) holds and that f(0) = f(1). Let f(z) =

oo oo
Z ape®™ ™ Then f'(z) = Z 2mikage*™ " except possibly at {b;}1,.

k=—o00 k=—o0

Proof. Let f(x) = px(l — ). It follows from (3.2):and (3.3) that for ant |k| > 1
aj.='—sj=0 or.l. (3.4)

Thus,

=

S omikae e = 3= by~ e =t - )

k=—o0 j=0
_ 0 0 1 1 T
= 00~ D)+ (a1 1) - )
= oua— )

= “2ur+p=f(x)

The second equality holds except possibly at z = 0 or 1. If f(z) is a continuous,

piecewise linear function as assumed, then it follows from (3.1) and (3.2) that

Zl\];: (ﬁk—ﬂqul),k:o,l,...,m. (35)
9



Here By = Bm+1 = 0. Using (3.2) and (3.3), we get, except possibly at {b;}7", that

T A

NE

o0
g orikaye™ T =

k=—o00

<
I
o

((Bj+1 — Bi)bj + (Bjr1 — Bj)x — bs])

I
NE

<.
I
o

Il
M§

(63(1 1= b;) + B[z — bj—1] — [z — b))

<.
Il

|

((f(bj—1) = f(85)) + BiX(v,-1.6))

<
Il
—

I
NE

BiX(b;-1.,b;)

j=1
= fl(z). (3.6)
Here X (3,_, 5, is the characteristic function of (b;_1,b;). O

We are now ready to state our first main. result.

Theorem 3.1. Let f be a continuous piecewise linear map defined on a Markov
partition I; = [b;_1,b;], i = 1,...,m, see(2.2.4). We assume further that f(0) =
f(1). Let d = (dy,da,...,dm)T be-the normalized ‘left eigenvector of B, as given
n (2.2.5), associated with the'left eigenvalue 1. *If the normalized s-mode a;, s =

0,1, ...,m, of the Fourier series of | f satisfy

m j—1
> djlog(y_dul) >0, (3.7)
j=1 s=0

then there exists an invariant set B C [0,1] such that the measure m(B) > 0 and
the Lyapunov exponent of fip is positive. If, in addition, f is ergodic on [0, 1], then

the Lyapunov exponent of f|; is positive.

Proof. Using (3.5), we get that

j—1
_ Z e (3.8)
s=0

It then follows from (3.6), (3.7), (2.2.3) and Theorem 2.2.4 that fo x)du(x) =
m j—1
Zdj log(|Zd}|) > 0. If f is ergodic, then A(z) = A a.e. and A > 0. If f is
7j=1 s=0
10



not ergodic, then there exists a B C I with f~*(B) = B, f~1(I\ B) = I\ B and
1> m(B) > 0. Thus

/)\ Yz //\ Ydp(x /\(J:)du(x)>0.

Without lost of generality, we may assume that f g Alz)du(z) > 0. Noting that fz
is ergodic on B, we conclude that A(z) = A a.e. on B and, hence, A > 0. O

As an application to Theorem3.1, we consider an example of continuous piecewise
linear map on a Markov partition. Specifically, let {bi}?zl be such that 0 = by <
b1 < by < by < by =1 with

f(bo) = bz, f(b1) = b3, f(b2) = ba, f(b3) = bs and f(bs) = 0. (3.9)

Clearly, f admits a Markov partition on I; = [b;—1,b;], i = 1,2,3, 4.

Note that for such f, f(0) # f(1). To apply our earlier results, we may extend
f to an even periodic function fyi(#)-of period T=2. That is, f1(z) = f(—=x), for
—1<z<0and f1(z) = f(x)yfor 0 << 1. Then (3.1) becomes

1 ! —mikx
ag = - fi(x)e dx
2J

= / @) / T g

I
Ms

ﬂzkz ‘n'zkb mikb;_
/BJSC-‘FC] |b] 1 ﬂ-QkQZﬁJ —e i 1)

2mik
27‘(‘1 Z ﬁ./x_FCJ) _T”kz|bJ 1 7_‘_2]{2 Zﬁ_} —mikb; e_ﬂ'ikbj—l)
1 Ui , ‘ ' ‘
= 5 2k2 (Z ﬂj(emkbj _ eTl'lkbj—l) + /Bj(e_ﬂ'lk?bj _ e_"”kbj—l))
T Jj=1
1 - g Tikb.
T 22 O (B = Bjr1)(€7*0 4 emmikbY)
7=0
1 & , N
= (ZCL‘(@wzkbj + e—‘n’zkbj)). (310)
212 J
2m2k =

For such f, @; is called the normalized |j]-mode of the k' Fourier coefficient a,

where —m < j < m. With such modification, we have the following corollary.

11



Corollary 3.1. Suppose the assumption that f(0) = f(1) is dropped in The-

orem 3.1. Then the assertion of Theorem 3.1 still holds true.

Proposition 3.5. Let f be a continuous piecewise linear function satisfying (3.9).

Then the density function p(x) = d;, « € I;, of the absolutely continuous invariant

measure admitted by f is given by

1—bs 1—03 (by —ba+b3)(1—b3)
by bz bz (b3 — b2)

d = (dy,dz,d3,dg) = K - ( 1),
b3 (bs — b2)

where K = 5
—2b3” 4 2bob3 — b1b3s + 3b3 — 3bs + by

is a positive number.

Proof. Since f admits a Markov partition, we can apply Theorem 2.2.4. After some
direct calculation, we can get that the slopes f3;, i = 1,2,3,4, of f on I; are given
by
o b3—by 1—b3 b3—1 —b3
(ﬂlaﬂ%ﬂ&ﬂﬁl)i( bl ’bg—bl’bg—bgvl—bg .
For such f, we find that f(Il) D Ig; f(IQ) 2.1y, f([g) D Iy, and f(]4) D LU, UI;.

Thus, the corresponding transition matrix A"isgiven as follows.

0=0:0 150
01
A:
(-]
11 1.0
Let the matrix
11 1 1
B =diag(—, —,—, —)A.
SEAREARTANTERY

Then
1—b3 1—b3 (bl—b2+b3)(1—b3)
bs ' b3 b3 (b3 — b2)

d=(di,ds,ds,ds) = K - ( 1)

is the normalized left eigenvector of the left eigenvalue 1. Using Theorem 2.2.4, we
have that d is the density function of the absolutely continuous invariant measure
admitted by f. ([

Theorem 3.2. Let f be a continuous piecewise linear function satisfying (3.9).
Assume that the normalized i-mode a; of the Fourier coefficients satisfy one of the

following:

2
1> a5 =1 (3.11a)
=0

12



2 3 2
2+[> a) <> aland | aj] < 1. (3.11D)
7=0 j=0 j=0

Then the Lyapunov exponent of f is positive.

Proof. Let f'(z) = B, © € I;, and p(x) = d;, « € I; be the density function given
in Theorem 2.2.4. Here j = 1,2,3,4.

m j—1
- 1— b3 b3 —by 1—b3 1-—103
P | = K- 1 I
jz:;dj og|§aé| ( ™ og b + by ogb2_b1
(bl — by + bg)(l — b3) 1-— b3 b3
lo +lo
by (bs — b) 8 e by T BT g,
L =ty T 71263 .
L= b3\ by(bg — by) (L — 03 3 3
= K -log(——3)b3(b3 —b2) (A= 73/
&(5. 3, (bl(brbl) (=%,

1
= K -log A“Bb(g),

where K is given as in Proposition3.5. To.complete the proof of the theorem, we

1
need to show that A“Bbg > 1 for thosé a; satisfying (3.11). To this end, we break

bs into three cases (i) 0 < by < % (it) % <bs £ v J;bz and (iii)ler2 < by < 1.
For case(i), it is clear that A%*> 1+ Now,
203 — 1 2bs — 1
Bbl —Bb. (l)b(l) L (M)b(l) bs
b b b bi(by —b1)" b

Since the bases of the exponents above are greater than one and their corresponding

1 1
powers are positive, we have Bb(g) > 1. Thus, A“Bb(g) > 1.

1
For case(ii), we see that A > 1 and 7> 1. Moreover

My — 1 o 25— 1
Bb*:Bb - - b3 _ 3 - 3
2 (3) (3) (bl(bg—[h)) A

2 bs(1 — bs) by 4bs )1
If b3 < —, then > > > 1. We see that B~ >
3= by(by —by) — 3by(by—b1) — 3by° b

3

3bs — 2 b2 3bs — 2
1 1
262\ b _ 3 b2y b 1
) (b) 3 (bl(b27b1)> (b) 3 > N

2 1
1. If by > 3 then Bbg = BY(

1
b
13



1
Obviously, A% > 1. Thus, AaBb(E) > 1.
B
n2

)“(

S

1
For case(iii), if a +2b < 1 , then A“Bb(g) = (

2
>0

1
)b(g)l_a_% > 1. Note that

(=

- = 1 1
a:é:jo yand b = —— = — . Thus a 4+ 2b < 1 is equivalent to
Ba 5. Ba 5.
2.4 P
i=0 =0
2
1 - 1+
3 (2 + |Zaj|) < 1. Moreover, bg > —; 2 is equivalent to |33] < 1 or

1> al 7=
j=0
2

| Z a;| < 1. We just complete the proof of the theorem. O
=0

Theorem 3.3. Let a; () be the normalized 1-mode of the k** Fourier coefficient of
the quadratic map f,(z) = pa(1 — ). There exist an € > 0 and a set E containing

4 such that
Deb([4 — e,4] = E).< .

Here 8 < 2 and 8 can be small arbitrary close.to 2. Moreover, if |a;(u)| € E, then

the Lyapunov exponents of f,"is positive.

Proof. Applying Rokhlin forntula-and Propasition 3.4-(7) and recalling a3 (u) = —p,

we have that

1
Lyapunov exponents of fy = / log | f4]du(z)
0

1
N 1
bg%aﬂ4ﬂ+l/ log |z — 5 |dp(z)
0

1 1 _ 1
= 10g8+/ Mdm
o m(z(l—2x))2

= log2>0.

The assertion of the theorem now follows from Theorem 2.2.5. O

Remark 3.3. A parameter p is called a Misiurewicz point if the set {f7(3)}p2,
is at a positive distance from the critical point % In [9], Rychlik and Sorets proved
that for ;1 being a Misiurewicz point and is near 4, the Lyapunov exponent of f,, is

positive.
14
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