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摘 要       

 
　 長久以來，在物理及工程上，常利用對一個複雜且不可預測的信號作光譜分

析來判斷此信號是否渾沌。首先將此現象做數學分析的是陳鞏老師等人。他們是

希望尋求一種關於渾沌動態系統以及傅利葉係數之間的關係。陳鞏老師等人找到

了許多關於一個系統做 n次疊代之後的傅利葉係數，可以使得這個系統的拓樸熵

大於零的充分條件。在這篇論文當中，我們創新出一個針對定義在一個區間的函

數，傅利葉係數，黎阿普諾夫指數和不變測度的關係。尤其我們是針對一個定義

在馬可夫分割上的片段線性函數以及二次函數來討論這三種特徵量。 
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ABSTRACT 

 
A complex and unpredictable frequency spectrum of a signal has long been seen in 

physics and engineering as an indication of a chaotic signal.  The first step to 
understand such phenomenon mathematically was taken up by Chen, Hsu, Huang and 
Roque-Sol.  In particular, they look for possible connections between chaotic 
dynamical systems and the behavior of its Fourier coefficients. Among other things, 
they found variety of sufficient conditions on the Fourier coefficients of the n -th 
iterate nf  of an interval map f , for which the topological entropy of f  is 
positive.  In this thesis, we explore the relationship between the Fourier coefficients 
of an interval map and its Lyapunov exponent and invariant measure.  Specifically, 
the relationships between those three quantities of two family of interval maps, 
piecewise linear maps admitting a Markov partition and quadratic family, are 
considered. 
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1. Introduction

Three common tasks are of great interest in a signal analysis. The first one is

the elimination of a high frequency noise. It is usually done by first expressing f

as a trigonometric series

f(t) = a0 +
∑

k

ak cos kt + bk sin kt

and then set the high frequency-coefficients (the ak and bk for large k) equal to

zero. The second one is data compression, the idea here is to send a signal in such

a way it requires minimal data transmission. This is done by expressing f as a

trigonometric series, as above, and then send only those coefficients a′ks and b′ks

that are greater (in absolute value) than a particular tolerance. The third is to

decide if the signal is chaotic. This is usually done by ”seeing” its frequency do-

main. If it is ”complex” and ”unpredictable”, then it is an indication of a chaotic

signal. Therefore, the knowledge of Fourier coefficients can give enough information

to understand and control the main components of a given signal. Such concept

was first established in the work of Chen, Hsu, Huang and Roque-Sol[4]. Among

other things, they found variety of sufficient conditions on the Fourier coefficients

of the n-th iterate fn of an interval map f , for which the topological entropy of

f is positive. For completeness, we record one of their main results in the following.

Theorem 1.1. (Main Theorem 1 of [4]) Let f : [0, 1] → [0, 1] be a C0 function

such that f has finitely many extremal points and there exists an integer-valued

function φ : N ∪ {0} → N ∪ {0} such that φ grows exponentially:

lim
n→∞

1
n

log φ(n) ≥ α > 0, for some α > 0

and that

lim
n→∞

1
n

log |φ(n)an
±φ(n)| > 0, where an

k is the kth Fourier coefficient of fn

then

htop(f) = lim
n→∞

1
n

log VI(fn) ≥ α′ > 0, for some α′ > 0.

Consequently, f is chaotic in the sense of Li-Yorke.

However, in practical, other than a few selective cases, it is generally difficult

to compute the Fourier coefficients of the n-th iterate of fn. Moreover, the pos-

itivity of the topological entropy of a noninvertible map f , as often the cases in

one-dimensional map, does not guarantee the chaotic behavior of f on an invariant
1



set for which its measure is positive. Consider the quadratic map f(x) = µx(1−x)

on [0, 1]. Clearly, f has a large window begging near µ = 3.839(see e.g., [11]). For

those µ′s, the topological entropy of f is positive for having a periodic point of

period s, where s is not of the form s = 2n(see e.g.,[5]). While f has an attracting

period three orbits for which its attracting set has a measure of 1. Thus, no com-

puter can pick up the chaotic behavior of such f . Inspired by their work [4], the

purpose of this work is to explore the relationship between the Fourier coefficients of

an interval map and its Lyapunov exponent and invariant measure. The thread to

connect three quantities is through Rokhlin formula(see Theorem 2.2.3). Moreover,

due to the difficulty in getting the (absolutely continuous) invariant measures, we

restrict to two family of interval maps : piecewise linear maps admitting a Markov

partition and quadratic. In both cases, some sufficient conditions on their corre-

sponding Fourier coefficients are obtained to ensure the positivity of their Lyapunov

exponents. An example of the piecewise linear map admitting a Markov partition

is given as an application to such results.

We conclude this introductory section by mentioning the organization of the

thesis. Some definitions and basic results from Fourier theory and ergodic theory

are recorded in Section 2. The main results are recorded in Section 3.

2. Preliminaries

2.1. Fourier Series.

We begin with giving some definitions and basic results, which can be found in

[6, 7, 10].

A function is said to be T -periodic if it is defined for all real x and if there is

some positive number T such that f(x + T ) = f(x) for all x.

Definition 2.1.1. Let f be an integrable function on [a, b] with f(a) = f(b).

The kth Fourier coefficient of f is defined by

ak =
1

b− a

∫ b

a

f(x)e
−2πikx

b−a dx. (2.1.1)

The Fourier series of f is given formally by

S(f)(x) =
∞∑

k=−∞
ake

2πikx
b−a . (2.1.2)

Theorem 2.1.1. (i) If f is continuous on [a, b] and ak = 0 for all k ∈ Z, then
2



f = 0. (ii) The Fourier series can be integrated term by term. That is, for all x

we have
∫ x

0
f(t)dt =

∑∞
k=−∞ ak

∫ x

0
e2πiktdt, the intergrated series being uniformly

convergent on every interval, even if the Fourier series of f diverges.

Theorem 2.1.2. Suppose that f is a continuous function on [a, b] with f(a) = f(b)

and that the Fourier series of f is absolutely convergent,
∞∑

k=−∞
|ak| < ∞. Then

the Fourier series converges uniformly to f , that is, lim
K→∞

K∑

k=−K

ake2πikx = f(x)

uniformly in x.

Theorem 2.1.3. Let

B1(x) = − 1
π

∞∑

k=1

sin 2πkx

k
. (2.1.3)

(B1 is called the Bernoulli function of order 1.)

Then B1(x) = x− [x]− 1
2 if x is not an integer.([x] is the greatest integer ≤ x.)

2.2. Ergodic Theory.

In this subsection, we will give definition of measure-preserving transformations

and some of their basic properties(see e.g., [2, 3, 8, 13]).

Definition 2.2.1. Suppose (X1, β1,m1), (X2, β2,m2) are probability spaces.

(a) A transformation T : X1 → X2 is measurable if T−1(β2) ⊂ β1(i.e., if B2 ∈
β2 then T−1(B2) ∈ β1) (b) A transformation T : X1 → X2 is measure-preserving

if T is measurable and m1(T−1(B2)) = m2(B2) for any B2 ∈ β2.

Definition 2.2.2. Let (X, β, m) be a probability space. A measure-preserving

transformation T of (X, β,m) is called ergodic if the only members B of β with

T−1(B) = B satisfy m(B) = 0 or m(B) = 1.

The first major result in ergodic theory was proved in 1931 by G.D. Birkhoff.

Theorem 2.2.1. (Birkhoff Ergodic Theorem) Let (X, β, m) be a σ-finite

space. Suppose T : (X, β,m) → (X,β, m) is measure-preserving and f ∈ L1(m).

Then

(a)
1
n

n−1∑

j=0

f(T j(x)) converges a.e. to a function f∗ ∈ L1(m).

(b) f∗ ◦ T = f∗ a.e.
3



(c) If m(X) < ∞, then
∫

f∗dm =
∫

fdm.

(d) If T is ergodic, then f∗ =
1

m(X)

∫
fdm a.e.

In particular, if (X, β,m) is a probability space and T is ergodic we have

lim
n→∞

n−1∑

j=0

f(T j(x))

n
=

∫
fdm a.e., for all f ∈ L1(m).

Let M(X) be the collection of all probability measures defined on the measurable

space (X, β(X)), where β(X) is the smallest σ-algebra containing all open subsets

of X and the smallest σ-algebra containing all closed subsets of X. Let

M(X,T ) = {µ ∈ M(X)|µ(T−1(B)) = µ(B) for all B ∈ β(X)}. (2.2.1)

Theorem 2.2.2. If T : X → X is a continuous transformation of a compact

space, then M(X, T ) is non-empty.

Definition 2.2.3. Let f : R→ R be a C1 function. For each point x0 define the

Lyapunov exponent of x0, λ(x0), as follows:

λ(x0) = lim
n→∞

1
n

log(|(fn)′(x0)|)

= lim
n→∞

1
n

n−1∑

j=0

log |f ′(xj)|, where xj = f j(x0). (2.2.2)

The following theorem is direct consequences of Theorem 2.2.1, Theorem 2.2.2,

and (2.2.2).

Theorem 2.2.3. (Rokhlin Formula) Let f : I = [0, 1] → I be continuous.

Then for any µ ∈ M([0, 1], f), we have that
∫ 1

0

λ(x)dµ(x) =
∫ 1

0

log(|f ′(x)|)dµ(x). (2.2.3)

2.3. Invariant Measures.

In this subsection, we introduce the notions of the Frobenius-Perron Operator

and (absolutely continuous) invariant measures (see [1, 2, 3], for more details).
4



Let f : I → I, A ⊂ I, then we have that

Prob{x ∈ A} =
∫

A

ψdλ,

where λ is the normalized Lebesgue measure on I, ψ is probability density function

of x. If we want to know the probability of f(x) lies in A, we must know the

probability density function of f(x). We denote the probability density function by

φ(x). Thus, we have the following:

Prob{f(x) ∈ A} = Prob{x ∈ f−1(A)}
=

∫

f−1A

ψdλ

=
∫

A

φdλ.

For f is nonsingular (i.e. λ(A) = 0 ⇒ λ(f−1(A)) = 0), we construct an new mea-

sure µ defined by µ(A) =
∫

f−1A
ψdλ. Hence, µ ¿ λ. Then, by the Radon-Nykodym

Theorem, we can ensure the existence of φ.

Definition 2.3.1. (Frobenius-Perron Operator) Suppose ψ(x) ∈ L1 and

f defined on I is nonsingular. Then defined Pf : L1 → L1 by

Pfψ(x) =
d

dx

∫

f−1(A)

ψdλ, for any measurable setA ∈ I

.

By the following theorem, we can construct an invariant measure for f .

Theorem 2.3.1. Pfψ∗ = ψ∗ a.e., if and only if the measure µ(A) =
∫

ψ∗dλ

is f−invariant, i.e., if and only if µ(f−1(A)) = µ(A) for all measurable sets A.

We next give a certain type of continuous piecewise linear maps that possesses

an absolutely continuous invariant measure. Let f : I = [0, 1] → I is a continuous

piecewise linear map such that

f ′(x) = βj , x ∈ Ij = [bj−1, bj ], j = 1, ...,m.

Here 0 = b0 < b1 < b2 < ... < bm−1 < bm = 1. (2.3.1)

For such f , Frobenius-Perron Operator , Pfψ(x), can be reduced to

Pfψ =
m∑

j=1

ψ(fj
−1(x))

|f ′(fj
−1(x))|χf(bj−1,bj)(x).

5



Let B = {b0, b1, ..., bm} be the set of endpoints of the interval Ij .

Definition 2.3.2. The intervals Ij , j = 1, ...,m, form a Markov partition if

f(B) ⊂ B.

If {Ij} forms a Markov partition. Then we can introduce a topological Markov

chain corresponding to a graph G that has n vertices and edges joining vertices j

and k if and only if f(Ij) ⊃ int(Ik), interior of Ik. Denote by A the correspond-

ing transition matrix. The following theorem gives an explicit construction of the

density function of the absolutely continuous invariant measure admitted by a con-

tinuous piecewise linear map on a Markov partition.

Theorem 2.3.2. Suppose f is a continuous piecewise linear map satisfying (2.2.4)

and admits a Markov partition. Let the matrix

B = diag(
1
|β1| ,

1
|β2| , ...,

1
|βm| )A. (2.3.2)

Then the following hold true.

(i) λ = 1 is a left eigenvalue of B and its corresponding left eigenvector has non-

negative components.

(ii) Let d = (d1, d2, ..., dm) be the normalized left eigenvector, i.e.,
∑m

j=1 dj ·
length(Ij) = 1, of left eigenvalue 1. Then p(x) = dj , x ∈ Ij , is a density func-

tion of the absolutely continuous invariant measure admitted by f .

Theorem 2.3.3. (Tsujii, [11]) For any β < 2, there exists a subset E, con-

taining 4, of parameter [0, 4] with the properties:

(i)Leb([4− ε, 4]− E) < εβ for sufficiently small ε > 0,

(ii)The quadratic map fµ(x) = µx(1−x) admits an absolutely continuous invariant

measure mµ, where µ ∈ E, and

(iii)mµ converges to the measure m4 as a tends to 4 on the set E.

3. Main Results

We start with considering the following class of functions.

6



Definition 3.1. The notation ak = O( 1
|kl| ) as |k| → ∞ means that there ex-

ist positive constants c1 and c2 such that

c1

|kl| ≤ ak ≤ c2

|kl| , for all k.

Definition 3.2. Let f be integrable on [0, 1]. Then f is said to be of the class

O( 1
k2 ) if ak = O( 1

k2 ) as |k| → ∞. Here ak is the kth Fourier coefficient of f .

Proposition 3.1. Let f ∈ C2[0, 1], f(0) = f(1), f ′′(0) = f ′′(1) and f ′(0) 6= f ′(1).

Moreover, f ′(1)− f ′(0) 6= ∫ 1

0
f ′′(x)e−2πikxdx. Then f is of the class O( 1

k2 ).

Proof. The estimate on the Fourier coefficients is proved by integrating by parts

twice for k 6= 0. Specifically, we have that

ak =
∫ 1

0

f(x)e−2πikxdx

=
f(x)e−2πikx

−2πik

∣∣∣∣
1

0

+
1

2πik

∫ 1

0

f ′(x)e−2πikxdx

=
f ′(x)e−2πikx

4π2k2

∣∣∣∣
1

0

− 1
4π2k2

∫ 1

0

f ′′(x)e−2πikxdx

=
f ′(1)− f ′(0)

4π2k2
− 1

4π2k2

∫ 1

0

f ′′(x)e−2πikxdx.

Since

|
∫ 1

0

f ′′(x)e−2πikxdx| ≤
∫ 1

0

|f ′′(x)|dx ≤ C,

we have

|f ′(1)− f ′(0)− ∫ 1

0
f ′′(x)e−2πikxdx|

4π2k2
≤ |ak| ≤ |f ′(1)− f ′(0)|+ C

4π2k2
.

¤

Remark 3.1. The quadratic map fµ(x) = µx(1− x) is of the class O( 1
k2 ).

Proposition 3.2. Let f be a continuous piecewise linear function such that

(2.2.4) holds. Assume, further, that f(0) = f(1). Then f is of the class O( 1
k2 ).

Proof. Assume that

f(x) = βj(x) + cj , x ∈ Ij , j = 1, 2, ..., m.
7



Then

ak =
∫ 1

0

f(x)e−2πikxdx =
m∑

j=1

∫ bj

bj−1

(βjx + cj)e−2πikxdx

= − 1
2πik

m∑

j=1

((βjx + cj)e−2πikx|bj

bj−1
) +

1
4π2k2

m∑

j=1

βj(e−2πikbj − e−2πikbj−1)

=
1

4π2k2

m∑

j=1

βj(e−2πikbj − e−2πikbj−1)

=
1

4π2k2

m∑

j=0

(βj − βj+1)e−2πikbj , where β0 = βm+1 = 0. (3.1)

The first term in the second equality above vanishes since f is continuous and

f(0) = f(1). ¤

Proposition 3.3. Let f be continuous on [0, 1] with f(0) = f(1) and be of the

class O( 1
k2 ). Let |k| ≥ 1. Suppose that the kth Fourier coefficient ak of f is equal

to
m∑

j=0

ãj

4π2k2
e−2πikbj , (3.2)

where ãj , j = 0, 1, ...,m, are some constant numbers and 0 = b0 < b1 < b2 <

... < bm−1 < bm = 1. Then the term by term differentiation of the Fourier series
∞∑

k=−∞
ake2πikx of f converges and equals to

m∑

j=0

ãj(x − bj − [x − bj ] − 1
2
) except

possibly at x = bj , j = 0, ..., m.

Proof. Using Theorem 2.1.2, we see that f(x) =
∞∑

k=−∞
ake2πikx. Now, consider

that the series
∞∑

k=−∞
2πikake2πikx =

∞∑
k=−∞

k 6=0

i

2πk
(

m∑

j=0

ãje
−2πikbj )e2πikx

=
m∑

j=0

iãj

2π

∞∑
k=−∞

k 6=0

e2πik(x−bj)

k

=
m∑

j=0

ãj(− 1
π

)
∞∑

k=1

sin 2πk(x− bj)
k

=
m∑

j=0

ãj(x− bj − [x− bj ]− 1
2
). (3.3)

8
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Remark 3.2. If f satisfies the assumption in (2.2.4). Then the Fourier coefficient

ak of f can be written as in (3.2) with ãj = (βj − βj+1), j = 0, 1, ..., m. Here

β0 = βm+1 = 0. We shall call ãj the normalized j-mode of the the kth Fourier

coefficient ak. Note that ãj is independent of k. Should no confusion arise, we shall

just call ãj the normalized j-mode of the Fourier series of f .

Proposition 3.4. (i) If f(x) = µx(1 − x) =
∞∑

k=−∞
ake2πikx, then f ′(x) =

∞∑

k=−∞
2πikake2πikx except possibly at x = 0 or 1. (ii) Suppose f is a continuous

piecewise linear function such that (2.2.4) holds and that f(0) = f(1). Let f(x) =
∞∑

k=−∞
ake2πikx. Then f ′(x) =

∞∑

k=−∞
2πikake2πikx except possibly at {bi}m

i=0.

Proof. Let f(x) = µx(1− x). It follows from (3.2) and (3.3) that for ant |k| ≥ 1

ãj = −µ, j= 0 or 1. (3.4)

Thus,

∞∑

k=−∞
2πikake2πikx =

1∑

j=0

ãj(x− bj − [x− bj ]− 1
2
)

= −µ(x− 0− [x− 0]− 1
2
) + (−µ)(x− 1− [x− 1]− 1

2
)

= −2µ(x− 1
2
)

= −2µx + µ = f ′(x).

The second equality holds except possibly at x = 0 or 1. If f(x) is a continuous,

piecewise linear function as assumed, then it follows from (3.1) and (3.2) that

ãk = (βk − βk+1), k = 0, 1, ..., m. (3.5)
9



Here β0 = βm+1 = 0. Using (3.2) and (3.3), we get, except possibly at {bj}m
j=0, that

∞∑

k=−∞
2πikake2πikx =

m∑

j=0

(βj − βj+1)(x− bj − [x− bj ]− 1
2
)

=
m∑

j=0

((βj+1 − βj)bj + (βj+1 − βj)[x− bj ])

=
m∑

j=1

(βj(bj−1 − bj) + βj([x− bj−1]− [x− bj ]))

=
m∑

j=1

((f(bj−1)− f(bj)) + βjχ(bj−1,bj))

=
m∑

j=1

βjχ(bj−1,bj)

= f ′(x). (3.6)

Here χ(bj−1,bj) is the characteristic function of (bj−1, bj). ¤

We are now ready to state our first main result.

Theorem 3.1. Let f be a continuous piecewise linear map defined on a Markov

partition Ii = [bi−1, bi], i = 1, ...,m, see (2.2.4). We assume further that f(0) =

f(1). Let d = (d1, d2, ..., dm)T be the normalized left eigenvector of B, as given

in (2.2.5), associated with the left eigenvalue 1. If the normalized s-mode ãs, s =

0, 1, ...,m, of the Fourier series of f satisfy

m∑

j=1

dj log(|
j−1∑
s=0

ãs|) > 0, (3.7)

then there exists an invariant set B ⊂ [0, 1] such that the measure m(B) > 0 and

the Lyapunov exponent of f|B is positive. If, in addition, f is ergodic on [0, 1], then

the Lyapunov exponent of f|I is positive.

Proof. Using (3.5), we get that

βj = −
j−1∑
s=0

ãs. (3.8)

It then follows from (3.6), (3.7), (2.2.3) and Theorem 2.2.4 that
∫ 1

0
λ(x)dµ(x) =

m∑

j=1

dj log(|
j−1∑
s=0

ãs|) > 0. If f is ergodic, then λ(x) ≡ λ a.e. and λ > 0. If f is

10



not ergodic, then there exists a B ⊂ I with f−1(B) = B, f−1(I \ B) = I \ B and

1 > m(B) > 0. Thus
∫ 1

0

λ(x)dµ(x) =
∫

B

λ(x)dµ(x) +
∫

I\B
λ(x)dµ(x) > 0.

Without lost of generality, we may assume that
∫

B
λ(x)dµ(x) > 0. Noting that f|B

is ergodic on B, we conclude that λ(x) ≡ λ a.e. on B and, hence, λ > 0. ¤

As an application to Theorem3.1, we consider an example of continuous piecewise

linear map on a Markov partition. Specifically, let {bi}4i=1 be such that 0 = b0 <

b1 < b2 < b3 < b4 = 1 with

f(b0) = b2, f(b1) = b3, f(b2) = b4, f(b3) = b3 and f(b4) = 0. (3.9)

Clearly, f admits a Markov partition on Ii = [bi−1, bi], i = 1, 2, 3, 4.

Note that for such f , f(0) 6= f(1). To apply our earlier results, we may extend

f to an even periodic function f1(t) of period T=2. That is, f1(x) = f(−x), for

−1 ≤ x ≤ 0 and f1(x) = f(x), for 0 ≤ x ≤ 1. Then (3.1) becomes

ak =
1
2

∫ 1

−1

f1(x)e−πikxdx

=
1
2
(
∫ 1

0

f(x)eπikxdx +
∫ 1

0

f(x)e−πikxdx)

=
1

2πik
(

m∑

j=1

(βjx + cj)eπikx|bj

bj−1
) +

1
2π2k2

m∑

j=1

βj(eπikbj − eπikbj−1)

− 1
2πik

(
m∑

j=1

(βjx + cj)e−πikx|bj

bj−1
) +

1
2π2k2

m∑

j=1

βj(e−πikbj − e−πikbj−1)

=
1

2π2k2
(

m∑

j=1

βj(eπikbj − eπikbj−1) + βj(e−πikbj − e−πikbj−1))

=
1

2π2k2
(

m∑

j=0

(βj − βj+1)(eπikbj + e−πikbj ))

=:
1

2π2k2
(

m∑

j=0

ãj(eπikbj + e−πikbj )). (3.10)

For such f , ãj is called the normalized |j|-mode of the kth Fourier coefficient ak,

where −m ≤ j ≤ m. With such modification, we have the following corollary.

11



Corollary 3.1. Suppose the assumption that f(0) = f(1) is dropped in The-

orem 3.1. Then the assertion of Theorem 3.1 still holds true.

Proposition 3.5. Let f be a continuous piecewise linear function satisfying (3.9).

Then the density function p(x) = di, x ∈ Ii, of the absolutely continuous invariant

measure admitted by f is given by

d = (d1, d2, d3, d4) = K · (1− b3

b3
,
1− b3

b3
,
(b1 − b2 + b3)(1− b3)

b3(b3 − b2)
, 1),

where K =
b3(b3 − b2)

−2b3
2 + 2b2b3 − b1b3 + 3b3 − 3b2 + b1

is a positive number.

Proof. Since f admits a Markov partition, we can apply Theorem 2.2.4. After some

direct calculation, we can get that the slopes βi, i = 1, 2, 3, 4, of f on Ii are given

by

(β1, β2, β3, β4) = (
b3 − b2

b1
,

1− b3

b2 − b1
,

b3 − 1
b3 − b2

,
−b3

1− b3
).

For such f , we find that f(I1) ⊃ I3, f(I2) ⊃ I4, f(I3) ⊃ I4, and f(I4) ⊃ I1∪I2∪I3.

Thus, the corresponding transition matrix A is given as follows.

A =




0 0 1 0

0 0 0 1

0 0 0 1

1 1 1 0




.

Let the matrix

B = diag(
1
|β1| ,

1
|β2| ,

1
|β4| ,

1
|β4| )A.

Then

d = (d1, d2, d3, d4) = K · (1− b3

b3
,
1− b3

b3
,
(b1 − b2 + b3)(1− b3)

b3(b3 − b2)
, 1)

is the normalized left eigenvector of the left eigenvalue 1. Using Theorem 2.2.4, we

have that d is the density function of the absolutely continuous invariant measure

admitted by f . ¤

Theorem 3.2. Let f be a continuous piecewise linear function satisfying (3.9).

Assume that the normalized i-mode ãi of the Fourier coefficients satisfy one of the

following:

|
2∑

j=0

ãj | ≥ 1 (3.11a)
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(2 + |
2∑

j=0

ãj |) < |
3∑

j=0

ãj | and |
2∑

j=0

ãj | < 1. (3.11b)

Then the Lyapunov exponent of f is positive.

Proof. Let f ′(x) = βj , x ∈ Ij , and p(x) = dj , x ∈ Ij be the density function given

in Theorem 2.2.4. Here j = 1, 2, 3, 4.

m∑

j=1

dj log |
j−1∑
s=0

ãs| = K · (1− b3

b3
log

b3 − b2

b1
+

1− b3

b3
log

1− b3

b2 − b1

+
(b1 − b2 + b3)(1− b3)

b3(b3 − b2)
log

1− b3

b3 − b2
+ log

b3

1− b3
)

= K · log (
1− b3

b3 − b2
)

b1(1− b3)
b3(b3 − b2) (

(1− b3)
2

b1(b2 − b1)
)

1− b3

b3 (
b3

1− b3
)

=: K · log AaBb(
1
b
),

where K is given as in Proposition3.5. To complete the proof of the theorem, we

need to show that AaBb 1
b

> 1 for those ãj satisfying (3.11). To this end, we break

b3 into three cases (i) 0 < b3 ≤ 1
2

(ii)
1
2

< b3 <
1 + b2

2
and (iii)

1 + b2

2
≤ b3 < 1.

For case(i), it is clear that Aa > 1. Now,

Bb 1
b

= Bb · (1
b
)
b

(
1
b
)

2b3 − 1
b3 = (

b3(1− b3)
b1(b2 − b1)

)
b

(
1
b
)

2b3 − 1
b3 .

Since the bases of the exponents above are greater than one and their corresponding

powers are positive, we have Bb(
1
b
) > 1. Thus, AaBb(

1
b
) > 1.

For case(ii), we see that A > 1 and
1
b

> 1. Moreover

Bb 1
b

= Bb(
1
b
)
b

(
1
b
)

2b3 − 1
b3 = (

b3(1− b3)
b1(b2 − b1)

)
b 1
b

2b3 − 1
b3 .

If b3 ≤ 2
3
, then

b3(1− b3)
b1(b2 − b1)

≥ b3

3b1(b2 − b1)
≥ 4b3

3b2
2 > 1. We see that Bb 1

b
>

1. If b3 ≥ 2
3
, then Bb 1

b
= Bb(

1
b
)2b(

1
b
)

3b3 − 2
b3 = (

b3
2

b1(b2 − b1)
)b(

1
b
)

3b3 − 2
b3 > 1.
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Obviously, Aa > 1. Thus, AaBb(
1
b
) > 1.

For case(iii), if a + 2b < 1 , then AaBb(
1
b
) = (

A

b
)a(

B

b2
)b(

1
b
)1−a−2b > 1. Note that

a =
β3

β4
=

2∑

j=0

ãj

3∑

j=0

ãj

, and b = − 1
β4

= − 1
3∑

j=0

ãj

. Thus a + 2b < 1 is equivalent to

1

|
3∑

j=0

ãj |
(2 + |

2∑

j=0

ãj |) < 1. Moreover, b3 ≥ 1 + b2

2
is equivalent to |β3| ≤ 1 or

|
2∑

j=0

ãj | ≤ 1. We just complete the proof of the theorem. ¤

Theorem 3.3. Let ã1(µ) be the normalized 1-mode of the kth Fourier coefficient of

the quadratic map fµ(x) = µx(1− x). There exist an ε > 0 and a set E containing

4 such that

Leb([4− ε, 4]− E) < εβ .

Here β < 2 and β can be small arbitrary close to 2. Moreover, if |ã1(µ)| ∈ E, then

the Lyapunov exponents of fµ is positive.

Proof. Applying Rokhlin formula and Proposition 3.4-(i) and recalling ã1(µ) = −µ,

we have that

Lyapunov exponents of f4 =
∫ 1

0

log |f ′4|dµ(x)

= log 2|ã1(4)|+
∫ 1

0

log |x− 1
2
|dµ(x)

= log 8 +
∫ 1

0

log |x− 1
2 |

π(x(1− x))
1
2
dx

= log 2 > 0.

The assertion of the theorem now follows from Theorem 2.2.5. ¤

Remark 3.3. A parameter µ is called a Misiurewicz point if the set {fn
µ ( 1

2 )}∞n=1

is at a positive distance from the critical point 1
2 . In [9], Rychlik and Sorets proved

that for µ being a Misiurewicz point and is near 4, the Lyapunov exponent of fµ is

positive.
14
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