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Abstract

A wave equation on a one-dimensional interval I has a van
der Pol type nonlinear boundary condition at the right end. At
the left end, the boundary condition is energy-injecting if the
parameter 1 > 0 and is the homogeneous Neumann condition if
n = 0. The solution of the wave system is corresponding to the
iteration of one interval map, so we say the wave system is chaotic
if the interval map is chaotic in the sense of Li-Yorke. The sys-
tem which we consider contains both isotropic and nonisotropic
chaotic vibrations, since the two associated families of character-
istics travel with two speeds c1, ¢o for any given positive ¢y, ¢o. In
this paper, we discuss that the chaotic vibrations of the 1D wave
system occur when the paramerters 7, ¢1, ¢y vary separately.
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Chapter1

Introduction

The imbalance of the boundary energy flow due to energy injection at one end and a nonlin-
ear van der Pol boundary condition at the other end of the spatial one-dimensional interval can
cause isotropic chaotic vibration of the linear wave equation. Such chaotic vibration is isotropic with
respect to space and time because the two associated families of characteristics both propagate with

the same speed (see Chen et al. [2]).In [2], the 1D wave system is considered:
Wi —Wee =0, 0< 2 <1,t>0,
with the boundary conditions
wi(0,t) = —nw,(0,1), n>0,n#1,t>0,
we(1,t) = awy(1,t) — Bwi(1,t), a<c(0,1],5>0,t>0,
and the initial conditions
w(@,0) = p(z) € CY([0,1]), we(w,0) = y(z) € C°([0,1]).

In the 1D wave equation wy —wg, = 0, two families of characteristics travel with the same speed
¢1 = cg = 1. The boundary condition at the left endpoint z = 0 is energy-injecting and the bound-

ary condition at the right endpoint x = 1 is a van der Pol condition. In [2], Chen et al. proved the



1D wave system is chaotic when the parameter n enters the region

— ,—— | , for any given a € (0,1}, 8 > 0.
3V3+1l+a 3v3-1—a Ve 0,1}, 5

—1- 1
3v3 o 1>U<1 3V3+1+a

In [8, 12, 13], the 1D wave system is considered:
Wi —wee =0,0< <1, >0,

with the boundary conditions

wz(0,t) = —nuw(0, 1), n>0,n#1,1>0,

we(1,t) = awi(1,t) — Buw}(1,t), a€(0,1],8>0,t >0,

and the initial conditions
w(z,0) = p(z) € C*([0,1]), w(=,0) = 3(x) € C°([0,1]).

Huang et al. characterized the dynamical behavior in terms of the growth of the total variation of
the interval map and proved that for any given o € (0, 1], there exist four constants Nos Ners TH
and 7, with

0<my <nyg <1<z <Ty<oo

such that the total variation of the interval map remains bounded, is unbounded, is unbounded
exponentially when the parameter 7 belongs to (0, 79)U(7g, o), (19, 15)U (M5, Mp), and (ng, 1)U
(1,75), respectively. In particular, the last case corresponds to chaos in the 1D wave system. No-
tice that the boundary condition at the left endpoint in this system is w,(0,t) = —nw(0,¢) which
is different from w¢(0,t) = —nw4(0,t) in [2].

By including a mixed partial derivative linear transport term in the wave equation, nonlinear-
ity in the van der Pol boundary condition can also cause nonisotropic chaotic vibration (without
energy injection from the other end). Such chaotic vibration is nonisotropic with respect to space

and time because the two associated families of characteristics travel with different speeds cq, ¢



which satisfy cica = 1 (see Chen et al. [5]).In [5], the 1D wave system is considered:
Wit + VWi —wer =0, 0v>0,0<z<1,t>0,

with the boundary conditions

wz(0,t) =0,t >0,

and

v+ Vv 44

t
5 ,8>0,t>0,

we(1,t) = awi(1,t) — Bwi(1,t), a € (0,

and the initial conditions
w(z,0) = p(z) € C'([0,1]), wi(x,0) = P(z) € C°([0,1]).

In the 1D wave equation wy; +vwy, —wzr = 0, two families of characteristics travel with different

— 2 2
v+\2/v 2 and ¢, = VT

speeds ¢; = which satisfy cico = 1 and ¢a — ¢; = v. The boundary
condition at the left endpoint = 0 is the homogeneous Neumann condition and the boundary
condition at the right endpoint z = 1 is a van der Pol condition.In [5], Chen et al. proved the 1D

wave system is chaotic when the parameters (v, a) enter a certain subregion of

Vo2 +4
S:{(z;,a)€R2|0<v<oo,0<a§U+;+}.

In [9], Huang proved that there exist three subregions SY, Si and S of S such that the growth of
the total variation of the interval map remains bounded, is unbounded, is unbounded exponentially
when the parameters (v, @) belong to S9, S1, and Sa, respectively. In particular, the last case cor-
responds to chaos in the 1D wave system.

In chapter 3 of this paper, the 1D wave system is considered:
Wit — dwiy — Cwee =0, dER, ¢>0,0<z<1,t>0, (1.1)
with the boundary conditions

1
Wx(oat):_ﬁwt((),t),TIZO,U?é gvt>07 (12)



and

we(1,t) = awi(1,t) — Bwd(1,t), a € <0, cl] ,3>0,t>0. (1.3)
1

And with the initial conditions
w(x,0) = p(x) € C'([0,1]), wi(x,0) = P(z) € CO([0,1]). (1.4)

Remark 1.0.1 We denote the parameters

d+ Vd? 4 4c?  —d+Vd?+ 42

c1 = —2 (Lnd Co 2

in (1.2) and (1.3).

In the 1D wave equation wy; — dwiy — c?wye = 0, two families of characteristics travel with
speeds ¢; and ¢o. If d = 0, the speeds ¢; = ¢3 = ¢;if d # 0, the speeds ¢; # c¢o. The bound-
ary condition at the left endpoint « = 0 is energy-injecting when 7 > 0 and is the homogeneous
Neumann condition when = 0. The boundary condition at the right endpoint x = 1 is a van
der Pol condition which is a well-known self-regulating mechanism in automatic control.
Ifd=0,c=11in(1.1) and > 0 in (1.2), we have the 1D wave equation

Wy —wer =0,0< <1, t>0, (1.5)

with the boundary conditions

w(0,t) = —nuw¢(0,t), n>0,n#1,1>0,
(1.6)
W:c(]-?t) = awt(lat) - Bw?(lat)a o€ (07 1]7 B>0,t>0,

and the initial conditions
w(z,0) = p(z) € C1([0,1]), we(=, 0) = P(x) € C°([0,1]). (1.7)
Ifd=—v,c®>=1in (1.1) and = 0 in (1.2), we have the 1D wave equation

Wi+ VWi —Wee = 0,0 >0,0< 2z <1,t>0, (1.8)



with the boundary conditions

wz(0,8) =0,t >0, (1.9)
and
VuZ+4
wa(L,t) = aw(1,1) — Bud(1,1), a € (0, H# L B>0,t>0, (1.10)
and the initial conditions
w(z,0) = p(z) € CH([0,1]), wi(z,0) = () € C°([0,1]). (1.11)

Thus, the 1D wave system (1.1)-(1.4) contains the 1D wave systems in [8, 12, 13] and [5, 9]. Fur-
thermore, the system (1.1)-(1.4) contains both isotropic and nonisotropic chaotic vibrations since
the two associated families of characteristics travel with two speeds ci, co for any given positive
c1, cz.In section 3, we show the chaotic region of the 1D wave system. And based on this region,
we show the chaotic region of the paramerter 17 when the other parameters are fixed. Furthermore,
we show the system is chaotic if ¢; — 00, or ¢; — 0T, or ¢g — oo.

In chapter 4, the 1D wave system is considered:

Wit — Qwiy — Cwee = 0, deR,c>0,0<x<1,t>0,
wi(0,t) + nw,(0,t) =0, n>0,n%#ca t >0, (1.12)
we(1,8) = aw(1,8) — Bw2™(1.1), ac (0, ﬂ ,B,t>0,meN,

wlz,0) = (@) € C'(0, 1]), wili,0) = () € CO([0, 1))

In this system, the boundary condition at the left endpoint x = 0 is energy-injecting and the bound-
ary condition at the right endpoint = 1 has odd-degree nonlinearity. In section 4, we show the

1D wave system (1.12) is chaotic when the parameter 7 satisfies either

¢ [2mer(1+ acz) + */2m+1(2m + 1) (1 + c2)]

ca <n<
2SR 12m + Dl + ) - 2me(l + acy)

or
co [ *V2m +1(2m + 1)(c1 + ¢2) — 2mer (1 + acp))
2mea (1 + ace) + *¥/2m + 1(2m + 1)(c1 + ¢2)

<n<c

for any given parameters c, d, a, 3, m satisfy inequality

2/2m + 1(2m + 1)(c1 + e2) — 2mea(1 + acz) > 0,



and when the parameter 7 satisfies either

c2 [ V2m 4+ 1(2m + 1)(c1 + c2) — 2mer (1 + o))
2mea (1 + ace) + 2/2m + 1(2m + 1)(c1 + c2)

7 > Cg Or <n<c

for any given parameters c, d, «, 8, m satisfy the inequality
2/2m 4+ 1(2m + 1)(c1 + c2) — 2mea(1 + acg) < 0.

And we show the 1D wave system (1.12) is chaotic for any given ¢; if the parameters 7, co, «, £,
m satisfy

n > co and 2mca(l + acg) — “V/2m + 1(2m + 1)(n — c2) > 0.

And the 1D wave system (1.12) is chaotic for sufficiently small ¢; if the parameters 7, ca, o, 5, m
satisfy some conditions or ¢ is sufficiently large if the parameters 7, co, «, 5, m satisfy some other
conditions.

It is easy to see that the 1D wave system (1.12) contains the 1D wave system in [2]. Thus, we
consider the 1D wave systems in [2, 5, 8, 9, 12, 13] as three examples of the systems (1.1)-(1.4) and
(1.12) in chapter 5. And in chapter 6, we use two methods to detect the chaos in 1D wave systems

(1.1)-(1.4) and (1.12) (see Li et al. [14, 15]).



Chapter 2

Preliminary

We list some definitions and background facts that a reader should know in this chapter.

Definition 2.0.2 (Topologically Transitive) A map f : X — X is (topologically) transitive
on an invariant set’Y provided the forward orbit of some point p is dense in Y . The Birkhoff Tran-
sitivity Theorem proves that a map f is transitive on Y if and only if, given any pair of open sets

U,V CY there exists k > 0 such that f*(U)NV # @.

Intuitively, a topologically transitive map has points which eventually move under iteration from
one arbitrarily small neighborhood to any other. Consequently, the dynamical system cannot be

decomposed into two disjoint open sets which are invariant under the map.

Definition 2.0.3 (Sensitive Dependence on Initial Conditions) A map f : X — X has
sensitive dependence on initial conditions if there exists § > 0 (independent of the point) such that,
for each point x € X and any neighborhood N of x, there exists y € N such that d (f™(x), f*(y)) >

0 for somen >0 .

Intuitively, a map possesses sensitive dependence on initial conditions if there exist points ar-
bitrarily close to & which eventually separate from x by at least § under iteration of f. We empha-
size that not all points near = need eventually separate from x under iteration, but there must be

at least one such point in every neighborhood of x.

Definition 2.0.4 (Expansive) A map f on a metric space X is said to be expansive provided there
is anr > 0 (independent of the point) such that, for each pair of points x,y € X thereis ak >0
such that d (f*(z), f*(y)) > r.



If f is expansive and X is a perfect metric space, then it has sensitive dependence on initial

conditions.

Definition 2.0.5 (Chaotic in the Sense of Devaney) LetV be a set. f: V — V is said to be
chaotic on 'V if

1. f has sensitive dependence on initial conditions.

2. f is topologically transitive.

3. periodic points are dense in V.

Definition 2.0.6 (Chaotic in the Sense of Robinson) A map f on a metric space X is said
to be chaotic on an invariant set Y or exhibits chaos provided (i) f is transitive on'Y and (i) f

has sensitive dependence on initial conditions on Y .

The paper of Banks, Brooks, Cairns, Davis, and Stacey (1992) proves that any map which (i)
is transitive on Y and (ii) has dense periodic points also must have sensitive dependence on ini-

tial conditions.

Definition 2.0.7 (Chaotic in the Sense of Li-Yorke) A continuous map f on the compact met-
ric space (X, d) is said to be chaotic on a nonempty and invariant set Xo in the sense of Li- Yorke

if there is an uncountable set S C Xg such that

(1) limsup,, . d(f™(z), f"(y)) >0, for allz, y € S and x # y.

(%) liminf,, o d(f"(x), f*"(y)) =0, for allz,y € S.

Theorem 2.0.8 [17, Li and Yorke, 1975/Assume f : R — R is continuous, and there is a point
a such that either (i) f3(a) < a < f(a) < f?(a) or (ii) f3(a) > a > f(a) > f%(a). Then, f has
points of all periods.

Definition 2.0.9 In order to state the result of Sharkovskii, we need to introduce a new ordering
on the positive integers using the symbol >, called the Sharkovskii ordering. First, the odd integers

greater than one are put in the backward order:

35> T7T>9>11---.

Next, all the integers which are two times an odd integer are added to the ordering, and then the



odd integers times increasing powers of two:

357> >2-3>2-52-7T>--->22.3>022.5>22. 7> ---

>2"-3> 275> 2" 7> .- >2ntl 3 ontl o5 ontl o7 Ll

Finally, all the powers of two are added to the ordering in decreasing powers:
35> >2" 352" 5> 2" 2 22 2 1L

We have now given an ordering between all positive integers. This ordering seems strange but it turns
out to the be ordering which expresses which periods imply which other periods as given in the the-

orem of Sharkovskii (Sharkovskii, 1964).

Theorem 2.0.10 (Sharkovskii) Let f : I C R — R be a continuous function from an interval
I into the real line. Assume [ has a point of period n and n > k. Then,  has a point of period k.

(By period, we mean least period.)

Theorem 2.0.11 (Period Doubling Bifurcation) Assume that f : R?> — R is a C” function
jointly in both variables with r > 3, and that f satisfies the following conditions.

(1) The point xq is a fized point for pu = py: f(zo, g) = Zo-

(2) The derivative of f, at xo is —1: f}, (xo) = —1. Since this derivative is not equal to 1, there
is a curve of fized points x(w) for p near .

(8) The derivative of f,(x(w)) with respect to p is nonzero (the derivative is varying along the fam-
O f 1\ [(Of\ [ O*f
o= g e Tl
Oudx 2/ \op) \ 92

(4) The graph of fﬁo has nonzero cubic term in its tangency with the diagonal (the quadratic term

103 162 2
B = (3!8;;(550#00 + <2!83£(950,M0)> # 0.

Then, there is a period doubling bifurcation at (xg, pgy). More specifically, there is a differentiable

ily of fixed points):

£0.

(zo,10)

is zero):

curve of fized points, x(u), passing through xq at pg, and the stability of the fixed point changes at
to- (Which side of p is attracting depends on the sign of a..) There is also a differentiable curve
v passing through (o, o) so that v\ {(zo, pg)} is the union of hyperbolic period 2 orbits. The curve



v is tangent to the line R x {ug} at (xo, pg), so v is the graph of a function of x, p = m(x) with
m'(xo) = 0 and m”"(xo) = —28/a # 0. The stability type of the period 2 orbit depends on the
sign of B:if B > 0, then the period 2 orbit is attracting; and if 3 < 0, then the period 2 orbit is

repelling.

Definition 2.0.12 (Homoclinic Point) Let a map f € C(I,I). A point x € I is called homo-
clinic point of f if there exists a periodic point p of period n with x # p, x € W"(p, f™) and f"™(z) =
p for some positive integer m. We call such point p a periodic point associated with a homoclinic

point x and denote by Py, (f) the set of all such periodic points.
In [10, Corollary 9.1], Chen et al. proved the results as below.

Lemma 2.0.13 /10, Corollary 9.1]Let f € C(I,I). Suppose that f is piecewise monotone with
finitely many extremal points on I. Then the following conditions are equivalent.

(1) f has a periodic point whose period is not a power of 2.

(2) f has a homoclinic point. That is, Py(f) # @.

(8) f has positive topological entropy.

(4) The total variation Vi(f™) of f on I grows exponentially as n — oo.

Furthermore, each of the above conditions implies that f is chaotic in the sense of Li-Yorke.

Remark 2.0.14 In [10, Corollary 9.1], Chen et al. have the conclutions as below.

If f is piecewise monotone with finitely many extremal points on I, then

Chaos in the sense of Devaney=-sensitive dependence on initial conditions=-exponential grows of
the total variation Vi(f™) with respect ton asn — oo =positive topological entropy< existence
of a periodic point of a period being not a power of 2 < existence of a homoclinic point< Chaos in

the sense of Li- Yorke.

10



Chapter 3

The 1D wavesystem (1.1)-(1.4)

In this chapter, the 1D wave system (1.1)-(1.4) is considered:

Wit — dwig — Cwzs=0,d€R, ¢>0,0<z<1,t>0,

with the boundary conditions
1
wm(oat) = _nwt(oat)a n > 07 n 7& —, 1 >0,
C2

and

1
we(1,t) = cwi(1,t) = Bwd(1,t), a € <0, ] , 3>0,t>0.

C1

And with the initial conditions

w(z,0) = p(z) € Cl([ov 1])/ wi(z,0) =P(z) € CO([O 1])

3.1 Chaotic vibrations of the system (1.1)-(1.4)

The general solution of (1.1) is

w(z,t) = u(cit + ) + v(cat — x),

11



where u, v are arbitrary C2-function. Substituting (3.1) in (1.2) and (1.3), we have

1—ncy ,
v'(cat), t > 0, 3.2
T ot (32

U (ert) =

and
1

B (crw (et + 1) + ot/ (cat — 1)) + <E - a) (1 (1t 4+ 1) + cov'(cot — 1))

(3.3)
_ (1+§—j)u’(@t—1):0,t>0.
When n = é in (3.2), we have

u'(c1t) = 0 for t > 0 = u(cyt + z) = C for t > 0.

Thus, we consider the case 1 # % And depends on (3.2), we can use v’ to replace v’ in (3.3) to
derive one difference equation as follows.
By using the substitution
/ 1
v' (eat = 1), 0<t< 2,
z(c1t) =

14mer, (clt — C—1> , > é,

1—nca

we have the difference equation

3 4
B ((31 ;ZﬁfZ(T +A)+ CQZ(T)> + (i — a) <01 ;ZZZ(T + A)+

CQZ(T)) - (1 + %’) z(1) =0,

where 7 = c1t, A = 1+%.

And the initial condition of (3.4) is

P(l—cat)—c14’ (1—cat) 1
c1+ca ) 0 <t< co’

_a / _a
1+ncy w<clt 62)+62<P (Clt 02) 1 oyl 1
1—nco c1+c2 2 - :

Remark 3.1.1 In this paper, we assume that the initial value p(x) and ¥ (x) are chosen such that

12



z(T) is continuous on [0, 1+ %} and satisfies the compatibility condition

Ié] (cli;%z(A) + 022(0)>3 + <% - oz) (61 ;Zﬁfz(A) + CQZ(O))

- <1+ ﬁ) 2(0) = 0.

Definition 3.1.2 We denote the range of z(7) on [0, A] to be the compact interval A; i.e., A =
z([0, A]).

We show the dependence of z(7 4 A) on z(7) is given implicitly by one C'-function fy as fol-

lows.

Lemma 3.1.3 (Existence and Uniqueness of the Solution) Let the parameters c1, c2, 0, @,
B be fized in (3.4) withey > 0,co > 0,7 > 0,1 # é, a € (O, %} and 8 > 0. Then there exists

one C-function fy such that
Pz =2t TN for allt 1> 0)

where A = (c1,c2,m, &, ).

Proof. Let

3
1—nc 1 1=
H,\(u, ’U) = f (61 1+ZZ’UJ + 021}) == (a = Oé) (61 1+Z§iu + 621))

—(1+2)v=q,

where u = z(17 + A), v = 2(7), A = (1, 2,1, @, 3).
. 1 . .
(i) If a = -, then Hy(u,v) = 0 implies

1 —nco C2> v
c U = 14+ —=| = —cov.
" nc1 ( a)Bs
Hence, the C'-function fy exists.

(i) If a € (0, é), then

1 —nco
1+ ncy

gHA(u, v) = 3fc

1 —nco 1 —nco
ou

2
c u+cv|] +(1—ac
11+7701 11+7701 2) ( 1)

£0

13



By the implicit function theorem, the C'-function fy exists. m

Definition 3.1.4 We denote fx(2(7)) = z(T7+ A) to be the function, which satisfies (3.4) for all

T >0, where A = (n,c1, ca, o, ).

Since

fa(z(1)) = z(r+ A) for all 7 > 0,

we can use the map fy and the interval A to generate z(7) for all 7 > 0. And the corresponding

solution of the 1D wave system (1.1)-(1.4) is calculated via the formulae

T 1

Z(Cﬂ')dT-F/ v coz(c1T)dr.
Jo

/L+;r1+clz>c 1—ncy
Ji T

Definition 3.1.5 (Chaotic Vibration) The solution of the 1D wave system is said to be chaotic
if the map f : A — R is chaotic in the sense of Li-Yorke; i.e., there exists one nonempty invari-

ant subset Ag C A such that fy is chaotic in the sense of Li-Yorke on Agy (see Definition 2.0.7).

Remark 3.1.6 [n this paper, we say the 1D wave system is chaotic if its solution is chaotic.

3.2 The chaotic region of the system (1.1)-(1.4)

In this section, we want to show the chaotic region of the solution of the 1D wave system (1.1)-

(1.4). First, we consider (3.4) as below:

3
Hy(z,y) =7 (01 ;ZZU 7 0290) ain (é = a) (01 }Izgy + CQII)) - (1 + %) T

:0,Wherecl,02>0,n20,7)7éé,a€(0,%} and 5 > 0.

Definition 3.2.1 We denote

c1 —2acica + 3¢ |14 acy 2(1+ ac2)(L +nec1) /14 ace
Ve = and M =
3ca (e1 + ¢2) 38¢co 3(c1 4+ c2)(1 — nea) 35ca

wn the following lemmas.

We show the local maximum, minimum and piecewise monotonicity of the function f) which

satisfies (3.4) as below.
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Lemma 3.2.2 (Local Maximum, Minimum and Piecewise Monotonicity) The function fy
is odd and fy has local extrema at (ve, M) and (—v., —M). Furthermore, fy is strictly monotonic

on (—00, =), (—ve, ve) and (ve, 00).

Proof. Since H(—z, fA(—x)) = H(—z,—fx(z)) = 0, we have fy\(—z) = —fi(x). Thus f) is odd.

Then use

2
1— 1—
EH(w.y) =38 a2y +an) (alf2y +o)

+ (% — a) (01 izgi’y’ + 62> - (1 + ‘;—f) =0,
and carry out the computations, we have the results. m

We show the z-axis Intercepts, fixed points and intersections with the line y = —x of the func-

tion f) as below.

Lemma 3.2.3 (z-axis Intercepts) The function f\ intersects the x-axis at the points

1 /14 acy 1 /14 aco
(TR o ()

Proof. The results can be directly comfirmed by computing H(z,0) = 0. m

Lemma 3.2.4 (Intersections with the Line y = z) The function fy intersects the liney = x

at the points

<_1+7701 [n+a  1+nc /77+a> (0.0) and <1+77€1 In+a 1+nc /n+a>
c1+c2 B 7 ot B T T \ate B et B '

Proof. The results can be directly comfirmed by computing H (z,z) = 0. ®

Definition 3.2.5 We denote the point

B 14 nc 24 2ancica +n(c1 — ) + a(ca —c1)
121100 + ¢ — 1 B(2nciea + ca —c1)
wn the following lemmas.
Lemma 3.2.6 (Intersections with the Line y = —x) Let the parametersn, c1, ca, «, 3 be fized

. 7 24+2ancica+n(c1—c2)+a(ca—ct)
in (3.4) with éémlc;rc;_q) S

the points (—B, B), (0,0), (B, —B). Otherwise, the function f\ intersects the line y = —x only at

> 0, then the function fy intersects the liney = —x at

the point (0,0).

15



Proof. The results can be directly comfirmed by computing H(z,—z) = 0. m

y y=x

y y=x

(b,b) M

-b,-b)

y=-x
. . . 1
Figure 1: The map fy with > o and  pigype 2: The map f with 0 < 5 < é and

y 1+nc I
|M| < e\ /15 |M| < B.

y y=X
N
\ af-—-.
M
X
-a a

-M

=1-a
y=-x

Figure 3: The map f) with 0 <7 < é
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y y=X y y=X

P4_| 5
L X /" |p1 x
P2 P1 P2 3

Y

Figure 4: f(p2) < pa < fa(p2) < f3(p2). Figure 5: f$(ps) < ps < f3(ps) < fi(ps)-

We show the function f) has bounded invariant interval or bounded invariant cantor-like sub-

set in following lemmas.

Lemma 3.2.7 (Bounded Invariant Interval) Let the parametersn, ¢1, ca, a, B be fized in (3.4).

' 1 _ |2(+ac)(I+ner) [i+ac 1+ n+
)70 > & end M) = [ S ] < S8

—  @ilarH) B
_< 1 +ner /77+a> <1+77C1 [n+a )
U=|—-00,— u , 00
Gl gl G2 B C1 +c2 B

escape to £0o, while those of any point in R\U are attracted to the bounded invariant interval

[_ ‘2(1 +acs)(l+ne1) |14 ace ‘2(1 +ac)(l+nc1) |1+ aco ]

3(c1 + c2)(1 — neg) 3Bcy || 3(c1+ c2)(1 —nea) 38c2

Off)\; i-ev [_ ‘M| ) ’MH OffA-
(11) If 0 < n < % and fy intersects the line y = —x at three points and |M| < B, then the iterates

then the iterates of every point

in the set

of every point in the set U = (—oo, —B) U (B, 00) escape to oo, while those of any point in R\U
are attracted to the bounded invariant interval [— |M|, | M]|] of fa.

(i5i) If 0 < n < é and fy intersects the liney = —x at (0,0), then the iterates of every point in
R are attracted to the bounded invariant interval [— | M|, |M|] of fx.

Proof. The results of (i) and (ii) follow easily from the above lemmas and other piecewise monotonic

properties of fy, as can be directly comfirmed by graphical analysis (see Figure 1 and Figure 2).

17



We omit the details.

(i) fo<n < é and fy intersects the line y = —x only at (0,0), then |f)(z)| < |z| for all

< 1 1+ ac2> ( 1 /1+ ac >
re | —o0, —— Ul — ,00 | .
o Bea c2 Beo

Thus, | f{(x)] is strctly decreasing for n < ng, where
1 /1 1 /1
/(LO(E) c <—OO,— +0602) U ( +OACQ’OO>
o Bea c2 Beo

il iy 8 1 /1
;\10+1( )ﬁé e 1 1 —+ o U= +C¥CQ7OC '
o Bea c2 Bea

Hence, the iterates of every point in R are attracted to the bounded invariant interval [— |M|, |M]]

and

of fy (see Figure 3). m

Lemma 3.2.8 (Bounded Cantor-like Invariant Subset) The bounded invariant interval

[_ ‘2(1 + acz)(1+nc1) [1+ aco ’2(1 +ac2)(1+nc1) 1+ acy ]
3(c1 + c2)(1 —neg) 3Bca | 7| 3(c1 + c2)(1 — neg) 38ca

no longer exists in the case (i) and (ii) of the Lemma 3.2.7 if the condition

M| < 11”“,/”2“ or |M| < B
C1 C2

1s violated. Instead, we have a bounded Cantor-like invariant set.

Proof. The method of proof is now standard, see [18, Sec. 1.7], for example. m

We have the chaotic region of the function f) as below.

Lemma 3.2.9 Let the parametersn, c1, ca, o, (3 be fized in (3.4) and satisfy the inequality

1+ acz 1+ aco
\/ 1/ , 3.5
3pBca Co Bea (3:5)

then the interval map fy is chaotic in the sense of Li- Yorke if the domain of f\ contains the inter-
[ 1 /T4ac 1 /1+acz}
C2 Bea o Bea '
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Proof. (i) If 0 < < 2, then

214+ aco)(1+nec1) |14 acy . )
Ve) = is the local maximum.
falve) 3(c1 + e2)(1 —nea) 3Bco x

Since f) is strictly increasing on [0, v.] and fy(ve) > L, /1;%, there exists one unique point p; €

= co

(0,v] such that fy(py) = +,/3:%2 Similarly, there exists one unique point py € (0,p;) such

c2 Bez

that fy(p2) = p1. Hence, we have

0= f3(p2) < p2 < fr(p2) < f2(p2) (see Figure 4).

Thus, fy has points of all periods which implies chaos [by Li and Yorke, 1975].

(ii) If n > é, then

2(1 4+ aca)(L+ne1) /14 acy . ol
Vo) = is the local minimum and
Falue) 3(e1 + e2)(1 —nez) 3¢y

214+ ac2)(1+mnc1) [1+aca . .
—Ve) = — is the local maximum.
Aal=e) 3(c1 4+ e2)(1 — neg) 38ca

Since f) is strictly decreasing on [—ve, v ] and fy(v.) < —é, / %, there exist one unique point

p1 € (0,v.] such that fy(p1) = —é IE% And since f) is odd, there exists one unique point
p2 € (—p1,0) such that f\(p2) = p1.Similarly, there exists one unique point p3 € (0, —p2) such
that fy(p3) = pe2 and then there exists one unique point py € (—ps,0) such that f\(ps) = ps.

Then there exists one unique point ps € (0, —p4) such that fx(ps) = ps. Hence, we have

0= f3(ps) < ps < fi(ps) < fi(ps) (see Figure 5).

Thus, ff has points of all periods which implies chaos [by Li and Yorke, 1975]. Hence f) is chaotic
in the sense of Li and Yorke. m

Thus, we have the main theorem as below.

Theorem 3.2.10 (Chaotic Region of the 1D Wave System) Let the parametersn, c1, c2, ,
B be fized in the 1D wave system (1.1)-(1.4) and satisfy the inequality
2(1 4+ ac2)(1 +neq) V3

31+ o) (1—nea) | = & (3.6)
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and if the 1D wave system has initial conditions of type I, then the 1D wave system is chaotic.

Now we want to show the chaotic region of 1 when c1, co, , 8 are fixed. There are two differ-

ent cases as follows.

Proposition 3.2.11 Let the parameters c1, ca, a, B be fixed and satisfy the inequality
3\f301 + (3\/§ — 2)02 — 2@0% > 0.

Then the inequality (3.6) holds if and only if n satisfies either

3v3c1 + (3v3 — 2)ez — 2ack L
(3v/3 +2)cico + 2ac1c3 + 3\/363 i &)

or

ot 2co + 2040% + 3\/3(01 + ¢2)
s e > 5
&) (3v/3 —2)cieo + 3\/302 — 20165

Proof. (i) If n < é, then the inequality (3.6) is equivalent to
nece |2¢1(1 + aeq) + 3\/5(61 +eo)| > 3\/5(01 + ca) — 2¢a(1 + aca).

And since

3V3(e1 + ¢2) — 2¢2(1 4 aep) > 0,

the inequality (3.6) is equivalent to

1 o> 3v/3(c1 + c2) — 2¢2(1 + aco)
C2 T e [201(1 + acs) + 3v3(c1 + 02)] '

(i) If n > é, then the inequality (3.6) is equivalent to
2¢2(1 + ac) + 3V3(c1 + 2) > nea [3\/3(2m + 1)(c1 +c2) —2c1(1 + ac2)| -

Furthermore, the inequality (3.6) is equivalent to

2¢o(1 4 aca) + 3v/3(c1 + ¢2) . 1

2 [3V3(c1 + ¢2) — 2¢1(1 + acy)] 2
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By (i) and (ii), the inequality (3.6) holds if and only if 7 satisfies either

3v3c1 + (3v3 — 2)ez — 2ack cpe 1
(3v/3 +2)cieo + 2acyc3 + 3\/362 =1 &)
or
1 2¢o + 2ac3 + 3v3(c1 + ¢2)
—<n< 3 5
C2 (3v3 — 2)cieo + 3\/502 — 2ac1 65
]

Proposition 3.2.12 Let the parameters c1, ca, a, B be fixed and satisfy the inequality
3v/3c; + (3\/§ —2)eg — 20403 < 0.

Then the inequality (3.6) holds if and only if n satisfies either

1 1 2¢9 + 2ac2 + 3v/3(c
. B8 ce + 2ac; + \f(21+02) .
C2 c (3v/3 —2)ciea + 3\/5(:2 — 2ac1 65

Proof.If n < é, then the inequality (3.6) is equivalent to
nea [2¢1(1 4 acy) +3vV3(e1 + )| > 3V3(c1 + ) — 2e2(1 + ac).
Since
3v3(e1 + ¢2) — 2¢e2(1 + acy) <0,

we can conclude that the inequality (3.6) always holds. Thus the inequality (3.6) holds if and only

if n satisfies either

1 2 2ac2 + 3vV/3 1
n< — or ¢ + 206} + 3V3(c1 + ) >n>—.
&) (3v3 — 2)cico + 3\/§c% — 263 C2

We show the system is chaotic if ¢; — oo, or ¢; — 07, or ca — o0 as follows.

Proposition 3.2.13 Let the parameters n, co, B be fixed and satisfy either

3v3
7\[<n02<10r

>nce > 1,
24+3V3 = ez

3v3
3v3 -2
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then the inequality (3.6) holds if c¢1 is sufficiently large (while « is sufficiently small).

Proof. Since a € (0, %} , we can see the parameter a — 07 if the parameter ¢; — oo.

M|, V3

3(L—mnc2)| ~ c2

3.
> — implies
C2

lim
c1—00

‘ 2(1 + ac)(1 +ner)
3(e1 4 ¢e2)(1 — nea)

Then we have the results by considering two different cases which one is n > é and the other is

1
77<a.

Proposition 3.2.14 Let the parameters n, co, a, 8 be fized and satisfy the inequality

> 3v/3,

2(1+ac) |5

—ne2
then there exists one positive € << 1 such that the inequality (3.6) holds for all ¢; < €.

Proof.
V3

> — implies
(6]

2(1 + ac2)(1 +neq)

] 2(1 + «c2)
lim
c1—0t 3(61 + 02)(1 — 7762)

2(0+ac) | V3
3ca(1 — nez)

= ey

Proposition 3.2.15 Let the parameters n, c1, a, 8 be fized and satisfy the inequality

20 + 2ame; — 3v/3n > 0,

then there exists one positive real number M such that the inequality (3.6) holds for all ca > M.

Proof.
2co(1 ) (1 ;
lim ca(1+ aco)(1 +ner) > /3 implies 20(1 4+ neq) > 3v/3n.
ca—oo | 3(e1 + c2)(1 — nez)
[ |
. . 2(1 1 2(1 :
Since 021£%+ 3((cjf§§))((1fgg)) = X ;c 71’01) and ch£%+ g’ = 00, we can see the graph of the map

[ is very flat. Thus, there exists no chaos if ¢y is sufficiently small.

3.3 Main results of the system (1.1)-(1.4)

Definition 3.3.1 (Initial Conditions of Type I) We say the 1D wave system (1.1)-(1.4) has

initial conditions of type I if the initial conditions satisfy the compatibility condition and the union
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of the ranges of
Y(z)—a1¢'(z) on [0,1] and

c1+tca

=
—~
8
~
Il

Fi(w) = e ke o (o, 1]

_[ 1 [1+ac 1\/1+a02]'
N C2 Beo ’02 Beo ’

i.e., I C A (see Remark 3.1.1 and Definition 3.1.2).

contains the interval

Remark 3.3.2 In the following theorems, we can compute

d+Vd? + 4c? _ —d+Vd? 442

for any given ¢ and d. Conversely, we can compute d = ¢; — ¢ and ¢ = /ci1¢ca for any given c1

and co.

Theorem 3.3.3 Suppose that the parameters c, d, o, 8 are to be fized in the 1D wave system (1.1)-
(1.4) and satisfy the inequality

3V3c1 + (3V3 = 2)er — 202 > 0.

If the 1D wave system has initial conditions of type I and if n satisfies either

3v3c1 + (3v3 — 2)ca — 2ac3 b
(3v3 + 2)c1ca + 2aci 2 + 3\/50% iy C2

or
1 2o + 2acc3 + 3v3(c1 + c2)
Co = (3v3 — 2)ciea + 3\/30% — 2ac1c3 ’

then the 1D wave system is chaotic.

Proof. The results follow easily from Theorem 3.2.10 and Proposition 3.2.11. m
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Example 3.3.4 Consider the one-dimensional wave system as below:

(
Wit — Wez =0, 0<z<1,t>0.

wz(0,t) + nw(0,t) =0, n>0,n#1,t>0.
we(1,t) = awy(1,t) — Buw}(1,t), ac(0,1],3>0,t>0.
w(a:,O) = (P(x) € Cl([07 1])7 wt(xvo) = 1/1(113) € CO([Ov 1])

\

Suppose that the parameters o, B are to be fixed and the 1D wave system has initial conditions of

type I = {—, /HTO‘, HTO‘ .If n satisfies either

3vV3+1+a 3\/§f1fa<n<1’

1l<n< or
77‘:3\/3—1—@ 3vV3+1l+a ~

then the wave system is chaotic (isotropic chaotic vibration of the linear wave system). In [8, 12,

13/, Huang et al. showed the same results as above.
Theorem 3.3.5 Suppose that the parameters ¢, d, a, B are to be fixed in the 1D wave system (1.1)-
(1.4) and satisfy the inequality

3v3c1 + (3V/3 = 2)cz — 203 < 0.

If the 1D wave system has initial conditions of type I and if n satisfies either

. 2 .
0§77<l07"l<7)§ 2¢o + 2ac3 + 3v/3(c1 + c2) ‘
Ca .02 (3v/3 — 2)ciea + 3v/3c3 — 2acic3

then the 1D wave system s chaotic.
Proof. The results follow easily from Theorem 3.2.10 and Proposition 3.2.12. &

Example 3.3.6 Consider the one-dimensional wave system as below:

wit + 2wy — 3wer = 0, O<z<l1,t>0.
wz(0,1) + nw(0,t) =0, n>0,n#1/3,t>0.
wa(1,1) = awy(1,8) — Bud(L,t), ac [2\7% 1} ,B>0,t>0.
w(,0) = p(a) € CH0.1]),  wi(2,0) = w(x) € OO, 1]).

Suppose that the parameters a, B are to be fixed and the 1D wave system has initial conditions of
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type I = [—%, / 143:204, I/ 1‘§g’“ . If n satisfies either

1 1 2v3 4+ 1+ 3
0<n<-or-—<n<——-—"
="1<3%3 n_6\/§—1—3a

then the wave system is chaotic (nonisotropic chaotic vibration of the linear wave system).

Theorem 3.3.7 Suppose that the parameters n, ca, a, 5 are to be fized in the 1D wave system (1.1)-
(1.4) and satisfy either

3V3

—— < nea <1 or

3./3
OV S ey > 1.
2+3v3 ~ 3/3 2~ 1

If the 1D wave system has initial conditions of type I, then the 1D wave system s chaotic for c;

is sufficiently large (while v is sufficiently small).
Proof. The results follow easily from Theorem 3.2.10 and Proposition 3.2.13. m

Theorem 3.3.8 Suppose that the parameters n, ca, a, 5 are to be fized in the 1D wave system (1.1)-
(1.4) and satisfy the inequality

> 34/3.

2 (1 = OéCQ)

1 —nc

If the 1D wave system has initial conditions of type I, then the 1D wave system is chaotic for c1

is sufficiently small.
Proof. The results follow easily from Theorem 3.2.10 and Proposition 3.2.14. m

Theorem 3.3.9 Suppose that the parameters 1, ca, «, B are to be fized in the 1D wave system (1.1)-
(1.4) and satisfy the inequality
20 + 2ame; — 3v/3n > 0.

If the 1D wave system has initial conditions of type I, then the 1D wave system (1.12) is chaotic

for co is sufficiently large.

Proof. The results follow easily from Theorem 3.2.10 and Proposition 3.2.15. =
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Example 3.3.10 Consider the one-dimensional wave system (1.8)-(1.11) as below:

Wit + VWi — Wz = 0, v>0,0<ax<],t>0.
wz(0,t) =0, t > 0.

wa(1,1) = awy(1,8) — B (1,1), ac (o, %m} ,B>0,t>0.
w(z,0) = p(z) € C'([0,1)), we(z,0) = P(x) € C°([0,1]).

Suppose that the parameter 8 is to be fixed and the parameters v, a satisfy the inequality

2(1 + 0462) > @
le1te)|” e’
where ¢y = —vtvvtd V2“2+4 and cg = YEVY"+4 ”2“2+4. If the 1D wave system has initial conditions of type I

where I = [—é 122‘;2, é \/1};?;2J , then the wave system is chaotic (nonisotropic chaotic vibra-
tion of the linear wave system). In [5], Chen et al. showed the same results as above in the proof of

theorem 3.2.
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Chapter 4

The 1D wavesystem (1.12)

In this chapter, the 1D wave system (1.12) is considered:

Wit —dWig — CCway =0, deR, c>0,0<x<1,t>0,
wi(0,t) + nw,(0,¢) = 0, n>0,n%cyt>0,

wz(1,t) = awi(1,t) = Bw?™(1,1), o€ (0, %} , B,t>0,méeN,
w(z,0) = p(z) € C([0,1]), wi(z,0) = ¥(z) € C°([0,1]).

4.1 Chaotic vibrations of the system (1.12)

The general solution of (1.12); is
w(z,t) = u(cit + ) + v(eat — x), (4.1)

where u, v are arbitrary C2-function. Substituting (4.1) in (1.12)2 and (1.12)3 we have

ct—n
co+m

u'(c1t) = — v'(eat), t >0, (4.2)

and
Bleru/ (it + 1) + v’ (eat — 1)) + <é - a) (v (et +1)

+eav'(cot — 1)) — (1 + g—f) v'(cat —1)=0,¢> 0.
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When 1 = ¢z in (4.2), we have
W (c1t) =0 for t > 0= u(cit +x) = C for t > 0.

Thus, we consider the case 7 # co. And depends on (4.2), we can use v’ to replace v’ in (4.3) to
derive one difference equation as follows.

By using the substitution

v’(%(cﬁ—%)),ogtgé,

VARSI (clt | c—l) ,t >

n—c2

we have the difference equation

6] <01 et +A)+ 022(7))2m+1 =t (i = a) (01 225 (1 4+ A)

WhereT:clt,Azl—i—%.

And the initial condition of (4.4) is

P(l—cot)—c1’ (1—cat) i
c1+tca ’0§t§02'
z(e1t) =
_a 50! = Cly
,H_Cl?ﬁ(mt (:2)-&-62@ (c1t 62) 1 = 1 N 1
n—c2 c1tca ) co = co”

Remark 4.1.1 In this paper, we assume that the initial value (x) and (x) are chosen such that

z(1) is continuous on [0,1 + %] and satisfy the compatibility condition

Bleri22(A) + c22(0)™H + (5 — a)(er 2 2(A)

+c22(0)) — (1 + £2)2(0) = 0.

Definition 4.1.2 In the following theorems of this paper, we denote the range of z(1) on [0, A] to
be the compact interval A, i.e. A = z([0, A]).
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We show the dependence of z(7+A) on z(7) is given implicitly by one C!-function f, as fol-

lows.

Lemma 4.1.3 (Existence and Uniqueness of the Solution) Let the parameters c1, ca, 1, «,
B be fixed in (4.4) withcy > 0,c3 > 0,7 > 0,1 # co, € <0, %] and B > 0. Then there exists

one C'-function fy such that
a(z(t)) = z(t+ A) forallt >0,

where X = (017 C2,1), &, 5)-

Proof. Let

2m+1
= n—c2 . 1 _ n—ca .
Hy(u,v)=p (01 out (,21}) + (61 a) (cl U+ cw)

where u = z(17 + A), v = 2(7), A = (1, ¢2, 1, @, ).
(i) Ifa= %, then H)(u,v) = 0 implies

77_02 2m—+1 02 v
c 1) = 14+ —) = — cov.
ntea \/( q)ﬁ :

Hence, the C'-function fy exists.

.. 1
(ii) If a € (0, a), then

0 1N —C2 nN—C2 o nN—C2
—Hy(u,v) = 30¢ c U+ cov + (1 —ac 0.
i) =350 2 (a2 ) (1= a2 2

By the implicit function theorem, the C'-function fy exists. m

Definition 4.1.4 We denote fx(2(7)) = z(7 + A) to be the function satisfies (4.4) for all T > 0,

where A = (1, c1, ca, o, B,m).

Since

H(z(1)=z(r+ A) forall 7 > 0,
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we can use the map f) and the interval A to generate z(7) for all 7 > 0. And the corresponding

solution of the 1D wave system (1.12) is calculated via the formulae

1

(2.1 /++ 1 emyart [ sterm)a
wlx, = C z\c17)aTt CozlC1T)arT.
N DG ; 22(c1

c2

Definition 4.1.5 (Chaotic Vibration) The solution of the 1D wave system is said to be chaotic
if the map fx : A — R is chaotic in the sense of Li-Yorke; i.e., there exists one nonempty invari-

ant subset Ag C A such that fy is chaotic in the sense of Li-Yorke on A (see Definition 2.0.7).

Remark 4.1.6 In this paper, we say the 1D wave system is chaotic if its solution is chaotic.

4.2 The chaotic region of the system (1.12)

In this section, we consider (4.4) as below:

= 2m+-1 L&
Hi,y) = (aB2y+ar) +(L-a) (ab2y+on)

—(1+%)$:0,

where 1, c1, co, B are positve (n # ¢2), 0 < a < é and m € N.And we have the results as fol-

lows.

Definition 4.2.1 We denote

c1 1+ acs 1 X 14 acy
Ve = + — —al P ———
c1+ ¢ 02(2m S 1) C1 (2m + 1)662
M- 2m l+acon+c,, 14+ aco
S 2mAle4en—c (2m + 1)Bes

We show the local maximum, minimum and piecewise monotonicity of the function h which

and

in the following lemmas.

satisfies (3.4) as below.

Lemma 4.2.2 (Local Maximum, Minimum and Piecewise Monotonicity) Lety = h(z)

be the unique function which satisfies (4.4). Then the fuction h is odd and h has local extrema at
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(ve, M) and (—ve, —M). Furthermore, the function h is strictly monotonic on (—oo, —v¢), (—ve, Vc)

and (v, 00).

Proof. Since H(—z,h(—z)) = H(—xz,—h(z)) = 0, the function h is odd. Then use

2m
$Hy) = mr D5 (kg + ) (k22 +co)

1 n—ca, ./ _
(o)t o) - (105) -0
and carry out the computations, we have the results. m

We show the z-axis Intercepts, fixed points and intersections with the line y = —x of the func-

tion h as below.

Lemma 4.2.3 (z-axis Intercepts) The function h intersects the x-axis at the points

1, [1+ac ) <12 1+ acs )
_I m 770 . 070 ] N m 7’0 .
< 2 pez (©,0) 2 Bea

Proof. Straightforward verification by computing
1
H(z,0) = B(0 4 cpz)?™ ! + ( — a> (0 + cox) — (1 + 02> =0,
C1

we have x (,BcgmeQm — aey — 1) = 0 which implies z = 0, i% 2 ﬁﬂ ]

cy

Lemma 4.2.4 (Intersections with the Line y = x) The function h intersects the liney = x

n+c o, /1+aon n+c o, /1+oaon
- > 7(070)/'
n(c1 + c2) B n(c1 + c2) Ity
< n+ca L. /1+an n+a 2ml—}—om)
nier+e) Vo By ‘mlate) NV By )7

Proof. Straightforward verification by computing H(x,z) =0. m

at the points

and

Definition 4.2.5 We denote the point

B N+ c1 am |20+ 2acico + (€1 — c2) + an (ca — ¢1)
|20102 + (CQ — 01)77‘ ,3[20162 + (02 — 01)7]]

in the following lemmas.
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Lemma 4.2.6 (Intersections with the Line y = —z) Let the parametersn, c1, ca2, o, 3, m be
fized in (4.4) with
1 > co and 2c1c3 + (ca — c1)n # 0.

Then the function h intersects the line y = —x at the points
(_B7B): (070)7 (B’ _B)7

if (i) c1 < e orif (i) c1 > ¢ and 2c1ca+(ca—c1)n > 0 orif (iii) c1 > co and 2¢c1ca+(ca—c1)n <
2n+c1—
0 and % > —a.

Furthermore, if the parameters are not in these three cases then the function h intersects the line

y = —x only at the point (0,0).
Proof. Straightforward verification by computing H (z, —z) = 0 and the three cases provide that

21 4 2accico + (¢1 — ¢2) + an(cg — ¢1)
Bl2c1ca + (e — 1))

is positve.

2n+42acy ca+(c1—ca)+an(ca—cy)

Otherwise, B[2c1ca+(ca—c1)n]

is zero or negative. m
We show the function A has bounded invariant interval or bounded invariant cantor-like sub-

set in following lemmas.

Lemma 4.2.7 (Bounded Invariant Interval) Let the parametersn, c1, c2, a, B, m be fized in

_ | 2m 14acr ntci opm 14-acs < _ntea e2m/ltan
2m+1 ci1+ca n—ca (2m—+1)Bc2

(7') If0 <n <coand = n(c1+c2) Bn 7’

M

then the iterates

of every point in the set

U=<—oo— n+ci /H—om)u( n+ec  [1+an OO)
B " onlete2) Vo Bn nci+c)V pn

escape to £0o, while those of any point in R\U are attracted to the bounded invariant interval
2m l+acan+c,, 1+ acy 2m l+acan+c,, 1+ acy
2m+1c¢1+ca n—co (2m+1)Bea| ' [2m+1ci+cam—ca (2m + 1)fBeca

of b i.e., [=[M]|, |M]] of h.
(i) If n > co and h intersects the liney = —x at three points and |M| < B, then the iterates of

Y
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every point in the set U = (—oo,—B) U (B, 00) escape to +00, while those of any point in R\U
are attracted to the bounded invariant interval [— | M|, |M]|] of h.

(iii) If n > co and h intersects the liney = —x at (0,0), then the iterates of every point in R are
attracted to the bounded invariant interval [— M|, |M]|] of h.

Proof. The results of (i) and (ii) follow easily from the above lemmas and other piecewise monotonic
properties of h, as can be directly comfirmed by graphical analysis (see Figure 6 and Figure 7).
We omit the details.

(iii) If n > co and h intersects the line y = —x only at (0,0), then |h(x)| < |z| for all

T € (—OO,—l i 1+a02> U <1 %/ Ltoe +a02’00> .
c2 Beo c2 Beo

Thus, |h™(z)| is strctly decreasing for n < ng, where

1 . /14 acs 1, /14 acy
hn() T 6 <—OO, — 1] > U < 2m ,OC>
(=) c2 V  Bea c2 V Be
Bt (z) ¢ (—oo, _Llal “"32) U (1 p/1E O‘Cz,oo> |
2 Beo co Bea

Hence, the iterates of every point in R are attracted to the bounded invariant interval [— | M|, | M]]

and

of h (see Figure 8). m

Lemma 4.2.8 (Bounded Cantor-like Invariant Subset) The bounded invariant interval

2m l+4+acon+ci ,, 1+ acy 2m l+4+acon+cy ,, 1+ acy
2m+1 c¢1 +co n—co 2m+1)Bea| " |2m+1c1+con—co (2m + 1)Becsy

no longer exists in the case (i) and (ii) of the Lemma 4.2.7 if the condition

M| < e flEan g
(e +c) Bn N

is violated. Instead, we have a bounded Cantor-like invariant set.

9

Proof. The method of proof is now standard, see [18, Sec. 1.7], for example. m
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(b,b)

-b,-b)

Figure 6: The map h with n < ¢o and

y=x

y=x

y="x

Figure 7: The map h with n > ¢o and

| M| < b. |M| < B.
y y=Xx
N
\ al-—-.
M
2 X
-M
-1-a
y=-x

Figure 8: The map h with n > cs.
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Figure 9: h3(p2) < p2 < h(p2) < h%(p2).  Figure 10:h%(ps) < ps < h2(ps) < h*(ps).
We have the chaotic region of the function h as below.

Lemma 4.2.9 (Chaotic Region of the 1D Wave System) Let the parametersn, c1, c2, «, 3,
m be fized in (4.4) and satisfy the inequality

= 1+ ey l 1 + och (4.5)
2m i 1 602 C2

then the interval map h is chaotic in the sense of Li-Yorke if the domain of h contains the inter-

l om [ 1 1 QC2 l om | L+ ca
()] 5()2 ! (&) “3(:2 '

2m 1+ acy
2m+1 c1 + ¢

n+cl

val

Proof. (i) If n > ¢y, then

2m l+acan+c,, 1+ aco

is the local maximum.
2m+lci+ecan—co (2m+1)Bco

h(ve) =

Since h is strictly increasing on [0, v.| and h(v.) > é 2 LE%, there exists one unique point p; €

(0,v.] such that h(p;) = = 27 120‘02 Similarly, there exists one unique point ps € (0, p1) such

C2

that h(p2) = p1. Hence we have

0= h3(p2) < p2 < h(p2) < h*(p2) (see Figure 9).
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Thus h has points of all periods which implies chaos [by Li and Yorke, 1975].
(i) If 0 < < ¢g, then

2 1 1
h(ve) = m_ltacnta,, +ac is the local minimum and
2m+lc+ean—co (2m +1)fBca
2 1 1
h(—ve) = — m_ltaenta,, +ac is the local maximum.
2m+1ci+com—co (2m 4+ 1)Bca

Since h is strictly decreasing on [—ve, v.] and h(v.) < —é 2 IE%, there exist one unique point

p1 € (0,v.] such that h(p;) = —% 2 % And since h is odd, there exists one unique point
p2 € (—p1,0) such that h(p2) = pi.Similarly, there exists one unique point ps € (0, —p2) such
that h(ps)

= po and then there exists one unique point ps € (—ps,0) such that h(ps) = ps. Then there ex-

ists one unique point ps € (0, —p4) such that h(ps) = ps. Hence we have
0 = h%(ps) < ps < h%(ps) < h'(ps) (see Figure 10).

Thus g = h? has points of all periods which implies chaos [by Li and Yorke, 1975]. Hence h is chaotic
in the sense of Li and Yorke. m

Thus, we have the main theorem as below.

Theorem 4.2.10 (Chaotic Region of the 1D Wave System) Let the parametersn, c1, ca, ,
B, m be fized in the 1D wave system (1.12) and satisfy the inequality

2m 1+ ey
2m+1 c1 + ¢

n+c
n—c2

3 o9m + 1

, (4.6)
C2

and if the 1D wave system has initial conditions of type I, then the 1D wave system is chaotic.

Now we want to show the chaotic region of  when ¢y, c2, , 5, m are fixed. There are two dif-

ferent cases as follows.

Proposition 4.2.11 Let the parameters c1, co, o, B, m be fixed and satisfy the inequality

2/2m +1(2m + 1)(c1 + c2) — 2mea(1 + acg) > 0.
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Then the inequality (4.6) holds if and only if n satisfies either

¢ [2mer (1 + acg) + *¥/2m +1(2m + 1)(c1 + ¢2)]
22m + 1(2m + 1) (e1 + ¢2) — 2mea(1 + acs)

cog <m<

or
co [ *V2m + 1(2m + 1)(c1 + c2) — 2mer (1 + acp)]

2mea (1 + ace) + */2m + 1(2m + 1)(c1 + c2)

0< <n<cy.

Proof. (i) If n > cg, then the inequality (4.6) is equivalent to
co [chl(l + aez) + /2m +1(2m + 1)(c1 + 02)} >

n [ *V2m +1(2m +1)(e1 + ¢2) — 2mea(1 + acs)] .

And since

2/2m + 1(2m + 1)(c1 + c2) — 2mea(1 + acg) > 0,
the inequality (4.6) is equivalent to

¢ [2mei(1+ ac) + *2m+ 1(2m + 1)(c1 + c2))
/2m 4+ 1(2m + 1)(c1 + ¢2) — 2mea(1 + acs)

2 <n=
(ii) If n < cg, then the inequality (4.6) is equivalent to
n[2mes(1 + acs) + *V2m + 1(2m + 1)(c1 + e2)] >

co [ 2m+1(2m + 1)(c1 + c2) — 2mer (1 + acs)] .
Furthermore, the inequality (4.6) is equivalent to

co [ *V2m + 1(2m + 1)(c1 + ¢2) — 2mer (1 + acp)]
2mea (1 + acs) + */2m + 1(2m + 1)(c1 + c2)

<n<csp.

And since

2/2m +1(2m + 1)(c1 + c2) — 2mer (1 + acy) >

2/2m + 1(2m + 1)(c1 + e2) — 2mer(1+ 2) > 0,

C1
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we have

ca 2/2m + 1(2m + 1) (c1 + c2) — 2mer (1 + acs)]
2mea(1 4+ ace) + /2m + 1(2m + 1)(c1 + ¢2)

By (i) and (ii), the inequality (4.6) holds if and only if 7 satisfies either

> 0.

¢ [2mer(1+ aca) + *2m+1(2m + 1) (1 + c2)]

ca<n<
2 <1 < 2/2m + 1(2m + 1)(c1 + c2) — 2mea(1 + acs)

or
co [ *V2m + 1(2m + 1)(c1 + ¢2) — 2mer (1 4 acp))
0< = <n<cs.
2mea(1 4+ ace) + *V/2m + 1(2m + 1)(¢1 + ¢2)
n

Proposition 4.2.12 Let the parameters c1, ca, «, 3, m be fixed and satisfy the inequality
2/2m + 1(2m + 1)(c1 + ca) — 2mea(1 + acs) < 0.

Then the inequality (4.6) holds if and only if n satisfies either

c2 [¥2m + 1(2m + 1)(c1 + ¢2) — 2mer (1 + acp)]
2mes(1 + acg) + */2m + 1(2m + 1)(c1 + ¢2)

n>cyor(< <n<ec.

Proof. If n > ¢y, then the inequality (4.6) is equivalent to
c [2mer (1 +ac) + V2m+12m + 1)(c1 + e2)] >

0 [ V2mAI(Em+ 1) (e + ) = 2mea(1 +acy)]

Since

2/2m + 1(2m + 1)(c1 + ¢2) — 2mea(1 + acz) <0,

we can conclude that the inequality (4.6) always holds. Thus the inequality (4.6) holds if and only

if i satisfies either

eo [ %/2m+ 1(2m + 1)(c1 + 2) — 2mes (1 + acy)]

>cogor0<
7 2mea(1 4 ace) + */2m + 1(2m + 1)(c1 + ¢2)

<n<cs.
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Now we want to show the chaotic region of ¢; when 7, ¢, a, 8, m are fixed. There are three

different cases as follows.

Proposition 4.2.13 Let the parameters n, co, o, 5, m be fized and satisfy the inequality
n > co and 2mcea(1 + acy) — *¥/2m +1(2m +1)(n — c3) > 0,

then the inequality (4.6) holds for any c;.

Proof.If n > ¢y, then the inequality (4.6) is equivalent to
a [2mez(1 + acp) — 2m+12m +1) (n — c2)] >

Ca [ 2m +1(2m + 1) (n — c2) — 2mn(1 + 0402)] )

Since

2mes(1+ acs) — V/2m + 1(2m + 1)(n — c2) > 0,

we have

R2m +1(2m + 1) (n — ca) — 2mn(1 + acz) < 0.

Thus the inequality (4.6) holds for any ¢;. =

Proposition 4.2.14 Let the parameters n, co, c, 3, m be fized and satisfy the inequality
n > ¢z and 2meo(l + acs) — *X/2m +1(2m + 1)(n — c2) < 0.

If
o [ 2m4+1(2m + 1) (n — ¢2) — 2mn(1 + acy))

>0
2mea (1 + aca) — QW@m +1)(n —c2)

and if ¢1 satisfies

1 e [W2mFI2m 4 1) (n— cp) — 2mn(1 + acy)]
0<e¢ <mingq —, 2 ’
a’ 2mea(1+acy) — *X/2m+12m + 1) (n — c2)

then the inequality (4.6) holds.

39



Proof. If n > ¢y, then the inequality (4.6) is equivalent to
ca [2mez(1+ ac2) — 2m+12m + 1) (n — c2)] >

e [*V2m+12m+1) (n — c2) — 2mn(1 + acs)] .

Since

2mea(1 + ace) — *V2m + 1(2m + 1)(n — c2) < 0,
then the inequality (4.6) is equivalent to

< €2 [ 2W(Qm +1)(n—c2) —2mn(1 + aC2)]
2mea(1 + acz) — R/2m+ 1(2m+ 1) (n —ca)

And since
co [ 2/2m +1(2m + 1) (n — ¢2) — 2mn(1 + acy)]
2mez(1+ acz) = *X/2m +1(2m + 1) (n — )

the inequality (4.6) holds if

> 0,

.1 e [R2m+112m+ 1) (n — c2) — 2mn(1 + acp)]
0 <e¢1 < min{—,

a’ 2mea(1+ acs) — 2m +1(2m + 1) (n — c2)

Proposition 4.2.15 Let the parametersn, co, o, 3, m be fized and satisfy the inequality

n < cg and 2mea(1 + acy) — */2m +1(2m +1)(c2 — 1) > 0.

Then the inequality (4.6) holds if and only if ¢1 satisfies

o e [*V2m 4+ 1(2m+ D)(ez —n) — 2mn(1 + acy)]
2mea(1 + aco) — *V2m+12m+1)(c2 —n)

Proof. If n < ¢y, then the inequality (4.6) is equivalent to
a [2mez(1+ acy) — 2m+12m + 1) (c2 — )] >

co [*V2m+12m+1) (c2 — n) — 2mn(1 + acy)] .
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Since

2mea(1 + acg) — *V/2m+ 1(2m + 1)(n — ¢2) > 0,
then the inequality (4.6) is equivalent to

ca [ *%2m +1(2m + 1)(c2 — n) — 2mn(1 + acy)]
2mea(1+ acg) — /2m + 1(2m + 1)(c2 — )

4.3 Main results of the system (1.12)

Definition 4.3.1 (Initial Conditions of Type I) We say the 1D wave system (1.12) has ini-
tial conditions of type I if the initial conditions satisfy the compatibility condition and the union
of the ranges of

Fo(z) = Ye)—ae'@ , [0,1] and

€17Hc2

Fl(l‘) — nta Y(@)+eay’ () on [0’ 1}

n—Cca 1 HRE
contains the interval
e [_1 o |1+ ace 1277\L/1+acQ] :
c2 Bea o Bea |

i.e., I C A (see Remark 4.1.1 and Definition 4.1.2).

Remark 4.3.2 In the following theorems, we can compute

= (d+ vV d? +462) /2 and cy = (~d+ Vd? +4C2> /2

for any given ¢ and d. Conversely, we can compute d = ¢; — ¢ and ¢ = /c1¢ca for any given c1

and c.

Theorem 4.3.3 Suppose that the parameters ¢, d, , 3, m are to be fized in the 1D wave system

(1.12) and satisfy the inequality

2/2m +1(2m + 1)(e1 + c2) — 2mea(1 + acg) > 0.
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If the 1D wave system has initial conditions of type I and if n satisfies either

¢ [2mer (1 + acg) + *¥/2m +1(2m + 1)(c1 + ¢2)]
22m + 1(2m + 1) (e1 + ¢2) — 2mea(1 + acs)

c2 <m<

or
co [ *V2m +1(2m + 1)(c1 + ¢2) — 2mei (1 + acp))
2mea(1 + ace) + */2m + 1(2m + 1)(c1 + c2)

then the 1D wave system (1.12) is chaotic.

<n<cy,

Proof. The results follow easily from Theorem 4.2.10 and Proposition 4.2.11. m

Example 4.3.4 Consider the one-dimensional wave system (1.5)-(1.7) as below:

wit — Waz = 0, 0<z<1,t>0.

wz(0,t) +nw¢(0,t) = 0, n>0,n#1t>0.

we(1,t) = awi(1,t) — Bwd(1,t), a€(0,1],3>0,t>0.
w(z,0) = ¢(z) € C([0,1]), wi(z,0) = ¥(z) € C°([0,1]).

Suppose the parameters o, B are to be fixed and the 1D wave system has initial conditions of type

1, where I = [71/1*70‘, HTQ . If n satisfies either

3V3+14+a 3vV3—-1-«
1<n< or
3vV3-1—-a  3V3+1l+a

<n<l,

then the wave system is chaotic. In [2], Chen et al. showed the same result as above.
Theorem 4.3.5 Suppose that the parameters ¢, d, c, 3, m are to be fized in the 1D wave system
(1.12) and satisfy the inequality

2m + 1(2m + 1)(c1 + c2) — 2mea(1 + acg) < 0.

If the 1D wave system has initial conditions of type I and if n satisfies either

co [ V2m +1(2m + 1)(c1 + ¢2) — 2mei (1 + acp))
2mea (1 + ace) + */2m + 1(2m + 1)(c1 + c2)

1> cy or <n<cy,

then the 1D wave system (1.12) is chaotic.

Proof. The results follow easily from Theorem 4.2.10 and Proposition 4.2.12. m
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Example 4.3.6 Consider the 1D wave system as below:

Wit + 2w — 3wy = 0, O<ax<1,t>0,
w(0,t) + nw,(0,t) =0, n>0,n#3,t>0,

wo(1,1) = awn(1,8) = u(L1), ae [23L1],8>0,t>0,
w(z,0) = p(z) € C'([0,1]), wi(z,0) = ¥(z) € C°([0,1]).

Suppose that the parameters a, B are to be fixed and the 1D wave system has initial conditions of
type I, where I = [—%\/ ngga, %\/ l-gga If n satisfies either

6v/3 — 1 = 3«
R B
2v/3+ 1+ 3

n>3o0 <n <3,

then the 1D wave system (1.12) is chaotic.

Theorem 4.3.7 Suppose that the parametersn, cs, c, 5, m are to be fixed in the 1D wave system

(1.12) and satisfy the inequality
n > co and 2mea(1 + acy) — */2m +1(2m +1)(n — ca) > 0.

If the 1D wave system has initial conditions of type I, then the 1D wave system (1.12) is chaotic

for any c1.
Proof. The results follow easily from Theorem 4.2.10 and Proposition 4.2.13. m

Theorem 4.3.8 Suppose that the parametersn, ca, ., 5, m are to be fixed in the 1D wave system

(1.12) and satisfy the inequality
n > cz and 2mcea(1 + acz) — *V2m +1(2m + 1)(n — c2) < 0.

If the 1D wave system has initial conditions of type I and if

co [V2m +1(2m + 1) (n — c2) — 2mn(1 + acy)]
2mea (14 ace) — */2m+1(2m+1) (n — c2)

7
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then for any c1 satisfies

(1 o [WERFI@m 4 1) (- e2) — 2mn(1 +acy)]
0<c¢ <min{q —, 2
a’ 2mea(1+ acy) — R2m +12m+1) (n — ¢2)

the 1D wave system (1.12) is chaotic.
Proof. The results follow easily from Theorem 4.2.10 and Proposition 4.2.14. m

Theorem 4.3.9 Suppose that the parametersn, ca, a, 8, m are to be fixed in the 1D wave system

(1.12) and satisfy the inequality
n < c2 and 2mea(1 + acz) — *X/2m + 1(2m + 1)(ca — 1) > 0.

If the 1D wave system has initial conditions of type I and if for any c1 satisfies

co [ 2V2m +1(2m + 1)(cz — ) — 2mn(1 + acs)]
2me(1+ acs) — *X2m+ 1(2m+1)(ca —n)

then the 1D wave system (1.12) is chaotic.

Proof. The results follow easily from Theorem 4.2.10 and Proposition 4.2.15. m
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Chapter 5

Three examples

In this chapter, we consider the 1D wave systems in [2, 5, 8, 12, 13].

5.1 One special case of the system (1.12)

In [2], Chen et al. consider the 1D wave system as below:
wi — W =0,0<z<1,t>0, (5.1)

with the boundary conditions

wi(0,t) = —nw(0, 1), n>0,n#1,t>0,
(5.2)

we(1,t) = awy(1,t) — Bwi(1,t), a € (0,1],8>0,t>0,
and the initial conditions
w(z,0) = p(x) € C'([0,1]), wi(z,0) = P(z) € CO([0,1]). (5.3)

Actually, this is the case of d = 0, ¢ = 1 in (1.12); and m = 1 in (1.12)3 in section 4. Thus, the

function fy is the unique real solution of the cubic equation

3
n—1 n—1
_— +:Zi —l—l—Oé E— —l—:L’ —21':0.
B<n+1y > ( )<n+1y )
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And we have the following results by letting ¢; = ¢a = m = 1 in section 4.2. We show the local

maximum, minimum and piecewise monotonicity of the function fy as below.

Lemma 5.1.1 (Local Maximum, Minimum and Piecewise Monotonicity) The fuction fy
is odd and fy has local extrema at (ve, M) and (—v., —M). Furthermore, the function f is strictly

monotonic on (—00, —v.), (—ve, ve) and (v.,00), where

2— 1 1 1 /1
v = o +aandM: +an+ —i—a.
3 38 3 n—1V 38
We show the x-axis Intercepts, fixed points and intersections with the line y = —z of the func-

tion f) as below.

Lemma 5.1.2 (z-axis Intercepts) The function fy intersects the x-axis at the points

(5o (f550)

Lemma 5.1.3 (Intersections with the Line y = 2) The function fy intersects the liney = x

at the points

(_l—i-n [I+an 147 /1+oz77> (0.0) <1+77 /1—1—0477 1—1—7] /1+an>
2n Bn ' 2q pn ) T Bn

Lemma 5.1.4 (Intersections with the Line y = —x) The function fy intersects the line y =

—x at the points

_1+7} Ja+n 14+n [a+n (0,0) IL+n Ja+n 1+n ja+ny
2 6 ) 2 /8 ) ) 2 2 [)} ) 2 ﬁ :

We show the function fy has bounded invariant interval or bounded invariant cantor-like sub-

set in following lemmas.

Lemma 5.1.5 (Bounded Invariant Interval) Let the parameters0 < o <1, > 0, andn >
0,n#1.
(i) If0 < 7 < 1 and |M| = ’%Z#\/%

set
_< 1+n /1—|—on7> (1—1—77 1+an )
U= —oo,—i Ul —— , 00
Bn 2n Bn
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escape to 0o, while those of any point in R\U are attracted to the bounded invariant interval

Offk; i.e., [_ |M| ) |M|] Off/\'

(ii) If n > 1 and | M| < H-Tn QTM, then the iterates of every point in the set

. 14+7n Ja+n 147 ja+n
U:<_°°" >\ 5 >U( >\ 5 ’OO)

escape to £0o, while those of any point in R\U are attracted to the bounded invariant interval

|

l+an+1 1+«
3 n—-1 33

Y

Jltan+l [1+o
3 n—-1 33

l+an+1 14+«
3 n—1 35

l+an+1 1+«
3-m=1 35

of fa, i.e., [—|M

[ M} of fx.

Lemma 5.1.6 (Bounded Cantor-like Invariant Subset) The bounded invariant interval

|

no longer exists in the case (i) and (ii) of the above lemma if the condition

l1+an+1 /[1+a
3 n—1 33

|1tan+l /14«
3 =1l 36

)

1+7n /14+an

1
or |M| < +7)”04+77
2n Bn 2 B

is violated. Instead, we have a bounded Cantor-like invariant set.

|M| <

Thus, we have the main theorem as below.

Theorem 5.1.7 (Chaotic Region of the 1D Wave System) Let parameter n enters the region

) , ——— | , for any given o € (0,1], 8 > 0.
3V3+1+a 3v3-1—a ! v9 0,1, 8

3V3-1—a 1>u<1 3V3+1+a

Then the interval map fy is chaotic in the sense of Li-Yorke if the domain of fy contains the in-

1t+a 1t+a
terval [—,/ 50\ 5 }
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Definition 5.1.8 We denote

3V3—-1—« 3341+«
= ———an = ——.
M= s i ita TSR 1

We list the Period-Doubling Birfulcation Theorem in [2] as follows.

Lemma 5.1.9 (Correspondence of Period-2" Orbits to a Unimodal Map) Let0 < a <
1,8>0and0 < n < 1. Assume that o, 5 and n satisfy

Mﬂ:l—kal—i-n 1+a§ 1+a.
3 1—n 373 I5]
Assume that xy € [— |M|,|M]|] is a periodic point of prime period-2", for somen € {2,3,4,...}.

Then |xo| is also a periodic point of — f\ of prime period-2" such that all the points on the orbit
{—ff\ (lxzol) |7 =0,1,2,...,2" — 1} are positive.

Conversely, let xg > 0 be a periodic point of prime period-2" of —f\ for somen € {2,3,4,...}.
Then {—ff\ (lzol) | 7=0,1,2,...,2" — 1} is the full orbit of xg of the map fx of prime period-2".

The period-2™ orbit, n > 2, of fx is atracting (resp., repelling) if and only if the corresponding period-

2™ orbit of —f\ is atracting (resp., repelling).

Theorem 5.1.10 (Period-Doubling Bifurcaion Theorem for f), 0 <n <1) Let0 < a <
1, B> 0 be fized, and let 1) : 0 <1 <1, be a varying parameter. Let h(z,\) = —fa(x). Then
(i) zo(n) = 51,/ aﬁ,ﬂ is a curve of fized points of h : h(zo(n),n) = xo(n).

(ii) The algebraic equation

1 1+an\"2[1+B=2a)n] 147 [a+q
2<3677> [ 3n }_ 2V B

has a unique solution 1, for any given o and . (Actually, ng is independent of 5.) We have

=—1.
(wo(n0)m0)

0
%h‘(x> 77)

(iii) For n = ngy, we have

A

£0.

[%g(ah) “}
87781' 2 877 81"2 (zo(n0),m0)
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(iv) Forn = 1y, we have

> 0.
(w0 (n0)m0)

po |12 1 (2h\
T 6023 4\ 022

Consequently, there is period-doubling bifurcation at (zo(ng),ng). The stability type of the bifurcated

period-2 orbit is attracting.

Theorem 5.1.11 (Period-Doubling Bifurcaion Theorem for fy,n > 1) Let0 < o < 1,

B > 0 be fized, and let n : Ty < n < 0o be a varying parameter. Let h(xz, A) = fi(x). Then

(i) xo(n) = 1%7;7 1:;3'7 is a curve of fized points of h : h(xo(n),n) = zo(n).

(ii) The algebraic equation

1 fa+n 1/2 14+n [14+an
o 3 —2a] = —
(55) Baszal =S TR

has a unique solution ng, for any given o and (. (Actually, 1y is independent of B.) We have

x (w0 (19):m0)
(iii) For n = n,, we have
2h 1 h 2}
AE[;—F(g)gQL} 7l
ndx 2.\ ) 0z |4 (n0)me)
(iv) Forn = n,, we have
B= > 0.

1% 1 (%7
60x3 4 \ Ox?

Consequently, there is period-doubling bifurcation at (zo(ng),ng). The stability type of the bifurcated

(w0 (n0)m0)

period-2 orbit is attracting.

Definition 5.1.12 For any given a € (0, 1], denoete by 1o the unique real solution of the alge-

1/1+an 1/2 1+(B—-20)n] 14n [a+n
2\ 367 3n 2 B’

braic equation
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and denoete by g the unique real solution of the algebraic equation

1 fa+n\"? 1417 [1+a
= 7Y B4n—2a=—"1 1
6\ 38 2n Bn

Definition 5.1.13 For any given o € (0, 1], denoete by np the unique real solution of the alge-

braic equation

277( n )1/2:< 3v3

1—n\1+an 14 a)®?

andng =

‘We have

0<ny<ng<np<1l<Tg<Tg <7, < oc.

Lemma 5.1.14 For any given o € (0, 1], assume that either 0 < n < np orig <n < oo.Then
fa has invariant intervals [f \/%, \/%] and [— |M|,|M|]. Furthermore,

(i) if n € (0,n9) U (Mg, 00), then f has no periodic point of period larger than or equal to 2;

(i) if n € (o, )Y, o) then fx has at least a periodic point of period 2 and two fized points;
(i41) fx has period-doubling cascades as 1 is increasing in (M, 7Ng) or is decreasing in (1, ng) and
there exists two critical parameters N, and 1, with Ny > Ny and 1o, = % such that fx has a

homoclinic point when 1 € (Nogs Nl U M1, Moo )-

For example, if @« = 0.5 and $ = 1, simulation results shows that (see [12])

no ~ 0.433, Ty = — ~ 2.312, ny ~ 0.552, Tz = % ~ 1.812,

1
o
— 2 o A ~ e — L~

B =3B = 5, = L8, Hoo-m2 0:6249, Tog = e 1.905.

Theorem 5.1.15 Consider the 1D wave system (5.1)-(5.3).

(i) if n € (0,m9) U (g, 00) and initial conditions p(z), ¥(x) are piecewise monotone with finitely
many extremal points on [0, 1] such that the ranges of ¢ and 1) are contained in [—, / HTO‘, \ /HT‘“

and [— | M|, |M]|], respectively. Then the total variation of fx on [— |M|,|M]|] remains bounded.

(i3) If n € (1g; Noo)UMeo Mo) and the ranges of p and ¢ contain [—, / HTO‘, \ /H-Ta and [— |M|, |M|],
respectively. Then the total variation of fx on [—, /HTO‘, \ /HTO‘ and [— | M|, |M]] is unbounded.

(i41) If 1 € (Mog» MulVMH, Neo) and the ranges of ¢ and v contain [—, / HTO‘, \/ HTO‘ and [— | M|, |M]],
respectively. Then the total variation of fx on [—, / HTQ, \/ HTO‘ and [— | M|, |M|] is unbounded ex-

ponentially.
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5.2 Main results of the system (1.5)-(1.7)

In [8, 12, 13], Huang et al. consider the 1D wave system (1.5)-(1.7) as below:
wtt—wmx:0,0<x<1,t>0,

with the boundary conditions

wx(07t) = _nwt(ovt)v n> 07 n 7é 17 t> 07

w:c(Lt) - awt(lvt) L ng(l,t), o€ (Oa ”7 /6 > 07 t> 07

and the initial conditions
w(z,0) = p(z) € C'([0,1]), we(x,0) = y(z) € C°([0,1]).

Actually, this is the case of in (1.1) and > 0 in (1.2) in section 3. Thus, the function fy is the
unique real solution of the cubic equation

1—n E 1—n
— P o) e 2z =0,
ﬁ<1+ny+x> +( a)<1+ny+x> z=0

And we have the following results by letting ¢; = ¢o = 1 in section 3.2. We show the local maxi-

mum, minimum and piecewise monotonicity of the function f) as below.

Lemma 5.2.1 (Local Maximum, Minimum and Piecewise Monotonicity) The fuction f
is odd and fy has local extrema at (ve, M) and (—v., —M). Furthermore, the function fy is strictly

monotonic on (—oo, —v.), (—ve, ve) and (ve, 00), where

2 — 1 1 1 1
Ve = a +aandM:( + )1 +n) +a'
3 35 3(1—mn) 33
We show the z-axis Intercepts, fixed points and intersections with the line y = —x of the func-

tion f) as below.

Lemma 5.2.2 (z-axis Intercepts) The function fy intersects the x-axis at the points

(50 (555).
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Lemma 5.2.3 (Intersections with the Line y = z) The function f) intersects the liney = x

at the points

14n n+a 147 n+o (0,0) 14797 In+a 1+ /n4+a
2 /8 ) 2 B 7 ) 7 2 /8 ) 2 IB :

Lemma 5.2.4 (Intersections with the Line y = —z) The function f intersects the line y =

—x at the points

(_1+77 [1+an 1+n 1+an> (0,0) <1+77 l+an 1409 /1+a77>
27 Bn "2 N By )T\ 2p VO Bn T 2 pn )’

We show the function f) has bounded invariant interval or bounded invariant cantor-like sub-

set in following lemmas.

Lemma 5.2.5 (Bounded Invariant Interval) Let the parameters() < o < 1, 8 > 0, andn >
0,n#1.

. oy
(i) If n > 1 and | M| = ‘% 1;76&

o 1+n /n+a 1+7 In+a

escape to oo, while those of any point in R\U are attracted to the bounded invariant interval
1+a)(1+n) 1+«
3(1—mn) 33
0ff>\7 i'e‘) [_ |]\J| ) ‘]\JH OffA-

(i) If 0 <n < 1 and |[M| < 1;;7” 1;:”, then the iterates of every point in the set

_( 1+n 1—|—a77) (1—1—77 1+an )
U= (-o00,———4/ uf(—1 , 00
2n Bn 2n Bn

escape to £0o, while those of any point in R\U are attracted to the bounded invariant interval

1+a)(1+n) [1+a
i e

< HT" ’HTQ, then the iterates of every point in the set

)

{_‘(14—@)(1—1—7]) I+a
3(1—n) 38

9

[_‘(14—04)(14—77) 1+«
3(1—mn) 3p

of fx, i-e., [=|M]|,|M]] of fx.
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Lemma 5.2.6 (Bounded Cantor-like Invariant Subset) The bounded invariant interval

14+a)(1+n) 1+«
3(1—mn) 35 ]

no longer exists in the case (i) and (ii) of the above lemma if the condition

1 1 1
M| < —E0 I < 2 e
2 B 2n Bn

1s violated. Instead, we have a bounded Cantor-like invariant set.

Y

[‘(14—04)(1—1—77) 1+a
3(1—n) 38

Thus, we have the main theorem as below.

Theorem 5.2.7 (Chaotic Region of the 1D Wave System) Let parameter n enters the region

, for any given a € (0,1}, 8 > 0.

3v3—1—« 3vV3+1+a
—— B e
3vV3+1+a 3v/3—1—«

Then the interval map fy is chaotic in the sense of Li-Yorke if the domain of fy contains the in-
_ [lda 1ta

terval[ \ B s 5 }

Definition 5.2.8 We denote

_3V/3-1-a and773\/§+1+a
A 3V3+ 1+« e 3vV3i—-1l—a

The Period-Doubling Birfulcation Theorem is similar to section 1 of this chapter and we have

the results as follows.

Lemma 5.2.9 (Correspondence of Period-2" Orbits to a Unimodal Map) Let0 < a <
1, >0 andn > 1. Assume that o, 5 and n satisfy

| M| =

(1+a)(77+1)\/1+oz o [Lta

3(n—1) 3~V B

Assume that xo € [—|M|,|M]|] is a periodic point of prime period-2", for somen € {2,3,4,...}.
Then |xo| is also a periodic point of — fy of prime period-2" such that all the points on the orbit
{—f{ (lxzol) | 7=0,1,2,...,2" — 1} are positive.

Conversely, let xg > 0 be a periodic point of prime period-2" of —f\ for somen € {2,3,4,...}.
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Then {—ff\ (lzol) | 7 =0,1,2,...,2" — 1} is the full orbit of xg of the map fx of prime period-2".
The period-2" orbit, n > 2, of fx is atracting (resp., repelling) if and only if the corresponding period-
2™ orbit of — f is atracting (resp., repelling).

Theorem 5.2.10 (Period-Doubling Bifurcaion Theorem for fy,n > 1) Let0 < o < 1,

B > 0 be fixed, and let n : Ty < n < 0o be a varying parameter. Let h(x, \) = — fx(z). Then
(i) zo(n) = 1;—7;7, / 1;;’;" is a curve of fized points of h : h(zo(n),n) = xo(n).

(ii) The algebraic equation

1 fa+n 1/2 1+7n /[14+an
— 3 —2a] =
6 ( 36 ) YITT 2n Bn

has a unique solution 1, for any given o and (. (Actually, ng is independent of 5.) We have

=_1.
(20(10):710)

0
%h(l’»ﬁ)

(iii) For n = n,, we have

0%h 1 (Oh\ 8%h
A= +=|= | =
ondx 2 \0n /) 0z

£ 0.

(zo(n0):m0)

(iv) Forn =, we have

B:= )

(z0(n0)m0)

1h 1 (%0
60x3 4\ 022

Consequently, there is period-doubling bifurcation at (zo(ny), o). The stability type of the bifurcated

period-2 orbit is attracting.

Theorem 5.2.11 (Period-Doubling Bifurcaion Theorem for f),0<n<1) Let0 < a <
1, B> 0 be fized, and letn: 0 <1 < n, be a varying parameter. Let h(z, ) = fa(x). Then

(i) zo(n) = 1+T77 %TO‘ is a curve of fixed points of h : h(zo(n),n) = xo(n).

(ii) The algebraic equation

1/1+an\"?[1+B=20)n] 147 [a+y
2<3ﬂ77)[ 3n ]_2\/5
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has a unique solution ng, for any given o and B. (Actually, ny is independent of 5.) We have

=—1.

d
&z (x0(10),m0)

(i1i) Forn = ny, we have

2h 1 R\ 0%h
Az[faw(g)gz] 70
nox 7 9L o (ng)mo)
(iv) Forn = 1y, we have
~|183n 1 fo2m)?
B 68:c3+4<8m2>] -0
(zo(10),10)

Consequently, there is period-doubling bifurcation at (xo(ny),ng). The stability type of the bifurcated

period-2 orbit is attracting.

Remark 5.2.12 The 1D wave system (5.1)-(5.3) and the 1D wave system (1.5)-(1.7) are very sim-
ilar. The only difference is the boundary condition at the left endpoint x = 0 in system (1.5)-(1.7)
s wy = —nwy but the boundary condition at the left endpoint in system (5.1)-(5.8) is wp = —nwy.
In fact, Huang et al. consider the 1D wave system (5.1)-(5.3) in [8, 12, 13]. However, the results

are the same if we consider the 1D wave system (1.5)-(1.7).

5.3 Main results of the system (1.8)-(1.11)

In [5], Chen et al. consider the 1D wave system (1.8)-(1.11) as below:
Wit + 0w —Wee =0, v >0,0< <1, t >0,

with the boundary conditions

wz(0,8) =0,t >0,

and

we(1,8) = awi(1, 1) — Bu(1,1), a € (0, (v + Vo2 + 4)/2] L B>0,t>0,

55



and the initial conditions
w(z,0) = p(z) € C*([0,1]), we(z,0) = p(z) € C°([0,1]).

Actually, this is the case of d = —v, ¢ = 1in (1.1) and = 0 in (1.2) in section 3. Thus, the

function fy is the unique real solution of the cubic equation
B ey + c2x)’ + (2 — @) (e1y + e2z) — (1 + ea/er) @ = 0,

where ¢; = (—v + V2 + 4) /2 and ca = (v + V2 + 4) /2. And we have the following results
by letting ¢; = (—v + Vo2 4+ 4) /2, ¢0 = (v + Vo2 + 4) /2 and n = 0 in section 3.2. We show

the local maximum, minimum and piecewise monotonicity of the function f) as below.

Lemma 5.3.1 (Local Maximum, Minimum and Piecewise Monotonicity) The fuction fy
18

odd and fy has local extrema at (ve, M) and (—ve, —M). Furthermore, the function fy is strictly de-

creasing on (—o0, —v,) and (ve, 00), but strictly increasing on (—v.,v.), where

1—2acy + 36% 1+ acy 2(1+ ac2) [14 aco
Ve = 5 and M = .
3ca (1 —+ 02) 3Bco 3(01 + 02) 3Bco

We show the z-axis Intercepts, fixed points and intersections with the line y = —x of the func-

tion f) as below.

Lemma 5.3.2 (z-axis Intercepts) The function f intersects the x-axis at the points

1 /14 acs ) <1 [1 4 acs )
—— ,01,(0,0), [ — ,0 .
< C2 Peo ( ) C2 peo

Lemma 5.3.3 (Intersections with the Line y = z) The function fy intersects the liney = x

1 « 1 « 1 Q 1 a
<_61 +C2\/;’ 01+C2\/;>  (0,0) <01+C2\/;’_01 +02\/;) '

Lemma 5.3.4 (Intersections with the Line y = —z) The function f intersects the line y =

at the points
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—x at the points

1 24+ a(ca—c) 1 2+ a(ca—c) 0,0
c2— 1 Blez—c1) "e2—a Bc2 —c1) ’

and

1 24 a(—a) 1 2+ a(ca—c1)
C2 — (1 5(02—61) ’ C2 —C1 5(02—61) '

Remark 5.3.5 By the way we point out that the result in [5] should be the function fy intersects
the line y = —x at the points

B 1 24+ a(e—a) 1 24+ a(ey — 1) (0,0
Cco — C1 ,6’(62—01) 702—01 5(02*01) ;

and

1 2ta(ce—a) 1 2+ a(ca—c1)
ca—c\l Blee—a) = a-a Blea = c1) '

We show the function fy has bounded invariant interval or bounded invariant cantor-like sub-

set in following lemmas.

Lemma 5.3.6 (Bounded Invariant Interval) Let the parameters 0 < a < co, 8 > 0. If

M| = 2(1+ aca) [1+ ace <
3(61 + 62) 38¢co

then the iterates of every point in the set

(1 2ta(ee—a) 1 24 a(ex — 1)
U_< o co — 1 Blea = c1) >U<62—01 B(ea —c1) ’OO>

escape to £0o, while those of any point in R\U are attracted to the bounded invariant interval

[_ ’2(1 +acy) 1+ acy ‘2(1 +ace) [1+ ace }
3(61 + 62) 38¢co ’ 3(61 + 62) 38co

Off)\; i~e'7 [_ ‘M‘ ) ’MH Off)\'

1 24+ a(ea — )
C2—C1 [3(02—01) ’

Lemma 5.3.7 (Bounded Cantor-like Invariant Subset) The bounded invariant interval
[ 21+ acy) [T+ acy| [2(14+ ac2) [1+ acs }
3(61 + 62) 38¢co ’ 3(C1 + CQ) 38co
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no longer exists in the above lemma if the condition

1 24+ a(ey — )

M| <
M| < co— 1 B(ca —c1)

1s violated. Instead, we have a bounded Cantor-like invariant set.
Thus, we have the main theorem as below.

Theorem 5.3.8 (Chaotic Region of the 1D Wave System) Let parameters c1, ca satisfy the
inequality
2(1 + 0402)

> \/3/ea, for any given o € (0, ¢3], B> 0.
3(Cl+02)7 /2f yga ( 2]6

Then the interval map fy is chaotic in the sense of Li-Yorke if the domain of fx contains the in-
terval [_L l1+aco 1 \/1+a02J )

c2 Bea e Bez

We list the Period-Doubling Birfulcation Theorem in [5] as follows.

Theorem 5.3.9 (Period-Doubling Bifurcaion Theorem for fy) Let0 < a < /2, 8 > 0 be
fized, and define vy o by

U1,a = €, where € is any small positive number,

Let v € [U1,q,00) be a varying parameter. Let h(x,v) = f,(z). Then
(1) a satisfies 0 < oo < ca(v) for all v € [U1 4, 00).
(i1) zo(v) = [1/ (c1(v) + c2(v))| v/ /B is a curve of fized points of h : h(zo(v),v) = xo(v).

(111) For vo = 1/a, we have vy > Ty 4, c2(vo) > «, and

0

(wo(vo),v0)

(iv) For vg = 1/a, we have

A

£0.

(wo(vo),v0)

P, 1 (o)
Ovdxr 2\ Ov ) 0z2
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(v) For vy = 1/a, we have
10°h 1 (8%h\*
p= |22 2 (gn
[6 93 4 <8$2>

Consequently, there is period-doubling bifurcation at (zo(vo), vo). The stability type of the bifurcated

> 0.

(wo(vo);v0)

period-2 orbit is attracting.

In [9], Huang proved there exist three subregions Sy, S} and Sz of S such that the growth of
the total variation of the interval map remains bounded, is unbounded, is unbounded exponentially
when the parameters (v, @) belong to SY, S1, and Sy, respectively. And since Huang proved the re-

sults by using the result in [5] which contains an error, so we do not list the results in [9] here.
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Chapter 6

Two methodstodetect chaos

In this chapter, we show that when the chaotic vibrations corresponding to the 1D wave sys-
tems (1.1)-(1.4) and (1.12) occur by using the main theorems in [14] and [15]. The 1D wave sys-

tem (1.1)-(1.4) is considered as below:

wtt—dwm—Cme:O, deR,c>0,0<x<1,t>0,
w(0,t) = —nwe(0,1), T R ¢ > O

wa(l,1) = awy(1, 1) — Bwd(l 1), ae (0, ﬂ B>0,t>0,
w(z,0) = p(z) € CX([0, 1), wi(z,0) = ¥(z) € C°([0,1)),

where

1= (d—i— V d? +402) /2 and ¢y = (—d—i— Vd? +402) /2.

And the 1D wave system (1.12) is considered as below:

Wit — dwig — gy = 0, deR,c>0,0<z<1,t>0,
wi(0,t) + nwz(0,t) =0, n>0,n%#ca t >0,

we(1,t) = awe(1,t) — &ufm“(l,t), a € (0, %} , B,t>0,meN,
w(@,0) = ¢(z) € CH([0,1]), wi(z,0) = () € C°([0,1]).

First, we discretize (3.4) as follows. Given one 7 € (0, A], we denote z(7 + nA) = z, in (3.4).
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Then we have

3
(e +an) + (& o) (ofeRmn +an)
(6.1)
_<1+%)zn:O,WhQI‘Q?’LENU{O}aA:1+%'

And we discretize (4.4) as follows. Given one 7 € (0, A], we denote z(7+nA) = z, in (4.4). Then

we have

8 n—cz mel 1 n—Ccz
Clye, Pnt1 + C22n +la —a) \Cyge #nt1 + C22n
(6.2)
—<1+%> zn =0, wheren e NU {0}, A =1+ L.

6.1 Chaosinthe 1D wave systems (1.1)-(1.4) and (1.12)

Definition 6.1.1 Let £, be the space of bounded real sequences endowed with the norm

lyl| = sup {lynl : 7 € Z} fory= (yn), yn € R,

i.e., with the topology of uniform convergence and let o : o, — Lo be the shift map, i.e., o(y) =

y' with y), = yuy1. n € 7.

Definition 6.1.2 In the following theorems, we will consider mainly subsets of oy endowed with
the product (or Tichonov) topology on R, i.e., with the topology of pointwise convergence. In such
a case we will supply the notation of the appropriate sets with subscript prod, for example: £ prod,

Byrod, etc.

Let us consider a difference equation of the form

(b)\(y,,“ Yn+1, 7yn+m) =0 (63)

where A is a parameter from a metric space E and the function ®) is defined on a closed subset

Qm+1
C R™*! where Q = [s1,52] \ V for some real numbers s; < s3 and some open (possibly empty)
set V. C [s1, s2]. We assume that for each A € FE the function ®y : Q™! — Ris C! and is

continuous in A on F and also that the partial derivatives 9;®x(x1, - ,Tm+1), ¢ = 1,...,m + 1,
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(1, ,Tmy1) € Q™ are continuous in A on E, where 0;®), is the partial derivative of ®) with
respect to the ith variable.
Given a A € FE, let Y, be the set of solutions of the difference equation (6.3), i.e., the set of

sequences y = (Yn) = (-*+ ,¥—1,%0, Y1, - ) such that for any n € Z
1.y, € Q; and
2. (m + 1) consecutive components Yn, Ynt1," - » Ynt+m of y satisfy (6.3)

It is easy to see that Y) is a closed subset of the space . Note that Y) ;.04 is also a closed sub-
set of [sq, SQ]%T od» and since the latter space is compact (by the Tichonov theorem), Y proq is com-
pact. Note that the shift map o, being considered as a map from /, to {, is an isometric linear
operator, while 0 : o prod — €ooprod is @ homeomorphism. It is evident that for any A € E, the
set Y prog is o-invariant and the restriction o|Y) o4 is a homeomorphism on a compact space. Thus

we can define the topological entropy for solutions of the difference equation (6.3) as hop(0|Ya prod)-

Lemma 6.1.3 [1/, Main theorem] Let

Do (Yrws Y-~ Yntm) = 0 (6.4)

be a difference equation with parameter A € (Ao, A1] and let the function ® : Q™ — R, where
Q = [s1,52]\V for some numbers s1 < sa and some open set V C [s1, 8], be such that it is C for
each A and is continuous in \ and so are the partial derivatives 0;®y, i = 1,--- , m + 1. Suppose
that for A = Ao, the function ®y, depends on only one variable: ®y, (1,2, - ,Tm+1) = @(TN),
where N is an integer with1 < N < m 41 and ¢ : Q — R is a C'-function with k simple zeros
in the interior of ().

Then there exists one § > 0 such that for any X € [Ao, Ao + 0) there is a closed o-invariant subset
T\ of Yy, the set of solutions for (6.4) in the product topology, such that o|T'y is topologically con-
Jugate to o|Xy, the full shift on k symbols; in particular, hiop(c|Yy) > log k.

First we consider (6.1) as below:

3
\I/A(zn,znﬂ) = B (01 }122 Zn+1 + ngn) + <% - a) (01 }Izgi Zn+1
+02,zn) — (1 + i—f) zp, = 0, where n € NU {0}.
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Let the parameters c1, c2, o, 8 be fixed while A = |1 — nea| — 0, then we have the function

o(zn) = zlBe322 — (acs + 1)] = 0.

Since ¢ is a C! function with three simple zeros in the interior of [s1, s3] (51 < —é, / O‘EQC;H and
59 > é, / %), we have the results as follows.

Proposition 6.1.4 Let the parameters c1, ca, «, 3, m be fized in the difference equation (6.1) and

consider the function ®y : [s1,s2] X [s1,82] — R where s1 < —é\/% and sy > éﬂ%.
Then there exists one 6 > 0 such that for any n € (% -9, %) U (l. 14 3) , there is a closed o-

ca? co

invariant subset 'y of Y, the set of solutions for (6.1) in the product topology, such that o|T'y is

topologically conjugate to o|Xs, the full shift on 3 symbols; in particular, hiop(o|Yy) > log 3.

And then we consider (6.2) as below:

2m~+1
— n—cz 1 n—Cce
P (2ns 2nt+1) = B (Cl ey 2ntl &I CQZn) L (a - oz) (Clmzrﬂrl

—i-czzn) - (1 + %) zn = 0, where n € NU {0}.

Let the parameters ¢y, c2, o, 5, m be fixed while A = | — ¢2| — 0, then we have the function
o(zp) = zn[ﬁcgmﬂzgm —(aca+ 1)} =0.

Since ¢ is a C! function with three simple zeros in the interior of [sq, s3] (s1 < —é 2 % and
59 > L 2 %) we have the results as follows.

)

Proposition 6.1.5 Let the parameters c1, ca, «, B, m be fixed in the difference equation (6.2) and

consider the function ®) : [s1, s2] X [s1, s2] — R where s1 < —é 2”,/%51 and sy > é 2"{/%.
Then there exists one § > 0 such that for anyn € (ca — &, ¢c2) U (ca,c2 + 0), there is a closed o-

invariant subset T'y of Y, the set of solutions for (6.2) in the product topology, such that o|T'y is
topologically conjugate to o|Xs, the full shift on 3 symbols; in particular, hiop(o|Yy) > log 3.

Lemma 6.1.6 [15, Main theorem] Let

(P)\(ynv Yn+1, ,yn—i-m) =0 (65)

63



be a difference equation with parameter A € (Ao, A1] and let the function ®y : Q™' — R, where
Q = [s1,82] \ 'V for some numbers s; < so andV is a finite union of open intervals in [s1, sa]
be such that it is C1 for each \ and continuous in A and so are the partial derivatives 0;®y, i =

1,...,m+ 1. Assume that ®), is a function in two variables:

¢)\0('1:].72:27 e a$m+1) - X(xM+N, $N)

where M, N are integers with1 < N < m, 1 < M + N < m. Assume, in addition, that for the
equation x(y,x) = 0 there is a branch y = @(x), where ¢ : Q — R is a C? function with positive
topological entropy.

Then for any e > 0 there exists one § > 0 such that for any X € [\, Ao + 0) there is a closed
o-invariant subset I'y of Yx (Y) is the set of solutions of the difference equation (6.5)), the set of

solutions for (6.5) in the product topology, such that higy(o|T'x) > 17 (hiop(ip) — €).

Let the parameters 7, c2, a, 3 be fixed while ¢; — 07 in the difference equation (6.1) as be-

low.

3
1—nca 1—nca il 1—nca
B <C1 Tne; n+1 + C2Zn> t i3e #ntl — QCLT 0 Zntl

—acozy — zp =0, wheren e NU{0}, A =1+ %

We have the equation

1+ acs Be3
e = 9(2n) = T ney <1 e _i 123 : (6.6)

1
2 5
Substituting z,, = (ai(il) ® zn in (6.6), we have

. 1+C¥02

Tn+l = (P(CC»,L) - 1_ ncs xn( - 12)-

n

Hence we consider the function

h(z) = px(l — z?) on [0,1].

Since A/ (\/g> =0 and h” (\/g) < 0, we can see that the point \/g is nondegenerate and h (\/g>

is the local maximum. Moreover, h <\/g) >1ifpu> % Thus, we have the results as follows.
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Lemma 6.1.7 Consider the C?-function h(x) = px(1 — ). If p > %, then hiop(h) is positive.

Proof. The function h is strictly increasing on [0, \/g} and is continuous on [0, 1] with A(0) =
h(1) =0and h <\/g) > 1.By IVT, there exists one unique point x; € (0, \/g] such that h(zy) =
1.Since h : [0,21] — [0, 1] is one to one, onto and strictly increasing, there exists one point xo €

(0, 1) such that h(z2) = 1. Denote p = x2, we have
0=h*(p) <p < h(p) < k().

Thus, h has points of all periods which implies chaos. Hence, hyop(h) is positive. m

Therefore, we can conclude that if the parameters n, a, co satisfy the inequality

14+ aco - 3v3
1—ncy — 27

then ¢ has positive topological entropy (s1 < 0 and sy > é, / ‘“5%1) Thus, we have the results

as follows.

Proposition 6.1.8 Suppose the parameters co, n, o, B are to be fived and satisfy the inequality

14+ aco >3\/§
1—ncy = 2

in the difference equation (6.1) and consider the function @) : [s1, s3] X [s1, s2] — R, where s1 <
0 and so > 0—12, / % If c1 is sufficiently small, then there is a closed o-invariant subset I'y of

Y\ (Y is the set of solutions of the difference equation (6.1)), the set of solutions for (6.1) in the

product topology, such that hy,,(c|I'y) is positive.

Let the parameters 7, ca, a, 3, m be fixed while ¢; — 07 in the difference equation (6.2) as

below.

2m+1
7—C2 n—c2 n—c2
B (01 e+l C2Zn) + Fe Antl — Q€L Zn g

—acazn — zp, = 0, wheren e NU {0}, A =1+ %

Let the parameters 7, co, a, 3, m be fixed while ¢c; — 07 in the difference equation (6.2). We

have the equation

n(acy + 1) Beamtt
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) o in (6.7), we have

ﬁc§m+1
aca+1

Substituting x,, = (

ace + 1
past = plea) = T2 g (1 g2m)
n—cC2

Hence we consider the function

h(z) = px(l —2") on [0,1], r > 2.

Since h/ ( ) ) = 0 and A" ( 4 i) < 0, we can see that the point {/?11 is nondegenerate

r+1 r+1
and h ((/ %) is the local maximum. Moreover, h ({'/ ﬁ) >1if p > % Vel Thus, we have

the results as follows.

Lemma 6.1.9 Consider the C?-function h(z) = px(1—2"), wherer > 2. If 11 > % VIl then

hiop(h) is positive.

Proof. The function A is strictly increasing on [0, 4 Tj%l and is continuous on [0, 1] with ~(0) =
h(1) = 0 and h ( 0 lerl) > 1.By IVT, there exists one unique point z; € (07 4 % such that

h(z1) = 1.Since h : [0,2z1] — [0, 1] is one to one, onto and strictly increasing, there exists one

point z9 € (0, z1) such that h(z) = z1. Denote p = x3, we have
0=h3p) <p < h(p) < k(D).

Thus, h has points of all periods which implies chaos. Hence, hop(h) is positive. m
Therefore, we can conclude that for any given m € N if the parameters 7, «, co satisfy the

inequality
n(aes + 1) - 2m—+1) */2m+1

N — C2 2m

i

then ¢ has positive topological entropy (s; < 0 and sg > é 2/ %) Thus, we have the results

as follows.

Proposition 6.1.10 Suppose the parameters ca, 1, o, B, m are to be fized and satisfy the inequal-

1ty
n(acy + 1) S (2m+1) /2m+1

N — C2 2m
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in the difference equation (6.2) and consider the function ®y : [s1, s2] X [s1, s2] — R, where s; <
0 and s9 > é 2 % If ¢1 is sufficiently small, then there is a closed o-invariant subset I'y of

Y\ (Y, is the set of solutions of the difference equation (6.2)), the set of solutions for (6.2) in the

product topology, such that hi.,(c|L'y) is positive.

It is easy to see that o|I") is topologically conjugate to fy|Ay as

'y B8 Ay

O—l lf/\a
I'y — Ay

™0
where 7y is a projection and wo(I'y) = Ayx. Hence, hyop(fa|A) is positive if hyp(o|T'y) is positive.

Thus, we have the results as follows.

Theorem 6.1.11 Let the parameters c1, ¢a, a, [ be fized in the 1D wave system (1.1)-(1.4) and

the initial condition I contains the interval

[ 1l 1+ acs 1\/14—&02
Bea

18 , see Definition 3.1.2).
¢ Bea e } ( 4 )

Then there exists one & > 0 such that if n € (L -9, é) U (i 1 ng 3) , the 1D wave system s

c2 c2? ¢

chaotic.
Proof. The results follow easily from Lemma 6.1.3 and Proposition 6.1.4. m

Example 6.1.12 Consider the 1D wave system (1.5)-(1.7) as below:

wit — Waz = 0, O<z<l1,t>0,

wz(0,t) + nw(0,t) =0, n>0,n#1,t>0,

we(1,t) = awi(1,t) — Bwi(1,t), a€(0,1],3>0,t>0,
w(x,0) = p(x) € C1(0,1]).  wi(z,0) =1(z) € CO([0,1)).

Let the parameters o, 8 be fixed and suppose that the initial condition I contains the interval

)
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Then there exists one 6 > 0 such that the 1D wave system (1.5)-(1.7) is chaotic if
ne(l-61)U(l,1+9).

Theorem 6.1.13 Let the parameters c1, ca, «, 3, m be fized in the 1D wave system (1.12) and the

iitial condition I contains the interval

1,1 1,1
[ 2T</+7a02’ e 2W\1/+TCQ} (see Definition §.1.2).
2 Bez o Bes

Then there exists one & > 0 such that if n € (ca — 6,¢2) U (c2,c2 + 0) , the 1D wave system is

chaotic.
Proof. The results follow easily from Lemma 6.1.3 and Proposition 6.1.5. m

Theorem 6.1.14 Let the parameters ca, 0, o, 8 be fixed and satisfy the inequality

1+OZ62
1 —nco

> 3V3/2

in the 1D wave system (1.1)-(1./) and the initial condition I contains the interval [O L %} .

) eg

Then the 1D wave system is chaotic if ¢1 is sufficiently small.
Proof. The results follow easily from Lemma 6.1.6, Lemma6.1.7 and Proposition 6.1.8. =

Theorem 6.1.15 Let the parameters co, 0, o, 3, m be fixed and satisfy the inequality

n(aecy + 1) 0 (2m+1) /2m +1

N — C2 2m

in the 1D wave system (1.12) and the initial condition I contains the interval [0, é ey %} .

Then the 1D wave system is chaotic if c1 is sufficiently small.

Proof. The results follow easily from Lemma 6.1.6, Lemma6.1.9 and Proposition 6.1.10. m
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6.2 Further discussions

Furthermore, we consider the 1D wave system as below:

wtt—dwtm—c2wm:0, deR,c>0,0<x<1,t>0,
we(0,t) + nwz(0,t) =0, n>0,n#cyt>0, (6.8)
wz(1,t) = hy(we(1, 1)), w=(ay, - ,ar), t >0,

| w(@,0) = plx) € CH0, 1)), wil2,0) = w(x) € CO(0, 1]).

Now we want to find the condition to ensure the existence and uniqueness of the solution of the

1D wave system (6.8).

Lemma 6.2.1 Consider the 1D wave system (6.8). Let the function h,(x) be a real-valued func-
tion defined on R where i = (a1, -- ,ay). Suppose that there exists one set A C R¥ such that for
each v € A the function h,(z) is C', onto and the derivative of h,, satisfies that h;(w) #* % for
allz € R, then there exists one CL-function hy such that hy(z(t)) = z(t + A) for allt > 0, where

A= (n,c1,c2,a1, - ,ar) € G x (0,00) X (0,00) X A(G = (0,00)\{c2}), A=14c1/co.

Proof. Let

n—Cc n—==C
Hy(u,v)=h, | c U+ cov ) — u + cov = 0,
Au,v) “(1n+01 2) n+c : /

where

A= (n,c1,c2,a1,- - ,a;) € G x (0,00) x (0,00) X A (G = (0,00)\{ca}).

Since h;(:@ # % and hy, is onto for each p, the function f,(z) = hy(x) — 7 is one-to-one and

onto. Hence, for each vy € R there exists one unique xo such that f,(x¢) = %vo. And for this

n—c2

unique xg there exists one unique ug such that c; e

ug + cavg = xo. Therefore, we denote

S ={(v,u) : Hy\(u,v) = 0}.

Since

0 n—Ccz, n—c2 n—c2
—H)(u,v) =c h,|c u—+cov | — 0,
ou A, v) Ynta “(1T7+01 2 77—1—017é

there exists one C''-function h » and the graph of hy is S by the implicit function theorem. m
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First we discretelize the difference equation

n—c _ n—=Cc
— Clz(T +A)—z2(1) =hy (0177 T z(r+A)+ 022(7')> (6.9)

as follows.

Given one 7 € (0, A], we denote z(T +nA) =z, (n =0,1,---) in (6.9). Then we have

n—c n—Cc
h - =0, wh e Nu {0}.
" (01 —— Zni1 + 022n> — Znt1 + Cazn where n {0}

Definition 6.2.2 We denote the difference equation

Zn+1 + CQZ'rL> i ez =0, (6.10)
n—+ci

n—C2
\IJ)\(Zn» Zn+1) = h,u (Cln L

where X = (n,c1,c,a1,++ ,a).

Theorem 6.2.3 Consider the 1D wave system (6.8). Let the function by, : R — R be C*, onto
for each 1 and be continuous in p and so is the derivative h;(x), where p = (ay, -+ ,ag). Suppose
that for each p the derivative h;(x) = % for allz € R and there exist two distinct values a,, b, €
R such that h,(a,) +a, = hu(by) + b, = 0, then for each (c1,c2,a1,- -+ ,ay) there exists one cor-
responding § > 0 such that for any n € (ca—0, c2)U(ca, ca+0) there is a compact hy-invariant sub-
set Ay such that ht(,p(ﬁA\A,\) is positive. Furthermore, the 1D wave system (6.8) is chaotic if Ay C
I.

Proof. By Lemma 6.2.1, there exists a C'-function hy such that hy(z(t)) = z(t4+A) for all £ > 0
where A = (n,c1,c0,a1, -+, ag).
Let

Q={(n,c1,c2,a1,-- ,a) :n = ca}.

For each \g € (2, we have

\IJAO (Zns Znt1) = @(2n) = hu(cazn) + cazp.
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The function ¢ is C! and has at least two simple zeros in the interior of [a, — ¢, b, + €] for every

€ > 0, since there exist two distinct values a,, b, € R such that

hu(ay) +ap = hy(by) + b, = 0.

By Lemma 6.1.3, there exists one 0,, > 0 such that for any n € (c2 — dx,,c2) U (c2,¢2 + dy,)
there is a closed o-invariant subset I'y of Y}, the set of solutions for (6.10) in the product topol-
ogy, such that o|T"y is topologically conjugate to o|Xg, the full shift on k symbols (k > 2); in par-
ticular, hyop(o|Y)

> logk.

We can see o|I'), is topologically conjugate to iL)\|A>\ as

-y RS

ol Lhx,
F)\ = A)\

where g is a projection and mo(T'y) = Ay. Hence hyop(ha|Ay) is positive, since hyop(a|Ty) is pos-

itive. m

Example 6.2.4 Consider the 1D wave system (6.8) which the function
hu(x) = a1z — ZaimZZ_l, a; € (0,—),a; >0 fori>2, meN.
=2 €1

The function h, : R — R is C1, onto for each p and is continuous in p and so is the derivative

h;(x), where pp = (a1, -+, am,m). And for each

/ 1
h,(z) = a1 — 3agz® — - — (2m — Vapz®™ 2 # — for allz € R.
1
Since
hu(z) +2 > z[(1+a1) — (a2 + - - - + am )] for z € (0,1],
we have
. 1+ay
h#(p’u) +pﬂ Z 0 wh@’f‘e pﬂ = mln{l, m}
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It is easy to see there exists one point q,, which is large enough such that h,,(q,) + g, < 0. There-

fore, there exist two points 0 and x,, € [p,,q,) such that
Ry (0) + 0 = hy, () + 2, = 0.

By Theorem 6.2.3, for each (c1,ca,a1,- - ,am,m) there exists one corresponding 6 > 0 such that
for any n € (ca—0, ca)U(ca, ca+d) there is a compact hy-invariant subset Ay such that hiop(ha|Ay)

is positive. Furthermore, the 1D wave system is chaotic if Ay C 1.
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