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摘要 

波方程在一維閉區間 I 的右端有梵德波形式的非線性邊界條件。而在

閉區間 I 的左端，當參數 0η > 時其邊界條件為能量的輸入；當 0η = 時

其邊界條件為齊次諾曼條件。這個波方程系統的解與一個區間函數的

疊代有關，所以我們定義當這個區間函數有李—約克的渾沌現象時稱

這個波方程系統有混沌震動。因為在我們討論的波方程系統中兩特徵

線的運動速度為任意兩正數 與 ，所以系統中有著等向性與非等向

性的混沌震動現象產生。在這篇論文中，我們將討論波方程系統中混

沌震動現象的產生分別與參數

1c 2c

η、 、 變化之間的關聯。 1 2c c
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Isotropic and Nonisotropic Chaotic
Vibrations of the 1D Wave System

Student : Chung-Che Hu Advisor : Wen-Wei Lin

Department of Applied Mathematics
National Chiao Tung University

Abstract

A wave equation on a one-dimensional interval I has a van
der Pol type nonlinear boundary condition at the right end. At
the left end, the boundary condition is energy-injecting if the
parameter � > 0 and is the homogeneous Neumann condition if
� = 0. The solution of the wave system is corresponding to the
iteration of one interval map, so we say the wave system is chaotic
if the interval map is chaotic in the sense of Li-Yorke. The sys-
tem which we consider contains both isotropic and nonisotropic
chaotic vibrations, since the two associated families of character-
istics travel with two speeds c1, c2 for any given positive c1, c2. In
this paper, we discuss that the chaotic vibrations of the 1D wave
system occur when the paramerters �, c1, c2 vary separately.
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Chapter1

Introduction

The imbalance of the boundary energy �ow due to energy injection at one end and a nonlin-

ear van der Pol boundary condition at the other end of the spatial one-dimensional interval can

cause isotropic chaotic vibration of the linear wave equation.Such chaotic vibration is isotropic with

respect to space and time because the two associated families of characteristics both propagate with

the same speed (see Chen et al. [2]). In [2], the 1D wave system is considered:

!tt � !xx = 0, 0 < x < 1, t > 0,

with the boundary conditions

8>>><>>>:
!t(0; t) = ��!x(0; t), � > 0, � 6= 1, t > 0,

!x(1; t) = �!t(1; t)� �!3t (1; t), � 2 (0; 1], � > 0, t > 0,

and the initial conditions

!(x; 0) = '(x) 2 C1([0; 1]), !t(x; 0) =  (x) 2 C0([0; 1]).

In the 1D wave equation !tt�!xx = 0, two families of characteristics travel with the same speed

c1 = c2 = 1.The boundary condition at the left endpoint x = 0 is energy-injecting and the bound-

ary condition at the right endpoint x = 1 is a van der Pol condition. In [2], Chen et al.proved the

1



1D wave system is chaotic when the parameter � enters the region"
3
p
3� 1� �

3
p
3 + 1 + �

; 1

!
[
 
1;
3
p
3 + 1 + �

3
p
3� 1� �

#
, for any given � 2 (0; 1], � > 0.

In [8, 12, 13], the 1D wave system is considered:

!tt � !xx = 0, 0 < x < 1, t > 0,

with the boundary conditions

8>>><>>>:
!x(0; t) = ��!t(0; t), � > 0, � 6= 1, t > 0,

!x(1; t) = �!t(1; t)� �!3t (1; t), � 2 (0; 1], � > 0, t > 0,

and the initial conditions

!(x; 0) = '(x) 2 C1([0; 1]), !t(x; 0) =  (x) 2 C0([0; 1]).

Huang et al. characterized the dynamical behavior in terms of the growth of the total variation of

the interval map and proved that for any given � 2 (0; 1], there exist four constants �0, �H , �H
and �0 with

0 < �0 < �H < 1 < �H < �0 <1

such that the total variation of the interval map remains bounded, is unbounded, is unbounded

exponentially when the parameter � belongs to (0; �0)[(�0;1), (�0; �H)[(�H ; �0), and (�H ; 1)[

(1; �H), respectively. In particular, the last case corresponds to chaos in the 1D wave system.No-

tice that the boundary condition at the left endpoint in this system is !x(0; t) = ��!t(0; t) which

is di¤erent from !t(0; t) = ��!x(0; t) in [2].

By including a mixed partial derivative linear transport term in the wave equation, nonlinear-

ity in the van der Pol boundary condition can also cause nonisotropic chaotic vibration (without

energy injection from the other end).Such chaotic vibration is nonisotropic with respect to space

and time because the two associated families of characteristics travel with di¤erent speeds c1, c2

2



which satisfy c1c2 = 1 (see Chen et al. [5]). In [5], the 1D wave system is considered:

!tt + v!tx � !xx = 0, v > 0, 0 < x < 1, t > 0,

with the boundary conditions

!x(0; t) = 0, t > 0,

and

!x(1; t) = �!t(1; t)� �!3t (1; t), � 2
 
0;
v +

p
v2 + 4

2

#
, � > 0, t > 0,

and the initial conditions

!(x; 0) = '(x) 2 C1([0; 1]), !t(x; 0) =  (x) 2 C0([0; 1]).

In the 1D wave equation !tt+v!tx�!xx = 0, two families of characteristics travel with di¤erent

speeds c1 = �v+
p
v2+4
2 and c2 = v+

p
v2+4
2 which satisfy c1c2 = 1 and c2 � c1 = v. The boundary

condition at the left endpoint x = 0 is the homogeneous Neumann condition and the boundary

condition at the right endpoint x = 1 is a van der Pol condition. In [5], Chen et al.proved the 1D

wave system is chaotic when the parameters (v; �) enter a certain subregion of

S =

(
(v; �) 2 R2 j 0 < v <1; 0 < � � v +

p
v2 + 4

2

)
.

In [9], Huang proved that there exist three subregions S01 , S
1
1 and S2 of S such that the growth of

the total variation of the interval map remains bounded, is unbounded, is unbounded exponentially

when the parameters (v; �) belong to S01 , S
1
1 , and S2, respectively. In particular, the last case cor-

responds to chaos in the 1D wave system.

In chapter 3 of this paper, the 1D wave system is considered:

!tt � d!tx � c2!xx = 0, d 2 R, c > 0, 0 < x < 1, t > 0, (1.1)

with the boundary conditions

!x(0; t) = ��!t(0; t), � � 0, � 6=
1

c2
, t > 0, (1.2)
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and

!x(1; t) = �!t(1; t)� �!3t (1; t), � 2
�
0;
1

c1

�
, � > 0, t > 0. (1.3)

And with the initial conditions

!(x; 0) = '(x) 2 C1([0; 1]), !t(x; 0) =  (x) 2 C0([0; 1]). (1.4)

Remark 1.0.1 We denote the parameters

c1 =
d+

p
d2 + 4c2

2
and c2 =

�d+
p
d2 + 4c2

2

in (1.2) and (1.3).

In the 1D wave equation !tt � d!tx � c2!xx = 0, two families of characteristics travel with

speeds c1 and c2. If d = 0, the speeds c1 = c2 = c; if d 6= 0, the speeds c1 6= c2. The bound-

ary condition at the left endpoint x = 0 is energy-injecting when � > 0 and is the homogeneous

Neumann condition when � = 0. The boundary condition at the right endpoint x = 1 is a van

der Pol condition which is a well-known self-regulating mechanism in automatic control.

If d = 0, c2 = 1 in (1.1) and � > 0 in (1.2), we have the 1D wave equation

!tt � !xx = 0, 0 < x < 1, t > 0, (1.5)

with the boundary conditions

8>>><>>>:
!x(0; t) = ��!t(0; t), � > 0, � 6= 1, t > 0,

!x(1; t) = �!t(1; t)� �!3t (1; t), � 2 (0; 1], � > 0, t > 0,

(1.6)

and the initial conditions

!(x; 0) = '(x) 2 C1([0; 1]), !t(x; 0) =  (x) 2 C0([0; 1]). (1.7)

If d = �v, c2 = 1 in (1.1) and � = 0 in (1.2), we have the 1D wave equation

!tt + v!tx � !xx = 0, v > 0, 0 < x < 1, t > 0, (1.8)

4



with the boundary conditions

!x(0; t) = 0, t > 0, (1.9)

and

!x(1; t) = �!t(1; t)� �!3t (1; t), � 2
 
0;
v +

p
v2 + 4

2

#
, � > 0, t > 0, (1.10)

and the initial conditions

!(x; 0) = '(x) 2 C1([0; 1]), !t(x; 0) =  (x) 2 C0([0; 1]). (1.11)

Thus, the 1D wave system (1.1)-(1.4) contains the 1D wave systems in [8, 12, 13] and [5, 9].Fur-

thermore, the system (1.1)-(1.4) contains both isotropic and nonisotropic chaotic vibrations since

the two associated families of characteristics travel with two speeds c1, c2 for any given positive

c1, c2. In section 3, we show the chaotic region of the 1D wave system.And based on this region,

we show the chaotic region of the paramerter � when the other parameters are �xed.Furthermore,

we show the system is chaotic if c1 !1, or c1 ! 0+, or c2 !1.

In chapter 4, the 1D wave system is considered:

8>>>>>><>>>>>>:

!tt � d!tx � c2!xx = 0, d 2 R, c > 0, 0 < x < 1, t > 0,

!t(0; t) + �!x(0; t) = 0, � > 0, � 6= c2, t > 0,

!x(1; t) = �!t(1; t)� �!2m+1t (1; t), � 2
�
0; 1c1

i
, �; t > 0, m 2 N,

!(x; 0) = '(x) 2 C1([0; 1]), !t(x; 0) =  (x) 2 C0([0; 1]).

(1.12)

In this system, the boundary condition at the left endpoint x = 0 is energy-injecting and the bound-

ary condition at the right endpoint x = 1 has odd-degree nonlinearity. In section 4, we show the

1D wave system (1.12) is chaotic when the parameter � satis�es either

c2 < � �
c2
�
2mc1(1 + �c2) +

2m
p
2m+ 1(2m+ 1)(c1 + c2)

�
2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc2(1 + �c2)

or
c2
�
2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc1(1 + �c2)

�
2mc2(1 + �c2) +

2m
p
2m+ 1(2m+ 1)(c1 + c2)

� � < c2

for any given parameters c, d, �, �, m satisfy inequality

2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc2(1 + �c2) > 0,

5



and when the parameter � satis�es either

� > c2 or
c2
�
2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc1(1 + �c2)

�
2mc2(1 + �c2) +

2m
p
2m+ 1(2m+ 1)(c1 + c2)

� � < c2

for any given parameters c, d, �, �, m satisfy the inequality

2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc2(1 + �c2) � 0.

And we show the 1D wave system (1.12) is chaotic for any given c1 if the parameters �, c2, �, �,

m satisfy

� > c2 and 2mc2(1 + �c2)� 2m
p
2m+ 1(2m+ 1)(� � c2) � 0.

And the 1D wave system (1.12) is chaotic for su¢ ciently small c1 if the parameters �, c2, �, �, m

satisfy some conditions or c1 is su¢ ciently large if the parameters �, c2, �, �, m satisfy some other

conditions.

It is easy to see that the 1D wave system (1.12) contains the 1D wave system in [2].Thus, we

consider the 1D wave systems in [2, 5, 8, 9, 12, 13] as three examples of the systems (1.1)-(1.4) and

(1.12) in chapter 5.And in chapter 6, we use two methods to detect the chaos in 1D wave systems

(1.1)-(1.4) and (1.12) (see Li et al. [14, 15]).
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Chapter2

Preliminary

We list some de�nitions and background facts that a reader should know in this chapter.

De�nition 2.0.2 (Topologically Transitive) A map f : X ! X is (topologically) transitive

on an invariant set Y provided the forward orbit of some point p is dense in Y .The Birkho¤ Tran-

sitivity Theorem proves that a map f is transitive on Y if and only if, given any pair of open sets

U , V � Y there exists k > 0 such that fk(U) \ V 6= ?.

Intuitively, a topologically transitive map has points which eventually move under iteration from

one arbitrarily small neighborhood to any other.Consequently, the dynamical system cannot be

decomposed into two disjoint open sets which are invariant under the map.

De�nition 2.0.3 (Sensitive Dependence on Initial Conditions) A map f : X ! X has

sensitive dependence on initial conditions if there exists � > 0 (independent of the point) such that,

for each point x 2 X and any neighborhood N of x, there exists y 2 N such that d (fn(x); fn(y)) �

� for some n � 0 .

Intuitively, a map possesses sensitive dependence on initial conditions if there exist points ar-

bitrarily close to x which eventually separate from x by at least � under iteration of f .We empha-

size that not all points near x need eventually separate from x under iteration, but there must be

at least one such point in every neighborhood of x.

De�nition 2.0.4 (Expansive) A map f on a metric space X is said to be expansive provided there

is an r > 0 (independent of the point) such that, for each pair of points x; y 2 X there is a k � 0

such that d
�
fk(x); fk(y)

�
� r.

7



If f is expansive and X is a perfect metric space, then it has sensitive dependence on initial

conditions.

De�nition 2.0.5 (Chaotic in the Sense of Devaney) Let V be a set.f : V ! V is said to be

chaotic on V if

1. f has sensitive dependence on initial conditions.

2. f is topologically transitive.

3. periodic points are dense in V .

De�nition 2.0.6 (Chaotic in the Sense of Robinson) A map f on a metric space X is said

to be chaotic on an invariant set Y or exhibits chaos provided (i) f is transitive on Y and (ii) f

has sensitive dependence on initial conditions on Y .

The paper of Banks, Brooks, Cairns, Davis, and Stacey (1992) proves that any map which (i)

is transitive on Y and (ii) has dense periodic points also must have sensitive dependence on ini-

tial conditions.

De�nition 2.0.7 (Chaotic in the Sense of Li-Yorke) A continuous map f on the compact met-

ric space (X; d) is said to be chaotic on a nonempty and invariant set X0 in the sense of Li-Yorke

if there is an uncountable set S � X0 such that

(i) lim supn!1 d(fn(x); fn(y)) > 0, for all x, y 2 S and x 6= y.

(ii) lim infn!1 d(fn(x); fn(y)) = 0, for all x, y 2 S.

Theorem 2.0.8 [17, Li and Yorke, 1975]Assume f : R ! R is continuous, and there is a point

a such that either (i) f3(a) � a < f(a) < f2(a) or (ii) f3(a) � a > f(a) > f2(a). Then, f has

points of all periods.

De�nition 2.0.9 In order to state the result of Sharkovskii, we need to introduce a new ordering

on the positive integers using the symbol B, called the Sharkovskii ordering.First, the odd integers

greater than one are put in the backward order:

3 B 5 B 7 B 9 B 11 � � � .

Next, all the integers which are two times an odd integer are added to the ordering, and then the

8



odd integers times increasing powers of two:

3 B 5 B 7 B � � � B 2 � 3 B 2 � 5 B 2 � 7 B � � � B 22 � 3 B 22 � 5 B 22 � 7 B � � �

B 2n � 3 B 2n � 5 B 2n � 7 B � � � B 2n+1 � 3 B 2n+1 � 5 B 2n+1 � 7 B � � � .

Finally, all the powers of two are added to the ordering in decreasing powers:

3 B 5 B � � � B 2n � 3 B 2n � 5 B � � � B � � � B 2n+1 B 2n B � � � B 22 B 2 B 1.

We have now given an ordering between all positive integers.This ordering seems strange but it turns

out to the be ordering which expresses which periods imply which other periods as given in the the-

orem of Sharkovskii (Sharkovskii, 1964).

Theorem 2.0.10 (Sharkovskii) Let f : I � R ! R be a continuous function from an interval

I into the real line.Assume f has a point of period n and n B k. Then, f has a point of period k.

(By period, we mean least period.)

Theorem 2.0.11 (Period Doubling Bifurcation) Assume that f : R2 ! R is a Cr function

jointly in both variables with r � 3, and that f satis�es the following conditions.

(1) The point x0 is a �xed point for � = �0: f(x0; �0) = x0.

(2) The derivative of f�0 at x0 is �1: f 0�0(x0) = �1. Since this derivative is not equal to 1, there

is a curve of �xed points x(�) for � near �0.

(3) The derivative of f 0�(x(�)) with respect to � is nonzero (the derivative is varying along the fam-

ily of �xed points):

� =

�
@2f

@�@x
+

�
1

2

��
@f

@�

��
@2f

@x2

������
(x0;�0)

6= 0.

(4) The graph of f2�0 has nonzero cubic term in its tangency with the diagonal (the quadratic term

is zero):

� =

�
1

3!

@3f

@x3
(x0; �0)

�
+

�
1

2!

@2f

@x2
(x0; �0)

�2
6= 0.

Then, there is a period doubling bifurcation at (x0; �0).More speci�cally, there is a di¤erentiable

curve of �xed points, x(�), passing through x0 at �0, and the stability of the �xed point changes at

�0. (Which side of �0 is attracting depends on the sign of �.) There is also a di¤erentiable curve


 passing through (x0; �0) so that 
n f(x0; �0)g is the union of hyperbolic period 2 orbits.The curve
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 is tangent to the line R � f�0g at (x0; �0), so 
 is the graph of a function of x, � = m(x) with

m0(x0) = 0 and m00(x0) = �2�=� 6= 0. The stability type of the period 2 orbit depends on the

sign of �: if � > 0, then the period 2 orbit is attracting; and if � < 0, then the period 2 orbit is

repelling.

De�nition 2.0.12 (Homoclinic Point) Let a map f 2 C(I; I). A point x 2 I is called homo-

clinic point of f if there exists a periodic point p of period n with x 6= p, x 2W u(p; fn) and fnm(x) =

p for some positive integer m.We call such point p a periodic point associated with a homoclinic

point x and denote by Ph(f) the set of all such periodic points.

In [10, Corollary 9.1], Chen et al. proved the results as below.

Lemma 2.0.13 [10, Corollary 9.1]Let f 2 C(I; I). Suppose that f is piecewise monotone with

�nitely many extremal points on I.Then the following conditions are equivalent.

(1) f has a periodic point whose period is not a power of 2.

(2) f has a homoclinic point.That is, Ph(f) 6= ?.

(3) f has positive topological entropy.

(4) The total variation VI(fn) of f on I grows exponentially as n!1.

Furthermore, each of the above conditions implies that f is chaotic in the sense of Li-Yorke.

Remark 2.0.14 In [10, Corollary 9.1], Chen et al. have the conclutions as below.

If f is piecewise monotone with �nitely many extremal points on I, then

Chaos in the sense of Devaney)sensitive dependence on initial conditions)exponential grows of

the total variation VI(fn) with respect to n as n ! 1 )positive topological entropy,existence

of a periodic point of a period being not a power of 2,existence of a homoclinic point,Chaos in

the sense of Li-Yorke.

10



Chapter3

The1Dwavesystem(1.1)-(1.4)

In this chapter, the 1D wave system (1.1)-(1.4) is considered:

!tt � d!tx � c2!xx = 0, d 2 R, c > 0, 0 < x < 1, t > 0,

with the boundary conditions

!x(0; t) = ��!t(0; t), � � 0, � 6=
1

c2
, t > 0,

and

!x(1; t) = �!t(1; t)� �!3t (1; t), � 2
�
0;
1

c1

�
, � > 0, t > 0.

And with the initial conditions

!(x; 0) = '(x) 2 C1([0; 1]), !t(x; 0) =  (x) 2 C0([0; 1]).

3.1 Chaotic vibrations of the system (1.1)-(1.4)

The general solution of (1.1) is

!(x; t) = u(c1t+ x) + v(c2t� x), (3.1)

11



where u, v are arbitrary C2-function. Substituting (3.1) in (1.2) and (1.3), we have

u0(c1t) =
1� �c2
1 + �c1

v0(c2t), t > 0, (3.2)

and
� (c1u

0(c1t+ 1) + c2v0(c2t� 1))3 +
�
1
c1
� �

�
(c1u

0(c1t+ 1) + c2v0(c2t� 1))

�
�
1 + c2

c1

�
v0(c2t� 1) = 0, t > 0.

(3.3)

When � = 1
c2
in (3.2), we have

u0(c1t) = 0 for t > 0) u(c1t+ x) = C for t > 0.

Thus, we consider the case � 6= 1
c2
. And depends on (3.2), we can use v0 to replace u0 in (3.3) to

derive one di¤erence equation as follows.

By using the substitution

z(c1t) =

8>>><>>>:
v0 (c2t� 1) , 0 � t � 1

c2
,

1+�c1
1��c2u

0
�
c1t� c1

c2

�
, t > 1

c2
,

we have the di¤erence equation

�
�
c1
1��c2
1+�c1

z(� +�) + c2z(�)
�3
+
�
1
c1
� �

��
c1
1��c2
1+�c1

z(� +�)+

c2z(�)
�
�
�
1 + c2

c1

�
z(�) = 0,

(3.4)

where � = c1t, � = 1 + c1
c2
.

And the initial condition of (3.4) is

z(c1t) =

8>>>><>>>>:
 (1�c2t)�c1'0(1�c2t)

c1+c2
, 0 � t � 1

c2
.

1+�c1
1��c2

 
�
c1t� c1

c2

�
+c2'0

�
c1t� c1

c2

�
c1+c2

, 1
c2
< t � 1

c1
+ 1

c2
.

Remark 3.1.1 In this paper, we assume that the initial value '(x) and  (x) are chosen such that
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z(�) is continuous on
h
0; 1 + c1

c2

i
and satis�es the compatibility condition

�
�
c1
1��c2
1+�c1

z(�) + c2z(0)
�3
+
�
1
c1
� �

��
c1
1��c2
1+�c1

z(�) + c2z(0)
�

�
�
1 + c2

c1

�
z(0) = 0.

De�nition 3.1.2 We denote the range of z(�) on [0;�] to be the compact interval �; i.e., � =

z([0;�]).

We show the dependence of z(�+�) on z(�) is given implicitly by one C1-function f� as fol-

lows.

Lemma 3.1.3 (Existence and Uniqueness of the Solution) Let the parameters c1, c2, �, �,

� be �xed in (3.4) with c1 > 0, c2 > 0, � � 0, � 6= 1
c2
, � 2

�
0; 1c1

i
and � > 0. Then there exists

one C1-function f� such that

f�(z(t)) = z(t+�) for all t > 0,

where � = (c1; c2; �; �; �).

Proof.Let
H�(u; v) = �

�
c1
1��c2
1+�c1

u+ c2v
�3
+
�
1
c1
� �

��
c1
1��c2
1+�c1

u+ c2v
�

�
�
1 + c2

c1

�
v = 0,

where u = z(� +�), v = z(�), � = (c1; c2; �; �; �).

(i) If � = 1
c1
, then H�(u; v) = 0 implies

c1
1� �c2
1 + �c1

u =

s�
1 +

c2
c1

�
v

�
� c2v.

Hence, the C1-function f� exists.

(ii) If � 2
�
0; 1c1

�
, then

@

@u
H�(u; v) = 3�c1

1� �c2
1 + �c1

�
c1
1� �c2
1 + �c1

u+ c2v

�2
+ (1� �c1)

1� �c2
1 + �c1

6= 0.
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By the implicit function theorem, the C1-function f� exists.

De�nition 3.1.4 We denote f�(z(�)) = z(� +�) to be the function, which satis�es (3.4) for all

� � 0, where � = (�; c1; c2; �; �).

Since

f�(z(�)) = z(� +�) for all � > 0,

we can use the map f� and the interval � to generate z(�) for all � > 0. And the corresponding

solution of the 1D wave system (1.1)-(1.4) is calculated via the formulae

!(x; t) =

Z t+ x
c1
+ 1
c2

1
c2

c1
1� �c2
1 + �c1

z(c1�)d� +

Z t� x
c2
+ 1
c2

0
c2z(c1�)d� .

De�nition 3.1.5 (Chaotic Vibration) The solution of the 1D wave system is said to be chaotic

if the map f� : � ! R is chaotic in the sense of Li-Yorke; i.e., there exists one nonempty invari-

ant subset �0 � � such that f� is chaotic in the sense of Li-Yorke on �0 (see De�nition 2.0.7).

Remark 3.1.6 In this paper, we say the 1D wave system is chaotic if its solution is chaotic.

3.2 The chaotic region of the system (1.1)-(1.4)

In this section, we want to show the chaotic region of the solution of the 1D wave system (1.1)-

(1.4). First, we consider (3.4) as below:

H�(x; y) = �
�
c1
1��c2
1+�c1

y + c2x
�3
+
�
1
c1
� �

��
c1
1��c2
1+�c1

y + c2x
�
�
�
1 + c2

c1

�
x

= 0, where c1, c2 > 0, � � 0, � 6= 1
c2
, � 2

�
0; 1c1

i
and � > 0.

De�nition 3.2.1 We denote

vc =
c1 � 2�c1c2 + 3c2
3c2 (c1 + c2)

r
1 + �c2
3�c2

and M =
2(1 + �c2)(1 + �c1)

3(c1 + c2)(1� �c2)

r
1 + �c2
3�c2

in the following lemmas.

We show the local maximum, minimum and piecewise monotonicity of the function f� which

satis�es (3.4) as below.
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Lemma 3.2.2 (Local Maximum, Minimum and Piecewise Monotonicity) The function f�

is odd and f� has local extrema at (vc;M) and (�vc;�M). Furthermore, f� is strictly monotonic

on (�1;�vc), (�vc; vc) and (vc;1).

Proof.Since H(�x; f�(�x)) = H(�x;�f�(x)) = 0, we have f�(�x) = �f�(x). Thus f� is odd.

Then use
d
dxH(x; y) = 3�

�
c1
1��c2
1+�c1

y + c2x
�2 �

c1
1��c2
1+�c1

y0 + c2
�

+
�
1
c1
� �

��
c1
1��c2
1+�c1

y0 + c2
�
�
�
1 + c2

c1

�
= 0,

and carry out the computations, we have the results.

We show the x-axis Intercepts, �xed points and intersections with the line y = �x of the func-

tion f� as below.

Lemma 3.2.3 (x-axis Intercepts) The function f� intersects the x-axis at the points�
� 1
c2

r
1 + �c2
�c2

; 0

�
, (0; 0),

�
1

c2

r
1 + �c2
�c2

; 0

�
.

Proof.The results can be directly com�rmed by computing H(x; 0) = 0.

Lemma 3.2.4 (Intersections with the Line y = x) The function f� intersects the line y = x

at the points

�
�1 + �c1
c1 + c2

r
� + �

�
;�1 + �c1

c1 + c2

r
� + �

�

�
, (0; 0) and

�
1 + �c1
c1 + c2

r
� + �

�
;
1 + �c1
c1 + c2

r
� + �

�

�
.

Proof.The results can be directly com�rmed by computing H(x; x) = 0.

De�nition 3.2.5 We denote the point

B =
1 + �c1

j2�c1c2 + c2 � c1j

s
2 + 2��c1c2 + � (c1 � c2) + � (c2 � c1)

�(2�c1c2 + c2 � c1)

in the following lemmas.

Lemma 3.2.6 (Intersections with the Line y = �x) Let the parameters �, c1, c2, �, � be �xed

in (3.4) with 2+2��c1c2+�(c1�c2)+�(c2�c1)
�(2�c1c2+c2�c1) > 0, then the function f� intersects the line y = �x at

the points (�B;B), (0; 0), (B;�B).Otherwise, the function f� intersects the line y = �x only at

the point (0; 0).
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Proof.The results can be directly com�rmed by computing H(x;�x) = 0.

Figure 1:The map f� with � > 1
c2
and

jM j � 1+�c1
c1+c2

q
�+�
� .

Figure 2:The map f� with 0 < � < 1
c2
and

jM j � B.

Figure 3:The map f� with 0 < � < 1
c2
.
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Figure 4: f3�(p2) < p2 < f�(p2) < f2�(p2). Figure 5: f6�(p5) < p5 < f2�(p5) < f4�(p5).

We show the function f� has bounded invariant interval or bounded invariant cantor-like sub-

set in following lemmas.

Lemma 3.2.7 (Bounded Invariant Interval) Let the parameters �, c1, c2, �, � be �xed in (3.4).

(i) If � > 1
c2
and jM j =

���2(1+�c2)(1+�c1)3(c1+c2)(1��c2)

q
1+�c2
3�c2

��� � 1+�c1
c1+c2

q
�+�
� , then the iterates of every point

in the set

U �
�
�1;�1 + �c1

c1 + c2

r
� + �

�

�
[
�
1 + �c1
c1 + c2

r
� + �

�
;1
�

escape to �1, while those of any point in RnU are attracted to the bounded invariant interval

�
�
����2(1 + �c2)(1 + �c1)3(c1 + c2)(1� �c2)

r
1 + �c2
3�c2

���� ; ����2(1 + �c2)(1 + �c1)3(c1 + c2)(1� �c2)

r
1 + �c2
3�c2

�����

of f�, i.e., [� jM j ; jM j] of f�.

(ii) If 0 < � < 1
c2
and f� intersects the line y = �x at three points and jM j � B, then the iterates

of every point in the set U � (�1;�B)[ (B;1) escape to �1, while those of any point in RnU

are attracted to the bounded invariant interval [� jM j ; jM j] of f�.

(iii) If 0 < � < 1
c2
and f� intersects the line y = �x at (0; 0), then the iterates of every point in

R are attracted to the bounded invariant interval [� jM j ; jM j] of f�.

Proof.The results of (i) and (ii) follow easily from the above lemmas and other piecewise monotonic

properties of f�, as can be directly com�rmed by graphical analysis (see Figure 1 and Figure 2).
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We omit the details.

(iii) If 0 < � < 1
c2
and f� intersects the line y = �x only at (0; 0), then jf�(x)j < jxj for all

x 2
�
�1;� 1

c2

r
1 + �c2
�c2

�
[
�
1

c2

r
1 + �c2
�c2

;1
�
.

Thus, jfn� (x)j is strctly decreasing for n � n0, where

fn0� (x) 2
�
�1;� 1

c2

r
1 + �c2
�c2

�
[
�
1

c2

r
1 + �c2
�c2

;1
�

and

fn0+1� (x) =2
�
�1;� 1

c2

r
1 + �c2
�c2

�
[
�
1

c2

r
1 + �c2
�c2

;1
�
.

Hence, the iterates of every point in R are attracted to the bounded invariant interval [� jM j ; jM j]

of f� (see Figure 3).

Lemma 3.2.8 (Bounded Cantor-like Invariant Subset) The bounded invariant interval

�
�
����2(1 + �c2)(1 + �c1)3(c1 + c2)(1� �c2)

r
1 + �c2
3�c2

���� ; ����2(1 + �c2)(1 + �c1)3(c1 + c2)(1� �c2)

r
1 + �c2
3�c2

�����

no longer exists in the case (i) and (ii) of the Lemma 3.2.7 if the condition

jM j � 1 + �c1
c1 + c2

r
� + �

�
or jM j � B

is violated. Instead, we have a bounded Cantor-like invariant set.

Proof.The method of proof is now standard, see [18, Sec. 1.7], for example.

We have the chaotic region of the function f� as below.

Lemma 3.2.9 Let the parameters �, c1, c2, �, � be �xed in (3.4) and satisfy the inequality����2(1 + �c2)(1 + �c1)3(c1 + c2)(1� �c2)

����r1 + �c23�c2
� 1

c2

r
1 + �c2
�c2

, (3.5)

then the interval map f� is chaotic in the sense of Li-Yorke if the domain of f� contains the inter-

val �
� 1
c2

r
1 + �c2
�c2

;
1

c2

r
1 + �c2
�c2

�
.
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Proof. (i) If 0 < � < 1
c2
, then

f�(vc) =
2(1 + �c2)(1 + �c1)

3(c1 + c2)(1� �c2)

r
1 + �c2
3�c2

is the local maximum.

Since f� is strictly increasing on [0; vc] and f�(vc) � 1
c2

q
1+�c2
�c2

, there exists one unique point p1 2

(0; vc] such that f�(p1) = 1
c2

q
1+�c2
�c2

. Similarly, there exists one unique point p2 2 (0; p1) such

that f�(p2) = p1.Hence, we have

0 = f3�(p2) < p2 < f�(p2) < f2�(p2) (see Figure 4).

Thus, f� has points of all periods which implies chaos [by Li and Yorke, 1975].

(ii) If � > 1
c2
, then

f�(vc) =
2(1 + �c2)(1 + �c1)

3(c1 + c2)(1� �c2)

r
1 + �c2
3�c2

is the local minimum and

f�(�vc) = �
2(1 + �c2)(1 + �c1)

3(c1 + c2)(1� �c2)

r
1 + �c2
3�c2

is the local maximum.

Since f� is strictly decreasing on [�vc; vc] and f�(vc) � � 1
c2

q
1+�c2
�c2

, there exist one unique point

p1 2 (0; vc] such that f�(p1) = � 1
c2

q
1+�c2
�c2

. And since f� is odd, there exists one unique point

p2 2 (�p1; 0) such that f�(p2) = p1. Similarly, there exists one unique point p3 2 (0;�p2) such

that f�(p3) = p2 and then there exists one unique point p4 2 (�p3; 0) such that f�(p4) = p3.

Then there exists one unique point p5 2 (0;�p4) such that f�(p5) = p4.Hence, we have

0 = f6�(p5) < p5 < f2�(p5) < f4�(p5) (see Figure 5).

Thus, f2� has points of all periods which implies chaos [by Li and Yorke, 1975].Hence f� is chaotic

in the sense of Li and Yorke.

Thus, we have the main theorem as below.

Theorem 3.2.10 (Chaotic Region of the 1D Wave System) Let the parameters �, c1, c2, �,

� be �xed in the 1D wave system (1.1)-(1.4) and satisfy the inequality

����2(1 + �c2)(1 + �c1)3(c1 + c2)(1� �c2)

���� � p
3

c2
, (3.6)
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and if the 1D wave system has initial conditions of type I, then the 1D wave system is chaotic.

Now we want to show the chaotic region of � when c1, c2, �, � are �xed.There are two di¤er-

ent cases as follows.

Proposition 3.2.11 Let the parameters c1, c2, �, � be �xed and satisfy the inequality

3
p
3c1 + (3

p
3� 2)c2 � 2�c22 > 0.

Then the inequality (3.6) holds if and only if � satis�es either

3
p
3c1 + (3

p
3� 2)c2 � 2�c22

(3
p
3 + 2)c1c2 + 2�c1c22 + 3

p
3c22

� � <
1

c2

or
1

c2
< � � 2c2 + 2�c

2
2 + 3

p
3(c1 + c2)

(3
p
3� 2)c1c2 + 3

p
3c22 � 2�c1c22

.

Proof. (i) If � < 1
c2
, then the inequality (3.6) is equivalent to

�c2

h
2c1(1 + �c2) + 3

p
3(c1 + c2)

i
� 3

p
3(c1 + c2)� 2c2(1 + �c2).

And since

3
p
3(c1 + c2)� 2c2(1 + �c2) > 0,

the inequality (3.6) is equivalent to

1

c2
> � � 3

p
3(c1 + c2)� 2c2(1 + �c2)

c2
�
2c1(1 + �c2) + 3

p
3(c1 + c2)

� .
(ii) If � > 1

c2
, then the inequality (3.6) is equivalent to

2c2(1 + �c2) + 3
p
3(c1 + c2) � �c2

h
3
p
3(2m+ 1)(c1 + c2)� 2c1(1 + �c2)

i
.

Furthermore, the inequality (3.6) is equivalent to

2c2(1 + �c2) + 3
p
3(c1 + c2)

c2
�
3
p
3(c1 + c2)� 2c1(1 + �c2)

� � � >
1

c2
.
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By (i) and (ii), the inequality (3.6) holds if and only if � satis�es either

3
p
3c1 + (3

p
3� 2)c2 � 2�c22

(3
p
3 + 2)c1c2 + 2�c1c22 + 3

p
3c22

� � <
1

c2

or
1

c2
< � � 2c2 + 2�c

2
2 + 3

p
3(c1 + c2)

(3
p
3� 2)c1c2 + 3

p
3c22 � 2�c1c22

.

Proposition 3.2.12 Let the parameters c1, c2, �, � be �xed and satisfy the inequality

3
p
3c1 + (3

p
3� 2)c2 � 2�c22 � 0.

Then the inequality (3.6) holds if and only if � satis�es either

0 � � <
1

c2
or

1

c2
< � � 2c2 + 2�c

2
2 + 3

p
3(c1 + c2)

(3
p
3� 2)c1c2 + 3

p
3c22 � 2�c1c22

.

Proof. If � < 1
c2
, then the inequality (3.6) is equivalent to

�c2

h
2c1(1 + �c2) + 3

p
3(c1 + c2)

i
� 3

p
3(c1 + c2)� 2c2(1 + �c2).

Since

3
p
3(c1 + c2)� 2c2(1 + �c2) � 0,

we can conclude that the inequality (3.6) always holds.Thus the inequality (3.6) holds if and only

if � satis�es either

� <
1

c2
or

2c2 + 2�c
2
2 + 3

p
3(c1 + c2)

(3
p
3� 2)c1c2 + 3

p
3c22 � 2�c1c22

� � >
1

c2
.

We show the system is chaotic if c1 !1, or c1 ! 0+, or c2 !1 as follows.

Proposition 3.2.13 Let the parameters �, c2, � be �xed and satisfy either

3
p
3

2 + 3
p
3
� �c2 < 1 or

3
p
3

3
p
3� 2

� �c2 > 1,
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then the inequality (3.6) holds if c1 is su¢ ciently large (while � is su¢ ciently small).

Proof.Since � 2
�
0; 1c1

i
, we can see the parameter �! 0+ if the parameter c1 !1.

lim
c1!1

����2(1 + �c2)(1 + �c1)3(c1 + c2)(1� �c2)

���� � p
3

c2
implies

���� 2�

3(1� �c2)

���� � p
3

c2
.

Then we have the results by considering two di¤erent cases which one is � > 1
c2
and the other is

� < 1
c2
.

Proposition 3.2.14 Let the parameters �, c2, �, � be �xed and satisfy the inequality

2 (1 + �c2)

���� 1

1� �c2

���� � 3p3,
then there exists one positive " << 1 such that the inequality (3.6) holds for all c1 < ".

Proof.

lim
c1!0+

����2(1 + �c2)(1 + �c1)3(c1 + c2)(1� �c2)

���� � p
3

c2
implies

���� 2(1 + �c2)3c2(1� �c2)

���� � p
3

c2
.

Proposition 3.2.15 Let the parameters �, c1, �, � be �xed and satisfy the inequality

2�+ 2��c1 � 3
p
3� � 0,

then there exists one positive real number M such that the inequality (3.6) holds for all c2 > M .

Proof.

lim
c2!1

����2c2(1 + �c2)(1 + �c1)3(c1 + c2)(1� �c2)

���� � p3 implies 2�(1 + �c1) � 3p3�.
Since lim

c2!0+

���2(1+�c2)(1+�c1)3(c1+c2)(1��c2)

��� = 2(1+�c1)
3c1

and lim
c2!0+

p
3
c2
= 1, we can see the graph of the map

f� is very �at.Thus, there exists no chaos if c2 is su¢ ciently small.

3.3 Main results of the system (1.1)-(1.4)

De�nition 3.3.1 (Initial Conditions of Type I) We say the 1D wave system (1.1)-(1.4) has

initial conditions of type I if the initial conditions satisfy the compatibility condition and the union
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of the ranges of

F0(x) �  (x)�c1'0(x)
c1+c2

on [0; 1] and

F1(x) � 1+�c1
1��c2

 (x)+c2'0(x)
c1+c2

on [0; 1]

contains the interval

I �
�
� 1
c2

r
1 + �c2
�c2

;
1

c2

r
1 + �c2
�c2

�
;

i.e., I � � (see Remark 3.1.1 and De�nition 3.1.2).

Remark 3.3.2 In the following theorems, we can compute

c1 =
d+

p
d2 + 4c2

2
and c2 =

�d+
p
d2 + 4c2

2

for any given c and d. Conversely, we can compute d = c1 � c2 and c =
p
c1c2 for any given c1

and c2.

Theorem 3.3.3 Suppose that the parameters c, d, �, � are to be �xed in the 1D wave system (1.1)-

(1.4) and satisfy the inequality

3
p
3c1 + (3

p
3� 2)c2 � 2�c22 > 0.

If the 1D wave system has initial conditions of type I and if � satis�es either

3
p
3c1 + (3

p
3� 2)c2 � 2�c22

(3
p
3 + 2)c1c2 + 2�c1c22 + 3

p
3c22

� � <
1

c2

or
1

c2
< � � 2c2 + 2�c

2
2 + 3

p
3(c1 + c2)

(3
p
3� 2)c1c2 + 3

p
3c22 � 2�c1c22

,

then the 1D wave system is chaotic.

Proof.The results follow easily from Theorem 3.2.10 and Proposition 3.2.11.
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Example 3.3.4 Consider the one-dimensional wave system as below:

8>>>>>><>>>>>>:

!tt � !xx = 0, 0 < x < 1, t > 0.

!x(0; t) + �!t(0; t) = 0, � > 0, � 6= 1, t > 0.

!x(1; t) = �!t(1; t)� �!3t (1; t), � 2 (0; 1], � > 0, t > 0.

!(x; 0) = '(x) 2 C1([0; 1]), !t(x; 0) =  (x) 2 C0([0; 1]).

Suppose that the parameters �, � are to be �xed and the 1D wave system has initial conditions of

type I =
h
�
q

1+�
� ;
q

1+�
�

i
. If � satis�es either

1 < � � 3
p
3 + 1 + �

3
p
3� 1� �

or
3
p
3� 1� �

3
p
3 + 1 + �

� � < 1,

then the wave system is chaotic (isotropic chaotic vibration of the linear wave system). In [8, 12,

13], Huang et al. showed the same results as above.

Theorem 3.3.5 Suppose that the parameters c, d, �, � are to be �xed in the 1D wave system (1.1)-

(1.4) and satisfy the inequality

3
p
3c1 + (3

p
3� 2)c2 � 2�c22 � 0.

If the 1D wave system has initial conditions of type I and if � satis�es either

0 � � <
1

c2
or

1

c2
< � � 2c2 + 2�c

2
2 + 3

p
3(c1 + c2)

(3
p
3� 2)c1c2 + 3

p
3c22 � 2�c1c22

.

then the 1D wave system is chaotic.

Proof.The results follow easily from Theorem 3.2.10 and Proposition 3.2.12.

Example 3.3.6 Consider the one-dimensional wave system as below:

8>>>>>><>>>>>>:

!tt + 2!tx � 3!xx = 0, 0 < x < 1, t > 0.

!x(0; t) + �!t(0; t) = 0, � � 0, � 6= 1=3, t > 0.

!x(1; t) = �!t(1; t)� �!3t (1; t), � 2
h
2
p
3�1
3 ; 1

i
, � > 0, t > 0.

!(x; 0) = '(x) 2 C1([0; 1]), !t(x; 0) =  (x) 2 C0([0; 1]).

Suppose that the parameters �, � are to be �xed and the 1D wave system has initial conditions of
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type I =
h
�1
3

q
1+3�
3� ; 13

q
1+3�
3�

i
. If � satis�es either

0 � � <
1

3
or
1

3
< � � 2

p
3 + 1 + 3�

6
p
3� 1� 3�

,

then the wave system is chaotic (nonisotropic chaotic vibration of the linear wave system).

Theorem 3.3.7 Suppose that the parameters �, c2, �, � are to be �xed in the 1D wave system (1.1)-

(1.4) and satisfy either

3
p
3

2 + 3
p
3
� �c2 < 1 or

3
p
3

3
p
3� 2

� �c2 > 1.

If the 1D wave system has initial conditions of type I, then the 1D wave system is chaotic for c1

is su¢ ciently large (while � is su¢ ciently small).

Proof.The results follow easily from Theorem 3.2.10 and Proposition 3.2.13.

Theorem 3.3.8 Suppose that the parameters �, c2, �, � are to be �xed in the 1D wave system (1.1)-

(1.4) and satisfy the inequality

2 (1 + �c2)

���� 1

1� �c2

���� � 3p3.
If the 1D wave system has initial conditions of type I, then the 1D wave system is chaotic for c1

is su¢ ciently small.

Proof.The results follow easily from Theorem 3.2.10 and Proposition 3.2.14.

Theorem 3.3.9 Suppose that the parameters �, c2, �, � are to be �xed in the 1D wave system (1.1)-

(1.4) and satisfy the inequality

2�+ 2��c1 � 3
p
3� � 0.

If the 1D wave system has initial conditions of type I, then the 1D wave system (1.12) is chaotic

for c2 is su¢ ciently large.

Proof.The results follow easily from Theorem 3.2.10 and Proposition 3.2.15.

25



Example 3.3.10 Consider the one-dimensional wave system (1.8)-(1.11) as below:

8>>>>>><>>>>>>:

!tt + v!tx � !xx = 0, v > 0, 0 < x < 1, t > 0.

!x(0; t) = 0, t > 0.

!x(1; t) = �!t(1; t)� �!3t (1; t), � 2
�
0; v+

p
v2+4
2

i
, � > 0, t > 0.

!(x; 0) = '(x) 2 C1([0; 1]), !t(x; 0) =  (x) 2 C0([0; 1]).

Suppose that the parameter � is to be �xed and the parameters v, � satisfy the inequality

����2(1 + �c2)3(c1 + c2)

���� � p
3

c2
,

where c1 = �v+
p
v2+4
2 and c2 = v+

p
v2+4
2 . If the 1D wave system has initial conditions of type I

where I =
h
� 1
c2

q
1+�c2
�c2

; 1c2

q
1+�c2
�c2

i
, then the wave system is chaotic (nonisotropic chaotic vibra-

tion of the linear wave system). In [5], Chen et al. showed the same results as above in the proof of

theorem 3.2.
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Chapter4

The1Dwavesystem(1.12)

In this chapter, the 1D wave system (1.12) is considered:

8>>>>>><>>>>>>:

!tt � d!tx � c2!xx = 0, d 2 R, c > 0, 0 < x < 1, t > 0,

!t(0; t) + �!x(0; t) = 0, � > 0, � 6= c2, t > 0,

!x(1; t) = �!t(1; t)� �!2m+1t (1; t), � 2
�
0; 1c1

i
, �; t > 0, m 2 N,

!(x; 0) = '(x) 2 C1([0; 1]), !t(x; 0) =  (x) 2 C0([0; 1]).

4.1 Chaotic vibrations of the system (1.12)

The general solution of (1.12)1 is

!(x; t) = u(c1t+ x) + v(c2t� x), (4.1)

where u, v are arbitrary C2-function. Substituting (4.1) in (1.12)2 and (1.12)3 we have

u0(c1t) = �
c1 � �
c2 + �

v0(c2t), t > 0, (4.2)

and
�(c1u

0(c1t+ 1) + c2v0(c2t� 1))2m+1 +
�
1
c1
� �

�
(c1u

0(c1t+ 1)

+c2v
0(c2t� 1))�

�
1 + c2

c1

�
v0(c2t� 1) = 0, t > 0.

(4.3)
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When � = c2 in (4.2), we have

u0(c1t) = 0 for t > 0) u(c1t+ x) = C for t > 0.

Thus, we consider the case � 6= c2. And depends on (4.2), we can use v0 to replace u0 in (4.3) to

derive one di¤erence equation as follows.

By using the substitution

z(c1t) =

8>>><>>>:
v0
�
c2
c1

�
c1t� c1

c2

��
, 0 � t � 1

c2
,

�+c1
��c2u

0
�
c1t� c1

c2

�
, t > 1

c2
,

we have the di¤erence equation

�
�
c1
��c2
�+c1

z(� +�) + c2z(�)
�2m+1

+
�
1
c1
� �

��
c1
��c2
�+c1

z(� +�)

+c2z(�)
�
�
�
1 + c2

c1

�
z(�) = 0,

(4.4)

where � = c1t, � = 1 + c1
c2
.

And the initial condition of (4.4) is

z(c1t) =

8>>>><>>>>:
 (1�c2t)�c1'0(1�c2t)

c1+c2
, 0 � t � 1

c2
.

�+c1
��c2

 
�
c1t� c1

c2

�
+c2'0

�
c1t� c1

c2

�
c1+c2

, 1c2 < t � 1
c1
+ 1

c2
.

Remark 4.1.1 In this paper, we assume that the initial value '(x) and  (x) are chosen such that

z(�) is continuous on [0; 1 + c1
c2
] and satisfy the compatibility condition

�(c1
��c2
�+c1

z(�) + c2z(0))
2m+1 + ( 1c1 � �)(c1

��c2
�+c1

z(�)

+c2z(0))� (1 + c2
c1
)z(0) = 0.

De�nition 4.1.2 In the following theorems of this paper, we denote the range of z(�) on [0;�] to

be the compact interval �, i.e.� = z([0;�]).
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We show the dependence of z(�+�) on z(�) is given implicitly by one C1-function f� as fol-

lows.

Lemma 4.1.3 (Existence and Uniqueness of the Solution) Let the parameters c1, c2, �, �,

� be �xed in (4.4) with c1 > 0, c2 > 0, � � 0, � 6= c2, � 2
�
0; 1c1

i
and � > 0. Then there exists

one C1-function f� such that

f�(z(t)) = z(t+�) for all t > 0,

where � = (c1; c2; �; �; �).

Proof.Let

H�(u; v) = �
�
c1
��c2
�+c1

u+ c2v
�2m+1

+
�
1
c1
� �

��
c1
��c2
�+c1

u+ c2v
�

�
�
1 + c2

c1

�
v = 0,

where u = z(� +�), v = z(�), � = (c1; c2; �; �; �).

(i) If � = 1
c1
, then H�(u; v) = 0 implies

c1
� � c2
� + c1

u = 2m+1

s�
1 +

c2
c1

�
v

�
� c2v.

Hence, the C1-function f� exists.

(ii) If � 2
�
0; 1c1

�
, then

@

@u
H�(u; v) = 3�c1

� � c2
� + c1

�
c1
� � c2
� + c1

u+ c2v

�2m
+ (1� �c1)

� � c2
� + c1

6= 0.

By the implicit function theorem, the C1-function f� exists.

De�nition 4.1.4 We denote f�(z(�)) = z(� +�) to be the function satis�es (4.4) for all � � 0,

where � = (�; c1; c2; �; �;m).

Since

f�(z(�)) = z(� +�) for all � > 0,
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we can use the map f� and the interval � to generate z(�) for all � > 0. And the corresponding

solution of the 1D wave system (1.12) is calculated via the formulae

!(x; t) =

Z t+ x
c1
+ 1
c2

1
c2

c1
� � c2
� + c1

z(c1�)d� +

Z t� x
c2
+ 1
c2

0
c2z(c1�)d� .

De�nition 4.1.5 (Chaotic Vibration) The solution of the 1D wave system is said to be chaotic

if the map f� : � ! R is chaotic in the sense of Li-Yorke; i.e., there exists one nonempty invari-

ant subset �0 � � such that f� is chaotic in the sense of Li-Yorke on �0 (see De�nition 2.0.7).

Remark 4.1.6 In this paper, we say the 1D wave system is chaotic if its solution is chaotic.

4.2 The chaotic region of the system (1.12)

In this section, we consider (4.4) as below:

H(x; y) = �
�
c1
��c2
�+c1

y + c2x
�2m+1

+
�
1
c1
� �

��
c1
��c2
�+c1

y + c2x
�

�
�
1 + c2

c1

�
x = 0,

where �, c1, c2, � are positve (� 6= c2), 0 < � � 1
c1
and m 2 N. And we have the results as fol-

lows.

De�nition 4.2.1 We denote

vc =
c1

c1 + c2

�
1 + �c2

c2(2m+ 1)
+
1

c1
� �

�
2m

s
1 + �c2

(2m+ 1)�c2

and

M =
2m

2m+ 1

1 + �c2
c1 + c2

� + c1
� � c2

2m

s
1 + �c2

(2m+ 1)�c2

in the following lemmas.

We show the local maximum, minimum and piecewise monotonicity of the function h which

satis�es (3.4) as below.

Lemma 4.2.2 (Local Maximum, Minimum and Piecewise Monotonicity) Let y = h(x)

be the unique function which satis�es (4.4). Then the fuction h is odd and h has local extrema at
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(vc;M) and (�vc;�M).Furthermore, the function h is strictly monotonic on (�1;�vc), (�vc; vc)

and (vc;1).

Proof.Since H(�x; h(�x)) = H(�x;�h(x)) = 0, the function h is odd.Then use

d
dxH(x; y) = (2m+ 1)�

�
c1
��c2
�+c1

y + c2x
�2m �

c1
��c2
�+c1

y0 + c2
�

+
�
1
c1
� �

��
c1
��c2
�+c1

y0 + c2
�
�
�
1 + c2

c1

�
= 0,

and carry out the computations, we have the results.

We show the x-axis Intercepts, �xed points and intersections with the line y = �x of the func-

tion h as below.

Lemma 4.2.3 (x-axis Intercepts) The function h intersects the x-axis at the points

�
� 1
c2

2m

r
1 + �c2
�c2

; 0

�
, (0; 0),

�
1

c2
2m

r
1 + �c2
�c2

; 0

�
.

Proof.Straightforward veri�cation by computing

H(x; 0) = �(0 + c2x)
2m+1 +

�
1

c1
� �

�
(0 + c2x)�

�
1 +

c2
c1

�
x = 0,

we have x
�
�c2m+12 x2m � �c2 � 1

�
= 0 which implies x = 0, � 1

c2
2m

q
1+�c2
�c2

.

Lemma 4.2.4 (Intersections with the Line y = x) The function h intersects the line y = x

at the points �
� � + c1
� (c1 + c2)

2m

r
1 + ��

��
;� � + c1

� (c1 + c2)
2m

r
1 + ��

��

�
, (0; 0),

and �
� + c1

� (c1 + c2)
2m

r
1 + ��

��
;

� + c1
� (c1 + c2)

2m

r
1 + ��

��

�
.

Proof.Straightforward veri�cation by computing H(x; x) = 0.

De�nition 4.2.5 We denote the point

B =
� + c1

j2c1c2 + (c2 � c1)�j
2m

s
2� + 2�c1c2 + (c1 � c2) + �� (c2 � c1)

�[2c1c2 + (c2 � c1)�]

in the following lemmas.
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Lemma 4.2.6 (Intersections with the Line y = �x) Let the parameters �, c1, c2, �, �, m be

�xed in (4.4) with

� > c2 and 2c1c2 + (c2 � c1)� 6= 0.

Then the function h intersects the line y = �x at the points

(�B;B), (0; 0), (B;�B),

if (i) c1 � c2 or if (ii) c1 > c2 and 2c1c2+(c2�c1)� > 0 or if (iii) c1 > c2 and 2c1c2+(c2�c1)� <

0 and 2�+c1�c2
2c1c2+(c2�c1)� > ��.

Furthermore, if the parameters are not in these three cases then the function h intersects the line

y = �x only at the point (0; 0).

Proof.Straightforward veri�cation by computing H(x;�x) = 0 and the three cases provide that

2� + 2�c1c2 + (c1 � c2) + �� (c2 � c1)
�[2c1c2 + (c2 � c1)�]

is positve.

Otherwise, 2�+2�c1c2+(c1�c2)+��(c2�c1)�[2c1c2+(c2�c1)�] is zero or negative.

We show the function h has bounded invariant interval or bounded invariant cantor-like sub-

set in following lemmas.

Lemma 4.2.7 (Bounded Invariant Interval) Let the parameters �, c1, c2, �, �, m be �xed in

(4.4).

(i) If 0 < � < c2 and jM j =
��� 2m
2m+1

1+�c2
c1+c2

�+c1
��c2

2m

q
1+�c2

(2m+1)�c2

��� � �+c1
�(c1+c2)

2m

q
1+��
�� , then the iterates

of every point in the set

U �
�
�1;� � + c1

� (c1 + c2)

r
1 + ��

��

�
[
�

� + c1
� (c1 + c2)

r
1 + ��

��
;1
�

escape to �1, while those of any point in RnU are attracted to the bounded invariant interval

"
�
����� 2m

2m+ 1

1 + �c2
c1 + c2

� + c1
� � c2

2m

s
1 + �c2

(2m+ 1)�c2

����� ;
����� 2m

2m+ 1

1 + �c2
c1 + c2

� + c1
� � c2

2m

s
1 + �c2

(2m+ 1)�c2

�����
#

of h, i.e., [� jM j ; jM j] of h.

(ii) If � > c2 and h intersects the line y = �x at three points and jM j � B, then the iterates of
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every point in the set U � (�1;�B) [ (B;1) escape to �1, while those of any point in RnU

are attracted to the bounded invariant interval [� jM j ; jM j] of h.

(iii) If � > c2 and h intersects the line y = �x at (0; 0), then the iterates of every point in R are

attracted to the bounded invariant interval [� jM j ; jM j] of h.

Proof.The results of (i) and (ii) follow easily from the above lemmas and other piecewise monotonic

properties of h, as can be directly com�rmed by graphical analysis (see Figure 6 and Figure 7).

We omit the details.

(iii) If � > c2 and h intersects the line y = �x only at (0; 0), then jh(x)j < jxj for all

x 2
�
�1;� 1

c2
2m

r
1 + �c2
�c2

�
[
�
1

c2
2m

r
1 + �c2
�c2

;1
�
.

Thus, jhn(x)j is strctly decreasing for n � n0, where

hn0(x) 2
�
�1;� 1

c2
2m

r
1 + �c2
�c2

�
[
�
1

c2
2m

r
1 + �c2
�c2

;1
�

and

hn0+1(x) =2
�
�1;� 1

c2
2m

r
1 + �c2
�c2

�
[
�
1

c2
2m

r
1 + �c2
�c2

;1
�
.

Hence, the iterates of every point in R are attracted to the bounded invariant interval [� jM j ; jM j]

of h (see Figure 8).

Lemma 4.2.8 (Bounded Cantor-like Invariant Subset) The bounded invariant interval

"
�
����� 2m

2m+ 1

1 + �c2
c1 + c2

� + c1
� � c2

2m

s
1 + �c2

(2m+ 1)�c2

����� ;
����� 2m

2m+ 1

1 + �c2
c1 + c2

� + c1
� � c2

2m

s
1 + �c2

(2m+ 1)�c2

�����
#

no longer exists in the case (i) and (ii) of the Lemma 4.2.7 if the condition

jM j � � + c1
� (c1 + c2)

2m

r
1 + ��

��
or jM j � B

is violated. Instead, we have a bounded Cantor-like invariant set.

Proof.The method of proof is now standard, see [18, Sec. 1.7], for example.
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Figure 6:The map h with � < c2 and

jM j � b.

Figure 7:The map h with � > c2 and

jM j � B.

Figure 8:The map h with � > c2.
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Figure 9:h3(p2) < p2 < h(p2) < h2(p2). Figure 10:h6(p5) < p5 < h2(p5) < h4(p5).

We have the chaotic region of the function h as below.

Lemma 4.2.9 (Chaotic Region of the 1D Wave System) Let the parameters �, c1, c2, �, �,

m be �xed in (4.4) and satisfy the inequality

2m

2m+ 1

1 + �c2
c1 + c2

����� + c1� � c2

���� 2m

s
1 + �c2

(2m+ 1)�c2
� 1

c2
2m

r
1 + �c2
�c2

, (4.5)

then the interval map h is chaotic in the sense of Li-Yorke if the domain of h contains the inter-

val �
� 1
c2

2m

r
1 + �c2
�c2

;
1

c2
2m

r
1 + �c2
�c2

�
.

Proof. (i) If � > c2, then

h(vc) =
2m

2m+ 1

1 + �c2
c1 + c2

� + c1
� � c2

2m

s
1 + �c2

(2m+ 1)�c2
is the local maximum.

Since h is strictly increasing on [0; vc] and h(vc) � 1
c2

2m

q
1+�c2
�c2

, there exists one unique point p1 2

(0; vc] such that h(p1) = 1
c2

2m

q
1+�c2
�c2

. Similarly, there exists one unique point p2 2 (0; p1) such

that h(p2) = p1.Hence we have

0 = h3(p2) < p2 < h(p2) < h2(p2) (see Figure 9).
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Thus h has points of all periods which implies chaos [by Li and Yorke, 1975].

(ii) If 0 < � < c2, then

h(vc) =
2m

2m+ 1

1 + �c2
c1 + c2

� + c1
� � c2

2m

s
1 + �c2

(2m+ 1)�c2
is the local minimum and

h(�vc) = �
2m

2m+ 1

1 + �c2
c1 + c2

� + c1
� � c2

2m

s
1 + �c2

(2m+ 1)�c2
is the local maximum.

Since h is strictly decreasing on [�vc; vc] and h(vc) � � 1
c2

2m

q
1+�c2
�c2

, there exist one unique point

p1 2 (0; vc] such that h(p1) = � 1
c2

2m

q
1+�c2
�c2

. And since h is odd, there exists one unique point

p2 2 (�p1; 0) such that h(p2) = p1. Similarly, there exists one unique point p3 2 (0;�p2) such

that h(p3)

= p2 and then there exists one unique point p4 2 (�p3; 0) such that h(p4) = p3. Then there ex-

ists one unique point p5 2 (0;�p4) such that h(p5) = p4.Hence we have

0 = h6(p5) < p5 < h2(p5) < h4(p5) (see Figure 10).

Thus g = h2 has points of all periods which implies chaos [by Li and Yorke, 1975].Hence h is chaotic

in the sense of Li and Yorke.

Thus, we have the main theorem as below.

Theorem 4.2.10 (Chaotic Region of the 1D Wave System) Let the parameters �, c1, c2, �,

�, m be �xed in the 1D wave system (1.12) and satisfy the inequality

2m

2m+ 1

1 + �c2
c1 + c2

����� + c1� � c2

���� � 2m
p
2m+ 1

c2
, (4.6)

and if the 1D wave system has initial conditions of type I, then the 1D wave system is chaotic.

Now we want to show the chaotic region of � when c1, c2, �, �, m are �xed.There are two dif-

ferent cases as follows.

Proposition 4.2.11 Let the parameters c1, c2, �, �, m be �xed and satisfy the inequality

2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc2(1 + �c2) > 0.
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Then the inequality (4.6) holds if and only if � satis�es either

c2 < � �
c2
�
2mc1(1 + �c2) +

2m
p
2m+ 1(2m+ 1)(c1 + c2)

�
2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc2(1 + �c2)

or

0 <
c2
�
2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc1(1 + �c2)

�
2mc2(1 + �c2) +

2m
p
2m+ 1(2m+ 1)(c1 + c2)

� � < c2.

Proof. (i) If � > c2, then the inequality (4.6) is equivalent to

c2
�
2mc1(1 + �c2) +

2m
p
2m+ 1(2m+ 1)(c1 + c2)

�
�

�
�
2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc2(1 + �c2)

�
.

And since
2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc2(1 + �c2) > 0,

the inequality (4.6) is equivalent to

c2 < � �
c2
�
2mc1(1 + �c2) +

2m
p
2m+ 1(2m+ 1)(c1 + c2)

�
2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc2(1 + �c2)

.

(ii) If � < c2, then the inequality (4.6) is equivalent to

�[2mc2(1 + �c2) +
2m
p
2m+ 1(2m+ 1)(c1 + c2)] �

c2
�
2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc1(1 + �c2)

�
.

Furthermore, the inequality (4.6) is equivalent to

c2
�
2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc1(1 + �c2)

�
2mc2(1 + �c2) +

2m
p
2m+ 1(2m+ 1)(c1 + c2)

� � < c2.

And since
2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc1(1 + �c2) �

2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc1(1 +

c2
c1
) > 0,
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we have
c2[

2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc1(1 + �c2)]

2mc2(1 + �c2) +
2m
p
2m+ 1(2m+ 1)(c1 + c2)

> 0.

By (i) and (ii), the inequality (4.6) holds if and only if � satis�es either

c2 < � �
c2
�
2mc1(1 + �c2) +

2m
p
2m+ 1(2m+ 1)(c1 + c2)

�
2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc2(1 + �c2)

or

0 <
c2
�
2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc1(1 + �c2)

�
2mc2(1 + �c2) +

2m
p
2m+ 1(2m+ 1)(c1 + c2)

� � < c2.

Proposition 4.2.12 Let the parameters c1, c2, �, �, m be �xed and satisfy the inequality

2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc2(1 + �c2) � 0.

Then the inequality (4.6) holds if and only if � satis�es either

� > c2 or 0 <
c2
�
2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc1(1 + �c2)

�
2mc2(1 + �c2) +

2m
p
2m+ 1(2m+ 1)(c1 + c2)

� � < c2.

Proof. If � > c2, then the inequality (4.6) is equivalent to

c2
�
2mc1(1 + �c2) +

2m
p
2m+ 1(2m+ 1)(c1 + c2)

�
�

�
�
2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc2(1 + �c2)

�
.

Since
2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc2(1 + �c2) � 0,

we can conclude that the inequality (4.6) always holds.Thus the inequality (4.6) holds if and only

if � satis�es either

� > c2 or 0 <
c2
�
2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc1(1 + �c2)

�
2mc2(1 + �c2) +

2m
p
2m+ 1(2m+ 1)(c1 + c2)

� � < c2.
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Now we want to show the chaotic region of c1 when �, c2, �, �, m are �xed. There are three

di¤erent cases as follows.

Proposition 4.2.13 Let the parameters �, c2, �, �, m be �xed and satisfy the inequality

� > c2 and 2mc2(1 + �c2)� 2m
p
2m+ 1(2m+ 1)(� � c2) � 0,

then the inequality (4.6) holds for any c1.

Proof. If � > c2, then the inequality (4.6) is equivalent to

c1
�
2mc2(1 + �c2)� 2m

p
2m+ 1(2m+ 1) (� � c2)

�
�

c2
�
2m
p
2m+ 1(2m+ 1) (� � c2)� 2m�(1 + �c2)

�
.

Since

2mc2(1 + �c2)� 2m
p
2m+ 1(2m+ 1)(� � c2) � 0,

we have
2m
p
2m+ 1(2m+ 1) (� � c2)� 2m�(1 + �c2) < 0.

Thus the inequality (4.6) holds for any c1.

Proposition 4.2.14 Let the parameters �, c2, �, �, m be �xed and satisfy the inequality

� > c2 and 2mc2(1 + �c2)� 2m
p
2m+ 1(2m+ 1)(� � c2) < 0.

If
c2
�
2m
p
2m+ 1(2m+ 1) (� � c2)� 2m�(1 + �c2)

�
2mc2(1 + �c2)� 2m

p
2m+ 1(2m+ 1) (� � c2)

> 0

and if c1 satis�es

0 < c1 � min
(
1

�
;
c2
�
2m
p
2m+ 1(2m+ 1) (� � c2)� 2m�(1 + �c2)

�
2mc2(1 + �c2)� 2m

p
2m+ 1(2m+ 1) (� � c2)

)
,

then the inequality (4.6) holds.
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Proof. If � > c2, then the inequality (4.6) is equivalent to

c1
�
2mc2(1 + �c2)� 2m

p
2m+ 1(2m+ 1) (� � c2)

�
�

c2
�
2m
p
2m+ 1(2m+ 1) (� � c2)� 2m�(1 + �c2)

�
.

Since

2mc2(1 + �c2)� 2m
p
2m+ 1(2m+ 1)(� � c2) < 0,

then the inequality (4.6) is equivalent to

c1 �
c2
�
2m
p
2m+ 1(2m+ 1) (� � c2)� 2m�(1 + �c2)

�
2mc2(1 + �c2)� 2m

p
2m+ 1(2m+ 1) (� � c2)

.

And since
c2
�
2m
p
2m+ 1(2m+ 1) (� � c2)� 2m�(1 + �c2)

�
2mc2(1 + �c2)� 2m

p
2m+ 1(2m+ 1) (� � c2)

> 0,

the inequality (4.6) holds if

0 < c1 � minf
1

�
;
c2
�
2m
p
2m+ 1(2m+ 1) (� � c2)� 2m�(1 + �c2)

�
2mc2(1 + �c2)� 2m

p
2m+ 1(2m+ 1) (� � c2)

g.

Proposition 4.2.15 Let the parameters �, c2, �, �, m be �xed and satisfy the inequality

� < c2 and 2mc2(1 + �c2)� 2m
p
2m+ 1(2m+ 1)(c2 � �) > 0.

Then the inequality (4.6) holds if and only if c1 satis�es

c1 �
c2
�
2m
p
2m+ 1(2m+ 1)(c2 � �)� 2m�(1 + �c2)

�
2mc2(1 + �c2)� 2m

p
2m+ 1(2m+ 1)(c2 � �)

.

Proof. If � < c2, then the inequality (4.6) is equivalent to

c1
�
2mc2(1 + �c2)� 2m

p
2m+ 1(2m+ 1) (c2 � �)

�
�

c2
�
2m
p
2m+ 1(2m+ 1) (c2 � �)� 2m�(1 + �c2)

�
.
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Since

2mc2(1 + �c2)� 2m
p
2m+ 1(2m+ 1)(� � c2) > 0,

then the inequality (4.6) is equivalent to

c1 �
c2
�
2m
p
2m+ 1(2m+ 1)(c2 � �)� 2m�(1 + �c2)

�
2mc2(1 + �c2)� 2m

p
2m+ 1(2m+ 1)(c2 � �)

.

4.3 Main results of the system (1.12)

De�nition 4.3.1 (Initial Conditions of Type I) We say the 1D wave system (1.12) has ini-

tial conditions of type I if the initial conditions satisfy the compatibility condition and the union

of the ranges of

F0(x) �  (x)�c1'0(x)
c1+c2

on [0; 1] and

F1(x) � �+c1
��c2

 (x)+c2'0(x)
c1+c2

on [0; 1]

contains the interval

I �
�
� 1
c2

2m

r
1 + �c2
�c2

;
1

c2
2m

r
1 + �c2
�c2

�
;

i.e., I � � (see Remark 4.1.1 and De�nition 4.1.2).

Remark 4.3.2 In the following theorems, we can compute

c1 =
�
d+

p
d2 + 4c2

�
=2 and c2 =

�
�d+

p
d2 + 4c2

�
=2

for any given c and d. Conversely, we can compute d = c1 � c2 and c =
p
c1c2 for any given c1

and c2.

Theorem 4.3.3 Suppose that the parameters c, d, �, �, m are to be �xed in the 1D wave system

(1.12) and satisfy the inequality

2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc2(1 + �c2) > 0.
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If the 1D wave system has initial conditions of type I and if � satis�es either

c2 < � �
c2
�
2mc1(1 + �c2) +

2m
p
2m+ 1(2m+ 1)(c1 + c2)

�
2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc2(1 + �c2)

or
c2
�
2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc1(1 + �c2)

�
2mc2(1 + �c2) +

2m
p
2m+ 1(2m+ 1)(c1 + c2)

� � < c2,

then the 1D wave system (1.12) is chaotic.

Proof.The results follow easily from Theorem 4.2.10 and Proposition 4.2.11.

Example 4.3.4 Consider the one-dimensional wave system (1.5)-(1.7) as below:

8>>>>>><>>>>>>:

!tt � !xx = 0, 0 < x < 1, t > 0.

!x(0; t) + �!t(0; t) = 0, � > 0, � 6= 1, t > 0.

!x(1; t) = �!t(1; t)� �!3t (1; t), � 2 (0; 1], � > 0, t > 0.

!(x; 0) = '(x) 2 C1([0; 1]), !t(x; 0) =  (x) 2 C0([0; 1]).

Suppose the parameters �, � are to be �xed and the 1D wave system has initial conditions of type

I, where I =
h
�
q

1+�
� ;
q

1+�
�

i
. If � satis�es either

1 < � � 3
p
3 + 1 + �

3
p
3� 1� �

or
3
p
3� 1� �

3
p
3 + 1 + �

� � < 1,

then the wave system is chaotic. In [2], Chen et al. showed the same result as above.

Theorem 4.3.5 Suppose that the parameters c, d, �, �, m are to be �xed in the 1D wave system

(1.12) and satisfy the inequality

2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc2(1 + �c2) � 0.

If the 1D wave system has initial conditions of type I and if � satis�es either

� > c2 or
c2
�
2m
p
2m+ 1(2m+ 1)(c1 + c2)� 2mc1(1 + �c2)

�
2mc2(1 + �c2) +

2m
p
2m+ 1(2m+ 1)(c1 + c2)

� � < c2,

then the 1D wave system (1.12) is chaotic.

Proof.The results follow easily from Theorem 4.2.10 and Proposition 4.2.12.
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Example 4.3.6 Consider the 1D wave system as below:

8>>>>>><>>>>>>:

!tt + 2!tx � 3!xx = 0, 0 < x < 1, t > 0,

!t(0; t) + �!x(0; t) = 0, � > 0, � 6= 3, t > 0,

!x(1; t) = �!t(1; t)� �!3t (1; t), � 2
h
2
p
3�1
3 ; 1

i
, � > 0, t > 0,

!(x; 0) = '(x) 2 C1([0; 1]), !t(x; 0) =  (x) 2 C0([0; 1]).

Suppose that the parameters �, � are to be �xed and the 1D wave system has initial conditions of

type I, where I =
h
�1
3

q
1+3�
3� ; 13

q
1+3�
3�

i
. If � satis�es either

� > 3 or
6
p
3� 1� 3�

2
p
3 + 1 + 3�

� � < 3,

then the 1D wave system (1.12) is chaotic.

Theorem 4.3.7 Suppose that the parameters �, c2, �, �, m are to be �xed in the 1D wave system

(1.12) and satisfy the inequality

� > c2 and 2mc2(1 + �c2)� 2m
p
2m+ 1(2m+ 1)(� � c2) � 0.

If the 1D wave system has initial conditions of type I, then the 1D wave system (1.12) is chaotic

for any c1.

Proof.The results follow easily from Theorem 4.2.10 and Proposition 4.2.13.

Theorem 4.3.8 Suppose that the parameters �, c2, �, �, m are to be �xed in the 1D wave system

(1.12) and satisfy the inequality

� > c2 and 2mc2(1 + �c2)� 2m
p
2m+ 1(2m+ 1)(� � c2) < 0.

If the 1D wave system has initial conditions of type I and if

c2
�
2m
p
2m+ 1(2m+ 1) (� � c2)� 2m�(1 + �c2)

�
2mc2(1 + �c2)� 2m

p
2m+ 1(2m+ 1) (� � c2)

> 0,
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then for any c1 satis�es

0 < c1 � min
(
1

�
;
c2
�
2m
p
2m+ 1(2m+ 1) (� � c2)� 2m�(1 + �c2)

�
2mc2(1 + �c2)� 2m

p
2m+ 1(2m+ 1) (� � c2)

)

the 1D wave system (1.12) is chaotic.

Proof.The results follow easily from Theorem 4.2.10 and Proposition 4.2.14.

Theorem 4.3.9 Suppose that the parameters �, c2, �, �, m are to be �xed in the 1D wave system

(1.12) and satisfy the inequality

� < c2 and 2mc2(1 + �c2)� 2m
p
2m+ 1(2m+ 1)(c2 � �) > 0.

If the 1D wave system has initial conditions of type I and if for any c1 satis�es

c1 �
c2
�
2m
p
2m+ 1(2m+ 1)(c2 � �)� 2m�(1 + �c2)

�
2mc2(1 + �c2)� 2m

p
2m+ 1(2m+ 1)(c2 � �)

,

then the 1D wave system (1.12) is chaotic.

Proof.The results follow easily from Theorem 4.2.10 and Proposition 4.2.15.
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Chapter5

Threeexamples

In this chapter, we consider the 1D wave systems in [2, 5, 8, 12, 13].

5.1 One special case of the system (1.12)

In [2], Chen et al. consider the 1D wave system as below:

!tt � !xx = 0, 0 < x < 1, t > 0, (5.1)

with the boundary conditions

8>>><>>>:
!t(0; t) = ��!x(0; t), � > 0, � 6= 1, t > 0,

!x(1; t) = �!t(1; t)� �!3t (1; t), � 2 (0; 1], � > 0, t > 0,

(5.2)

and the initial conditions

!(x; 0) = '(x) 2 C1([0; 1]), !t(x; 0) =  (x) 2 C0([0; 1]). (5.3)

Actually, this is the case of d = 0, c2 = 1 in (1.12)1 and m = 1 in (1.12)3 in section 4.Thus, the

function f� is the unique real solution of the cubic equation

�

�
� � 1
� + 1

y + x

�3
+ (1� �)

�
� � 1
� + 1

y + x

�
� 2x = 0.
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And we have the following results by letting c1 = c2 = m = 1 in section 4.2.We show the local

maximum, minimum and piecewise monotonicity of the function f� as below.

Lemma 5.1.1 (Local Maximum, Minimum and Piecewise Monotonicity) The fuction f�

is odd and f� has local extrema at (vc;M) and (�vc;�M).Furthermore, the function f� is strictly

monotonic on (�1;�vc), (�vc; vc) and (vc;1), where

vc =
2� �
3

r
1 + �

3�
and M =

1 + �

3

� + 1

� � 1

r
1 + �

3�
.

We show the x-axis Intercepts, �xed points and intersections with the line y = �x of the func-

tion f� as below.

Lemma 5.1.2 (x-axis Intercepts) The function f� intersects the x-axis at the points�
�
r
1 + �

�
; 0

�
, (0; 0),

�r
1 + �

�
; 0

�
.

Lemma 5.1.3 (Intersections with the Line y = x) The function f� intersects the line y = x

at the points

�
�1 + �
2�

r
1 + ��

��
;�1 + �

2�

r
1 + ��

��

�
, (0; 0),

�
1 + �

2�

r
1 + ��

��
;
1 + �

2�

r
1 + ��

��

�
.

Lemma 5.1.4 (Intersections with the Line y = �x) The function f� intersects the line y =

�x at the points

�
�1 + �

2

r
�+ �

�
;
1 + �

2

r
�+ �

�

�
, (0; 0),

�
1 + �

2

r
�+ �

�
;�1 + �

2

r
�+ �

�

�
.

We show the function f� has bounded invariant interval or bounded invariant cantor-like sub-

set in following lemmas.

Lemma 5.1.5 (Bounded Invariant Interval) Let the parameters 0 < � � 1, � > 0, and � >

0, � 6= 1.

(i) If 0 < � < 1 and jM j =
���1+�3 �+1

��1

q
1+�
3�

��� � 1+�
2�

q
1+��
�� , then the iterates of every point in the

set

U �
�
�1;�1 + �

2�

r
1 + ��

��

�
[
�
1 + �

2�

r
1 + ��

��
;1
�
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escape to �1, while those of any point in RnU are attracted to the bounded invariant interval

�
�
����1 + �3 � + 1

� � 1

r
1 + �

3�

���� ; ����1 + �3 � + 1

� � 1

r
1 + �

3�

�����

of f�, i.e., [� jM j ; jM j] of f�.

(ii) If � > 1 and jM j � 1+�
2

q
�+�
� , then the iterates of every point in the set

U �
�
�1;�1 + �

2

r
�+ �

�

�
[
�
1 + �

2

r
�+ �

�
;1
�

escape to �1, while those of any point in RnU are attracted to the bounded invariant interval

�
�
����1 + �3 � + 1

� � 1

r
1 + �

3�

���� ; ����1 + �3 � + 1

� � 1

r
1 + �

3�

�����

of f�, i.e., [� jM j ; jM j] of f�.

Lemma 5.1.6 (Bounded Cantor-like Invariant Subset) The bounded invariant interval

�
�
����1 + �3 � + 1

� � 1

r
1 + �

3�

���� ; ����1 + �3 � + 1

� � 1

r
1 + �

3�

�����

no longer exists in the case (i) and (ii) of the above lemma if the condition

jM j � 1 + �

2�

r
1 + ��

��
or jM j � 1 + �

2

r
�+ �

�

is violated. Instead, we have a bounded Cantor-like invariant set.

Thus, we have the main theorem as below.

Theorem 5.1.7 (Chaotic Region of the 1D Wave System) Let parameter � enters the region

"
3
p
3� 1� �

3
p
3 + 1 + �

; 1

!
[
 
1;
3
p
3 + 1 + �

3
p
3� 1� �

#
, for any given � 2 (0; 1], � > 0.

Then the interval map f� is chaotic in the sense of Li-Yorke if the domain of f� contains the in-

terval
h
�
q

1+�
� ;
q

1+�
�

i
.
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De�nition 5.1.8 We denote

�H =
3
p
3� 1� �

3
p
3 + 1 + �

and �H =
3
p
3 + 1 + �

3
p
3� 1� �

.

We list the Period-Doubling Birfulcation Theorem in [2] as follows.

Lemma 5.1.9 (Correspondence of Period-2n Orbits to a Unimodal Map) Let 0 < � �

1, � > 0 and 0 < � < 1.Assume that �, � and � satisfy

jM j = 1 + �

3

1 + �

1� �

r
1 + �

3�
�
r
1 + �

�
.

Assume that x0 2 [� jM j ; jM j] is a periodic point of prime period-2n, for some n 2 f2; 3; 4; :::g.

Then jx0j is also a periodic point of �f� of prime period-2n such that all the points on the orbitn
�f j� (jx0j) j j = 0; 1; 2; :::; 2n � 1

o
are positive.

Conversely, let x0 > 0 be a periodic point of prime period-2n of �f� for some n 2 f2; 3; 4; :::g.

Then
n
�f j� (jx0j) j j = 0; 1; 2; :::; 2n � 1

o
is the full orbit of x0 of the map f� of prime period-2n.

The period-2n orbit, n � 2, of f� is atracting (resp., repelling) if and only if the corresponding period-

2n orbit of �f� is atracting (resp., repelling).

Theorem 5.1.10 (Period-Doubling Bifurcaion Theorem for f�, 0 < � < 1) Let 0 < � �

1, � > 0 be �xed, and let � : 0 < � < �
H
be a varying parameter.Let h(x; �) = �f�(x).Then

(i) x0(�) =
1+�
2

q
�+�
� is a curve of �xed points of h : h(x0(�); �) = x0(�).

(ii) The algebraic equation

1

2

�
1 + ��

3��

�1=2 �1 + (3� 2�)�
3�

�
=
1 + �

2

r
�+ �

�

has a unique solution �0, for any given � and �. (Actually, �0 is independent of �.)We have

@

@x
h(x; �)

����
(x0(�0);�0)

= �1.

(iii) For � = �0, we have

A �
�
@2h

@�@x
+
1

2

�
@h

@�

�
@2h

@x2

�����
(x0(�0);�0)

6= 0.
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(iv) For � = �0, we have

B �
"
1

6

@3h

@x3
+
1

4

�
@2h

@x2

�2#�����
(x0(�0);�0)

> 0.

Consequently, there is period-doubling bifurcation at (x0(�0); �0).The stability type of the bifurcated

period-2 orbit is attracting.

Theorem 5.1.11 (Period-Doubling Bifurcaion Theorem for f�, � > 1) Let 0 < � � 1,

� > 0 be �xed, and let � : �H < � <1 be a varying parameter.Let h(x; �) = f�(x).Then

(i) x0(�) =
1+�
2�

q
1+��
�� is a curve of �xed points of h : h(x0(�); �) = x0(�).

(ii) The algebraic equation

1

6

�
�+ �

3�

�1=2
[3 + � � 2�] = 1 + �

2�

r
1 + ��

��

has a unique solution �0, for any given � and �. (Actually, �0 is independent of �.)We have

@

@x
h(x; �)

����
(x0(�0);�0)

= �1.

(iii) For � = �0, we have

A �
�
@2h

@�@x
+
1

2

�
@h

@�

�
@2h

@x2

�����
(x0(�0);�0)

6= 0.

(iv) For � = �0, we have

B �
"
1

6

@3h

@x3
+
1

4

�
@2h

@x2

�2#�����
(x0(�0);�0)

> 0.

Consequently, there is period-doubling bifurcation at (x0(�0); �0).The stability type of the bifurcated

period-2 orbit is attracting.

De�nition 5.1.12 For any given � 2 (0; 1], denoete by �0 the unique real solution of the alge-

braic equation
1

2

�
1 + ��

3��

�1=2 �1 + (3� 2�)�
3�

�
=
1 + �

2

r
�+ �

�
,
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and denoete by �0 the unique real solution of the algebraic equation

1

6

�
�+ �

3�

�1=2
[3 + � � 2�] = 1 + �

2�

r
1 + ��

��
.

De�nition 5.1.13 For any given � 2 (0; 1], denoete by �B the unique real solution of the alge-

braic equation
2�

1� �

�
�

1 + ��

�1=2
=

3
p
3

(1 + �)3=2
,

and �B =
1
�B
.

We have

0 < �0 < �H < �B < 1 < �B < �H < �0 <1.

Lemma 5.1.14 For any given � 2 (0; 1], assume that either 0 < � � �B or �B � � < 1. Then

f� has invariant intervals
h
�
q

1+�
� ;
q

1+�
�

i
and [� jM j ; jM j]. Furthermore,

(i) if � 2 (0; �0) [ (�0;1), then f� has no periodic point of period larger than or equal to 2;

(ii) if � 2 (�0; �H)[(�H ; �0), then f� has at least a periodic point of period 2 and two �xed points;

(iii) f� has period-doubling cascades as � is increasing in (�H ; �0) or is decreasing in (�0; �H) and

there exists two critical parameters �1 and �1 with �0 > �1 and �1 = 1
�1

such that f� has a

homoclinic point when � 2 (�1; �H ] [ [�H ; �1).

For example, if � = 0:5 and � = 1, simulation results shows that (see [12])

�0 � 0:433, �0 = 1
�0
� 2:312, �H � 0:552, �H = 1

�H
� 1:812,

�B =
2
3 , �B =

1
�B
= 1:5, �1 � 0:5249, �1 = 1

�1
� 1:905.

Theorem 5.1.15 Consider the 1D wave system (5.1)-(5.3).

(i) if � 2 (0; �0) [ (�0;1) and initial conditions '(x),  (x) are piecewise monotone with �nitely

many extremal points on [0; 1] such that the ranges of ' and  are contained in
h
�
q

1+�
� ;
q

1+�
�

i
and [� jM j ; jM j], respectively.Then the total variation of f� on [� jM j ; jM j] remains bounded.

(ii) If � 2 (�0; �1][[�1; �0) and the ranges of ' and  contain
h
�
q

1+�
� ;
q

1+�
�

i
and [� jM j ; jM j],

respectively.Then the total variation of f� on
h
�
q

1+�
� ;
q

1+�
�

i
and [� jM j ; jM j] is unbounded.

(iii) If � 2 (�1; �H ][[�H ; �1) and the ranges of ' and  contain
h
�
q

1+�
� ;
q

1+�
�

i
and [� jM j ; jM j],

respectively.Then the total variation of f� on
h
�
q

1+�
� ;
q

1+�
�

i
and [� jM j ; jM j] is unbounded ex-

ponentially.
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5.2 Main results of the system (1.5)-(1.7)

In [8, 12, 13], Huang et al. consider the 1D wave system (1.5)-(1.7) as below:

!tt � !xx = 0, 0 < x < 1, t > 0,

with the boundary conditions

8>>><>>>:
!x(0; t) = ��!t(0; t), � > 0, � 6= 1, t > 0,

!x(1; t) = �!t(1; t)� �!3t (1; t), � 2 (0; 1], � > 0, t > 0,

and the initial conditions

!(x; 0) = '(x) 2 C1([0; 1]), !t(x; 0) =  (x) 2 C0([0; 1]).

Actually, this is the case of in (1.1) and � > 0 in (1.2) in section 3. Thus, the function f� is the

unique real solution of the cubic equation

�

�
1� �
1 + �

y + x

�3
+ (1� �)

�
1� �
1 + �

y + x

�
� 2x = 0.

And we have the following results by letting c1 = c2 = 1 in section 3.2.We show the local maxi-

mum, minimum and piecewise monotonicity of the function f� as below.

Lemma 5.2.1 (Local Maximum, Minimum and Piecewise Monotonicity) The fuction f�

is odd and f� has local extrema at (vc;M) and (�vc;�M).Furthermore, the function f� is strictly

monotonic on (�1;�vc), (�vc; vc) and (vc;1), where

vc =
2� �
3

r
1 + �

3�
and M =

(1 + �)(1 + �)

3(1� �)

r
1 + �

3�
.

We show the x-axis Intercepts, �xed points and intersections with the line y = �x of the func-

tion f� as below.

Lemma 5.2.2 (x-axis Intercepts) The function f� intersects the x-axis at the points�
�
r
1 + �

�
; 0

�
, (0; 0),

�r
1 + �

�
; 0

�
.
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Lemma 5.2.3 (Intersections with the Line y = x) The function f� intersects the line y = x

at the points

�
�1 + �

2

r
� + �

�
;�1 + �

2

r
� + �

�

�
, (0; 0),

�
1 + �

2

r
� + �

�
;
1 + �

2

r
� + �

�

�
.

Lemma 5.2.4 (Intersections with the Line y = �x) The function f� intersects the line y =

�x at the points

�
�1 + �
2�

r
1 + ��

��
;
1 + �

2�

r
1 + ��

��

�
, (0; 0),

�
1 + �

2�

r
1 + ��

��
;�1 + �

2�

r
1 + ��

��

�
.

We show the function f� has bounded invariant interval or bounded invariant cantor-like sub-

set in following lemmas.

Lemma 5.2.5 (Bounded Invariant Interval) Let the parameters 0 < � � 1, � > 0, and � >

0, � 6= 1.

(i) If � > 1 and jM j =
��� (1+�)(1+�)3(1��)

q
1+�
3�

��� � 1+�
2

q
�+�
� , then the iterates of every point in the set

U �
�
�1;�1 + �

2

r
� + �

�

�
[
�
1 + �

2

r
� + �

�
;1
�

escape to �1, while those of any point in RnU are attracted to the bounded invariant interval

�
�
����(1 + �)(1 + �)3(1� �)

r
1 + �

3�

���� ; ����(1 + �)(1 + �)3(1� �)

r
1 + �

3�

�����

of f�, i.e., [� jM j ; jM j] of f�.

(ii) If 0 < � < 1 and jM j � 1+�
2�

q
1+��
�� , then the iterates of every point in the set

U �
�
�1;�1 + �

2�

r
1 + ��

��

�
[
�
1 + �

2�

r
1 + ��

��
;1
�

escape to �1, while those of any point in RnU are attracted to the bounded invariant interval

�
�
����(1 + �)(1 + �)3(1� �)

r
1 + �

3�

���� ; ����(1 + �)(1 + �)3(1� �)

r
1 + �

3�

�����

of f�, i.e., [� jM j ; jM j] of f�.
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Lemma 5.2.6 (Bounded Cantor-like Invariant Subset) The bounded invariant interval

�
�
����(1 + �)(1 + �)3(1� �)

r
1 + �

3�

���� ; ����(1 + �)(1 + �)3(1� �)

r
1 + �

3�

�����

no longer exists in the case (i) and (ii) of the above lemma if the condition

jM j � 1 + �

2

r
� + �

�
or jM j � 1 + �

2�

r
1 + ��

��

is violated. Instead, we have a bounded Cantor-like invariant set.

Thus, we have the main theorem as below.

Theorem 5.2.7 (Chaotic Region of the 1D Wave System) Let parameter � enters the region

"
3
p
3� 1� �

3
p
3 + 1 + �

; 1

!
[
 
1;
3
p
3 + 1 + �

3
p
3� 1� �

#
, for any given � 2 (0; 1], � > 0.

Then the interval map f� is chaotic in the sense of Li-Yorke if the domain of f� contains the in-

terval
h
�
q

1+�
� ;
q

1+�
�

i
.

De�nition 5.2.8 We denote

�H =
3
p
3� 1� �

3
p
3 + 1 + �

and �H =
3
p
3 + 1 + �

3
p
3� 1� �

.

The Period-Doubling Birfulcation Theorem is similar to section 1 of this chapter and we have

the results as follows.

Lemma 5.2.9 (Correspondence of Period-2n Orbits to a Unimodal Map) Let 0 < � �

1, � > 0 and � > 1.Assume that �, � and � satisfy

jM j = (1 + �)(� + 1)

3(� � 1)

r
1 + �

3�
�
r
1 + �

�
.

Assume that x0 2 [� jM j ; jM j] is a periodic point of prime period-2n, for some n 2 f2; 3; 4; :::g.

Then jx0j is also a periodic point of �f� of prime period-2n such that all the points on the orbitn
�f j� (jx0j) j j = 0; 1; 2; :::; 2n � 1

o
are positive.

Conversely, let x0 > 0 be a periodic point of prime period-2n of �f� for some n 2 f2; 3; 4; :::g.
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Then
n
�f j� (jx0j) j j = 0; 1; 2; :::; 2n � 1

o
is the full orbit of x0 of the map f� of prime period-2n.

The period-2n orbit, n � 2, of f� is atracting (resp., repelling) if and only if the corresponding period-

2n orbit of �f� is atracting (resp., repelling).

Theorem 5.2.10 (Period-Doubling Bifurcaion Theorem for f�, � > 1) Let 0 < � � 1,

� > 0 be �xed, and let � : �H < � <1 be a varying parameter.Let h(x; �) = �f�(x).Then

(i) x0(�) =
1+�
2�

q
1+��
�� is a curve of �xed points of h : h(x0(�); �) = x0(�).

(ii) The algebraic equation

1

6

�
�+ �

3�

�1=2
[3 + � � 2�] = 1 + �

2�

r
1 + ��

��

has a unique solution �0, for any given � and �. (Actually, �0 is independent of �.)We have

@

@x
h(x; �)

����
(x0(�0);�0)

= �1.

(iii) For � = �0, we have

A �
�
@2h

@�@x
+
1

2

�
@h

@�

�
@2h

@x2

�����
(x0(�0);�0)

6= 0.

(iv) For � = �0, we have

B �
"
1

6

@3h

@x3
+
1

4

�
@2h

@x2

�2#�����
(x0(�0);�0)

> 0.

Consequently, there is period-doubling bifurcation at (x0(�0); �0).The stability type of the bifurcated

period-2 orbit is attracting.

Theorem 5.2.11 (Period-Doubling Bifurcaion Theorem for f�, 0 < � < 1) Let 0 < � �

1, � > 0 be �xed, and let � : 0 < � < �
H
be a varying parameter.Let h(x; �) = f�(x).Then

(i) x0(�) =
1+�
2

q
�+�
� is a curve of �xed points of h : h(x0(�); �) = x0(�).

(ii) The algebraic equation

1

2

�
1 + ��

3��

�1=2 �1 + (3� 2�)�
3�

�
=
1 + �

2

r
�+ �

�
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has a unique solution �0, for any given � and �. (Actually, �0 is independent of �.)We have

@

@x
h(x; �)

����
(x0(�0);�0)

= �1.

(iii) For � = �0, we have

A �
�
@2h

@�@x
+
1

2

�
@h

@�

�
@2h

@x2

�����
(x0(�0);�0)

6= 0.

(iv) For � = �0, we have

B �
"
1

6

@3h

@x3
+
1

4

�
@2h

@x2

�2#�����
(x0(�0);�0)

> 0.

Consequently, there is period-doubling bifurcation at (x0(�0); �0).The stability type of the bifurcated

period-2 orbit is attracting.

Remark 5.2.12 The 1D wave system (5.1)-(5.3) and the 1D wave system (1.5)-(1.7) are very sim-

ilar.The only di¤erence is the boundary condition at the left endpoint x = 0 in system (1.5)-(1.7)

is !x = ��!t but the boundary condition at the left endpoint in system (5.1)-(5.3) is !t = ��!x.

In fact, Huang et al. consider the 1D wave system (5.1)-(5.3) in [8, 12, 13]. However, the results

are the same if we consider the 1D wave system (1.5)-(1.7).

5.3 Main results of the system (1.8)-(1.11)

In [5], Chen et al. consider the 1D wave system (1.8)-(1.11) as below:

!tt + v!tx � !xx = 0, v > 0, 0 < x < 1, t > 0,

with the boundary conditions

!x(0; t) = 0, t > 0,

and

!x(1; t) = �!t(1; t)� �!3t (1; t), � 2
�
0; (v +

p
v2 + 4)=2

i
, � > 0, t > 0,
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and the initial conditions

!(x; 0) = '(x) 2 C1([0; 1]), !t(x; 0) =  (x) 2 C0([0; 1]).

Actually, this is the case of d = �v, c2 = 1 in (1.1) and � = 0 in (1.2) in section 3. Thus, the

function f� is the unique real solution of the cubic equation

� (c1y + c2x)
3 + (c2 � �) (c1y + c2x)� (1 + c2=c1)x = 0,

where c1 =
�
�v +

p
v2 + 4

�
=2 and c2 =

�
v +

p
v2 + 4

�
=2. And we have the following results

by letting c1 =
�
�v +

p
v2 + 4

�
=2, c2 =

�
v +

p
v2 + 4

�
=2 and � = 0 in section 3.2.We show

the local maximum, minimum and piecewise monotonicity of the function f� as below.

Lemma 5.3.1 (Local Maximum, Minimum and Piecewise Monotonicity) The fuction f�

is

odd and f� has local extrema at (vc;M) and (�vc;�M).Furthermore, the function f� is strictly de-

creasing on (�1;�vc) and (vc;1), but strictly increasing on (�vc; vc), where

vc =
1� 2�c2 + 3c22
3c2
�
1 + c22

� r
1 + �c2
3�c2

and M =
2(1 + �c2)

3(c1 + c2)

r
1 + �c2
3�c2

.

We show the x-axis Intercepts, �xed points and intersections with the line y = �x of the func-

tion f� as below.

Lemma 5.3.2 (x-axis Intercepts) The function f� intersects the x-axis at the points�
� 1
c2

r
1 + �c2
�c2

; 0

�
, (0; 0),

�
1

c2

r
1 + �c2
�c2

; 0

�
.

Lemma 5.3.3 (Intersections with the Line y = x) The function f� intersects the line y = x

at the points

�
� 1

c1 + c2

r
�

�
;

1

c1 + c2

r
�

�

�
, (0; 0),

�
1

c1 + c2

r
�

�
;� 1

c1 + c2

r
�

�

�
.

Lemma 5.3.4 (Intersections with the Line y = �x) The function f� intersects the line y =
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�x at the points

 
� 1

c2 � c1

s
2 + � (c2 � c1)
�(c2 � c1)

;
1

c2 � c1

s
2 + � (c2 � c1)
�(c2 � c1)

!
, (0; 0)

and  
1

c2 � c1

s
2 + � (c2 � c1)
�(c2 � c1)

;� 1

c2 � c1

s
2 + � (c2 � c1)
�(c2 � c1)

!
.

Remark 5.3.5 By the way we point out that the result in [5] should be the function f� intersects

the line y = �x at the points

 
� 1

c2 � c1

s
2 + � (c2 � c1)
�(c2 � c1)

;
1

c2 � c1

s
2 + � (c2 � c1)
�(c2 � c1)

!
, (0; 0)

and  
1

c2 � c1

s
2 + � (c2 � c1)
�(c2 � c1)

;� 1

c2 � c1

s
2 + � (c2 � c1)
�(c2 � c1)

!
.

We show the function f� has bounded invariant interval or bounded invariant cantor-like sub-

set in following lemmas.

Lemma 5.3.6 (Bounded Invariant Interval) Let the parameters 0 < � � c2, � > 0. If

jM j =
����2(1 + �c2)3(c1 + c2)

r
1 + �c2
3�c2

���� � 1

c2 � c1

s
2 + � (c2 � c1)
�(c2 � c1)

,

then the iterates of every point in the set

U �
 
�1;� 1

c2 � c1

s
2 + � (c2 � c1)
�(c2 � c1)

!
[
 

1

c2 � c1

s
2 + � (c2 � c1)
�(c2 � c1)

;1
!

escape to �1, while those of any point in RnU are attracted to the bounded invariant interval

�
�
����2(1 + �c2)3(c1 + c2)

r
1 + �c2
3�c2

���� ; ����2(1 + �c2)3(c1 + c2)

r
1 + �c2
3�c2

�����

of f�, i.e., [� jM j ; jM j] of f�.

Lemma 5.3.7 (Bounded Cantor-like Invariant Subset) The bounded invariant interval

�
�
����2(1 + �c2)3(c1 + c2)

r
1 + �c2
3�c2

���� ; ����2(1 + �c2)3(c1 + c2)

r
1 + �c2
3�c2

�����
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no longer exists in the above lemma if the condition

jM j � 1

c2 � c1

s
2 + � (c2 � c1)
�(c2 � c1)

is violated. Instead, we have a bounded Cantor-like invariant set.

Thus, we have the main theorem as below.

Theorem 5.3.8 (Chaotic Region of the 1D Wave System) Let parameters c1, c2 satisfy the

inequality
2(1 + �c2)

3(c1 + c2)
�
p
3=c2, for any given � 2 (0; c2], � > 0.

Then the interval map f� is chaotic in the sense of Li-Yorke if the domain of f� contains the in-

terval
h
� 1
c2

q
1+�c2
�c2

; 1c2

q
1+�c2
�c2

i
.

We list the Period-Doubling Birfulcation Theorem in [5] as follows.

Theorem 5.3.9 (Period-Doubling Bifurcaion Theorem for f�) Let 0 < � �
p
2, � > 0 be

�xed, and de�ne v1;� by

v1;� = ", where " is any small positive number,

Let v 2 [v1;�;1) be a varying parameter.Let h(x; v) = fv(x).Then

(i) � satis�es 0 < � � c2(v) for all v 2 [v1;�;1).

(ii) x0(v) = [1= (c1(v) + c2(v))]
p
�=� is a curve of �xed points of h : h(x0(v); v) = x0(v).

(iii) For v0 = 1=�, we have v0 > v1;�, c2(v0) � �, and

@

@x
h(x; �)

����
(x0(v0);v0)

= �1.

(iv) For v0 = 1=�, we have

A �
�
@2h

@v@x
+
1

2

�
@h

@v

�
@2h

@x2

�����
(x0(v0);v0)

6= 0.
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(v) For v0 = 1=�, we have

B �
"
1

6

@3h

@x3
+
1

4

�
@2h

@x2

�2#�����
(x0(v0);v0)

> 0.

Consequently, there is period-doubling bifurcation at (x0(v0); v0).The stability type of the bifurcated

period-2 orbit is attracting.

In [9], Huang proved there exist three subregions S01 , S
1
1 and S2 of S such that the growth of

the total variation of the interval map remains bounded, is unbounded, is unbounded exponentially

when the parameters (v; �) belong to S01 , S
1
1 , and S2, respectively.And since Huang proved the re-

sults by using the result in [5] which contains an error, so we do not list the results in [9] here.
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Chapter6

Twomethodstodetectchaos

In this chapter, we show that when the chaotic vibrations corresponding to the 1D wave sys-

tems (1.1)-(1.4) and (1.12) occur by using the main theorems in [14] and [15]. The 1D wave sys-

tem (1.1)-(1.4) is considered as below:

8>>>>>><>>>>>>:

!tt � d!tx � c2!xx = 0, d 2 R, c > 0, 0 < x < 1, t > 0,

!x(0; t) = ��!t(0; t), � � 0, � 6= 1
c2
, t > 0,

!x(1; t) = �!t(1; t)� �!3t (1; t), � 2
�
0; 1c1

i
, � > 0, t > 0,

!(x; 0) = '(x) 2 C1([0; 1]), !t(x; 0) =  (x) 2 C0([0; 1]),

where

c1 =
�
d+

p
d2 + 4c2

�
=2 and c2 =

�
�d+

p
d2 + 4c2

�
=2.

And the 1D wave system (1.12) is considered as below:

8>>>>>><>>>>>>:

!tt � d!tx � c2!xx = 0, d 2 R, c > 0, 0 < x < 1, t > 0,

!t(0; t) + �!x(0; t) = 0, � > 0, � 6= c2, t > 0,

!x(1; t) = �!t(1; t)� �!2m+1t (1; t), � 2
�
0; 1c1

i
, �; t > 0, m 2 N,

!(x; 0) = '(x) 2 C1([0; 1]), !t(x; 0) =  (x) 2 C0([0; 1]).

First, we discretize (3.4) as follows.Given one � 2 (0;�], we denote z(� + n�) = zn in (3.4).
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Then we have

�
�
c1
1��c2
1+�c1

zn+1 + c2zn

�3
+
�
1
c1
� �

��
c1
1��c2
1+�c1

zn+1 + c2zn

�

�
�
1 + c2

c1

�
zn = 0, where n 2 N [ f0g, � = 1 + c1

c2
.

(6.1)

And we discretize (4.4) as follows.Given one � 2 (0;�], we denote z(�+n�) = zn in (4.4).Then

we have
�
�
c1
��c2
�+c1

zn+1 + c2zn

�2m+1
+
�
1
c1
� �

��
c1
��c2
�+c1

zn+1 + c2zn

�

�
�
1 + c2

c1

�
zn = 0, where n 2 N [ f0g, � = 1 + c1

c2
.

(6.2)

6.1 Chaos in the 1Dwave systems (1.1)-(1.4) and (1.12)

De�nition 6.1.1 Let `1 be the space of bounded real sequences endowed with the norm



y

 = sup fjynj : n 2 Zg for y = (yn), yn 2 R,
i.e., with the topology of uniform convergence and let � : `1 ! `1 be the shift map, i.e., �(y) =

y0 with y0n = yn+1, n 2 Z.

De�nition 6.1.2 In the following theorems, we will consider mainly subsets of `1 endowed with

the product (or Tichonov) topology on RZ, i.e., with the topology of pointwise convergence. In such

a case we will supply the notation of the appropriate sets with subscript prod, for example:`1;prod,

Bprod, etc.

Let us consider a di¤erence equation of the form

��(yn; yn+1; � � � ; yn+m) = 0 (6.3)

where � is a parameter from a metric space E and the function �� is de�ned on a closed subset

Qm+1

� Rm+1, where Q = [s1; s2] n V for some real numbers s1 < s2 and some open (possibly empty)

set V � [s1; s2].We assume that for each � 2 E the function �� : Qm+1 ! R is C1 and is

continuous in � on E and also that the partial derivatives @i��(x1; � � � ; xm+1), i = 1; :::;m + 1,
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(x1; � � � ; xm+1) 2 Qm+1are continuous in � on E, where @i�� is the partial derivative of �� with

respect to the ith variable.

Given a � 2 E, let Y� be the set of solutions of the di¤erence equation (6.3), i.e., the set of

sequences y = (yn) = (� � � ; y�1; y0; y1; � � � ) such that for any n 2 Z

1. yn 2 Q; and

2. (m+ 1) consecutive components yn; yn+1; � � � ; yn+m of y satisfy (6.3)

It is easy to see that Y� is a closed subset of the space `1.Note that Y�;prod is also a closed sub-

set of [s1; s2]Zprod, and since the latter space is compact (by the Tichonov theorem), Y�;prod is com-

pact.Note that the shift map �, being considered as a map from `1 to `1, is an isometric linear

operator, while � : `1;prod ! `1;prod is a homeomorphism. It is evident that for any � 2 E, the

set Y�;prod is �-invariant and the restriction �jY�;prod is a homeomorphism on a compact space.Thus

we can de�ne the topological entropy for solutions of the di¤erence equation (6.3) as htop(�jY�;prod).

Lemma 6.1.3 [14, Main theorem] Let

��(yn; yn+1; � � � ; yn+m) = 0 (6.4)

be a di¤erence equation with parameter � 2 [�0; �1] and let the function �� : Qm+1 ! R, where

Q = [s1; s2]nV for some numbers s1 < s2 and some open set V � [s1; s2], be such that it is C1 for

each � and is continuous in � and so are the partial derivatives @i��, i = 1; � � � ; m + 1. Suppose

that for � = �0, the function ��0 depends on only one variable:��0(x1; x2; � � � ; xm+1) = '(xN ),

where N is an integer with 1 � N � m + 1 and ' : Q ! R is a C1-function with k simple zeros

in the interior of Q.

Then there exists one � > 0 such that for any � 2 [�0; �0 + �) there is a closed �-invariant subset

�� of Y�, the set of solutions for (6.4) in the product topology, such that �j�� is topologically con-

jugate to �j�k, the full shift on k symbols; in particular, htop(�jY�) � log k.

First we consider (6.1) as below:

	�(zn; zn+1) = �
�
c1
1��c2
1+�c1

zn+1 + c2zn

�3
+
�
1
c1
� �

��
c1
1��c2
1+�c1

zn+1

+c2zn

�
�
�
1 + c2

c1

�
zn = 0, where n 2 N [ f0g.
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Let the parameters c1, c2, �, � be �xed while � = j1� �c2j ! 0, then we have the function

'(zn) = zn[�c
3
2z
2
n � (�c2 + 1)] = 0.

Since ' is a C1 function with three simple zeros in the interior of [s1; s2] (s1 < � 1
c2

q
�c2+1
�c2

and

s2 >
1
c2

q
�c2+1
�c2

), we have the results as follows.

Proposition 6.1.4 Let the parameters c1, c2, �, �, m be �xed in the di¤erence equation (6.1) and

consider the function �� : [s1; s2] � [s1; s2] ! R where s1 < � 1
c2

q
�c2+1
�c2

and s2 > 1
c2

q
�c2+1
�c2

.

Then there exists one � > 0 such that for any � 2
�
1
c2
� �; 1c2

�
[
�
1
c2
; 1c2 + �

�
, there is a closed �-

invariant subset �� of Y�, the set of solutions for (6.1) in the product topology, such that �j�� is

topologically conjugate to �j�3, the full shift on 3 symbols; in particular, htop(�jY�) � log 3.

And then we consider (6.2) as below:

��(zn; zn+1) = �
�
c1
��c2
�+c1

zn+1 + c2zn

�2m+1
+
�
1
c1
� �

��
c1
��c2
�+c1

zn+1

+c2zn

�
�
�
1 + c2

c1

�
zn = 0, where n 2 N [ f0g.

Let the parameters c1, c2, �, �, m be �xed while � = j� � c2j ! 0, then we have the function

'(zn) = zn[�c
2m+1
2 z2mn � (�c2 + 1)] = 0.

Since ' is a C1 function with three simple zeros in the interior of [s1; s2] (s1 < � 1
c2

2m

q
�c2+1
�c2

and

s2 >
1
c2

2m

q
�c2+1
�c2

), we have the results as follows.

Proposition 6.1.5 Let the parameters c1, c2, �, �, m be �xed in the di¤erence equation (6.2) and

consider the function �� : [s1; s2]� [s1; s2]! R where s1 < � 1
c2

2m

q
�c2+1
�c2

and s2 > 1
c2

2m

q
�c2+1
�c2

.

Then there exists one � > 0 such that for any � 2 (c2 � �; c2) [ (c2; c2 + �), there is a closed �-

invariant subset �� of Y�, the set of solutions for (6.2) in the product topology, such that �j�� is

topologically conjugate to �j�3, the full shift on 3 symbols; in particular, htop(�jY�) � log 3.

Lemma 6.1.6 [15, Main theorem] Let

��(yn; yn+1; � � � ; yn+m) = 0 (6.5)
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be a di¤erence equation with parameter � 2 [�0; �1] and let the function �� : Qm+1 ! R, where

Q = [s1; s2] n V for some numbers s1 < s2 and V is a �nite union of open intervals in [s1; s2]

be such that it is C1 for each � and continuous in � and so are the partial derivatives @i��, i =

1; :::;m+ 1.Assume that ��0 is a function in two variables:

��0(x1; x2; � � � ; xm+1) = �(xM+N; xN )

where M , N are integers with 1 � N � m, 1 � M + N � m. Assume, in addition, that for the

equation �(y; x) = 0 there is a branch y = '(x), where ' : Q ! R is a C2 function with positive

topological entropy.

Then for any " > 0 there exists one � > 0 such that for any � 2 [�0; �0 + �) there is a closed

�-invariant subset �� of Y� (Y� is the set of solutions of the di¤erence equation (6.5)), the set of

solutions for (6.5) in the product topology, such that htop(�j��) > 1
M (htop(')� ").

Let the parameters �, c2, �, � be �xed while c1 ! 0+ in the di¤erence equation (6.1) as be-

low.
�
�
c1
1��c2
1+�c1

zn+1 + c2zn

�3
+ 1��c2

1+�c1
zn+1 � �c1 1��c21+�c1

zn+1

��c2zn � zn = 0, where n 2 N [ f0g, � = 1 + c1
c2
.

We have the equation

zn+1 = '(zn) =
1 + �c2
1� �c2

zn

�
1� �c22

�c2 + 1
z2n

�
. (6.6)

Substituting xn =
�

�c22
�c2+1

� 1
2
zn in (6.6), we have

xn+1 = '(xn) =
1 + �c2
1� �c2

xn(1� x2n).

Hence we consider the function

h(x) = �x(1� x2) on [0; 1] .

Since h0
�q

1
3

�
= 0 and h00

�q
1
3

�
< 0, we can see that the point

q
1
3 is nondegenerate and h

�q
1
3

�
is the local maximum.Moreover, h

�q
1
3

�
� 1 if � � 3

p
3
2 .Thus, we have the results as follows.
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Lemma 6.1.7 Consider the C2-function h(x) = �x(1� x). If � � 3
p
3
2 , then htop(h) is positive.

Proof.The function h is strictly increasing on
h
0;
q

1
3

i
and is continuous on [0; 1] with h(0) =

h(1) = 0 and h
�q

1
3

�
� 1.By IVT, there exists one unique point x1 2

�
0;
q

1
3

i
such that h(x1) =

1. Since h : [0; x1] ! [0; 1] is one to one, onto and strictly increasing, there exists one point x2 2

(0; x1) such that h(x2) = x1.Denote p = x2, we have

0 = h3(p) < p < h(p) < h2(p).

Thus, h has points of all periods which implies chaos.Hence, htop(h) is positive.

Therefore, we can conclude that if the parameters �, �, c2 satisfy the inequality

1 + �c2
1� �c2

� 3
p
3

2
,

then ' has positive topological entropy (s1 < 0 and s2 > 1
c2

q
�c2+1
�c2

). Thus, we have the results

as follows.

Proposition 6.1.8 Suppose the parameters c2, �, �, � are to be �xed and satisfy the inequality

1 + �c2
1� �c2

� 3
p
3

2

in the di¤erence equation (6.1) and consider the function �� : [s1; s2] � [s1; s2] ! R, where s1 <

0 and s2 > 1
c2

q
�c2+1
�c2

. If c1 is su¢ ciently small, then there is a closed �-invariant subset �� of

Y� (Y� is the set of solutions of the di¤erence equation (6.1)), the set of solutions for (6.1) in the

product topology, such that htop(�j��) is positive.

Let the parameters �, c2, �, �, m be �xed while c1 ! 0+ in the di¤erence equation (6.2) as

below.
�
�
c1
��c2
�+c1

zn+1 + c2zn

�2m+1
+ ��c2

�+c1
zn+1 � �c1 ��c2�+c1

zn+1

��c2zn � zn = 0, where n 2 N [ f0g, � = 1 + c1
c2
.

Let the parameters �, c2, �, �, m be �xed while c1 ! 0+ in the di¤erence equation (6.2).We

have the equation

zn+1 = '(zn) =
�(�c2 + 1)

� � c2
zn

�
1� �c2m+12

�c2 + 1
z2mn

�
. (6.7)
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Substituting xn =
�
�c2m+12
�c2+1

� 1
2m
zn in (6.7), we have

xn+1 = '(xn) =
�(�c2 + 1)

� � c2
xn(1� x2mn ).

Hence we consider the function

h(x) = �x(1� xr) on [0; 1] , r � 2.

Since h0
�

r

q
1
r+1

�
= 0 and h00

�
r

q
1
r+1

�
< 0, we can see that the point r

q
1
r+1 is nondegenerate

and h
�

r

q
1
r+1

�
is the local maximum.Moreover, h

�
r

q
1
r+1

�
� 1 if � � (r+1) r

p
r+1

r .Thus, we have

the results as follows.

Lemma 6.1.9 Consider the C2-function h(x) = �x(1�xr), where r � 2. If � � (r+1) r
p
r+1

r , then

htop(h) is positive.

Proof.The function h is strictly increasing on
h
0; r

q
1
r+1

i
and is continuous on [0; 1] with h(0) =

h(1) = 0 and h
�

r

q
1
r+1

�
� 1. By IVT, there exists one unique point x1 2

�
0; r

q
1
r+1

i
such that

h(x1) = 1. Since h : [0; x1] ! [0; 1] is one to one, onto and strictly increasing, there exists one

point x2 2 (0; x1) such that h(x2) = x1.Denote p = x2, we have

0 = h3(p) < p < h(p) < h2(p).

Thus, h has points of all periods which implies chaos.Hence, htop(h) is positive.

Therefore, we can conclude that for any given m 2 N if the parameters �, �, c2 satisfy the

inequality
�(�c2 + 1)

� � c2
>
(2m+ 1) 2m

p
2m+ 1

2m
,

then ' has positive topological entropy (s1 < 0 and s2 > 1
c2

2m

q
�c2+1
�c2

).Thus, we have the results

as follows.

Proposition 6.1.10 Suppose the parameters c2, �, �, �, m are to be �xed and satisfy the inequal-

ity
�(�c2 + 1)

� � c2
>
(2m+ 1) 2m

p
2m+ 1

2m
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in the di¤erence equation (6.2) and consider the function �� : [s1; s2] � [s1; s2] ! R, where s1 <

0 and s2 > 1
c2

2m

q
�c2+1
�c2

. If c1 is su¢ ciently small, then there is a closed �-invariant subset �� of

Y� (Y� is the set of solutions of the di¤erence equation (6.2)), the set of solutions for (6.2) in the

product topology, such that htop(�j��) is positive.

It is easy to see that �j�� is topologically conjugate to f�j�� as

��
�0! ��

� # # f�
�� !

�0
��

,

where �0 is a projection and �0(��) = ��.Hence, htop(f�j��) is positive if htop(�j��) is positive.

Thus, we have the results as follows.

Theorem 6.1.11 Let the parameters c1, c2, �, � be �xed in the 1D wave system (1.1)-(1.4) and

the initial condition I contains the interval

�
� 1
c2

r
1 + �c2
�c2

;
1

c2

r
1 + �c2
�c2

�
(see De�nition 3.1.2).

Then there exists one � > 0 such that if � 2
�
1
c2
� �; 1c2

�
[
�
1
c2
; 1c2 + �

�
, the 1D wave system is

chaotic.

Proof.The results follow easily from Lemma 6.1.3 and Proposition 6.1.4.

Example 6.1.12 Consider the 1D wave system (1.5)-(1.7) as below:

8>>>>>><>>>>>>:

!tt � !xx = 0, 0 < x < 1, t > 0,

!x(0; t) + �!t(0; t) = 0, � > 0, � 6= 1, t > 0,

!x(1; t) = �!t(1; t)� �!3t (1; t), � 2 (0; 1], � > 0, t > 0,

!(x; 0) = '(x) 2 C1([0; 1]), !t(x; 0) =  (x) 2 C0([0; 1]).

Let the parameters �, � be �xed and suppose that the initial condition I contains the interval

�
�
r
1 + �

�
;

r
1 + �

�

�
.
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Then there exists one � > 0 such that the 1D wave system (1.5)-(1.7) is chaotic if

� 2 (1� �; 1) [ (1; 1 + �).

Theorem 6.1.13 Let the parameters c1, c2, �, �, m be �xed in the 1D wave system (1.12) and the

initial condition I contains the interval

�
� 1
c2

2m

r
1 + �c2
�c2

;
1

c2
2m

r
1 + �c2
�c2

�
(see De�nition 4.1.2).

Then there exists one � > 0 such that if � 2 (c2 � �; c2) [ (c2; c2 + �) , the 1D wave system is

chaotic.

Proof.The results follow easily from Lemma 6.1.3 and Proposition 6.1.5.

Theorem 6.1.14 Let the parameters c2, �, �, � be �xed and satisfy the inequality

1 + �c2
1� �c2

� 3
p
3=2

in the 1D wave system (1.1)-(1.4) and the initial condition I contains the interval
h
0; 1c2

q
�c2+1
�c2

i
.

Then the 1D wave system is chaotic if c1 is su¢ ciently small.

Proof.The results follow easily from Lemma 6.1.6, Lemma6.1.7 and Proposition 6.1.8.

Theorem 6.1.15 Let the parameters c2, �, �, �, m be �xed and satisfy the inequality

�(�c2 + 1)

� � c2
>
(2m+ 1) 2m

p
2m+ 1

2m

in the 1D wave system (1.12) and the initial condition I contains the interval
h
0; 1c2

2m

q
�c2+1
�c2

i
.

Then the 1D wave system is chaotic if c1 is su¢ ciently small.

Proof.The results follow easily from Lemma 6.1.6, Lemma6.1.9 and Proposition 6.1.10.
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6.2 Further discussions

Furthermore, we consider the 1D wave system as below:

8>>>>>><>>>>>>:

!tt � d!tx � c2!xx = 0, d 2 R, c > 0, 0 < x < 1, t > 0,

!t(0; t) + �!x(0; t) = 0, � > 0, � 6= c2, t > 0,

!x(1; t) = h�(!t(1; t)), � = (a1; � � � ; ak), t > 0,

!(x; 0) = '(x) 2 C1([0; 1]), !t(x; 0) =  (x) 2 C0([0; 1]).

(6.8)

Now we want to �nd the condition to ensure the existence and uniqueness of the solution of the

1D wave system (6.8).

Lemma 6.2.1 Consider the 1D wave system (6.8). Let the function h�(x) be a real-valued func-

tion de�ned on R where � = (a1; � � � ; ak). Suppose that there exists one set A � Rk such that for

each � 2 A the function h�(x) is C1, onto and the derivative of h� satis�es that h
0
�(x) 6= 1

c1
for

all x 2 R, then there exists one C1-function ĥ� such that ĥ�(z(t)) = z(t+�) for all t > 0, where

� = (�; c1; c2; a1; � � � ; ak) 2 G� (0;1)� (0;1)�A(G = (0;1)nfc2g), � = 1 + c1=c2.

Proof.Let

H�(u; v) = h�

�
c1
� � c2
� + c1

u+ c2v

�
� � � c2
� + c1

u+ c2v = 0,

where

� = (�; c1; c2; a1; � � � ; ak) 2 G� (0;1)� (0;1)�A (G = (0;1)nfc2g).

Since h
0
�(x) 6= 1

c1
and h� is onto for each �, the function f�(x) � h�(x) � x

c1
is one-to-one and

onto.Hence, for each v0 2 R there exists one unique x0 such that f�(x0) = c1+c2
c1

v0.And for this

unique x0 there exists one unique u0 such that c1
��c2
�+c1

u0 + c2v0 = x0.Therefore, we denote

S = f(v; u) : H�(u; v) = 0g.

Since
@

@u
H�(u; v) = c1

� � c2
� + c1

h
0
�

�
c1
� � c2
� + c1

u+ c2v

�
� � � c2
� + c1

6= 0,

there exists one C1-function ĥ� and the graph of ĥ� is S by the implicit function theorem.
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First we discretelize the di¤erence equation

� � c2
� + c1

z(� +�)� z(�) = h�

�
c1
� � c2
� + c1

z(� +�) + c2z(�)

�
(6.9)

as follows.

Given one � 2 (0;�], we denote z(� + n�) = zn (n = 0; 1; � � � ) in (6.9).Then we have

h�

�
c1
� � c2
� + c1

zn+1 + c2zn

�
� � � c2
� + c1

zn+1 + c2zn = 0, where n 2 N [ f0g.

De�nition 6.2.2 We denote the di¤erence equation

	�(zn; zn+1) = h�

�
c1
� � c2
� + c1

zn+1 + c2zn

�
� � � c2
� + c1

zn+1 + c2zn = 0, (6.10)

where � = (�; c1; c2; a1; � � � ; ak).

Theorem 6.2.3 Consider the 1D wave system (6.8). Let the function h� : R ! R be C1, onto

for each � and be continuous in � and so is the derivative h
0
�(x), where � = (a1; � � � ; ak). Suppose

that for each � the derivative h
0
�(x) 6= 1

c1
for all x 2 R and there exist two distinct values a�, b� 2

R such that h�(a�) + a� = h�(b�) + b� = 0, then for each (c1; c2; a1; � � � ; ak) there exists one cor-

responding � > 0 such that for any � 2 (c2��; c2)[(c2; c2+�) there is a compact ĥ�-invariant sub-

set �� such that htop(ĥ�j��) is positive.Furthermore, the 1D wave system (6.8) is chaotic if �� �

I.

Proof.By Lemma 6.2.1, there exists a C1-function ĥ� such that ĥ�(z(t)) = z(t+�) for all t > 0

where � = (�; c1; c2; a1; � � � ; ak).

Let


 = f(�; c1; c2; a1; � � � ; ak) : � = c2g.

For each �0 2 
, we have

	
�0
(zn; zn+1) = '(zn) = h�(c2zn) + c2zn.
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The function ' is C1 and has at least two simple zeros in the interior of [a�� "; b�+ "] for every

" > 0, since there exist two distinct values a�, b� 2 R such that

h�(a�) + a� = h�(b�) + b� = 0.

By Lemma 6.1.3, there exists one ��0 > 0 such that for any � 2 (c2 � ��0 ; c2) [ (c2; c2 + ��0)

there is a closed �-invariant subset �� of Y�, the set of solutions for (6.10) in the product topol-

ogy, such that �j�� is topologically conjugate to �j�k, the full shift on k symbols (k � 2); in par-

ticular, htop(�jY�)

� log k.

We can see �j�� is topologically conjugate to ĥ�j�� as

��
�0! ��

� # # ĥ�
�� !

�0
��

,

where �0 is a projection and �0(��) = ��.Hence htop(ĥ�j��) is positive, since htop(�j��) is pos-

itive.

Example 6.2.4 Consider the 1D wave system (6.8) which the function

h�(x) = a1x�
mX
i=2

aix
2i�1, a1 2 (0;

1

c1
), ai > 0 for i � 2, m 2 N.

The function h� : R ! R is C1, onto for each � and is continuous in � and so is the derivative

h
0
�(x), where � = (a1; � � � ; am;m).And for each �

h
0
�(x) = a1 � 3a2x2 � � � � � (2m� 1)amx2m�2 6=

1

c1
for all x 2 R.

Since

h�(x) + x � x[(1 + a1)� (a2 + � � �+ am)x] for x 2 (0; 1],

we have

h�(p�) + p� � 0 where p� = minf1;
1 + a1

a2 + � � �+ am
g.
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It is easy to see there exists one point q� which is large enough such that h�(q�) + q� < 0. There-

fore, there exist two points 0 and x� 2 [p�; q�) such that

h�(0) + 0 = h�(x�) + x� = 0.

By Theorem 6.2.3, for each (c1; c2; a1; � � � ; am;m) there exists one corresponding � > 0 such that

for any � 2 (c2��; c2)[(c2; c2+�) there is a compact ĥ�-invariant subset �� such that htop(ĥ�j��)

is positive.Furthermore, the 1D wave system is chaotic if �� � I.
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