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摘 要       

    本論文之主要目的在於發展一個簡易且精確的數值方法，來處理含有不可溶

界面活性劑的界面流問題。長久以來，界面流問題的數值模擬已經成為了解各種

相關流體之現象的熱門管道。在這個論文中，我們先介紹一個有關界面流問題(包

含 moving contact line problems)的數學模型，並且提出一種 immersed 

boundary method來處理二維流體中帶有不可溶界面活性劑之界面的數值模擬。

這個數學模型可以寫成一般常見的 immersed boundary method 的公式，包含

Eulerian座標系下的流體方程式以及建立在 Lagrangian座標系中有關界面的變

數，而這兩個座標系之間各個變數的轉換，則是藉由 Dirac delta function 來

連結。界面上的作用力主要依靠表面張力的影響，而界面上的表面張力則隨著界

面活性劑的分佈而有所不同。對於 moving contact line problems，我們必需

在 contact line附近額外提供一個 unbalanced Young force來趨動界面。利用

Lagrangian markers 來追蹤界面，我們可以導出一個簡單的界面活性劑方程。

整個數值方法主要可分為幾個部分，首先計算界面所提供給流體的力量，再利用

投影法算出流體的速度並內插求得界面移動的速度；算出新的界面位置之後，在

界面的切線方向引入人工的速度場以達到界面上網格的均勻分佈；此間，界面活

性劑方程也會受到這個人工切線速度的影響，所以活性劑方程需要做一些調整，

而活性劑在界面上的濃度則經由這個調整過後的方程式來決定。在研究界面活性

劑影響界面流問的過程中，最重要的一個關鍵在於保持界面活性劑的不可溶特

性，而本論文主要的貢獻在於提出一個新的對稱的數值離散方法，來處理界面活

性劑方程式，基於這個方法，活性劑在數值模擬過程中可以完全的被保持住。在

數值結果方面，包括剪切流中水泡的形變及附著在固態物質上液滴等。本論文提

出的數值方法可以有效的處理有表面活性劑的 moving contact line problems。 
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Abstract

Numerical simulations of the interfacial flows have been a popular way to
study a variety of fluid-world phenomena for a long time. In this disser-
tation, a mathematical model for interfacial flow problems (including the
moving contact line problem) is demonstrated and an immersed boundary
method is proposed for the simulation of two-dimensional fluid interfaces
with insoluble surfactant. The governing equations are written in a usual
immersed boundary formulation where a mixture of Eulerian flow and La-
grangian interfacial variables are used and the linkage between these two set
of variables is provided by the Dirac delta function. The immersed boundary
force comes from the surface tension which is affected by the distribution
of surfactant along the interface. In particular, the unbalanced Young force
should be applied in the moving contact line problems to derive the interface
movement near moving contact lines. By tracking the interface in a La-
grangian manner, a simplified surfactant transport equation is derived. The
numerical method involves solving the Navier-Stokes equations on a stag-
gered grid by a semi-implicit pressure increment projection method where
the immersed interfacial forces are calculated at the beginning of each time
step. Once the velocity field and interfacial configurations are obtained, an
equi-distributed technique of the Lagrangian markers is applied to force the
markers to reach a uniform distribution in physical space. Meantime, the
surfactant transport equation should be modified due to the effect of the
tangential velocity arising from the equi-distributed process. Then the sur-
factant concentration is updated using the modified transport equation.

The essential purpose of this dissertation is to study the effects of in-
soluble surfactants in the interfacial flow problems. Since it is important
to maintain the insolubility of the surfactant concentration, the main con-
tribution of this work is to propose a new symmetric discretization for the
surfactant concentration equation such that the total mass of surfactant is
conserved numerically. In numerical experiments, a bubble rises in a gravita-
tional field, a vesicle deforms in a shear flow, and a hydrophilic or hydrophobic
drop adheres to a solid substrate, are typical examples to observe the effects
of the surfactant. To our best knowledge, the numerical method we propose
here provides a wonderful chance for the simulations of moving contact line
problems with insoluble surfactant.

ii
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Chapter 1

Introduction

The real world is abundant in phenomena of free surfaces, interfaces and mov-
ing boundaries (generally called interfaces), that interact with a surrounding
substances, like gas, fluid, or solid. These interfaces separate one fluid from
another, for instance air and water form the case of bubbles or free surface
flows, and behave as boundaries between two materials of different physical
properties. In some respects, the interface may be a rigid wall that moves
with some specified time dependent motion, or an elastic membrane that
deforms and stretches in response to the fluid motion. In addition, motion
of interface may involve not only the dynamics of the liquid and surrounding
air but also their interaction with adjacent solid surfaces. Many industrial
processes, ranging from spin coating of microchips to de-icing of aircraft sur-
faces, rely on the ability to control these interactions.

Fluid flows with moving interfaces play important roles in many scientific,
biomedical, and engineering applications. The interaction of muscle tissue
with blood in the heart and arteries, coating of solid substrates with liquids,
film boiling and crystal growth, micro-organisms utilize for locomotion the
anisotropic drag properties of their long flexible flagella, are part of interest-
ing applications. If an incompressible fluid flow contains an interface and the
interface is between fluid 1 and fluid 2, then the flow often refers to be a free
surface flow. The position of the interface is determined by the capillary force
(a force acts in the direction perpendicular to the tangent plane of an inter-
face point), which results from the balance between the normal stress and the
surface tension on the interface. Generally speaking, these problems are usu-
ally described by the time-dependent incompressible Navier-Stokes equations
together with interface jump conditions (can be viewed as a balance of forces
on the interface). These types of problems are generally called free-boundary
problems, multi-phase flow problems or interfacial flow problems.
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1.1 Surface tension

In the microscopic sense of a matter, molecules attract one another all the
time. When the attraction is stronger than thermal agitation, molecules
switch from a gas phase to a more dense phase, so called a liquid. A molecule
in the midst of a liquid interacts with all its neighbors and finds itself in a
”happy” state. By contrast, a molecule that floats at the surface loses half
of its cohesive interactions, see Fig 1.1, and becomes ”unhappy”. That isL i q u i dG a s
Figure 1.1: An unhappy molecule at the surface: it is missing half its attrac-
tive interaction.

the fundamental reason that liquids adjust their shape in order to expose the
smallest possible surface area.

In physics, a liquid molecule is in an unfavorable energy state when it
moves to the surface. If the cohesion energy per molecule is U inside the
liquid, a molecule sitting at the surface goes short of energy roughly U/2.
The surface tension is a direct measure of this energy shortfall per unit surface
area. If r is the molecule’s size and r2 is its exposed area (like one face of a
cube), the surface tension is of order σ ∼= U/(2r2). For most oils, for which
the interactions are of the van der Waals type, we have U ∼= kT , which
is the thermal energy. At a temperature of 25◦C, kT is equal to 1/40 eV ,
which gives σ = 20 mJ/m2. Because water involves hydrogen bonds, its
surface tension is larger (σ ≈ 72 mJ/m2). For mercury, which is a strongly
cohesive liquid metal, U ≈ 1 eV and σ ≈ 500 mJ/m2. Note that σ can
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equivalently be expressed in units of mN/m. Similarly, the surface energy
between two non-miscible liquids a and b is characterized by an interfacial
tension σab. Table 1.1 [47] lists the surface tensions of some ordinary liquids
(including those usually used in the experiments of related applications), as

Table 1.1: Surface tension of a few common liquids (at 20◦C unless otherwise
noted) and interfacial tension of the water/oil system.

Liquid Helium (4K) Ethanol Acetone Cyclohexane Glycerol
σ(mN

m
) 0.1 23 24 25 63

Liquid Water Water (100◦C) Molten glass Mercury Water/oil
σ(mN

m
) 73 58 ∼ 300 485 ∼ 50

well as the interface tension between water and oil. Although its origin can
be explained at the molecular level, the surface tension σ is a macroscopic( a ) ( b )

Figure 1.2: (a) Two bugs stay on the water-air surface. (b) A cross-sectional
view of one leg of a bug.

parameter defined on a macroscopic scale. In Fig. 1.2(a), two waterstriders
can mat on the water mainly due to the effect of surface tension. One can
think the surface tension as the force acting parallel to the water-air surface
and perpendicular to the line (the long leg of the bug), see Fig. 1.2(b), fs

and fw reach a balance so that the leg is static on the water-air interface.

So far, one knows that supplying energy is necessary to create surfaces.
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Suppose one wants to distort a liquid to increase its surface area by an amount
dA. The work required is proportional to the number of molecules that must
be brought up to the surface, i.e., to dA; and one can write:

δW = σ dA

where σ is the surface (or interfacial) tension. Dimensionally, [σ] = E/L2.
The surface tension σ is thus expressed in units of mJ/m2. In words, σ is
the energy that must be supplied to increase the surface area by one unit.

1.2 Surfactant

Surfactants are the most versatile products of the chemical industry, ap-
pearing in various products such as the motor oils in the automobiles, the
pharmaceutics for patients, the detergents for cleaning our laundry and our
homes, and the flotation agents used in benefit of ores [9]. In a liquid-liquid
system, surfactant allows small droplets to be formed and used as an emul-
sion. Surfactant also plays an important role in water purification and other
applications where micro-sized bubbles are generated by lowering the surface
tension of the liquid-gas interface. In microsystems with the presence of in-
terfaces, it is extremely important to consider the effect of surfactant since
in such cases the capillary effect dominates the inertia of the fluids [51]. The
last decades have seen the extension of surfactant applications to such high-
technology areas as electronic printing, magnetic recording, biotechnology,
micro-electronics, and viral research.

An example of surfactant for babies is the surfactant production in the
unborn baby’s lung. In pregnancy, the components of surfactant start to
appear at approximately week twentieth, however it is not until much later
in pregnancy that the surfactant becomes mature enough to work correctly.
In the lungs, surfactant is a complex substance containing phospholipid and
four different types of surfactant proteins: hydrophilic (water-attracting) pro-
teins SP-A and SP-D and the hydrophobic (water-repelling) proteins SP-B
and SP-C. These latter proteins, SP-B and SP-C (also present in Curosurf),
are essential for the uniform spreading of the surfactant throughout the lung.
The main role of surfactant is to prevent collapse of the alveoli thereby re-
ducing the effort needed to expand the lungs during inspiration (breathing
in) and allow gas exchange to take place. Surfactant therefore helps breath-
ing to be relatively effortless. During expiration (breathing out) the lungs
have a tendency to collapse, if they are allowed to do so then a much greater
inspiratory effort is required to open them with the next breath. Surfactant
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Figure 1.3: The diagram of the alveoli.

prevents this by reducing surface tension throughout the lung; surface ten-
sion is the force present within the alveoli of the lungs that courses them
to collapse and stick together during expiration. Surfactant forms a very
thin film which covers the surface of the alveolar cells; the components of
surfactant work together to reduce surface tension and therefore reduce the
tendency of the alveoli to collapse during expiration. The lungs are less stiff
(improved pulmonary compliance) and therefore reduced effort is needed to
expand the lungs and making breathing easier. The natural production of
surfactant increases at approximately week 30 to 32 and babies born after the
end of the 32nd week usually have sufficient surfactant to breath normally.

1.3 Reduction of surface tension by surfac-

tants

Surfactant are surface active agents that adhere to the fluid interface and
affect the interfacial tension. Reduction of surface or interfacial tension is one
of the most commonly measured properties of surfactants in solution. Since
it depends directly on the replacement of molecules of solvent at the interface
by molecules of surfactant, and therefore on the surface (or interfacial) excess
concentration of the surfactant, as shown by the Gibbs equation

dσ = −
∑

i

σidµi,
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it is also one of the most fundamental of interfacial phenomena.

As we know, the molecules at the surface of a liquid have potential ener-
gies greater than those of similar molecules in the interior of the liquid. (This
is because attractive interactions of molecules at the surface with those in
the interior of the liquid are greater than those with the widely separated
molecules in the gas phase.) Because the potential energies of molecules at
the surface are greater than those in the interior of the phase, an amount of
work equal to this difference in potential energy must be expended to bring
a molecule from the interior to the surface. The surface free energy per unit
area, or surface tension, is a measure of this work; it is the minimum amount
of work required to bring sufficient molecules to the surface from the interior
to expand it by unit area. Although more correctly thought of as a surface
free energy per unit area, surface tension is often conceptualized as a force
per unit length at a right angle to the force required to pull apart the surface
molecules in order to permit expansion of the surface by movement into it of
molecules from the phase underneath it.

At the interface between two condensed, phases, the dissimilar molecules

Figure 1.4: Simplified diagram of the interface between two condensed phases
a and b.

in the adjacent layers facing each other across the interface (Fig. 1.4) also
have potential energies different from those in their respective phases. Each
molecule at the interface has a potential energy greater than that of a similar
molecule in the interior of its bulk phase by an amount equal to its interaction
energy with the molecules in the interior of its bulk phase minus its interac-
tion energy with the molecules in the bulk phase across the interface. For
most purposes, however, only interactions with adjacent molecules need be
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taken into account. If we consider an interface between two pure liquid phases
a and b (Fig. 1.4), then the increased potential energy of the a molecules at
the interface over those in the interior of that phase is Aaa and Aab, where
Aaa symbolizes the molecular interaction energy between a molecules at the
interface and similar molecules in the interior of the bulk phase and Aab sym-
bolizes the molecular interaction energy between a molecules at the interface
and b molecules across the interface. Similarly, the increased potential of b
molecules at the interface over those in the interior is Abb−Aab. The increased
potential energy of all the molecules at the interface over those in the interior
of the bulk phases, the interfacial free energy, is then (Aaa−Aab)+(Abb−Aab)
or Aaa + Abb − 2Aab, and this is the minimum work required to create the
interface. The interfacial free energy per unit area of interface, the interfacial
tension σI is then given by the expression

σI = σa + σb − 2σab, (1.1)

where σa and σb are the surface free energies per unit area (the surface ten-
sions) of the pure liquids a and b, respectively, and σab is the a−b interaction
energy per unit area across the interface.

The value of the interaction energy per unit area across the interface σab

is large when molecules a and b are similar in nature to each other (e.g., water
and short-chain alcohols). When σab is large, we can see from equation (1.1)
that the interfacial tension σI will be small; when σab is small, σI is large.
The value of the interfacial tension is therefore a measure of the dissimilarity
of the two types of molecules facing each other across the interface.

In the case where one of the phases is a gas (the interface is a surface),
the molecules in that phase are so far apart relative to those in the condensed
phase that tensions produced by molecular interaction in that phase can be
disregarded. Thus if phase a is a gas, σa and σab can be disregarded and
σI ≈ σb, the surface tension of the condensed phase b.

When the two phases are immiscible liquids, σa and σb, their respective
surface tensions, are experimentally determinable, pennitting the evaluation
of σab, at least in some cases. If one of the phases is solid, on the other hand,
experimental evaluation of σab is difficult, if not impossible. However here,
too, the greater the similarity between a and b in structure or in the nature
of their inkrmolecular forces, the greater the interaction between them (i.e.,
the greater the value of σab) and the smaller the resulting interfacial tension
between the two phases. When 2σab becomes equal to σa +σb, the interfacial
region disappears and the two phases spontaneously merge to form a single
one.
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If we now add to a system of two immiscible phases (e.g., heptane and

Figure 1.5: Diagrammatic representation of heptane-water interface with
adsorbed surfactant.

water), a surface-active agent that is adsorbed at the interface between them,
it will orient itself there, mainly with the hydrophilic group toward the wa-
ter and the hydrophobic group toward the heptane (Fig. 1.5). When the
surfactant molecules replace water and/or heptane molecules of the original
interface, the interaction across the interface is now between the hydrophilic
group of the surfactant and water molecules on one side of the interface
and between the hydrophobic group of the surfactant and heptane on the
other side of the interface. Since these interactions are now much stronger
than the original interaction between the highly dissimilar heptane and water
molecules, the tension across the interface is significantly reduced by the pres-
ence there of the surfactant. Since air consists of molecules that are mainly
non-polar, surface tension reduction by surfactants at the air-aqueous solu-
tion interface is similar in many respects to interfacial tension reduction at
the heptaneVaqueous solution interface.

We can see from this simple model why a necessary but not sufficient
condition for surface or interfacial tension reduction is the presence in the
surfactant molecule of both lyophobic and lyophilic portions. The lyophobic
portion has two functions: (1) to produce spontaneous adsorption of the sur-
factant molecule at the interface and (2) to increase interaction across the
interface between the adsorbed surfactant molecules there and the molecules
in the adjacent phase. The function of the lyophilic group is to provide
strong interaction between the molecules of surfactant at the interface and
the molecules of solvent. If any of these functions is not performed, then
the marked reduction of interfacial tension characteristic of surfactants will
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probably not occur. Thus, we would not expect ionic surfactants containing
hydrocarbon chains to reduce the surface tensions of hydrocarbon solvents,
in spite of the distortion of the solvent structure by the ionic groups in the
surfactant molecules. Adsorption of such molecules at the airhydrocarbon
interface with the ionic groups oriented toward the predominantly non-polar
air molecules would result in decreased interaction across the interface, com-
pared to that with their hydrophobic groups oriented toward the air.

For significant surface activity, a proper balance between lyophilic and
lyophobic character in the surfactant is essential. Since the lyophilic (or
lyophobic) character of a particular structural group in the molecule varies
with the chemical nature of the solvent and such conditions of the system as
temperature and the concentrations of electrolyte and/or organic additives,
the lyophilic-lyophobic balance of a particular surfactant varies with the sys-
tem and the conditions of use. In general, good surface or interfacial tension
reduction is shown only by those surfactants that have an appreciable, but
limited, solubility in the system under the conditions of use. Thus surfac-
tants which may show good surface tension reduction in aqueous systems may
show no significant surface tension reduction in slightly polar solvents such
as ethanol and polypropylene glycol in which they may have high solubility.

1.4 Surfactant in moving contact line prob-

lems

In our daily lives, there are full of the motion of liquid under the influence
of surface tension. For example, drink a cup of coffee, take a shower, wash
clothes, design a thermometer, wax cars, or cook with nonstick cook ware,
etc.. These phenomena always involve a key, the interface of the two fluid
phases intersects the solid phase to introduce the motion of a contact line,
where a triple juncture of the solid/gas, solid/liquid, and liquid/gas inter-
faces. A typical paradox arises from no-slip boundary conditions near the
contact line, implies that an infinite force is required to move a contact line
[8, 47]. In recent decades, many scientists put lots of effort on curing this
paradox. Several models have been proposed to study the motion of moving
contact lines. Most of them involve adding an additional effect on a micro-
scopic length-scale, for instance, weakening the no-slip boundary condition
via a slip condition effective at small scales [11, 12, 43] or incorporating the
effect of long-range Van der Waals forces between the liquid and solid.

When a fluid-fluid interface is in contact with a solid substrate, surfactant
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can change the wetting properties by altering the value of the contact angle.
This simple fact has found may interesting applications in our daily life and
industrial processes. For example, we add detergents (surfactant) in washing
machine to clean our clothes more effectively. The detergent helps to remove
drops of grease from clothes by increasing the contact angle (measured from
inside the drop). An idealization of this problem can be found in a photo
shown in Fig. 1.6 [51] or a figure in [14] where it is demonstrated that a

Figure 1.6: The effect of detergence in a water-tetradecane system. On
increasing the concentration of surfactant (SPAN 80), the system goes from
a partial wetting regime to a total wetting regime of tetradecane on the
substrate. The water droplet thus tends to detach itself from the substrate.

drop on clothes can become less wetting (from the drop point of view) by in-
creasing surfactant concentration. By adding surfactant, a drop which sticks
to clothes becomes less sticky and the water currents can wash away the
drop readily. The physical situation corresponding to this idealized system
includes a solid-drop (grease)-water system and the surfactant. Mathemati-
cally, as discussed more detail in the main text of this dissertation, this is a
moving contact line problem since the solid-drop (grease)-water triple inter-
section forms a contact line. One of the main issues we will try to address
in this dissertation is how surfactant, by changing the contact angle, affects
the movement of the contact line.

1.5 Immersed boundary method

The immersed boundary (IB) method proposed by Peskin [35], has been
applied successfully to blood-valve interaction and other biological problems.
The IB formulation employs a mixture of Eulerian and Lagrangian variables,
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where the immersed boundary is represented by a set of discrete Lagrangian
markers embedding in the Eulerian fluid domain. Those markers can be
treated as force generators to the fluid while being carried by the fluid motion.
The interaction between the Lagrangian force generators (markers) and the
fluid motion, described by variables defined on the fixed Eulerian grid, is
linked by a properly chosen discretized delta function. Most IB applications
in the literature belong to the fluid-structure problems, and they can be found
in a recent review of Peskin [36]. However, there is comparatively less work
on the application of the IB method to viscous, incompressible multi-phase
flow problems. Perhaps the most successful one is the front-tracking method
proposed by Tryggvason et al. [53, 52] which uses an approach similar to the
immersed boundary method.

1.6 Numerical experiments

In the case of interfacial flows with surfactant, Ceniceros [5] used a hybrid
level set and front tracking approach to study the effects of surfactant on
the formation of capillary waves. Lee and Pozrikids [30] used Peskin’s im-
mersed boundary idea to study the effects of surfactant on the deformation
of drops and bubbles in Navier-Stokes flows. The surfactant convection-
diffusion equation in these papers is based on the formulation proposed by
Wong et al. [54], and the conservation of total mass of surfactant on the
interface has not been rigorously investigated numerically.

James and Lowengrub [24] have proposed a surfactant-conserving volume-
of-fluid method for interfacial flows with insoluble surfactant. Instead of
solving the surfactant concentration equation based on Stone’s derivation
[49] directly, the authors relate the surfactant concentration to the ratio of
the surfactant mass and surface area so that they are tracked independently.
The method has been applied to study the axis-symmetric drop deformation
in extensional flows. Recently, Xu et al. [56] develop a level-set method for
interfacial Stokes flows with surfactant. Their method couples surfactant
transport, solved in an Eulerian domain [57] with Stokes flow field, solved
by the immersed interface method [28] with jump conditions across the in-
terface. However, the method does not conserve the mass automatically
and numerical scaling is used to enforce the conservation of surfactant on
the interface numerically. Recently, Muradoglu and Tryggvason [33] have
proposed a front-tracking method for computation of interfacial flows with
soluble surfactant. They consider the axis-symmetric motion and deforma-
tion of a viscous drop moving in a circular tube.
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Numerical simulation of two-phase flows with moving contact lines have
also been developed in the literature. Finite element method [39], level set
method [48], front tracking method [20], volume-of-fluid method [45, 50, 58],
phase field method [23, 42], sharp interface Cartesian grid method [26] and
molecular dynamics [40, 41, 43] have been tools to address these problems.
However, to the best of our knowledge there is no numerical result taking
the contaminant into account in the fluid, even only on the interface. In
hydrodynamic cleaning, a shear flow is exploited for the removal of remnant
droplets of a contaminant or impurity. The removal of droplets from the
narrow passages of a porous medium determines the efficiency of tertiary oil
recovery and plays an important role in the micro-mechanics of groundwater
flow.
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Chapter 2

Mathematical model for
interfacial flow

The essential purpose of this chapter is to derive the mathematical model
for physical problems we are interested in. First, we derive the governing
equations of fluid flows which result from invoking the physical laws of con-
servation of mass, and momentum. Basically, we use the continuum method,
which ignores individual molecules and assumes that the fluid consists of
continuous matter, to describe equations which govern the motion of fluid.
Since there is an interface immersed in the fluid, we use two reference frames
simultaneously, the Eulerian framework is employed for fluid variables while
variables defined on the interface are based on the Lagrangian framework. A
general theorem, called the Reynolds’ transport theorem [7], is used to re-
late derivatives of Lagrangian and Eulerian frameworks to yield the so-called
continuity equation and the Navier-Stokes equations. Further, the boundary
conditions across a interface for a two-phase flow will be determined, and
it can be converted into a singular force by the use of a continuum surface
forces formulation [4, 35].

Next, the conservation of mass of surfactant concentration comes from
its insolubility on the interface, and the corresponding governing equation
will be represented in a simple form [31]. For moving contact line problems,
the interface movement involves not only the fluid-fluid surface tension but
surface tensions between solid substrate and liquids. A driver called the un-
balanced Young force for the contact line will be introduced to mimic the
tendency of the Young condition. To close the system, appropriate boundary
conditions, respectively, for fluid field [15] (especially Navier-slip boundary
condition for the moving contact line problems) and surfactant concentration,
will be introduced at the end of this chapter.

13



2.1 Governing equations of bulk fluids

We first introduce the concept of a control volume V which is arbitrary in
shape, and each conservation principle is applied to the integral over a control
volume. The result of applying each conservation principle will be an integro-
differential equation of the type

∫
V

LψdV = 0 where L is some differential
operator and ψ is some property of fluid, like density or velocity. Since V is
arbitrarily chosen, the only way this equality can be satisfied is to set Lψ = 0,
which is a differential equation of the corresponding conservation law. The
following is a principal theorem, so-called Reynolds’ transport theorem, to
derive differential equations of conservation laws.

Theorem. Suppose that ψ is any property of the fluid dependent on space
and time, i.e. ψ = ψ(x, t), and V is the control volume, then the rate of
change of the integral of ψ is

D

Dt

∫

V (t)

ψ(x, t)dV =

∫

V (t)

(
∂ψ

∂t
+∇ · (ψu)

)
dV, (2.1)

where D/Dt is the lagrangian derivative and u is the velocity of the control
volume.

proof: Assume that the control volume is a function of t, and V (t) is the
control volume at time t, then V (t + δt) is the control volume after flowing
a small time δt away from t. By definition of the differentiation,

D

Dt

∫

V (t)

ψ(x, t)dV = lim
δt→0

1

δt

(∫

V (t+δt)

ψ(x, t + δt)dV −
∫

V (t)

ψ(x, t)dV

)

= lim
δt→0

1

δt

(∫

V (t+δt)

ψ(x, t + δt)− ψ(x, t)dV +

∫

V (t+δt)−V (t)

ψ(x, t)dV

)
,

the first term of the right-hand side is actually the integral of the partial
derivative of ψ(x, t) with respect to t, and the second term can be converted
to a surface integral by the use of the approximation dV = u ·nδtdS, there-
fore,

lim
δt→0

1

δt

∫

V (t+δt)−V (t)

ψ(x, t)dV = lim
δt→0

1

δt

∫

S(t)

ψ(x, t)u · nδtdS.

Moreover, the divergence theorem transfer the surface integral back to a
volume integral

∫

S(t)

ψ(x, t)u · ndS =

∫

V (t)

∇ · (ψ(x, t)u) dV

and then the proof is completed.
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2.1.1 Conservation of mass

The conservation of mass is a fundamental concept of physics. Its main
spirit states that mass can neither be created nor destroyed except the spe-
cial theory of relativity of Albert Einstein, the mass of a body changes as
the energy possessed by the body changes. Such nuclear reactions usually
occur in subatomic phenomena, and matter may be created, for instance,
by the materialization of a photon (quantum of electromagnetic energy) into
an electron-positron pair; or it may be destroyed, by the annihilation of this
pair of elementary particles to produce a pair of photons.

To comprehend the conservation of mass in fluid mechanics, we consider
a specific mass of fluid whose volume V is arbitrarily chosen. This piece
of fluid is followed as it flows, meantime, its shape or size will be changed.
Suppose there are no nuclear reactions in the process, the principle of mass
conservation means that no matter this given piece of fluid changes its size or
shape, its mass will remain the same. The mathematical equivalence of the
statement of mass conservation is to take the lagrangian derivative D/Dt to
the mass of fluid contained in V , which is

∫
V

ρdV , equal to zero, where ρ is
the density per unit volume. That is, the equation which expresses conser-
vation of mass is

D

Dt

∫

V

ρdV = 0. (2.2)

By use of Eq. (2.1), we transfer a derivative in lagrangian manner of an
integral to an integral of derivatives in eulerian manner

D

Dt

∫

V

ρdV =

∫

V

(
∂ρ

∂t
+∇ · (ρu)

)
dV = 0,

and since V is arbitrary, we obtain a local differential form of conservation
of mass as

∂ρ

∂t
+∇ · (ρu) = 0. (2.3)

Alternatively, using the Einstein notation convention, (2.3) can be rewritten
as

∂ρ

∂t
+

∂

∂xk

(ρuk) = 0. (2.4)

Note that this partial differential equation forces the velocity field to be at
least continuous. So, Eq. (2.3) is usually called the continuity equation.
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2.1.2 Conservation of momentum

The conservation of momentum is another important concept of physics along
with the conservation of mass. Momentum is defined to be the product of
the mass of an object and its corresponding velocity. The conservation of
momentum states that within some problem domain, the amount of momen-
tum remains constant. In other words, momentum is neither created nor
destroyed, but only changed through the action of forces. In fact, the princi-
ple of conservation of momentum is an application of Newton’s second law of
motion to an object. In fluid mechanics, Newton’s second law of motion can
be easily derived by an element of the fluid. That is, if we consider a given
mass of fluid in a lagrangian framework, the rate of change of the momentum
of the fluid mass is equal to the net external force acting on the mass. Some
people prefer to think of forces only and restate this law in the form that the
inertia force is equal to the net external force acting on the element.

Basically, the external forces acting on a mass of the fluid can be simply
categorized into two classes. One is the class of body forces, such as gravita-
tional or electromagnetic forces. The other is the class of surface forces, such
as pressure forces or viscous stresses. Let f be a vector which represents the
resultant of the body forces per unit mass, then the net external body force
acting on a mass of volume V is

∫
V

ρfdV . On the other hand, if a surface
vector T represents the resultant surface force per unit area, then the net
external surface force acting on the surface S containing V is

∫
S
TdS. Also,

we assume that the mass per unit volume is ρ and its momentum is ρu,
so that the momentum contained in the volume V is

∫
V

ρudV . According
to statements of Newton’s second law of motion, the rate of the change of
momentum (or inertia force) is equal to the sum of the resultant forces. If
the mass of the arbitrarily chosen volume V is observed in the lagrangian
framework, the rate of change of momentum of the mass contained within V
will be (D/Dt)

∫
V

ρudV . Therefore, we can obtain a mathematical equation
which arises from imposing the physical law of conservation of momentum
in the form

D

Dt

∫

V

ρudV =

∫

S

TdS +

∫

V

ρfdV, (2.5)

In general, we can use a stress tensor [7] to represent surface forces
acting on the fluid, and there are nine components of stress at any given
point, one normal component and two shear components on each coordinate
plane. These nine components of stress can be easily illustrated by the use of
a cubical element in Fig. 2.1, then the stress components will act at a point
as the length of the cube tends to zero. In Fig. 2.1 the cartesian coordinates
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Figure 2.1: The diagram of nine components of stress.

(x, y, z) have been denoted by (x1, x2, x3). This allows us to describe
the components of stress as a double-subscript notation. In this notation, a
particular component of the stress may be represented by the quantity σij,
in which the first subscript indicates that this stress component acts on the
plane xi = C, where C is a constant, and the second subscript indicates that
it acts in the xj-direction. The fact that the stress maybe represented by the
quantity σij, in which i and j may be 1, 2, or 3, means that the stress at a
point may be represented by a tensor of rank 2. However, it was observed
that there would be a vector force at each point on the surface of the control
volume, and this force was represented by T. The surface force vector T may
be related to the stress tensor σij as follows: The three stress components
acting on the plane x1 = constant are σ11, σ12, and σ13. Since the unit
normal vector acting on this surface is n1, the resulting force acting in the
x1 direction is T1 = σ11n1. Likewise, the forces acting in the x2 direction and
the x3 direction are, respectively, T2 = σ12n1 and T3 = σ13n1. Then, for an
arbitrarily oriented surface whose unit normal has components n1, n2, and
n3, the surface force will be given by Tj = σijni in which i is summed from
1 to 3. That is, in tensor notation the equation expressing conservation of
momentum becomes

D

Dt

∫

V

ρujdV =

∫

S

σijnidS +

∫

V

ρfjdV
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Again, the left-hand side of this equation can be converted to a volume
integral of only eulerian derivatives by using Eq. (2.1), meanwhile, the surface
integral on the right-hand side can be changed to a volume integral by making
use of Gauss’ theorem. In this way the equation which evolved from Newton’s
second law becomes∫

V

(
∂

∂t
(ρuj) +

∂

∂xk

(ρujuk)

)
dV =

∫

V

∂σij

∂xi

dV +

∫

V

ρfjdV

Collect these volume integrals to express this equation in the form
∫

V
{}dV =

0, where the integrand is a differential equation in eulerian coordinates. As
before, the arbitrariness of the control volume V implies that the integrand
of the above integro-differential equation have to present the basic law of
dynamics in an equivalent differential equations

∂

∂t
(ρuj) +

∂

∂xk

(ρujuk) =
∂σij

∂xi

+ ρfj,

If we consider ρujuk as the product of ρuk and uj, and expand the left-hand
side of the equation above, we obtain

ρ
∂uj

∂t
+ uj

∂ρ

∂t
+ uj

∂

∂xk

(ρuk) + ρuk
∂uj

∂xk

=
∂σij

∂xi

+ ρfj

Note that the sum of the second and third terms on the left-hand side of this
equation is zero due to the continuity equation (2.4). With this simplification,
the expression of conservation of momentum becomes

ρ
∂uj

∂t
+ ρuk

∂uj

∂xk

=
∂σij

∂xi

+ ρfj (2.6)

It is useful to recall that this equation came from an application of Newton’s
second law to an element of the fluid. The left-hand side of Eq. (2.6) rep-
resents the rate of change of momentum of a unit volume of the fluid (or
the inertia force per unit volume). The first term is the familiar temporal
acceleration term, while the second term is a convective acceleration and ac-
counts for local accelerations even when the flow is steady. Note also that
this second term is nonlinear, since the velocity appears quadratically. On
the right-hand side of Eq. (2.6) are the forces which are causing the acceler-
ation. The first of these is due to the gradient of surface shear stresses and
the second is due to body forces, such as gravity, which act on the mass of
the fluid. A clear understanding of the physical significance of each of the
terms in Eq. (2.6) is essential when approximations to the full governing
equations must be made. In the following, we will list some assumptions and
the surface-stress tensor σij will be related to an expression of pressure and
velocities.
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1. When the fluid is at rest, the stress is hydrostatic and the pressure
exerted by the fluid is the thermodynamic pressure. This implies that
the stress tensor σij is of the form

σij = −pδij + τij (2.7)

where τij depends on the motion of the fluid only and is called the
shear-stress tensor. The quantity p is the thermodynamic pressure and
δij is the Kronecker delta.

2. The stress tensor σij is linearly related to the deformation-rate tensor
ekl and depends only on that tensor. This is the distinguishing feature
of newtonian fluids. There are nine elements in the shear-stress tensor
τij, and each of these elements may be expressed as a linear combination
of the nine elements in the deformation-rate tensor ekl (just as a vector
may be represented as a linear combination of components of the base
vectors). That is, each of the nine elements of τij will in general be a
linear combination of the nine elements of ekl so that 81 parameters
are needed to relate τij to ekl. This means that a tensor of rank 4 is
required so that the general form of τij will be

τij = αijkl
∂uk

∂xl

(2.8)

3. Since there is no shearing action in a solid body rotation of the fluid,
no shear stresses will act during such a motion. Then

τij =
1

2
βijkl

(
∂uk

∂xl

− ∂ul

∂xk

)
(2.9)

4. There are no preferred directions in the fluid, so that the fluid properties
are point functions. This condition is the so-called condition of isotropy,
which guarantees that the results obtained should be independent of
the orientation of the coordinate system chosen. The most general
isotropic tensor of rank 4 is of the form, see appendix in [7],

λδijδkl + µ (δikδjl + δilδjk) + γ (δikδjl − δilδjk) (2.10)

Using the fact that δkl = 0 unless l = k, the expression fro the shear-
stress tensor becomes

τij = λδij
∂uk

∂xk

+ µ

(
∂ui

∂xj

+
∂uj

∂xi

)
(2.11)

Thus the constitutive relation for stress in a newtonian fluid becomes

σij = −pδij + λδij
∂uk

∂xk

+ µ

(
∂ui

∂xj

+
∂uj

∂xi

)
(2.12)
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2.2 A two-dimensional incompressible two-phase

flow

Consider an incompressible two-phase flow problem consisting of fluids 1 and
2 in a fixed two-dimensional square domain Ω = [a, b]× [c, d] = Ω1∪Ω2 where
an interface Σ separates Ω1 from Ω2, see Fig. 2.2. Actually, almost all ma-
terials in reality are compressible to some extent, and the incompressibility
refers to flow, not the material property. This means that under certain cir-
cumstances, a compressible material can nearly behave as an incompressible
flow. Strictly speaking, an incompressible fluid is a fluid which is not reduced
in volume by an increase in pressure. With this ideal assumption, the density
of the fluid element is a constant as it moves from one point to another. This
implies that the material derivative of density is zero, Dρ/Dt = 0. Then Eq.
(2.3) can be reduced in the following:

0 =
∂ρ

∂t
+∇ · (ρu) =

Dρ

Dt
+ ρ∇ · u ⇒ ∇ · u = 0.

Take advantage of the divergence free property of the velocity, λδij
∂uk

∂xk
is zero,

then Eq. (2.12) is simply reduced as

σij = −pδij + µ

(
∂ui

∂xj

+
∂uj

∂xi

)
.

Since these equation are satisfied in each bulk fluid, we can write the corre-
sponding Navier-Stokes equations of the two-phase flow as

ρi

(
∂ui

∂t
+ (ui · ∇)ui

)
= ∇ ·Ti + ρi f i in Ωi (2.13)

∇ · ui = 0, in Ωi, (2.14)

where for i = 1, 2 in each fluid domain, Ti = −piI + µi(∇ui +∇uT
i ) is the

stress tensor, pi is the pressure, ui is the fluid velocity, ρi is the density, µi

is the viscosity, and f i is the external force such as the gravitational force.

Jump conditions cross the interface

When two fluids contact with each other, they form a thin layer (a few
nanometers for most fluids) due to the influence from the bulk phases. Al-
though this layer is very thin, the intermolecular forces acting on it from the
bulk phases are so strong that asymmetry in these forces is very important
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Figure 2.2: The diagram of a bubble in a two-phase interfacial flow.

for the overall dynamics of the system. For simplicity, the interface is consid-
ered as a geometric surface without thickness, and the boundary conditions
for the bulk parameters to be formulated on this surface have to incorporate
both the universal conservation laws as well as the specific physics of the
processes in the interfacial layer for a particular system. Let φ(r, t) be a
level function such that φ(r, t) = 0 represents the interface to separate fluid
1 (φ ≤ 0) and fluid 2 (φ ≥ 0) with the superscript + and −, respectively;
n = ∇φ/|∇φ| is a unit normal pointing from fluid 1 to fluid 2.

Suppose that δr is a distance which an element of the interface at position
r traveled in the normal direction n in a very short period δt. Then both
φ(r, t) and φ(r + δtn, t + δt) are zeros, and we have

0 = φ(r + δtn, t + δt) = φ(r, t) +
∂φ

∂t
(r, t) δt + δrn · ∇φ(r, t) + o(δr, δt),

Divide the above equality by δt and take δt → 0, we obtain an approximation
of the shape of the interface

∂φ

∂t
+ vs · ∇φ = 0, (2.15)

where vs is the normal projection of the interface velocity.

The conservation laws can be translated into the corresponding boundary
conditions in several equivalent ways. Here, an approach based on considering
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fluxes across the interface will be used.

Since the interface is very thin and massless (or the density there is of
the same order as in the bulk), a sink or source of mass can be neglected
compared to the mass fluxes across the boundary. As a result, in the general
case of a permeable interface we have the continuity of mass flux across it

ρ+
(
u+ − vs

) · n = ρ−
(
u− − vs

) · n at φ(r, t) = 0. (2.16)

Note that Eq. (2.16) holds for both permeable and impermeable interface,
it is sufficient to prescribe a specific mass flux for the concerned physics,

ρ+
(
u+ − vs

) · n = χ, (2.17)

where χ has to be specified in terms of parameters determining a particular
physical mechanism responsible for mass transfer across the interface, such as,
chemical reactions, evaporation-condensation, mutual dissolution of fluids,
etc. In particular, a case of an impermeable interface has χ = 0, and this
implies that

u+ · n = u− · n,
∂φ

∂t
+ u+ · ∇φ = 0, at φ(r, t) = 0 (2.18)

Alternatively, we consider another formulation for the movement of the in-
terface and also consider a continuous tangential velocity, then the jump
condition of the velocity is

[u]Σ = u|Σ,2 − u|Σ,1 = 0. (2.19)

Similarly, the conservation of momentum can be translated into the bound-
ary conditions by using the momentum flux tensor Π defined by Π = ρuu−T.
The momentum fluxes in fluid 1 and 2 across a moving interface are n · Π+

and n · Π+, respectively, where

Π± = ρ±
(
u± − vs

) (
u± − vs

)−T±. (2.20)

Note that if the source or sink effect of momentum from the interface is
neglected compared with nΠ±, then the momentum flux across an interface
is continuous:

n · Π+ = n · Π−, (2.21)

for instance, flows with very large length scales such as tidal waves, lava flows,
large-scale free-surface flows industry, etc. However, in many situations the
dynamics of the interfaces contributes significantly to the overall dynamics
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of the system, and we have to consider this contribution here.

The source/sink of momentum due to the presence of an interface simply
composes of two components, external forces F s and surface tension σ.

For the external forces, the interface may possess properties which in a
dynamic sense would ”compensate” its negligible thickness. For example, an
electrically charged interface with electric current in a electrically neutral and
nonconducting fluid can significantly influence the dynamics of the system
by an external electromagnetic field. If the interface has no properties con-
cerning external forces, then one can neglect the effect from external forces
due to the negligible thickness of the interface. For instance, the effect of
gravity is proportional to the mass of liquid contained in the interfacial layer
and hence practically never pays any role in the interfacial dynamics.

The second way in which an interface can contribute to the overall dy-
namics of the system is through its intrinsic dynamic properties the most
important being the surface tension. Physically, the surface tension appears
as a result of an asymmetric action on the interfacial layer of intermolecular
forces from the bulk phases. These forces are singularly strong compared
to those considered in fluid mechanics so that their strength compensates
the negligible thickness of the interfacial layer making the resultant dynamic
effect finite.

Mathematically, σ is a function defined along the interface and, in

Figure 2.3: (a) The surface tension with which an element of the interface acts
on its boundary is normal to the boundary and tangential to the interface;
it tries to minimize the area of this element. (b) The resultant action of
the surface tension on a surface element from a surrounding surface has a
normal component if the interface in not flat, and a tangential component if
the surface tension varies along the interface.

the framework of fluid-mechanical modeling, it has to be included in a two-
dimensional surface stress tensor Ts. In order to imbed Ts into the three-
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dimensional space, it is convenient to use a tensor (I−nn), where as before
I is the metric tensor in space, and n is a unit normal to the interface. This
tensor generates a metric on the surface and singles out the tangential com-
ponents of vectors: if a = ann + a‖, where a‖ is tangential to the interface,
then (I− nn) · a = a‖.

Taking
Ts = σ (I− nn) , (2.22)

we have n · Ts = 0, while for any two unit vectors t1 and t2 lying in the
interface and normal to each other, we have t1 ·Ts ·t2 = 0 and t1 ·Ts ·t1 = σ.
Hence for a line lying in the interface and normal to t1 the stress tensor
defined by (2.22) describes a force directed along t1 with the magnitude
σ per unit length of the line. This is exactly how we defined the surface
tension. In what follows, it is important to remember also that since σ is
defined only on the interface, its derivative in the direction normal to it is
zero by definition, that is n · ∇σ = 0. This constraint allows one to use
σ formally as a function of all three space coordinates. The same applies
to other surface characteristics if the interface possesses other mechanical
and/or thermal properties, and in particular one has n · ∇n.

Consider the momentum flux across an interface. Given the requirement
of momentum conservation and taking into account the contribution from
the interface, we have

n · (Π+ − Π−)
= ∇ ·Ts + F s. (2.23)

Here F s is the density of external forces per unit area acting on the interface;
the contribution from the surface stress in the form of ∇ ·Ts is analogous to
the corresponding contribution of bulk stresses.

Substituting expressions (2.20) and (2.22) for Π± and Ts and take the
advantage of the mass flux continuity condition (2.16), we have

ρ+u+
(
u+ − vs

)·n−ρ−u−
(
u− − vs

)·n−n·(T+ −T−)
= ∇σ−σn∇·n+F s.

(2.24)
The first two terms on the left-hand side written down as

ρ+u+
(
u+ − vs

) · n− ρ−u−
(
u− − vs

) · n = χ
(
u+ − u−

)
, (2.25)

show that mass transfer across an interface has an impact on the momentum
balance when (a) it is significant in itself, and (b) it is associated with a
considerable hump in the bulk velocity. This is the case, for example, in
shock waves. On the contrary, for liquid-fluid interfaces the effect of mass
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transfer on the momentum balance is practically always negligible compared
to capillary effects and especially to the bulk stress. The first to terms on
the right-hand side give the tangential and normal components of the force
acting on a surface element due to surface tension and its gradient, see Fig.
2.3 (b). In writing them down we used that (a) (I−nn) ·∇σ = ∇σ since the
surface-tension gradient is directed along the interface and (b) n · ∇n = 0.

In the simplest case of an impermeable interface (χ = 0) and negligible
external surface forces (F s = 0), the normal projection of Eq. (2.23),

− (
p+ − p−

)
+ n · (σ+ − σ−) · n = σ∇ · n, (2.26)

is known as the capillarity equation, and the normal stress jump is balanced
by the interfacial force F (defined only on Σ) as

[Tn]Σ + F = 0, (2.27)

where n is the unit normal vector on Σ directed towards fluid 2.

Since it is not easy to solve the Navier-Stokes equations (2.13)-(2.14) in
Ω with jump conditions (2.19) and (2.27) on Σ, especially when the interface
is moving. In order to formulate the problem using the immersed boundary
approach, we simply treat the interface as an immersed boundary that exerts
force F to the fluids and moves with local fluid velocity. We will discuss the
detail later.

2.3 Moving contact line problems

If we consider two immiscible fluids (say fluid 1 and 2) that are placed on a
solid substrate in which the interface of the two fluids intersects the substrate
at so called the contact lines. (More precisely, it should be called the contact
points in two-dimensional flow.) In the absence of external forces and the
contact lines are static, the surface forces acting at the contact lines follow
the well-known Young’s condition [9]

σs2 = σs1 + σ cos θe, (2.28)

where σs1, σs2, and σ are the corresponding surface tension between the
solid-fluid 1, solid-fluid 2 and fluid interfaces, and θe is the static equilibrium
contact angle. However, when the contact line moves, we have to model both
the fluid dynamics and contact line dynamics simultaneously. Here, we as-
sume the fluid 1 is a drop surrounding by the fluid 2 and both fluids rest on
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Figure 2.4: The diagram of contact lines and the problem setting.

the solid substrate; thus, the contact lines are at the bottom of the domain.
Furthermore, we assume that an insoluble surfactant stays on the fluid-fluid
interface so that the surface tension changes accordingly. See the diagram of
the contact lines and the considered problem in detail in Figure 2.4. In this
case, we simply assume that both fluids have the equal density and viscosity
(Actually, it doesn’t matter even when we consider different fluid properties
inside and outside). The gravity is also neglected since we mainly concern
about the capillary effect, especially, the effect on the contact line movements
due to the existence of the surfactant. Note that the surfactant is usually
soluble in fluid 2 so that it affects not only the fluid-fluid surface tension but
the surface tension between fluid 2 and the solid. So, the effects of surfactant
to the interfacial flow depend on the competition of σ and σs2, and the ten-
dency of the contact angle will depend. For simplicity, we not only assume
the surfactant is insoluble in fluid 1 and fluid 2 but restrict the surfactant
distribute along the fluid-fluid interface, therefore, both σs1 and σs2 are fixed
all the time such that we can predict the contact line tendency directly from
the Young’s condition.

Since the Young’s condition is concerned with the movement of the con-
tact line, it is related to the force balance (As before, surface tension can
be regarded as energy per unit area or force per unit length) of σ, σs1, and
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σs2, at the triple junction. From the observation of a contact line, it moves
only in one direction tangent to the solid substrate, the force is balanced in
the direction perpendicular to the solid substrate due to the adhesion. The
force at the moving contact lines Fcl are only exerted along the tangential
direction (that is x direction) of the solid substrate and mainly due to the
unbalanced Young’s force [9] and can be written as

Fcl = σs2 − σs1 − σ cos θ, (2.29)

where θ is the dynamic contact angle. Note that Fcl tends to zero when the
dynamic contact angle θ is getting close to the equilibrium contact angle θe.

2.4 Governing equation of surfactant concen-

tration

The basic equation for surfactant transport equation along a deforming in-
terface has been derived by Scriven [46], Aris [1], and Waxman [55]. All three
papers derived the surfactant equation relying heavily on differential geome-
try. Stone [49], however, presented a simple derivation of the time-dependent
convective-diffusion equation for surfactant transport along a deforming in-
terface. In this subsection, we present a slightly different derivation from
Stone for the surfactant transport equation which will be used as one of
our governing equations for numerical computation. Our derivation is in the
same spirit of the immersed boundary approach. A more detailed derivation
for surfactant concentration equation along a two-dimensional parametric
deforming surface in three-dimensional fluid domains can be found in our
recent work [19].

Let L(t) be an interfacial segment where the surfactant concentration
(the mass of the surfactant per unit length) is defined. Since the surfac-
tant remain on the material element and do not transport or diffuse to the
surrounding bulk fluids, the mass on the segment is conserved

d

dt

∫

L(t)

γ(s , t) ds = 0 , (2.30)

where ds is the arc-length element. To apply the time derivative more easily,
we rewrite the above equation in terms of the initial parameter α as

d

dt

∫

L(0)

γ(α, t)

∣∣∣∣
∂X

∂α

∣∣∣∣ dα = 0. (2.31)
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By taking the time derivative inside the integral, we obtain

∫

L(0)

(
∂γ

∂t

∣∣∣∣
∂X

∂α

∣∣∣∣ + γ
∂

∂t

∣∣∣∣
∂X

∂α

∣∣∣∣
)

dα = 0. (2.32)

Note that, in our present formulation, both the interface and surfactant con-
centration are tracked in a Lagrangian manner. Thus, the time derivative
of the first term in Eq. (2.32) is exactly the material derivative of Stone’s
derivation [49]. The time derivative of the second term is due to interface
stretching. Now we need to compute the rate of the stretching factor, and
using the fact

∂X

∂t
= u(X, t) = (u(X, t), v(X, t)), (2.33)

we have

∂

∂t

∣∣∣∣
∂X

∂α

∣∣∣∣ =
∂X
∂α

∂
∂α

(
∂X
∂t

)
+ ∂Y

∂α
∂

∂α

(
∂Y
∂t

)
∣∣∣∂X

∂α

∣∣∣
=

∂X
∂α

∂u
∂α

+ ∂Y
∂α

∂v
∂α∣∣∣∂X

∂α

∣∣∣

=

∂X
∂α

(
∇u · ∂X

∂α

)
+ ∂Y

∂α

(
∇v · ∂X

∂α

)
∣∣∣∂X

∂α

∣∣∣
=

(
∂u

∂τ
· τ

) ∣∣∣∣
∂X

∂α

∣∣∣∣

= (∇s · u)

∣∣∣∣
∂X

∂α

∣∣∣∣ . (2.34)

Here, the notation ∇s · u means the surface divergence which is used com-
monly in the literature. Since the material segment is arbitrary, we thus
have

∂γ

∂t
+ (∇s · u) γ = 0. (2.35)

If we allow surfactant diffusion along the interface, we obtain the surfactant
transport-diffusion equation as

∂γ

∂t
+ (∇s · u) γ = Ds

∂

∂α

(
∂γ

∂α
/

∣∣∣∣
∂X

∂α

∣∣∣∣
)

/

∣∣∣∣
∂X

∂α

∣∣∣∣ , (2.36)

where Ds is the surface diffusivity parameter [24]. We note that surface dif-
fusion is also written in terms of initial parameter α.

Let us summarize this section by pointing out the differences and simi-
larities between our present surfactant equation (2.36) and the ones derived
in literature [49, 54]. As we discussed before, the present time derivative is
exactly the material derivative with the material parameter α fixed, while
the time derivative used in [49] is keeping the material coordinates X fixed.
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Wong et al. [54] argued that the time derivative term in Stone’s surfactant
equation causes ambiguity in numerical discretization since the material co-
ordinates is time-dependent as well. Wong et al. [54] provide an alternative
derivation for the surfactant equation, where the concentration time deriva-
tive is applied by keeping the material parameter s fixed. This is exactly
what we have done here. It is interesting (but not surprising) to conclude
that the surfactant concentration equation in [54] can be simplified to our
present form (2.36) by substituting Eq. (2.33) into their equation.

The surface tension σ(α, t) is related to the surfactant concentration
γ(α, t) through either linear or nonlinear approximation of Langmuir equa-
tion of state [25]

σ(γ) = σ∞ −RTC
γ

γ∞
, (2.37)

σ(γ) = σ∞ + RTC ln

(
1− γ

γ∞

)
(2.38)

where σ∞ is the surface tension of a clean interface, R is the ideal gas con-
stant, T is a absolute temperature, and γ∞ is the maximum surface packing
limit such that γ cannot exceed this upper bound.

2.5 Boundary conditions

In order to gain well-posed partial differential equations and mimic the phe-
nomena in which we are interested, appropriate boundary conditions and
initial conditions should be imposed to each partial differential equations,
two for momentum conservation, one for mass conservation of fluids, and
one for mass conservation of surfactant equations. The unknown of fluid
variables are velocity u = (u, v) and pressure p, so we have three equations
for three unknowns in a two-dimensional problem. In addition, the surfactant
equation on the interface has only one unknown γ.

2.5.1 For Navier-Stokes equations

As before, the computational domain is still a square Ω = [a, b]× [c, d], and
∂Ω is the boundary of Ω. There are several choices of the boundary condition
for the fluid in the following.

1. No-slip boundary condition: No fluid penetrates the boundary and
the fluid is at rest there, i.e.

u|∂Ω = 0, v|∂Ω = 0. (2.39)
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2. Inflow boundary condition: The velocity u is given, i.e.

u|∂Ω = ub, v|∂Ω = vb. (2.40)

Here, two specific one-variable functions ub and vb are given.

3. Outflow boundary condition: Neither velocity component changes
in the direction normal to the boundary, i.e.

∂u

∂n
|∂Ω = 0,

∂v

∂n
|∂Ω = 0. (2.41)

4. Periodic boundary condition: For problems which are periodic with
period b− a in one coordinate direction (e.g. the flow over an undulat-
ing surface), one can restrict the computations to one period interval.
The velocities and pressure must then coincide at the left and right
boundary, i.e.

u(a, y) = u(b, y), v(a, y) = v(b, y), p(a, y) = p(b, y). (2.42)

5. Navier-slip boundary condition: For the moving contact line prob-
lem, the no-slip boundary condition leads to the unrealistic prediction
of unbounded stresses and viscous dissipation at the contact line. To
avoid a non-integrable singularity, the no-slip boundary condition can
be replaced with the Navier-slip boundary condition

u · τ |∂Ω = β∇(u · τ ) · n|∂Ω, (2.43)

where u ·τ is the velocity component tangential to the surface and β is
the slip coefficient. The slip boundary condition has been used in the
previous work on the liquid spreading [11, 12, 43].

2.5.2 For surfactant concentration equation

Since the surfactant is insoluble and the interface is a one-dimensional curve
in a two-dimensional fluid, we can simply use a parameter α ∈ (0, 1) to define
the surfactant concentration as γ(α, t), a function of α and t.

1. Periodic boundary condition: When one fluid surround the in-
terface, the interface can be seen as a simple closed curve which is
parametrized as a periodic function, that is,

γ(0, t) = γ(1, t), for any t > 0. (2.44)

30



2. No-flux boundary condition When a moving contact line problem
is considered, we use the no-flux boundary condition for the surfactant
equation due to its insolubility, i.e.

∂γ

∂α
(0, t) = 0,

∂γ

∂α
(1, t) = 0. (2.45)
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Chapter 3

Immersed boundary method

The (IB) method was first proposed by Peskin [35] to simulate the blood-valve
interaction, and has been applied successfully to other biological problems.
The basic idea of the immersed boundary method is to treat the elastic ma-
terial (the interface) as a part of the fluid in which additional forces (arising
from the elastic stresses) are applied. The fluid equations are solved on a reg-
ular rectangular lattice (Eulerian gird), and the structure is not modified in
any way by the presence of the immersed elastic material which the geometry
may be very complicated. The elastic material is tracked in Lagrangian co-
ordinate, that is, the immersed boundary is represented by a set of discrete
Lagrangian markers embedding in the Eulerian fluid domain. The spatial
configuration of these points is used to evaluate elastic forces, which are ap-
plied to the nearby lattice points of the fluid. The fluid velocity is updated
under the influence of these forces, and the new velocity is then interpolated
at the elastic material points, which are moved at the interpolated velocity
to complete the time step.

The structure of this chapter arises from mathematical formulae of the
equations of motion of a viscous incompressible fluid containing an immersed
interface. These formulae form the foundation of the immersed boundary
method, which will be presented in a dimensionless version with several
dimensionless parameters. The core of the immersed boundary method is
a smoothed approximation to the Dirac delta-function, the construction of
which is given in the subsequent section.

3.1 Equation of motion

Consider a viscous two-phase incompressible fluid which contains an im-
mersed interface (arises from two immiscible fluids). Assume that the in-
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terface is pure force-generator and without mass and volume, but interacts
with the fluid in which they are immersed, they form an incompressible visco-
elastic material.

3.1.1 Derivation of interfacial forces

Let Σ symbolize the immersed interface whose unknown motion is repre-
sented by a Lagrangian coordinate X = X(α, t) = (X(α, t), Y (α, t)), 0 ≤
α ≤ Lb, where α is the parameter of the initial configuration of the interface,
and we use s as the arc-length parameter, especially. The formula of the unit
tangent along the interface is given by

τ =
∂X/∂α

|∂X/∂α| , (3.1)

and the surface tension σ is given by a generalized Hook’s law:

σ = S

(∣∣∣∣
∂X

∂α

∣∣∣∣ ; α, t

)
(3.2)

Here σds is the force transmitted by a segment ds of the interface, and
|∂X/∂s| determines the corresponding local strain, from which the force is
computed.

Let I be an arbitrary region of the parameter interval. Consider the
segment of the interface defined by α1 < α < α2. Since the interface is
massless, the total force acting on these segments must be zero. This total
force includes both the force of the fluid on the interface and also the force
transmitted across the interfaces and by the segment of the interface itself.
Thus

0 = force of fluid on the interface portion + (στ ) |α2
α1

(3.3)

According to Newton’s third law of equal and opposite forces, and also the
fundamental theorem of calculus, we may rewrite this equation as follows:

force of the interface portion on fluid = (στ ) |α1
α2

=

∫ α2

α1

∂

∂α
(στ ) dα. (3.4)

Note that Eq. (3.4) is independent of the choice of the parameter α due to
change of variable to arc-length parameter s.

∫ α2

α1

∂

∂α
(στ ) dα =

∫ α2

α1

∂
∂α

(στ )

|∂X/∂α| |∂X/∂α| dα =

∫

I

∂

∂s
(στ ) ds. (3.5)
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Since I, α1, and α2 are arbitrary, this shows that the force density of the
interface with respect to the measure ds is given by

F (α, t) =
∂

∂α
(στ ) . (3.6)

An alternative way to derive the force is from the energy point of view,
a variational method. Suppose that E[X] is a given functional, the elastic
potential energy of the material in configuration X, we define the force from
the Frechet derivative of the energy E by

F = −δE[X]

δX
. (3.7)

If we give a specific form of energy

E[X(α, t)] =

∫

Σ

f

(∣∣∣∣
∂X

∂α

∣∣∣∣
)

dα, (3.8)

then

F =
∂

∂α

(
f ′

(∣∣∣∣
∂X

∂α

∣∣∣∣
)

∂X/∂α

|∂X/∂α|
)

(3.9)

proof: let α(ε) = δE[X] = E[X + εX̃], then

α′(ε) =

∫

Σ

f ′
(∣∣∣∣∣

∂(X + εX̃)

∂α

∣∣∣∣∣

)
d

dε

∣∣∣∣∣
∂(X + εX̃)

∂α

∣∣∣∣∣ dα,

d

dε

∣∣∣∣∣
∂(X + εX̃)

∂α

∣∣∣∣∣ dα =

(
∂(X + εX̃)

∂α
· ∂X̃

∂α

)
/

∣∣∣∣∣
∂(X + εX̃)

∂α

∣∣∣∣∣ ,

lim
ε→0

α′(ε) =

∫

Σ

f ′
(∣∣∣∣

∂X

∂α

∣∣∣∣
) (

∂X

∂α
· ∂X̃

∂α

)
/

∣∣∣∣
∂X

∂α

∣∣∣∣ dα,

=

∫

Σ

f ′
(∣∣∣∣

∂X

∂α

∣∣∣∣
)(

∂X

∂α
/

∣∣∣∣
∂X

∂α

∣∣∣∣
)
· ∂X̃

∂α
dα,

= −
∫

Σ

∂

∂α

(
f ′

(∣∣∣∣
∂X

∂α

∣∣∣∣
)(

∂X

∂α
/

∣∣∣∣
∂X

∂α

∣∣∣∣
))

· X̃dα,

= −
∫

Σ

∂

∂α

(
f ′

(∣∣∣∣
∂X

∂α

∣∣∣∣
)(

∂X

∂α
/

∣∣∣∣
∂X

∂α

∣∣∣∣
))

· δXdα,

⇒ F = −δE[X]

δX
=

∂

∂α

(
f ′

(∣∣∣∣
∂X

∂α

∣∣∣∣
)

∂X/∂α

|∂X/∂α|
)
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3.1.2 Connection between fluid and interface

In this section, the connection between Eulerian and Lagrangian variables
should be determined. To do so, take the advantage of the distinguish prop-
erty of the Dirac delta function, one can evaluate a function at a point by
multiplying it by an appropriately shifted delta function and integrating over
the whole space. First of all, the velocities at the interface can be evaluated
by integrating the product of the velocities on the lattice and the delta func-
tion:

u(X(α, t), t) =

∫

Ω

u(x, t) δ(x−X(α, t))dx. (3.10)

On the other hand, the forces on the lattice are evaluated in this way:

f(x, t) =

∫

Σ

F (α, t) δ(x−X(α, t)) dα. (3.11)

Note that the integral in Eq. (3.10) is two-dimensional and gives a finite
result, the velocity of the immersed interface. Unlike Eq. (3.10), the resultant
f(x, t) of the integral in Eq. (3.11) is singular like a delta function, the
singularity being supported on the immersed interface. Although f(x, t) is
singular on the interface, the integrals over any finite volume is finite. The
integral of f(x, t) over such a volume is the total force applied to the fluid
by the part of the immersed interface contained. The important feature
between the interaction equations is that Eq. (3.10) converts from Eulerian
to Lagrangian variables while Eq. (3.11) converts in the other direction.

3.1.3 Dimensionless variables

To avoid confusion with the unit of different variables, we use the non-
dimensionalization process presented in [24, 56], that is, choose several refer-
ence scales for their corresponding variables. Let r be the scale of length in
space and U∞ be the velocity scale. The density and viscosity are scaled by
the properties of fluid 1, ρ1 and µ1, respectively. These lead to the inertial
time scale r/U∞ and the pressure scale µ1U∞/r. Surface tension scale σ∞ is
the equilibrium surface tension (the surface tension corresponding to a uni-
formly distributed surfactant with equilibrium concentration γ∞, the scale of
surfactant concentration). If a gravitational force is considered, g∞ will be
the gravity scale. Then we set

x = rx∗, u = U∞u∗, ρ = ρ1ρ
∗,

µ = µ1µ
∗, t =

r

U∞
t∗, p =

µ1U∞
r

p∗,

σ = σ∞σ∗, γ = γ∞γ∗, g = g∞g∗,

(3.12)
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where variables with superscript ∗ are dimensionless and then we have

∂u

∂t
=

U2
∞
r

∂u∗

∂t∗

(u · ∇) u =
U2
∞
r

(u∗ · ∇∗) u∗

∇p =
µ1U∞

r2
∇∗p∗

∇ · (2µE) =
µ1U∞

r2
∇∗ · (2µ∗E∗) (3.13)

∂γ

∂t
=

γ∞U∞
r

∂γ∗

∂t∗

(∇s · u) γ =
γ∞U∞

r
(∇∗

s · u∗) γ∗

Ds
∂2γ

∂s2
=

Dsγ∞
r2

∂2γ∗

∂s∗2
ρg = ρ1g∞ρ∗g∗,

where Ds is the surface surfactant diffusivity.

3.1.4 Dimensionless equations of motion

Substitute these relations above into Eqs. (2.13), (2.14), (3.10), (3.11), and
(2.36), we can write down our governing equations in the usual immersed
boundary formulation as follows.

ρ∗
(

∂u∗

∂t∗
+ (u∗ · ∇∗)u∗

)
= −∇∗p∗ +

1

Re
∇∗ · (2µ∗E∗)

+
1

ReCa
f ∗ +

Eo

ReCa
ρ∗g∗, (3.14)

∇∗ · u∗ = 0, (3.15)

f ∗(x∗, t∗) =

∫

Σ∗
F ∗(α, t∗) δ(x∗ −X∗(α, t∗)) dα,(3.16)

∂X∗(α, t∗)
∂t∗

= u∗(X∗(α, t∗), t∗),

=

∫

Ω

u∗(x∗, t∗) δ(x∗ −X∗(α, t∗))dx∗,(3.17)

F ∗(α, t∗) =
∂

∂α
(σ∗(γ∗(α, t∗), t∗)τ ∗(α, t∗)), (3.18)

∂γ

∂t
+ (∇s · u) γ =

1

Pes

∂

∂α

(
∂γ

∂α
/

∣∣∣∣
∂X

∂α

∣∣∣∣
)

/

∣∣∣∣
∂X

∂α

∣∣∣∣ , (3.19)
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where

Re =
ρ1U∞r

µ1

, Ca =
µ1U∞
σ∞

, Eo =
ρ1g∞r2

σ∞
, P es =

U∞r

Ds

.

The dimensionless numbers are the Reynolds number (Re) describing the
ratio between the inertial force and the viscous force, the capillary number
(Ca) describing the strength of the surface tension, the number (Eo) repre-
senting the strength of the gravitational force, and the Peclect number (Pes)
explaining the magnitude of the diffusivity of the surfactant equation. Equa-
tions (3.16)-(3.17) represent dimensionless form of the interaction between
the immersed interface and the fluids. In particular, Eq. (3.16) describes the
force (f) acting on the fluid due to the interfacial force (F ∗), which is defined
only on the interface and must be balanced by the normal stress as shown in
Eq. (2.27). Here, σ∗ is the dimensionless surface tension, and τ ∗ is the unit
tangent vector on the interface. Eq. (3.17) states that the interface moves
with the fluid velocity which is consistent with (2.19). The present formula-
tion employs a mixture of Eulerian (x∗) and Lagrangian (X∗) variables which
are linked by the two-dimensional Dirac delta function δ(x∗) = δ(x∗)δ(y∗).

In addition, the dimensionless surface tension σ∗ is related to dimension-
less surfactant concentration γ∗ through the dimensionless Langmuir approx-
imations

σ∗ = 1− ηγ∗, (3.20)

σ∗ = 1 + η ln (1− γ∗) , (3.21)

where the elasticity number η = RTγ∞/σ∞.

The interfacial force F arises from the surface tension and its form is
derived from Laplace-Young condition [27]. One can further take derivatives
explicitly so that

F (α, t) =
∂

∂α
(στ ) =

∂σ

∂α
τ + σ

∂τ

∂α
=

∂σ

∂α
τ + σ κ n

∣∣∣∣
∂X

∂α

∣∣∣∣ , (3.22)

where κ is the curvature of the interface and n is the unit outward normal.
The first term on the right-hand side of Eq. (3.22) is the Marangoni force
(the tangential force) due to the non-uniform distribution of surfactant con-
centration and the second one is the capillary force (the normal force) which
is related to the product of the surface tension and curvature.
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3.2 Construction of δ-function

In this section, we describe the construction of the approximation dh(x), a
discrete delta function, of delta function δ(x). The choice of dh(x) is used to
transfer quantities on which are defined between the Eulerian and Lagrangian
mesh points is an critical portion of the IB method. Peskin presents a list
of discrete compatibility conditions that should be supported to the approx-
imation dh(x) to guarantee essential smoothness for the resultant of Eqs.
(3.16) and (3.17). The function dh(x), an two-dimensional approximation, is
required to be the form

dh(x) =
1

h2
φ

(x

h

)
φ

(y

h

)
, (3.23)

where x = (x, y), φ(r) is a function of real number r, and dh → δ as h → 0.
Actually, the product form given by Eq. (3.23) is not necessary, but it reduces
all subsequent considerations to one-dimensional cases. Moreover, the scaling
in (3.23) makes a simplification to reduce the parameter h.

3.2.1 Postulates of φ(r)

Now, the construction of φ(r) obeys the following postulates:

1. φ(r) ∈ C0. (3.24)

2. φ(r) = 0 for |r| ≥ 2. (3.25)

3.
∑
even i

φ(r − i) =
∑

odd i

φ(r − i) = 1/2 for all r. (3.26)

4.
∑

i

(r − i)φ(r − i) = 0 for all r. (3.27)

5.
∑

i

(φ(r − i))2 = C for all r. (3.28)

where C is a constant.

The continuity of φ(r) makes the coefficients of the interpolation between
fluid and interface points appearing in (3.16) and (3.17) vary continuously.
Then avoid jumps in velocity or force as the Lagrangian markers moves across
fluid mesh.

The purpose of bounded support of φ(r) is to reduce the computational
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cost which arises from the calculation of integrals in (3.16) and (3.17). If a
function with unbounded support, such as exp−r2/2, is present, this would
involve enormous computational cost since each Lagrangian maker interacts
with all grid points of the Eulerian mesh (and vice versa). Note that the
choice of the support with the width 4h (without scaling) is the smallest
possibility maintaining consistency with the other postulates in the mean-
time.

Postulate 3 is called zero moment condition which is a stronger version
of ∑

i

φ(r − i) = 1 for all r. (3.29)

The reason why we impose the stronger conditions is for the use of the cen-
tral difference operator D0 in the numerical scheme. The null space of the
gradient operator based on D0 is four-dimensional. The separate conditions
given in (3.26) ensure that all four options get the same amount of force
from each Lagrangian marker, and also that each Lagrangian marker assigns
equal weight to all four options when computing its interpolated velocity.
This avoids oscillations from one grid point to the next that would otherwise
occur, especially when localized forces are applied. Moreover, this choice
guarantees that constant functions are interpolated exactly by dh (this has
the physical interpretation of conserving momentum when applied to force
spread in (3.16).

Postulate 4 is the so-called first moment condition which ensures that
linear functions are interpolated exactly by dh and and smooth functions are
therefore interpolated with second-order accuracy (with the physical impli-
cation that angular momentum is conserved when applying forces to fluid
points). Obviously, substitute (3.29) to (3.27), we obtain a simplification

∑
i

iφ(r − i) = r for all r. (3.30)

This property (3.28) comes from the condition

∑
i

φ(r1 − i)φ(r2 − i) = Φ(r1 − r2) for all r1 and r2, (3.31)

where Φ(r1 − r2) is a scaler function. If (3.31) is imposed (regardless of the
function Φ), it would imply the exact translation invariance of the IB method
[36]. However, (3.31) is not compatible with any other postulates. That is
why we consider (3.28), a weak form of (3.31) with r1 = r2 and Φ(0) = C.
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Though (3.28) is weak, it does give some information about the sum that
appears on the left-hand side of (3.31) which implies the inequality

∣∣∣∣∣
∑

i

φ(r1 − i)φ(r2 − i)

∣∣∣∣∣ ≤ C for all real r1 and r2, (3.32)

(the Schwarz inequality), which is analogous to the physically reasonable re-
quirement that when two interface points interact, the effect of one boundary
point on the other is maximized when the points coincide.

3.2.2 Construction of φ(r)

Next, we will explain how to determine an explicit form of φ(r) from postu-
lates (3.24)-(3.28) and therefore δh. For simplicity, let 0 ≤ r ≤ 1 and then
one can express (3.24)-(3.28) in the following formulae:

φ(r − 2) + φ(r) = 1
2
, (3.33)

φ(r − 1) + φ(r + 1) = 1
2
, (3.34)

2φ(r − 2) + φ(r − 1)− φ(r + 1) = r, (3.35)

(φ(r − 2))2 + (φ(r − 1))2 + (φ(r))2 + (φ(r + 1))2 = C. (3.36)

Clearly, there are four equations for four unknowns φ(r − 2), φ(r − 1), φ(r),
and φ(r + 1). It seems easy to get an simple expression of φ(r) from a basic
idea that write φ(r − 2), φ(r − 1), and φ(r + 1) in terms of φ(r)

φ(r − 2) =
1

2
− φ(r), (3.37)

φ(r − 1) = −1

4
+

r

2
+ φ(r), (3.38)

φ(r + 1) =
3

4
− r

2
− φ(r), (3.39)

by using (3.33)-(3.35), and take (3.37)-(3.39) into (3.36) to result in a quadratic
equation of φ(r)

4 (φ(r))2 + (2r − 3)φ(r) +

(
7

8
− r − 1

2
r2

)
= C. (3.40)

But the difficulty to solve this simple system arises from the undetermined
constant C. To overcome this obstacle, a simplest way is to set r = 0 so
that φ(−2) is zero due to the bounded support of φ and hence φ(0) = 1/2.
(Meantime, φ(−1) = φ(1) = 1/4 is obtained by solving the system of (3.34)
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and (3.35) with r = 0.) Substituting φ(0) = 1/2 into (3.40), here comes out
C = 3/8. With the parameter determined C, the candidates for the solution
of (3.40) will be

φ(r) =
1

8

(
3− 2r ±

√
(2r − 3)2 − 8 (1− r)2

)
, 0 ≤ r ≤ 1. (3.41)

One can choose φ(0) = 1/2 or φ(1) = 1/4 as the reference root to gain the
unique solution

φ(r) =
1

8

(
3− 2r +

√
1 + 4r − 4r2

)
, 0 ≤ r ≤ 1. (3.42)

Note that this formula is only valid for r ∈ [0, 1]. To determine φ on other
intervals [−2,−1], [−2,−1], and [1, 2], consider the relations in (3.37)-(3.39)
and take the advantage of (3.42), for instance, if r ∈ [1, 2] and r̃ = r − 1,
then r̃ ∈ [0, 1] and from (3.39)

φ(r̃ + 1) =
3

4
− r̃

2
− φ(r̃)

=
3

4
− r̃

2
− 1

8

(
3− 2r̃ +

√
1 + 4r̃ − 4r̃2

)

=
1

8

(
3− 2r̃ −

√
1 + 4r̃ − 4r̃2

)
, 0 ≤ r̃ ≤ 1

⇒ φ(r) =
1

8

(
5− 2r −

√
−7 + 12r − 4r2

)
, 1 ≤ r ≤ 2 (3.43)

Similarly, we can obtain formulae of φ(r) on [−2,−1] and [−1, 0], respectively,
and simplify φ(r) in the form

φq(r) =
1

8

(
3− 2|r|+

√
1 + 4|r| − 4r2

)
, if |r| ≤ 1,

=
1

8

(
5− 2|r| −

√
−7 + 12|r| − 4r2

)
, if 1 < |r| < 2,

= 0, if |r| ≥ 2. (3.44)

Surprisingly, this choice of φ(r) is symmetric with respect to r = 0. And
it is easy to check that φ(r) is not only continuous but has continuous first
derivative at r = −2, −1, 0, 1, 2 (at everywhere indeed).

3.2.3 Other conventional φ(r)

First of all, a simplest linear approximation of δh behaves like a hat of the
form

φl(r) =

{
1− |r| , if |r| ≤ 1,
0, if |r| > 1.
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Note that this linear approximation obeys only the postulates 1 and 3, of
course, is lack of the continuity of the first derivative.

A extreme well approximation of (3.43) is a cosine function of the form

φc(r) =

{
1
4

(
1 + cos

(
πr
2

))
, if |r| ≤ 2,

0, if |r| > 2.

This specific choice satisfies all postulates we listed before except the first-
moment condition (3.27).

Another form of φ that satisfies a similar set of properties (3.24)-(3.28)
was proposed by Roma [44]. In the construction of φ(r), the support was
reduced from 2 to 1.5, and one replaced the even/odd distinction in (3.26)
from (3.29). The derivation of this approximation is described in detail in
the following. Consider 0 ≤ r ≤ 1 and then one can express (3.29), (3.30),
and (3.28)as:

φ(r − 1) + φ(r) + φ(r + 1) = 1, (3.45)

φ(r − 1)− φ(r + 1) = r, (3.46)

(φ(r − 1))2 + (φ(r))2 + (φ(r + 1))2 = C. (3.47)

Now, there are three equations for three unknowns φ(r−1), φ(r), and φ(r+1).
To get the parameter C, we first write φ(r− 1) and φ(r +1) in terms of φ(r)

φ(r − 1) =
1

2
(1 + r − φ(r)) , (3.48)

φ(r + 1) =
1

2
(1− r − φ(r)) , (3.49)

and set r = 0.5 to gain φ(−0.5) = φ(0.5) = 0.5, and hence C = 0.5. Sub-
stituting (3.48) and (3.49) into (3.47) to result in a quadratic equation of
φ(r)

3 (φ(r))2 − 2φ(r) + r2 = 0. (3.50)

Therefore the resultant will be

φ(r) =
1

3

(
1 +

√
1− 3r2

)
, 0 ≤ r ≤ 0.5. (3.51)

where we have used the fact φ(0.5) = 1/2 to determine the sign in front of the
square. Similarly, if −0.5 ≤ r ≤ 0, we find that the corresponding formula
of r will exactly the same as Eq. (3.51). Furthermore, take the advantage
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of (3.48) and (3.49), finally the approximation of delta function with 3-point
support is resulted in the form

φs(r) =
1

3

(
1 +

√
1− 3r2

)
, if |r| ≤ 0.5,

=
1

6

(
5− 3|r| −

√
1− 3(|r| − 1)2

)
, if 0.5 < |r| < 1.5,

= 0, if |r| ≥ 1.5. (3.52)

The corresponding approximate delta function is applicable to computations
on a staggered marker-and-cell grid, where the problem of decoupled pressure
modes inherent in Chorin’s projection scheme is not an issue.

The following is a diagram of several approximations of the delta function
we listed in this chapter.

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

φ
l

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

φ
c

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

φ
q

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

φ
s

Figure 3.1: (a) Hat function. (b) Cosine approximation. (c) Second-order
approximation with 4-point support. (d) Second-order approximation with
3-point support.
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Chapter 4

Numerical method

In previous chapters, we have demonstrated what problems we are interested
in and what model we will use in simulations. Now, we will give the whole
numerical algorithm step by step and explain each part in detail in this chap-
ter. First, a famous and popular MAC method combines projection method
to solve variables on the fluid field. Then numerical setting for variables on
the interface is present in section two. In section three, we introduce several
discrete delta functions with compact support to connect variables defined on
eulerian grid and lagrangian grid. A numerical scheme for artificial tangen-
tial velocity is proposed. Then a beautiful mass-preserving numerical scheme
for surfactant equation will show up to fascinate the spotlight. Further, the
usage of the boundary conditions and some essential approximation by the
boundary conditions, such as approximation of ghost points for fluid solver,
will be carried out in section four. Finally, the time integration of the whole
numerical process is performed to close this chapter.

4.1 Fluid solver

Consider a model problem of a viscous incompressible fluid in a two-dimensional
square domain Ω = [a, b] × [c, d]. And the unsteady flow is governed by the
dimensionless momentum equations (3.14) and continuity equations (3.15).
Let u(x, t) = (u(x, t), v(x, t)), f(x, t) = (f(x, t), g(x, t)), and p(x, t) be fluid
velocities, external forces, and fluid pressure, respectively, where x = (x, y)
is the eulerian coordinate. Note that we will drop the superscript in our
governing equations for convenience from now on. It is convenient to un-
derstand the numerical solver for the Navier-Stokes equations if we have the
simplification of fluid properties µ1 = µ2 = 1 and ρ1 = ρ2 = 1 first. Then we
can take advantage of (3.15) to simplify ∇ · (2µE) as ∆u, and alternatively,
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express the system in an explicit form

∂u

∂t
+

∂u2

∂x
+

∂uv

∂y
+

∂p

∂x
=

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
+

1

ReCa
f, (4.1)

∂v

∂t
+

∂uv

∂x
+

∂v2

∂y
+

∂p

∂y
=

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
+

1

ReCa
g, (4.2)

∂u

∂x
+

∂v

∂y
= 0. (4.3)

Note that we express the convection term as a conservation form. This can
be recovered to original form by the use of continuity equation ux + vy = 0.

4.1.1 Staggered grid

Computational solutions of (4.1-4.3) are often obtained on a staggered grid.
This implies that different dependent variables are evaluated at different
grid points. Speaking in detail, the pressure is defined on the grid points
labeled as xi,j = (xi, yj) = ((i − 1/2)h, (j − 1/2)h) for i, j = 1, 2 . . . , N , the
velocity components u and v are defined at (xi+1/2, yj) = (ih, (j−1/2)h) and
(xi, yj+1/2) = ((i− 1/2)h, jh), respectively, where the spacing h = ∆x = ∆y.
A accepted staggered grid configuration is shown in Fig. 4.1. It can be seen

u
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u
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u
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v
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v
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v
i+1,j−1/2

v
i+1,j+1/2

p
i,j

p
i+1,j

Figure 4.1: A diagram of the staggered grid.

that pressures are defined at the center of each cell while velocity components
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are defined at the center of the cell faces. Discretization of (4.3) on the
staggered grid shown in Fig. 4.1 gives

ui+1/2,j − ui−1/2,j

∆x
+

vi,j+1/2 − vi,j−1/2

∆y
= 0

In addition a Taylor series expansion about the cell center indicates that they
have a truncation error of O(∆x2, ∆y2), even though only four grid points
are involved.

The use of the staggered grid permits coupling of the u, v and p solutions
at adjacent grid points. This in turn prevents the appearance of oscillatory
solutions, particularly for p, that can occur if centered differences are used to
discretize all derivatives on a non-staggered grid. The oscillatory solution is
a manifestation of two separate pressure solutions associated with alternate
grid points, which the use of centered differences on a non-staggered grid
permits. The oscillatory behavior is usually worse at high Reynolds number
where the dissipative terms, which do introduce adjacent grid point coupling
for u and v, are small. Clearly, from (4.1-4.3), there are no dissipative terms
for p.

Of course, the use of staggered grids has some drawbacks. Computer
programs based on staggered grids tend to be harder to interpret because
it is desirable to associate a cluster of dependent variables with correspond-
ing storage locations. Thus arrays storing u, v and p might associate storage
location (i, j) with ui+1/2,j, and vi,j+1/2 and pi,j as Fig. 4.1. Generally bound-
ary conditions are more difficult to impose consistently with a staggered grid,
since at least one dependent variable, u or v, will not be defined on a par-
ticular boundary. If the grid is non-rectangular, and generalized coordinates
are used, the incorporation of a staggered grid is more complicated.

Let ∆t be the time mesh size, and n be the superscript time step index.
In discretizing (4.1-4.3), the following second-order accurate finite difference
expressions for derivatives with respect to space for (i, j)-cell are used [13]:

(
∂u2

∂x

)n

i+1/2,j

=

(
un

i+1,j

)2 − (
un

i,j

)2

∆x
,

(
∂uv

∂y

)n

i+1/2,j

=
(uv)n

i+1/2,j+1/2 − (uv)n
i+1/2,j−1/2

∆y
,

(
∂2u

∂x2

)n

i+1/2,j

=
un

i+3/2,j − 2un
i+1/2,j + un

i−1/2,j

∆x2
,
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(
∂2u

∂y2

)n

i+1/2,j

=
un

i+1/2,j+1 − 2un
i+1/2,j + un

i+1/2,j−1

∆y2
,

(
∂v2

∂y

)n

i,i+1/2

=

(
vn

i,j+1

)2 − (
vn

i,j

)2

∆y
,

(
∂uv

∂x

)n

i,j+1/2

=
(uv)n

i+1/2,j+1/2 − (uv)n
i−1/2,j+1/2

∆x
,

(
∂2v

∂x2

)n

i,j+1/2

=
vn

i+1,j+1/2 − 2vn
i,j+1/2 + vn

i−1,j+1/2

∆x2
,

(
∂2v

∂y2

)n

i,j+1/2

=
vn

i,j+3/2 − 2vn
i,j+1/2 + vn

i,j−1/2

∆y2
.

(4.4)

In the above expression, terms like ui,j, vi,j, ui+1/2,j+1/2, vi+1/2,j+1/2 appear,
which are not defined in Fig. 4.1. To evaluate such terms, linear interpolation
is employed, that is,

ui,j = 0.5
(
ui−1/2,j + ui+1/2,j

)

ui+1/2,j+1/2 = 0.5
(
ui+1/2,j + ui+1/2,j+1

)

vi+1/2,j+1/2 = 0.5
(
vi,j+1/2 + vi+1,j+1/2

) (4.5)

4.1.2 MAC formulation

One of the earliest, and most widely used, methods for solving (4.1-4.3) is the
Marker and Cell (MAC) method [17] due to Amsden and Harlow (1970). The
method is characterized by the use of a staggered grid and the solution of a
Poisson equation for the pressure at every time-step. Although the original
form of the MAC method has certain weakness, the use of a staggered grid
and a Poisson equation for the pressure has been retained in many modern
methods derived from the MAC method.

In the MAC formulation the discretizations (4.4) allow the following ex-
plicit algorithm to be generated from (4.1 and 4.2):

un+1
i+1/2,j = ∆t

(
F n

i+1/2,j −
pn+1

i+1,j − pn+1
i,j

∆x

)
, (4.6)

where

F n
i+1/2,j =

un
i+1/2,j

∆t
−

(
∂u2

∂x

)n

i+1/2,j

−
(

∂uv

∂y

)n

i+1/2,j

+
1

Re

((
∂2u

∂x2

)n

i+1/2,j

+

(
∂2u

∂y2

)n

i+1/2,j

)
. (4.7)
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Similarly, the discretized form of (4.2) is written as

vn+1
i,j+1/2 = ∆t

(
Gn

i,j+1/2 −
pn+1

i,j+1 − pn+1
i,j

∆y

)
, (4.8)

where

Gn
i,j+1/2 =

vn
i,j+1/2

∆t
−

(
∂uv

∂x

)n

i,j+1/2

−
(

∂v2

∂y

)n

i,i+1/2

+
1

Re

((
∂2v

∂x2

)n

i,j+1/2

+

(
∂2v

∂y2

)n

i,j+1/2

)
. (4.9)

In (4.6 and 4.8) p appears implicitly; however, pn+1 is obtained before (4.6
and 4.8) are used, as follows. The continuity equation is discretized as

un+1
i+1/2,j − un+1

i−1/2,j

∆x
+

vn+1
i,j+1/2 − vn+1

i,j−1/2

∆y
= 0, (4.10)

Substituting right-hand-side of (4.6 and 4.8) into (4.10), we rewrite (4.10) as
a discrete Poisson equation for the pressure

pn+1
i+1,j − 2pn+1

i,j − pn+1
i−1,j

∆x2
+

pn+1
i,j+1 − 2pn+1

i,j − pn+1
i,j−1

∆y2

=
1

∆t

(
F n

i+1/2,j − F n
i−1/2,j

∆x
+

Gn
i,j+1/2 −Gn

i,j−1/2

∆y

)
(4.11)

The equation is solved at every time-step using direct Poisson solver, and
the solution pn+1 will be substituting into (4.6 and 4.8) to obtain un+1 and
un+1.

4.1.3 Projection method

An alternative way to solve the couple system (4.1-4.3) is the so-called pro-
jection method which was proposed by A. J. Chorin [6] in 1968. The general
procedure for a projection method is a predictor-corrector approach. In the
first step an intermediate velocity field denoted by u∗ is computed utiliz-
ing the momentum equations. This velocity does not satisfy the continuity
equation. In the second step a Poisson equation for the pressure which is
derived from the continuity equation is solved. Finally, u∗ is projected onto
a divergence-free velocity field by the computed pressure. The three steps
are now described in detail for our treatment problem.
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First-order projection method

Step1: This is a prediction step for u∗.

u∗ = Hn (4.12)

The components of H = (F, G) are expressed in (4.6 and 4.8).

Step2: Solve a Poisson equation for pressure by using the direct Poisson
solver.

∆pn+1 =
1

∆t
∇ · u∗. (4.13)

Step3: The projection step.

un+1 = u∗ −∆t∇pn+1. (4.14)

Note that this procedure has second-order accuracy in space and first-order
accuracy in time. Since the corresponding algorithms for un+1 and vn+1 are
explicit, there is a restriction on the maximum mesh size of time for a stable
solution [17].

0.25(| u | + | v |)2∆tRe ≤ 1 and

∆t/(Re∆x2) ≤ 0.25, assuming that ∆x2 = ∆y2 (4.15)

Second-order projection method

In order to release the restriction of the maximum mesh size of time and
reduce the truncation error from the time discretization, a second-order time
discretization scheme to momentum and continuity equations is intuitively
considered. However, the resultant discrete formulation of Navier-Stokes
equations

3un+1 − 4un + un−1

2∆t
+ 2(un · ∇)un − (un−1 · ∇)un−1 +∇pn+1

=
1

Re
∆un+1 +

1

ReCa

(
2fn − fn−1

)
(4.16)

is a coupled system of the velocity field u and the pressure p. Note that non-
linear terms such as advection terms and external forces are approximated
by a conventional extrapolation evaluated at t = n∆t, that is, the approx-
imation of a function ψ at t = (n + 1)∆t simply comes from the average
form ψn ≈ 0.5(ψn+1 + ψn−1). To decouple the above numerical scheme, we
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introduce a second-order projection method which is based on the idea of the
first-order projection method. The detailed procedures are described as the
following steps.

Step1: This is a prediction step to evaluate the intermediate velocity field
u∗ by the Helmholtz-type solver.

3u∗ − 4un + un−1

2∆t
+ 2(un · ∇)un − (un−1 · ∇)un−1 +∇pn

=
1

Re
∆u∗ +

1

ReCa

(
2fn − fn−1

)
(4.17)

or simply

∆u∗ − 3Re

2∆t
u∗ = ReHn (4.18)

where

Hn =
un−1 − 4un

2∆t
+2(un·∇)un−(un−1·∇)un−1+∇pn− 1

ReCa

(
2fn − fn−1

)

(4.19)
In this step the unknown u∗ is treated implicitly, so we can relax the restric-
tion of upper bound of time mesh. Moreover, this algorithm is second-order
accurate in time.

Step2: By the Hodge decomposition there exists a potential function φ and
a divergence-free velocity field un+1 such that

u∗ = un+1 +
2∆t

3
∆φn+1. (4.20)

Taking the divergence operator to both sides of (4.20) and using the divergence-
free property, we have

∆φn+1 =
3

2∆t
∇ · u∗ (4.21)

Furthermore, a Poisson solver is used again to obtain φn+1.

Step3: Project u∗ onto un+1 as

un+1 = u∗ − 2∆t

3
∆φn+1. (4.22)

Now we already updated un+1, and solve a Poisson equation of potential
function φn+1 instead of the one of pressure pn+1. Obviously, pn+1 can be
obtained from φn+1 by substituting Eq. (4.20) into Eq. (4.17) and comparing
the resultant formulation with Eq. (4.16). Therefore,

∇pn+1 = ∇pn +∇φn+1 − 1

Re
∆u∗. (4.23)
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4.2 Lagrangian manners

For the immersed interface, we use a collection of discrete points αk =
k∆α, k = 0, 1, . . .M such that the Lagrangian markers are denoted by Xk =
X(αk) = (Xk, Yk). The force density F and velocity U are always defined on
position Xk such that F k = F (αk) = (Fk, Gk) and U k = U (αk) = (Uk, Vk).
However, there are two types of interfaces in our numerical simulations, a
bubble which is a simple closed curve and a drop which attaches on the solid
wall, some of quantities defined on the interface may be evaluated on the
position different from Xk due to the problem. No matter what kind of
problem we treat, the calculation of the derivative of a variable along the
interface plays a very important role to the dynamic of the interface. Here,
we provide two choices of approach to compute the derivatives of a function
along the interface. Without loss of generality, for any function defined on
the interface ψ(α), we approximate the partial derivative ∂ψ

∂α
by

Finite difference approach

Dαψ(α) =
ψ(α + ∆α/2)− ψ(α−∆α/2)

∆α
. (4.24)

and

Cubic spline approach
Dcs(ψ(α)), (4.25)

where Dcs is an operator of derivative from cubic splines.

A bubble

In this case, the bubble can be seen as a periodic parametric function of
α, i.e. X0 = XM . The unit tangent τ , the surfactant concentration γ,
surface tension σ are defined at the “half-integer” points given by αk+1/2 =
(k + 1/2)∆α. Then τ k+1/2 = τ (αk+1/2), γk+1/2 = γ(αk+1/2), and σk+1/2 =
σ(αk+1/2). For this setting, τ k+1/2 is simply evaluated from the derivative
of X with respect to α by the center difference method. And F k will be
obtained from τ k+1/2 in the same process. Alternatively, one can use cubic
spline method for the derivative of variables along the interface, however,
it is convenient to define τ and σ at the integer-points but keep γ at the
half-integer points for numerically preserving the total mass of surfactant
concentration.
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A drop contacts a solid wall

When a drop contact a solid wall, the interface is no longer a simple closed
curve and two end-points are always located on the solid wall with X0 6=
XM . Again, the surfactant concentration γk−1/2, is still defined at the “half-
integer” points given by αk−1/2 = (k − 1/2)∆α. However, the unit tangent
τ and surface tension σ are defined at αk = k∆α. Since center difference
approach to derivatives on the interface is not good enough to catch the
behavior of the interface, instead, we use a natural cubic spline to fit the
interface. Although this approach need more computational cost, it makes
the interface behave as a piecewise cubic polynomial so that unit tangent τ k,
unit normal nk, and curvature κk are provided automatically.

4.3 Connection between fluid and interface

Recall that (3.16) represents a transformation from lagrangian variables to
eulerian variables while (3.17) seems to be a transfer to interpolate fluid ve-
locity to the position of the interface. And we have proposed several one
dimensional delta functions at the end of last chapter. Since we only con-
sider two-dimensional problem here, the delta function should be given as
a product of one-variable functions that scale with the mesh width h as
δ(x) = 1

h2 φ(x)φ(y). This means that the delta function allows us to treat
each component of x − X individually and the resultant comes from their
product.

4.4 An equi-distributed technique for Lagrangian

markers

In the context of immersed boundary simulations, the interface is tracked
in a Lagrangian manner. Once the Lagrangian markers have been chosen
initially, the movement of those markers are based on the interpolating local
fluid velocity. Very often, as time evolves, those Lagrangian markers will
be either clustered together or diluted so the overall numerical stability or
accuracy can be affected significantly. Therefore, certain grid redistribution
technique must be adopted to preserve better resolution. In our previous
immersed boundary simulation for a drop in a shear flow [31], the marker
points will gradually sweep into the tips so we need to add or delete the grid
points based on the distances of the markers. In this paper, we introduce
another convenient way to dynamically control the Lagrangian markers so
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that they can be equally distributed for all time.

In order to remove the stiffness from the interfacial flows with surface
tension more easily, Hou, Lowengrub and Shelly [18] introduced an artificial
tangential velocity into their θ−L formulation of boundary integral methods
so that the particles can be uniformly distributed. Following the same idea of
[18] and modifying it to the framework of the immersed boundary method,
we propose the following technique to enforce Lagrangian markers equally
distributed.

As we know, |Xα| is the local stretching factor of the interface. The idea
is to introduce an artificial tangential velocity UA(α, t) in Eq. (3.17) as

∂X(α, t)

∂t
= U (α, t) + UA(α, t) τ , (4.26)

so that |Xα| is independent of α, but is dependent of t. It is quite apparent
that there should be no artificial tangential velocity at moving contact lines
(α = 0 and α = Lb) since the contact lines should move with their own speed
determined by the fluid system. Thus, we have UA(0, t) = UA(Lb, t) = 0.

Here, we need to impose |Xα|α = 0 so we have |Xα| = 1
Lb

∫ Lb

0
|Xα′| dα′.

Taking the derivative with respect to t, we have |Xα|t = 1
Lb

∫ Lb

0
|Xα′|t dα′.

Since

Sαt =
∂ |Xα|

∂t
= Xαt · τ =

(
∂U

∂α
+

∂UA

∂α
τ + UA ∂τ

∂α

)
· τ

=

(
∂U

∂α
+

∂UA

∂α
τ + UAκSαn

)
· τ =

∂U

∂α
· τ +

∂UA

∂α
,

= (∇s ·U ) |Xα|+ ∂UA

∂α
(4.27)

we have

∂UA

∂α
=

1

Lb

∫ Lb

0

(
∂U

∂α′
· τ ′ +

∂UA

∂α′

)
dα′ − ∂U

∂α
· τ . (4.28)

Integrating with respect to α and using the fact of UA(0, t) = UA(Lb, t) = 0,
we obtain

UA(α, t) =
α

Lb

∫ Lb

0

∂U

∂α′
· τ ′ dα′ −

∫ α

0

∂U

∂α′
· τ ′ dα′. (4.29)

It is important to mention that an alternative formula for above artificial tan-
gential velocity has been derived by Ceniceros [5] in a similar front-tracking
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manner. However, unlike the derivation in [5], the present formula (4.29)
does not need to compute the curvature of the interface.

Furthermore, the numerical formulation of (4.29) can be written as

(
UA

)n+1

k
=

∆α

Lb

C −
k∑

i=0

′ (
∂U

∂α
· τ

)n+1

i

∆α. (4.30)

where
∑k

i=0

′
ai = 0.5a0 +a1 + · · ·+ak−1 +0.5ak and C is the integrand of Sαt

over [0, Lb]. Actually, C is evaluated by the use of (4.30) as following

C =
Lb

∆α

M∑
i=0

′ (
∂U

∂α
· τ

)n+1

i

∆α. (4.31)

Note that this artificial velocity will affect not only the position of mark-
ers Xk on the interface but the distribution of the surfactant concentration
γk+1/2. We will put the effect of the artificial velocity into the surfactant
equation and give a mass-preserving numerical scheme in next section.

4.5 Modified surfactant concentration equa-

tion

By taking the artificial velocity UA into account, the material derivative now
becomes

Dγ

Dt
=

∂γ

∂t
− UA τ · ∇sγ. (4.32)

So the surfactant equation (2.36) has to be modified to

∂γ

∂t
− UA τ · ∇sγ + (∇s ·U ) γ =

1

Pes

∇2
s γ. (4.33)

Multiplying the stretching factor |Xα| on both sides of the above equation,
we obtain

∂γ

∂t
|Xα| − UA ∂γ

∂α
+ (∇s ·U ) |Xα| γ =

1

Pes

∇2
s γ |Xα|. (4.34)

By writing the surface derivatives in terms of α explicitly and using the
identity of Eq. (4.27), we obtain

∂γ

∂t
|Xα|+ ∂ |Xα|

∂t
γ − ∂(UA γ)

∂α
=

1

Pes

∂

∂α

(
∂γ

∂α
/ |Xα|

)
. (4.35)
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The finite difference discretization for the surfactant equation in next section
should be based on the above formulation. Notice that, when the artificial
tangential velocity UA is set to be zero, the above equation can be recovered
to the original surfactant equation derived in [31]. We should also mention
that a similar modified surfactant equation (by taking the artificial velocity
into account) with curvature term can be found in [5] as well.

4.6 Mass-preserving numerical scheme for sur-

factant equation

Since the surfactant is insoluble, the total mass on the interface must be
conserved. Thus, it is important to develop a numerical scheme for the
surfactant concentration equation to preserve the total mass. This can be
done as follows.

For the sake of convenience, we use Sα to denote the stretching factor
|Xα|, and rewrite the surfactant concentration equation (4.35) as

∂γ

∂t
Sα +

∂Sα

∂t
γ − ∂(UAγ)

∂α
=

1

Pes

∂

∂α

(
∂γ

∂α
/Sα

)
. (4.36)

Now we discretize the above equation by the Crank-Nicholson scheme in a
symmetric way as

γn+1
k+ 1

2

− γn
k+ 1

2

∆t

(Sα)n+1
k+ 1

2
+ (Sα)n

k+ 1
2

2
+

(Sα)n+1
k+ 1

2
− (Sα)n

k+ 1
2

∆t

γn+1
k+ 1

2

+ γn
k+ 1

2

2

−1

2

((
UA

)n+1

k+1
γn+1

k+1 −
(
UA

)n+1

k
γn+1

k

∆α
+

(
UA

)n

k+1
γn

k+1 + γn
k −

(
UA

)n

k
γn

k

∆α

)

=
1

2 Pes

1

∆α




(
γn+1

k+ 3
2

− γn+1
k+ 1

2

)

∆α
/ (Sα)n+1

k+1 −

(
γn+1

k+ 1
2

− γn+1
k− 1

2

)

∆α
/ (Sα)n+1

k




+
1

2 Pes

1

∆α




(
γn

k+ 3
2

− γn
k+ 1

2

)

∆α
/ (Sα)n

k+1 −

(
γn

k+ 1
2

− γn
k− 1

2

)

∆α
/ (Sα)n

k


 ,(4.37)

where (Sα)k+ 1
2
≈ 0.5

(
(Sα)k + (Sα)k+1

)
and γk ≈ 0.5

(
γk− 1

2
+ γk+ 1

2

)
.

Since the new interface marker location Xn+1
k is obtained in the previous step,

the above discretization results in a symmetric tri-diagonal linear system
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which can be solved easily. More importantly, the total mass of surfactant is
conserved numerically; that is,

∑

k

γn+1
k+ 1

2

(Sα)n+1
k+ 1

2
∆α =

∑

k

γn
k+ 1

2
(Sα)n

k+ 1
2
∆α. (4.38)

(Note that, the summation is exactly the mid-point rule discretization for the
integral in Eq. (2.30).) The above equality can be easily derived by taking
the summation of both sides of Eq. (4.37) and using the no flux boundary
condition (or periodic boundary condition) of γ.

4.7 Ghost values from boundary conditions

In this section, we demonstrate approximation of ghost values which are
used in the computation of fluid solver. Since the fluid mesh is staggered,
velocity components u and v, and pressure p are defined on the center of
the faces of the cell (i, j) and the center of the cell (i, j), respectively. Dis-
crete values u1/2,j, uM+1/2,j, vi,1/2, and vi,M+1/2 are evaluated at their cor-
responding boundaries, respectively. However, ui+1/2,0, ui+1/2,M+1, v0,j+1/2,
and vM+1,j+1/2 are so-called the ghost values approximated by the use of the
boundary conditions on its adjacent boundary.

A bubble in a shear flow

The first numerical experiment in next chapter is concerned with a bubble in
a shear flow. In this case, the initial condition of a shear flow u = r(y, 0) is
applied in the beginning, and boundary conditions for the fluid velocities are
given as values of the initial velocity at the boundary of the computational
domain [a, b]×[c, d]. That is, u(x, c) = rc, u(x, d) = rd, u(a, y) = u(b, y) = ry,
and v(x, c) = v(x, d) = v(a, y) = v(b, y) = 0. Then approximations for ghost
values from linear extrapolation are given in the following.

ui+1/2,0 = 2u(i∆x, c)− ui+1/2,1 = 2rc− ui+1/2,1,

ui+1/2,M+1 = 2u(i∆x, d)− ui+1/2,M = 2rd− ui+1/2,M ,

v0,j+1/2 = −v1,j+1/2, (4.39)

vM+1,j+1/2 = −vM,j+1/2.

Note that ui+1/2,1, ui+1/2,M , v1,j+1/2, and vM,j+1/2 are unknowns for the system
when these ghost values are used. Therefore, the effect of these ghost values
will appear in the right-hand side of the linear system and simultaneously
affect the coefficients of the matrix of the linear system.
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A drop adheres to a solid wall

For the moving contact line problem, the no-slip boundary condition should
be replaced with the Navier-slip boundary condition (2.43). For simplicity,
consider a drop adheres the bottom of a box [a, b] × [c, d], then Navier-slip
boundary condition will be imposed at y = c while no-slip boundary con-
ditions are imposed at x = a, x = b, and y = d. (Obviously, ghost values
corresponding to boundaries with no-slip boundary conditions, in fact, are
approximated in similar way to last case). We can simplify (2.43) as

u(x, c) = β
∂u

∂y
(x, c) , (4.40)

where β is the slip coefficient of magnitude around 0.5∆y. A discrete form
of Eq. (4.40) is

ui+1/2,1 + ui+1/2,0

2
= β

ui+1/2,1 − ui+1/2,0

∆y
+ O(∆y2), (4.41)

therefore, we obtain a second-order approximation

ui+1/2,0 =

(
β −∆y/2

β + ∆y/2

)
ui+1/2,1. (4.42)

4.8 Indicator function

Since the density and viscosity are discontinuous constants across the inter-
face, they can be represented by the approximate form

µ (x, t) = µ2 + (µ1 − µ2) I (x, t) , (4.43)

ρ (x, t) = ρ2 + (ρ1 − ρ2) I (x, t) , (4.44)

where the indicator function is found using Tryggvason’s approach in [52].
In detail, the indicator function can be written as an integral of the two-
dimensional Dirac-delta function on the region Σ (t)

I (x, t) =

∫

Σ(t)

δ (x− x′) dx′,

∇I (x, t) = −
∫

∂Σ(t)

δ (x−X (α, t)) ndα,

⇒ ∆I (x, t) = −∇ ·
∫

∂Σ(t)

δ (x−X (α, t)) ndα. (4.45)
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4.9 Numerical time integration

At the beginning of each time step, e.g., step n, the variables Xn
k = X(αk, n∆t),

γn
k+1/2 = γ(αk+1/2, n∆t), un = u(x, n∆t), and pn−1/2 = p(x, (n − 1/2)∆t)

are all given. The details of the numerical time integration are as follows.

1. Compute the surface tension and unit tangent on the interface.

For a bubble:

σn
k+1/2 = σc

(
1 + ln

(
1− ηγn

k+1/2

))
(4.46)

τ n
k+1/2 =

DαXn
k

|DαXn
k |

(4.47)

both of which hold for αk+1/2 = (k+1/2)∆α. Then the interfacial force
at the fluid/fluid markers Xk, k = 1, . . . , M are given by

F n
k = Dα(σn

k+1/2 τ n
k+1/2). (4.48)

Note that F n
0 = F n

M due to the periodicity of F .

For a drop:

σn
k = σc (1 + ln (1− ηγn

k )) (4.49)

τ n
k =

DsX
n
k

|DsX
n
k |

(4.50)

both of which hold for αk = k∆α, and γn
k is simply approximated by

the average of γn
k−1/2 and γn

k+1/2. Then we compute the interfacial force

at the fluid/fluid markers Xk, k = 1, . . . , M − 1 by

F n
k = Ds (σn

k τ n
k) . (4.51)

The unbalanced Young force at the contact lines (k = 0 and k = M)
can be computed by

F n
0 = (σs2 − σs1 − σn

0 cos θn
0 ) e1 (4.52)

F n
M = − (σs2 − σs1 − σn

M cos θn
M) e1 (4.53)

where e1 = (1, 0) and cos θn
k = −τ n

k · e1.

2. Distribute the force from the markers to the fluid by

fn(x) =
M−1∑

k=1

F n
kδh (x−Xn

k) ∆α + C
∑

k=0,M

F n
kδh (x−Xn

k) , (4.54)
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where the smooth version of Dirac delta function in [36] is used. Here,
C = 0.5 is used for a bubble enclosed in a fluid while C = 1 is used in
the moving contact line problem.

3. Solve the Navier-Stokes equations. This can be done by the following
second-order accurate projection method [2], where the nonlinear term
is approximated by the Adams-Bashforth scheme and the viscous term
is approximated by the Crank-Nicholson scheme. For convenience, we
use a simple notation ψ|b[n]

a[n−1] to represent bψn − aψn−1.

∇h · (µ∇hu
∗)− 3Re

2∆t
u∗ = ReHn (4.55)

where

Hn =
un−1 − 4un

2∆t
+ ((u · ∇h) u) |2[n]

[n−1] +∇hp
n

− 1

Re

(∇h ·
(
µ∇hu

T
)) |2[n]

[n−1] −
1

ReCa
f |2[n]

[n−1] (4.56)

BCs for a shear flow:

u∗ = ry, on x = a and x = b,

u∗ = rc, on y = c,

u∗ = rd, on y = d,

v∗ = 0, on ∂Ω

(4.57)

BCs for a moving contact line problem:

u∗ = β
∂u∗

∂y
, v∗ = 0, on y = c,

u∗ = 0, otherwise

(4.58)

∇2
hφ

n+1 =
∇h · u∗
2∆t/3

,
∂φn+1

∂n
= 0, on ∂Ω (4.59)

un+1 = u∗ − 2∆t

3
∇hφ

n+1, (4.60)

pn+1 = pn + φn+1 − 1

Re
∇h · u∗. (4.61)

Here, ∇h is the standard centered difference operator on the staggered
grid. One can see that the above Navier-Stokes solver involves solving
two Helmholtz equations for velocity u∗ = (u∗, v∗) and one Poisson
equation for pressure. These elliptic equations are solved by using the
geometric multigrid solver.
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4. Interpolate the new velocity on the fluid lattice points onto the marker
points U k = (Uk, Vk) and move the marker points Xk = (Xk, Yk) to
new positions.

Un+1
k =

∑
x

un+1δh(x−Xn
k)h2 k = 0, 1, . . . M (4.62)

Xn+1
k = Xn

k + ∆t
(
Un+1

k + (UA)n+1
k τ n

k

)
, k = 1, . . . M − 1(4.63)

Xn+1
k = Xn

k + ∆t Un+1
k , k = 0,M (4.64)

where (UA)n+1
k is computed by a mid-point integration rule of Eq. (4.29).

It is worth noting that at the positions of contact lines k = 0 and
k = M , we only update the x coordinates by the velocity along the
solid wall, and keep their y coordinates fixed as Y n+1

0 = Y n+1
M = c.

This is consistent with the unbalanced Young forces which are applied
only along the solid wall (x direction) as shown in Eqs. (4.52)-(4.53). As
mentioned before, there is no artificial velocity applied at the moving
contact lines; that is, (UA)n+1

0 = (UA)n+1
M = 0.

5. Update surfactant concentration distribution γn+1
k by the numerical

algorithm (4.37). Basically, we can rearrange (4.37) to a simpler form

(
1

(Sα)n+1
k+1

γn+1
k+ 3

2

−
(

1

(Sα)n+1
k+1

+
1

(Sα)n+1
k

+
ζ(Sα)n+1

k+ 1
2

∆t

)
γn+1

k+ 1
2

+
1

(Sα)n+1
k

γn+1
k− 1

2

)

=

(
−1

(Sα)n
k+1

γn
k+ 3

2
+

(
1

(Sα)n
k+1

+
1

(Sα)n
k

−
ζ(Sα)n

k+ 1
2

∆t

)
γn

k+ 1
2

+
−1

(Sα)n
k

γn
k− 1

2

)

−ζ

2

(
(uA)n+1

k+1γ
n+1
k+1 − (uA)n+1

k γn+1
k

∆α
+

(uA)n
k+1γ

n
k+1 − (uA)n

kγ
n
k

∆α

)
(4.65)

where ζ = 2Pes∆α2, (Sα)k+ 1
2
≈ 0.5((Sα)k+(Sα)k+1), andγk ≈ 0.5(γk− 1

2
+

γk+ 1
2
). Note that the unknown γn+1 appears only on the left-hand side

of the above equation, we simply have a linear system Aγ = b. Since
the essential data Xn+1 and (UA)n+1 are obtained in previous steps, we
can get Sn+1

α involving to the tri-diagonal matrix A and the right-hand
side of the system. The resultant symmetric tri-diagonal linear system
can be solved easily by the Thomas algorithm.
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Chapter 5

Numerical results

In this chapter, we first verify the convergence of our numerical schemes for
the concerning problems, a bubble in a shear flow and a drop adheres to a
solid substrate. If the surface tension is a constant, the motion of the interface
is affected only by the curvature force in the normal direction (Capillary
effect only), a corresponding benchmark will be shown after convergence
test. When the interface is contaminated by surfactants, the surface tension
can be altered and regarded as a function of surfactant which is derived
by a linear or nonlinear Langmuir equation, therefore the maragoni effect
appears. In the consequent, the effect of the surfactant for a bubble in a shear
flow will be presented. Also, several moving contact line phenomena which
are derived by the unbalanced Young’s forces will attract one’s attention.
Finally, we consider a two-phase flow with different fluid properties (both of
the viscosity and density are piecewise constant functions). In this run, not
only the surface tension evolve the interface but an external force (gravity)
will affect the evolution of entire fluid field.

5.1 Convergent test

5.1.1 For a bubble in a shear flow

First of all, we carry out the parameter setting in the convergence study of
the present method. Here, we perform different computations with varying
Cartesian meshes h = ∆x = ∆y = 0.04, 0.02, 0.01, 0.005. The Lagrangian
mesh is chosen as ∆s ≈ h/2 and the time step size is ∆t = h/8. The solutions
are computed up to time T = 1.

Since the analytical solution is not available in these simulations, we
choose the results obtained from the finest mesh as our reference solution
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and compute the L2 error between the reference solution and the solution
obtained from the coarser grid. Table 5.2 shows the mesh refinement analysis
of the velocity u, v, and the surfactant concentration γ. One can see that

h ‖u− uref‖2 rate ‖v − vref‖2 rate ‖γ − γref‖2 rate
0.04 4.9739E-03 - 4.1656E-03 - 1.4551E-02 -
0.02 2.1476E-03 1.21 1.8169E-03 1.20 6.3542E-03 1.20
0.01 6.9859E-04 1.62 6.2180E-04 1.55 2.2329E-03 1.51

Table 5.1: The mesh refinement analysis of the velocity u, v, and the surfac-
tant concentration γ.

the error decreases substantially when the mesh is refined, and the rate of
convergence is about 1.5. Notice that, the fluid variables are defined at the
staggered grid and the surfactant concentration is defined at ”half-integer”
indices of the grid, so when we refine the mesh, the numerical solutions will
not coincide with the same grid locations. In these runs, we simply use a
linear interpolation to compute the solutions at the desired locations. We
attribute this is part of the reason why the rate of convergence behaves less
than second-order. However, we believe that the key factor reducing the rate
of convergence comes from using the discrete delta function, a function with
compact support and only C1 smoothness.

5.1.2 For the moving contact line problem

Since the motion of the interface in the moving contact line problem involves
not only fluid-fluid surface tension but surface tension between fluid and solid
near the contact line points. There are additional treatments in the numer-
ical processes, that is why we have two verifications for the convergence of
the numerical schemes.

We consider a computational domain Ω = [−1, 1] × [0, 1] where a half
of circular drop with radius 0.5 is initially attached on the bottom of the
domain, and both left and right contact angles are π/2 initially. The initial
fluid velocity are all set to be zero. The surface tension is affected by the sur-
factants following the equation of state given by Eq. (2.38), here, σc = 1 and
η = 0.3. Other parameters are initial surfactant concentration γ(α, 0) = 1,
the Reynolds number Re = 10, the capillary number Ca = 0.1, the surface
Peclet number Pes = 20, and the slip length β = h/4, where h is the mesh
width. Here, we perform four different computations with varying Carte-
sian mesh h = ∆x = ∆y = 1/32, 1/64, 1/128, 1/256. The Lagrangian mesh
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h ‖u− uref‖2 rate ‖v − vref‖2 rate ‖γ − γref‖2 rate
1/16 5.8079e-03 - 3.3148e-03 - 3.1818e-02 -
1/32 2.9639e-03 0.97 1.9179e-03 0.79 1.7977e-02 0.82
1/64 1.4773e-03 1.00 1.0805e-03 0.82 9.8698e-03 0.86
1/128 5.9179e-04 1.32 4.6628e-04 1.21 4.2087e-03 1.23

Table 5.2: The mesh refinement analysis of the velocity u, v, and the surfac-
tant concentration γ.

h ‖X −Xref‖∞ rate | cos(θ)− cos(θref )| rate |A− Aref |/Aref rate
1/16 4.7646e-02 - 1.0285e-01 - 1.1476e-01 -
1/32 2.4225e-02 0.98 6.3948e-02 0.69 5.6724e-02 1.02
1/64 1.1426e-02 1.08 3.6915e-02 0.79 2.7473e-02 1.05
1/128 4.1700e-03 1.45 2.1708e-02 0.77 1.3145e-02 1.05

Table 5.3: The mesh refinement analysis of interface positions, the contact
angles, and the area of drop.

is chosen as ∆α ≈ h and the time mesh size is ∆t = h/10. The solutions
are computed up to time T = 6.25. Again, the analytical solution is not
available in these simulations, we choose the results obtained from the finest
mesh as our reference solution and compute the L2 error between the ref-
erence solution and the solution obtained from the coarser grid. Table 5.2
shows the mesh refinement analysis of the velocity u, v, and the surfactant
concentration γ. One can see that the error decreases substantially when the
mesh is refined, and the rate of convergence is about first-order. Notice that,
the fluid variables are defined at the staggered grid and the surfactant con-
centration is defined at ”half-integer” indices of grid, so when we refine the
mesh, the numerical solutions will not coincide with the same grid locations.
In these runs, we simply use a linear interpolation to compute the solutions
at the desired locations. Table 5.3 shows the L∞ errors of the interface po-
sitions, the cosine value of the contact angles, and the area loss of the drop
for different meshes. One can see the rate of convergence is about first-order
which is consistent with the results shown in Table 5.2.

During the drop deformation, the Lagrangian markers will gradually
sweep into contact lines and cause clustered distribution near those points.
Fig. 5.1 shows the comparison of the local stretching factor |Xα| = Sα at
T = 6.25 with (solid line) or without (dashed line) the implementation of
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Figure 5.1: Comparison of stretching factor |Xα| with (UA = 0, dashed line)
and (UA 6= 0, solid line), where h = 1/128.

equi-distributed technique of Lagrangian markers. Here, we only show the
case with surfactant η = 0.3. One can see this technique does preserve the
markers more uniformly.

In addition, it is well-known that the fluid leakage often appears in the
simulation of immersed boundary method. In [37], Peskin and Printz pro-
posed an improved volume (area in 2D) conservation scheme for the immersed
boundary method by constructing a discrete divergence operator based on
the interpolation scheme. Here, however, the area loss is not that significant,
thus no modification is applied. One should mention that with the implemen-
tation of present dynamical control of Lagrangian markers, one can reduce
the area loss significantly than without implementing it.

5.2 Capillary and Maragoni effect

In this section, we aim to numerically verify the concept of Capillary and
Maragoni effects in the evolution of a bubble immersed in a fluid. First of
all, we consider a benchmark which is an ellipse generated only by Capillary
forces (σ is independent of surfactants) in a quiescent flow. The basic se-
tups in this experiment are the computational domain Ω = [−1.28, 1.28] ×
[−0.64, 0.64], aspect ratio of the initial configuration 2 : 1, the surface tension
σ = 1, the mesh size h = 1/128, and the mesh of time is t = h/10. About the
fluid properties, we choose µ1 = µ2 = 0.1 and ρ1 = ρ2 = 1 so that Reynolds
number Re = 10 and Capillary number Ca = 0.1.

Since curvatures are bigger at the tips of the bubble, the magnitude of
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Figure 5.2: The time evolution of a bubble in a quiescent flow. The dash-line
is the configuration of the steady state which is a circle with re = 0.4243. (a)
Relative error of area loss. (b) Total length of the bubble.

forces at the tips are greater than ones close to the bottom and top zones.
As expected, the ellipse will shrink gradually to a circle. Fig. 5.2 shows the
evolution of an elliptical bubble and the corresponding area loss and total
length of the bubble. Moreover, we can verify how accurate of this simu-
lation by considering the incompressibility of the bubble. If the area inside
the bubble is preserved well, then the radius re of the steady state, a cir-
cle, can be obtained by taking the square root of the area over π. In Fig.
5.2(a), we observe that the relative error of the area enclosed the bubble
is within 0.015% and the area of the initial configuration is 0.5655 so that
re =

√
0.5665/π = 0.4243. The evolution of the total length of the bub-

ble reaches an equilibrium 2.6655 which matches well to the corresponding
perimeter of the steady state 2πre = 2.6657, see Fig. 5.2(b).

Base on the same setting above except to replace the initial configuration
of a circle with radius 0.35, we add nonuniform distribution of surfactant
concentration to the interface as follows.

γ(α, 0) = 0.8 (1.1− tanh (2 (α− 0.5π) (α− π))) , α ∈ [0, 2π], (5.1)

γ(α, 0) = 0.8 (1.1− tanh (2 (α− π) (α− 1.5π))) , α ∈ [0, 2π], (5.2)
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Figure 5.3: (a) A bubble with bulk surfactant in the second quadrant moves
to the left-top corner of the box. (b) The corresponding evolution of sur-
factant concentration of (a). (c) A bubble with bulk surfactant in the third
quadrant moves to the left-bottom corner of the box. (d) The corresponding
evolution of surfactant concentration of (c).

that one has bulk surfactant in α ∈ [0.5π, π], and the other concentrates in
α ∈ [π, 1.5π]. In the former case, surfactants initially aggregate in the second
quadrant, see the first figure in Fig. 5.3(b), and reduce more surface tension,
the surface tension along the other quadrant gives more contribution to the
bubble in the beginning and the bubble moves toward the left-top direction,
see Fig. 5.3(a). Later, surfactants diffuse to the area with lower concentra-
tion to produce a uniform distribution of surfactant, and the surface tension
becomes almost constant along the interface so that the bubble stops mov-
ing, see Fig. 5.3 (a) and (b). Similarly, the bubble moves to the left-bottom
corner of the box when the surfactant initially bulk in the third quadrant,
the corresponding evolutions of the bubble motion and the distribution of the
surfactant are shown in Fig 5.3 (c) and (d), respectively. Note that the leak-
age of the area in both case is less than 0.01% probably due to the invariant
of the shape, and the total mass of the surfactant is preserved numerically
(up to machine accuracy).
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5.3 Deformation of a bubble in a shear flow

The effect of surfactant on the deformation of a drop is of considerable interest
in polymer and emulsion industries. It is also a good theoretical model for
illustrating subtle physics in viscous interfacial flow. In this section, the
immersed boundary method is applied to study the effect of surfactant on
the deformation of a bubble in Navier-Stokes flows.

Following the set up in [56], we consider a computational domain Ω =
[−5, 5] × [−2, 2] where a circular bubble of radius one is initially located
at the center of the domain. We apply a steady shear flow to the bubble;
that is, we set the boundary condition ub = (0.5 y, 0), for −2 ≤ y ≤ 2.
For comparison purposes, both clean (without surfactant) and contaminated
(with surfactant) bubbles are used in these computations. Using the equation
of state given by Eq. (2.37), η = 0 implies no contamination, in which case we
do not need to solve the surfactant equation (2.36). Throughout this section,
we set σc = 1 so the clean interface has a uniform surface tension σ = σc.
For the contaminated case, the initial surfactant concentration is uniformly
distributed along the interface such that γ(α, 0) = 1. Unless otherwise, we set
the Reynolds number Re = 10, the capillary number Ca = 0.5, the surface
Peclet number Pes = 10, and the parameter η = 0.25.

5.3.1 Clean vs. contaminated interface

To examine the effect of the surfactant on interfacial dynamics, we com-
pare a bubble with and without surfactant in a steady shear flow. When the
surfactant are present in the interface, the surface tension can be reduced sig-
nificantly, cf. equation of state (2.37). Throughout the rest of this section,
we use a uniform Cartesian mesh h = ∆x = ∆y = 0.02, and a Lagrangian
grid with size ∆s ≈ h/2. The mesh size of time is set to be ∆t = h/8.

Fig. 5.14 shows the time evolution plots of deformation of the bubble in
a steady shear flow field. Here, we consider three different values of η in
Eq. (2.37); namely, η = 0 (dotted, clean interface), η = 0.25 (dash-dotted),
and η = 0.5 (solid). As expected, the magnitude of deformation of the bub-
ble increases when the value of η increases, as in the case of Stokes flow [56].
Fig. 5.5 shows the vorticity plot for the bubble with surfactant near the left
and the right tips. One can see that two vortices with positive and negative
signs are generated near the tips of the bubble.

During the deformation of the bubble, the Lagrangian markers will grad-
ually sweep into the tips and cause clustered distribution near the tips. If the
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Figure 5.4: The time evolution of a drop in a shear flow with clean (η = 0,
’.’) and contaminated interface (η = 0.25, ’-.’, η = 0.5, ’-’).
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markers become too crowdedly or too coarsely distributed, it will affect the
numerical accuracy. Thus, in order to maintain the numerical stability and
accuracy, we need to apply the equi-distributed technique we performed in
previous chapter, moreover, if necessary, we will double the number of grid
when the bubble is over stretched. The detail is given as follows.

In each time step, we first apply the equi-distributed technique to get an
artificial velocity and compute the resultant distance between two adjacent
markers. If the distance is less than 0.75h, then we basically keep the original
resolution. However, if the distance is greater than 0.75h, then we double the
number of the grid. (Should be clarified. One important thing during the
grid redistribution process is to keep the mass conservation of the surfactant.
This can be done in a local way. For instance, in the segment of adding more
grid points, we simply distribute the surfactant mass into those points uni-
formly. On the other hand, in the segment of removing grid points, we add
up those surfactant mass to be a new surfactant concentration in the new
combining segment. Thus, the overall surfactant mass is conserved exactly
without any scaling.)

Plots of the corresponding surfactant concentration (left column) and sur-
face tension (right column) versus arc-length are given in Fig. 5.16. For the
surfactant concentration plot, we omit the case of clean interface since the
concentration is zero everywhere on the interface. It can be seen from this
figure, the bubble is elongated by the shear flow so that the total length of
the interface is increased from the rest state. Since there is no surfactant
transferred between the interface and the fluid, the surfactant concentration
is diluted on a portion of the interface, partly due to the elongation of the in-
terface, but mainly because it is swept to the tips of the bubble. As a result,
the smallest surface tension occurs at the tips. One can also see that the
value of η affects the surfactant concentration by shifting the distributions
slightly along the length of the bubble. Once again, we confirm the same
qualitative behavior as in [56].

In Fig. 5.7, the corresponding capillary (defined as σκ|∂X
∂α
|/(ReCa), left

column) and the Marangoni forces (defined as ∂σ
∂α

/(ReCa), right column) are
plotted versus the arc-length for different cases of η. Since the capillary force
depends on the curvature and surface tension, we see that the largest capil-
lary force occurs at the tips of the bubble due to the high curvature there.
For clean interface, the Marangoni force is obviously zero.

In Fig. 5.17, we present four different plots; namely, (a) total mass of
the surfactant, (b) the error of total mass, m(t) − m(0), (c) total area of
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Figure 5.6: Distributions of the surfactant concentration (left) and the cor-
responding surface tension (right). Notations and parameters are same as in
Fig. 5.14.

the bubble, (d) total length of the interface. Clearly, the present method
preserves the total surfactant mass and the errors reach machine precision.
However, there is a slight area losing or fluid leakage inside the bubble as
shown in Fig. 5.17(c). It seems that the bubble without surfactant has a
more serious leakage than the ones with surfactant. Here, the area loss is not
that significant, thus no modification is applied. Once again, we can see from
Fig. 5.17(d) that the bubble with surfactant has larger deformation than the
one without surfactant due to the increase of total length of the interface.

5.3.2 Linear vs. nonlinear equation of state

In this test, we use the same set up as in the previous one except that a
simplified form of nonlinear Langmuir equation of state σ(γ) = σc (1+ln(1−
ηγ)) is used and compared with the results of the linear equation of the state.
In Fig. 5.9, the evolution of the bubble under steady shear flow is shown at
different times using the linear (dotted) and nonlinear (solid) equations of

state with η = 0.5. Once again, our results are consistent with those in [56],
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Figure 5.7: The corresponding capillary force (left) and Marangoni force
(right). Notations and parameters are same as in Fig. 5.14.

i.e., deformation of the bubble increases when the nonlinear equation of state
is used. The corresponding surfactant concentrations and surface tensions are
shown in Fig. 5.10. One can easily see that the nonlinear equation of state
generates smaller surface tension at tips of the bubble which leads to a larger
deformation. As shown in Fig. 5.11, the capillary forces are roughly similar
but the Marangoni force for the nonlinear case is slightly larger at tips of the
bubble. The four different plots for both linear and nonlinear cases including
the total mass of the surfactant, the error of total mass, the total area of the
bubble, and the total length of the bubble are shown in Fig. 5.12.

5.3.3 Effect of capillary number on drop deformation

As the last test, we perform the study on how different capillary numbers
affect the deformation of the bubble. Here, we fix the Reynolds number
Re = 10 and the surface Peclet number Pes = 10. We vary the capillary
number as Ca = 0.05, 0.25, 0.5, 1.0 and perform our runs up to time T = 4.
As confirmed in previous literature such as [30], a larger capillary number
means a smaller surface tension (with the viscosity fixed) so the bubble un-
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Figure 5.8: (a) Total mass of the surfactant. (b) Time plot of m(t)−m(0).
(c) Total area of the bubble. (d) Total length of the interface. Notations and
parameters are same as in Fig. 5.14.

der shear flow can deform more substantially. This is exactly what we see
in our simulations as illustrated in Fig. 5.13. We also make runs by varying
the different surface Peclet number while keeping the Reynolds and capillary
numbers fixed. However, the effect of surface Peclet number is not as signif-
icant as the effect of the capillary number on the deformation of the bubble,
so we omit the results here.

5.4 A drop adheres to a solid surface

In this section, we perform several numerical experiments to test our scheme
described in previous chapter. We consider a computational domain Ω =
[−1, 1] × [0, 1] where a half of circular drop with radius 0.5 is initially at-
tached on the bottom of the domain, and both left and right contact angles
are π/2 initially. The initial fluid velocity are all set to be zero. We like to
see how the surfactant affects the motion of the interface so both clean (with-
out surfactant) and contaminated (with surfactant) drops are used in these
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Figure 5.9: The time evolution of a bubble under a shear flow with linear
(’.’) and nonlinear (’-’) equation of state.
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responding surface tension (right). Notations and parameters are same as in
Fig. 5.9.
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Figure 5.11: The corresponding capillary force (left) and Marangoni force
(right). Notations and parameters are same as in Fig. 5.9.
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Figure 5.12: (a) Total mass of the surfactant. (b) Time plot of m(t)−m(0).
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parameters are same as in Fig. 5.9.
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Figure 5.13: The effect of capillary number Ca on the deformation of the
bubble. (Ca = 0.05 : ’.’, Ca = 0.25: ’-’, Ca = 0.5: ’-.’, Ca = 1.0: ’–’)

computations. Using the equation of state given by Eq. (2.38), η = 0 implies
no surfactant, in which case we do not need to solve the surfactant equation
(4.35). Throughout this section, we set σc = 1 so the clean interface has a
uniform surface tension σ = σc. For the contaminated case, the initial sur-
factant concentration is uniformly distributed along the interface such that
γ(α, 0) = 1. Unless otherwise, we set the Reynolds number Re = 10, the
capillary number Ca = 0.1, the surface Peclet number Pes = 20. The slip
length used in Navier-slip boundary condition is chosen as β = h/4, where h
is the mesh width.

5.4.1 Hydrophilic case

To examine the effect of the surfactant on interfacial dynamics, we compare
a hydrophilic drop with and without surfactant in a quiescent flow. When
the surfactant are present in the interface, the surface tension can be re-
duced significantly, cf. equation of state (2.38). In this case, we choose σs2 =
1, σs1 = 0.5 so that the equilibrium contact angle is θe = π/3 for the clean
interface. Here, we choose a uniform Cartesian mesh h = ∆x = ∆y = 1/128,
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Figure 5.14: The time evolution of a hydrophilic drop with clean (η = 0,
dashed line) and contaminated interface (η = 0.3, solid line).

and a Lagrangian grid with size ∆α ≈ h. The mesh size of time is set to be
∆t = h/10.

Fig. 5.14 shows the time evolution plots of a hydrophilic drop in a qui-
escent flow field. Here, we distinguish the clean (η = 0) and contaminated
(η = 0.3) drop interfaces by the ”dashed” and ”solid” lines, respectively. As
expected, both drops will start wetting on the solid substrate. The clean
drop moves gradually to a state with the contact angle approaching to equi-
librium θ ≈ π/3, while the contaminated one wets further than the clean one
to reach a state with θ ≈ π/4. This drop behavior can be easily explained by
Eq. (2.28). The surfactant is insoluble and affects only the surface tension
between liquid phase 1 and liquid phase 2. Therefore, both σs2 and σs1 re-
main the same and so is their difference, but the surface tension σ at the right
and left contact lines are always smaller than σc. As a result, the dynamic
contact angle θ becomes a function of t as θ(t) = arccos((σs2−σs1)/σ) ≤ π/3.
Thus, the contaminated drop becomes more wetting than the clean one. It
is also interesting to mention that the larger value of η, the more wetting of
the drop since the surface tension σ decreases more.

Fig. 5.15 shows the velocity plots for the drop with surfactant near the
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Figure 5.15: The velocity field for the drop with surfactant near the left and
right contact lines (η = 0.3, T = 1.5625).

left and the right contact lines at time T = 1.5625. One can see significant
contact line velocity pointing outward to the dry region (fluid 2) has been
observed during the wetting process.

Plots of the corresponding surfactant concentration (top column) and
surface tension (bottom column) versus arc-length for the contaminated case
are given in Fig. 5.16. It can be observed although the initial surfactant
is uniformly distributed, the later concentration at the contact lines are
higher than other places of the interface. This is because during the wet-
ting process, the surfactant are swept into the contact lines. As a result,
the smallest surface tension occurs near the contact points. However, the
distribution of the surfactant concentration will finally reach a uniform dis-
tribution again due to the diffusion process. The present method preserves
the total surfactant mass exactly and the error reaches the machine precision,
i.e. |m(t)−m(0)| ≈ 10−14.

In Fig. 5.17, we present four different time evolutionary plots; namely,
(a) left contact line speed; (b) right contact line speed; (c) the contact an-
gles; and (d) the total length of the drop. Fig. 5.17-(a) and (b) show the
evolution of left and right contact line speed, respectively. Since the initial
contact angle deviates the equilibrium angle more, the unbalanced Young
force is larger in the beginning and so is the contact line speed. However, as
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Figure 5.16: Distribution of the surfactant concentration (top) and the cor-
responding surface tension (bottom).

time evolves, the contact line speed is slowing down and tends to zero when
the drop reaches its steady state. The corresponding evolution of contact an-
gle is shown in Fig. 5.17-(c). In fact, evolutions of the left and right contact
angles in the corresponding run are almost the same due to the symmetry
of the drop and the same setting of equilibrium of both contact angles. The
final dynamic contact angle of the clean drop approaches to π/3 as expected,
while the contaminated one approaches to π/4. Fig. 5.17-(d) shows that the
drop with surfactant wets more than the one without surfactant due to the
increase of total length of the interface.

5.4.2 Hydrophobic case

In this case, we keep almost the same setup as previous example but change
the surface tensions to σs2 = 0.1557 and σs1 = 1 so that the equilibrium
contact angle for a clean interface is θe = 0.82π which corresponds to a hy-
drophobic drop.

Fig. 5.18 shows the time evolution plots of a hydrophobic drop in a qui-
escent flow field. Again, we distinguish the clean (η = 0) and contaminated
(η = 0.3) drop interfaces by the ”dashed” and ”solid” lines, respectively.
In this case, both drops start to contact. From Eq. (2.28), the dynamic
contact angle θ evolves following θ(t) = arccos((σs2 − σs1)/σ) ≥ 0.82π so
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Figure 5.17: (a) Left contact line speed of the drop. (b) Right contact line
speed of the drop. (c) Contact angle of the drop. (d) Total length of the
drop. Notations and parameters are same as in Fig. 5.14.

the contaminated drop becomes more hydrophobic due to the reduction of
surface tension. Thus, while the clean drop moves gradually to approach to
a state with equilibrium contact angle, the contaminated one goes further to
become a nearly non-wetting state. Once again, the larger value of η, the
more hydrophobic the drop becomes as the surface tension σ is reduced by
contamination.

Fig. 5.19 shows the plots for the drop with surfactant near the left and
the right contact lines at time T = 2.3438. Significant contact line veloc-
ity pointing inward to the wet region (fluid 1) has been observed during the
non-wetting process. Plots of the corresponding surfactant concentration and
surface tension are similar to the hydrophilic case and omitted here.

In Fig. 5.20, we present time evolutionary plots for the comparison of
clean and contaminated hydrophobic drops; namely, (a) left contact line
speed; (b) right contact line speed; (c) the contact angles in units of π; and
(d) the total length of the drop. Fig. 5.20-(a) and (b) show the evolution
of left and right contact line speed, respectively. As in the hydrophilic case,
the initial contact angle deviates the equilibrium angle more, the unbalanced
Youngs force is larger in the very beginning and so is the contact line speed.
Now, this is a hydrophobic case so the contact line speed for left angle is pos-
itive while the right one is negative. Furthermore, the magnitude of contact
line speed for the contaminated drop is larger than the clean one since the
contaminated drop becomes more non-wetting. As time evolves, the contact
lines slow down and approach to zero when the drop reaches its steady state.
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Figure 5.18: The time evolution of a hydrophobic drop with clean (η = 0,
dashed line) and contaminated interface (η = 0.3, solid line).

The corresponding evolutions for left and right contact angles in units of π
are shown in Fig. 5.20-(c). The final dynamic contact angle of the clean drop
approaches to 0.82π as expected, while the contaminated one approaches to
π.

5.4.3 Hydrophobic-hydrophilic case

Now, we consider a substrate that has different wettability by defining σs2(x), x ∈
[−1, 1] as

σs2(x) =





0.191, Hydrophobic x ∈ I1 = [−1,−0.65]
5.59 (x + 0.65) + 0.191, x ∈ I2 = (−0.65,−0.45)
1.309, Hydrophilic x ∈ I3 = [−0.45, 1].

We simply choose σs1 = 1 so that the static contact angles (clean interface)
for σs2 = 0.191 and 1.309 are θe = 4π/5 and 2π/5, respectively. Roughly
speaking, this set up mimics the situation that the solid surface has a com-
bining hydrophobic (zone I1) and hydrophilic (zone I3) feature. Initially, we
put a half circular drop with radius 0.5 and centered at (−0.25, 0) in the
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Figure 5.19: The velocity field for the drop with surfactant near the left and
right contact lines (η = 0.3, T = 1.5625).

domain so that the left and right contact lines are located in zone I1 and I3,
respectively. See the corresponding diagram in Fig. 5.21 in detail.

Along the circular interface, we choose a nonuniform initial surfactant
concentration as

γ(α) = − 8

5π3
α3 +

12

5π2
α2 + 0.5, α ∈ (0, π).

Fig. 5.22 shows the time evolution plots of the hydrophobic-hydrophilic drop
with (η = 0.3, solid line) or without (η = 0, dashed line) surfactant effect.
Basically, the existence of surfactant does not make significant difference in
present set up. Initially, the motion of the contact line is mainly derived
by the contribution of the unbalance Young force. The left contact angle
deviates from its equilibrium more than the right contact angle, so the left
unbalanced Young force is larger than the right one at the earlier time. There-
fore, in the beginning, the left contact line speed is larger than the right one
as shown in top row in Fig. 5.23 or Fig. 5.25-(a) and (b). One can also see
from Fig. 5.22, at the earlier time, the left portion of drop tends to become
non-wetting while the right portion tends to be wetting as expected. This
makes the drop look curvier near left contact line and the mass center of
the drop shifts a little bit to the left of the drop. When the left contact
line arrives at zone I2 (a continuous transition region from hydrophobic to
hydrophilic) around t = 1, the unbalanced Young force is getting smaller and
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Figure 5.20: (a) Left contact line speed of the drop. (b) Right contact line
speed of the drop. (c) Contact angles of the drop. (d) Total length of the
drop. Notations and parameters are same as in Fig. 5.18.

smaller, and so is the corresponding contact line speed. Meanwhile, the effect
of surface tension becomes apparent and keeps reducing the curvature in the
left side of the drop. At the same time, the fluid inside is pushed from left to
the right due to the incompressibility of the fluid and then the right contact
angle is increasing slightly (away from its corresponding equilibrium), this
implies an increase of Young force and leads an increasing contact line speed
in a short time, see Fig. 5.25-(a) and (b). After the left contact line crosses
the middle of I2 (around t = 3.6), the entire drop falls into a hydrophilic
zone, and the rest drop behavior is similar to the hydrophilic wetting case.

In Fig. 5.25, we present four different time evolutionary plots; namely,
(a) left contact line speed, (b) right contact line speed, (c) left contact angle,
and (d) right contact angle for this hydrophobic case. The contact angles of
clean drop match very well to 0.4π, while contact angles of the contaminated
drop tend to reach θ ≈ 0.35π.
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Figure 5.21: Wettability and the initial drop set up.
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Figure 5.22: The time evolution of a hydrophilic drop with clean (η = 0,
dashed line) and contaminated interface (η = 0.3, solid line).
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Figure 5.23: The velocity field for the drop with surfactant near the left and
right contact lines at T = 1.0938, 3.5938.
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Figure 5.24: Distribution of the surfactant concentration (top) and the cor-
responding surface tension (bottom).

5.5 A rising bubble in a fluid with gravity

effect

In this section, we aim to validate that our numerical method can be extend
straightforward to more realistic interfacial flow problems, that is, the fluids
inside and outside the interface have different fluid properties (density and
viscosity), although we consider only constant fluid properties in all previous
sections. Basically, we just need to consider an extra indicator function
I(x, t) evaluated by solving a Poisson equation in Eq. (4.45) to determine
where is fluid 1 and where is fluid 2 and use Eqs. (4.44) and (4.43) to
update the density and viscosity, respectively. Since we now have different
fluid properties, the fast direct solver we used to solve linear systems in
the projection method is no longer available due to variable coefficient of
the diffusion operator. Alternatively, an iterative solver, based on a semi-
coarsening geometric multigrid method [3, 32], replaces to solve these linear
systems. In this test, we consider the motion of a liquid bubble rising in
a two-dimensional domain Ω = [−0.64, 0.64] × [−0.64, 1.92] due to gravity
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Figure 5.25: (a) Left contact line speed of the drop. (b) Right contact line
speed of the drop. (c) Left contact angle of the drop. (d) Right contact angle
of the drop.

g∞ = 1. The radius of the liquid bubble set to be R = 0.35. The boundary
conditions are given as u(x; t)|∂Ω = 0 and the initial conditions are u(x; 0) =
v(x; 0) = 0. The density and viscosity ratios ρ2/ρ1 = µ2/µ1 = 10, where
subscripts 1 and 2 stand for values inside and outside the bubble, respectively.
In addition, we set ρ1 = 10 and µ1 = 0.01. The surface tension σ is varied
as it determines the shape of the interface separating the two fluids. More
precisely, we use a non-dimensional parameter called the Eotvos number Eo,
which is the ratio of the gravity and the surface tension force.

Fig. 5.26(a) is the evolution of the interface which separates the two fluids
at t = 0, t = 7, t = 14, and t = 20 with Eo = 0.1 while the shape of the rising
bubble with Eo = 10 at the same time intervals is shown in Fig. 5.26(b).
In each case, the leakage of the area inside the bubble is within 0.5%. It
can be seen that the shape of the bubble is clearly affected by the value of
the Eotvos number. The shape of the liquid drop remains circular when the
Eotvos number is small (corresponding to a large surface tension coefficient).
When the Eotvos number is large (corresponding to a small surface tension
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Figure 5.26: (a) A rising bubble with Eo = 0.1. (b) A rising bubble with
Eo = 10.

coefficient), however, significant deformation can be observed. In another
words, the surface tension affects the shape of the bubble. This is consistent
with experimental observations.
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Chapter 6

Summary and future work

In this dissertation, we introduced a mathematical model for the interfa-
cial flow problems such as a bubble in a shear flow and the moving contact
line problems. We have developed an immersed boundary method for two-
dimensional interfacial flows with insoluble surfactant. The governing equa-
tions (Navier-Stokes equations) are formulated in a usual immersed bound-
ary framework where a mixture of Eulerian fluid and Lagrangian interfacial
variables are used, with the linkage between those two different variables is
provided by the Dirac delta function. The immersed boundary force comes
from the nonhomogeneous surface tension which is affected by the distribu-
tion of surfactants along the interface. In addition, the unbalanced Young
force should be applied at the contact lines to mimic the tendency to the
equilibrium in the moving contact line problems (Navier-slip boundary con-
ditions should be imposed on the solid substrate which contact lines adhere
to). By tracking the interface in a Lagrangian manner, a simplified surfac-
tant concentration equation can be obtained. The numerical method involves
solving the Navier-Stokes equations on a staggered grid by a semi-implicit
pressure increment projection method where the immersed interfacial forces
are calculated at the beginning of each time step. Once the velocity values
and interfacial configurations are obtained, a dynamical control of Lagrangian
markers is introduced so that the physical spacing of the markers can be kept
uniformly. Then the corresponding modified surfactant equation is solved in
a new symmetric discretization such that the total mass of surfactant along
the interface is conserved numerically. Numerical results include the con-
vergence analysis, a bubble with surfactant in a shear flow, the effect of the
surfactant for hydrophilic and hydrophobic drops, and a rising bubble in a
flow with gravitational effect. These numerical results match mathematical
predictions well, and show that one can trustfully use the method we pre-
sented here to simulate related interfacial flow problems or extend the idea
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of this work to predict phenomena with more complicated effects.

As a next step, we will generalize the present algorithm to simulate two
phase flows with distinct densities and viscosities for the moving contact line
problems. In particular, we plan to study the effect of soluble surfactant on
drop detachment from a solid surface, i.e., a problem with moving contact
points/lines. We also like to extend the idea of this work to first three-
dimensional axi-symmetric flows, and then we plan to generalize the current
work to general 3D simulations.
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