
國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

在網站閘道器上提供整體回應時間比例差別服

務之多重資源要求排程演算法

Multiple-resource Request Scheduling Algorithms for

Proportional System-time Differentiation at Website Gateway

研 究 生：陳銘宏

指導教授：林盈達 教授

中 華 民 國 九 十 五 年 六 月

 II

在網站閘道器上提供整體回應時間比例差別服務之多重資源要求排

程演算法

Multiple-resource Request Scheduling Algorithms for Proportional
System-time Differentiation at Website Gateway

研 究 生：陳銘宏 Student：Ming-Hung Chen

指導教授：林盈達 Advisor：Ying-Dar Lin

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis
Submitted to Institute of Computer Science and Engineering

College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer Science

June 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年六月

 III

在網站閘道器上提供整體回應時間比例差別服

務之多重資源要求排程演算法

學生：陳銘宏 指導教授：林盈達

國立交通大學資訊工程研究所

摘 要

對於一個商業網站來說，如何最佳化網站伺服器的吞吐量與提供重要的客戶

較短延遲時間的服務是兩個需要考量的主要問題。本篇論文提出了一個置於網站

之前，透過多重資源要求排程演算法來提供不同等級的客戶間整體回應時間比例

差別服務的閘道器系統。即使這個閘道器系統完全獨立於網站之外，此閘道器系

統依然可以完全的消耗伺服器上的資源以提升網站吞吐量，並且還可以提供比例

的整體回應時間差別服務給不同等級的使用者。這個閘道器系統主要由許可控制

機制與要求排程機制兩大部分所組成，其中的許可控制機制透過控制轉送要求的

速度，除了可以避免網站伺服器過載，還可以盡量的有效運用網站伺服器上的資

源；而要求排程機制則依據三種修改過的比例延遲演算法, WTP, MDP 和 PAD 來

進行要求排程，以提供不同等級間的整體回應時間比例差別服務。為了驗證效

果，我們透過修改一個開放原始碼的代理伺服器軟體 Squid 來實做這個閘道器系

統，測試結果中顯示此閘道器系統可以提升最大的吞吐量達 78%，並同時減少

25%的整體回應時間。除此之外，我們也發現以 WTP 和 MDP 為基礎的排程演

算法可以提供良好的整體回應時間比例差別服務效果。

關鍵字：多重資源、請求排程、差別服務、延遲

 IV

Multiple-resource Request Scheduling
Algorithms for Proportional System-time

Differentiation at Website Gateway

Student: Ming-Hung Chen Advisor: Dr. Ying-Dar Lin

Department of Computer Science
National Chiao Tung University

Abstract

Optimizing the serving throughput and providing important customers short

user-perceived latency are two of major concerns for commercial websites. This thesis

proposes a gateway system in front of the website to provide Proportional

System-time Differentiation with multiple-resources consideration (MR-PSTD)

between customers. Despite being external to the website, our gateway not only

exhausts the resources of all types in the website to raise its throughput, but also

provides proportionally differential system time differentiation to users of different

classes. The gateway mainly consists of an admission controller (AC) and a request

scheduler (RS). To prevent the server from being overloaded while exhausting all

resources, AC controls the forwarding rate of requests to the server. To provide

proportionally differentiated system time between classes, RS schedules the requests

according to three reformed latency-based scheduling algorithms including Waiting

Time Priority (WTP), Mean Delay Proportional (MDP) and Proportional Average

Delay (PAD). We implement our gateway by modifying Squid, an open-source proxy.

Our evaluation results show that our MR-PSTD gateway raises 78% of peak

throughput and reduces 25% of user-perceived latency. Besides, WTP-based and

MDP-based scheduling algorithms can provide exact PSTD between classes.

Keywords: multiple resources, request scheduling, differentiation, latency

 V

Contents

Chapter 1 Introduction ...1
Chapter 2 Multiple-Resources PSTD...3

2.1 More Desirable PSTD than PDD and PSD..3
2.2 Multiple-resources consideration...4

Chapter 3 MR-PSTD Gateway Architecture..6
3.1 Overview of gateway architecture ...6
3.2 Classification of classes and types...7
3.3 Admission control module ...8

3.3.1 Offline measurement for server capacity ..8
3.3.2 Decide the next type..11

3.4 Request scheduler ..12
3.4.1 The reformed algorithms...13

3.5 Response handler ...15
3.5.1 Updating the mean service time..16
3.5.2 Adjusting the upper-bound of window ...16

Chapter 4 Experiment and Results...19
4.1 Software Implementation...19
4.2 Test Bed..21
4.3 Effects on Differentiation...23

4.3.1 WTP is stable in short timescales..23
4.3.2 PWAD is unsuitable for PSTD..25
4.3.3 MDP is stable in medium timescales ..26

4.4 Performance Improvement...28
Chapter 5 Conclusion and Future Works ...32
References..33

 VI

List of Figures

Figure 1 Resource utilization on server ...5
Figure.2 The MR-PSTD Web Gateway Architecture ..6
Figure 3 Procedure of offline measurement...11
Figure 5 Procedure of dynamic window size adjusting ...18
Figure.6 The modified processing flow of Squid ..20
Figure.7 Experiment network topology ...22
Figure.7 Averaged system time of WTP-based MR-PSTD gateway24
Figure 8 Averaged system time of PWAD based MR-PSTD gateway26
Figure 9 Averaged system time of MDP based MR-PSTD gateway27
Figure 10 Average throughputs between gateways..29
Figure 11 Throughput with different upper bound of service time..............................30
Figure 12 Service time and queuing time distribution between gateways...................30
Figure 13 Number of concurrent requests between gateways31

 VII

List of Tables

Table 1 The summary of reformed algorithms...13
Table 2 The description of new functions..21
Table 3 Software running on PCs ..22
Table 4 Experiment results of offline probing ...23

 1

Chapter 1 Introduction

The user-perceived latency is a key metric for a web site to evaluate its providing

service for the users. If the users perceive a short latency on visiting a web site, they

may have a high willing to visit it frequently. For an e-commerce web site, it is

particularly important that their customers perceive short latency because the

customers would support the finances of the site. To provide short latency for

customers, expending the server resources, e.g. buying more servers, is a simple

strategy for web-site operators. However, expending resources costs money. Therefore,

under the limited server resources, the operators may expect a solution that can (1)

fully utilize all types of resources to provide the optimal user-perceived latency and (2)

provide differential user-perceived latency for customers of different classes. That is,

high-class customers can get a shorter latency than low-class ones.

The Proportional Delay Differentiation (PDD) model proposed in [3] aims to

provide differential perceived latency for users of different classes. However, because

the PDD model is proposed for network-side QoS where the service time of packets is

short and ignored by the PDD model, the PDD model only considers the queuing time

of packets on the router or gateway. In server-side QoS, the service time of requests

may be long and should not be ignored anymore, and the PDD model is not suitable

anymore. The user-perceived latency in server-side QoS must consist of the queuing

time and the service time on the server or the web gateway simultaneously, and in this

situation, the user-perceived latency is also called the system time.

Thus, to fully utilize all types of resources in the server and provide differential

system time in server-side QoS, this work proposes a solution to satisfy the

e-commerce web-site operators. Our solution is deployed in the proxy in front of the

web sites, so the source codes at the web site do not need modification. This approach

 2

is significantly different from the previous solutions [1-2], which runs at the server

directly. Our solution includes two key modules: the admission control and request

scheduling. The former controls the number of the requests which will be forwarded

to the server and simultaneously served. The latter decides the request in which class

would be forwarded next.

In our solution, to fully use all types of resources at the server, the requests are

classified based on the major type of resources they need. For each type of requests,

our admission control employs an individual window to control the number of these

requests simultaneously served in the server. That is, the requests taking different

resources would be forwarded independently and served simultaneously, because the

time to simultaneously serve these requests should be shorter than that to sequentially

serve. Besides, each window is dynamically adjusted based on the utilization on the

corresponding type of resources. The utilizations are periodically probed from the

proxy.

To provide differential user-perceived latency at proxy, the requests are online

classified based on the customers who issued them. Each class of customers is

assigned a weight and their requests will be classified into a corresponding queue.

Next, our request scheduling selects requests from these class queues with a special

order in order to ensure the Proportional System-Time Differentiation (PSTD) among

different classes. For example, the requests in high-class with weight 2 will have half

of system-time experienced by the lower-class ones with weight 1. The system time

represents the total delay of a request, including the queuing time at the proxy and the

service time at the web sites.

The organization of this work is explained as follows. Chapter 2 explains why

the PSTD is more desirable than other previous models [2-3] and multiple-resources

consideration is important. Chapter 3 presents the gateway architecture that can

 3

achieve MR-PSTD. Chapter 4 presents the implementation of this gateway and the

experimental results. Chapter 5 concludes this work.

Chapter 2 Multiple-Resources PSTD

The chapter explains (1) why PSTD is a more desirable goal for server-side QoS

than two previous models: proportional delay differentiation (PDD) [3] and

proportional slowdown differentiation (PSD) [2], and (2) why customers have shorter

system time under multiple-resources consideration than under single-resource

consideration. That is, why considering multiple resources can lead to shorter system

time than merely considering single resource.

2.1 More Desirable PSTD than PDD and PSD

The following briefs the PDD and PSD models and describe why PSTD is more

desirable for server-side QoS than PDD and PSD.

The PDD model was proposed to provide network-side QoS [3]. It describes a

situation that the queuing delays among packets of different classes are proportional.

PDD ignores the service time of the packet, i.e. the time to transmit the packet,

because it is fixed and far smaller than the queuing time. However, under server-side

QoS, ignoring the service time cannot guarantee the proportional differentiation on

user-perceived latency because the service time is variable and long.

Compared with PDD, the PSD model is proposed to provide server-side QoS and

consider the service time [2-3]. However, PSD may not satisfy the high-class

customers because it plans to provide different classes with the proportional

differentiation on slowdown, not directly on the user-perceived latency. The slowdown

represents the quotient of dividing the queuing time by service time. High-class

customers may always expect short latency for all their requests and do not care about

 4

the length of the service time.

2.2 Multiple-resources consideration

As shown in Figure 1(a), because the server has multiple kinds of limited

resources, when the server serves requests in a FIFO manner, one of the resources

may be fully used while others are idle. In Figure 1(b), the resources on server are

almost exhausted, because the difference of incoming requests. Thus, the pattern of

workload on a Web server will affect the utilization of the server resource. When the

server is under the light-load situation, every request will get enough resources when

being served, but there could be unused resources on the server. The waste of idle

resources may lead to long queuing time and low throughput on the gateway.

Contrarily, under the heavy-load situation, a request may queue on the server and wait

to be served for a long time. Besides, since many requests are serving simultaneously,

the server would have frequent content-switching, which overhead may degrade the

performance of the server. Thus, if the server resources are inadequate for the

requirements of the arrival requests, a request would stay at the server for a long time.

The performance of the server may degrade, and the system time of requests may

increase much. To maximize the utilization of the server resources while avoiding

extra delay, the resources on the server should be well managed.

(a) Waste of idle resources

CPU

Disk I/O

Database

CPU Disk DB

Req1 Req2 Req3 Req4

Requests running at server

Total

 5

(b) Fully used resources

Figure 1 Resource utilization on server

Serving a request requires several types of resources, e.g. CPU, disk I/O, and external

database access. The unavailability of any resource would lead to a bottleneck, e.g. the

server shown in Figure 1(a) where the CPU resource is the bottleneck. In other words, if

there are n types of resources, there could be n types of bottlenecks on server-side.

Many of the mentioned request-scheduling algorithms deal with the problems of

single-resource bottleneck [1-7]. They manage a single resource to simultaneously

maximize and differentiate its utilization, but they cannot avoid the bottlenecks derived

from the other resources. A resource can be managed well, while the other resources

may be still available or inadequate for new arriving requests. A single-resource

scheduling algorithm could lead to an inefficient or overloaded server. Hence, a request

scheduling algorithm should consider the presence of multiple resources on server.

CPU Disk DB

Total

CPU

Disk I/O

Req3 Req4 Req5 Req6

Requests running at server

Req2 Req1

Database

 6

Chapter 3 MR-PSTD Gateway Architecture

This chapter proposes a web gateway architecture which can achieve the PSTD

model with multiple-resources consideration (MR-PSTD). Two key modules:

admission control and request scheduling, which respectively determine when to send

the next request and how to select it, will be described in the following.

3.1 Overview of gateway architecture

Figure 2 is a typical network topology where a two-tier web site is serving

requests received from Internet. The MR-PSTD web gateway locates in front of the

web server. Requests sent from end users are forwarded by the gateway, served by the

server, responded to the gateway, and finally returned to the end users. The gateway

architecture, as shown in the bottom of Figure 2, includes several components: request

classifier, request scheduler, admission control, service-time prober, response

classifier, and response handler.

Figure.2 The MR-PSTD Web Gateway Architecture

The working flow of the MR-PSTD web gateway can be divided into three steps

Client

Web Server
WebGateway

requests responses
Database

Internet

requests

requests responses

 7

and is described as follows. First, when a request comes to the gateway, the request

classifier, which is a content-aware classifier, identifies the class and the resource-type

of the request and puts it into the corresponding queue. In this architecture, there are

m * n of queues, where m denotes the number of classes and n denotes the number of

types of resources. Second, when the admission control module, which uses window

rate control mechanism to manage the sending rate of requests, regards that the server

has enough resources to serve a type-i request, it asks the request scheduler to picks

up a request from one of the queues that storing the type-i requests. The request

scheduler must decide to pick up the request from which class of queue. Third, after

the server sends responses back to the gateway, the content-aware response classifier

identifies the type and class of responses. The response handler is invoked next and

collects information to update averaged service time or adjust upper-bound of window

if needed.

3.2 Classification of classes and types

To handle the multiple resources and provide differentiated service in the web

site, we have to classify requests accord to their required resource types and

customers’ classes by scanning the content of requests. To classify requests based on

the resource type, we first assume the web master knows the internal operations

required by each request in the server. Then, according to the major type of resources

required by the request, the master can classify them into the corresponding types,

such as database operation intensive, math calculation intensive, and file access

intensive.

To classify requests by the customer class, the request classifier has to recognize

which class of customers issuing the request. The requests coming from the

specific-class customers may bring the specific information, e.g. URL paths, or

 8

cookies in their HTTP headers. Hence, we can classify the requests to the

corresponding classes by these specific information.

Briefly, when a request arrives in the gateway, the content-aware request

classifier recognizes the class and type of the request by its HTTP header and puts it

into the individual queue corresponding to its class and type. The request is queued

until the request scheduler selects it from the queue.

3.3 Admission control module

The Admission Control (AC) module decides when to release a request to the

server. AC is necessary because the resources in the server are limited. Sending

requests without any control causes the server overload and degrades the performance.

To fully exhaust one type of resources, but not overload in the server, AC first needs

to know the current available amount of resources. Second, a window control

mechanism is used in the AC module to let the number of the same-type requests

concurrently running on server never exceed the upper bound of window size. By

keeping the maximum amount of requests of each type just below the server capacity,

or the upper bound of window size, overload is prevented and peak throughput is

achieved.

When AC detects the server having enough resources to serve a type-i request,

the request scheduler is invoked to determine which classes of type-i requests will be

sent in order to keep the proportional differentiation.

3.3.1 Offline measurement for server capacity

Because the service time of a request grows as the load of server, it is possible to

determine whether the server is overloaded by watching the service time of the

request. Hence, we use the service time of requests as the metric to determine whether

the server is overloaded.

 9

When the server is fully used, the service time of particular type-i requests

represents the upper bound of type-i service time that the server is serving maximal

number of type-i requests concurrently without overload. Thus, we can keep the

service time of type-i request below the upper bound of type-i service time by

adjusting the maximum number of type-i requests simultaneously running on the

server.

To determine the upper bound of service time, before the web site operates

practically, the service-time prober sends the probing requests to the server according

to the off-line probing algorithm, as shown in Figure 3. The algorithm aims to get the

upper bound of service time and the initial upper-bound of window. The main idea of

this algorithm is that when the prober keeps the sending rate of requests, if the server

can afford the sending rate of requests, the server will respond to the requests with the

same rate. However, if the server cannot afford the requests at this sending rate, the

requests will be queued in the server and the responding rate will be smaller than the

sending rate.

This algorithm at first calls WaitForServer to lean any remaining request running

on server. Next, the function SendProbingReq sends the probing request with the

sending rate i. When we keep the sending rate i, the average number of requests

concurrently running on the server is set as the initial upper-bound of window, while

the average service time of requests is set as the upper bound of service time. After

the results, including average responding rate, initial upper-bound of window and

upper bound of service time, are collected to the ResultSet structure object result, the

average responding rate is compared with the sending rate. Because we try to find the

maximal sending rate of requests that the server can afford and can response at the

same responding rate, we increase the sending rate step by step to find the maximal

sending rate the server can afford. Thus,if the sending rate is equal to the responding

 10

rate, we assume the server does not work at its full speed, and then the sending rate

parameter i is increased by one. If the sending rate is larger than the responding rate,

the algorithm will check if the server can handle the sending rate again and enters

state 1. In state 1, if the server still cannot handle the sending rate, the algorithm

decreases the sending rate by one and enters state 2. In state 2, if the sending rate is

equal to the responding rate, we can assume that it is the maximum sending rate that

the server can handle. Thus, the upper bound of service time and initial upper-bound

of window can be extracted from result.

Note that the upper bound of service time should not be measured out when the

server is overloaded, because the best throughput is not achieved when the server is

overloaded [8]. The upper bound of service time in this algorithm is got at the load

that the server has the best performance.

 11

Figure 3 Procedure of offline measurement

3.3.2 Decide the next type

To fully exhaust all types of resources, AC always selects the requests from the

type that is the idlest at the server. The upper-bound of window can be used to decide

which type of resources remains most. When the server is not fully utilized and can

serve more than one request, AC first gets the normalized remaining window from all

types of resources as

() ()() { () 0 | }
()

i i
i i

i Types i

BoundWin t CurrWin tW t TotalNumReqInQueue t
BoundWin t∈

−
= >

where ()iTotalNumReqInQueue t denotes the total number of type-i requests in

ResultSet OfflineProb() {
int i=0, state=0;
ResultSet result;
while(true) {
 WaitForServer(); // Clean remain requests up

result=ProbeAndCollectResultsOnConnRate(r,i)
If(i==result.RespondingRate) { // Test if responding rate == sending rate
 switch(state) {
 case 0: // Not reach the bound yet, increase sending rate
 i++;
 break;
 case 1: // Not sure if i-1 is not overloaded, try again
 state=0;
 break;
 case 2: // Find the upper bound!
 return result;
 }
}

else if(i>result.RespondingRate) { // Test if responding rate < sending rate
 switch(state) {
 case 0:
 state=1; // Test current sending rate i again
 break;
 case 1: // Find that both two previous tests show the server is overloaded!
 i--;
 state=2; // Test the sending rate i-1 again
 break;
 case 2: // Not sure if i-1 is not overloaded, and let retry again from i-2
 i--;
 state=0;
 break;
 }
}

}
}

 12

queue at time t, ()iBoundWin t denotes the window size upper bound of type-i

requests at time t, and ()iCurrWin t denotes the current window size of type-i

requests at time t.

Next, AC decides the idlest type of requests by selecting the maximum of them as

arg max ()ii Types
T W t

∈
= .

If T is selected successfully, meaning that there are enough resources to serve

another request, the request scheduler is invoked to decide the class of the next

request.

3.4 Request scheduler

After AC decides when and which type of requests to send, the request

scheduling (RS) selects a request from the class with the longest normalized system

time. By this means of selection, the differentiation of normalized system time

between classes is minimized and the ratios of the average system time can be

approximated. The selection procedure is shown in Figure 4. At first, the algorithm

calls the function getWaitLongestClass with the parameter t where t is the idlest

resource type decided by AC. The implementations of function getWaitLongestClass

are different, because the implementations depend on the algorithms, which are used

to decide which class’s request is the next to send. After the type and class is decided,

the next request will be taken from queue and will be transmitted to the server. The

window size which represents the number of type-t requests currently running on

server is also added by one here.

Figure 4 Procedure of type and class selection

void SelectClassSendReq(int t) {
int i=getWaitLongestClass (t);
dequeue_transmit(Queue[i][t]);
CurrWin[t]++;

}

 13

However, the definitions of the longest normalized system time are different

among varions scheduling algorithms which try to approximate PSTD. From the

definition of system time in PSTD, we know that the system time is composed of

queuing time and service time. Thus, we discuss how to reform three typical PDD

algorithms, including WTP[3], MDP[4] and PAD[3], with the consideration of both

queuing time and service time to approximate PSTD. The request scheduler uses

those reformed algorithms to decide the class of the next request.

3.4.1 The reformed algorithms

The PDD algorithms are reformed to consider the queuing time and service time

simultaneously. Besides, MDP and PAD are reformed to merely consider the recently

departed requests, instead of overall departed requests. The change on MDP and PAD

would lead to a stable differentiation in short timescale. Table 1 summarizes the

properties of these reformed algorithms.

Reformed

Algorithm
Metric Suitable situation

WTP Normalized Head-Of-Line system time Short timescale

PWAD
Normalized averaged system time in a specified

moving time window
Medium timescale

MDP

Normalized mean system time, including the system

time of departed requests in a specified moving time

window and the lower bound of aggregated system

time of the requests currently in queue

Medium timescale

Table 1 The summary of reformed algorithms

Reforming WTP: To approximate PSTD, we reform WTP in the following.

Suppose that the request scheduler decides to send the type-j requests, that class-i is

 14

backlogged at time t, and that , ()i jw t is the queuing time of the head-of-line request

in the queue of class-i and type-j at time t. The normalized head-of-line system time

of class-i and type-j at time t is defined as

 , ,
1() (() ())i j i j j

i

w t w t s t
δ

= +

where ()js t denotes the mean service time at time t.

Every time a request of type-j is ready to sent, the WTP scheduler selects the

backlogged class with the maximum normalized head-of-line system time,

 ,
()

arg max ()i j
i B t

r w t
∈

= ,

where B(t) is the set of backlogged classes at time t.

Reforming PAD: The PAD algorithm get the mean time of a class by that of

averaging all the packets departed from the class, which may exhibit a pathological

behavior in short timescales as described in [3]. To avoid the behavior, we reform the

PAD algorithm to average the departed requests in a fixed period p, and rename it to

Proportional Window Average Delay (PWAD). Suppose that the request scheduler

decides to send the type-j requests, and ,
m
i jd is the system time of the mth departed

request of class-i and type-j, which is taken down by the response handler. Assume

there was at least one departure from class-i and type-j before t, the normalized

average system time of class-i and type-j at time t is defined as

, ,

, , ,

()
,() ()

,

, ,

1()
()

i j p

i j i j p

R t m
i jm R t R t

i j

i i j p

d
d t

R tδ
= −

=
∑

,

where ,i jR (t) is the number of departed class-i and type-j requests before time t and

, ,i j pR (t) is the number of departed class-i and type-j requests in recently p seconds.

Suppose that a request will be sent at time t. PWAD chooses the backlogged class j

 15

with the maximum normalized average system time,

 ,
()

arg max ()i j
i B t

r d t
∈

= .

Reforming MDP: The MDP algorithm is reformed with minor changes.

Originally, MDP accumulates the system time experienced over all departed requests.

We found that the properties of MDP make the system unstable after a long run,

although it is actually fair. To avoid the unstable situation after a long run, we reform

MDP to aggregate only departed requests in recent p seconds. Let *
, , ()i j pd t as the

sum of the aggregate system time experienced by the requests of class-i and type-j,

that have been served and taken down by response handler in recently p seconds, and

the aggregate queuing time of the requests of class-i and type-j currently in the queue

at time t. Let , , ()i j pR t be the number of type-j requests served from class-i in

recently p seconds, ()iq t be the number of queued requests of class-i at time t.

Assume no other requests of class-i will arrive in the future at time t. The normalized

minimum average system time , ()i jd t can be expressed as

*

, , , ,
,

, , ,

1() ()(1 ()) ()1 2()
() ()

i j p i j i j j
i j

i i j p i j

d t q t q t s t
d t

R t q tδ

+ + ×
=

+
,

where , ,
1 ()(1 ()) ()
2 i j i j jq t q t s t+ × is the lower bound of cumulative service time

experienced by all remaining class-i and type-j requests served from time t. Suppose

that a request will be sent at time t. MDP chooses the backlogged class-j which has

the maximum value of the normalized minimum average system time,

,
()

arg max ()i j
i B t

j d t
∈

= .

3.5 Response handler

The response handler aims to collect the information to keep the proportional

 16

differentiation and the performance of the server. The handler includes three

components: the content-aware response classifier, service time handler, and window

adjuster. The handler update the mean service time of requests for each resource type

and adjusts the window size based on the service time of the responses of probing

requests.

After the gateway receives a response returned from the server, the

content-aware response classifier identifies the type and class of the is response. If the

response results from a probing request, the window adjuster is invoked to adjust the

upper bound of the window of the probing request’s type. For the other responses, the

service time handler is invoked to update the average service time of the response’s

type.

3.5.1 Updating the mean service time

It is hard to exactly predict the service time of the requests currently in queues.

However, if the service time of the same type requests is similar in short timescales,

the service time averaged over recent requests of each type could be use as the

predictor. Therefore, we simply average the service time of the recent 200 served

type-j requests. Let , ()j kS t be the system time experienced by the kth served request

of type-j at time t. The averaged service time of type-j is defined as
199

,

0

()
()

200
j k i

j
i

S t
s t −

=

= ∑

3.5.2 Adjusting the upper-bound of window

The upper bound of window should be adjusted dynamically by using run time

resources to avoid the waste of resources. The waste of resource results from the

changing of traffic load. Because there are not always enough requests of each type to

server and each type of requests uses many kinds of resources which overlap the kinds

of resources required by other type of requests, when lacking one type of requests, the

 17

server might be able to serve more requests of other types. For example, when there

are no enough incoming Disk I/O-intensive requests, the server can handle more

CPU-intensive requests at the same time, because Disk I/O-intensive requests also

need some CPU resources.

Also, adjusting the upper-bound of window can reduce the inaccuracy of the AC.

Because in our gateway, the AC is fully external to the server, the AC cannot

determine the resources in the server accurately. Thus, the AC sometimes may not

exhaust all resources in the server and sometimes makes the server overloaded.

Adjusting the upper-bound of window lets the AC dynamic sends the requests to

server according to the measured resource usages in the server. Thus, the inaccuracy

of the external AC can be reduced.

To determine the ideal upper-bound of window in run time, we use the similar

strategy proposed in the ATM networks. At first, the probing request for each type of

requests is specified. The request should use the mean of resources that other requests

of its type use. Then, the prober periodically sends the probing requests of individual

types every P seconds. Finally, the response handler determines whether the server is

overloaded by comparing the upper bound of service time and current service time of

the probing request, and adjusts upper-bound of window according to the status of the

server.

Notably, the incoming requests can not used to be the replacement of the probing

requests, because even the incoming requests are of the same type, they may have

nearly but different service time. Thus, the service time of incoming requests cannot

be used as a metric to determine whether the server is overloaded.

The pseudo code of the algorithm used to adjust the upper-bound of window is

shown in Figure 5. The algorithm does not adjust the upper-bound of window

immediately after the response handler found that the server is not overloaded,

 18

because adjusting upper-bound of window frequency makes the admission control

become unstable. Thus, we set threshold parameters including Imax, which denotes

the threshold of increasing the upper-bound of window, and Dmax, which denotes the

threshold of decreasing the upper-bound of window, to prevent the upper-bound of

window from variation. Every time when the service time of a type-j request is greater

than the upper bound of type-j service time, the parameter adjCounter is added by one.

Otherwise, the adjCounter is subtracted by one. If adjCounter exceeds the parameter

Dmax, the upper bound of type-j window size is subtracted one and adjCounter is set

to zero. If adjCounter is lower than the parameter Imax, the upper bound of type-j

window size is added one and adjCounter is set to zero.

Based on the experiment results, we found that Imax -9 and Dmax 4 are suitable

to reduce the variation of the upper-bound window.

Figure 5 Procedure of dynamic window size adjusting

int AdjustWindow(response r) {
 int t;

t= getType(r);
 if(r.servicetime>=bound_time[t]) adjCounter++;
 else adjCounter--;

if(adjCounter>Dmax && bound_window[t] >1) {
bound_window[t]--;
adjCounter=0;
}

 else if(adjCounter<Imax) {
bound_window[t]++;
adjCounter=0;
}

}

 19

Chapter 4 Experiment and Results

In this Chapter, we first implement MR-PSTD in Squid, which is an open source

package of web proxy. Next, the experiment environment and network topology is

introduced. The experiment results shows that the differentiation effects for WTP and

MDP meet the pre-specified differentiation ratios and performance improvement is

significant using the MR-PSTD web gateway.

4.1 Software Implementation

The implementation of MR-PSTD gateway is based on the Squid package.

Figure 6 illustrates the processing flow in the modified Squid. We insert our

MR-PSTD components in the function that Squid starts to forward requests and the

function that Squid finishes to receive responses. Table 2 shows the new added

functions in the processing flow of Squid. The structure request_t keeps the status of

clients needed by Squid, and the structure FwdState keeps the extra status after Squid

forwards requests to server.

If the original Squid receives a request whose response is not in cache, it

immediately forwards a request to the server. Because the MR-PSTD gateway need to

queue the requests for rescheduling and admission control, after Squid receives whole

requests, we change the processing flow of the function fwdStart(). The modified

fwdStart() does not forward the request immediately, but it invokes reqClassifier(),

which is our content-aware request classifier implementation. The function

reqEnqueue() is invoked next, and all necessary information for future processing is

stored in queue.

The admission window control is implemented in the function selectResType(),

which implements the algorithm in Section 3.3.2. When the function selectResType()

 20

decides which type of requests is suitable to send, the function selectClassInType(),

which is the request scheduler and implements one of the algorithms in Section 3.4,

decides which class of requests is the most suitable to send. Because we implement

three different algorithms including WTP, PWAD and MDP to approximate the PSTD

model, the implementations of the function selectClassInType() are different among

algorithms. The functions reqDequeue() and reqTransmit() are invoked next to send

the request to the server.

After the sever sends the response to Squid, the function httpReadReply()

receives the whole response and invokes fwdCompete() next. We modify the function

fwdCompete() and implement the Response Handler in it. Thus, we insert our

content-aware response classifier function resClassifier(), the service time averaging

implementation updateData(), and on-line window upper bound adjusting

implementation adjustWindow() at the last of the function fwdCompete(). The

function storeCompete(), which starts to send the response to the client, is invoked

after all newly added functions.

httpAccept() clientReadRequest()peerSelect
(clientReadRequest) clientAccessCheck() clientCheckNoCache()

clientProcessRequest()clientProcessMiss()fwdStart()reqEnqueue()

selectClassInType() reqDequeue()

fwdConnectStart()fwdDispatch()httpStart()httpSendRequest()peerSelect
(httpReadReply)

httpReadReply() fwdCompete()

reqTransmit()

updateData() adjustWindow()

selectResType()

storeComplete()

resClassifier()

Clients

reqClassifier()

Figure.6 The modified processing flow of Squid

 21

Function Name Function Description

resClassifier(request_t*) Content-aware classifier, which identify

the type and class of the request

resEnqueue(FwdState*, request_t*, int,

int)

Put the received request into the queue

by its type and class.

selectResType() Decide which type of requests to send.

selectClassInType(int) Decide which class of requests to send.

reqDequeue(int, int) Take the request from the queue.

reqTransmit(FwdState*, request_t*) Send the request to the server

resClassifier(FwdState*) Content-aware classifier, which identify

the type and class of the response

updateData() Update the service time corresponding

to the type of the response

adjustWindow() Adjust window upper bound

Table 2 The description of new functions

4.2 Test Bed

Figure 7 is the topology of the experiment, which composes of a client PC, two

server PCs, a MR-PSTD gateway PC, and two 100Mbps Ethernet switches. Each PC

has a 2.8GHz Pentium 4 CPU, 512 MB RAM, a 200G 7200 RPM hard disk, and a

100 Base-T Ethernet interface. The two-tier web site consists of.the two server PCs.

One server machine runs the web server, application server software, and file access

server software written in PHP, while the other contains the database server software.

The client machine drives the web site with a workload generator written in C, and the

workload generator can emulate 225 virtual users at once. Table 3 shows the software

running on those PCs.

 22

Clients MR-PSTD
Gateway

Database Server

Web Server

10M/100M Full
Duplex Switch

10M/100M Full
Duplex Switch

Figure.7 Experiment network topology

Purpose Software

Operation system Linux 2.6.12 (Debian)

Web server Apache 2.0.55

Application interpreter PHP 4.4.2

Database server MySQL 5.0.18

Table 3 Software running on PCs

Before the experiments starts, we have to classify requests into classes and types,

and set parameters, including parameter p in PAWD, parameter p in MDP, initial

window size of each type of requests, and upper bound service time of requests of

each type. In our experiments, we divide the requests into three classes C1, C2, and

C3. In each class, there are three types of requests, including CPU-intensive requests,

Disk I/O-intensive requests, and Database-intensive requests. Thus, there are nine

individual groups of requests. We also define the system-time differentiation ratios to

1:2:4, and the parameters p in PWAD and MDP are both set to 120 seconds.

To have the initial window size and upper bound service time of requests of

each type, before the MR-PSTD gateway starts to operation, we have to run the

offline probing procedure shown in Figure 3. After the offline probing procedure, we

have the upper bound service time and initial window size as listed in Table 4.

 23

Type of request Initial window size Upper bound service time (sec)

CPU-intensive requests 2 0.45

Disk I/O-intensive requests 7 0.42

Database-intensive requests 5 0.38

Table 4 Experiment results of offline probing

4.3 Effects on Differentiation

In the following trial, the workload generator always keeps 75 virtual users for

each class, which are composed of 25 virtual users for three types of requests in the

class. Because the empty server at the initial stage serves requests much faster then

the fully loaded server, the window adjusting mechanism cannot determine correctly

at the initial stage. Hence, we let the window adjusting mechanism waits for a minute

after the trial starts. The virtual users of class 1 will stop sending requests at the 570th

second for 90 seconds to test if the algorithm can tolerate rapid change of traffic while

keeping the proportional differentiation between classes.

4.3.1 WTP is stable in short timescales

Figure 7(a) shows that WTP is particularly suitable to apply on the MR-PSTD

gateway because WTP can converge to the stable state in a few seconds even after the

rapid change of traffic. After the WTP-based MR-PSTD gateway runs for 30 minutes,

the averaged system time differentiation ratio in last 10 minutes between classes is

1:1.92:3.81, and it is very close to the pre-specified ratio.

 24

0

2

4

6

8

10

12

14

16

0 150 300 450 600 750 900 1050 1200 1350 1500 1650

Time (seconds)

A
ve

ra
ge

 S
ys

te
m

 T
im

e
(s

ec
on

ds
)

C1
C2
C3

(a) Average system time among classes

0

2

4

6

8

10

12

0 150 300 450 600 750 900 1050 1200 1350 1500 1650

Time (seconds)

A
ve

ra
ge

 s
ys

te
m

 ti
m

e
(s

ec
on

ds
) C1

C2
C3

(b) Average system time of Disk I/O-intensive requests

0

2

4

6

8

10

12

14

16

0 150 300 450 600 750 900 1050 1200 1350 1500 1650

Time (seconds)

A
ve

ra
ge

 S
ys

te
m

 T
im

e
(s

ec
on

ds
)

C1
C2
C3

(c) The average system times of database-intensive requests

Figure.7 Averaged system time of WTP-based MR-PSTD gateway

The experiment results shown in Figure 7(b) reveal that the system time of Disk

I/O-intensive requests is the most unpredictable. Because the operation system, Linux

 25

2.6.12, tends to accumulate the Disk I/O-intensive requests and serves the entire

backlog requests at the same time, the service time of Disk I/O-intensive requests are

not stable. Thus, it also results in the vibration in Figure 7(a).

In Figure 7(c), the system time of Database-intensive requests, which is much

stable than that of Disk I/O-intensive requests, shows that the WTP algorithm is not

influenced by the rapid change traffic because of WTP’s properties. Although Disk

I/O-intensive requests cause the vibration of average system time of total requests in

short timescale, the differentiation ratio between classes is kept in acceptable range.

4.3.2 PWAD is unsuitable for PSTD

Figure 8 shows that PWAD is unsuitable to be employed in the MR-PSTD

gateway, because it is extremely unstable. After the PWAD-based MR-PSTD gateway

runs for 30 minutes, the averaged system time differentiation ratio in the last 10

minutes between classes is 1:1.63:3.23, and it is far from the pre-specified ratio. The

unstable results and pathological behavior comes from its basic properties because

PWAD only considers departed requests but ignores future requests. When the system

starts to work and warms up, because the server is empty at start time, the server

serves requests fast, and C2 and C3 requests have short normalized system time,

which is much smaller than the normalized system time of C1 requests, before the

server becomes busy. Thus, the normalized average system time of departed C1

requests is longer than those of departed C2 and C3 requests, which causes PWAD

sends only C1 requests to reduce the normalized average system time of C1. After the

departed requests of C2 and C3 are discarded by the moving window averaging

mechanism, PWAD turns to send C2 and C3 requests since they are already queued

for a long time. Thus, the normalized averaged system time of C2 and C3 becomes

very large and PWAD do not send C1 requests anymore until the departed requests of

C2 and C3 experiencing long queuing time are discarded. Besides, when the

 26

algorithm decides to send only C2 and C3 requests, C1 requests experience long

queuing time.

0

5

10

15

20

25

30

35

40

0 150 300 450 600 750 900 1050 1200 1350 1500 1650

Time (seconds)

A
ve

ra
ge

 S
ys

te
m

 T
im

e
(s

ec
on

ds
) C1

C2
C3

Figure 8 Averaged system time of PWAD based MR-PSTD gateway

4.3.3 MDP is stable in medium timescales

Figure 9 shows that MDP is suitable to be employed in the MR-PSTD gateway,

because the reformed MDP not only keeps only w seconds information of departed

requests but also considers the lower bound system time of requests currently in

queue. Although MDP never causes pathological variation of system time as PWAD

in long timescale, after a rapid change of traffic, MDP gets unstable for about 100

seconds. The wavelet of system time, which results from redeeming the gap of

normalized mean system time, costs about 400 seconds to converge. However, in

another point of view, MDP can keep the differentiation ratio in medium timescale

while WTP cannot keep it, because MDP redeems the normalized averaged system

time in recent p seconds, which is defined to 120 seconds in our experiments.

After the MDP based MR-PSTD gateway starts for 30 minutes, the averaged

system time differentiation ratio in last 10 minutes between classes is 1:2.03:4.19, and

it is very close to the pre-specified ratio.

 27

0

10

20

30

40

50

60

70

0 150 300 450 600 750 900 1050 1200 1350 1500 1650

Time (seconds)

A
ve

ra
ge

 S
ys

te
m

 T
im

e
(s

ec
on

ds
) C1

C2
C3

(a) Averaged system time among classes

0

5

10

15

20

25

30

35

0 150 300 450 600 750 900 1050 1200 1350 1500 1650

Time (seconds)

A
ve

ra
ge

 S
ys

te
m

 T
im

e
(s

ec
on

ds
) C1

C2
C3

 (b) Averaged system time of database intensive requests

Figure 9 Averaged system time of MDP based MR-PSTD gateway

In Figure 9(b), the result of database intensive requests shows that the MDP

algorithm wants to redeem the gap, when C1 traffic is suspended. The C3 and C2

traffic experienced higher system time right after the C1 traffic restore. However, after

about 400 seconds, the wavelet of the system time of C3 finally gets smooth.

The results show that MDP is suitable for the web site that has stable traffic and

need more accuracy on the effect of service differentiation, because MDP always

keeps the high priority classes have better service quality which is proportion to its

differentiation ratio in the specified timescale.

Comparing with MDP, WTP does not always keep the differentiation ratio in

 28

medium timescale because WTP does not redeem the gap after rapid change of traffic,

but WTP is always stable in short timescale. Thus, in the environment that the traffic

changes frequently, WTP may be more suitable than MDP. Among all of the three

algorithms, WTP is the most suitable algorithm to approximate PSTD model in the

environment that the traffic changes frequently, and MDP is the most suitable

algorithm in the environment that the traffic in stable.

4.4 Performance Improvement

Beside MR-PSTD, we implement a single-resource PSTD (SR-PSTD) web

gateway and a PSTD web gateway without any resource control mechanism, in order

to demonstrate the effectiveness of the multiple-resources window control

mechanism.

The PSTD web gateway does not consider resource issues. The requests are only

classified into classes and put into individual queues. The PSTD web gateway always

tries to forward requests once they arrive in queues. In the SR-PSTD web gateway,

the requests are also classified into classes and put to individual queues. Different

from PSTD gateway, SR-PSTD gateway tries to handle the resource issues and

considers that the server has only one kind of resources. Thus, it uses only one

window control mechanism. In the SR-PSTD gateway, the upper-bound of service

time is set to 0.55 seconds, which is measured by our offline probing procedure.

After experiments using WTP, MDP and PWAD as the algorithm to approximate

the PSTD model, we found that the difference of algorithms is not effect the

throughput of the server behind the gateway. Thus, we only present the results over 30

minutes, which is aggregated from the gateway using WTP algorithm to approximate

the PSTD model. In Figure 10, the throughput of MR-PSTD is 1.78 and 1.58 times of

that of PSTD and SR-PSTD, respectively, while the system time of MR-PSTD, as

 29

shown in Figure 12, is the smallest, because the overloading in PSTD gateway and

non-well utilized resources in SR-PSTD gateway, The significant result shows that

multiple resources management is necessary and important in server-side QoS.

Figure 10 Average throughputs between gateways

Because the throughput of SR-PSTD gateway is far from MR-PSTD gateway, to

avoid any fault resulted from incorrect parameter setting, we try to adjust the upper

bound of service time manually to verify that the result of the server behind the

SR-PSTD gateway shown in Figure 10 is correct. In Figure 11, the best throughput of

the server behind SR-PSTD gateway is achieved when the service time upper bound

set to 0.55 seconds, which is equal to the upper bound of service time measured by

our offline probing procedure. Thus, we can confirm that the result shown in Figure

10 is correct because the server behind the SR-PSTD gateway already runs on its full

speed, and our offline probing procedure is effective to measure the upper bound of

service time.

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

th
ro

ug
hp

ut
 (r

eq
ue

sts
/m

in
)

P S T D
S R - P S T D
M R - P S T D

 30

Figure 11 Throughput with different upper bound of service time

In Figure 12, the mean queuing time of requests in the SR-PSTD gateway is

much longer than that in the MR-PSTD gateway. Because the SR-PSTD gateway can

not estimate the resource usages accuracy, the SR-PSTD gateway sends too few

requests to exhaust all resources at the server, causing that the throughput is degraded.

The service time of PSTD is much longer than that of SR-PSTD and MR-PSTD

because the PSTD-based server is already overloaded and the server spends much

more time to handle every request.

Figure 12 Service time and queuing time distribution between gateways

0

1

2

3

4

5

6

7

8

9

10

PSTD SR-PSTD MR-PSTD

av
er

ag
e

la
te

nc
y

(s
ec

on
ds

)

Queuing Time
Service Time
Total (System time)

0

200

400

600

800

1000

1200

1400

1600

1800

0.1375 0.275 0.55 1.1 2.2 4.4 8.8 17.6

upper bound of service time (seconds)

th
ro

ug
hp

ut
 (r

eq
ue

sts
/m

in

 31

In Figure 13, the total number of requests concurrently running on the server

behind the PSTD gateway is much larger than those behind the SR-PSTD and

MR-PSTD gateway. This is results from that the PSTD gateway sends requests to the

server unlimitedly because the PSTD gateway does not contain any admission control

module. Also, because of the overhead of frequent content switching between requests

in the server, the throughput of PSTD-based server is low as shown in Figure 10.

From the total number of requests concurrently running on the server behind

SR-PSTD and MR-PSTD gateway, we can find that some resources in the server

behind SR-PSTD gateway may be still idle, because the number of total requests

concurrently running on the server behind SR-PSTD gateway is less than the server

behind MR-PSTD gateway.

Figure 13 Number of concurrent requests between gateways

1

10

100

1000

PSTD SR-PSTD MR-PSTD

av
er

ag
e

re
qu

es
ts

on
 se

rv
er

 (r
eq

ue
sts

/m
in

)

 32

Chapter 5 Conclusion and Future Works

This work first proposes a Multiple-resources Proportional System-Time

Differentiation (MR-PSTD) model. It is more desirable than PDD and PSD for

server QoS, because MR-PSTD not only provides proportional system-time

differentiation for users, but also improves the throughput of the server by

optimizing the usage of resources in the server.

Next, a gateway system is proposed to approximate the PSTD model with

multiple-resources consideration. The system is easy to be deployed because it is

external to the website and does not need to modify the website solution. We reform

three PDD algorithms, WTP, PWAD and MDP to consider the service time in

scheduling request. Besides, we design an admission control module to prevent the

servers from overload while exhausting all types of resources.

To prove the effectiveness of our gateway, we implement it by modifying Squid,

and put it between clients and web servers. The experiment results show that the

MR-PSTD gateway increases the peak throughput by 78% and decreases the system

time by 25%, comparing with the original website system. This is resulted from that

all types of resources at the server are exhausted. The results also show that both

WTP and MDP are suitable to be employed in the MR-PSTD gateway because they

achieve the pre-specified differentiation ratio, while PWAD is not suitable at all.

In the future, we plan to improve the mean system-time calculating scheme,

because the present gateway cannot accurately predict the service time of the Disk

I/O-intensive requests due to their large variation service time. In addition, it is

possible to further simplify the present gateway system by predicting the distribution

of requests based on the queuing theory.

 33

References

[1] X Zhou, J Wei, and C Xu, “Processing Rate Allocation for Proportional

Slowdown Differentiation on Internet Servers,” Parallel and Distributed

Processing Symposium, 2004. Proceedings. 18th International Apr. 2004

[2] J Wei, X Zhou, and C Xu, “Robust Processing Rate Allocation for

Proportional Slowdown Differentiation on Internet Servers,” IEEE

Transactions on Computers, vol. 54, Issue 8, Aug. 2005

[3] C Dovrolis, D Stiliadis, and P Ramanathan, “Proportional Differentiated

Services: Delay Differentiation and Packet Scheduling,” IEEE/ACM

Transactions on Networking, vol. 10, Issue 1, Feb. 2002

[4] T Nandagopal, N Venkitaraman, R Sivakumar, and V Barghavan, “Delay

Differentiation and Adaptation in Core Stateless Networks,” Proceedings

of IEEE INFOCOM 2000, Tel-Aviv, Israel, Apr. 2000

[5] H Shimonishi, I Maki, T Murase, and M Murata, ” Dynamic Fair

Bandwidth Allocation for DiffServ Classes”, IEEE International

Conference on Communications, 2002. ICC 2002, vol. 4, Apr. 2002

[6] EC Park, and CH Choi, “Proportional Bandwidth Allocation in DiffServ

Networks,” INFOCOM 2004. Twenty-third AnnualJoint Conference of

the IEEE Computer and Communications Societies, vol. 3, 2004

[7] SC Lee, JC Lui, and DK Yau, “A Proportional-Delay Diffserv-Enabled

Web Server: Admission Control and Dynamic Adaption,” IEEE Trans.

Parallel and Distributed Systems, vol. 15, May. 2004

[8] HU Heiss and R Wagner, “Adaptive Load Control in Transaction

Processing Systems,” In 17th International Conference on Very Large

Data Bases, Barcelona, Spain, Sep. 1991

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

