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摘 要 

這幾年來，個人數位助理與手機等手持裝置越來越普遍。因為這些裝置是

由電池供電，所以能源節省是一個重要的問題。動態電壓調整策略根據處

理器的工作量動態地調整處理器的頻率及電壓，是一種低耗能的設計技

術。一個動態電壓調整演算法的好壞取決於如何準確地估計寬裕時間 

(slack time)。本論文提出一個基於工作量延緩之任務間動態電壓調整演

算法，稱為dwDVS。dwDVS有兩個特色，第一是為每一任務保留一個時間區

間，即使是在最壞的情況下，每一個任務都能夠在此時間區間內執行完它

的工作量。用此種方法，可以有效率地估算從優先權較低的任務中所能夠

利用的寬裕時間；第二是延緩這些被保留的時間區間，使這些時間區間儘

可能靠近其對應任務之截止期限。用此種方法，處理器的頻率即使是在沒
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有寬裕時間可利用的情況下也可以調降。模擬結果顯示，相較於Static 

[1]、laEDF [1] 及 DRA [2]，dwDVS節省了 40-70%、10-20% 及 3-10% 的

能源消耗，且與最佳理論值Bound至多只有12%的差距。 

關鍵詞：基於工作量延緩、硬式即時系統、任務間動態電壓調整、寬裕時

間、實際工作量、最差執行時間。 
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Abstract 
Hand-held devices such as personal digital assistants (PDAs) and cellular phones are 

getting more and more popular in recent years. Energy consumption is a critical issue 

because these devices are battery powered. Dynamic voltage scaling (DVS) is a low-power 

design technique that adjusts the CPU frequency and voltage levels dynamically based on 

CPU workloads. The performance of a DVS algorithm largely depends on how to estimate 

slack time accurately. In this thesis, we propose a deferred-workload-based inter-task DVS 

algorithm (dwDVS), which has two features. The first is that we reserve a time interval for 

each task to execute and its workload can be completed in this time interval even in the 

worst-case condition, which means that the actual workload (execution time) of each task is 

equal to its worst-case execution time. In this way, we can estimate the slack time from 

lower priority tasks more aggressively. The second is that we defer these reserved time 

intervals, which means that a reserved time interval will be shifted to the deadline of its 

corresponding task as close as possible. In this way, the operating frequency can be reduced 

even without slack time. Simulation results show that the proposed dwDVS reduces the 

energy consumption by 40-70%, 10-20%, and 3-10% compared with the static voltage 

scaling (Static) [1], laEDF [1], and DRA [2] algorithms, respectively, and approaches 
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theoretical low bound (Bound) by an margin of at most 12%. 

 

Keywords: deferred-workload-based, hard real-time system, inter-task dynamic voltage 

scaling, slack time, actual workload, worst-case execution time.
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Chapter 1  
Introduction 

Hand-held devices are battery powered for mobility. These devices usually require 

powerful processors to handle various multimedia applications. The energy consumption 

E  of a CMOS circuit is given by CVCE ddeff ⋅⋅= 2 [3], where  is the effective 

switched capacitance,  is the supply voltage, and  is the number of execution cycles. 

It can be seen that the energy consumption has a quadratic dependency on the supply 

voltage. Therefore, lowering the supply voltage is an effective technique for reducing 

energy consumption. 

effC

ddV C

However, a real-time task might violate its time constraint because lowering the supply 

voltage implies reducing the maximum achievable CPU frequency and hence increasing the 

execution time of this task. Therefore, DVS algorithms lower the supply voltage of 

hand-held devices to the lowest possible level while still guaranteeing all deadlines. That is, 

the devices only need to satisfy the performance requirements of applications while 

choosing proper CPU frequencies. In addition, the processors of these devices must support 

multiple CPU frequency and voltage levels, such as Intel Xcale [4][5] and Transmeta 

Cursoe [6]. 

However, DVS also brings some overheads, such as an increase in number of 

preemptions, which results in increasing energy consumption in memory subsystems, and 

extra energy consumption and time for voltage transitions. Fortunately, these overheads are 

usually small enough so that we assume that they can be neglected [1][7][8][9]. 
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There are two categories of DVS algorithms: 

 Inter-task DVS [1][2][8][9][10][11] 

Inter-task DVS adjusts the CPU frequency task by task. It means that the operating 

frequency will be set to a proper value when a real-time task  is ready to execute and 

won’t be changed until  has already completed or has been preempted. 

iT

iT

 Intra-task DVS [12][13][14] 

Intra-task DVS adjusts the CPU frequency within a task. It means that frequency and 

voltage transition points will be determined offline. During the execution of a real-time task 

, if the current time reaches a frequency and voltage transition point, the operating 

frequency will be set to a proper value and won’t be changed until next frequency and 

voltage transition point. 

iT

In this thesis, we focus on the inter-task DVS. We propose an inter-task DVS algorithm 

called dwDVS that estimate the slack time from lower priority tasks more aggressively. As a 

result, we can have a good performance on reducing energy consumption. 

The rest of this thesis is organized as follows. In Chapter 2, we review four existing 

slack time estimation strategies and several inter-task DVS algorithms. In Chapter 3, we 

describe the system model of the target hard real-time systems. Then, we depict the basic 

idea and details of the proposed DVS algorithm. In Chapter 4, simulation results are 

evaluated and discussed. Finally, we conclude with a summary and future work in Chapter 

5. 
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Chapter 2  

Related Work 
2.1 Categories of Existing Real-Time Schedulers 

Inter-task DVS algorithms usually combine with real-time schedulers. The two most 

popular real-time schedulers are the Rate-Monotonic (RM) scheduler and 

Earliest-Deadline-First (EDF) scheduler [15][15]. The RM scheduler always gives the 

highest priority to the task which has the shortest period in the ready queue. The EDF 

scheduler always gives the highest priority to the task which has the latest deadline in the 

ready queue. 

2.2 Categories of Existing Slack Time Estimation 

Strategies 

DVS usually exploits slack time to adjust CPU frequency and voltage levels in order to 

guarantee all deadlines. Therefore, a good slack time estimation method is very important to 

reduce energy consumption. Existing inter-task DVS algorithms usually exploit one or more 

of the following four strategies to estimate the slack time [7], and it is possible to modify 

the original version to improve the performance on reducing energy consumption. 

(1). Minimum constant speed 

Static voltage scaling [1], DRA [2], lppsRM [10], and lppsEDF [10] used this strategy. 

This strategy estimates the lowest possible constant CPU frequency under the time 

constraint that all deadlines must be met. Therefore, it needs to know the worst-case 
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processor utilization , which can be computed as follows: worstU

∑
=

=
n

i i

i
worst p

wU
0

 

where  is the number of tasks in the task set,  is the worst-case execution time of a 

task , and  is the period of a task . The operating frequency is set to  

, where  is the maximum CPU frequency. 

n iw

iT ip iT

maxfUf worst ×= maxf

(2). Stretching to NTA (next task arrival time) 

ccRM [1], DRA [2], lppsRM [10], and lppsEDF [10] used this strategy. This strategy 

reduces the operating frequency as shown in Fig. 1. If a task  is ready to execute at 

current time , and the NTA of  is later than 

iT

ct iT ic wt + , where  is the worst-case 

execution time of , then  can be executed at a lower operating frequency so that  

will complete at its NTA in the worst-case condition. 

iw

iT iT iT

 

Fig. 1. An illustration of stretching to NTA. 

(3). Priority-based slack stealing 

DRA [2], lpSEH [8], and PLG [11] used this strategy. This strategy reduces the 

operating frequency based on the following scheme. If a higher priority task  has been 

completed before its WCET, it has slack time . The next lower priority task  

can exploit the slack time to lower its operating frequency  as follows: 

iT

)( iTslack jT

)( jTf
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max)(
)( f

Tsalckw
w

Tf
ij

j
j ×

+
= . 

where  is the worst-case execution time of  and  is the maximum CPU 

frequency. However, if a lower priority task has been completed before its WCET, it is 

computationally expensive to estimate slack time precisely. In this case, existing DVS 

algorithms usually adopted heuristics. For example, lpSEH 

jw jT maxf

[8] used slack time from lower 

priority tasks based on some constraints, such as the arrival time and priority of the next 

task. 

(4). Utilization updating 

ccEDF [1], laEDF [1], and the algorithm proposed by Krishna et al. [9] used this 

strategy. The actual processor utilization  during run-time is usually less than the 

worst-case processor utilization . Therefore, this strategy reduces the operating 

frequency based on the following scheme. When a task  has already completed, it 

updates  which can be computed as follows: 

actualU

worstU

iT

actualU

i

i
n

ijj j

j
actual p

a
p

wU +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

≠= ,0
 

where  is the number of tasks in the task set,  is the worst-case execution time of a 

task ,  is the period of a task , and  is the actual workload of . The 

operating frequency is set to 

n jw

jT jp jT ia iT

maxfUf actual ×= , where  is the maximum CPU 

frequency. 

maxf

2.3 Comparison of Existing Inter-Task DVS Algorithms 

Table 1 shows the comparison of several existing inter-task DVS algorithms and the 

proposed algorithm dwDVS. The metric of scheduler indicates what scheduling policies are 
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used. The metric of strategy indicates that one or more slack time estimation strategies, that 

were described in Chapter 2.2, are used to estimate the slack time. Furthermore, a strategy 

with a superscript “*” means an improved version. The metric of number of preemptions 

indicates frequency of preemptions. The more effective of the slack time estimation results 

in the more number of preemptions. This is because that there are more opportunities for 

higher priority tasks to preempt lower priority tasks when the execution time of lower 

priority tasks becomes longer due to lowering the supply voltage. The metric of energy 

consumption indicates the CPU energy consumption using each algorithm. In Chapter 4, we 

will compare the proposed dwDVS with static voltage scaling [1], laEDF [1], and DRA [2], 

quantitatively. Note that dwDVS is similar to laEDF in the aspect of deferred-workload and 

DRA is better than the rest of existing inter-task algorithms [2].  
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Algorithm Scheduler Strategy 
Number of 

Preemptions

Energy 

consumption 

ccRM [1] RM (1)+(2)* Medium Medium 

lppsRM [10] RM (1)+(2) Low High 

Static [1] EDF (1) Low High 

lppsEDF [10] EDF (1)+(2) Low High 

ccEDF [1] EDF (4) Low High 

lpSEH [8] EDF (1)+(2)+(3)* Medium Medium 

laEDF [1] EDF (4)* Medium Medium 

DRA [2] EDF* (1)+(2)+(3) Medium Medium 

dwDVS 

(proposed) 
EDF* (3)* High Low 

Table 1. Comparison of existing inter-task DVS algorithms. 
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Chapter 3  
Proposed Deferred-workload-based 
DVS (dwDVS) 
3.1 System Model 

The target processor can change its supply voltage and operating frequency continuously 

within its operational ranges,  and . A task set T  of  periodic 

tasks is denoted as . Each task  has its own period  and 

worst-case execution time (WCET) . The deadline  of  is assumed to be equal to its 

period . The  instance of  is denoted by . Each task releases its instance 

periodically and all tasks are assumed to be mutually independent. 

],[ maxmin VV ],[ maxmin ff n

},...,,,{ 321 nTTTTT = iT ip

iw id iT

ip thj iT jiT ,

We consider a preemptive hard real-time system where periodic real-time tasks are 

scheduled under the EDF* scheduling policy [2] which is similar to the earliest deadline 

first (EDF) scheduling policy. The differences are as follows [2]: 

 Among the tasks whose deadlines are the same, the task with the earliest arrival time 

has the highest priority. 

 Among the tasks whose deadlines and arrival times are the same, the task with the 

lowest index has the highest priority, which means that if tasks  and  have the 

same deadlines and arrival times,  has a higher priority. 

2,1T 1,2T

1,2T
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3.2 Problems of Most Existing Inter-Task DVS 

Algorithms 

Most of existing inter-task DVS algorithms have the following two potential problems so 

that their performances on reducing energy consumption are not efficient enough: 

 Their slack estimation methods are too conservative, which means that they don’t take 

full advantage of slack time from lower priority tasks which have completed before their 

WCET in order to guarantee all deadlines. 

 They set a high operating frequency to execute a task initially and reduce operating 

frequency when this task has completed before its WCET. 

Fig. 2 illustrates the first problem based on example task set 1 as shown in Table 2. If  

exploits the whole slack time, which  left after  has already completed before its 

WCET, to lower its operating frequency, won’t guarantee its deadline in the worst-case 

condition. 

2,1T

1,2T 1,2T

2,1T

Task WCET (ms) Actual workload (ms) Period (ms) 

1  5 5 10 

2 15 2.5 30 

Table 2. Example task set 1. 

 

Fig. 2. An illustration of incorrect slack time estimation from T2,1 based on example task set 
1. 
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3.3 The Basic Idea of dwDVS 

To solve the two potential problems that have been described in Chapter 3.2, we 

propose the following two strategies: 

 We reserve a time interval for each task instance to execute its workload within this time 

interval even in the worst-case condition so that we can guarantee all deadlines. By 

determining the reserved time intervals for all task instances, we can easily estimate the 

slack time from either higher priority or lower priority tasks. 

 We defer these reserved time intervals, which means that these reserved time intervals 

will be shifted to the deadline of their corresponding tasks as close as possible. By 

deferring the reserved time intervals, we can reduce the operating frequency without 

slack time. 

3.4 The Detailed Procedure of dwDVS 

Based on the two strategies that were described in Chapter 3.3, we design a procedure 

to reserve a deferred time interval for each task instance, as shown in Fig. 3, which includes 

steps 1 through 5, as described below. After that, the operating frequency of the task 

instance which is ready to execute can be determined (steps 6 and 7). 

(1) Find a task  which has the minimum period in a task set. iT

(2) Find a task instance  of  which has the maximum deadline . jiT , iT jid ,

(3) Check the time intervals from  to zero and determine which time interval can be 

allocated to  according to the following parameters: 

jid ,

jiT ,

 The remaining worst-case execution time (RWCET) of , : When 

 is set to zero, the reserved time interval for  is determined. 

jiT , )( , jiTRWCET

)( , jiTRWCET jiT ,

 The state of a time interval ],1[ kkT − : 
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 : It means that the time interval is not reserved for any task 

instances. 

reserveNo _

 :  It means that only part of the time interval is reserved for 

one or more task instances. 

reservePartial _

 : It means that the whole time interval is reserved for one or more 

task instances. 

reserveFull _

 The remaining time of a time interval ],1[ kkT − , which is denoted by 

: If the state of a time interval remkkT ].,1[ − ],1[ kkT −  is , 

 is the amount of time which is not reserved for other task instances. 

reservePartial _

remkkT ].,1[ −

(4) Repeat steps 1 through 3 until all task instances in a task set have their corresponding 

reserved time intervals. 

(5) The reserved time intervals should be updated by repeating steps 1 through 4 when a task 

has already completed or has been preempted. 

(6) The time interval, which is not reserved for any task instances, is denoted by a vacant 

time interval (VTI), such as  in ]3 ,0[T Fig. 4(a). A task instance  can take a VTI, 

which appears before the deadline of , as its available execution time (AET). Then, 

we can calculate the AET of , as follows: 

jiT ,

jiT ,

jiT ,

(1)           )()()( ,,, jijiji TVTITRWCETTAET +=  

(7) Finally, we can set the operating frequency  for , as follows: dvsf jiT ,

(2)                    
)(

)(
)( max

,

,
, f

TAET
TRWCET

Tf
ji

ji
jidvs ×=  

    We use an example task set (Table 3) to illustrate steps 1 through 7 of dwDVS, as 

shown in Fig. 4. In Fig. 4(a), the deadline and RWCET of the task instance  is 15 ms 3,1T
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and 2 ms. The state of time interval  is . We reserve the time 

interval  for  to execute its workload. In the worst-case condition,  will 

be ready to execute at 13 ms and complete at 15 ms. 

]15 ,13[T reserveNo _

]15 ,13[T 3,1T 3,1T

Fig. 4(b) illustrates how CPU sets a 

proper operating frequency for a task  based on the reserved time intervals and VTI in 1,1T

Fig. 4(a). When  has already completed at 5 ms, the reserved time intervals are updated 

by repeating steps 1 through 3, as shown in 

1,1T

Fig. 3. Fig. 4(c), and Fig. 4(d) , Fig. 4(e) can be 

deduced accordingly. 
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 Find a task  which has the minimum period in a task set; iT

Find a task instance  of T  which has the maximum deadline ; jiT , i jid ,

for  to  jidk ,= 0

if  0)( , ==jiTRWCET

break 
 

else if  reserveNokkT _],1[ ==−

if  

 

 

 

 

 
1)( , ≥jiTRWCET

reserveFullkkT _],1[ =−  

1)()( ,, −= jiji TRWCETTRWCET  

else 
reservePartialkkT _],1[ =−  

)(1].,1[ , jiTRWCETremkkT −=−  

0)( , =jiTRECET  

else if  reservePartialkkT _],1[ ==−

if 

 

 

 

 

 

 
1)].,1[)(( , >−+ remkkTTRWCET ji  

reserveFullkkT _],1[ =−  

)].,1[1()()( ,, remkkTTRWCETTRWCET jiji −−−=  

else if 

 

 

1)].,1[)(( , ==−+ remkkTTRWCET ji  then 

reserveFullkkT _],1[ =−  

0)( , =jiTRWCET  

else 
reservePartialkkT _],1[ =−  

     0)( , =jiTRWCET

 

 

 

 

 

Fig. 3. Determine a reserved time interval for a task instance. 
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Task WCET (ms) Actual workload (ms) Period (ms) 

1  2 2 5 

2 2 1 15 

Table 3. Example task set 2. 

 

Fig. 4. An illustration of dwDVS based on example task set 2: (a) Initialize to reserve 
deferred time intervals; (b) Set the operating frequency for T1,1 based on equations 1 and 2 
that were described in Chapter 3.4; (c), (d), (e): Update the reserved time intervals after T1,1, 
T1,2, and T2,1 have already completed, respectively. Then, set a proper operating frequency 
for T1,2, T2,1, and T1,3, respectively. 
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Chapter 4  

Simulation Results and Discussion 

4.1 Classical Inter-Task DVS Algorithms 

To evaluate the proposed dwDVS, we have implemented the following inter-task DVS 

algorithms: 

 Static voltage scaling (Static) [1]: 

This algorithm is proposed by Pillai and Shin. The CPU runs at a lowest possible 

constant CPU frequency to guarantee all deadlines. 

 Look-ahead EDF (laEDF) [1]:  

This algorithm is also proposed by Pillai and Shin. It uses a modified utilization updating 

strategy, such that it estimates the minimum workloads required to be executed before the 

latest deadline. 

 Dynamic reclaiming algorithm (DRA) [2]: 

This algorithm is proposed by Aydin and Melhem. It integrates the maximum constant 

speed, stretching to NTA, and priority-based slack stealing strategies. 

 Theoretical low bound (Bound): 

This is an oracle algorithm, which knows the actual workload of each task in advance 

and uses an optimal speed schedule. 
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4.2 Simulation Model 

In the simulations, we assumed the processor can change its operating frequency and 

supply voltage continuously within its operational ranges,  and  ],[ maxmin ff ],[ maxmin VV [2]. 

The actual workload of each task instance is drawn from a normal distribution with mean 

2
WCETBCET +  and standard deviation 

6
BCETWCET −  [2], where BCET is the 

best-case execution time, meaning that 99.7% of the actual workload falls in the interval 

. If the actual workload is less than BCET or greater than WCET, we set it 

to BCET or WCET, respectively. In the following, we compare the average energy 

consumption of these algorithms, which is normalized to the average energy consumption of 

Static 

],[ WCETBCET

[1], under different conditions. 

4.3 Effect of Worst-Case Utilization on Energy 

Consumption 

Fig. 5 compares the average energy consumption of each inter-task DVS algorithm under 

different worst-case utilization. The number of task sets is 100, the number of tasks in a task 

set is 8, the 
BCET
WCET  ratio is 5, and the worst-case utilization varies from 10% to 100% [2]. 

From these simulation results, we have the following two observations: 

 The dwDVS reduces the energy consumption by an average of 63%, 14%, and 7% 

compared with the Static [1], laEDF [1] and DRA [2] algorithms, respectively. 

 When the worst-case utilization is greater than 90%, the improvement of dwDVS on 

reducing the energy consumption is not as obvious as the cases with the worst-case 

utilization of less than 90%. This is because that the advantage , which is generated from 
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reserving deferred time intervals by dwDVS, is limited under high worst-case 

utilization. 
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Fig. 5. Effect of worst-case utilization on energy consumption. 

4.4 Effect of WCET/BCET Ratio on Energy 

Consumption 

Fig. 6 compares the average energy consumption of each inter-task DVS algorithm under 

various 
BCET
WCET  ratio. The number of task sets is 100, the number of tasks in a task set is 8, 

the worst-case utilization is 60%, and the 
BCET
WCET  ratio varies from 1 to 10 [2]. From these 

simulation results, we have the following two observations: 

 The dwDVS reduces the energy consumption by an average of 52%, 13% and 9% 

compared with laEDF [1] and DRA [2], respectively. 

 When 5>
BCET
WCET , the improvement on energy consumption is not obvious as that of 

5≤
BCET
WCET . This is because that the expected workload converges rapidly to 50% of the 

worst-case workload with the increasing 
BCET
WCET  ratio. 
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Fig. 6. Effect of WCET/BCET ratio (actual workload) on energy consumption. 

4.5 Effect of Number of Tasks in a Task Sets on Energy 

Consumption 

Fig. 7 compares the average energy consumption of each inter-task DVS algorithm with 

respect to a different number of tasks in a task set. The number of task sets is 100, the 

worst-case utilization is 60%, the 
BCET
WCET  ratio is 5, and the number of tasks in a task set 

varies from 5 to 50. From these simulation results, we observe that the energy consumption of 

each inter-task DVS algorithm decreases slightly when the number of tasks in a task set 

increases. This is because that the overall workloads rely on the actual workload of each task 

instance and the worst-case utilization, but not on the number of tasks in a task set. However, 

the energy consumption indeed decreases when the number of tasks in a task set increases. 

This is because when the number of tasks in a task increases, each inter-task DVS algorithm 

has more task instances from which slack time is available. 
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Fig. 7. Effect of number of tasks in a task set on energy consumption. 
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Chapter 5  

Conclusions and Future Work 
5.1 Concluding Remarks 

In this thesis, we have presented an energy-efficient inter-task DVS algorithm called 

dwDVS based on deferred-workload. The proposed dwDVS is motivated by the observation 

that most of existing inter-task DVS algorithms run at a higher frequency initially and 

estimate the slack time from lower priority tasks too conservative. The main contribution of 

the proposed dwDVS is that the slack time from lower priority tasks can be efficiently 

estimated and the CPU frequency can be reduced even without slack time. The overheads of 

our approaches are an increase in number of preemptions, which results in increasing the 

energy consumption in memory subsystems, and extra energy consumption and time for 

voltage transitions. Fortunately, these overheads are usually small enough and thus can be 

neglected [1][7][8][9]. Simulation results have shown that dwDVS can effectively reduce the 

energy consumption by 40-70%, 10-20%, and 3-10% compared with Static [1], laEDF [1] and 

DRA [2] algorithms, respectively, and approaches the theoretical low bound by a margin of at 

most 12%. 

5.2 Future Work 

A more intelligent slack time distribution for more tasks instead of one can be used to 

further improve the proposed dwDVS. It means that if a higher priority task  has 

completed before its deadline, the slack time which  left need not be allocated fully to 

the next lower priority . We may distribute the slack time to the next two or more lower 

priority tasks based on a clever strategy, such as a profile-based slack time distribution 

iT

iT

jT
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strategy. In addition, we may take more factors, such as number of preemptions or extra 

time and energy consumption for voltage transitions, into consideration to make the system 

model of the proposed dwDVS more close to realistic systems. The effectiveness of these 

strategies deserve to further study. 
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