0 >, == Y)
B = % <~ 8

BRI B TR

Y

A Deferred-Workload-based Inter-Task Dynamic Voltage Scaling

Algorithm for Hard Real-Time Systems

PoE R4 T E S

AA N AT A (PRS2 BT RA R 2

A Deferred-Workload-based Inter-Task Dynamic Voltage Algorithm for Hard
Real-Time Systems

R -5 Student : Yu-Hang Tsai
I EFR 2 EA Advisor : Kuochen Wang
) A U ST 4
AU Sl S = R 1A S
Fuduih *
A Thesis

Submitted to Institute of. Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

June 2006

Hsinchu, Taiwan, Republic of China

PEARAY LT A

B4l EnAL fEFE IR L

Mo+ g FRgn Faffe ey

A &

EAE K B R EEE SRR B A ke o TS RS

s

L 8
PET TR RS AR BT RV AT o i TR R

o
&H

—_
3

B S il

W

TR

a0
-Lxg,

B AR Bl 2 TR B - AN R H
o - BEETRAFFE GRS hom BEE G TRER
(slack time) -« 2% H - BAN 1L TRz EHFHLETRAEF
ik o AL AWDVS o dwDVSF A B¢ > B - ELEF - EHRT- BERE

o LadfmfinT 5 - BERFTLHELFTFRFPRGER

L IEE o F gL fE S R > T UG RS e b B AR AR M DED AT
JI* PEHER S S S CLRETIRERFRRN > R CLEFR R

FPRrTEHBER AP P IR B T A

1_

FRABER T AIF AT e T A TE o RS R BT 0 4P Static
[1] ~1aEDF [1] % DRA [2] > dwDVS& 4 7 40-70% ~ 10-20% % 3-10% =~

SR AE S T h 3183 BBound D § F F 12%e L BE -

ek A1 FRUEE - HNTEF LA BT T RAL S AR

B gm1cd hARGFER -

A Deferred-Workload-based Inter-Task
Dynamic \Voltage Scaling Algorithm for Hard
Real-Time Systems

Student: Yu-Hang Tsai ~ Advisor: Dr. Kuochen Wang
Department of Computer Science

National Chiao Tung University

Abstract

Hand-held devices such as personal digital assistants (PDAs) and cellular phones are
getting more and more popular in recent, years. Energy consumption is a critical issue
because these devices are battery poweredsDynamic.voltage scaling (DVS) is a low-power
design technique that adjusts the CPU frequency and:voltage levels dynamically based on
CPU workloads. The performance of @ DVS algorithm largely depends on how to estimate
slack time accurately. In this thesis, we propase a deferred-workload-based inter-task DVS
algorithm (dwDVS), which has two features. The first is that we reserve a time interval for
each task to execute and its workload can be completed in this time interval even in the
worst-case condition, which means that the actual workload (execution time) of each task is
equal to its worst-case execution time. In this way, we can estimate the slack time from
lower priority tasks more aggressively. The second is that we defer these reserved time
intervals, which means that a reserved time interval will be shifted to the deadline of its
corresponding task as close as possible. In this way, the operating frequency can be reduced
even without slack time. Simulation results show that the proposed dwDVS reduces the
energy consumption by 40-70%, 10-20%, and 3-10% compared with the static voltage

scaling (Static) [1], laEDF [1], and DRA [2] algorithms, respectively, and approaches

theoretical low bound (Bound) by an margin of at most 12%.

Keywords: deferred-workload-based, hard real-time system, inter-task dynamic voltage

scaling, slack time, actual workload, worst-case execution time.

Acknowledgements

Many people have helped me with this thesis. | deeply appreciate my thesis advisor, Dr.
Kuochen Wang, for his intensive advice and instruction. | would like to thank all the
classmates in Mobile Computing and Broadband Networking Laboratory for their invaluable

assistance and suggestions. This work was supported by the NCTU EECS-MediaTek
Research Center under Grant Q583.

Finally, | thank my Father and Mother for their endless love and support.

Contents

Abstract (in Chinese) i
Abstract (in English) i
Acknowledgements v
Contents Vi
List of Figures viii
List of Tables IX
(O gF- T 0] (= o TSR 1
INEFOAUCTION .. 1
(O gF- T 0] (= TSP 3
REIATEA WOIK ...t 3
2.1 Categories of Existing Real-Time Schedulers...........ccccovvvvveviere e i 3
2.2 Categories of Existing Slack Time Estimation Strategies..........ccccvvvervennnne. 3
2.3 Comparison of Existing Inter-Task DVS Algorithms...........ccccecvvveinevvinenee. 5
(O T T 0] (1 g TSRO PRTTR 8

Vi

Proposed Deferred-workload-based DVS (AWDVS)........cccooviiiiiiiiiniienenie e 8

3.1 SYStEM MOUEL ... e 8
3.2 Problems of Most Existing Inter-Task DVS Algorithms...........ccccoecvvvevieenene 9
3.3 The Basic 1dea of dWDVSccoiiiiiiiiiece s 10
3.4 The Detailed Procedure of dWDVS..........ccooiiiiiiiiiinines e 10
(O T T 0] (= g TSP SRPPR 15
Simulation Results and DISCUSSION...........ccviiiierieieii s 15
4.1 Classical Inter-Task DVS AIgOrithmsccccoeviviieiieiece e 15
4.2 Simulation Model i 16
4.3 Effect of Worst-Case Utilization on Energy Consumption..........c.c.ccccveveenee. 16
4.4 Effect of WCET/BCET Ratio on Energy Consumption...........ccoccevverveeenne. 17
4.5 Effect of Number of Tasks in a Task Sets on Energy Consumption.............. 18
(O T T 0] (=1 g TSP 20
Conclusions and FULUIe WOTK...........coiiiiiiiiieees s 20
5.1 Concluding REMAIKSc.ciiveiiiiieiiese e 20
5.2 FULUIE WOTK ...t 20
BIDHOGIrapNY ... s 22

vii

List of Figures

Fig. 1. An illustration of stretching t0 NTA. ..o 4

Fig. 2. An illustration of incorrect slack time estimation from T, based on

EXAMPIE TASK SEL L. ...eeeiieie e 9
Fig. 3. Determine a reserved time,interval for a task instance.ccccoceevvvenenne. 13
Fig. 4. An illustration of dwDV.S:based on example task set 2...........cccccvevvevvenenne. 14
Fig. 5. Effect of worst-case utifization-on energy consumption.cccceeevevvereene 17

Fig. 6. Effect of WCET/BCET ratio (actual workload) on energy consumption. 18

Fig. 7. Effect of number of tasks in a task set on energy consumption.................... 19

viii

List of Tables

Table 1. Comparison of existing inter-task DVS algorithms.............cccccevviivivenene. 7
Table 2. EXample task SEL L.coveiieieiiece e 9
Table 3. EXample task SEL 2.ccvv i 14

Chapter 1

Introduction

Hand-held devices are battery powered for mobility. These devices usually require

powerful processors to handle various multimedia applications. The energy consumption
E of a CMOS circuit is given by E=C, -V/ -C[3], where C_ is the effective

switched capacitance, V,, is the supply voltage, and C is the number of execution cycles.
It can be seen that the energy consumption‘has a quadratic dependency on the supply
voltage. Therefore, lowering the supply -voltage is- an effective technique for reducing

energy consumption.

However, a real-time task might violate its.time constraint because lowering the supply
voltage implies reducing the maximum achievable CPU frequency and hence increasing the
execution time of this task. Therefore, DVS algorithms lower the supply voltage of
hand-held devices to the lowest possible level while still guaranteeing all deadlines. That is,
the devices only need to satisfy the performance requirements of applications while
choosing proper CPU frequencies. In addition, the processors of these devices must support
multiple CPU frequency and voltage levels, such as Intel Xcale [4][5] and Transmeta

Cursoe [6].

However, DVS also brings some overheads, such as an increase in number of
preemptions, which results in increasing energy consumption in memory subsystems, and
extra energy consumption and time for voltage transitions. Fortunately, these overheads are

usually small enough so that we assume that they can be neglected [1][7][8][9].

1

There are two categories of DVS algorithms:

® Inter-task DVS [1][2][8][9][10][11]
Inter-task DVS adjusts the CPU frequency task by task. It means that the operating
frequency will be set to a proper value when a real-time task T, is ready to execute and

won’t be changed until T, has already completed or has been preempted.

® Intra-task DVS [12][13][14]

Intra-task DVS adjusts the CPU frequency within a task. It means that frequency and
voltage transition points will be determined offline. During the execution of a real-time task
T,, if the current time reaches a frequency and voltage transition point, the operating
frequency will be set to a proper value and won’t be changed until next frequency and
voltage transition point.

In this thesis, we focus on the inter-task DV.S. We propose an inter-task DVS algorithm
called dwDVS that estimate the slack time from lower priority tasks more aggressively. As a
result, we can have a good performance.onreducing energy consumption.

The rest of this thesis is organized ‘as follows. In Chapter 2, we review four existing
slack time estimation strategies and several inter-task DVS algorithms. In Chapter 3, we
describe the system model of the target hard real-time systems. Then, we depict the basic
idea and details of the proposed DVS algorithm. In Chapter 4, simulation results are
evaluated and discussed. Finally, we conclude with a summary and future work in Chapter

5.

Chapter 2
Related Work

2.1 Categories of Existing Real-Time Schedulers

Inter-task DVS algorithms usually combine with real-time schedulers. The two most
popular real-time schedulers are the Rate-Monotonic (RM) scheduler and
Earliest-Deadline-First (EDF) scheduler [15][15]. The RM scheduler always gives the
highest priority to the task which has the. shortest period in the ready queue. The EDF
scheduler always gives the highest priority to the.task-which has the latest deadline in the

ready queue.

2.2 Categories of Existing Slack Time Estimation

Strategies

DVS usually exploits slack time to adjust CPU frequency and voltage levels in order to
guarantee all deadlines. Therefore, a good slack time estimation method is very important to
reduce energy consumption. Existing inter-task DVS algorithms usually exploit one or more
of the following four strategies to estimate the slack time [7], and it is possible to modify
the original version to improve the performance on reducing energy consumption.

(1). Minimum constant speed

Static voltage scaling [1], DRA [2], IppsRM [10], and IppsEDF [10] used this strategy.

This strategy estimates the lowest possible constant CPU frequency under the time

constraint that all deadlines must be met. Therefore, it needs to know the worst-case

processor utilization U which can be computed as follows:

U worst — Z VV
i=0 !

where n is the number of tasks in the task set, w, is the worst-case execution time of a

worst !

task T,, and p, is the period of a task T,. The operating frequency is set to

f=U o X Frax» Where f__ is the maximum CPU frequency.

worst max !

(2). Stretching to NTA (next task arrival time)

ccRM [1], DRA [2], IppsRM [10], and IppsEDF [10] used this strategy. This strategy
reduces the operating frequency as shown in Fig. 1. If a task T, is ready to execute at
current time t_, and the NTA of T, is later than t.+w,, where w, is the worst-case

execution time of T,, then T, can be executed at a lower operating frequency so that T,

will complete at its NTA in the worst-case condition.

| NTA of Ty
T, ;

Fig. 1. An illustration of stretching to NTA.

(3). Priority-based slack stealing
DRA [2], IpSEH [8], and PLG [11] used this strategy. This strategy reduces the

operating frequency based on the following scheme. If a higher priority task T, has been

completed before its WCET, it has slack time slack(T;). The next lower priority task T,

can exploit the slack time to lower its operating frequency f(T;) as follows:

W.
f(Tj)z—‘x
w; +salck(T;)

max *

where w; is the worst-case execution time of T, and f_, is the maximum CPU

frequency. However, if a lower priority task has been completed before its WCET, it is
computationally expensive to estimate slack time precisely. In this case, existing DVS
algorithms usually adopted heuristics. For example, IpSEH [8] used slack time from lower
priority tasks based on some constraints, such as the arrival time and priority of the next
task.
(4). Utilization updating

ccEDF [1], laEDF [1], and the algorithm proposed by Krishna et al. [9] used this

strategy. The actual processor utilization U during run-time is usually less than the

actual

worst-case processor utilization U Therefore, this strategy reduces the operating

worst-—*

frequency based on the following scheme. When a task T, has already completed, it

updates U, Which can be computed as follows:

LW, a.
Ui =| |
actual (]—o,j;ﬁi Aj] + Ai

where n is the number of tasks in the task set, w; is the worst-case execution time of a
task T,, p; is the period of a task T,, and a; is the actual workload of T,. The

operating frequency is set to f =U x f where f_. is the maximum CPU

actual max !

frequency.

2.3 Comparison of Existing Inter-Task DVS Algorithms

Table 1 shows the comparison of several existing inter-task DVS algorithms and the

proposed algorithm dwDVS. The metric of scheduler indicates what scheduling policies are

used. The metric of strategy indicates that one or more slack time estimation strategies, that
were described in Chapter 2.2, are used to estimate the slack time. Furthermore, a strategy
with a superscript “*” means an improved version. The metric of number of preemptions
indicates frequency of preemptions. The more effective of the slack time estimation results
in the more number of preemptions. This is because that there are more opportunities for
higher priority tasks to preempt lower priority tasks when the execution time of lower
priority tasks becomes longer due to lowering the supply voltage. The metric of energy
consumption indicates the CPU energy consumption using each algorithm. In Chapter 4, we
will compare the proposed dwDVS with static voltage scaling [1], laEDF [1], and DRA [2],
quantitatively. Note that dwDVS is similar to laEDF in the aspect of deferred-workload and

DRA is better than the rest of existing inter-task algorithms [2].

Number of Energy
Algorithm Scheduler Strategy
Preemptions | consumption
ccRM [1] RM D)+(2)* Medium Medium
IppsRM [10] RM 1)+ Low High
Static [1] EDF 1) Low High
IppsEDF [10] EDF (1)+(2) Low High
ccEDF [1] EDF 4) Low High
IpSEH [8] EDF (1)+(2)+(3)* Medium Medium
laEDF [1] EDF (4)* Medium Medium
DRA[2] EDF* (2)+(2)+(3) Medium Medium
dwDVS
EDF* (3)* High Low
(proposed)

Table 1. Comparison of existing inter-task DV'S algorithms.

Chapter 3

Proposed Deferred-workload-based
DVS (dwDVS)

3.1 System Model

The target processor can change its supply voltage and operating frequency continuously

within its operational ranges, [V, V.x] and [f]. A task set T of n periodic

min ! min ! fmax

tasks is denoted as T ={T,,T,,T,,...T.},Each task T, has its own period p, and

worst-case execution time (WCET) w,. Thedeadline d, of T, isassumed to be equal to its
period p,. The j" instance of T, is denoted by T, ;- Each task releases its instance

periodically and all tasks are assumed to be mutually independent.

We consider a preemptive hard real-time system where periodic real-time tasks are
scheduled under the EDF* scheduling policy [2] which is similar to the earliest deadline
first (EDF) scheduling policy. The differences are as follows [2]:
® Among the tasks whose deadlines are the same, the task with the earliest arrival time

has the highest priority.

® Among the tasks whose deadlines and arrival times are the same, the task with the

lowest index has the highest priority, which means that if tasks T,, and T,, have the

same deadlines and arrival times, T,, has a higher priority.

3.2 Problems of Most Existing Inter-Task DVS

Algorithms

Most of existing inter-task DV'S algorithms have the following two potential problems so

that their performances on reducing energy consumption are not efficient enough:

® Their slack estimation methods are too conservative, which means that they don’t take
full advantage of slack time from lower priority tasks which have completed before their
WCET in order to guarantee all deadlines.

® They set a high operating frequency to execute a task initially and reduce operating

frequency when this task has completed before its WCET.

Fig. 2 illustrates the first problem based on example task set 1 as shown in Table 2. If T,
exploits the whole slack time, which T, . left.after. T,, has already completed before its

WCET, to lower its operating frequency, T, Wwon’t guarantee its deadline in the worst-case

condition.

Task WCET (ms) Actual workload (ms) Period (ms)

1 5 5 10

2 15 2.5 30

Table 2. Example task set 1.

mics deadiine

T, v

0 5 10 15 20 25 30

Fig. 2. An illustration of incorrect slack time estimation from T, based on example task set
1.

3.3 The Basic Idea of dwDVS

To solve the two potential problems that have been described in Chapter 3.2, we

propose the following two strategies:

We reserve a time interval for each task instance to execute its workload within this time
interval even in the worst-case condition so that we can guarantee all deadlines. By
determining the reserved time intervals for all task instances, we can easily estimate the
slack time from either higher priority or lower priority tasks.

We defer these reserved time intervals, which means that these reserved time intervals
will be shifted to the deadline of their corresponding tasks as close as possible. By
deferring the reserved time intervals, we can reduce the operating frequency without

slack time.

3.4 The Detailed Procedure of dwbDVS

Based on the two strategies:that were-deseribed in Chapter 3.3, we design a procedure

to reserve a deferred time interval for each.task instance, as shown in Fig. 3, which includes

steps 1 through 5, as described below. After that, the operating frequency of the task

instance which is ready to execute can be determined (steps 6 and 7).

(1)
@)

3)

Find a task T, which has the minimum period in a task set.

Find a task instance T,; of T, which has the maximum deadline d, ;.
Check the time intervals from d;; to zero and determine which time interval can be
allocated to T, ; according to the following parameters:

® The remaining worst-case execution time (RWCET) of T,;, RWCET (T, ;): When

ij?
RWCET (T; ;) is set to zero, the reserved time interval for T, ; is determined.

® The state of a time interval T[k —1,k]:

10

» No_reserve: It means that the time interval is not reserved for any task
instances.
» Partial _reserve: It means that only part of the time interval is reserved for
one or more task instances.
» Full _reserve: It means that the whole time interval is reserved for one or more
task instances.
® The remaining time of a time interval T[k-1,k], which is denoted by
T[k —1,k].rem : If the state of a time interval T[k —1,k] is Partial _reserve,
T[k —1,k].rem is the amount of time which is not reserved for other task instances.
(4) Repeat steps 1 through 3 until all task instances in a task set have their corresponding
reserved time intervals.
(5) The reserved time intervals should be updated-by repeating steps 1 through 4 when a task
has already completed or has been preempted.

(6) The time interval, which is-not reserved_for any task instances, is denoted by a vacant

time interval (VTI), such as T[0,3].in.Fig. 4(a). A task instance T,; can take a VTI,

which appears before the deadline of T. ., as its available execution time (AET). Then,

ij1

we can calculate the AET of T. ., as follows:

ij?

AET (T, ;) = RWCET (T, ,) +VTI(T,) (1)

for T. ., as follows:

(7) Finally, we can set the operating frequency f "

dvs

RWCET (T, ;)
- "X f

AET (-I-I’J) max (2)

fdvs (Ti,j) =

We use an example task set (Table 3) to illustrate steps 1 through 7 of dwDVS, as

shown in Fig. 4. In Fig. 4(a), the deadline and RWCET of the task instance T,, is 15 ms

11

and 2 ms. The state of time interval T[13,15] is No_reserve. We reserve the time

interval T[13,15] for T , to execute its workload. In the worst-case condition, T, , will

be ready to execute at 13 ms and complete at 15 ms. Fig. 4(b) illustrates how CPU sets a

proper operating frequency for a task T,, based on the reserved time intervals and VTI in

Fig. 4(a). When T,, has already completed at 5 ms, the reserved time intervals are updated

by repeating steps 1 through 3, as shown in Fig. 3. Fig. 4(c), and Fig. 4(d) , Fig. 4(e) can be

deduced accordingly.

12

Find atask T, which has the minimum period in a task set;

Find a task instance T;; of T, which has the maximum deadline d, ;;
for k=d;; to 0

if RWCET(T;,)==0

break

else if T[k —1,k] == No _reserve
if RWCET(T,;)>1
T[k —1,k] = Full _reserve
RWCET (T, ;) = RWCET(T; ;) -1

else
T[k —1,k] = Partial _reserve

T[k ~1,k].rem =1— RWCET (T,)

RECET(T, ;) =0
else if T[k —1,k] == Partial _reserve
if (RWCET(T,;)+T[k-1k].rem)>1
T[k —1,k] = Full _reserve

RWCET (T, ;) = RWCET (T, ;) — (1~ T[k —1,k].rem)

else if (RWCET (T, ;) +T[k—1k].rem)==1 then
T[k —1,k] = Full _reserve
RWCET(T,;) =0

else
T[k —1,k] = Partial _reserve

RWCET(T,,) =0

Fig. 3. Determine a reserved time interval for a task instance.

13

Task | WCET (ms) | Actual workload (ms) | Period (ms)
1 2 2 5
2 2 1 15

Table 3. Example task set 2.
., 100
=
@ =, 0.50 T Ta| [%2a| %5
&
0 5 10 15 time
.. 100
&
® 5. 00 fa| T2 42
& 11
0 5 10 15 time
. 100
=
(9 & 030 i e
2 e EI:%
0 5 10 15 time
., 100
@ g
2 o ﬂ T
[+ j;.l f};
0 3 10 15 time
.
(£) & _
2 0350
fand
£ T, iy Gy T
0 5 10 15 time

Fig. 4. An illustration of dwDVS based on example task set 2: (a) Initialize to reserve
deferred time intervals; (b) Set the operating frequency for T, 1 based on equations 1 and 2
that were described in Chapter 3.4; (c), (d), (e): Update the reserved time intervals after Ty 1,
T12, and T, have already completed, respectively. Then, set a proper operating frequency

for Ty, T2, and Ty 3, respectively.

14

Chapter 4

Simulation Results and Discussion

4.1 Classical Inter-Task DVS Algorithms

To evaluate the proposed dwDVS, we have implemented the following inter-task DVS
algorithms:
® Static voltage scaling (Static) [1]:

This algorithm is proposed by Pillai and Shin. The CPU runs at a lowest possible
constant CPU frequency to guarantee all deadlines.
® | ook-ahead EDF (laEDF) [1]:

This algorithm is also proposed by Pillai-and Shin. It uses a modified utilization updating
strategy, such that it estimates the minimum workloads required to be executed before the
latest deadline.
® Dynamic reclaiming algorithm (DRA) [2]:

This algorithm is proposed by Aydin and Melhem. It integrates the maximum constant
speed, stretching to NTA, and priority-based slack stealing strategies.

® Theoretical low bound (Bound):

This is an oracle algorithm, which knows the actual workload of each task in advance

and uses an optimal speed schedule.

15

4.2 Simulation Model

In the simulations, we assumed the processor can change its operating frequency and

supply voltage continuously within its operational ranges, [f..., f.a] and [V Viad [2]-

The actual workload of each task instance is drawn from a normal distribution with mean

BCET +WCET and standard deviation WCET;BCET [2], where BCET is the

best-case execution time, meaning that 99.7% of the actual workload falls in the interval
[BCET ,WCET]. If the actual workload is less than BCET or greater than WCET, we set it
to BCET or WCET, respectively. In the following, we compare the average energy
consumption of these algorithms, which is normalized to the average energy consumption of

Static [1], under different conditions.

4.3 Effect of Worst-Case Utilization on Energy

Consumption

Fig. 5 compares the average energy consumption of each inter-task DVS algorithm under

different worst-case utilization. The number of task sets is 100, the number of tasks in a task

set is 8, the WCET

ratio is 5, and the worst-case utilization varies from 10% to 100% [2].

From these simulation results, we have the following two observations:
® The dwDVS reduces the energy consumption by an average of 63%, 14%, and 7%
compared with the Static [1], laEDF [1] and DRA [2] algorithms, respectively.
® When the worst-case utilization is greater than 90%, the improvement of dwDVS on
reducing the energy consumption is not as obvious as the cases with the worst-case

utilization of less than 90%. This is because that the advantage , which is generated from

16

reserving deferred time intervals by dwDVS, is limited under high worst-case

utilization.

—o— Static —=— [aEDF —+— DRA —<—dwDVS —— Bound

o

g 120

g%\loo * *> *> *> *> * *> *>
Z 8 80 F

=

55 4

o O

Q Z

5~ 2 F

= 0

10 20 30 40 50 60 70 80 90 100

Worst-case utilization (%)

Fig. 5. Effect of worst-case utilization on energy consumption.

4.4 Effect of WCET/BCET Ratio on Energy

Consumption

Fig. 6 compares the average energy.consumption.of each inter-task DVS algorithm under

various ratio. The number of‘task sets‘is 100, the number of tasks in a task set is 8,

the worst-case utilization is 60%, and the WCET

ratio varies from 1 to 10 [2]. From these

simulation results, we have the following two observations:
® The dwDVS reduces the energy consumption by an average of 52%, 13% and 9%

compared with laEDF [1] and DRA [2], respectively.

® \When WCET

>5, the improvement on energy consumption is not obvious as that of

WCET
BCET

<5. This is because that the expected workload converges rapidly to 50% of the

worst-case workload with the increasing ratio.

17

—o— Static —=— [aEDF —+— DRA —<—dwDVS —— Bound

o

g 120
E 5 100
Z 8 80
=
1¥
o O

O

5 < 20 F
= 0

| 2 3 4 5 6 7 8 9 10
WCET/BCET ratio

Fig. 6. Effect of WCET/BCET ratio (actual workload) on energy consumption.
4.5 Effect of Number of Tasks in a Task Sets on Energy

Consumption

Fig. 7 compares the average energy consumption.of each inter-task DVS algorithm with

respect to a different number of tasks in a-task set: The number of task sets is 100, the

WCET

worst-case utilization is 60%, the ratio is'5, and the number of tasks in a task set

varies from 5 to 50. From these simulation results, we observe that the energy consumption of
each inter-task DVS algorithm decreases slightly when the number of tasks in a task set
increases. This is because that the overall workloads rely on the actual workload of each task
instance and the worst-case utilization, but not on the number of tasks in a task set. However,
the energy consumption indeed decreases when the number of tasks in a task set increases.
This is because when the number of tasks in a task increases, each inter-task DVS algorithm

has more task instances from which slack time is available.

18

—o— Static —=— [aEDF —+— DRA —<—dwDVS —— Bound

o

g 120
g . 100
=)
Z 2 80
= E
g 2 40
5%~ 2
% 0

5 10 15 20 25 30 35 40 45 50

Number of tasks

Fig. 7. Effect of number of tasks in a task set on energy consumption.

19

Chapter 5
Conclusions and Future Work

5.1 Concluding Remarks

In this thesis, we have presented an energy-efficient inter-task DVS algorithm called
dwDVS based on deferred-workload. The proposed dwDVS is motivated by the observation
that most of existing inter-task DVS algorithms run at a higher frequency initially and
estimate the slack time from lower priority tasks too conservative. The main contribution of
the proposed dwDVS is that the slack time from lower priority tasks can be efficiently
estimated and the CPU frequency .can be reduced even without slack time. The overheads of
our approaches are an increasezin-number of preemptions, which results in increasing the
energy consumption in memory. subsystems;-and €extra energy consumption and time for
voltage transitions. Fortunately, these overheads are usually small enough and thus can be
neglected [1][7][8][9]. Simulation results have shown that dwDVS can effectively reduce the
energy consumption by 40-70%, 10-20%, and 3-10% compared with Static [1], laEDF [1] and
DRA [2] algorithms, respectively, and approaches the theoretical low bound by a margin of at

most 12%.

5.2 Future Work

A more intelligent slack time distribution for more tasks instead of one can be used to
further improve the proposed dwDVS. It means that if a higher priority task T, has

completed before its deadline, the slack time which T, left need not be allocated fully to

the next lower priority T,. We may distribute the slack time to the next two or more lower

priority tasks based on a clever strategy, such as a profile-based slack time distribution

20

strategy. In addition, we may take more factors, such as number of preemptions or extra
time and energy consumption for voltage transitions, into consideration to make the system
model of the proposed dwDVS more close to realistic systems. The effectiveness of these

strategies deserve to further study.

21

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

P. Pillai and K.G. Shin. “Real-Time Dynamic Voltage Scaling for Low-Power
Embedded Operating Systems,” in Proceedings of 18th ACM Symposium on Operating
Systems. pp. 89-102, October 2001.

H. Aydin, R. Melhem, D. Moose, and P. Mejia-Alvarez, “Power-Aware Scheduling for
Periodic Real-Time Tasks,” IEEE Transactions on Computers, Volume 53, Issue 5, pp.
584-600, May 2004.

B. Moyer, “Low-Power Design for Embedded Processors,” in Proceedings of IEEE,
Volume 89, Issue 11, pp. 1576-1587, November 2001.

Intel, PXA255 Processor Electrical, Mechanical, and Thermal Specification, 2004.
Intel, PXA270 Processor Electrical, Mechanical, and Thermal Specification, 2004.

Transmeta Corporation, http://www.transmeta.com/

W. Kim, D. Shin, H. S. Yan, S: L. Min,-and J. Kim. ”Performance Comparison of
Dynamic Voltage Scaling Algorithms far Hard Real-Time Systems,” in Proceedings of
the IEEE Real-Time and Embedded Technology and Application Symposium, pp.
219-228, September 2002.

W. Kim, J Kim, and S. L. Min. “A Dynamic Voltage Scaling Algorithm for Dynamic
Priority Hard Real-Time Systems Using Slack Time Analysis,” in Proceedings of
Design, Automation and Test in Europe, pp. 788-794, March 2002.

C. M. Krishna and Y. H. Lee, “Voltage Clock Scaling Adaptive Scheduling
Techniques for Low Power in Hard Real-Time Systems,” IEEE Transactions on

Computers, Volume 50, Issue 8, pp. 1586-1593, August 2003.

22

http://www.transmeta.com/

[10] Y. Shin, K. Choi, and T. Sakurai. “Power Optimization of Real-Time Embedded
Systems on Variable Speed Processors,” in Proceedings of the International
Conference on Computer-Aided Design, pp. 365-368, June 2000.

[11] R. Venkat, G. Singhal, and A. Kumar, “Real-Time Dynamic Voltage Scaling for
Embedded Systems,” in Proceeding of the 17th International Conference on VLSI
Design, pp. 650-653, 2004.

[12] F. Gruian, “Hard Real-Time Scheduling for Low-Energy Using Stochastic Data and
DVS Processors,” in Proceeding of ISLPED, pp. 849-864, August 2001.

[13] D. Shin, S. Lee, and J. Kim, “Intra—Task Voltage Scheduling for Low-Energy Hard
Real-Time Applications,” IEEE Design and Test of Computers, pp. 20-30, March
2001.

[14] J. R. Lorch and A. J. Smith, “PACE: A New Approach to Dynamic Voltage Scaling ,”
IEEE Transactions on Computers, Volume 53, Issue 7, pp. 856-869, July 2004.

[15] J. Lehoczkym L. Sha, and Y. Ding, “The Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behavior,” in Proceedings of the IEEE
Real-Time Systems Symposium, pp. 166-171, December 1989.

[16] C. L. Liu and J. W. Leyland, “Scheduling Algorithms for Multiprogramming in A

Hard Real-Time Environment,” Journal of the ACM, pp. 46-61, January 1973.

23

	
	Introduction
	Chapter 2
	Chapter 3
	Chapter 4
	Simulation Results and Discussion
	Chapter 5
	Conclusions and Future Work
	Bibliography

