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一個有效解決日本益智遊戲「發現小花」的演算法 

研究生：尤瓊雪                        指導教授：陳玲慧 博士 

國立交通大學資訊科學與工程研究所碩士班 

 

 

摘  要 

 日本益智遊戲「發現小花」是風行於日本與荷蘭的邏輯遊戲之一，而

「該謎題是否能解」是一個難以回答的問題，甚至是一個非決定性多項式

時間-完全（NP-complete）問題。目前已有一些相關論文提出，有的是利

用基因演算法解決，但是可能造成錯誤的答案出現；而有的是利用深先搜

尋演算法，該演算法是一種暴力搜尋法，所以執行速度很慢；因此，在這

篇論文裡，我們想要提出一種演算法來盡可能快速的解決所有謎題，這個

演算法不只加速了深先搜尋法的速度，更確保了謎題解答的正確性。在這

個遊戲裡，很多謎題是緊密而連續的圖形，我們可因此推導出一些邏輯規

則，按照這些規則去填出那些可以馬上決定位置的格子；然而，並非所有

謎題都可以依邏輯規則完全解出，像是有些隨意產生的謎題需要另一種方

法來輔助，在這種情況下，我們使用深先搜尋演算法，但為了加快執行速

度，分支界限法的觀念被引進，其目的是提早終止那些不合法的路徑。實

驗的結果顯示，我們的演算法成功地解決日本益智遊戲「發現小花」，而

執行速度也比一般的深先搜尋法來得快速。 
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An Efficient Algorithm for Solving Japanese Puzzles 

Student: Chiung-Hsueh Yu             Advisor: Dr. Ling-Hwei Chen 

Institute of Computer Science and Engineering 
National Chiao Tung University 

 

 

ABSTRACT 

 Japanese puzzle is one of logical games popular in Japan and Netherlands. The 

question “Is this puzzle solvable?” is difficult to answer, even is an NP-complete 

problem. At present, there have been some related papers proposed. Some use genetic 

algorithm (GA), but the solution may be wrong. Some use depth first search (DFS) 

algorithm. The DFS algorithm is an exhaustive search, so the execution speed is slow. 

Hence, in this thesis, we want to propose an algorithm to solve puzzles as quickly as 

possible. The algorithm not only accelerates the speed of DFS but also ensures the 

correctness of the solution of a puzzle. In this puzzle game, many puzzles are compact 

and contiguous pictures. Based on this, we can deduce some logical rules, and use 

these rules to paint those cells whose positions can be determined immediately. 

However, not all puzzles can be solved completely by logical rules. In this situation, 

we use the DFS algorithm to complete the puzzle solving. In order to speed up the 

process, the “branch and bound” technique is used to do early termination for those 

impossible paths. Experimental results show that our algorithm can solve Japanese 

puzzles successfully, and the processing speed is significantly faster than that of DFS. 
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CHAPTER 1  

INTRODUCTION 

1.1 Motivation 

 Japanese puzzle, also known as nonogram, is one of logical games popular in 

Japan and Netherlands. The game is recommended to Taiwan recently, but few papers 

are concerned with this topic – Japanese nonograms. In addition, some related papers 

solved this problem by non-logical algorithms, and the execution speed is slow. On 

the other hand, the question “Is this puzzle solvable?” turns out to be very hard to 

answer in general, even is a NP-complete problem [1-2]. In this thesis, we will present 

a fast method to solve this problem. First, we will provide some logical rules to solve 

most part of a puzzle, and then use DFS with branch and bound scheme to solve the 

remaining part. The detail of our proposed method will be described in Chapter 2. 

 

1.2 Japanese Puzzles 

 Japanese puzzles will be described in this section. Fig. 1.1 (a) is a simple puzzle 

and Fig. 1.1 (b) is the solution of Fig. 1.1 (a). Ignoring the numbers, the solution can 

be considered as a black-white (1-and-0) picture. Here, we use ■ as a colored (black) 

cell, □ as an empty (white) cell, and ■ as an unknown cell (i.e. an undetermined 

cell). 

 The positive integers alongside the rows and columns give the information about 

the lengths of black runs (a black run: contiguous black cells) in that row or column 

respectively. The goal is to paint the cells to form a picture that satisfies the following 

constraints: 
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(a) (b) 

1. Each cell must be colored (black) or left empty (white). 
2. If a row or column has k  numbers: 1s , 2s , …, ks , then it must contain k  

black runs – the first (leftmost for rows / topmost for columns) black run with the 
length 1s , the second black run with the length 2s , and so on. 

3. There should be at least one empty cell between two consecutive black runs. 

 

 

 

 

 

 

Fig. 1.1 Japanese puzzle. (a) A simple puzzle. (b) The solution of (a). 

 

 It is evident that the puzzle in Fig. 1.1 (a) has a unique solution. However, the 

puzzle in Fig. 1.2 has two solutions, and the puzzle in Fig. 1.3 has no solution (i.e. no 

corresponding picture). Hence, there may be no, exact one, or more than one solution 

for given integral numbers. 

 

 

 

 

Fig. 1.2 A puzzle with two solutions.      Fig. 1.3 A puzzle with no solution. 

 

1.3 Previous Works 

 In 2004, Batenburg [3] described an evolutionary algorithm for discrete 

tomography (DT). And then Batenburg Kosters [4] provided a method to solve 

Japanese puzzle. By modifying the fitness function in [3], the evolutionary algorithm 
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can be used to solve Japanese puzzle. DT is concerned with the reconstruction of a 

discrete image from its projections [4]. Japanese puzzles can be considered as a 

special form of the DT problem. Fig. 1.4 shows an example to explain the difference 

between them. Since the evolutionary algorithm in [3] will converge to a local 

optimum, the obtained solution may be incorrect. 

 

 

 

 

 

Fig. 1.4 DT problem and Japanese puzzle. (a) DT problem. (b) Japanese puzzle. 

 

 In 2004, Wiggers [4] proposed a genetic algorithm (GA) and a depth first search 

(DFS) algorithm to solve Japanese puzzles. He also compared the performance of 

these two algorithms. For a puzzle of small size, DFS algorithm is faster than GA; 

otherwise, GA is faster. However, both methods are slow. In the following, we will 

give a brief description for the DFS algorithm, since it will also be used in our 

proposed method. 

 

[Depth First Search (DFS)] 

 It is a straightforward idea to solve the Japanese nonogram by DFS. The author 

generates all possible solutions of each row. Taking Fig. 1.5 as an example, Fig. 1.6 is 

its corresponding DFS tree and Fig. 1.7 shows all possible solutions in the tree. Each 

possible solution corresponds to a path from root to a leaf node, find all paths using 

DFS and then use the column information of the puzzle to verify each possible 

solution. A possible solution will be considered as a true solution, if it satisfies all 

(a) (b) 
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columns’ restrictions. Fig. 1.8 (c) is the only correct solution after the verification 

process. Note that the symbol “X” in Fig. 1.8 stands for the column’s restriction not 

satisfied. 

 

 

 

 

 

Fig. 1.5 A puzzle problem. 

 

 

 

 

 

 

 

 

Fig. 1.6 The DFS tree of Fig. 1.5. 

 

 

 

 

 

 

 

Fig. 1.7 Six possible solutions in the DFS tree. 

(a) (b) (c) 

(d) (e) (f) 

(a) (b) (c) (d) (e) (f) 

row 1 
(3 possible solutions) 

row 2 
(2 possible solutions) 

row 3 
(1 possible solution) 

possible solutions: 
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Fig. 1.8 Verification process for the different cases. 

  

 Whether the evolutionary algorithm presented in [4] or the genetic algorithm 

(GA) described in [5], both of them will converge to a local optimum, so sometimes 

the obtained solution may not be correct. Besides, the depth first search (DFS) 

algorithm proposed in [5] takes longer time than GA when solving large puzzles. 

However, DFS will always find correct solutions. In this thesis, some logical rules 

(LR) are provided to determine the unknown cells in a Japanese puzzle as many as 

possible, and then DFS is used to solve those remaining unknown cells. In order to 

speed up the process, the “branch and bound” technique is used to do early 

termination for those impossible paths.  

 

1.4 Organization of the Thesis 

 This thesis is composed of five chapters. In Chapter 1, Japanese puzzles and 

previous works are introduced. And then, the remainder of this thesis is organized as 

follows. Our proposed algorithm for solving Japanese puzzles will be presented in 

Chapter 2. In Chapter 3, several experimental results will be shown. Finally, 

conclusions and future works will be given in the last two chapters. 

 

 
X   X 

 
X X X X
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(d) (e) (f) 
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CHAPTER 2  

PROPOSED METHOD 

 In general Japanese puzzle game, we usually paint those cells which can be 

determined immediately at first. Then, the rest of undetermined cells will be solved by 

guess. Based on this fact, we will propose a method to solve Japanese puzzles 

automatically. The method contains two phases. In the first phase, some logical rules 

are deduced and used to determine some cells; in the second phase, another method, 

the depth first search will be applied to solve those remaining unknown cells. 

Furthermore, the “branch and bound” technique is used to accelerate the searching 

speed of the general DFS. These two phases will be presented in Sections 2.1 and 2.2. 

Fig. 2.1 is the flowchart of the proposed method. The conditions in the decision boxes 

will also be described in Section 2.1. 

 

 

Start

End
Phase 2

Solved by DFS with
 Branch and bound scheme

Phase 1
Solved by

logical rules (LR)

Is any unknown
cell determined?

Is any black run's
range changed?

Is the puzzle solved 
completely?

NoYes

No

Yes

Yes No

 

Fig. 2.1 The flowchart of the proposed method. 
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2.1 The first phase: Logical rules (LR) 

 One may also use some skills to solve Japanese puzzles, like the rules described 

in [6]. In this phase, eleven rules are proposed but we present a new concept of range 

of a black run (“range” will be explained later). These rules can be divided into three 

main parts. The first part is to determine which cells should be colored or left empty, 

the second part is to refine the ranges of black runs, and the third is not only to 

determine which cells should be colored or left empty but also to refine the ranges of 

black runs. The first five rules belong to part I, the following three rules belong to part 

II, and the last three rules belong to part III. Each rule will be applied in each row and 

then in each column. The total eleven rules are executed sequentially and iteratively. 

 In the beginning, all cells in the puzzle are considered as unknown. In some 

iterations, some unknown cells will be determined as colored cells or empty ones. 

However, in some iterations, maybe only the ranges of some possible black runs are 

refined. That is, there are not always some unknown cells determined in each iteration. 

Thus, if no unknown cell is determined and no black run’s range is changed, we will 

stop using logical rules because there will be no changes in later iterations. 

 Note that, the rules applied in a row are the same as those applied in a column, so 

we only take a row as an example to explain our algorithm. 

 

Preliminary 

 The position where a black run may be placed plays an important role. An idea 

about the range ),( jejs  rr  of a black run j  is proposed, where jsr  stands for the 

left-most starting position of the run, and jer  stands for the right-most ending 

position of the run. That is, black run j  can only be placed between jsr  and jer . If 

the range of each black run is precisely estimated, these ranges information can help 
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us to solve puzzles quickly. In the beginning, the initial range of a black run in a row 

is set between the left-most possible position and the right-most possible position. For 

each black run, it must reserve some cells for the former black runs and the later ones. 

Fig. 2.2 shows an example. Fig. 2.2 (a) shows a special row of a puzzle, in this row, 

there are three black runs with lengths 1, 3, and 2, respectively. Fig. 2.2 (b) shows the 

left-most possible solution of Fig. 2.2 (a) for each run, the first cell is colored and 

there is only one empty cell between every two neighboring black runs. Fig. 2.2 (c) 

shows the right-most possible solution of Fig. 2.2 (a) for each run, the last cell is 

colored and there is only one empty cell between every two neighboring black runs. 

Now, we take the second run as an example to do more detail explanation. In Fig. 2.2 

(b), the left-most position, at which the first cell of the second black run can start, is 

the third position. The reason is that there must reserve at least two cells in the head, 

one cell is reserved for the first black run and the other is reserved for the empty cell 

between the first and second black runs. Similarly, the right-most position, at which 

the last cell of the second black run can appear, is the seventh position. That is due to 

that there must reserve at least three cells in the tail, two cells are reserved for the 

third black run and one cell is reserved for the empty cell between the second and 

third black runs. 

 

Initial run range estimating 

 We let the size of each row with k  black runs be n  and the cells in a row with 

index )1 , (0, n-K , we can use the following formula to determine the initial range of 

each black run. Specially, jsr  of the first black run is initialized 0 and jer  of the last 

black run is initialized )1(n- . 
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where iLB  is the length of black run i . 

 Using the above formula, we can get the initial ranges of the three black runs in 

Fig. 2.2 (a), which are (0, 2), (2, 6), and (6, 9), respectively. 

 

 

 

 

Fig. 2.2 An illustration of range. (a) A special row of a puzzle. (b) The left-most case 

    of (a). (c) The right-most case of (a). 
 
 

Part I 

 There are five rules in this part, all of them are used to determine which cells 

should be colored (black) or left empty (white). 

Rule 1.1 

 For each black run, some cells must be colored if all the possible solutions of the 

black run have the intersection. Actually, the intersection of all possible solutions is 

also the intersection of the left-most case of the black run and the right-most case of 

the black run. It is obvious that the intersection exists when the length of the black 

run’s range is less than two times the actual length of a black run. Fig. 2.3 is an 

example. Consequently, we provide Rule 1.1 to paint the cells sure to be colored. In 

the rule, ic  is the cell with index i . 

 

 

231 231

231 231

231 231

0 1 2 3 4 5 6 7 8 9 

(a) 

(b) 

(c) 



 10

 

 

 

Fig. 2.3 An example of Rule 1.1. 

 

Rule 1.1 

jjsje
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Rule 1.2 

 In the beginning, each cell belongs to one or more than one black run. However, 

after some iterations, many black runs’ ranges will be refined, this may make some 

cells not belong to any black run, and these cells should be left empty. Rule 1.2 is 

provided to do this work. Fig. 2.4 shows that cells 0c  and 4c  should be left empty 

because they do not belong to any black run. 

 

Rule 1.2 
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Fig. 2.4 An example of Rule 1.2. (a) One row of a puzzle with a partial painting 

       result. (b) The result of applying Rule 1.2 to (a). 

33
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32 32
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Rule 1.3 

 For each black run j , when the first cell 
jsrc  of its range is colored, we will 

check 
jsrc  covered by what other black runs. If the lengths of those covering black 

runs are all one, the cell 1-rjs
c  should be left empty. In the similar way, when the last 

cell 
jerc  of its range is colored, we will check 

jerc  covered by what other black runs. 

If the lengths of those covering black runs are all one, the cell 1+jerc  should be left 

empty. We provide Rule 1.3 to determine whether cells 1-rjs
c  and 1+jerc  should be 

left empty. Taking Fig. 2.5 as an example, the colored cell 
jsrc  in Fig. 2.5 (a) is the 

first cell of the range of the last black run with length 3. It is also covered by the third 

black run with length 1. Thus, it must be the third black run with length 1 (see Fig. 2.5 

(b)) or the head cell of the last black run (see Fig. 2.5 (c)). No matter what case, the 

cell 1-rjs
c  should be left empty. 

 

Rule 1.3 

empty.left  be  will cell     

one, all are  with  covering run black  all of lengths  theIf (2)

empty.left  be  will cell     

one, all are  with  covering run black  all of lengths  theIf (1)
 , 1,,run black each For 

1

1-

+

≠

≠
=

je

je
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js

r

r

r

r

c

jici

c
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kjj K

 

 

 

 

 

 

 

Fig. 2.5 An example of Rule 1.3. (a) One row of a puzzle with a partial painting 
       result. (b) The cell    belongs to the third black run with length one. (c) 
       The cell   is the head cell of the last black run. 

jsrc
jsrc

1 312 1 312

1 312 1 312

1 312 1 312

jsr -1 jsr  

(a) 

(b) 

(c) 

1’s range
3’s range2’s range
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Rule 1.4 

 There may be some short black segments existing in a row. If any two 

consecutive black segments with an unknown cell between them are combined into a 

new black segment with length larger than the maximal length of all black runs 

containing part of this new segment, the unknown cell should be left empty. Rule 1.4 

is provided to deal with this situation. Fig. 2.6 shows an example. From Fig. 2.6 (b), 

we can see that by coloring ic , the length of the new black segment is 4. Since the 

new black segment is covered by two runs with length 1 and 3 and 4 is larger than 3, 

so we set the unknown cell ic  as empty. 

 

Rule 1.4 
For any three consecutive cells 1i-c , ic , and 1+ic , 2 , 1, n-i K=  
Constraint: cells 1i-c  and 1+ic  must be black, and cell ic  must be unknown 
1. Let maxL  be the maximal length of all the black runs containing the three cells. 
2. If we color ic  and find that the length of the black segment containing ic  is 

larger than maxL , ic  should be left empty. 

 

 

 

 

 

 

Fig. 2.6 An example of Rule 1.4. (a) One row of a puzzle with a partial painting result 
       ( maxL =3). (b) The new black segment’s length after coloring ic  is 4. (c) 

       The cell ic  should be left empty. 

 

 

 

 

131 131(c) 

131 131
1 ’s  ra n g e 1 ’s  ra n g e

3 ’s  ra n g e

131 131
4

(a) 

(b) 

i-1   i   i+1
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Rule 1.5 

 Some empty cells like walls may obstruct some black segments expand, we want 

to color more cells based on this property. For a black segment belonging to series of 

black runs, which have the same length but the ranges of them overlap each other, if 

the length of the black segment equals to the length of those black runs covering the 

black segment, we can set the two cells closest to the black segment as empty. Rule 

1.5 is proposed to solve the above problems. 

 Fig. 2.7 is a detailed description. In Fig. 2.7(a), we do not know ic  belonging to 

which black run. However, an empty cell 2-ic  obstructs the black segment containing 

ic  to expand to the left side of 2-ic . Hence, no matter ic  belongs to the run with 

length 3 or the run with length 4, the cell next to ic  should be colored. On the other 

hand, Fig. 2.7 (b) is a special case, all black runs containing ic  have the same length. 

Thus, we are quite sure that the two cells 1s-c  and 1+ec  closest to the black segment 

should be left empty. 

 

Rule 1.5 
For any two consecutive cells 1i-c  and ic , 1 , 1, n-i K=  
Constraint: cell 1i-c  must be empty or unknown, and cell ic  must be black 
1. Let minL  be the minimal length of all the black runs containing ic . 
2. Find an empty cell mc  closest to ic , 1 , ,1  i-i-minLm K+=∀  
   If mc  exists, color cell cp when minLmpi +≤≤+1 . 
3. Find an empty cell nc  closest to ic , 1 , ,1  minL-iin ++=∀ K  
   If nc  exists, color cell cp when 1-- ipminLn ≤≤ . 
4. If all black runs containing ic  have the same length. 
   (1) Let s  and e  be the start and end indices of the black segment containing ic  
   (2) If minLe-s =+1 , leave cells 1s-c  and 1+ec  empty. 
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Fig. 2.7 An example of Rule 1.5. (a) Top: one row of a puzzle with a partial painting 

       result. Middle: all possible solutions for ic . Bottom: the result of applying 
       Rule 1.5 to top figure. (b) Top: a special case (all black runs containing ic  
       have the same length). Bottom: the result of applying Rule 1.5 to top figure. 

 

Part II 
 Three rules are contained in this part. They are designed to refine the ranges of 

black runs. 

Rule 2.1 

 Two consecutive black runs can not have the same jsr  or jer , because it is 

impossible that they are placed in the same start position or end position. We use Rule 

2.1 to update the range of each black run j  when it has the same jsr  with black run 

1j-  or the same jer  with black run 1+j . 
 
Rule 2.1 
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⎨
⎧
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4 ’s  ra n g e
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43 43
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Rule 2.2 

 There should be one empty cell between two consecutive black runs, so we 

should update the range of black run j  if the cell 1-rjs
c  or 1+jerc  is colored. The 

cells 1-rjs
c  and 1+jerc  do not belong to black run j  because they are not in the 

range ),( jejs  rr . It means that the colored cell must belong to the previous or the next 

black run when it is painted. Therefore, Rule 2.2 is proposed to solve this problem. 

 

Rule 2.2 

⎪⎩

⎪
⎨
⎧ +

+ colored is  cell  theif),1  (  torefined be  will
colored is  cell  theif1),(  torefined be  will

,run black each For 

1

1

je

js

rjeje

-rjsjs

c-rr
crr

j

 

 

 

Rule 2.3 

 In the range of a black run, maybe one or more than one black segment exist. 

Some of black segments have the lengths larger than jLB , but some not. We try to 

determine each black segment with length larger than jLB  belongs to the former 

black runs or the later ones. If a black segment belongs to both of them, we can not do 

anything. But if no, then we update the range of black run j . We provide Rule 2.3 to 

do this work. In Fig. 2.8, the original range of the second black run is (4, 11). In the 

range of the second black run, the length of the first black segment is 3 which is larger 

than 2, and the black segment belongs to the first black run not the last, so we update 

the range of the second black run from (4, 11) to (8, 11). But the length of the second 

black segment is 1 and is less than 2, so we ignore it. 
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Rule 2.3 
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Fig. 2.8 An example of Rule 2.3. 

 

Part III 
 This part is also composed of three rules. The purpose of each rule is not only to 

determine which cells should be colored or left empty but also to refine the ranges of 

some black runs. 

Rule 3.1 

 In solving process, we met a problem as shown in Fig. 2.9 (a) – several colored 

cells belong to the same black run but they are scattered. It means that all cells 

between them should be colored to form a new black segment. Rule 3.1 is presented 

to solve this problem and Fig. 2.9 (b) is the result of applying Rule 3.1 to Fig 2.9 (a). 

 

 

 

 

 

Fig. 2.9 An example of Rule 3.1. (a) One row of a puzzle with a partial painting 
       result. (b) The result of applying Rule 3.1 to (a). 
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Rule 3.1 

For each black run j , 

find the first colored cell mc  after ej-r )1(  and the last colored cell nc  before sjr )1( +  

1. Color all cells between mc  and nc  

2. 
) - (n - mLBu

unr
m-ur

j

je

js

1  where

)(  torefined be will
)(  torefined be will

+=
⎩
⎨
⎧

+  

 

Rule 3.2 

 As shown in Fig. 2.10 (a), some scattered empty cells are distributed over the 

range of black run j , so there will be several segments bounded by these empty cells. 

The lengths of some segments may be less than jLB , so they can be ignored to 

consider. We propose Rule 3.2 to solve this problem. Fig. 2.10 (a) shows that there are 

six segments in 3’s range. The first two and the last segments will be skipped and then 

the range is adjusted. Since the length of the forth segment is less than 3 and is 

covered only by one black run with length 3, we can set it as empty. Fig. 2.10 (b) 

shows the result of applying Rule 3.2 to Fig. 2.10 (a). 

 

 

 

 

 

 

Fig. 2.10 An example of Rule 3.2. (a) One row of a puzzle with a partial painting 
        result. (b) The result of applying Rule 3.2 to (a). 
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Rule 3.2 

empty.left  be shouldsegment  in this cells all              
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Rule 3.3 

 This rule is designed for solving the case of the range of black run j  not 

overlapping the range of black run 1j-  or 1+j . We take the case “not overlapping 

black run 1j- ” as an example, another case “not overlapping black run 1+j ” is 

treated by the same idea but the conditions are reversed. It will be explained at the end 

of this section. 

1. The cell 
jsrc  is black (see Fig. 2.11 (a)) 

 Because the black run j  does not overlap the black run 1j- , so when the head 

cell of black run j  has been colored, we can finish this black run by Rule 3.3-1. 

Fig.2.11 (b) is the result of applying Rule 3.3-1 to Fig. 2.11 (a). 
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Rule 3.3-1 

)1(  torefined be should        
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Fig. 2.11 An example of Rule 3.3-1. (a) One row of a puzzle with a partial painting 
        result. (b) The result of applying Rule 3.3-1 to (a). 
 

2. An empty cell wc  appears after a black cell bc  (see Fig. 2.12 (a)) 

 It should be true that each cell after wc  will not belong to black run j . Thus, 

we can use Rule 3.3-2 to refine the range of black run j  as shown in Fig. 2.12 (b). 

 

 

 

 

Fig. 2.12 An example of Rule 3.3-2. (a) One row of a puzzle with a partial painting 
        result. (b) The result of applying Rule 3.3-2 to (a). 
 

Rule 3.3-2 

For each black run j  with its range not overlapping the range of black run 1-j , 

Constraint: an empty cell wc  appears after a black cell bc  with wc  and bc  in the 
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3. There is more than one black segment in the range (see Fig. 2.13 (a)) 

 In ),( jejs  rr , we find the first black cell sc  in the first black segment and the 

first black cell ec  in the second black segment. If the length of the new run after 

merging the first and second black segments by coloring those cells between these 

two cells is larger than jLB , this means that ec  will not belong to the same run as 

sc . Otherwise, we proceed to find the first black cell ec  in the third black segment 

and also check the length of the new run after merging the first and third black 

segments. The process starts all over again until all black segments in ),( jejs  rr  have 

been checked or a black segment i  has been found and the length after merging the 

first black segment and black segment i  is larger than jLB . Thus we provide Rule 

3.3-3 to deal with this situation. The length after merging two black runs shown in Fig. 

2.13 (a) is 5 (see Fig. 2.13(b)) and is larger than 4, thus we can update the range as 

shown in Fig. 2.13 (c). 

 

 

 

 

 

 

 
 
Fig. 2.13 An example of Rule 3.3-3. (a) One row of a puzzle with a partial painting 
        result. (b) The length of coloring those cells between sc  and ec  is 5. (c) 
        The result of applying Rule 3.3-3 to (a). 
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Rule 3.3-3 

For each black run j  with its range not overlapping the range of black run 1-j , 

Constraint: there is more than one black segment in the range 

 

Find out all black segments in ),( jejs  rr . 

We denote the class of these black segments by Β  with size b . 

 

step 1. set i =0 

step 2. find the first black cell sc  in black segment i  

step 3. set 1+= im  

step 4. if b<m , find the first black cell ec  in black segment m , 

     If  1)( +e-s is larger than LBj, stop and rje will be refined to (e-2). 

        Otherwise, 1+= mm  and go to step 4. 

 

 The above three conditions are suitable for the case “not overlapping black run 

1j- ”. To treat the case “not overlapping black run 1+j ”, we just need to reverse the 

above three conditions as follows: 
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2.2 The second phase: DFS with branch and bound 

 After the first phase, a puzzle is not always solved completely. If some cells in 

the puzzle are still unknown, we will enter the second phase. Depth first search (DFS) 

is an exhaustive search, thus it will find out the solution of puzzle eventually. For this 

reason, we use DFS method to solve the unsolved puzzle. Since the general DFS is 

time-consuming, we will provide a “branch and bound” scheme to improve the 

processing speed. 

 One thing should be mentioned at first, we choose the row information to build a 

search tree and use the column information to do verification as the method used in 

[3]. It means that every layer of tree is composed of row information and all nodes of 

each layer are the possible solutions (PS) for the row. The following figures will 

provide more detailed description. Fig. 2.14 (a) is a given puzzle and Figs. 2.14 (b) 

and (c) are all possible solutions for row 1 and row 2, respectively. There are three 

possible solutions for row 1, two possible solutions for row 2, and two possible 

solutions for row 3, etc. Fig. 2.14 (d) is a rough tree of Fig. 2.14 (a). 

 At a start, we try the first possible solution of row 1 and use column information 

to deduce that some cells in row 2 should be colored or left empty. Then we check all 

possible solutions of row 2 to refine which possible solutions we want. Fig. 2.15 (a) 

shows the deduced result based on the first possible solution of row 1: in row 2, the 

cells 0c  and 1c  should be left empty, and then the cells 2c  and 4c  should be 

colored. It is evident that there is no possible solution in row 2 for this situation. 

Hence, we reject this possible solution and do not search the following rows. Then we 

try the next possible solution of row 1 as shown in Fig. 2.15 (b) and the same result is 

obtained. Thus, we proceed to try the last possible solution of row 1 and then we find 

the first possible solution of row 2 suitable as shown in Figs. 2.15 (c) and (d). We go 
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on like this and then the answer, Fig. 2.15 (e), is found. The above deduction and 

rejection process is called branch and bound scheme. Note that the symbol “△” in 

Fig. 2.15 stands for the cell determined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.14 An example of DFS. (a) A given puzzle. (b) The possible solutions of row 1. 
        (c) The possible solutions of row 2. (d) A rough tree of (a). 
 

 There are 72 ( 7261223 =×××× ) leaf nodes in DFS tree for the puzzle in Fig. 

2.14 (a) we must check, but we do not need to check all leaf nodes based on the 

branch and bound scheme. The main reason is that some columns restrictions will 

bound cells’ types in the next row after the current row being built. This will make 

some branches be cut if a certain possible solution of the next row can not fit the 

restrictions. In other words, we need not waste time to test those possible solutions of 

the following rows we have known they are wrong. 
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Fig. 2.15 The process of DFS with branch and bound. (a) The deduced result of row 2 
        based on the first possible solution of row 1. (b) The deduced result of row 
        2 based on the second possible solution of row 1. (c) The deduced result of 
        row 2 based on the third possible solution of row 1. (d) The first possible 
        solution of row 2 corresponding to (c). (e) The final solution. 

 

 Note that the DFS with branch and bound scheme is used after using logical rules, 

the size of searching tree will be reduced significantly. Fig. 2.16 gives an example to 

do illustration. There are 21 possible solutions for the first row in Fig. 2.16 (a) 

originally. After applying the logical rules to Fig. 2.16 (a), we obtain the result shown 

in Fig. 2.16 (b). From Fig. 2.16 (b), we can find that only 2 possible solutions are left 

because the first black run has been solved completely by LR. In addition, although 

the range of the last black run is (5, 8) now, we only need to check 5c  and 8c  not 

5c - 8c . Checking 6c  and 7c  is useless because we have known they are empty cells. 
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Fig. 2.16 An example before using DFS. (a) The original puzzle. (b) The resulting 

        puzzle executed by LR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0011

1
13

100110 0011

1
13

100110 0011

1
13

100110 0011

1
13

100110
0 1 2 3 4 5 6 7 8 9

(a) (b) 



 26

CHAPTER 3  

EXPERIMENTAL RESULTS 

 In our database, there are about 260 puzzles. Most of them come from [4-5, 7] 

and a little are created by us. There are two links being contained in [7], one is for 

playing Japanese puzzles online and another is a book of Japanese puzzles, we get the 

puzzles from here. A PC (CPU: AMD Athlon 2600+ 1.92GHz) and a NB (CPU: Intel 

Pentium M 2.00GHz) are used to run this program. 

 Because most Japanese puzzles are meaningful, they can be solved quickly and 

completely only by LR. The execution time is less than 1 second. If the puzzle is not 

solved totally, the unknown part left is also solved successfully by DFS with branch 

and bound scheme. Fig. 3.1 are the test images: Figs. 3.1 (a) – (c) come from [4], Fig. 

3.1 (d) comes from [5], and Figs. 3.1 (e) and (f) are created by us. The first two 

images and the forth one are solved completely and quickly only by logical rules. The 

three images take more than 20 minutes to get the solutions even an incorrect solution 

in [4-5], but we only spend about 0.1 second to solve them by using logical rules. 

However, Fig. 3.1 (c), a random image (50% black), is solved completely using about 

36 hours which is three times the execution time of [4]. If the black pattern in a puzzle 

scatters everywhere, like Figs. 3.1 (c) and (e), this will lead LR to fail and make 

lengths of most black runs shorter and many of black runs in a row. It means that a 

black run may be placed in many possible positions and we should check many 

possible solutions of each row as shown in Fig. 3.2. Thus, DFS will take a longer time 

to solve the puzzle. 

 However, we can see Fig. 3.1 (f), the puzzle is also a random one (50% black), it 

is solved successfully within 22 minutes because it is more compact (i.e. most black 

cells are connected together). Although most of the lengths of black runs are shorter 

like Fig. 3.1 (c), they have a “chain relation”, that is, some black cells in row 1 
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connect to some black cells in row 2, some black cells in row 2 connect to some black 

cells in row 3, and so forth. Fig. 3.3 gives a more detailed illustration. Note that the 

symbol “○” in Fig. 3.3 stands for the connection. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
Fig. 3.1 Test images. (a) Sheep (25x25). (b) Airplane (25x25). (c) Random_1 (30x30). 
       (d) Monkey (15x15). (e) Sunflower (25x25). (f) Random_2 (30x30). 

 

 

 

 

 

 

 
Fig. 3.2 An illustration of scattering. (a) 10 possible solutions. (b) 21 possible 
        solutions. (c) 36 possible solutions. (d) 56 possible solutions. 
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Fig. 3.3 An illustration of chain relation. More “○” means the puzzle is more 
       connected. (a) The magnified picture of part of Fig. 3.1 (c). (b) The 
       magnified picture of part of Fig. 3.1 (f). 

 

 Fig. 3.4 from [4] is a puzzle with two solutions. After applying our algorithm, all 

the solutions will be found out. Fig. 3.5 is a puzzle with no solution. GA can not 

detect it and will give a wrong answer like Fig. 3.6. However, our method can detect 

it quickly because there must be a contradiction in logic of a valid puzzle with no 

solution. Hence, when we determine one cell should be colored or left empty, we will 

check at first whether the cell has been colored or left empty. If one cell is determined 

as a colored cell but it has been left empty, we will detect that the puzzle has no 

solution. Similarly, if one cell is determined as an empty cell but it has been colored, 

it also means that the puzzle has no solution. 

 

(a) (b) (c) 
 
Fig. 3.4 A 7x8 puzzle with many solutions. (a) The result after LR. (b) The first 
       solution. (c) The second solution. 

 

 

        ○          ○ 
        ○                   ○ 
        ○ 
        ○          ○ 
                       ○

                       ○    ○ 
           ○                ○ 
   ○      ○    ○          ○ 
           ○    ○       ○ 

     ○   ○    ○ ○ ○ 

(a)                              (b)
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Fig. 3.5 A puzzle with no solution.    Fig. 3.6 GA gives a wrong answer of Fig. 3.5. 

 

 Finally, Fig. 3.7 shows some other test images and Table 1 shows the comparison 

of the experimental results between surveyed paper [5] and our algorithm. From Table 

1, there are over 93% puzzles being solved more than 1 minute whether by using GA 

or DFS. However, after applying our proposed method, there are over 98% puzzles 

being solved about 0.1 second. All puzzles in our database are solved successfully and 

there is no doubt about the correctness of solutions. 

 

 
(a) (b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 3.7 Test images. (a) Flower_word (10x10). (b) Hippo (20x20). (c) Formosa 
        (25x25). (d) Snoopy (25x25). (e) Owl (30x25). (f) Skating (30x25). 
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Table 1 The comparison of the experimental results between surveyed paper and our 
       algorithm. 
 

Time Puzzle Type: Number 

(264 puzzles totally) GA DFS Our Method 

5x5: 1 

5x6: 1 

wrong answer 

more than 1 min.

no solution 

0.0 sec. 

0.062 sec. 

10x10: 2, 30x40: 1 
wrong answer 

more than 1 min.

no solution 

more than 1 min.

no solution detected 

less than 0.1 sec. 

(above five puzzles have no solution) 

size≦6x6: 7 
0.5 sec.＜time 

＜5 sec. 

0.0 sec.≦time 

＜0.6 sec. 

0.0 sec.≦time 

＜0.1 sec. 

6x6＜size＜10x10: 9 
about 30 sec.: 1 

＞1 min.: 8 

0.01 sec.＜time 

＜1 min.: 7 

＞1 min.: 2 

about 0.1 sec. 

Random_1 more than 2 days more than 2 days about 36 hr. 

Sunflower 

Random_2 
more than 1 hr. more than 1 hr. about 20 min. 10x10≦size≦15x15: 33 

15x15＜size＜25x25: 110 

size≧25x25: 100 
Others more than 1 min. more than 1 min.

Owl: 2 sec. 

Skating: 16 sec. 

Others: about 0.1 sec. 
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CHAPTER 4  

CONCLUSIONS 

 In this thesis, we have proposed a fast method to solve Japanese puzzles. The 

method contains two phases, the first phase used logical rules to solve cells in a 

puzzle as many as possible. In the second phase, based on column information, DFS 

with branch and bound scheme is used to solve those unknown cells remaining after 

the first phase. 

 Since DFS is an exhaustive search, it is very time-consuming. When the size of 

puzzle or the possible solutions of each row becomes larger, the time complexity also 

rises. Consequently, using LR at first is necessary because some cells can be solved 

easily by logic. If some cells are solved successfully at first, the size of tree will be 

reduced. However, not all puzzles can be solved completely by LR if the black pattern 

in a puzzle is distributed randomly, like Figs. 3.1 (c), (e), and (f). For this situation, 

we use branch and bound scheme to assist in solving Japanese puzzles. The 

experimental results show that our method can solve those puzzles with compact 

black patterns quickly. For those puzzles with random black patterns, the method can 

also raise the speed of DFS using branch and bound scheme. Furthermore, our method 

always provides correct solutions. 
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CHAPTER 5  

FUTURE WORKS 

 Japanese puzzle, a pencil-and-paper game, is very popular in some countries, like 

Japan and Netherlands. It is as interesting as Sudoku because both of them are logical 

games. Logical games let people to use their brain when they are playing. Thinking 

and learning in playing is a good thing. Either adults or children will be attracted by 

Japanese puzzles deeply. 

 At present, Sudoku has been developed as online gaming and mobile gaming, we 

think the Japanese puzzle could also be designed like Sudoku. A complete Japanese 

puzzle game may consist of three parts: generator, solver, and helper. Using a puzzle 

generator, the player can create what puzzle he wants by inputting a picture. In this 

thesis, a simple generator is created for any type pictures but it works better in 

black-white pictures than colorful ones. Fig. 5.1 is an illustration. The size of puzzle 

can be decided arbitrarily. As for the solver, it is the main part of this game. As the 

previous chapters mentioned, the solver is to solve all Japanese puzzles. Finally, the 

helper can give the player several hints based on the solver when he needs. 

 Combining what proposed above, we use the times of hints given and the time 

spent to calculate the score, and then rank all players according to their scores. 

Consequently, Japanese puzzle will become a game full of challenge and excitation. 

 

 

 

 

 
Fig. 5.1 Generator. (a) The input image. (b) The puzzle generated. (c) The result of the 
       puzzle. 

(a) (b) (c) 
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