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An Efficient Algorithm for Solving Japanese Puzzles

Student: Chiung-Hsueh Yu Advisor: Dr. Ling-Hwei Chen

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

Japanese puzzle is one of logical games popular in Japan and Netherlands. The
question “Is this puzzle solvable?” is difficult to answer, even is an NP-complete
problem. At present, there have been-some related papers proposed. Some use genetic
algorithm (GA), but the solution may be-wrong. Seme use depth first search (DFS)
algorithm. The DFS algorithm Is an exhaustive search, so the execution speed is slow.
Hence, in this thesis, we want to“propose an algorithm to solve puzzles as quickly as
possible. The algorithm not only accelerates the speed of DFS but also ensures the
correctness of the solution of a puzzle. In this puzzle game, many puzzles are compact
and contiguous pictures. Based on this, we can deduce some logical rules, and use
these rules to paint those cells whose positions can be determined immediately.
However, not all puzzles can be solved completely by logical rules. In this situation,
we use the DFS algorithm to complete the puzzle solving. In order to speed up the
process, the “branch and bound” technique is used to do early termination for those
impossible paths. Experimental results show that our algorithm can solve Japanese

puzzles successfully, and the processing speed is significantly faster than that of DFS.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Japanese puzzle, also known as nonogram, is one of logical games popular in
Japan and Netherlands. The game is recommended to Taiwan recently, but few papers
are concerned with this topic — Japanese nonograms. In addition, some related papers
solved this problem by non-logical algorithms, and the execution speed is slow. On
the other hand, the question “Is this puzzle solvable?” turns out to be very hard to
answer in general, even is a NP-complete problem [1-2]. In this thesis, we will present
a fast method to solve this problem. Eirst,'we will provide some logical rules to solve
most part of a puzzle, and then use DES with branch and bound scheme to solve the

remaining part. The detail of our proposed method will be described in Chapter 2.

1.2 Japanese Puzzles

Japanese puzzles will be described in this section. Fig. 1.1 (a) is a simple puzzle
and Fig. 1.1 (b) is the solution of Fig. 1.1 (a). Ignoring the numbers, the solution can
be considered as a black-white (1-and-0) picture. Here, we use [l as a colored (black)
cell, [] as an empty (white) cell, and as an unknown cell (i.e. an undetermined
cell).

The positive integers alongside the rows and columns give the information about
the lengths of black runs (a black run: contiguous black cells) in that row or column
respectively. The goal is to paint the cells to form a picture that satisfies the following

constraints:



1. Each cell must be colored (black) or left empty (white).
2. If a row or column has k numbers: s;, s,, ..., S, then it must contain k

black runs — the first (leftmost for rows / topmost for columns) black run with the
length s, , the second black run with the length s, , and so on.

3. There should be at least one empty cell between two consecutive black runs.

(a) (b)

Fig. 1.1 Japanese puzzle. (a) A simple puzzle. (b) The solution of (a).

It is evident that the puzzle.in Fig.,4.1. (a) has a unique solution. However, the
puzzle in Fig. 1.2 has two solutions, and the puzzle in Fig. 1.3 has no solution (i.e. no
corresponding picture). Hence, there may be no, exact one, or more than one solution

for given integral numbers.

N Wk |
RPlR|loa|k |k

Fig. 1.2 A puzzle with two solutions. Fig. 1.3 A puzzle with no solution.

1.3 Previous Works

In 2004, Batenburg [3] described an evolutionary algorithm for discrete
tomography (DT). And then Batenburg Kosters [4] provided a method to solve

Japanese puzzle. By modifying the fitness function in [3], the evolutionary algorithm



can be used to solve Japanese puzzle. DT is concerned with the reconstruction of a
discrete image from its projections [4]. Japanese puzzles can be considered as a
special form of the DT problem. Fig. 1.4 shows an example to explain the difference
between them. Since the evolutionary algorithm in [3] will converge to a local

optimum, the obtained solution may be incorrect.

21455542
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(a) (b)
Fig. 1.4 DT problem and Japanese puzzle. (a) DT problem. (b) Japanese puzzle.

In 2004, Wiggers [4] proposed a genetic algorithm (GA) and a depth first search
(DFS) algorithm to solve Japanese puzzles. He also compared the performance of
these two algorithms. For a puzzle of small size,-DFS algorithm is faster than GA,
otherwise, GA is faster. However, both methods are slow. In the following, we will
give a brief description for the DFS algorithm, since it will also be used in our

proposed method.

[Depth First Search (DFS)]

It is a straightforward idea to solve the Japanese nonogram by DFS. The author
generates all possible solutions of each row. Taking Fig. 1.5 as an example, Fig. 1.6 is
its corresponding DFS tree and Fig. 1.7 shows all possible solutions in the tree. Each
possible solution corresponds to a path from root to a leaf node, find all paths using
DFS and then use the column information of the puzzle to verify each possible

solution. A possible solution will be considered as a true solution, if it satisfies all



columns’ restrictions. Fig. 1.8 (c) is the only correct solution after the verification

process. Note that the symbol “X” in Fig. 1.8 stands for the column’s restriction not

satisfied.

row 1
(3 possible solutions)

row 2
(2 possible solutions)

row 3
(1 possible solution)

possible solutions:

Fig. 1.5 A puzzle problem.

Eoot
1.1 12 1.3
| | |
2.1 2.2 2.1 2.8 2.1 2.0
3.1 3.1 3.1 3.1 .l 3.1
(@) () (0o d (e (f)

Fig. 1.6 The DFS tree of Fig. 1.5.

e

Fig. 1.7 Six possible solutions in the DFS tree.
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e

Fig. 1.8 Verification process for the different cases.

Whether the evolutionary algorithm presented in [4] or the genetic algorithm
(GA) described in [5], both of them will converge to a local optimum, so sometimes
the obtained solution may not be correct. Besides, the depth first search (DFS)
algorithm proposed in [5] takes longer time than GA when solving large puzzles.
However, DFS will always find correct solutions. In this thesis, some logical rules
(LR) are provided to determine-the unknown-cells in a Japanese puzzle as many as
possible, and then DFS is used to"solve those remaining unknown cells. In order to
speed up the process, the “branch and bound” technique is used to do early

termination for those impossible paths.

1.4 Organization of the Thesis

This thesis is composed of five chapters. In Chapter 1, Japanese puzzles and
previous works are introduced. And then, the remainder of this thesis is organized as
follows. Our proposed algorithm for solving Japanese puzzles will be presented in
Chapter 2. In Chapter 3, several experimental results will be shown. Finally,

conclusions and future works will be given in the last two chapters.



CHAPTER 2
PROPOSED METHOD

In general Japanese puzzle game, we usually paint those cells which can be
determined immediately at first. Then, the rest of undetermined cells will be solved by
guess. Based on this fact, we will propose a method to solve Japanese puzzles
automatically. The method contains two phases. In the first phase, some logical rules
are deduced and used to determine some cells; in the second phase, another method,
the depth first search will be applied to solve those remaining unknown cells.
Furthermore, the “branch and bound” technique is used to accelerate the searching
speed of the general DFS. These two phases will be presented in Sections 2.1 and 2.2.
Fig. 2.1 is the flowchart of the propesed method. The conditions in the decision boxes

will also be described in Section 2.1.

s any unknown
ell determined?

A 4

Phase 1

Solved by

logical rules (LR)

3
<
D
0

Z

o

any black run
ange changed?

No

Phase 2
No—» Solved by DFS with
Branch and bound scheme

the puzzle solved
completely?

Fig. 2.1 The flowchart of the proposed method.



2.1 The first phase: Logical rules (LR)

One may also use some skills to solve Japanese puzzles, like the rules described
in [6]. In this phase, eleven rules are proposed but we present a new concept of range
of a black run (“range” will be explained later). These rules can be divided into three
main parts. The first part is to determine which cells should be colored or left empty,
the second part is to refine the ranges of black runs, and the third is not only to
determine which cells should be colored or left empty but also to refine the ranges of
black runs. The first five rules belong to part I, the following three rules belong to part
I1, and the last three rules belong to part 111. Each rule will be applied in each row and
then in each column. The total eleven rules are executed sequentially and iteratively.

In the beginning, all cells in the, puzzle are considered as unknown. In some
iterations, some unknown cells will be "determined as colored cells or empty ones.
However, in some iterations, maybe only the ranges-of some possible black runs are
refined. That is, there are not always:some ‘unknown:cells determined in each iteration.
Thus, if no unknown cell is determined‘and no black run’s range is changed, we will
stop using logical rules because there will be no changes in later iterations.

Note that, the rules applied in a row are the same as those applied in a column, so

we only take a row as an example to explain our algorithm.

Preliminary

The position where a black run may be placed plays an important role. An idea
about the range (r;, r,) of a black run j is proposed, where r; stands for the
left-most starting position of the run, and r;, stands for the right-most ending

position of the run. That is, black run j can only be placed between r; and r,. If

the range of each black run is precisely estimated, these ranges information can help



us to solve puzzles quickly. In the beginning, the initial range of a black run in a row
IS set between the left-most possible position and the right-most possible position. For
each black run, it must reserve some cells for the former black runs and the later ones.
Fig. 2.2 shows an example. Fig. 2.2 (a) shows a special row of a puzzle, in this row,
there are three black runs with lengths 1, 3, and 2, respectively. Fig. 2.2 (b) shows the
left-most possible solution of Fig. 2.2 (a) for each run, the first cell is colored and
there is only one empty cell between every two neighboring black runs. Fig. 2.2 (c)
shows the right-most possible solution of Fig. 2.2 (a) for each run, the last cell is
colored and there is only one empty cell between every two neighboring black runs.
Now, we take the second run as an example to do more detail explanation. In Fig. 2.2
(b), the left-most position, at which thefirst'cell of the second black run can start, is
the third position. The reason is-that there must.reserve at least two cells in the head,
one cell is reserved for the first-black run-and the other is reserved for the empty cell
between the first and second black runs. Similarly, the right-most position, at which
the last cell of the second black run can appear, is the seventh position. That is due to
that there must reserve at least three cells in the tail, two cells are reserved for the
third black run and one cell is reserved for the empty cell between the second and

third black runs.

Initial run range estimating

We let the size of each row with k black runs be n and the cells in a row with
index (0,...,n-1), we can use the following formula to determine the initial range of
each black run. Specially, r, of the first black run is initialized 0 and r;, of the last

black run is initialized (n-1).



j-1
r, = (LB +1),

I Vij=1..k
Mo =(n-1) - Z:(LBi +1),

i=j+1
where LB, isthe length of black run i.

Using the above formula, we can get the initial ranges of the three black runs in

Fig. 2.2 (a), which are (0, 2), (2, 6), and (6, 9), respectively.

(@) 1132

o [EEZE - -
o [EEE -

Fig. 2.2 An illustration of range. (a) A special row of a puzzle. (b) The left-most case

of (a). (c) The right-most case of(a):

Part |

There are five rules in this ‘part, all of them-are used to determine which cells
should be colored (black) or left empty (white).
Rule 1.1

For each black run, some cells must be colored if all the possible solutions of the
black run have the intersection. Actually, the intersection of all possible solutions is
also the intersection of the left-most case of the black run and the right-most case of
the black run. It is obvious that the intersection exists when the length of the black
run’s range is less than two times the actual length of a black run. Fig. 2.3 is an
example. Consequently, we provide Rule 1.1 to paint the cells sure to be colored. In

the rule, c; isthe cell with index i.



/'

3 \—>

Fig. 2.3 An example of Rule 1.1.

Rule 1.1

For each black run j,
cellc; will be colored whenr +u<i<r -u,
where u = (r, -1, +1) - LB,

Rule 1.2
In the beginning, each cell belongs to one-or more than one black run. However,
after some iterations, many black runs” ranges will-be refined, this may make some

cells not belong to any black run, and these cells should be left empty. Rule 1.2 is

provided to do this work. Fig. 2.4 shows that cells- c, and c, should be left empty

because they do not belong to any black run.

Rule 1.2

For each cell c,, it will be left empty,

if one of the following three conditions is satisfied
(1)0<i<r,

2)r,<i<n,

() ry <i<r,y, forsome j,1< j<k.

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
0NN BB BEPEEE BN B
L | L |
2’s range 3’s range 2’s range 3’s range
(a) (b)

Fig. 2.4 An example of Rule 1.2. (a) One row of a puzzle with a partial painting
result. (b) The result of applying Rule 1.2 to (a).
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Rule 1.3

For each black run j, when the first cell Cr, of its range is colored, we will
check Cr, covered by what other black runs. If the lengths of those covering black
runs are all one, the cell Cria should be left empty. In the similar way, when the last
cell ¢, ofitsrange is colored, we will check ¢, covered by what other black runs.
If the lengths of those covering black runs are all one, the cell ¢, ,; should be left
empty. We provide Rule 1.3 to determine whether cells ¢, and c _,, should be
left empty. Taking Fig. 2.5 as an example, the colored cell Cr, in Fig. 2.5 (a) is the
first cell of the range of the last black run with length 3. It is also covered by the third
black run with length 1. Thus, it must be the third black run with length 1 (see Fig. 2.5
(b)) or the head cell of the last black runi(see Fig. 2.5 (c)). No matter what case, the

cell ¢, should be left empty.

Rule 1.3
Foreachblackrun j, j=1,...,k
(1) If the lengths of all black run i covering C,, with i = jareall one,

cellc, , will be leftempty.

(2) If the lengths of all black run i covering C, with i = jareall one,

cellc, ., willbe left empty.
(2) 2[1[1]3
| | |
1'sirange 1's rapge |
2’s range 3’s range
®  EEEE 1]
) 2(1/1(3

Fig. 2.5 An example of Rule 1.3. (a) One row of a puzzle with a partial painting
result. (b) The cell ¢, belongs to the third black run with length one. (c)
The cell €, is the head cell of the last black run.

11




Rule 1.4

There may be some short black segments existing in a row. If any two
consecutive black segments with an unknown cell between them are combined into a
new black segment with length larger than the maximal length of all black runs
containing part of this new segment, the unknown cell should be left empty. Rule 1.4
is provided to deal with this situation. Fig. 2.6 shows an example. From Fig. 2.6 (b),
we can see that by coloring c,, the length of the new black segment is 4. Since the
new black segment is covered by two runs with length 1 and 3 and 4 is larger than 3,

so we set the unknown cell ¢, as empty.

Rule 1.4

For any three consecutive cells ¢, c;,and c,,, i=1,...,n-2
Constraint: cells ¢, and c,,, mustbe black,and cell ¢, must be unknown

1. Let maxL be the maximal length of all-the black runs containing the three cells.
2. If we color c; and find that the length of the black segment containing ¢, is

larger than maxL, c, should be leftempty.

1770 i+l
® [0 I
1's range | | 1's range
3’'s range

nEREN
4—>4
©) 131 BN e

Fig. 2.6 An example of Rule 1.4. (a) One row of a puzzle with a partial painting result
(maxL =3). (b) The new black segment’s length after coloring c; is 4. (c)

The cell ¢, should be left empty.

12




Rule 1.5

Some empty cells like walls may obstruct some black segments expand, we want
to color more cells based on this property. For a black segment belonging to series of
black runs, which have the same length but the ranges of them overlap each other, if
the length of the black segment equals to the length of those black runs covering the
black segment, we can set the two cells closest to the black segment as empty. Rule
1.5 is proposed to solve the above problems.

Fig. 2.7 is a detailed description. In Fig. 2.7(a), we do not know c, belonging to
which black run. However, an empty cell ¢, obstructs the black segment containing
c; to expand to the left side of c_,. Hence, no matter c, belongs to the run with
length 3 or the run with length 4, the cell next to ¢, should be colored. On the other
hand, Fig. 2.7 (b) is a special case,all black runs'containing c, have the same length.

Thus, we are quite sure that the-two cells ¢_,- and €., closest to the black segment

e+l

should be left empty.

Rule 1.5
For any two consecutive cells ¢, and c¢;, i=1,...,n-1
Constraint: cell ¢, must be empty or unknown, and cell ¢, must be black
1. Let minL be the minimal length of all the black runs containing c; .
2. Findanempty cell ¢, closestto ¢;, V m=i-minL+1,...,i-1
If c, exists, color cell c, when i+1<p<m-+minL.
3. Findanemptycell ¢, closestto ¢;,, V n=i+1,...,i+minL-1
If c, exists, color cell c,when n-minL< p<i-1.
4. If all black runs containing c; have the same length.
(1) Let s and e be the start and end indices of the black segment containing c,
(2) If e-s+1=minL, leavecells c., and c,, empty.

e+l

13




m i1
i

i

N

(a)

-1
1[2]2]3 ]
W 2’s range
| 2's range ‘ | 3’'s range

s-1 s e e+l

1]2]2]3 [
(b)

Fig. 2.7 An example of Rule 1.5. (a) Top: one row of a puzzle with a partial painting

result. Middle: all possiblessolutionsfor, c, . Bottom: the result of applying
Rule 1.5 to top figure. (b) Top;: a special case (all black runs containing c;

have the same length).-Bottom: the result of applying Rule 1.5 to top figure.

Part 11

Three rules are contained in this part. They are designed to refine the ranges of
black runs.

Rule 2.1

Two consecutive black runs can not have the same r, or r,,, because it is

je?
impossible that they are placed in the same start position or end position. We use Rule
2.1 to update the range of each black run j when it has the same r; with black run

j-1 orthesame r, withblackrun j+1.

Rule 2.1

For each black run j,
{ris will be refined to (r; 4 + LB, +1),  ifro<r ;.

r,, will be refined to (1., - LB, - 1), ifre 200

14




Rule 2.2

There should be one empty cell between two consecutive black runs, so we
should update the range of black run j if the cell Caor C is colored. The
cells ers_l and ere+1 do not belong to black run j because they are not in the
range (ry, ry). It means that the colored cell must belong to the previous or the next

black run when it is painted. Therefore, Rule 2.2 is proposed to solve this problem.

Rule 2.2
For each black run j,
r;, will be refined to (r;; +1), if thecellc,  iscolored
r;, will be refined to (r,, -1), if thecellc, ., iscolored
Rule 2.3

In the range of a black run, maybe one or more than one black segment exist.
Some of black segments have the lengths larger than LB;, but some not. We try to
determine each black segment with length larger than LB; belongs to the former
black runs or the later ones. If a black segment belongs to both of them, we can not do
anything. But if no, then we update the range of black run j. We provide Rule 2.3 to
do this work. In Fig. 2.8, the original range of the second black run is (4, 11). In the
range of the second black run, the length of the first black segment is 3 which is larger
than 2, and the black segment belongs to the first black run not the last, so we update
the range of the second black run from (4, 11) to (8, 11). But the length of the second

black segment is 1 and is less than 2, so we ignore it.

15




Rule 2.3

For each black run j, find out all black segmentsin (ry, r;.).
We denote the class of these black segments by B.

For each black segment i in B with start index is and end index ie,
If the length (ie -is +1) of black segmenti is larger than LB;,

r,, Will be refined to (ie +2), if black segment i only belongs to the former black runs
r,. Will'be refined to (is-2), if black segmenti only belongs to the later black runs

o 1 2 3 4 5 6 7 8 9 10 11 12 13

! l J
3’s range ‘ T's range

2’s range

Fig. 2.8 An example of Rule 2.3.

Part 111

This part is also composed-of three rules. The purpose of each rule is not only to
determine which cells should be colored-or left empty but also to refine the ranges of

some black runs.

Rule 3.1

In solving process, we met a problem as shown in Fig. 2.9 (a) — several colored
cells belong to the same black run but they are scattered. It means that all cells
between them should be colored to form a new black segment. Rule 3.1 is presented

to solve this problem and Fig. 2.9 (b) is the result of applying Rule 3.1 to Fig 2.9 (a).

I’(j-l)e m n I’(j+1)s

@ [1]4]3 |

\ |
]

4’s range (old)‘

o [EIETE T
L]

\
4’s range (new)

Fig. 2.9 An example of Rule 3.1. (a) One row of a puzzle with a partial painting
result. (b) The result of applying Rule 3.1 to (a).
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Rule 3.1

For each black run j,

find the first colored cell C,, after r,. and the last colored cell C, before r;,
1. Color all cells between C,, and C,

r.. will be refined to (n+u)

Je

{ris will be refined to (m-u)
2

where u=1LB; -(n-m+1)

Rule 3.2

As shown in Fig. 2.10 (a), some scattered empty cells are distributed over the
range of black run j, so there will be several segments bounded by these empty cells.
The lengths of some segments may ,beiless.than LB;, so they can be ignored to
consider. We propose Rule 3.2 ta'solyve this problem:.Fig. 2.10 (a) shows that there are
six segments in 3’s range. The first two and the last segments will be skipped and then
the range is adjusted. Since thelength of the forth segment is less than 3 and is
covered only by one black run with length 3, we can set it as empty. Fig. 2.10 (b)

shows the result of applying Rule 3.2 to Fig. 2.10 (a).

DL «— & — <>
@ 8] - B B
\ |
3’s range |
() ==l 3 )] 7 ‘ . .
| 3’s range |

Fig. 2.10 An example of Rule 3.2. (a) One row of a puzzle with a partial painting
result. (b) The result of applying Rule 3.2 to (a).
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Rule 3.2
For each black run j, find out all segments bounded by empty cellsin (r;, r).
We denote the class of these segments by B with size b.

stepl.seti=0
step 2. If the length of segmenti is less than LB,
i = i+1landgotostep 2.
Otherwise,
r;, will be refined to the start index of segment i,
stop and go to step 3.
step3.seti = b-1
step 4. If the length of segment i is less than LB,
i = i-landgo tostep 4.
Otherwise,
r. will be refined to the end index of segmenti,
stop and go to step 5.
step 5. If there still remain some segments with fengths less than LB,
(we denote the class of these segmentsby R)
for each segmentin R,
if the segment does not;belong to-other-black runs,
all cellsin this segment should be left empty.

Rule 3.3

This rule is designed for solving the case of the range of black run j not
overlapping the range of black run j-1 or j+1. We take the case “not overlapping
black run j-1” as an example, another case “not overlapping black run j+1” is
treated by the same idea but the conditions are reversed. It will be explained at the end

of this section.

1. The cell Cr, is black (see Fig. 2.11 (a))
Because the black run j does not overlap the black run j-1, so when the head
cell of black run j has been colored, we can finish this black run by Rule 3.3-1.

Fig.2.11 (b) is the result of applying Rule 3.3-1 to Fig. 2.11 (a).
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Rule 3.3-1
For each black run jwithc, colored,
and its range not overlapping the range of black run j-1,
(1) Colorcellc, whenr +1<i<r, +LB-1and leavecellc, , ; empty
(2) ry, should be refined to (r, +LB; -1)
(3) If black run j+1overlapsblack run j originally,
I'j.1)s Should be refined to (ry + LB, +1)

@ |[..|4]...] - . ......

4’s range

w [Jal ] - _ ......

| | L
4’s range

Fig. 2.11 An example of Rule 3.3-1. (a) One row of a puzzle with a partial painting
result. (b) The result of applying Rule'3:3-1 to (a).

2. Anempty cell c, appears after ablack-cell c, (see Fig.2.12 (a))
It should be true that each cell after ¢, will .not belong to black run j. Thus,

we can use Rule 3.3-2 to refine the range 'of black run j as shown in Fig. 2.12 (b).

b Wi
@ [LJ2].] - W11
|
2's range |
o T2l - T T T
| .
2's range |

Fig. 2.12 An example of Rule 3.3-2. (a) One row of a puzzle with a partial painting
result. (b) The result of applying Rule 3.3-2 to (a).

Rule 3.3-2

For each black run j with its range not overlapping the range of black run j-1,

Constraint: an empty cell c, appears after a black cell ¢, with ¢, and c, inthe
range of black run j

rie Will be refined to (w-1)
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3. There is more than one black segment in the range (see Fig. 2.13 (2))

In (r, ), we find the first black cell c, in the first black segment and the

S rje
first black cell c, in the second black segment. If the length of the new run after
merging the first and second black segments by coloring those cells between these
two cells is larger than LB;, this means that c, will not belong to the same run as
c,. Otherwise, we proceed to find the first black cell c, in the third black segment
and also check the length of the new run after merging the first and third black

segments. The process starts all over again until all black segments in (r ) have

s Ve
been checked or a black segment i has been found and the length after merging the
first black segment and black segment i is larger than LB;. Thus we provide Rule
3.3-3 to deal with this situation. The length after merging two black runs shown in Fig.

2.13 (a) is 5 (see Fig. 2.13(b)) and is larger than 4;.thus we can update the range as

shown in Fig. 2.13 (c).

S €
@ AL - N H
| \ |
4’s range

o [ - _____Eug

P »
< »

© “Tal [ - . . ......

| \
4’s range

Fig. 2.13 An example of Rule 3.3-3. (a) One row of a puzzle with a partial painting
result. (b) The length of coloring those cells between c, and c, is 5. (c)

The result of applying Rule 3.3-3 to (a).
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Rule 3.3-3
For each black run j with its range not overlapping the range of black run j-1,

Constraint: there is more than one black segment in the range

Find out all black segments in (r., r..).

js* Tje

We denote the class of these black segments by B with size b.

step 1.set i=0
step 2. find the first black cell c, in black segment i
step3.set m=i+1
step 4. if m<b, find the first black cell c, in black segment m,
If (e-s+1) is larger than LB;, stop and rje will be refined to (e-2).

Otherwise, m=m+1 and go to step 4.

The above three conditions are suitable for.the-case “not overlapping black run

j-17. To treat the case “not overlapping-black run J+1”, we just need to reverse the

above three conditions as follows:

1.Thecell ¢, isblack
(1) Color cellc; whenr; - LB; +1<i<r; -1and leavecellc, , empty
(2) r;; should be refined to (r;, - LB; +1)
(3) If black run j-loverlapsblack run j originally,
I'j.2. Should be refined to (r;, - LB, -1)
2. An empty cell c,, appears before a black cell c,
(1) s will be refined to (w+1)
3. There is more than one black segment in the range
the last black cell c in the last black segment
the last black cell c, in the other black segments
(1) If (s-e+1)is larger LB, rwill be refined to (e + 2)
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2.2 The second phase: DFS with branch and bound

After the first phase, a puzzle is not always solved completely. If some cells in
the puzzle are still unknown, we will enter the second phase. Depth first search (DFS)
IS an exhaustive search, thus it will find out the solution of puzzle eventually. For this
reason, we use DFS method to solve the unsolved puzzle. Since the general DFS is
time-consuming, we will provide a “branch and bound” scheme to improve the
processing speed.

One thing should be mentioned at first, we choose the row information to build a
search tree and use the column information to do verification as the method used in
[3]. It means that every layer of tree is composed of row information and all nodes of
each layer are the possible solutions (PS). for the row. The following figures will
provide more detailed description. Fig..2:14 (a) 1s'a given puzzle and Figs. 2.14 (b)
and (c) are all possible solutions for row 1 and row: 2, respectively. There are three
possible solutions for row 1, two. possible=solutions for row 2, and two possible
solutions for row 3, etc. Fig. 2.14 (d) is‘a roughtree of Fig. 2.14 (a).

At a start, we try the first possible solution of row 1 and use column information
to deduce that some cells in row 2 should be colored or left empty. Then we check all
possible solutions of row 2 to refine which possible solutions we want. Fig. 2.15 (a)
shows the deduced result based on the first possible solution of row 1: in row 2, the
cells ¢, and c, should be left empty, and then the cells ¢, and c, should be
colored. It is evident that there is no possible solution in row 2 for this situation.
Hence, we reject this possible solution and do not search the following rows. Then we
try the next possible solution of row 1 as shown in Fig. 2.15 (b) and the same result is
obtained. Thus, we proceed to try the last possible solution of row 1 and then we find

the first possible solution of row 2 suitable as shown in Figs. 2.15 (c) and (d). We go
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on like this and then the answer, Fig. 2.15 (e), is found. The above deduction and

rejection process is called branch and bound scheme. Note that the symbol

Fig. 2.15 stands for the cell determined.

“A”in

1 3
3 2 3
row 1 1
ow2 [1[1]1 3 Fl
row 3 5
rowd|[2|1]1 11
row 5 i 1)1
(a)
Root
row 1 Pal P32 P33
| | |
row 2 P31 PE2 P31 P22 Bl P32
(d)

Fig. 2.14 An example of DFS. (a) A given puzzle. (b) The possible solutions of row 1.
(c) The possible solutions of row 2. (d) A rough tree of (a).

There are 72 (3x2x2x1x6=72) leaf nodes in DFS tree for the puzzle in Fig.

2.14 (a) we must check, but we do not need to check all leaf nodes based on the

branch and bound scheme. The main reason is that some columns restrictions will

bound cells’ types in the next row after the current row being built. This will make

some branches be cut if a certain possible solution of the next row can not fit the

restrictions. In other words, we need not waste time to test those possible solutions of

the following rows we have known they are wrong.
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(c)
Fig. 2.15 The process of DFS with branch and bound. (a) The deduced result of row 2
based on the first possible:solution of row 1. (b) The deduced result of row
2 based on the second.possible solution of row 1. (c) The deduced result of
row 2 based on the third possible solution-of row 1. (d) The first possible
solution of row 2 correspondingto (c). (e) The final solution.

Note that the DFS with branch and bound scheme is used after using logical rules,
the size of searching tree will be reduced significantly. Fig. 2.16 gives an example to
do illustration. There are 21 possible solutions for the first row in Fig. 2.16 (a)
originally. After applying the logical rules to Fig. 2.16 (a), we obtain the result shown
in Fig. 2.16 (b). From Fig. 2.16 (b), we can find that only 2 possible solutions are left
because the first black run has been solved completely by LR. In addition, although

the range of the last black run is (5, 8) now, we only need to check ¢, and c, not

C;-Cg. Checking c, and c, is useless because we have known they are empty cells.
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(a) (b)
Fig. 2.16 An example before using DFS. (a) The original puzzle. (b) The resulting
puzzle executed by LR.
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CHAPTER 3
EXPERIMENTAL RESULTS

In our database, there are about 260 puzzles. Most of them come from [4-5, 7]
and a little are created by us. There are two links being contained in [7], one is for
playing Japanese puzzles online and another is a book of Japanese puzzles, we get the
puzzles from here. A PC (CPU: AMD Athlon 2600+ 1.92GHz) and a NB (CPU: Intel
Pentium M 2.00GHz) are used to run this program.

Because most Japanese puzzles are meaningful, they can be solved quickly and
completely only by LR. The execution time is less than 1 second. If the puzzle is not
solved totally, the unknown part left is also solved successfully by DFS with branch
and bound scheme. Fig. 3.1 are the test:images: Figs. 3.1 (a) — (c) come from [4], Fig.
3.1 (d) comes from [5], and Figs. 3.1,(e) and (f)-are created by us. The first two
images and the forth one are solved completely and quickly only by logical rules. The
three images take more than 20 minutes to get.the selutions even an incorrect solution
in [4-5], but we only spend about 0.1 second-to solve them by using logical rules.
However, Fig. 3.1 (c), a random image (50% black), is solved completely using about
36 hours which is three times the execution time of [4]. If the black pattern in a puzzle
scatters everywhere, like Figs. 3.1 (c) and (e), this will lead LR to fail and make
lengths of most black runs shorter and many of black runs in a row. It means that a
black run may be placed in many possible positions and we should check many
possible solutions of each row as shown in Fig. 3.2. Thus, DFS will take a longer time
to solve the puzzle.

However, we can see Fig. 3.1 (f), the puzzle is also a random one (50% black), it
is solved successfully within 22 minutes because it is more compact (i.e. most black
cells are connected together). Although most of the lengths of black runs are shorter

like Fig. 3.1 (c), they have a “chain relation”, that is, some black cells in row 1
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connect to some black cells in row 2, some black cells in row 2 connect to some black

cells in row 3, and so forth. Fig. 3.3 gives a more detailed illustration. Note that the

symbol “(” in Fig. 3.3 stands for the connection.

(e)

Fig. 3.1 Test images. (a) Sheep (25x25). (b) Airplane (25x25). (c) Random_1 (30x30).
(d) Monkey (15x15). (e) Sunflower (25x25). (f) Random_2 (30x30).

(@)
(b)
(©)
(d)

1

1

1

1

1

Fig. 3.2 An illustration of scattering. (a) 10 possible solutions. (b) 21 possible
solutions. (c) 36 possible solutions. (d) 56 possible solutions.
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(b)
Fig. 3.3 An illustration of chain relation. More “()” means the puzzle is more

connected. (a) The magnified picture of part of Fig. 3.1 (c). (b) The
magnified picture of part of Fig. 3.1 (f).

Fig. 3.4 from [4] is a puzzle with two solutions. After applying our algorithm, all
the solutions will be found out. Fig. 3.5 is a puzzle with no solution. GA can not
detect it and will give a wrong answer like Fig. 3.6. However, our method can detect
it quickly because there must be a contradiction in logic of a valid puzzle with no
solution. Hence, when we determine;one cell should be colored or left empty, we will
check at first whether the cell has been colored or left empty. If one cell is determined
as a colored cell but it has been leftzempty, we will detect that the puzzle has no
solution. Similarly, if one cell is determined ‘as an empty cell but it has been colored,

it also means that the puzzle has no solution.

ta|wo = ]m[w|ra]—
ta|wo = ]m[w|ra]—
SR R I S 0 R R N

(a) (b) (c)

Fig. 3.4 A 7x8 puzzle with many solutions. (a) The result after LR. (b) The first
solution. (c) The second solution.

28



===

== =] =]

Fig. 3.5 A puzzle with no solution. Fig. 3.6 GA gives a wrong answer of Fig. 3.5.

Finally, Fig. 3.7 shows some other test images and Table 1 shows the comparison
of the experimental results between surveyed paper [5] and our algorithm. From Table
1, there are over 93% puzzles being solved more than 1 minute whether by using GA
or DFS. However, after applying our proposed method, there are over 98% puzzles
being solved about 0.1 second. All puzzles in our database are solved successfully and

there is no doubt about the correctness of solutions.

S
(d) (e) ()
Fig. 3.7 Test images. (a) Flower word (10x10). (b) Hippo (20x20). (c) Formosa
(25x25). (d) Snoopy (25x25). (e) OwI (30x25). (f) Skating (30x25).
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Table 1 The comparison of the experimental results between surveyed paper and our

algorithm.
Puzzle Type: Number Time
(264 puzzles totally) GA DFS Our Method
no solution
5x5:1 wrong answer
0.0 sec.
5x6: 1 more than 1 min. no solution detected
0.062 sec.
less than 0.1 sec.
wrong answer no solution

10x10: 2, 30x40: 1

more than 1 min.

more than 1 min.

(above f

ive puzzles have no solution)

size <6x6: 7

0.5 sec. <time

<5 sec.

0.0 sec.<time

< 0.6 sec.

0.0 sec.<time

<0.1 sec.

6Xx6 < size <10x10: 9

about 30 sec.: 1

0.01 sec.<time

10x10<size <15x15: 33
15x15 < size < 25x25: 110
size =25x25: 100

<1lmin.: 7 about 0.1 sec.
>1 min.: 8
>1min.: 2
Random_1 moreithan2,days | more than 2 days | about 36 hr.
Sunflower
more than-1 hr. more than 1 hr. about 20 min.
Random_2
Owl: 2 sec.
Others more than'l‘min, /[=more than 1 min. | Skating: 16 sec.

Others: about 0.1 sec.
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CHAPTER 4
CONCLUSIONS

In this thesis, we have proposed a fast method to solve Japanese puzzles. The
method contains two phases, the first phase used logical rules to solve cells in a
puzzle as many as possible. In the second phase, based on column information, DFS
with branch and bound scheme is used to solve those unknown cells remaining after
the first phase.

Since DFS is an exhaustive search, it is very time-consuming. When the size of
puzzle or the possible solutions of each row becomes larger, the time complexity also
rises. Consequently, using LR at first is necessary because some cells can be solved
easily by logic. If some cells are solved successfully at first, the size of tree will be
reduced. However, not all puzzles can be solved completely by LR if the black pattern
in a puzzle is distributed randomly, like-Figs.-3.1 (c), (e), and (f). For this situation,
we use branch and bound scheme-to assist.“in solving Japanese puzzles. The
experimental results show that our method can solve those puzzles with compact
black patterns quickly. For those puzzles with random black patterns, the method can
also raise the speed of DFS using branch and bound scheme. Furthermore, our method

always provides correct solutions.
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CHAPTER 5
FUTURE WORKS

Japanese puzzle, a pencil-and-paper game, is very popular in some countries, like
Japan and Netherlands. It is as interesting as Sudoku because both of them are logical
games. Logical games let people to use their brain when they are playing. Thinking
and learning in playing is a good thing. Either adults or children will be attracted by
Japanese puzzles deeply.

At present, Sudoku has been developed as online gaming and mobile gaming, we
think the Japanese puzzle could also be designed like Sudoku. A complete Japanese
puzzle game may consist of three parts: generator, solver, and helper. Using a puzzle
generator, the player can create what puzzle he wants by inputting a picture. In this
thesis, a simple generator is created for any type-pictures but it works better in
black-white pictures than colorful ones.-Fig.-5.1 is‘an illustration. The size of puzzle
can be decided arbitrarily. As for the solver,.it Is the main part of this game. As the
previous chapters mentioned, the solver is to solve all Japanese puzzles. Finally, the
helper can give the player several hints based on the solver when he needs.

Combining what proposed above, we use the times of hints given and the time
spent to calculate the score, and then rank all players according to their scores.

Consequently, Japanese puzzle will become a game full of challenge and excitation.

(@) (b) ()

Fig. 5.1 Generator. (a) The input image. (b) The puzzle generated. (c) The result of the
puzzle.
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