

資訊科學與工程研究所

碩 士 論 文

一個有效解決日本益智遊戲「發現小花」的演算法

An Efficient Algorithm for Solving Japanese Puzzles

研 究 生：尤瓊雪

指導教授：陳玲慧 教授

中 華 民 國 九 十 六 年 一 月

一個有效解決日本益智遊戲「發現小花」的演算法

An Efficient Algorithm for Solving Japanese Puzzles

研 究 生：尤瓊雪 Student ：Chiung-Hsueh Yu

指導教授：陳玲慧 Advisor：Ling-Hwei Chen

國 立 交 通 大 學
資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

January 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年一月

 I

一個有效解決日本益智遊戲「發現小花」的演算法

研究生：尤瓊雪 指導教授：陳玲慧 博士

國立交通大學資訊科學與工程研究所碩士班

摘 要

 日本益智遊戲「發現小花」是風行於日本與荷蘭的邏輯遊戲之一，而

「該謎題是否能解」是一個難以回答的問題，甚至是一個非決定性多項式

時間-完全（NP-complete）問題。目前已有一些相關論文提出，有的是利

用基因演算法解決，但是可能造成錯誤的答案出現；而有的是利用深先搜

尋演算法，該演算法是一種暴力搜尋法，所以執行速度很慢；因此，在這

篇論文裡，我們想要提出一種演算法來盡可能快速的解決所有謎題，這個

演算法不只加速了深先搜尋法的速度，更確保了謎題解答的正確性。在這

個遊戲裡，很多謎題是緊密而連續的圖形，我們可因此推導出一些邏輯規

則，按照這些規則去填出那些可以馬上決定位置的格子；然而，並非所有

謎題都可以依邏輯規則完全解出，像是有些隨意產生的謎題需要另一種方

法來輔助，在這種情況下，我們使用深先搜尋演算法，但為了加快執行速

度，分支界限法的觀念被引進，其目的是提早終止那些不合法的路徑。實

驗的結果顯示，我們的演算法成功地解決日本益智遊戲「發現小花」，而

執行速度也比一般的深先搜尋法來得快速。

 II

An Efficient Algorithm for Solving Japanese Puzzles

Student: Chiung-Hsueh Yu Advisor: Dr. Ling-Hwei Chen

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

 Japanese puzzle is one of logical games popular in Japan and Netherlands. The

question “Is this puzzle solvable?” is difficult to answer, even is an NP-complete

problem. At present, there have been some related papers proposed. Some use genetic

algorithm (GA), but the solution may be wrong. Some use depth first search (DFS)

algorithm. The DFS algorithm is an exhaustive search, so the execution speed is slow.

Hence, in this thesis, we want to propose an algorithm to solve puzzles as quickly as

possible. The algorithm not only accelerates the speed of DFS but also ensures the

correctness of the solution of a puzzle. In this puzzle game, many puzzles are compact

and contiguous pictures. Based on this, we can deduce some logical rules, and use

these rules to paint those cells whose positions can be determined immediately.

However, not all puzzles can be solved completely by logical rules. In this situation,

we use the DFS algorithm to complete the puzzle solving. In order to speed up the

process, the “branch and bound” technique is used to do early termination for those

impossible paths. Experimental results show that our algorithm can solve Japanese

puzzles successfully, and the processing speed is significantly faster than that of DFS.

 III

誌 謝

 這篇論文的完成，首先要感謝指導教授陳玲慧博士讓我加入自動化

資訊處理實驗室的研究群，並且在這兩年多來不斷的細心指導，不管是

在學業上或是生活上，老師的提醒、包容與體諒，都帶給了我不少的助

益，在此，再次謝謝老師。此外，感謝口試委員蔡月霞教授、陳佑冠教

授以及何俊達教授於口試中給予的指導與建議，才能使這篇論文更加完

善。

 接著要謝謝實驗室一起研究的可愛伙伴們：民全、萓聖、惠龍和文

超四位學長，以及維中、芳如、佩瑩、立人、俊旻、信嘉、薰瑩、子翔

和偉全九位學弟妹；不管是在研究上給我的指導與叮嚀，或是在日常生

活上製造的有趣話題，還有經歷過實驗室一些大大小小的事情後，那股

仍不曾改變的向心力與凝聚力；如果沒有你們，我想我的研究生活一定

會少了很多樂趣與知識的增長。

 此外，要謝謝我的大學同學和室友們：阿信、建凱、阿福、小美、

狼鼠、薇安、綿等等，讓我在沒有實驗室同屆同學的狀況下，能夠有人

可以一起作伴，不管是課業上的互相討論，或是生活上的談心笑鬧，謝

謝你們聽我說話、幫我打氣，陪我度過一些心理上的波折。

 最後，當然要謝謝我的家人：媽媽及哥哥們。謝謝你們對我沒能如

期畢業的寬容，還盡可能的提供我經濟上的支出，更謝謝媽媽長期當我

的傾聽者；另外，也謝謝每天都來迎接我回家的噹噹。能和你們成為一

家人，是我這輩子感到最幸運且最幸福的事，謹以此篇論文獻給你們，

也獻給所有我關心以及關心我的人。

 IV

CONTENTS

ABSTRACT (IN CHINESE)... I
ABSTRACT.. II
ACKNOWLEDGE (IN CHINESE)...III
CONTENTS...IV
LIST OF FIGURES ..V
LIST OF TABLES ... VII

CHAPTER 1 INTRODUCTION ..1

1.1 Motivation..1
1.2 Japanese Puzzles ..1
1.3 Previous Works ..2
1.4 Organization of the Thesis ...5

CHAPTER 2 PROPOSED METHOD..6
2.1 The first phase: Logical rules (LR) ..7
2.2 The second phase: DFS with branch and bound..22

CHAPTER 3 EXPERIMENTAL RESULTS ..26
CHAPTER 4 CONCLUSIONS ..31
CHAPTER 5 FUTURE WORKS ...32

REFERENCES ..33

 V

LIST OF FIGURES

Fig. 1.1 Japanese puzzle. (a) A simple puzzle. (b) The solution of (a)..........................2
Fig. 1.2 A puzzle with two solutions..2
Fig. 1.3 A puzzle with no solution. ..2
Fig. 1.4 DT problem and Japanese puzzle. (a) DT problem. (b) Japanese puzzle.........3
Fig. 1.5 A puzzle problem..4
Fig. 1.6 The DFS tree of Fig. 1.5...4
Fig. 1.7 Six possible solutions in the DFS tree..4
Fig. 1.8 Verification process for the different cases. ...5

Fig. 2.1 The flowchart of the proposed method...6
Fig. 2.2 An illustration of range. (a) A special row of a puzzle. (b) The left-most case
 of (a). (c) The right-most case of (a)..9
Fig. 2.3 An example of Rule 1.1..10
Fig. 2.4 An example of Rule 1.2. (a) One row of a puzzle with a partial painting
 result. (b) The result of applying Rule 1.2 to (a). ..10
Fig. 2.5 An example of Rule 1.3. (a) One row of a puzzle with a partial painting
 result. (b) The cell belongs to the third black run with length one. (c)
 The cell is the head cell of the last black run..11
Fig. 2.6 An example of Rule 1.4. (a) One row of a puzzle with a partial painting result
 (maxL =3). (b) The new black segment’s length after coloring ic is 4. (c)
 The cell ic should be left empty. ...12
Fig. 2.7 An example of Rule 1.5. (a) Top: one row of a puzzle with a partial painting
 result. Middle: all possible solutions for ic . Bottom: the result of applying
 Rule 1.5 to top figure. (b) Top: a special case (all black runs containing ic
 have the same length). Bottom: the result of applying Rule 1.5 to top figure.
 ..14
Fig. 2.8 An example of Rule 2.3..16
Fig. 2.9 An example of Rule 3.1. (a) One row of a puzzle with a partial painting
 result. (b) The result of applying Rule 3.1 to (a). ..16
Fig. 2.10 An example of Rule 3.2. (a) One row of a puzzle with a partial painting
 result. (b) The result of applying Rule 3.2 to (a). ..17
Fig. 2.11 An example of Rule 3.3-1. (a) One row of a puzzle with a partial painting
 result. (b) The result of applying Rule 3.3-1 to (a).19
Fig. 2.12 An example of Rule 3.3-2. (a) One row of a puzzle with a partial painting
 result. (b) The result of applying Rule 3.3-2 to (a).19

jsrc
jsrc

 VI

Fig. 2.13 An example of Rule 3.3-3. (a) One row of a puzzle with a partial painting
 result. (b) The length of coloring those cells between sc and ec is 5. (c)
 The result of applying Rule 3.3-3 to (a)...20
Fig. 2.14 An example of DFS. (a) A given puzzle. (b) The possible solutions of row 1.
 (c) The possible solutions of row 2. (d) A rough tree of (a).........................23
Fig. 2.15 The process of DFS with branch and bound. (a) The deduced result of row 2
 based on the first possible solution of row 1. (b) The deduced result of row
 2 based on the second possible solution of row 1. (c) The deduced result of
 row 2 based on the third possible solution of row 1. (d) The first possible
 solution of row 2 corresponding to (c). (e) The final solution.....................24
Fig. 2.16 An example before using DFS. (a) The original puzzle. (b) The resulting
 puzzle executed by LR...25

Fig. 3.1 Test images. (a) Sheep (25x25). (b) Airplane (25x25). (c) Random_1 (30x30).
 (d) Monkey (15x15). (e) Sunflower (25x25). (f) Random_2 (30x30)...........27
Fig. 3.2 An illustration of scattering. (a) 10 possible solutions. (b) 21 possible
 solutions. (c) 36 possible solutions. (d) 56 possible solutions.......................27
Fig. 3.3 An illustration of chain relation. More “○” means the puzzle is more
 connected. (a) The magnified picture of part of Fig. 3.1 (c). (b) The
 magnified picture of part of Fig. 3.1 (f). ..28
Fig. 3.4 A 7x8 puzzle with many solutions. (a) The result after LR. (b) The first
 solution. (c) The second solution. ..28
Fig. 3.5 A puzzle with no solution. ..29
Fig. 3.6 GA gives a wrong answer of Fig. 3.5. ..29
Fig. 3.7 Test images. (a) Flower_word (10x10). (b) Hippo (20x20). (c) Formosa
 (25x25). (d) Snoopy (25x25). (e) Owl (30x25). (f) Skating (30x25).29

Fig. 5.1 Generator. (a) The input image. (b) The puzzle generated. (c) The result of the
 puzzle. ..32

 VII

LIST OF TABLES

Table 1 The comparison of the experimental results between surveyed paper and our
Table 1 algorithm...30

 1

CHAPTER 1

INTRODUCTION

1.1 Motivation

 Japanese puzzle, also known as nonogram, is one of logical games popular in

Japan and Netherlands. The game is recommended to Taiwan recently, but few papers

are concerned with this topic – Japanese nonograms. In addition, some related papers

solved this problem by non-logical algorithms, and the execution speed is slow. On

the other hand, the question “Is this puzzle solvable?” turns out to be very hard to

answer in general, even is a NP-complete problem [1-2]. In this thesis, we will present

a fast method to solve this problem. First, we will provide some logical rules to solve

most part of a puzzle, and then use DFS with branch and bound scheme to solve the

remaining part. The detail of our proposed method will be described in Chapter 2.

1.2 Japanese Puzzles

 Japanese puzzles will be described in this section. Fig. 1.1 (a) is a simple puzzle

and Fig. 1.1 (b) is the solution of Fig. 1.1 (a). Ignoring the numbers, the solution can

be considered as a black-white (1-and-0) picture. Here, we use ■ as a colored (black)

cell, □ as an empty (white) cell, and ■ as an unknown cell (i.e. an undetermined

cell).

 The positive integers alongside the rows and columns give the information about

the lengths of black runs (a black run: contiguous black cells) in that row or column

respectively. The goal is to paint the cells to form a picture that satisfies the following

constraints:

 2

(a) (b)

1. Each cell must be colored (black) or left empty (white).
2. If a row or column has k numbers: 1s , 2s , …, ks , then it must contain k

black runs – the first (leftmost for rows / topmost for columns) black run with the
length 1s , the second black run with the length 2s , and so on.

3. There should be at least one empty cell between two consecutive black runs.

Fig. 1.1 Japanese puzzle. (a) A simple puzzle. (b) The solution of (a).

 It is evident that the puzzle in Fig. 1.1 (a) has a unique solution. However, the

puzzle in Fig. 1.2 has two solutions, and the puzzle in Fig. 1.3 has no solution (i.e. no

corresponding picture). Hence, there may be no, exact one, or more than one solution

for given integral numbers.

Fig. 1.2 A puzzle with two solutions. Fig. 1.3 A puzzle with no solution.

1.3 Previous Works

 In 2004, Batenburg [3] described an evolutionary algorithm for discrete

tomography (DT). And then Batenburg Kosters [4] provided a method to solve

Japanese puzzle. By modifying the fitness function in [3], the evolutionary algorithm

2
3
1
1

12121

2
3
1
1

12121

1
11
5
111
1

121311
111

1
11
5
111
1

121311
111

 3

can be used to solve Japanese puzzle. DT is concerned with the reconstruction of a

discrete image from its projections [4]. Japanese puzzles can be considered as a

special form of the DT problem. Fig. 1.4 shows an example to explain the difference

between them. Since the evolutionary algorithm in [3] will converge to a local

optimum, the obtained solution may be incorrect.

Fig. 1.4 DT problem and Japanese puzzle. (a) DT problem. (b) Japanese puzzle.

 In 2004, Wiggers [4] proposed a genetic algorithm (GA) and a depth first search

(DFS) algorithm to solve Japanese puzzles. He also compared the performance of

these two algorithms. For a puzzle of small size, DFS algorithm is faster than GA;

otherwise, GA is faster. However, both methods are slow. In the following, we will

give a brief description for the DFS algorithm, since it will also be used in our

proposed method.

[Depth First Search (DFS)]

 It is a straightforward idea to solve the Japanese nonogram by DFS. The author

generates all possible solutions of each row. Taking Fig. 1.5 as an example, Fig. 1.6 is

its corresponding DFS tree and Fig. 1.7 shows all possible solutions in the tree. Each

possible solution corresponds to a path from root to a leaf node, find all paths using

DFS and then use the column information of the puzzle to verify each possible

solution. A possible solution will be considered as a true solution, if it satisfies all

(a) (b)

 4

columns’ restrictions. Fig. 1.8 (c) is the only correct solution after the verification

process. Note that the symbol “X” in Fig. 1.8 stands for the column’s restriction not

satisfied.

Fig. 1.5 A puzzle problem.

Fig. 1.6 The DFS tree of Fig. 1.5.

Fig. 1.7 Six possible solutions in the DFS tree.

(a) (b) (c)

(d) (e) (f)

(a) (b) (c) (d) (e) (f)

row 1
(3 possible solutions)

row 2
(2 possible solutions)

row 3
(1 possible solution)

possible solutions:

 5

Fig. 1.8 Verification process for the different cases.

 Whether the evolutionary algorithm presented in [4] or the genetic algorithm

(GA) described in [5], both of them will converge to a local optimum, so sometimes

the obtained solution may not be correct. Besides, the depth first search (DFS)

algorithm proposed in [5] takes longer time than GA when solving large puzzles.

However, DFS will always find correct solutions. In this thesis, some logical rules

(LR) are provided to determine the unknown cells in a Japanese puzzle as many as

possible, and then DFS is used to solve those remaining unknown cells. In order to

speed up the process, the “branch and bound” technique is used to do early

termination for those impossible paths.

1.4 Organization of the Thesis

 This thesis is composed of five chapters. In Chapter 1, Japanese puzzles and

previous works are introduced. And then, the remainder of this thesis is organized as

follows. Our proposed algorithm for solving Japanese puzzles will be presented in

Chapter 2. In Chapter 3, several experimental results will be shown. Finally,

conclusions and future works will be given in the last two chapters.

X X

X X X X

X

(a) (b) (c)

(d) (e) (f)

X X X X

X
X X X X

X
XX

X

 6

CHAPTER 2

PROPOSED METHOD

 In general Japanese puzzle game, we usually paint those cells which can be

determined immediately at first. Then, the rest of undetermined cells will be solved by

guess. Based on this fact, we will propose a method to solve Japanese puzzles

automatically. The method contains two phases. In the first phase, some logical rules

are deduced and used to determine some cells; in the second phase, another method,

the depth first search will be applied to solve those remaining unknown cells.

Furthermore, the “branch and bound” technique is used to accelerate the searching

speed of the general DFS. These two phases will be presented in Sections 2.1 and 2.2.

Fig. 2.1 is the flowchart of the proposed method. The conditions in the decision boxes

will also be described in Section 2.1.

Start

End
Phase 2

Solved by DFS with
 Branch and bound scheme

Phase 1
Solved by

logical rules (LR)

Is any unknown
cell determined?

Is any black run's
range changed?

Is the puzzle solved
completely?

NoYes

No

Yes

Yes No

Fig. 2.1 The flowchart of the proposed method.

 7

2.1 The first phase: Logical rules (LR)

 One may also use some skills to solve Japanese puzzles, like the rules described

in [6]. In this phase, eleven rules are proposed but we present a new concept of range

of a black run (“range” will be explained later). These rules can be divided into three

main parts. The first part is to determine which cells should be colored or left empty,

the second part is to refine the ranges of black runs, and the third is not only to

determine which cells should be colored or left empty but also to refine the ranges of

black runs. The first five rules belong to part I, the following three rules belong to part

II, and the last three rules belong to part III. Each rule will be applied in each row and

then in each column. The total eleven rules are executed sequentially and iteratively.

 In the beginning, all cells in the puzzle are considered as unknown. In some

iterations, some unknown cells will be determined as colored cells or empty ones.

However, in some iterations, maybe only the ranges of some possible black runs are

refined. That is, there are not always some unknown cells determined in each iteration.

Thus, if no unknown cell is determined and no black run’s range is changed, we will

stop using logical rules because there will be no changes in later iterations.

 Note that, the rules applied in a row are the same as those applied in a column, so

we only take a row as an example to explain our algorithm.

Preliminary

 The position where a black run may be placed plays an important role. An idea

about the range),(jejs rr of a black run j is proposed, where jsr stands for the

left-most starting position of the run, and jer stands for the right-most ending

position of the run. That is, black run j can only be placed between jsr and jer . If

the range of each black run is precisely estimated, these ranges information can help

 8

us to solve puzzles quickly. In the beginning, the initial range of a black run in a row

is set between the left-most possible position and the right-most possible position. For

each black run, it must reserve some cells for the former black runs and the later ones.

Fig. 2.2 shows an example. Fig. 2.2 (a) shows a special row of a puzzle, in this row,

there are three black runs with lengths 1, 3, and 2, respectively. Fig. 2.2 (b) shows the

left-most possible solution of Fig. 2.2 (a) for each run, the first cell is colored and

there is only one empty cell between every two neighboring black runs. Fig. 2.2 (c)

shows the right-most possible solution of Fig. 2.2 (a) for each run, the last cell is

colored and there is only one empty cell between every two neighboring black runs.

Now, we take the second run as an example to do more detail explanation. In Fig. 2.2

(b), the left-most position, at which the first cell of the second black run can start, is

the third position. The reason is that there must reserve at least two cells in the head,

one cell is reserved for the first black run and the other is reserved for the empty cell

between the first and second black runs. Similarly, the right-most position, at which

the last cell of the second black run can appear, is the seventh position. That is due to

that there must reserve at least three cells in the tail, two cells are reserved for the

third black run and one cell is reserved for the empty cell between the second and

third black runs.

Initial run range estimating

 We let the size of each row with k black runs be n and the cells in a row with

index)1 , (0, n-K , we can use the following formula to determine the initial range of

each black run. Specially, jsr of the first black run is initialized 0 and jer of the last

black run is initialized)1(n- .

 9

,1)(-)1(

,1)(

1

1

1

∑

∑

+=

=

+=

+=

k

ji
ije

j-

i
ijs

LBn- r

LB r
 . , ,1 kj K=∀

where iLB is the length of black run i .

 Using the above formula, we can get the initial ranges of the three black runs in

Fig. 2.2 (a), which are (0, 2), (2, 6), and (6, 9), respectively.

Fig. 2.2 An illustration of range. (a) A special row of a puzzle. (b) The left-most case

 of (a). (c) The right-most case of (a).

Part I

 There are five rules in this part, all of them are used to determine which cells

should be colored (black) or left empty (white).

Rule 1.1

 For each black run, some cells must be colored if all the possible solutions of the

black run have the intersection. Actually, the intersection of all possible solutions is

also the intersection of the left-most case of the black run and the right-most case of

the black run. It is obvious that the intersection exists when the length of the black

run’s range is less than two times the actual length of a black run. Fig. 2.3 is an

example. Consequently, we provide Rule 1.1 to paint the cells sure to be colored. In

the rule, ic is the cell with index i .

231 231

231 231

231 231

0 1 2 3 4 5 6 7 8 9

(a)

(b)

(c)

 10

Fig. 2.3 An example of Rule 1.1.

Rule 1.1

jjsje

jejsi

LB-r-r u

uriurc
j

)1 (where

,- when colored be will cell
,run black each For

+=

≤≤+

Rule 1.2

 In the beginning, each cell belongs to one or more than one black run. However,

after some iterations, many black runs’ ranges will be refined, this may make some

cells not belong to any black run, and these cells should be left empty. Rule 1.2 is

provided to do this work. Fig. 2.4 shows that cells 0c and 4c should be left empty

because they do not belong to any black run.

Rule 1.2

.1 , somefor (3)
, (2)
,0 (1)

satisfied is conditions threefollowing theof one if
empty,left be it will , celleach For

)1(

1

kjjrir
nir

ri

c

sjje

ke

s

i

<≤<<
<<
<≤

+

Fig. 2.4 An example of Rule 1.2. (a) One row of a puzzle with a partial painting

 result. (b) The result of applying Rule 1.2 to (a).

33

33

3333

0 1 2 3 4

3’s range2’s range 3’s range2’s range

32 32
0 1 2 3 4 5 6 7 8

32 32
0 1 2 3 4 5 6 7 8

(a) (b)

 11

Rule 1.3

 For each black run j , when the first cell
jsrc of its range is colored, we will

check
jsrc covered by what other black runs. If the lengths of those covering black

runs are all one, the cell 1-rjs
c should be left empty. In the similar way, when the last

cell
jerc of its range is colored, we will check

jerc covered by what other black runs.

If the lengths of those covering black runs are all one, the cell 1+jerc should be left

empty. We provide Rule 1.3 to determine whether cells 1-rjs
c and 1+jerc should be

left empty. Taking Fig. 2.5 as an example, the colored cell
jsrc in Fig. 2.5 (a) is the

first cell of the range of the last black run with length 3. It is also covered by the third

black run with length 1. Thus, it must be the third black run with length 1 (see Fig. 2.5

(b)) or the head cell of the last black run (see Fig. 2.5 (c)). No matter what case, the

cell 1-rjs
c should be left empty.

Rule 1.3

empty.left be will cell

one, all are with covering run black all of lengths theIf (2)

empty.left be will cell

one, all are with covering run black all of lengths theIf (1)
 , 1,,run black each For

1

1-

+

≠

≠
=

je

je

js

js

r

r

r

r

c

jici

c

jici
kjj K

Fig. 2.5 An example of Rule 1.3. (a) One row of a puzzle with a partial painting
 result. (b) The cell belongs to the third black run with length one. (c)
 The cell is the head cell of the last black run.

jsrc
jsrc

1 312 1 312

1 312 1 312

1 312 1 312

jsr -1 jsr

(a)

(b)

(c)

1’s range
3’s range2’s range

1’s range

 12

Rule 1.4

 There may be some short black segments existing in a row. If any two

consecutive black segments with an unknown cell between them are combined into a

new black segment with length larger than the maximal length of all black runs

containing part of this new segment, the unknown cell should be left empty. Rule 1.4

is provided to deal with this situation. Fig. 2.6 shows an example. From Fig. 2.6 (b),

we can see that by coloring ic , the length of the new black segment is 4. Since the

new black segment is covered by two runs with length 1 and 3 and 4 is larger than 3,

so we set the unknown cell ic as empty.

Rule 1.4
For any three consecutive cells 1i-c , ic , and 1+ic , 2 , 1, n-i K=
Constraint: cells 1i-c and 1+ic must be black, and cell ic must be unknown
1. Let maxL be the maximal length of all the black runs containing the three cells.
2. If we color ic and find that the length of the black segment containing ic is

larger than maxL , ic should be left empty.

Fig. 2.6 An example of Rule 1.4. (a) One row of a puzzle with a partial painting result
 (maxL =3). (b) The new black segment’s length after coloring ic is 4. (c)

 The cell ic should be left empty.

131 131(c)

131 131
1 ’s ra n g e 1 ’s ra n g e

3 ’s ra n g e

131 131
4

(a)

(b)

i-1 i i+1

 13

Rule 1.5

 Some empty cells like walls may obstruct some black segments expand, we want

to color more cells based on this property. For a black segment belonging to series of

black runs, which have the same length but the ranges of them overlap each other, if

the length of the black segment equals to the length of those black runs covering the

black segment, we can set the two cells closest to the black segment as empty. Rule

1.5 is proposed to solve the above problems.

 Fig. 2.7 is a detailed description. In Fig. 2.7(a), we do not know ic belonging to

which black run. However, an empty cell 2-ic obstructs the black segment containing

ic to expand to the left side of 2-ic . Hence, no matter ic belongs to the run with

length 3 or the run with length 4, the cell next to ic should be colored. On the other

hand, Fig. 2.7 (b) is a special case, all black runs containing ic have the same length.

Thus, we are quite sure that the two cells 1s-c and 1+ec closest to the black segment

should be left empty.

Rule 1.5
For any two consecutive cells 1i-c and ic , 1 , 1, n-i K=
Constraint: cell 1i-c must be empty or unknown, and cell ic must be black
1. Let minL be the minimal length of all the black runs containing ic .
2. Find an empty cell mc closest to ic , 1 , ,1 i-i-minLm K+=∀
 If mc exists, color cell cp when minLmpi +≤≤+1 .
3. Find an empty cell nc closest to ic , 1 , ,1 minL-iin ++=∀ K
 If nc exists, color cell cp when 1-- ipminLn ≤≤ .
4. If all black runs containing ic have the same length.
 (1) Let s and e be the start and end indices of the black segment containing ic
 (2) If minLe-s =+1 , leave cells 1s-c and 1+ec empty.

 14

Fig. 2.7 An example of Rule 1.5. (a) Top: one row of a puzzle with a partial painting

 result. Middle: all possible solutions for ic . Bottom: the result of applying
 Rule 1.5 to top figure. (b) Top: a special case (all black runs containing ic
 have the same length). Bottom: the result of applying Rule 1.5 to top figure.

Part II
 Three rules are contained in this part. They are designed to refine the ranges of

black runs.

Rule 2.1

 Two consecutive black runs can not have the same jsr or jer , because it is

impossible that they are placed in the same start position or end position. We use Rule

2.1 to update the range of each black run j when it has the same jsr with black run

1j- or the same jer with black run 1+j .

Rule 2.1

⎩
⎨
⎧

≥
≤++

+++ ejjejejje

sjjsj-sjjs

rr-LBrr
rrLBrr

j

1)(11)(

1)-(11)-(

 if),1 - (torefined be will
 if1),(torefined be will

,run black each For

3 ’s ra n g e

1 ’s ra n g e 2 ’s ra n g e

2 ’s ra n g e

(b)

3221 3221

3221 3221

i-1 i

s-1 s e e+1

i-2 i-1 i

3 ’s ra n g e
4 ’s ra n g e

43 43

(a)

m i-1 i

43 43

43 43

43 43

43 43

i i

43 43

 15

Rule 2.2

 There should be one empty cell between two consecutive black runs, so we

should update the range of black run j if the cell 1-rjs
c or 1+jerc is colored. The

cells 1-rjs
c and 1+jerc do not belong to black run j because they are not in the

range),(jejs rr . It means that the colored cell must belong to the previous or the next

black run when it is painted. Therefore, Rule 2.2 is proposed to solve this problem.

Rule 2.2

⎪⎩

⎪
⎨
⎧ +

+ colored is cell theif),1 (torefined be will
colored is cell theif1),(torefined be will

,run black each For

1

1

je

js

rjeje

-rjsjs

c-rr
crr

j

Rule 2.3

 In the range of a black run, maybe one or more than one black segment exist.

Some of black segments have the lengths larger than jLB , but some not. We try to

determine each black segment with length larger than jLB belongs to the former

black runs or the later ones. If a black segment belongs to both of them, we can not do

anything. But if no, then we update the range of black run j . We provide Rule 2.3 to

do this work. In Fig. 2.8, the original range of the second black run is (4, 11). In the

range of the second black run, the length of the first black segment is 3 which is larger

than 2, and the black segment belongs to the first black run not the last, so we update

the range of the second black run from (4, 11) to (8, 11). But the length of the second

black segment is 1 and is less than 2, so we ignore it.

 16

Rule 2.3

⎩
⎨
⎧ +

+
Β

Β

runsblack later the tobelongsonly segment black if),2-s(torefined be will
runsblack former the tobelongsonly segment black if),2(torefined be will

,than larger is segment black of 1)s-(length theIf
,index end and sindex start with in segment black each For

.by segmentsblack theseof class thedenote We

). ,(in segmentsblack allout find ,run black each For

iir
iier

LBiiie
ieii

rrj

je

js

j

jejs

Fig. 2.8 An example of Rule 2.3.

Part III
 This part is also composed of three rules. The purpose of each rule is not only to

determine which cells should be colored or left empty but also to refine the ranges of

some black runs.

Rule 3.1

 In solving process, we met a problem as shown in Fig. 2.9 (a) – several colored

cells belong to the same black run but they are scattered. It means that all cells

between them should be colored to form a new black segment. Rule 3.1 is presented

to solve this problem and Fig. 2.9 (b) is the result of applying Rule 3.1 to Fig 2.9 (a).

Fig. 2.9 An example of Rule 3.1. (a) One row of a puzzle with a partial painting
 result. (b) The result of applying Rule 3.1 to (a).

)s(j)e(j- n r mr 11 +

341 341

341 341

4 ’s ra n g e (n e w)

4 ’s rang e (o ld)

(a)

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

2 ’s range

3 ’s range 1 ’s range

123 123

 17

Rule 3.1

For each black run j ,

find the first colored cell mc after ej-r)1(and the last colored cell nc before sjr)1(+

1. Color all cells between mc and nc

2.
) - (n - mLBu

unr
m-ur

j

je

js

1 where

)(torefined be will
)(torefined be will

+=
⎩
⎨
⎧

+

Rule 3.2

 As shown in Fig. 2.10 (a), some scattered empty cells are distributed over the

range of black run j , so there will be several segments bounded by these empty cells.

The lengths of some segments may be less than jLB , so they can be ignored to

consider. We propose Rule 3.2 to solve this problem. Fig. 2.10 (a) shows that there are

six segments in 3’s range. The first two and the last segments will be skipped and then

the range is adjusted. Since the length of the forth segment is less than 3 and is

covered only by one black run with length 3, we can set it as empty. Fig. 2.10 (b)

shows the result of applying Rule 3.2 to Fig. 2.10 (a).

Fig. 2.10 An example of Rule 3.2. (a) One row of a puzzle with a partial painting
 result. (b) The result of applying Rule 3.2 to (a).

1 2 3 4 5 6

… …

(a)

(b) …3… …3…

… ……3… …3…

3’s range

3’s range

 18

Rule 3.2

empty.left be shouldsegment in this cells all
runs,black other tobelongnot doessegment theif

,in segment each for
)by segments theseof class thedenote (we

, than less lengths with segments someremain still thereIf 5. step
5. step togo and stop

,segment ofindex end the torefined be will
Otherwise,

4. step togo and 1-

, than less is segment oflength theIf 4. step
1set 3. step

3. step togo and stop
,segment ofindex start the torefined be will

Otherwise,
2. step togo and 1

, than less is segment oflength theIf 2. step
0 set 1. step

. size with by segments theseof class thedenote We

). ,(in cellsempty by bounded segments allout find ,run black each For

R
R

LB

ir

 ii

LBi
 b-i

ir

 ii

LBi
i

b

rrj

j

je

j

js

j

jejs

=

=

+=

=

Β

Rule 3.3

 This rule is designed for solving the case of the range of black run j not

overlapping the range of black run 1j- or 1+j . We take the case “not overlapping

black run 1j- ” as an example, another case “not overlapping black run 1+j ” is

treated by the same idea but the conditions are reversed. It will be explained at the end

of this section.

1. The cell
jsrc is black (see Fig. 2.11 (a))

 Because the black run j does not overlap the black run 1j- , so when the head

cell of black run j has been colored, we can finish this black run by Rule 3.3-1.

Fig.2.11 (b) is the result of applying Rule 3.3-1 to Fig. 2.11 (a).

 19

Rule 3.3-1

)1(torefined be should
,originally run black overlaps 1run black If (3)

)1 (torefined be should (2)

empty cell leave and 11 when cellColor (1)
1,-run black of range thegoverlappinnot range its and

colored, with run black each For

1)(++
+

+

+≤≤+

+

+

jjssj

jjsje

LBrjjsjsi

r

LBrr
jj

-LBrr

c-LBrirc
j

cj

jjs

js

Fig. 2.11 An example of Rule 3.3-1. (a) One row of a puzzle with a partial painting
 result. (b) The result of applying Rule 3.3-1 to (a).

2. An empty cell wc appears after a black cell bc (see Fig. 2.12 (a))

 It should be true that each cell after wc will not belong to black run j . Thus,

we can use Rule 3.3-2 to refine the range of black run j as shown in Fig. 2.12 (b).

Fig. 2.12 An example of Rule 3.3-2. (a) One row of a puzzle with a partial painting
 result. (b) The result of applying Rule 3.3-2 to (a).

Rule 3.3-2

For each black run j with its range not overlapping the range of black run 1-j ,

Constraint: an empty cell wc appears after a black cell bc with wc and bc in the

Constraint: range of black run j

rje will be refined to (w-1)

…4… …4…

…4… …4…

…

…

……

……
4’s range

4’s range

(a)

(b)

jsr jjs LBr +

b w
…

…

……

……

(a)

(b)

…2… …2…

…2… …2…
2’s range

2’s range

 20

3. There is more than one black segment in the range (see Fig. 2.13 (a))

 In),(jejs rr , we find the first black cell sc in the first black segment and the

first black cell ec in the second black segment. If the length of the new run after

merging the first and second black segments by coloring those cells between these

two cells is larger than jLB , this means that ec will not belong to the same run as

sc . Otherwise, we proceed to find the first black cell ec in the third black segment

and also check the length of the new run after merging the first and third black

segments. The process starts all over again until all black segments in),(jejs rr have

been checked or a black segment i has been found and the length after merging the

first black segment and black segment i is larger than jLB . Thus we provide Rule

3.3-3 to deal with this situation. The length after merging two black runs shown in Fig.

2.13 (a) is 5 (see Fig. 2.13(b)) and is larger than 4, thus we can update the range as

shown in Fig. 2.13 (c).

Fig. 2.13 An example of Rule 3.3-3. (a) One row of a puzzle with a partial painting
 result. (b) The length of coloring those cells between sc and ec is 5. (c)
 The result of applying Rule 3.3-3 to (a).

s e
…4… …4… … ……

4 ’s ra n g e

…4… …4… … ……

4 ’s r a n g e

(a)

(c)

…4… …4… … ……

5
(b)

 21

Rule 3.3-3

For each black run j with its range not overlapping the range of black run 1-j ,

Constraint: there is more than one black segment in the range

Find out all black segments in),(jejs rr .

We denote the class of these black segments by Β with size b .

step 1. set i =0

step 2. find the first black cell sc in black segment i

step 3. set 1+= im

step 4. if b<m , find the first black cell ec in black segment m ,

 If 1)(+e-s is larger than LBj, stop and rje will be refined to (e-2).

 Otherwise, 1+= mm and go to step 4.

 The above three conditions are suitable for the case “not overlapping black run

1j- ”. To treat the case “not overlapping black run 1+j ”, we just need to reverse the

above three conditions as follows:

)2(torefined be will ,larger is 1)(If (1)
segmentsblack other in the cellblack last the

segmentblack last in the cellblack last the
range in thesegment black one than more is There 3.

)1(torefined be will (1)
 cellblack a before appears cellempty An 2.

)1--(torefined be should
,originally run black overlaps 1-run black If (3)

)1 -(torefined be should (2)

empty cell leave and 1-1- when cellColor (1)

black is cell The 1.

1)-(

++

+

+

≤≤+

erLBs-e
c
c

wr
cc

LBrr
jj

LBrr

criLBrc

c

jsj

e

s

js

bw

jjeej

jjejs

-LBrjejjei

r

jje

je

 22

2.2 The second phase: DFS with branch and bound

 After the first phase, a puzzle is not always solved completely. If some cells in

the puzzle are still unknown, we will enter the second phase. Depth first search (DFS)

is an exhaustive search, thus it will find out the solution of puzzle eventually. For this

reason, we use DFS method to solve the unsolved puzzle. Since the general DFS is

time-consuming, we will provide a “branch and bound” scheme to improve the

processing speed.

 One thing should be mentioned at first, we choose the row information to build a

search tree and use the column information to do verification as the method used in

[3]. It means that every layer of tree is composed of row information and all nodes of

each layer are the possible solutions (PS) for the row. The following figures will

provide more detailed description. Fig. 2.14 (a) is a given puzzle and Figs. 2.14 (b)

and (c) are all possible solutions for row 1 and row 2, respectively. There are three

possible solutions for row 1, two possible solutions for row 2, and two possible

solutions for row 3, etc. Fig. 2.14 (d) is a rough tree of Fig. 2.14 (a).

 At a start, we try the first possible solution of row 1 and use column information

to deduce that some cells in row 2 should be colored or left empty. Then we check all

possible solutions of row 2 to refine which possible solutions we want. Fig. 2.15 (a)

shows the deduced result based on the first possible solution of row 1: in row 2, the

cells 0c and 1c should be left empty, and then the cells 2c and 4c should be

colored. It is evident that there is no possible solution in row 2 for this situation.

Hence, we reject this possible solution and do not search the following rows. Then we

try the next possible solution of row 1 as shown in Fig. 2.15 (b) and the same result is

obtained. Thus, we proceed to try the last possible solution of row 1 and then we find

the first possible solution of row 2 suitable as shown in Figs. 2.15 (c) and (d). We go

 23

on like this and then the answer, Fig. 2.15 (e), is found. The above deduction and

rejection process is called branch and bound scheme. Note that the symbol “△” in

Fig. 2.15 stands for the cell determined.

Fig. 2.14 An example of DFS. (a) A given puzzle. (b) The possible solutions of row 1.
 (c) The possible solutions of row 2. (d) A rough tree of (a).

 There are 72 (7261223 =××××) leaf nodes in DFS tree for the puzzle in Fig.

2.14 (a) we must check, but we do not need to check all leaf nodes based on the

branch and bound scheme. The main reason is that some columns restrictions will

bound cells’ types in the next row after the current row being built. This will make

some branches be cut if a certain possible solution of the next row can not fit the

restrictions. In other words, we need not waste time to test those possible solutions of

the following rows we have known they are wrong.

111 111

1
112
5
111
13

223321
1111

1
112
5
111
13

223321
1111

row 1

row 2

row 3

row 4

row 5

13 13

13 13

13 13

(a)

(b)

(c)
111 111

(d)

row 2

row 1

…
…

…
…

 24

Fig. 2.15 The process of DFS with branch and bound. (a) The deduced result of row 2
 based on the first possible solution of row 1. (b) The deduced result of row
 2 based on the second possible solution of row 1. (c) The deduced result of
 row 2 based on the third possible solution of row 1. (d) The first possible
 solution of row 2 corresponding to (c). (e) The final solution.

 Note that the DFS with branch and bound scheme is used after using logical rules,

the size of searching tree will be reduced significantly. Fig. 2.16 gives an example to

do illustration. There are 21 possible solutions for the first row in Fig. 2.16 (a)

originally. After applying the logical rules to Fig. 2.16 (a), we obtain the result shown

in Fig. 2.16 (b). From Fig. 2.16 (b), we can find that only 2 possible solutions are left

because the first black run has been solved completely by LR. In addition, although

the range of the last black run is (5, 8) now, we only need to check 5c and 8c not

5c - 8c . Checking 6c and 7c is useless because we have known they are empty cells.

0 1 2 3 4 5 0 1 2 3 4 5

1
112
5
111
13

223321
1111

1
112
5
111
13

223321
1111

(a)

(b)

(c)

(e)

△△△△111
13

223321
1111

△△△△111
13

223321
1111

△△△△111
13

223321
1111

△△△△111
13

223321
1111

△△△△111
13

223321
1111

△△△△111
13

223321
1111

111
13

223321
1111

111
13

223321
1111

(d)

 25

Fig. 2.16 An example before using DFS. (a) The original puzzle. (b) The resulting

 puzzle executed by LR.

0011

1
13

100110 0011

1
13

100110 0011

1
13

100110 0011

1
13

100110
0 1 2 3 4 5 6 7 8 9

(a) (b)

 26

CHAPTER 3

EXPERIMENTAL RESULTS

 In our database, there are about 260 puzzles. Most of them come from [4-5, 7]

and a little are created by us. There are two links being contained in [7], one is for

playing Japanese puzzles online and another is a book of Japanese puzzles, we get the

puzzles from here. A PC (CPU: AMD Athlon 2600+ 1.92GHz) and a NB (CPU: Intel

Pentium M 2.00GHz) are used to run this program.

 Because most Japanese puzzles are meaningful, they can be solved quickly and

completely only by LR. The execution time is less than 1 second. If the puzzle is not

solved totally, the unknown part left is also solved successfully by DFS with branch

and bound scheme. Fig. 3.1 are the test images: Figs. 3.1 (a) – (c) come from [4], Fig.

3.1 (d) comes from [5], and Figs. 3.1 (e) and (f) are created by us. The first two

images and the forth one are solved completely and quickly only by logical rules. The

three images take more than 20 minutes to get the solutions even an incorrect solution

in [4-5], but we only spend about 0.1 second to solve them by using logical rules.

However, Fig. 3.1 (c), a random image (50% black), is solved completely using about

36 hours which is three times the execution time of [4]. If the black pattern in a puzzle

scatters everywhere, like Figs. 3.1 (c) and (e), this will lead LR to fail and make

lengths of most black runs shorter and many of black runs in a row. It means that a

black run may be placed in many possible positions and we should check many

possible solutions of each row as shown in Fig. 3.2. Thus, DFS will take a longer time

to solve the puzzle.

 However, we can see Fig. 3.1 (f), the puzzle is also a random one (50% black), it

is solved successfully within 22 minutes because it is more compact (i.e. most black

cells are connected together). Although most of the lengths of black runs are shorter

like Fig. 3.1 (c), they have a “chain relation”, that is, some black cells in row 1

 27

connect to some black cells in row 2, some black cells in row 2 connect to some black

cells in row 3, and so forth. Fig. 3.3 gives a more detailed illustration. Note that the

symbol “○” in Fig. 3.3 stands for the connection.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3.1 Test images. (a) Sheep (25x25). (b) Airplane (25x25). (c) Random_1 (30x30).
 (d) Monkey (15x15). (e) Sunflower (25x25). (f) Random_2 (30x30).

Fig. 3.2 An illustration of scattering. (a) 10 possible solutions. (b) 21 possible
 solutions. (c) 36 possible solutions. (d) 56 possible solutions.

111 111

11 11

13 13

11(a)

(b)

(c)

(d)

 28

Fig. 3.3 An illustration of chain relation. More “○” means the puzzle is more
 connected. (a) The magnified picture of part of Fig. 3.1 (c). (b) The
 magnified picture of part of Fig. 3.1 (f).

 Fig. 3.4 from [4] is a puzzle with two solutions. After applying our algorithm, all

the solutions will be found out. Fig. 3.5 is a puzzle with no solution. GA can not

detect it and will give a wrong answer like Fig. 3.6. However, our method can detect

it quickly because there must be a contradiction in logic of a valid puzzle with no

solution. Hence, when we determine one cell should be colored or left empty, we will

check at first whether the cell has been colored or left empty. If one cell is determined

as a colored cell but it has been left empty, we will detect that the puzzle has no

solution. Similarly, if one cell is determined as an empty cell but it has been colored,

it also means that the puzzle has no solution.

(a) (b) (c)

Fig. 3.4 A 7x8 puzzle with many solutions. (a) The result after LR. (b) The first
 solution. (c) The second solution.

 ○ ○
 ○ ○
 ○
 ○ ○
 ○

 ○ ○
 ○ ○
 ○ ○ ○ ○
 ○ ○ ○

 ○ ○ ○ ○ ○

(a) (b)

 29

Fig. 3.5 A puzzle with no solution. Fig. 3.6 GA gives a wrong answer of Fig. 3.5.

 Finally, Fig. 3.7 shows some other test images and Table 1 shows the comparison

of the experimental results between surveyed paper [5] and our algorithm. From Table

1, there are over 93% puzzles being solved more than 1 minute whether by using GA

or DFS. However, after applying our proposed method, there are over 98% puzzles

being solved about 0.1 second. All puzzles in our database are solved successfully and

there is no doubt about the correctness of solutions.

(a) (b)

(c)

(d)

(e)

(f)

Fig. 3.7 Test images. (a) Flower_word (10x10). (b) Hippo (20x20). (c) Formosa
 (25x25). (d) Snoopy (25x25). (e) Owl (30x25). (f) Skating (30x25).

 30

Table 1 The comparison of the experimental results between surveyed paper and our
 algorithm.

Time Puzzle Type: Number

(264 puzzles totally) GA DFS Our Method

5x5: 1

5x6: 1

wrong answer

more than 1 min.

no solution

0.0 sec.

0.062 sec.

10x10: 2, 30x40: 1
wrong answer

more than 1 min.

no solution

more than 1 min.

no solution detected

less than 0.1 sec.

(above five puzzles have no solution)

size≦6x6: 7
0.5 sec.＜time

＜5 sec.

0.0 sec.≦time

＜0.6 sec.

0.0 sec.≦time

＜0.1 sec.

6x6＜size＜10x10: 9
about 30 sec.: 1

＞1 min.: 8

0.01 sec.＜time

＜1 min.: 7

＞1 min.: 2

about 0.1 sec.

Random_1 more than 2 days more than 2 days about 36 hr.

Sunflower

Random_2
more than 1 hr. more than 1 hr. about 20 min. 10x10≦size≦15x15: 33

15x15＜size＜25x25: 110

size≧25x25: 100
Others more than 1 min. more than 1 min.

Owl: 2 sec.

Skating: 16 sec.

Others: about 0.1 sec.

 31

CHAPTER 4

CONCLUSIONS

 In this thesis, we have proposed a fast method to solve Japanese puzzles. The

method contains two phases, the first phase used logical rules to solve cells in a

puzzle as many as possible. In the second phase, based on column information, DFS

with branch and bound scheme is used to solve those unknown cells remaining after

the first phase.

 Since DFS is an exhaustive search, it is very time-consuming. When the size of

puzzle or the possible solutions of each row becomes larger, the time complexity also

rises. Consequently, using LR at first is necessary because some cells can be solved

easily by logic. If some cells are solved successfully at first, the size of tree will be

reduced. However, not all puzzles can be solved completely by LR if the black pattern

in a puzzle is distributed randomly, like Figs. 3.1 (c), (e), and (f). For this situation,

we use branch and bound scheme to assist in solving Japanese puzzles. The

experimental results show that our method can solve those puzzles with compact

black patterns quickly. For those puzzles with random black patterns, the method can

also raise the speed of DFS using branch and bound scheme. Furthermore, our method

always provides correct solutions.

 32

CHAPTER 5

FUTURE WORKS

 Japanese puzzle, a pencil-and-paper game, is very popular in some countries, like

Japan and Netherlands. It is as interesting as Sudoku because both of them are logical

games. Logical games let people to use their brain when they are playing. Thinking

and learning in playing is a good thing. Either adults or children will be attracted by

Japanese puzzles deeply.

 At present, Sudoku has been developed as online gaming and mobile gaming, we

think the Japanese puzzle could also be designed like Sudoku. A complete Japanese

puzzle game may consist of three parts: generator, solver, and helper. Using a puzzle

generator, the player can create what puzzle he wants by inputting a picture. In this

thesis, a simple generator is created for any type pictures but it works better in

black-white pictures than colorful ones. Fig. 5.1 is an illustration. The size of puzzle

can be decided arbitrarily. As for the solver, it is the main part of this game. As the

previous chapters mentioned, the solver is to solve all Japanese puzzles. Finally, the

helper can give the player several hints based on the solver when he needs.

 Combining what proposed above, we use the times of hints given and the time

spent to calculate the score, and then rank all players according to their scores.

Consequently, Japanese puzzle will become a game full of challenge and excitation.

Fig. 5.1 Generator. (a) The input image. (b) The puzzle generated. (c) The result of the
 puzzle.

(a) (b) (c)

 33

REFERENCES

[1] N. Ueda and T. Nagao, “NP-completeness Results for NONOGRAM via
Parsimonious Reductions,” Technical Report TR96-0008, Department of
Computer Science, Tokyo Institute of Technology, May 1996.

[2] B. P. McPhail, “Light Up is NP-Complete,” Feb. 2005. URL: http://www.reed.
edu/~mcphailb/lightup.pdf.

[3] K. J. Batenburg, “An Evolutionary Algorithm for Discrete Tomography,”
Discrete Applied Mathematics, vol. 151, no. 1-3, pp. 36-54, Oct. 2005.

[4] K. J. Batenburg and W. A. Kosters, “A Discrete Tomography Approach to
Japanese Puzzles,” Proceedings of BNAIC, pp. 243-250, 2004.

[5] W. A. Wiggers, “A Comparison of a Genetic Algorithm and a Depth First
Search Algorithm Applied to Japanese Nonograms,” Twente Student
Conference on IT, Jun. 2004.

[6] URL: http://www.pro.or.jp/~fuji/java/puzzle/nonogram/knowhow.html.
[7] Database of Japanese puzzles. URL: http://hattori.m78.com/puzzle/picture/java

/stage_01/index.html and http://www.books.com.tw/exep/prod/booksfile.php?it
em=0010317755.

[8] K. A. DeJong and W. M. S pears, “Using Genetic Algorithms to Solve
NP-Complete Problems,” Proceedings of the 3rd International Conference on
Genetic Algorithms, pp. 124-132, 1989.

[9] T. Yato and T. Seta, “Complexity and Completeness of Finding Another
Solution and Its Application to Puzzles,” IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, vol. E86-A, no. 5, pp.
1052-1060, 2003.

[10] B. P. McPhail, “The Complexity of Puzzles: NP-completeness Results for
Nurikabe and Minesweeper,” Reed College, Undergraduate Thesis, Dec. 2003.
URL: http://www.reed.edu/~mcphailb/thesis.pdf.

[11] D. R. Fulkerson, “Zero-one Matrices with Zero Trace,” Pacific Journal of
Mathematics, vol. 10, no. 3, pp. 831-836, 1960.

[12] J. Benton, R. Snow, and N. Wallach, “A Combinatorial Problem Associated
with Nonograms,” Linear Algebra and Its Applications, vol. 412, no. 1, pp.
30-38, 2006.

[13] Robert A. Bosch, “Painting by Numbers,” Sep. 2000. URL: http://www.oberlin.
edu/math/faculty/bosch/pbn-page.html.

