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摘要 

我們藉由球面輻射基底函數(SRBF)的特性，針對雙向反射分佈函數(BRDF)

提出一種新的重要性採樣方法。我們經由實驗證實，透過非線性最佳化的演算

法，將雙向反射分佈函數轉換至球面輻射基底函數的表示形式之誤差是在一個可

容忍的誤差範圍內。此外，根據球面輻射基底函數的表現形式，我們也提出一種

有效率的重要性採樣方法，其產生出來的採樣分佈可以契合球面輻射基底函數所

描述的資料分佈，此方法可以在全域光源照射的環境下，有效率地繪製包含多種

複雜材質的場景影像。 
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ABSTRACT 

We present a new technique for sampling the importance of realistic bidirectional 

reflectance distribution function (BRDF) models by using spherical radial basis 

functions (SRBFs). We demonstrate that the measured BRDF data can be represented 

in SRBFs in a tolerated error bound by using our non-uniform and non-negative 

SRBF fitting algorithm. Then, we present an efficient sampling algorithm on the unit 

sphere, and the generated point distribution can match the SRBF representation. We 

are capable of creating images with multiple measured BRDFs under global 

illumination. 
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Chapter 1   

  Introduction 

 

 The bidirectional reflectance distribution function (BRDF) describes how light 

is reflected at the material’s surface. The analytical BRDF model, such as Phong 

model [17] or Cook-Torrance [4], is hard to describe a material with complex 

scattering behavior. In order to improve the quality of realistic images with a wide 

range of BRDFs, more and more researches focus on efficient rendering with 

measured BRDF data. However, there is a major challenge in the Monte-Carlo based 

global illumination approach incorporating with complex BRDF models - the 

sampling efficiency. When tracing each ray in the scene, the tracing path of the ray is 

desired to be selected by the importance distribution of the BRDF as much as possible. 

Take a highly specular material for example, the most part of incident energy are 

gathered in the specular direction with a fixed outgoing direction. It would waste lots 

of samples if we generate samples randomly or uniformly. In this situation, only few 

sampling paths get the intensity. On the other hand, if we could generate samples 

against the specular direction, it would reduce the image variance and increase the 

efficiency of rendering. Therefore, how to find the importance sampling direction 

with BRDF plays a critical role in efficient realistic image rendering. 
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 In order to analyze the original measured BRDF data to find the probability 

distributions of sampling directions, many researchers transform original data into 

other representation forms (wavelet [12] [14] [2], factored representation [13], … etc), 

then generate sampling directions according to the probability distribution found in 

the specified representation. The concept of our approach is the same as previous 

researches. We choose spherical radial basis functions (SRBF) to represent the 

measured BRDF data, then find the distribution on the unit sphere, render the image 

against the distribution finally. 

1.1  Motivation 

 Special radial basis functions (RBFs) defined on the unit sphere are called 

spherical radial basis functions (SRBFs) by Narcowich and Ward [15]. Since SRBFs 

are defined in the spherical domain, there are some intrinsic potential make SRBF 

more appropriate to represent the spherical data, such as BRDF data. First, owing to 

the SRBFs are defined in spherical domain, we can directly fit our model to the data 

without reparameterization. Therefore, we could avoid the inaccuracy probably 

produced from the reparameterization process. Second, the convolution of two SRBF 

kernels in some situations has a simple mathematical form, thus we can use this 

property to calculate the integral for probability estimation without extra processes to 

construct the probability density function (PDF). Third, using scattered SRBFs, we 

can represent the original data with few memory storages, and the approximated 

results are in a tolerated error bound. 

 

 According to the useful properties of SRBFs described above. We can use SRBF 

to represent the BRDF data without reparameterization when fitting SRBFs to the 
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BRDF measurements. Additionally, the approximated results are accurate enough to 

represent most features of the original data, and we can directly estimate the 

probability for importance sampling with the simple from of convolution by choosing 

the appropriate SRBF kernels. The potential benefits of SRBFs would make the 

importance sampling more efficient. 

1.2  Overview 

The goal of this thesis is to demonstrate that the scattered SRBFs are appropriate 

to represent the measured BRDF data of complex materials. With some useful 

properties of SRBF, we can easily apply the resulting representation in the Monte 

Carlo importance sampling technique. Finally, we show that the efficiency of BRDF 

importance sampling can be improved with our sampling scheme. 

1.3  Thesis Organization 

The following chapters are organized as follows. In Chapter 2, we will review 

the researches about the representations for complex BRDF models and the BRDF 

importance sampling strategies based on each different representation. In Chapter 3, 

we introduce the background of SRBFs and the advantages of scattered SRBFs. Then, 

in Chapter 4, we will describe how we fit scattered SRBFs to the measured BRDF 

data, and how we generate sample directions at run-time efficiently. The 

implementation and results will be demonstrated in Chapter 5. Finally, the 

conclusions and future work are given in Chapter 6. 
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Chapter 2  

i

 

  Related Work 

The goal of global illumination is to solve the rendering equation which is first 

formulated by Kajiya [8]: 

( , ) ( , ) ( , , ) ( , )( )o e o i o i i iL x L x x L x n dω ω ρ ω ω ω ω
Ω

= + ⋅∫ ω ,        (1) 

where  is the incident radiance, and iL ρ  is the BRDF . Monte Carlo approaches 

are used to solve the integrals which have no analytical or numerical solution, such as 

the rendering equation. They solve the integrals by computing the average of random 

samples of the integrand, accumulating these values and taking the average. 

Importance sampling technique is a variance reduction technique of Monte Carlo 

approaches. Most Monte Carlo approaches use importance sampling of either ρ  or 

 to solve the rendering equation. When sampling the light source for direct 

illumination, there are some sampling methods have been demonstrated 

iL

[1] [3] [9]. 

However, these methods are hard to deal with the complex materials measured from 

the real-world, and it’s not practical to pre-compute the incident radiance at all points 

in the scene in general case of global illumination. Thus, we attempt to sample 

according to the measured BRDF ρ . 
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In the remainder of this chapter, we will first describe two mainstreams of the 

BRDF models, and their abilities to be applied to importance sampling technique. 

Then we briefly introduce several representations for BRDF proposed by previous 

researchers, and how they perform importance sampling based on their representation. 

2.1  BRDF Models 

 BRDF models used generally nowadays can be classified into two mainstreams: 

one is phenomenological-based models, and the other is data-measured based 

models. 

 

Phenomenological-based BRDF models are usually expressed in an analytical 

formula that attempt to describe the qualitative properties of real-world surfaces. The 

popular Phong shading model [17] belongs to this category, and other 

physically-based models [4] [7] which can capture the Fresnel reflection, rough 

microgeometry or other physical effects are also part of this. These models tend to use 

some intuitive parameters to modify their reflection behavior. It is easy to evaluate the 

value for rendering. Nevertheless, they are hard to describe the materials with 

complex behavior, even though they succeed to describe the complicated physical 

phenomenon. Sometimes they are difficult to be applied to importance sampling, 

since the analytic formula may be difficult or impossible to integrate and invert to 

estimate the probability distribution for sampling. 

 

Data-measured based models are unlike the phenomenological-based models, 

their reflection distribution properties of real-world surfaces are measured practically. 

These models sometimes are used in tabular form for rendering directly. Once in a 
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while, in order to analyze the original measured data, the model may be represented in 

the form constructed by wavelets, factorized matrix, or other data analyzing approach. 

The quality of these representations depends on not only the accuracy of the 

measurements but also the approximation performance. 

2.2  BRDF Importance Sampling 

BRDF importance sampling is a technique to reduce the image variance in 

physically-based rendering. Its concept is to find the distribution based on the 

representation of BRDF. Shirley demonstrated how to sample the traditional Phong 

BRDF model efficiently [19], Lafortune also presented importance sampling schemes 

for the modified Phong model [11]. Ward [22] showed the stochastic sampling method 

for the BRDF models composed of (elliptical) Gaussian kernels. For more examples, 

please see Pharr and Humphreys [16]. 

  

Lafortune [10] used multiple cosine-lobes for representing the BRDF, he used 

non-linear fitting algorithm to fit sums of cosine-lobes to an analytical model or to 

actual measurements. Though this representation is simple and can be applied for 

Monte Carlo importance sampling efficiently, it is hard to approximate the complex 

BRDF by using his fitting process. 

 

 Lalonde [12] used wavelets to represent the BRDF and proposed an importance 

sampling scheme by binary searching the tree constructed against the coefficients of 

each wavelet basis. Matusik [14] also used a wavelets representation of BRDF, and he 

presented a numerical sampling method based on wavelets analysis. 
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 Lawrence et al. [13] demonstrated an importance sampling method based on a 

factored representation. They reparameterized the BRDF by using half-angle [18], 

then used non-negative matrix factorization (NMF) twice to decompose the BRDF 

data for efficient importance sampling. 

 

 Our approach represents the BRDF using scattered SRBFs. Tsai and Shih [20] 

have shown this representation performs better than wavelets in data analysis. 

Furthermore, we can directly fit scattered SRBFs to the BRDF data without 

reparameterization. We also propose an efficient importance sampling method based 

on this representation. In the following chapters, we will describe how we represent 

the measured BRDF data with scattered SRBFs and how we estimate the probability 

distribution for importance sampling. 
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Chapter 3   

  Spherical Radial Basis Functions 

 Spherical radial basis function (SRBF) is a special radial basis function (RBF) 

defined on the unit sphere. SRBFs avoid distortions and the artificial boundaries when 

they are used to analyze the data on sphere. In this chapter, we first introduce the 

background of SRBFs, and express the useful properties of SRBFs that had been 

developed by previous researchers. Then we discuss the scattered SRBFs briefly, and 

point out the advantages of scattered SRBFs. 

3.1  Background of SRBFs 

 SRBF is recognized as an axis-symmetric reproducing kernel function defined 

on , the unit sphere embedded in mS 1m+ . It can be taken as a special radial basis 

function (RBF) defined on the unit sphere, i.e. the kernel functions only depend on the 

spherical distance between unit vectors (Figure 3.1). 

 

 Let η and ξ be two points on , and let mS ( , )θ η ξ  be the geodesic distance 

between η and ξ on , i.e. the arc length of the great circle joining the η and ξ. 

Because kernel functions of SRBF are depending on θ, and SRBF can be expressed in 

the expansions of Legendre polynomials: 

mS
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0
(cos ) ( ) ( )l l

l
G G G Pθ η ξ η ξ

∞

=

= ⋅ = ⋅∑ ,               (2) 

where ( )lP η ξ⋅  is the Legendre polynomials of degree l, and the coefficients  of 

each Legendre polynomial satisfy the following conditions: 

lG

0

0l

l
l

G

G
∞

=

≥⎧
⎪
⎨ < ∞⎪⎩
∑

 

 

Figure 3.1: 3D plot of a Gaussian SRBF 

When all  are positive, a spherical function lG ( )F η  can be represented in SRBF 

expansions: 

1
( ) ( )

N

k
k

F F G kη η λ
=

= ⋅∑       (3) 

 

 

Figure 3.2: Represent ( )F η  with SRBF expansions. 
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 Since SRBF has expansions of the Legendre polynomials, there is a very useful 

property based on the orthogonal property of Legendre polynomials in [-1, 1] called 

spherical singular integral 

0 ,

( ) ( ) ( ) (
m

m )g h l l l
l m l

G H d G H P
d
ω

g hη ξ η ξ ω η ξ ξ
∞

=

⋅ ⋅ = ⋅∑∫S          (4) 

where mω  is the total surface area of ,  is the dimension of the space of 

order-l spherical harmonics on , and 

mS ,m ld

mS dω  denotes the differential surface element 

on . mS

  

 The spherical singular integral could be transformed into a simpler form in some 

conditions. Tsai and Shih [20] have proved that the convolution of two Abel-Possion 

SRBFs kernels, or two Gaussian SRBFs kernels has a mathematically simple form 

with small m. For example, the definition of Gaussian SRBF kernel is 

( )( ; ) ,   0GauG e eλ λ η ξη ξ λ λ− ⋅⋅ = > ,           (5) 

where λ, the parameter called bandwidth, describes the coverage of the SRBF, and the 

convolution of two Gaussian SRBFs can be written as 

1
( ) 2

1
2

1 2( ; , ) ( ) ( )( )
2

g h

m
Gau Gau

m g h g h m m
mG H e I r

r
λ λξ ξ λ λ ω

−
− +

−
+

∗ ⋅ = Γ     (6) 

where g g hr hλ ξ λ ξ= + . For more details about the proof of the equation, please refer 

to [20], and there are two references for further about SRBF [15] [6]. 
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3.2  Scattered SRBFs 

 Distribution of the SRBFs’ centers on the sphere affects the compression 

efficiency significantly. If we use uniform SRBFs to represent the data with sparse 

distribution, it would waste lots of basis kernels on the region without any data. On 

the other hand, using scattered SRBFs, i.e. adapting the center, bandwidth and 

coefficient of each basis, we can locate the SRBF kernels based on the data 

distribution on the sphere. Therefore, scattered SRBFs can capture the feature of the 

original data with much fewer bases than those used in uniform SRBFs. Nevertheless, 

it may be hard to compute the parameters of each scattered SRBF (i.e. center, 

bandwidth, and coefficient) from original data. Fortunately, Tsai and Shih [20] present 

a novel approach to fit data with scattered SRBFs recently. Their approach makes 

scattered SRBFs more practical for representing data on sphere. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 12

Chapter 4   

  Sampling Scheme 

 Our system consists of two major processes, one is the off-line process and the 

other is the run-time rendering process. In the off-line process, we transform the 

BRDF measurements into the scattered SRBF representation. In the run-time 

rendering process, we first determine how many samples should be taken from each 

SRBF. Then we generate samples based on the probability density function (PDF) 

calculated from each SRBF. Finally, we combine the sampling results with multiple 

importance sampling technique presented by Veach and Guibas [21]. 

 

 The following sections are organized as follows. In Section 4.1, we will 

introduce the non-uniform and non-negative SRBF fitting algorithm which we use to 

transform the measured BRDF data into scattered SRBFs, and discuss the initial guess 

applied for BRDF data. In Section 4.2, we first briefly introduce the multiple 

importance sampling technique. Then, we describe how to determine the number of 

samples of each SRBF kernel and how to generate samples from each SRBF kernel. 
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4.1  Off-line Process 

 In this section, we would show how to represent the measured BRDF data by 

using scattering SRBFs. We first introduce the fitting algorithm, and then we describe 

the initial guess for BRDF data in the fitting process. 

4.1.1  Non-uniform and non-negative SRBF fitting algorithm 

 We now describe how we transform the original BRDF measurements into the 

scattered SRBFs representation. The measured BRDF data are usually represented in 

tabular form, row is the outgoing (viewing) direction, and column is the incident 

(lighting) direction. When we fix one outgoing direction, we can get a vector which 

describes the ratio of energy from all incident directions (Figure 4.1). The order of 

each element contained in the vector is the same as the pixel order defined in the 

cubic texture, i.e. first unfold each face’s pixels into a vector, then concatenate the 

unfolded vectors of each face in the order +x, -x, +y, -y, +z, -z. 

 

 

Figure 4.1: The format of measured BRDF data. 
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 In our fitting process, we fit the scattered SRBFs to the data in a vector of each 

outgoing direction respectively, and there are three sets of parameters we want to 

optimize: the set of coefficients L, the set of centers 2Ξ , and the set of bandwidth 

parameters . Our objective is to minimize the square error with the original data: 2Λ

2
2 2

2

2 2
{ , , }

2, 2,
1

{ , , } arg min ( ) ( ) ( ),

( ) ( ; )

o o

l

o

i i
L

n

i k i k k
k

L d

L G

ω ω

ω

iρ ω ρ ω ω ω

ρ ω ω ξ λ

Ξ Λ

=

Ξ Λ = −

= ⋅

∫

∑

S

          (7) 

  

 Tsai and Shih [20] have presented a novel method to solve this objective 

function when modeling the lighting environment. In their fitting approach, the 

coefficients of each kernel basis are calculated by ordinary least-squares (OLS) or 

regularized least-squares (RLS). However, fitting by OLS or RLS would make the 

coefficients become negative in some situations. Because we need to use the 

coefficients to estimate the probability distribution, we must constrain all coefficients 

to be positive. Therefore, we also use L-BFGS-B solver [23] to fit the coefficients 

instead. 

 

 The fitting process composes of three main steps: 

1. Using L-BFGS-B solver to optimize the set of centers with a given initial guess or 

the temporary results of the previous iteration. 

2. Then, using L-BFGS-B to solve the set of bandwidth parameters and the set of 

coefficients in turn. 

3. If the squared difference errors between current and previous iteration are less 

than a threshold, the process is terminated. If the count of iterations exceeds a 

user-defined threshold, break the process as well. 
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This fitting process is one kind of non-linear optimization. The fitting results are 

highly dependent on the initial guess. In other words, the initial guess would dominate 

the accuracy of the representation. In next subsection, we would introduce the initial 

guess for BRDF data in more details. 

4.1.2  Initial Guess for Non-linear Optimization of BRDF data 

 As mentioned in last subsection, the initial guess plays an important role in 

non-linear optimization. Tsai and Shih [20] have studied this problem recently, and 

they present a reasonable guess based on some heuristics to decrease approximation 

errors. The principle of their initial guess is to make the initial centers of each kernel 

basis locate at all local peaks of the original data as close as possible, and to estimate 

a reasonable bandwidth according to the coverage of each initial center. Based on this 

principle, they generate lots of candidate guesses sorted by the coverage-weighted 

intensity, and then attempt to choose guesses which avoid the initial centers gathering 

in local area. This guessing scheme works well for the data with high dynamic range 

(HDR) property. While for most BRDFs data, the magnitude of the gradient of each 

data element is much smaller than the HDR image. In order to apply this guessing 

schema for BRDF data to achieve the same performance in HDR image, we only need 

to do a minor change – emphasizing the weighting of intensity. We do this straight by 

squaring the influence of intensity. This modification makes this initial guess schema 

much tend to select the candidates with high intensity in the entire region of BRDF. 
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Figure 4.2: Overview of initial guess generation. 

(a) Visualization of measured BRDF data on unit sphere.  
(b) Estimate the coverage of each unit direction on the sphere.  
(c) The candidates selected so far and the summation of their coverage (i.e. the 

area colored with light orange).  
(d) The candidate falls within the range (c) would be rejected (magenta one), yet 

would be accepted (yellow one). 

 

 Figure 4.2 gives the overview of the initial guess. The original measurements of 

BRDF are discrete. After mapping the measured data onto the sphere, we can get the 

visualization result (a). Then we estimate the coverage of each direction in a dense set 
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of unit directions, i.e. each data element on the sphere, as illustrated in (b). With each 

unit direction η, we want to estimate the coverage by calculating the squared 

difference of the intensity between η and its neighbors, i.e. 2( ) ( )iI Iη η− . The 

coverage of η would spread out from η until the squared difference exceeds a 

user-defined threshold. Next, we generate a priority queue by sorting the 

coverage-weighted square of the intensity of each unit direction. Then we choose the 

appropriate candidate directions from this priority queue. The choosing rule here is 

intuitive. If the direction of the considered candidate falls within the range covered by 

the candidates that we previously select, we reject this candidate, and take next 

candidate from the priority queue into consideration. On the contrary, we accept the 

candidate to be one of the set of our initial guess. Figure 5.2 (c) illustrates the 

circumstance we have chosen two candidates, and (d) describes the accepted case (the 

yellow one) and rejected case (the magenta one) by our choosing rule. This process 

would continue until the number of the selected candidates exceeds a user-defined 

threshold. If the priority queue becomes empty before the process terminate, we 

would narrow the coverage threshold previously defined by user, and restart the 

process from step (b). 

4.1.3  BRDF Representation using Scattered SRBFs 

 After the fitting process, we have represented the BRDF data with scattered 

SRBFs for each fixed outgoing direction: 

K

k
1

( ) ( ; )
o i i

k
F Gω k kρ ω ω ξ

=

≈ ⋅∑ λ

o

               (8) 

where ( )iωρ ω  is the BRDF with a fixed outgoing direction oω , G is the SRBF 
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kernel function, kξ  is the center of basis on unit sphere, kλ  is the bandwidth of the 

basis, Fk is the basis coefficient, and K is the number of the bases. 

 

 Given an arbitrary viewing direction in 3D space, we need to compute the 

SRBFs composed of the SRBFs of neighbor outgoing directions. Then, the BRDF is 

given as: 

N K

k
1 1

( , ) ( ; )i o n i k k
n k

W F Gρ ω ω ω ξ λ
= =

≈∑ ∑ ⋅ ,             (9) 

where N is the number of neighbor directions. N would vary according to the given 

viewing direction. Its value would be 3 or 4 in usual. Wn is the weight for each SRBF 

expansion. The weight Wn is inversely proportion to the geodesic distance between 

the given direction and the neighbor outgoing direction. Using this representation we 

can easily generate samples for rendering with the multiple importance sampling 

technique. This will be discussed further in next section. 

4.2  Run-Time Rendering Process 

 Importance sampling is a technique to reduce the image variance. Now we have 

represented the BRDF with the scattered SRBFs. Traditional importance sampling is 

to find a probability density function (PDF) which describes the density distribution 

of the entire data region, i.e. the hemisphere for BRDF. However, in this case, it’s 

hard to combine the PDFs into a new one that describes the distribution of the sum of 

all related scattered SRBFs. On the other hand, we can’t directly use the distribution 

function derived from each SRBF neither. It’s because that each SRBF may overlap 

each other. It’s only correct when all SRBFs are disjoint, and this will become another 

sampling technique named stratified sampling. Therefore, we apply an alternative 



 

 19

approach presented by Veach and Guibas [21] - multiple importance sampling, which 

allows all sampling strata to overlap each other. Since each SRBF kernel can be taken 

as some kind of the density distribution function. Thus we can easily generate samples 

from each SRBF kernel. With the aid of multiple importance sampling, we can make 

the rendering process more efficient and compact when we use scattered SRBFs to 

represent BRDF. 

 

Figure 4.3: Run-Time Rendering Process 

 

Figure 4.3 illustrates the flow of our rendering process. When the view ray hits 

the object in a scene, we first weight sum the SRBFs of three or four near fixed view 

direction that we construct in off-line process. Next, we determine the number of 
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samples of each SRBF according to its integral. Then we generate samples from each 

SRBF and combine the results by multiple importance sampling technique. 

 In this section, we start by introducing the multiple importance sampling. We 

then describe how we determine the number of samples that should be taken from 

each SRBF, and how we generate sampling direction from each SRBF. 

4.2.1 Multiple Importance Sampling 

 When tracing a path through the scene by BRDF importance sampling, it is 

desirable to generate rays distributed according to the density of BRDF. We are 

interested in evaluating the integral of the incident illumination for a fixed outgoing 

direction oω   located at x with normal n, 

Ω

1

( , ) ( , , )( )

( , , )1 ( , ) ( )
( | )

i i i o i i

n
i o

i s s
s s o

L x x n d

xL x n
n

ω ρ ω ω ω ω

ρ ω ωω ω
γ ω ω=

⋅

⎡ ⎤
≈ ⋅⎢ ⎥

⎣ ⎦

∫

∑
            (10) 

where the first line is the reflection equation, and the second line is a Monte Carlo 

estimator for importance sampling. However, it’s hard to construct a single PDF 

( | )s oγ ω ω  that follows the shape of the complex BRDF. There is an alternative 

technique for importance sampling presented by Veach and Guibas [21] called 

multiple importance sampling. This technique makes Monte Carlo integration more 

robust by combining several potentially good estimators. These estimators computed 

by different PDFs may have different qualities in different regions of the integration 

domain. Veach and Guibas make a weighted-average of all estimators where the 

weights depend on the sampling positions. If we want to evaluate the integral of f(x) 

( )f x dx
Ω
∫ , 
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and we have n different estimators, the combined estimator is then given by 

,
,

1 1 ,

( )1 ( )
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inn
i j

i i j
i ji i

f X
F w X

n p= =

=∑ ∑
i jX

              (11) 

where ip  is the PDF for each estimator,  denotes the number of samples from in

ip ,  are the samples from ,i jX ip , for 1,..., ij n= , and all samples are assumed to be 

independent.  is the weighting function and satisfy the following two conditions: iw

1
( ) 1                          

( ) 0  ( ) 0

n

i
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Then, the expected value of the combined estimator F would be equal to the integral 

of f(x) which we want to evaluate. 

 

So far, we have represented the BRDF using scattered SRBFs. Now we apply 

this technique to BRDF importance sampling, and the Equation (10) would become: 
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where n is the number of SRBFs,  denotes the number of samples from each SRBF, 

and 

in

ip  is the PDF calculated from each SRBF kernel, for 1,...,i n= .  are the 

samples from each SRBF kernel, for 

,i jX

1,..., ij n= . 

 

Now, there are two issues: one is how to determine , the number of samples 

should be taken from each SRBF kernel, the other is how to generate , the 

sampling directions distributed according to each SRBF kernel. These will be 

in

,i jX



 

 22

discussed in the following subsection. 

4.2.2  Sampling Algorithm 

 We now describe how to use our representation for multiple importance 

sampling. Intuitively, each scattered SRBF covers a part of the entire BRDF region. 

Although there would be two or more SRBFs overlap in some regions, we can still 

gather the intensity of multiple sampling directions within a pixel using multiple 

importance sampling approach. 

 

 As mentioned before, we fit scattered SRBFs to the data in the vector of each 

discrete outgoing direction respectively. At run time, for a given viewing direction, we 

need to combine the scattered SRBFs of three or four nearest viewing directions. Then, 

we have multiple SRBF kernel functions, now we should decide how many samples 

should be taken from each SRBF kernel. Let’s recall that SRBF is defined on the unit 

sphere, and its integral is easy to be calculated by using the spherical singular 

integral property of SRBF. The integral of each SRBF can be taken as its total energy 

gathered from all directions. Therefore, it’s straightforward to allocate samples 

according to the ratio of the integral of each SRBF to the sum of all SRBFs’ integrals. 

The probability of choosing the SRBF l for each sample is given by: 

1

( ) l
n

i
i

IP l
I

=

=

∑
                          (14) 

We calculate a 1D CDF over l from these probabilities. In the dispatching process, we 

generate a uniform random variable in [0, 1] for each sample, and traverse the CDF to 

determine where the sample should be taken from. 
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 Next, we generate a sample direction in each SRBF kernel by sequentially 

selecting the elevation angle θ and the azimuth angle φ defined on the plane whose 

normal is parallel with the SRBF kernel’s center (Figure 4.4). 

 

Figure 4.4: The elevation angle θ and the azimuth angle φ defined against SRBF. 

 Having chosen the SRBF basis to sample, we can consider its PDF proportion to 

its kernel function. With the kernels easy for integration and inversion, such as 

Gaussian kernel, we can use the inversion method to generate random samples 

directly. We first normalize the kernel function to get a PDF ( )p x , since the integral 

of PDFs over their domain should equal to 1. After integrating ( )p x , we can get the 

cumulative distribution function (CDF) . Then, we calculate the inverse of CDF 

, and generate a uniformly distributed random number 

( )P x

1( )P x− ξ  in [0, 1] to evaluate 

the . We can easily get the elevation angle θ of the sampling direction. 1( )P x−

 

On the other hand, for the kernel which is hard to apply inversion method, we 

can use metropolis random walk algorithm to generate samples with a desired density 

instead. It should be noted that the SRBF kernel itself only describes 1D density, 

while the desired density for sampling is the density over the sphere. Therefore, when 

we select the elevation angle θ by this approach, we should consider the influence of 

the circumference around the center of SRBF kernel especially. 
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The azimuth angle φ defined in each SRBF is easy to be calculated. Because 

each SRBF kernel is symmetric against the vector that defined by its center and the 

origin of the unit sphere. Therefore, the distribution of azimuth angle φ is uniform, 

and we can simply generate a random number in [0, 2π] to evaluate φ. With SRBF 

center, θ and φ, we can simply get the sampling direction by two rotation operations. 
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Chapter 5   

  Implementation and Results 

 This chapter demonstrates the results in three aspects. First, we will examine the 

fitting errors when we use scattered SRBFs to represent the BRDF data measured by 

the Cornell University [5]. We wound compare our model with Lafortune model [10]. 

Then, we take a look at the distributions of samples to show how close those samples 

are generated with desired density. Here, we would compare two random sample 

generating methods, one is the inversion method, and the other is the metropolis 

random walk algorithm. Finally, we illustrate the rendering results of four different 

measured BRDF data and several complex scenes. 

5.1  Fitting Errors 

 We now compare the fitting performance between Lafortune model and our 

SRBF representation. Lafortune model [10] which combines multiple generalized 

cosine-lobes can be written as: 

, , ,( , ) ( ) in
x i x x y i y y z i z z

i
u v C u v C u v C u vρ = + +∑     (15) 

where u is the incident direction, v is the outgoing direction. In this fitting process, 

they apply a non-linear optimization technique to determine the parameters 
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,  ,    x y zC C C and ni . The objective is to minimize the mean-square error of the 

reflectance functions multiplied by the cosines of the incidence angles with the 

normal. Because they fit the model depending on the outgoing and incident directions 

at the same time, it is not easy to figure out the initial guess. Consequently, it is 

sometimes hard to fit their model to some complex measured BRDF data. 

 

 Lafortune model Scattered SRBFs 

Paint Blue 32% 14% 

Garnet Red 7.6% 4% 

Krylon Blue 10% 5.9% 

Cayman 19% 5.9% 

Table5.1: The comparison of fitting errors. 

 

Table 5.1 displays the fitting errors of Lafortune model and the scattered SRBFs 

representation with Gaussian SRBF kernels. (These four different materials in Table 

5.1 are measured by Cornell University [5]). Since it’s hard to find a good strategy of 

initial guess for complex BRDF data when fitting the Lafortune model, we randomly 

generate the initial guesses and execute the fitting process lots of times (100 times for 

each BRDF). In our experiments, we found although we add the number of lobes for 

Lafortune model, it’s still hard to improve the fitting performance. We compare our 

results with the best-fit Lafortune models (with 3 lobes) finally. 

5.2  Sampling 

 In this section, we will examine the sampling distributions according to our 

sampling algorithm. As mentioned in Section 4.2.2 there are two approaches to 
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generate random samples from each SRBF. Here, we compare these two methods. 

When using metropolis random walk algorithm to choose a random sample, we 

assume some preconditions. For computational efficiency, we only take few steps for 

each sampling direction (in Figure 5.1, we take five steps for each sample) and we 

constrain the evaluated value in the range of random walking must be greater than 

0.01. With these preconditions, we can use metropolis random walk algorithm to 

generate sampling directions which are similar to those generated by the inversion 

method. Figure 5.1 illustrates the sampling distributions of 50, 100, 300, and 600 

samples generated by these two generating algorithms with scattered SRBFs 

representation. 

 

From Figure 5.1, we can see that the distributions resulting from these two 

methods are very similar. This makes our sampling scheme more flexible on the basis 

of scattered SRBFs representation. Our sampling method can be applied not only to 

the kernels easy for inversion but also to the kernels hard to inverse their integral. We 

can choose an appropriate method to generate samples according to the intrinsic 

properties of SRBF kernels. 
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(a) Inversion 50 samples        (b) Metropolis 50 samples 

 

    

   (c) Inversion 100 samples      (d) Metropolis 100 samples 
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(e) Inversion 300 samples     (f) Metropolis 300 samples 

 

       

(g) Inversion 600 samples     (h) Metropolis 600 samples 

Figure 5.1: Comparison of sampling distributions between  

inversion method and metropolis random walk algorithm. 
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5.3  Rendering 

 We now illustrate the rendering results of BRDF importance sampling. In order 

to avoid the influence of visibility and complex illumination, we render the images of 

a sphere lit by an environment map in 32-bit ARGB pixel format for quantitative 

comparisons. We render the sphere with four different materials which are measured 

by Cornell University [5]. Figures 5.2~5.5 are the comparisons between Lafortune 

sampling method and our SRBFs sampling method where samples are generated by 

inversion method. In general, there are two main factors that affect the image qualities, 

one is the fitting errors of the representing form of BRDF data, and the other is the 

sampling algorithm for that representation. In the phase of sampling algorithm, both 

Lafortune sampling method and ours use the basis functions as the density functions 

directly, thus the generated samples distribute with the desired densities nearly exactly. 

Therefore, the differences from images in Figures 5.2~5.5 mostly result from the 

differences in the fitting qualities of those two representations. 

 

We also render several images of a complex scene. We represent each BRDF 

measurements in scattered SRBFs with 12 Gaussian kernels. The samples within each 

pixel are generated by inversion method. For each different material, we choose its 

best-fit Lafortune model with 3-lobes for rendering comparison. Figure 5.6 contains a 

‘Krylon Blue’ teapot and a ‘Paint Blue’ plane in the ‘Funston Beach’ environment 

[http://www.debevec.org/Probes/]. In Figure 5.7, there is a ‘Cayman’ Buddha placed 

on ‘Garnet Red’ plane in front of ‘Uffizi Gallery’. From these two rendering results, 

we can find that the results of our method with 300 samples equal to or better than 

those of Lafortune sampling with 1200 samples. 
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(a) SRBF sampling (100 samples)    (b) SRBF sampling (300 samples) 

    

(c) Lafortune sampling (100 samples)  (d) Lafortune sampling (300 samples) 

    

(e) Lafortune sampling (600 samples) (f) Lafortune sampling (1200 samples) 

Figure 5.2: Sampling Results with material ‘Garnet Red’  

(measured by Cornell University) 
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(a) SRBF sampling (100 samples)   (b) SRBF sampling (300 samples) 

    

(c) Lafortune sampling (100 samples)  (d) Lafortune sampling (300 samples) 

    

(e) Lafortune sampling (600 samples) (f) Lafortune sampling (1200 samples) 

Figure 5.3: Sampling Results with material ‘Paint Blue’  

(measured by Cornell University) 
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(a) SRBF sampling (100 samples)   (b) SRBF sampling (300 samples) 

    

(c) Lafortune sampling (100 samples)  (d) Lafortune sampling (300 samples) 

    

(e) Lafortune sampling (600 samples) (f) Lafortune sampling (1200 samples) 

Figure 5.4: Sampling Results with material ‘Krylon Blue’  

(measured by Cornell University) 
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(a) SRBF sampling (100 samples)   (b) SRBF sampling (300 samples) 

    

(c) Lafortune sampling (100 samples)  (d) Lafortune sampling (300 samples) 

   

(e) Lafortune sampling (600 samples) (f) Lafortune sampling (1200 samples) 

Figure 5.5: Sampling Results with material ‘Cayman’  

(measured by Cornell University) 
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(a) Lafortune sampling (1200 samples/pixel) 

 

(e) SRBF sampling (300 samples/pixel) 

Figure 5.6: ‘KrylonBlue’ teapot on the ‘PaintBlue’ plane  
in the ‘Funston Beach’ HDR environment. 



 

 36

 

(a) Lafortune sampling (1200 samples) 

 

(b) SRBF samplings (300 samples) 

Figure 5.7: A ‘Cayman’ Buddha and a ‘GarnetRed’ plane  
in ‘Uffizi Gallery’ HDR environment 
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Chapter 6   

  Conclusions and Future Works 

In this thesis, we introduce a novel representation of BRDF by using scattered 

SRBFs. We express that the modified fitting algorithm also performs well with the 

measured BRDF data. Based on the scattered SRBFs representation, we can generate 

samples following the desired densities efficiently. The random samples of each 

SRBF kernel can be generated efficiently not only by the inversion method but also 

by the metropolis random walk algorithm. Furthermore, this BRDF representation is 

easy to be applied to the multiple importance sampling technique. Finally, we use our 

sampling scheme to render scenes with multiple complex materials with global 

illumination and shadows. 

 

Our method so far can’t deal with the complex HDR lighting environment, 

because we consider the importance of BRDF data only. If the lighting environment is 

complex and the intensity within each pixel change dramatically, the illumination 

would become the dominant factor that affects the image variance. In future work, we 

would like to extend our sampling scheme to analyze the product of BRDF and 

lighting environment. Since SRBFs have some great properties for this application, 

such as spherical singular integral, rotation invariant, etc, we are probably able to 
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estimate the densities and generate samples at run-time. Although the computation 

time of density estimations would increase, we can generate much smaller samples 

than the approach considering BRDF only to get the same rendering quality. Because 

the major computation cost for ray tracing is the visibility testing, if we could 

generate samples smarter, we would improve the efficiency of importance sampling. 

Estimating the densities of the product of BRDF and lighting environment may make 

the sampling process more efficient in global illumination. 
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