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Chapter 2  
A New Digital Puzzle Image Creation 
Method by Boundary Shape 
Parameterization for Information 
Hiding 

2.1 Overview of Proposed Method 

In this chapter, we propose a method to create a digital puzzle image 

automatically with an image as input. In order to implement the concept of 

information hiding in the digital puzzle image, we use a technique of boundary shape 

parameterization as a base of the proposed creation method. In Section 2.2, the 

proposed digital puzzle image creation method for the information hiding purpose 

will be described in detail. Furthermore, users may have their own choices (i.e., the 

size of secret data, the number of people who participate in the secret sharing, and 

their own favors) to decide the puzzle pieces size of the digital puzzle image.  

More specifically, we decompose the puzzle image into a number of puzzle 

pieces, and divide them into several groups randomly. The number of groups is equal 

to the number of secret sharing participants. The proposed puzzle image 

decomposition method is described in Section 2.2.2.2. Naturally, we must find out a 

method that can recover the puzzle image automatically when all of the participants 

return their own parts of the puzzle pieces. Because this automatic digital puzzle 

image reconstruction process is based on searching the puzzle pieces for correct 

shapes, we should try the best to increase the possible number of distinct shapes. The 
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digital puzzle image reconstruction process will be described in Section 2.3. Finally, 

some experimental results will be presented in Section 2.4. 

2.2 Proposed Digital Puzzle Image 
Creation Process 

2.2.1 Ideas of Creation Process 

2.2.1.1 Properties of Orientation, Size, and Angle of Puzzle 
Pieces 

The orientation, size, and angle of the puzzle piece are three major parameters of 

the proposed digital puzzle image creation process. We denote the orientation, size 

and angle of a puzzle piece as OT, SZ, and AG, respectively, in the sequel. The 

properties of these three features are illustrated in Figure 2.1. Figure 2.1(a), (b), (c), 

and (d) illustrate the four possible “orientations” of a puzzle piece. Each picture is 

composed of a triangle, a big circle, and two small circles. The notation BigR 

represents the radius of the big circle in the middle of the picture. We utilize BigR to 

represent the feature of size, which is the area of the big circle. The notation θ 

represents the angle of the triangle. We utilize θ to represent the feature of angle. 
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Figure 2.1 Properties of orientation, size, and angle of digital puzzle pieces. 



 23

2.2.1.2 Composition of Parameterized Boundary Shape 

Segments 

In order to embed information in a digital puzzle Image, we propose a new 

digital puzzle image creation method by boundary shape parameterization. After 

performing this method, a digital puzzle image will result, which is composed of 

digital puzzle pieces. Each digital puzzle piece, as illustrated in Figure 2.2, is 

composed of “boundary shape segments.”  

Each digital puzzle piece has two vertical sides and two horizontal sides. We 

choose one OT from Figure 2.1(c) or Figure 2.1(d) to compose a vertical side, and 

choose one OT from Figure 2.1(a) or Figure 2.1(b) to compose a horizontal side. Take 

Figure 2.2, which represents the sketch of a digital puzzle piece, as an example, the 

south, north, west, and east sides of it are respectively composed of the OTs chosen 

from Figure 2.1(a) , (b), (c), and (d) in order. Detailed discussions of digital puzzle 

image creation processes will be stated in Section 2.2.2. 
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Figure 2.2 Sketch of a digital puzzle pieces. 

2.2.1.3 Concepts of Information Hiding by Boundary Shape 

Parameterization 

Since the boundary shape of the digital puzzle piece has been parameterized and 

is composed of several segments, we can embed the information in a digital puzzle 
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image by modifying the shapes of the puzzle pieces. That is, the concept of the 

information hiding process is based on modifying the shape of each puzzle piece in a 

digital puzzle image. Therefore, when we want to extract the embedded information 

from a digital puzzle image, we can detect the shapes of the puzzle pieces of the 

digital puzzle image and then derive the embedded information by analyzing the 

features of the detected shapes. 

In this study, we sequentially embed three kinds of data into the three parameters 

which were introduced in Section 2.2.1.1. First, we embed a secret message by 

modification of the parameter of orientation using the feature of OT. Second, we 

embed a watermark by modifying the parameter of size represented by SZ. Finally, we 

generate authentication signals and embed them by modifying the parameter of angle 

represented by AG. By embedding the given data, a user can achieve the purpose of 

covert communication, copyright protection, or image authentication. All the details 

of the procedures for embedding the three types of features and the corresponding 

information extraction processes will be described in Chapter 3. 

2.2.2 Details of Digital Puzzle Image Creation 

Process 

2.2.2.1 Scheme of Image Creation Process 

The concept of the digital puzzle image creation process is to create a digital 

puzzle image by composing parameterized boundary shapes. Before performing the 

creation process, every pixel with the RGB value of (0, 0, 0) in the input digital image 

is replaced with the RGB value of (2, 2, 2). Because of this pre-processing, there will 

be no pixel with the RGB value of (0, 0, 0) except the boundary lines of each digital 
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puzzle piece in the output digital puzzle image. This pre-processing is necessary in 

order to make the digital puzzle image decomposition process smooth, and the details 

will be described in Section 2.2.2.2. 

In the sequel, we denote the numbers of puzzle pieces of a digital puzzle image 

in the horizontal and vertical directions as HParts and VParts, respectively, and the 

width and height of the input image as ImageWidth and ImageHeight, respectively. 

Referring to the illustration shown in Figure 2.3, we derive the value of HParts by 

dividing ImageWidth by the digital puzzle piece size denoted as PPS, which is a value 

selected by a user, and derive the value of VParts by dividing ImageHeight by PPS. 

Referring to Figure 2.4 and Figure 2.5, we denote the lines of a digital puzzle image 

in the horizontal and vertical directions as Xaxisj and Yaxisj, respectively, and the 

“puzzle piece starting points” on Xaxisj and Yaxisj as HSi and VSi, respectively. The 

index j of Xaxisj and Yaxisj indicates the processing order of the horizontal and the 

vertical lines of a digital puzzle image, respectively, and the index i of HSi and VSi 

indicates the processing order of HSi and VSi, respectively. 

Before introducing the puzzle creation process, we define some parameters first. 

They are UpDown, BigR, and θ . The value of the parameter UpDown is either “1” or 

“-1.” The value of the parameter BigR is either “BR” or “SR”, and the values of BR 

and SR are derived by Formula (2.1) and (2.2) below, respectively:  

 

1
27
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=

PPSBR ; (2.1) 

 

27
2.4×

=
PPSSR . (2.2) 

 
The value of θ  is either “40o” or “48o.” We will assign random values to these 
parameters during the digital puzzle image creation process. 
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Figure 2.3 Utilizing the input parameter, PPS, to decide the locations of each Xaxisj and each Yaxisj of a 

digital puzzle image. 
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Figure 2.4 The processing order of Xaxisj, Yaxisj, HSi, and VSi. 
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Figure 2.5 An illustration of utilizing the locations of HSi and VSi to draw curves. (a) An illustration of 

drawing each curve from each HSi. (b) An illustration of drawing each curve from each VSi. 

(c) An illustration of combining the horizontal curves in (a) with the vertical curves in (b).  

Algorithm 2.1 : Digital puzzle image creation process for information hiding by 

boundary shape parameterization. 

Input: A digital image I and a digital puzzle piece size denoted as PPS. 

Output: A digital puzzle image. 

Steps: 
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Step 1 Utilize the value PPS to decide the locations of each Xaxisj and each Yaxisj of I. 

A diagrammatic explanation is illustrated in Figure 2.3. 

Step 2 Deal with the X-axis parts of I.  

2.1 Find out each HSi of each X-axisj in order, and a diagrammatic 

explanation is illustrated in Figure 2.4(a). If we denote the value of HSi 

as i, and the value of Xaxisj as j, we can derive the coordinates of HSi by 

applying Formula (2.3) below: 
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2.2 Find the coordinates of points D, E, M, and A illustrated in Figure 2.6 by 

applying Formula (2.4) to (2.7), respectively, below: 
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2.3 Find the distances of AD , AE , and CE  illustrated in Figure 2.6 by 
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applying Formula (2.8) to (2.10), respectively, below: 
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2.4 Find the coordinates of points B and C illustrated in Figure 2.6 by 

applying Formula (2.11) and (2.12), respectively, below: 
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2.5 Find the value of SmallR, which denotes the radius of the small circle 

shown in Figure 2.6 by applying Formula (2.13) below: 
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2.6 Find the coordinates of points H and I illustrated in Figure 2.6 by 

applying Formula (2.14) and (2.15), respectively, below:  
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I(x8, y8) : 
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2.7 Find the coordinates of points J and K illustrated in Figure 2.6 by 

applying Formula (2.16) and (2.17), respectively, below: 
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2.8 Draw BC  in the clockwise direction. 

2.9 Draw BJ  in the clockwise direction, and draw CK  in the 

counter-clockwise direction. 

 

Step 3 Find out each VSi of each Yaxisj in order, and a diagrammatic explanation is 

illustrated in Figure 2.4(b). Deal with the Y-axis parts of I in order with steps 

similar to those of Step 2. 

 

Step 4 Utilize the four sides, and the coordinates of each Xaxisj and each Yaxisj of I to 

find the coordinates of the intersection points denoted as IPi, which are the 

yellow points illustrated in Figure 2.3. Randomly shift the four kinds of 

distances in the horizontal and vertical directions, respectively, of each IPi(xi, 

yi). By applying Formula (2.18), compute the coordinates of the intersection 

points Crossi (xc, yc) as follows:  



 30

            Crossi (xc, yc) : 
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Step 5 Connect points J and K illustrated in Figure 2.6 to their closest intersection 

point Crossi to accomplish the creation of I finally.  
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Figure 2.6 An illustration of a horizontal side of a digital puzzle piece. 
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Figure 2.7 An illustration of a vertical side of a digital puzzle piece. 
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2.2.2.2 Use of Region Growing for Digital Puzzle Image 

Decomposition 

We use region growing to decompose a digital puzzle image. Before performing 

the region growing process, we choose proper locations to place the seeds (denoted as 

SDi), which are the starting points of every puzzle piece for region growing. Each 

yellow point shown in Figure 2.8, which is the center of each puzzle piece, represents 

the location of a seed SDi of a digital puzzle image. An example of the decomposed 

digital puzzle piece image (denoted as PPI) is illustrated in Figure 2.9. A flowchart of 

the proposed digital puzzle image decomposition process is shown in Figure 2.10. 

Algorithm 2.2 : Digital puzzle image decomposition process for information 

sharing. 

Input: A digital puzzle image denoted as I, a puzzle piece size (denoted as PPS), and 

a number (denoted as ShareNum) of information sharing participants. 

Output: Digital puzzle piece files. 

Steps: 

Step 1 Sprinkle the SDs in I. 

Step 2 Create an “empty” PPI for each SDi, and let the width and height of the PPIi 

be twice as big as those of PPS. 

Step 3 Apply the region growing technique on each SDi in the following way. 

3.1 Find out the RGB value and the coordinates of each “grown pixel” in I. 

3.2 “Draw” on each PPIi those pixels with the same RGB values around 

each “grown pixel” in I. 

3.3 Terminate the region growing process when a pixel with the RGB value 

of (0, 0, 0) is detected. 
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Step 4 Randomly divide the PPIs into several groups, with the number of groups 

being equal to the number ShareNum. 

 

In Step 3, the proposed region growing technique is based on checking the RGB 

values of the pixels in the digital puzzle image I. As mentioned in Section 2.2.2.1, 

every pixel with the RGB value of (0, 0, 0) in the input image is replaced with the 

RGB value of (2, 2, 2) before performing the digital puzzle image creation process. 

Therefore, there will be no pixel with the RGB value of (0, 0, 0) except at the 

boundary lines of each digital puzzle piece in I. 
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Figure 2.8 The yellow points represent locations of seeds for region growing in a digital puzzle image. 
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Figure 2.9 An illustration of a decomposed digital puzzle piece image. The width and height of the 

digital puzzle piece (denoted as PPI) are twice as big as those of the puzzle piece size 

(denoted as PPS) input by users. 
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Figure 2.10 The flowchart of the proposed digital puzzle image decomposition process. 

2.3 Proposed Digital Puzzle image 
Reconstruction Process 

2.3.1 Idea of Reconstruction Process 

As mentioned in Section 2.1, the concept of the proposed automatic digital 

puzzle image reconstruction process is based on searching the puzzle pieces for 

correct shapes. We scan the four sides of a digital puzzle piece to check if it is an 
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indent, an outdent, or a flat side. We define an outdent as a region that touches the 

convex hull of the piece and has a “neck” that interlocks with a neighboring piece. 

Therefore, the digital puzzle piece like that shown in Figure 2.11(a) will be classified 

as having two indent sides, one outdent side, and one flat side. 

Also we derive a puzzle piece region map (denoted as PM) from its 

corresponding digital puzzle piece file. PM indicates whether a pixel is inside the 

boundary of a digital puzzle piece or not, and a diagrammatic explanation is 

illustrated in Figure 2.11(b). A black pixel (denoted as BP) of PM represents that the 

pixel is inside the boundary of its corresponding digital puzzle piece, and a white pixel 

(denoted as WP) represents that the pixel is outside the boundary of its corresponding 

digital puzzle piece. Each of the PM has four sides, and we denote them as N, E, W, 

and S, respectively. 

A digital puzzle piece has four primary neighbors (denoted as north, east, west, 

and south). Pieces interlock with their primary neighbors by tabs, consisting of an 

indent in one piece mating with an outdent in its neighbor. 
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(a) (b) 

Figure 2.11 An example of a decomposed puzzle piece. (a) N, E, W, and S represent four sides of a 

digital puzzle piece. (b) The puzzle piece region map (PM) derived from (a). 

2.3.2 Detail of Reconstruction Process 

2.3.2.1 Digital Puzzle Pieces Orientation Detection Process 
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By performing this process of orientation detection, we derive the attributes of 

the four sides of each digital puzzle piece. That is, we can figure out if the attribute of 

a side is indent, outdent, or flat. We assign a value “-1” to an indent side, a value “1” 

to an outdent side, and a value “0” to a flat side, respectively. We define the value 

“-1,” “1,” and “0”as the orientation value (denoted as OV) of the side of a PM. 

Algorithm 2. 3: Puzzle pieces orientation detection process. 

Input: Digital puzzle pieces and their corresponding PMs. 

Output: The orientation values (denoted as OVs) of the four sides (denoted as N, E, 

W, and S, respectively) of each PMi. 

Steps: 

Step 1 Find the width of the PM (denoted as PMW). 

Step 2 Perform a raster scan of each PMi. Referring to Figure 2.12, let point o 

represent the center of the PM, and scan the image from point o to point a, 

from point o to point c, from point o to point b, and from point o to point d, 

respectively. 

Step 3 Referring to Figure 2.12, calculate the number BP of black pixels in each 

scanning line ( oa , ob , oc , and od ), respectively, and denote the value of 

BP as the orientation pixel number (denoted as OPN). 

Step 4 Find the OVs of N, E, W, and S, respectively, of every input PMi in the 

following way.  

4.1 If 
4

PMWOPN < , set OV as -1. 

4.2 If 2
4

2
4

+<<−
PMWOPNPMW

, set OV as 0. 

4.3 If 4
PMWOPN > , set OV as 1.  
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In addition, the image height of a PM (denoted as PMH) is equal to the image 

width of a PM (denoted as PMW), and the value of each of oa , ob , oc , and od  is 

equal to 
2

PMW . A flowchart of Step 4 is shown in Figure 2.13. 
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Figure 2.12 The yellow lines represent the scanning ranges of a puzzle piece. 
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Figure 2.13 The flowchart of the orientation value detection process, where the value of the BPs are 

denoted as OPN. 

2.3.2.2 Digital Puzzle Piece Overlapping and Flawing Detection 

Process 
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After performing the orientation detection process described in Section 2.3.2.1, 

we only roughly mate the digital puzzle pieces by accessing the orientation values of 

them. We will encounter further two kinds of problems while we try to mate the 

digital puzzle pieces, namely, the problems of overlapping and flawing of puzzle 

pieces. A diagrammatic explanation is shown in Figure 2.14.  

Figure 2.15 shows the four directions of the scanning regions of a digital puzzle 

piece, and Figure 2.16 shows the four primary neighbors of a digital puzzle piece 

illustrated in Figure 2.15. The scanning regions are framed by the blue rectangles, and 

we denote the pixels within the scanning regions in the top, bottom, left, and right 

rectangles as PMPupi, PMPdowni, PMPlefti, and PMPrighti, respectively. Figure 2.17 

illustrates the situation of composing the digital puzzle pieces as shown in Figure 2.15 

(a) and Figure 2.16(a), (b), (c), and (d). 

If we want to make sure whether a pair of complementary pieces really match or 

not, we should perform additionally a digital puzzle piece overlapping detection 

process to figure out a composition Boolean value (denoted as CBV), which indicates 

whether two scanned PMs really match or not. We define CBV to be “0” when the two 

scanned PMs really match each other; and CBV to be “1” when we encounter a puzzle 

piece overlapping or flawing problems while mating the two PMs. 

Take the digital puzzle pieces as shown in Figure 2.15(a) and Figure 2.16(a) as 

an example. If the detection results of PMPupi and PMPdowni are both BPs, it means 

that there is an “overlapping pixel” in the digital puzzle image. If the results of 

PMPupi and PMPdowni are both WPs, it means that it is a “flawing pixel” of the 

digital puzzle image. A flowchart of checking the CBV between the digital puzzle 

pieces shown in Figure 2.15(a) and Figure 2.16(a) is illustrated in Figure 2.18, and the 

detailed process is described as an algorithm below. 
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Algorithm 2.4: The digital puzzle pieces overlapping and flawing detection 

process. 

Input: Digital puzzle pieces and their corresponding PMs. 

Output: Composition Boolean value (denoted as CBV). 

Steps: 

Step 1 Detect a digital puzzle piece as shown in Figure 2.15 and its four primary 

neighbors as shown in Figure 2.16(a), (b), (c), and (d) by performing a raster 

scan on their corresponding PMs.  

Step 2 Decide the CBV by calculating the number of overlapping and flawing 

pixels.  

2.1 Perform a raster scan of the corresponding PMs of Figure 2.15(a) and 

Figure 2.16(a), that is, detect PMPupi of Figure 2.15(a) and PMPdowni 

of Figure 2.16(a), respectively, to check whether they are black pixels 

(denoted as BPs) or white pixels (denoted as WPs). 

2.2 Compare the detected result of each PMPupi of Figure 2.15(a) with the 

detected result of each PMPdowni of Figure 2.16(a). 

2.3 Calculate the total number of the flawing and the overlapping pixels. 

2.4 Denote the CBV of the two detected puzzle pieces as “0” if the total 

number of pixels derived in Step 2.4 is smaller than two.  

 Flawing

Overlapping

 
Figure 2.14 An illustration of flawing and overlapping problems of the digital puzzle image 

reconstruction process. 
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(a) (b) (c) (d) 
Figure 2.15 The scanning regions of four sides of a digital puzzle piece. 

    

(a) (b) (c) (d) 
Figure 2.16 The scanning regions of the four primary neighbors of the digital puzzle piece as shown in   

Figure 2.15. (a) The north neighbor. (b) The east neighbor. (c) The left neighbor. (d) The   

south neighbor. 
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Figure 2.17 The situation of combining the digital puzzle pieces shown in Figure 2.15 and Figure 2.16. 
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Figure 2.18 A flowchart of checking the CBV of Figure 2.15(a) and Figure 2.16(a). 
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2.3.2.3 Digital Puzzle Pieces Searching and Reconstruction 

Process 

In the process of digital puzzle piece search and reconstruction process, we apply 

the digital puzzle piece orientation detection process and the digital puzzle piece 

overlapping detection process described in Section 2.3.2.1 and Section 2.3.2.2. We 

also implement the proposed reconstruction process by applying a depth-first search 

(DFS) algorithm.  

Digital puzzle pieces should be located within their proper grid of the digital 

puzzle image in a zig-zag order, as illustrated in Figure 2.19. We randomly pick a PM 

from a pool to check if it can mate the latest located PM or not. The pool is a 

temporary place for the non-located PMs to dwell in. 

A flowchart of an example of applying the following algorithm is illustrated in 

Figure 2.22 in Section 2.4. 

Algorithm 2.5: Digital Puzzle pieces searching and reconstruction process. 

Input: The folders of digital puzzle pieces and their corresponding PMs. 

Output: A reconstructed digital puzzle image. 

Steps: 

Step 1 Read in the PMs, and find the original HParts and VParts of the digital 

puzzle image to be reconstructed (denoted as I') in the following way. 

1.1 Check N, E, W, and S of each PMi. 

1.2 Find the PMs whose orientation value (denoted as OV) of N is “0” 

(which means N is a flat side), and calculate the number of this kind of 

PMs. 
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1.3 Find the PMs whose OV of W is “0” (which means W is a flat side), 

and calculate the number of this kind of PMs. 

1.4 Take the numbers of flat sides of N and W as the values of HParts and 

VParts of the digital puzzle image I'. 

Step 2 Find the exact digital puzzle piece which should be placed on the 

most-west-north position (denoted as Position1) of I', where the location of 

Positioni is illustrated in Figure 2.19. 

2.1 Check N, E, W, and S of each PMi.  

2.2 Find the exact PM whose OVs of N and W are both “0”, and place this 

PM on Position1. 

Step 3 Utilize an index to point toward Positioni, where the last puzzle piece is 

located. At this moment, the index is pointed to Position1. 

Step 4 Deal with the first row of the I' in the following way. 

4.1 Assign the value “1” to i. 

4.2 Push proper PMs into a stack in Position1+i. 

4.2.1  Randomly pick a PM from a pool, and make sure that its OV of  

N is “0.” 

            4.2.2  Push the lastly picked PM into a stack in Position1+i, if the sum 

of the OV of E of the lastly located PM and the OV of W of the 

lastly picked PM is “0” and their CBVs are “0.” 

4.2.3  Terminate this step if all of the PMs in the pool are checked. 

4.3 Pop out a PM from the stack in Position1+i, and place it on Position1+i. 

Make the index to point to Position1+i now. 

4.4 Update i to be “i+1,” and repeat Steps from 4.2 to 4.3. When the stack 

is empty, tread back the pointer and update i to be “i-1.” 
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Step 5 Deal with all the other rows of I' in a way similar to Step 4, but with the 

position of the lastly located PM and its primary neighbors being different. 

 

In Step 1, we perform the digital puzzle image decomposition process described 

in Section 2.2.2.2, utilize the input value of the digital puzzle piece size (denoted as 

PPS) to decompose a digital puzzle image, and let the image width and height of a 

decomposed digital puzzle piece image be twice as big as the input value of PPS. 

Therefore, we can find out the image width and height of a recovered digital puzzle 

image by checking the input digital puzzle piece files and applying Formula (2.19) 

below, where we denote the width and height of the digital puzzle image as “Width” 

and “Height,” and denote the width and height of a digital puzzle piece file as 

“SWidth” and “SHeight:” 
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Figure 2.19 The i of Positioni indicates the order of locating the digital puzzle pieces.
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2.4 Experimental Results and 
Discussions 

Figure 2.20 is an experimental result of applying the digital puzzle image 

creation process described in Section 2.2.2.1 to an input digital image. Figure 2.20(a) 

is the input image and Figure 2.20(b) is the final result. We can find that the digital 

puzzle pieces in Figure 2.20(b) have many kinds of shapes. In principle, according to 

the proposed creation algorithm, the probability for two frame puzzle pieces with the 

same shape to appear is 3)32223(1 ×××× , and the probability for two interior 

puzzle pieces with the same shape to appear is 4)32223(1 ×××× . The reason is that 

the shape of each side of this kind of digital puzzle piece is decided by the parameters 

UpDown, BigR, θ, and the two coordinates of Cross.  

 

  
(a) (b) 

Figure 2.20 Experimental results. (a) An input digital image. (b) A digital puzzle image of (a). 
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Figure 2.21 is an experimental result of applying the digital puzzle image 

decomposition process described in Section 2.2.2.2 to a digital puzzle image as shown 

in Figure 2.20(b). If there are four information-sharing participants, Figure 2.20(b) 

will be randomly divided into four folders of digital puzzle pieces as shown in Figure 

2.21(a) through (d). Each participant of information sharing can get one folder of 

them. 

 
(a) 

 
(b) 

 

 

 

 

(c) (d) 

Figure 2.21 (a), (b), (c), and (d) represent four folders with digital puzzle pieces in it, and each 

participant can get one of them. 

By applying the digital puzzle image reconstruction process described in Section 

2.3 to deal with the decomposed digital puzzle pieces as shown in Figure 2.21, we can 

get a recovered digital puzzle image as shown in Figure 2.22(k), and this image is 

exactly the same as Figure 2.20(b). 

After detecting all of the puzzle pieces as shown in Figure 2.21, we can figure 

out that the original digital puzzle image is a “ 914× ” puzzle, and start to reconstruct 

it. In Figure 2.22(a), we show the found most-west-north puzzle piece. In Figure 

2.22(b), we deal with the first row of the digital puzzle image. In Figure 2.22(c), we 
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show the found most-east-north puzzle piece. In Figure 2.22(d), we show the found 

first puzzle piece of the even row. In Figure 2.22(e), we deal with the even row. In 

Figure 2.22(f), we show the found last puzzle piece of the even row. In Figure 2.22(g), 

we show the found first digital puzzle piece of the odd row. In Figure 2.22(h), we deal 

with the odd row. In Figure 2.22(i), we show the found last puzzle piece of the odd 

row. In Figure 2.22(j), we repeat the steps for Figure 2.22(d) through (i). Finally, we 

can reconstruct the digital puzzle image successfully as shown in Figure 2.22(k). 

 

 
(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

  
(j) (k) 

Figure 2.22 The results of the intermediate steps of digital puzzle image reconstruction process. 




