
 21

Chapter 2
A New Digital Puzzle Image Creation
Method by Boundary Shape
Parameterization for Information
Hiding

2.1 Overview of Proposed Method

In this chapter, we propose a method to create a digital puzzle image

automatically with an image as input. In order to implement the concept of

information hiding in the digital puzzle image, we use a technique of boundary shape

parameterization as a base of the proposed creation method. In Section 2.2, the

proposed digital puzzle image creation method for the information hiding purpose

will be described in detail. Furthermore, users may have their own choices (i.e., the

size of secret data, the number of people who participate in the secret sharing, and

their own favors) to decide the puzzle pieces size of the digital puzzle image.

More specifically, we decompose the puzzle image into a number of puzzle

pieces, and divide them into several groups randomly. The number of groups is equal

to the number of secret sharing participants. The proposed puzzle image

decomposition method is described in Section 2.2.2.2. Naturally, we must find out a

method that can recover the puzzle image automatically when all of the participants

return their own parts of the puzzle pieces. Because this automatic digital puzzle

image reconstruction process is based on searching the puzzle pieces for correct

shapes, we should try the best to increase the possible number of distinct shapes. The

 22

digital puzzle image reconstruction process will be described in Section 2.3. Finally,

some experimental results will be presented in Section 2.4.

2.2 Proposed Digital Puzzle Image
Creation Process

2.2.1 Ideas of Creation Process

2.2.1.1 Properties of Orientation, Size, and Angle of Puzzle
Pieces

The orientation, size, and angle of the puzzle piece are three major parameters of

the proposed digital puzzle image creation process. We denote the orientation, size

and angle of a puzzle piece as OT, SZ, and AG, respectively, in the sequel. The

properties of these three features are illustrated in Figure 2.1. Figure 2.1(a), (b), (c),

and (d) illustrate the four possible “orientations” of a puzzle piece. Each picture is

composed of a triangle, a big circle, and two small circles. The notation BigR

represents the radius of the big circle in the middle of the picture. We utilize BigR to

represent the feature of size, which is the area of the big circle. The notation θ

represents the angle of the triangle. We utilize θ to represent the feature of angle.

BigR

θ

BigR
θ

BigR θ

BigRθ

(a) (b) (c) (d)

Figure 2.1 Properties of orientation, size, and angle of digital puzzle pieces.

 23

2.2.1.2 Composition of Parameterized Boundary Shape

Segments

In order to embed information in a digital puzzle Image, we propose a new

digital puzzle image creation method by boundary shape parameterization. After

performing this method, a digital puzzle image will result, which is composed of

digital puzzle pieces. Each digital puzzle piece, as illustrated in Figure 2.2, is

composed of “boundary shape segments.”

Each digital puzzle piece has two vertical sides and two horizontal sides. We

choose one OT from Figure 2.1(c) or Figure 2.1(d) to compose a vertical side, and

choose one OT from Figure 2.1(a) or Figure 2.1(b) to compose a horizontal side. Take

Figure 2.2, which represents the sketch of a digital puzzle piece, as an example, the

south, north, west, and east sides of it are respectively composed of the OTs chosen

from Figure 2.1(a) , (b), (c), and (d) in order. Detailed discussions of digital puzzle

image creation processes will be stated in Section 2.2.2.

θ
R

θ
R

θ
R

θR

Figure 2.2 Sketch of a digital puzzle pieces.

2.2.1.3 Concepts of Information Hiding by Boundary Shape

Parameterization

Since the boundary shape of the digital puzzle piece has been parameterized and

is composed of several segments, we can embed the information in a digital puzzle

 24

image by modifying the shapes of the puzzle pieces. That is, the concept of the

information hiding process is based on modifying the shape of each puzzle piece in a

digital puzzle image. Therefore, when we want to extract the embedded information

from a digital puzzle image, we can detect the shapes of the puzzle pieces of the

digital puzzle image and then derive the embedded information by analyzing the

features of the detected shapes.

In this study, we sequentially embed three kinds of data into the three parameters

which were introduced in Section 2.2.1.1. First, we embed a secret message by

modification of the parameter of orientation using the feature of OT. Second, we

embed a watermark by modifying the parameter of size represented by SZ. Finally, we

generate authentication signals and embed them by modifying the parameter of angle

represented by AG. By embedding the given data, a user can achieve the purpose of

covert communication, copyright protection, or image authentication. All the details

of the procedures for embedding the three types of features and the corresponding

information extraction processes will be described in Chapter 3.

2.2.2 Details of Digital Puzzle Image Creation

Process

2.2.2.1 Scheme of Image Creation Process

The concept of the digital puzzle image creation process is to create a digital

puzzle image by composing parameterized boundary shapes. Before performing the

creation process, every pixel with the RGB value of (0, 0, 0) in the input digital image

is replaced with the RGB value of (2, 2, 2). Because of this pre-processing, there will

be no pixel with the RGB value of (0, 0, 0) except the boundary lines of each digital

 25

puzzle piece in the output digital puzzle image. This pre-processing is necessary in

order to make the digital puzzle image decomposition process smooth, and the details

will be described in Section 2.2.2.2.

In the sequel, we denote the numbers of puzzle pieces of a digital puzzle image

in the horizontal and vertical directions as HParts and VParts, respectively, and the

width and height of the input image as ImageWidth and ImageHeight, respectively.

Referring to the illustration shown in Figure 2.3, we derive the value of HParts by

dividing ImageWidth by the digital puzzle piece size denoted as PPS, which is a value

selected by a user, and derive the value of VParts by dividing ImageHeight by PPS.

Referring to Figure 2.4 and Figure 2.5, we denote the lines of a digital puzzle image

in the horizontal and vertical directions as Xaxisj and Yaxisj, respectively, and the

“puzzle piece starting points” on Xaxisj and Yaxisj as HSi and VSi, respectively. The

index j of Xaxisj and Yaxisj indicates the processing order of the horizontal and the

vertical lines of a digital puzzle image, respectively, and the index i of HSi and VSi

indicates the processing order of HSi and VSi, respectively.

Before introducing the puzzle creation process, we define some parameters first.

They are UpDown, BigR, and θ . The value of the parameter UpDown is either “1” or

“-1.” The value of the parameter BigR is either “BR” or “SR”, and the values of BR

and SR are derived by Formula (2.1) and (2.2) below, respectively:

1
27

2.4
+

×
=

PPSBR ; (2.1)

27
2.4×

=
PPSSR . (2.2)

The value of θ is either “40o” or “48o.” We will assign random values to these
parameters during the digital puzzle image creation process.

 26

Xaxisj

Xaxisj

ImageWidth

PPS PPS

ImageHeight

Yaxisj Yaxisj

Figure 2.3 Utilizing the input parameter, PPS, to decide the locations of each Xaxisj and each Yaxisj of a

digital puzzle image.

2Xaxis

1Xaxis

1Yaxis 2Yaxis

HS
0

HS
1

HS
2

HS
3

HS
4

HS
5

 2Yaxis1Yaxis

1Xaxis

2Xaxis

VS0

VS1

VS2

VS3

VS4

VS5

 (a) (b)

Figure 2.4 The processing order of Xaxisj, Yaxisj, HSi, and VSi.

HS0 HS1 HS2

HS3 HS4 HS5

 VS0

VS1

VS2

VS3

VS4

VS5

(a) (b) (c)

Figure 2.5 An illustration of utilizing the locations of HSi and VSi to draw curves. (a) An illustration of

drawing each curve from each HSi. (b) An illustration of drawing each curve from each VSi.

(c) An illustration of combining the horizontal curves in (a) with the vertical curves in (b).

Algorithm 2.1 : Digital puzzle image creation process for information hiding by

boundary shape parameterization.

Input: A digital image I and a digital puzzle piece size denoted as PPS.

Output: A digital puzzle image.

Steps:

 27

Step 1 Utilize the value PPS to decide the locations of each Xaxisj and each Yaxisj of I.

A diagrammatic explanation is illustrated in Figure 2.3.

Step 2 Deal with the X-axis parts of I.

2.1 Find out each HSi of each X-axisj in order, and a diagrammatic

explanation is illustrated in Figure 2.4(a). If we denote the value of HSi

as i, and the value of Xaxisj as j, we can derive the coordinates of HSi by

applying Formula (2.3) below:

HSi(x, y):
⎭
⎬
⎫

⎩
⎨
⎧

×=
×=

PPSXaxisy
PPSHPartsHSx

j

i)mod(
. (2.3)

2.2 Find the coordinates of points D, E, M, and A illustrated in Figure 2.6 by

applying Formula (2.4) to (2.7), respectively, below:

D(x1, y1):
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=

×+=

yy

PPSxx

1

1 3
1

; (2.4)

E(x2, y2):
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=

×+=

yy

PPSxx

2

2 3
2

; (2.5)

M(x3, y3):
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=

×+=

yy

PPSxx

3

3 2
1

; (2.6)

A(x4, y4):

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

×+=

×+=

)
tan

6(

2
1

4

4

θ
PPSUpDownyy

PPSxx
. (2.7)

2.3 Find the distances of AD , AE , and CE illustrated in Figure 2.6 by

 28

applying Formula (2.8) to (2.10), respectively, below:

2
41

2
41)()(yyxxAD −+−= ; (2.8)

2
42

2
42)()(yyxxAE −+−= ; (2.9)

BigRAECE −= . (2.10)

2.4 Find the coordinates of points B and C illustrated in Figure 2.6 by

applying Formula (2.11) and (2.12), respectively, below:

B(x5, y5):

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
−×−××

=

−×−
=

4
41

5

144
5

)()1(

)(

y
AD

yyUpDownBigRy

AD
xxBigRxx

; (2.11)

C(x6, y6):

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
−×−××

=

+
−×

=

4
42

6

4

42
6

)()1(

)(

y
AD

yyUpDownBigRy

xAD
xxBigRx

. (2.12)

2.5 Find the value of SmallR, which denotes the radius of the small circle

shown in Figure 2.6 by applying Formula (2.13) below:

θ
θ

cos1
cos

+
×

=
CESmallR . (2.13)

2.6 Find the coordinates of points H and I illustrated in Figure 2.6 by

applying Formula (2.14) and (2.15), respectively, below:

H(x7, y7) :

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

−×−××+
+=

+×−
−=

BigR
yyUpDownSmallRBigRyy

BigR
SmallRBigRxxxx

)()1()(

)()(

45
47

54
47

; (2.14)

 29

I(x8, y8) :

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

−×−××+
+=

+×−
+=

BigR
yyUpDownSmallRBigRyy

BigR
SmallRBigRxxxx

)()1()(

)()(

46
48

46
48

. (2.15)

2.7 Find the coordinates of points J and K illustrated in Figure 2.6 by

applying Formula (2.16) and (2.17), respectively, below:

J(x9, y9) :
⎭
⎬
⎫

⎩
⎨
⎧

×−=
=

SmallRUpDownyy
xx

79

79 ; (2.16)

K(x10, y10) :
⎭
⎬
⎫

⎩
⎨
⎧

×−=
=

SmallRUpDownyy
xx

810

810 . (2.17)

2.8 Draw BC in the clockwise direction.

2.9 Draw BJ in the clockwise direction, and draw CK in the

counter-clockwise direction.

Step 3 Find out each VSi of each Yaxisj in order, and a diagrammatic explanation is

illustrated in Figure 2.4(b). Deal with the Y-axis parts of I in order with steps

similar to those of Step 2.

Step 4 Utilize the four sides, and the coordinates of each Xaxisj and each Yaxisj of I to

find the coordinates of the intersection points denoted as IPi, which are the

yellow points illustrated in Figure 2.3. Randomly shift the four kinds of

distances in the horizontal and vertical directions, respectively, of each IPi(xi,

yi). By applying Formula (2.18), compute the coordinates of the intersection

points Crossi (xc, yc) as follows:

 30

 Crossi (xc, yc) :

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

±±=

±±=

)
1618

(

)
1618

(

PPSorPPSyoryy

PPSorPPSxorxx

iic

iic

. (2.18)

Step 5 Connect points J and K illustrated in Figure 2.6 to their closest intersection

point Crossi to accomplish the creation of I finally.

A
BigR

r

θ

FB C

D E

GH I

J KM
HS

PuzzleSize×
3
1

PuzzleSize×
3
1 PuzzleSize×

3
1

Figure 2.6 An illustration of a horizontal side of a digital puzzle piece.

A

BigR

r

θ
F

B

C

D

E

G

H

I

J

K

M

VS

PuzzleSize×
3
1

PuzzleSize×
3
1

PuzzleSize×
3
1

Figure 2.7 An illustration of a vertical side of a digital puzzle piece.

 31

2.2.2.2 Use of Region Growing for Digital Puzzle Image

Decomposition

We use region growing to decompose a digital puzzle image. Before performing

the region growing process, we choose proper locations to place the seeds (denoted as

SDi), which are the starting points of every puzzle piece for region growing. Each

yellow point shown in Figure 2.8, which is the center of each puzzle piece, represents

the location of a seed SDi of a digital puzzle image. An example of the decomposed

digital puzzle piece image (denoted as PPI) is illustrated in Figure 2.9. A flowchart of

the proposed digital puzzle image decomposition process is shown in Figure 2.10.

Algorithm 2.2 : Digital puzzle image decomposition process for information

sharing.

Input: A digital puzzle image denoted as I, a puzzle piece size (denoted as PPS), and

a number (denoted as ShareNum) of information sharing participants.

Output: Digital puzzle piece files.

Steps:

Step 1 Sprinkle the SDs in I.

Step 2 Create an “empty” PPI for each SDi, and let the width and height of the PPIi

be twice as big as those of PPS.

Step 3 Apply the region growing technique on each SDi in the following way.

3.1 Find out the RGB value and the coordinates of each “grown pixel” in I.

3.2 “Draw” on each PPIi those pixels with the same RGB values around

each “grown pixel” in I.

3.3 Terminate the region growing process when a pixel with the RGB value

of (0, 0, 0) is detected.

 32

Step 4 Randomly divide the PPIs into several groups, with the number of groups

being equal to the number ShareNum.

In Step 3, the proposed region growing technique is based on checking the RGB

values of the pixels in the digital puzzle image I. As mentioned in Section 2.2.2.1,

every pixel with the RGB value of (0, 0, 0) in the input image is replaced with the

RGB value of (2, 2, 2) before performing the digital puzzle image creation process.

Therefore, there will be no pixel with the RGB value of (0, 0, 0) except at the

boundary lines of each digital puzzle piece in I.

2Xaxis

1Xaxis

1Yaxis 2Yaxis

PPS

PPSPPSPPS

PPS

PPS

Figure 2.8 The yellow points represent locations of seeds for region growing in a digital puzzle image.

PPS

PPS

PPSPPS

Figure 2.9 An illustration of a decomposed digital puzzle piece image. The width and height of the

digital puzzle piece (denoted as PPI) are twice as big as those of the puzzle piece size

(denoted as PPS) input by users.

 33

Digital puzzle
image

Sprinkle seeds

Applying the region
growing technique on

each seed

The RGB value (0, 0, 0) of a
pixel is detected

Transform global coordinate into local
coordinate and draw the corresponding

pixels on digital puzzle piece files

A folder of
puzzle pieces

A folder of
puzzle pieces

A folder of
puzzle pieces……………

Yes

No

Terminate the region
growing process

The quantity of folders is equal to ShareNum

Digital puzzle image separation process

digital puzzle
piece files

Figure 2.10 The flowchart of the proposed digital puzzle image decomposition process.

2.3 Proposed Digital Puzzle image
Reconstruction Process

2.3.1 Idea of Reconstruction Process

As mentioned in Section 2.1, the concept of the proposed automatic digital

puzzle image reconstruction process is based on searching the puzzle pieces for

correct shapes. We scan the four sides of a digital puzzle piece to check if it is an

 34

indent, an outdent, or a flat side. We define an outdent as a region that touches the

convex hull of the piece and has a “neck” that interlocks with a neighboring piece.

Therefore, the digital puzzle piece like that shown in Figure 2.11(a) will be classified

as having two indent sides, one outdent side, and one flat side.

Also we derive a puzzle piece region map (denoted as PM) from its

corresponding digital puzzle piece file. PM indicates whether a pixel is inside the

boundary of a digital puzzle piece or not, and a diagrammatic explanation is

illustrated in Figure 2.11(b). A black pixel (denoted as BP) of PM represents that the

pixel is inside the boundary of its corresponding digital puzzle piece, and a white pixel

(denoted as WP) represents that the pixel is outside the boundary of its corresponding

digital puzzle piece. Each of the PM has four sides, and we denote them as N, E, W,

and S, respectively.

A digital puzzle piece has four primary neighbors (denoted as north, east, west,

and south). Pieces interlock with their primary neighbors by tabs, consisting of an

indent in one piece mating with an outdent in its neighbor.

 N

W

E

 S

 N

W

E

 S
(a) (b)

Figure 2.11 An example of a decomposed puzzle piece. (a) N, E, W, and S represent four sides of a

digital puzzle piece. (b) The puzzle piece region map (PM) derived from (a).

2.3.2 Detail of Reconstruction Process

2.3.2.1 Digital Puzzle Pieces Orientation Detection Process

 35

By performing this process of orientation detection, we derive the attributes of

the four sides of each digital puzzle piece. That is, we can figure out if the attribute of

a side is indent, outdent, or flat. We assign a value “-1” to an indent side, a value “1”

to an outdent side, and a value “0” to a flat side, respectively. We define the value

“-1,” “1,” and “0”as the orientation value (denoted as OV) of the side of a PM.

Algorithm 2. 3: Puzzle pieces orientation detection process.

Input: Digital puzzle pieces and their corresponding PMs.

Output: The orientation values (denoted as OVs) of the four sides (denoted as N, E,

W, and S, respectively) of each PMi.

Steps:

Step 1 Find the width of the PM (denoted as PMW).

Step 2 Perform a raster scan of each PMi. Referring to Figure 2.12, let point o

represent the center of the PM, and scan the image from point o to point a,

from point o to point c, from point o to point b, and from point o to point d,

respectively.

Step 3 Referring to Figure 2.12, calculate the number BP of black pixels in each

scanning line (oa , ob , oc , and od), respectively, and denote the value of

BP as the orientation pixel number (denoted as OPN).

Step 4 Find the OVs of N, E, W, and S, respectively, of every input PMi in the

following way.

4.1 If
4

PMWOPN < , set OV as -1.

4.2 If 2
4

2
4

+<<−
PMWOPNPMW

, set OV as 0.

4.3 If 4
PMWOPN > , set OV as 1.

 36

In addition, the image height of a PM (denoted as PMH) is equal to the image

width of a PM (denoted as PMW), and the value of each of oa , ob , oc , and od is

equal to
2

PMW . A flowchart of Step 4 is shown in Figure 2.13.

 N

W

 a

b c

d

o
E

 S

Figure 2.12 The yellow lines represent the scanning ranges of a puzzle piece.

Calculate the OPN
from point a to point o

E W SN

Calculate the OPN
from point c to point o

Calculate the OPN
form point b to point o

Calculate the OPN
from point d to point o

Decide the
orientation

value

Orientation
value = -1

Orientation
value = 0

Orientation
value = 1

4
PMWOPN <

4
PMWOPN >

2
4

2
4

+<<−
PMWOPNPMW

Figure 2.13 The flowchart of the orientation value detection process, where the value of the BPs are

denoted as OPN.

2.3.2.2 Digital Puzzle Piece Overlapping and Flawing Detection

Process

 37

After performing the orientation detection process described in Section 2.3.2.1,

we only roughly mate the digital puzzle pieces by accessing the orientation values of

them. We will encounter further two kinds of problems while we try to mate the

digital puzzle pieces, namely, the problems of overlapping and flawing of puzzle

pieces. A diagrammatic explanation is shown in Figure 2.14.

Figure 2.15 shows the four directions of the scanning regions of a digital puzzle

piece, and Figure 2.16 shows the four primary neighbors of a digital puzzle piece

illustrated in Figure 2.15. The scanning regions are framed by the blue rectangles, and

we denote the pixels within the scanning regions in the top, bottom, left, and right

rectangles as PMPupi, PMPdowni, PMPlefti, and PMPrighti, respectively. Figure 2.17

illustrates the situation of composing the digital puzzle pieces as shown in Figure 2.15

(a) and Figure 2.16(a), (b), (c), and (d).

If we want to make sure whether a pair of complementary pieces really match or

not, we should perform additionally a digital puzzle piece overlapping detection

process to figure out a composition Boolean value (denoted as CBV), which indicates

whether two scanned PMs really match or not. We define CBV to be “0” when the two

scanned PMs really match each other; and CBV to be “1” when we encounter a puzzle

piece overlapping or flawing problems while mating the two PMs.

Take the digital puzzle pieces as shown in Figure 2.15(a) and Figure 2.16(a) as

an example. If the detection results of PMPupi and PMPdowni are both BPs, it means

that there is an “overlapping pixel” in the digital puzzle image. If the results of

PMPupi and PMPdowni are both WPs, it means that it is a “flawing pixel” of the

digital puzzle image. A flowchart of checking the CBV between the digital puzzle

pieces shown in Figure 2.15(a) and Figure 2.16(a) is illustrated in Figure 2.18, and the

detailed process is described as an algorithm below.

 38

Algorithm 2.4: The digital puzzle pieces overlapping and flawing detection

process.

Input: Digital puzzle pieces and their corresponding PMs.

Output: Composition Boolean value (denoted as CBV).

Steps:

Step 1 Detect a digital puzzle piece as shown in Figure 2.15 and its four primary

neighbors as shown in Figure 2.16(a), (b), (c), and (d) by performing a raster

scan on their corresponding PMs.

Step 2 Decide the CBV by calculating the number of overlapping and flawing

pixels.

2.1 Perform a raster scan of the corresponding PMs of Figure 2.15(a) and

Figure 2.16(a), that is, detect PMPupi of Figure 2.15(a) and PMPdowni

of Figure 2.16(a), respectively, to check whether they are black pixels

(denoted as BPs) or white pixels (denoted as WPs).

2.2 Compare the detected result of each PMPupi of Figure 2.15(a) with the

detected result of each PMPdowni of Figure 2.16(a).

2.3 Calculate the total number of the flawing and the overlapping pixels.

2.4 Denote the CBV of the two detected puzzle pieces as “0” if the total

number of pixels derived in Step 2.4 is smaller than two.

 Flawing

Overlapping

Figure 2.14 An illustration of flawing and overlapping problems of the digital puzzle image

reconstruction process.

 39

(a) (b) (c) (d)
Figure 2.15 The scanning regions of four sides of a digital puzzle piece.

(a) (b) (c) (d)
Figure 2.16 The scanning regions of the four primary neighbors of the digital puzzle piece as shown in

Figure 2.15. (a) The north neighbor. (b) The east neighbor. (c) The left neighbor. (d) The

south neighbor.

a
bc

d

Figure 2.17 The situation of combining the digital puzzle pieces shown in Figure 2.15 and Figure 2.16.

Scanning the PMPupi Scanning the PMPdowni

If PMPupi = PMPdowni

Count ++

Yes

If Count < 2

Composition
Boolean value = 0

Composition
Boolean value = 1

Yes No

They are both BPs
or

they are both WPs

Figure 2.18 A flowchart of checking the CBV of Figure 2.15(a) and Figure 2.16(a).

 40

2.3.2.3 Digital Puzzle Pieces Searching and Reconstruction

Process

In the process of digital puzzle piece search and reconstruction process, we apply

the digital puzzle piece orientation detection process and the digital puzzle piece

overlapping detection process described in Section 2.3.2.1 and Section 2.3.2.2. We

also implement the proposed reconstruction process by applying a depth-first search

(DFS) algorithm.

Digital puzzle pieces should be located within their proper grid of the digital

puzzle image in a zig-zag order, as illustrated in Figure 2.19. We randomly pick a PM

from a pool to check if it can mate the latest located PM or not. The pool is a

temporary place for the non-located PMs to dwell in.

A flowchart of an example of applying the following algorithm is illustrated in

Figure 2.22 in Section 2.4.

Algorithm 2.5: Digital Puzzle pieces searching and reconstruction process.

Input: The folders of digital puzzle pieces and their corresponding PMs.

Output: A reconstructed digital puzzle image.

Steps:

Step 1 Read in the PMs, and find the original HParts and VParts of the digital

puzzle image to be reconstructed (denoted as I') in the following way.

1.1 Check N, E, W, and S of each PMi.

1.2 Find the PMs whose orientation value (denoted as OV) of N is “0”

(which means N is a flat side), and calculate the number of this kind of

PMs.

 41

1.3 Find the PMs whose OV of W is “0” (which means W is a flat side),

and calculate the number of this kind of PMs.

1.4 Take the numbers of flat sides of N and W as the values of HParts and

VParts of the digital puzzle image I'.

Step 2 Find the exact digital puzzle piece which should be placed on the

most-west-north position (denoted as Position1) of I', where the location of

Positioni is illustrated in Figure 2.19.

2.1 Check N, E, W, and S of each PMi.

2.2 Find the exact PM whose OVs of N and W are both “0”, and place this

PM on Position1.

Step 3 Utilize an index to point toward Positioni, where the last puzzle piece is

located. At this moment, the index is pointed to Position1.

Step 4 Deal with the first row of the I' in the following way.

4.1 Assign the value “1” to i.

4.2 Push proper PMs into a stack in Position1+i.

4.2.1 Randomly pick a PM from a pool, and make sure that its OV of

N is “0.”

 4.2.2 Push the lastly picked PM into a stack in Position1+i, if the sum

of the OV of E of the lastly located PM and the OV of W of the

lastly picked PM is “0” and their CBVs are “0.”

4.2.3 Terminate this step if all of the PMs in the pool are checked.

4.3 Pop out a PM from the stack in Position1+i, and place it on Position1+i.

Make the index to point to Position1+i now.

4.4 Update i to be “i+1,” and repeat Steps from 4.2 to 4.3. When the stack

is empty, tread back the pointer and update i to be “i-1.”

 42

Step 5 Deal with all the other rows of I' in a way similar to Step 4, but with the

position of the lastly located PM and its primary neighbors being different.

In Step 1, we perform the digital puzzle image decomposition process described

in Section 2.2.2.2, utilize the input value of the digital puzzle piece size (denoted as

PPS) to decompose a digital puzzle image, and let the image width and height of a

decomposed digital puzzle piece image be twice as big as the input value of PPS.

Therefore, we can find out the image width and height of a recovered digital puzzle

image by checking the input digital puzzle piece files and applying Formula (2.19)

below, where we denote the width and height of the digital puzzle image as “Width”

and “Height,” and denote the width and height of a digital puzzle piece file as

“SWidth” and “SHeight:”

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

×
=

×
=

.
2

;
2

VPartsSHeightHeight

HPartsSWidthWidth
. (2.19)

Position3

Position6

Position9

Position2

Position8

Position5

Position1

Position4

Position7

Xaxis1

Xaxis2

Yaxis2Yaxis1

Figure 2.19 The i of Positioni indicates the order of locating the digital puzzle pieces.

 43

2.4 Experimental Results and
Discussions

Figure 2.20 is an experimental result of applying the digital puzzle image

creation process described in Section 2.2.2.1 to an input digital image. Figure 2.20(a)

is the input image and Figure 2.20(b) is the final result. We can find that the digital

puzzle pieces in Figure 2.20(b) have many kinds of shapes. In principle, according to

the proposed creation algorithm, the probability for two frame puzzle pieces with the

same shape to appear is 3)32223(1 ×××× , and the probability for two interior

puzzle pieces with the same shape to appear is 4)32223(1 ×××× . The reason is that

the shape of each side of this kind of digital puzzle piece is decided by the parameters

UpDown, BigR, θ, and the two coordinates of Cross.

(a) (b)

Figure 2.20 Experimental results. (a) An input digital image. (b) A digital puzzle image of (a).

 44

Figure 2.21 is an experimental result of applying the digital puzzle image

decomposition process described in Section 2.2.2.2 to a digital puzzle image as shown

in Figure 2.20(b). If there are four information-sharing participants, Figure 2.20(b)

will be randomly divided into four folders of digital puzzle pieces as shown in Figure

2.21(a) through (d). Each participant of information sharing can get one folder of

them.

(a)

(b)

(c) (d)

Figure 2.21 (a), (b), (c), and (d) represent four folders with digital puzzle pieces in it, and each

participant can get one of them.

By applying the digital puzzle image reconstruction process described in Section

2.3 to deal with the decomposed digital puzzle pieces as shown in Figure 2.21, we can

get a recovered digital puzzle image as shown in Figure 2.22(k), and this image is

exactly the same as Figure 2.20(b).

After detecting all of the puzzle pieces as shown in Figure 2.21, we can figure

out that the original digital puzzle image is a “ 914× ” puzzle, and start to reconstruct

it. In Figure 2.22(a), we show the found most-west-north puzzle piece. In Figure

2.22(b), we deal with the first row of the digital puzzle image. In Figure 2.22(c), we

 45

show the found most-east-north puzzle piece. In Figure 2.22(d), we show the found

first puzzle piece of the even row. In Figure 2.22(e), we deal with the even row. In

Figure 2.22(f), we show the found last puzzle piece of the even row. In Figure 2.22(g),

we show the found first digital puzzle piece of the odd row. In Figure 2.22(h), we deal

with the odd row. In Figure 2.22(i), we show the found last puzzle piece of the odd

row. In Figure 2.22(j), we repeat the steps for Figure 2.22(d) through (i). Finally, we

can reconstruct the digital puzzle image successfully as shown in Figure 2.22(k).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 2.22 The results of the intermediate steps of digital puzzle image reconstruction process.

