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Chapter 3  
Covert Communication, 
Watermarking, Data Authentication, 
and Secret Sharing by Digital Puzzle 
Images 

3.1 Overview of Proposed Method 

3.1.1 Information Hiding in Digital Puzzle Image 

In this chapter, we embed information into certain features of a digital puzzle 

image during the digital puzzle image creation process proposed in Section 2.2. We 

will describe how to hide data in the orientations, sizes, and angles of digital puzzle 

images in this chapter. The data could be a secret message, a watermark, or 

authentication signals, and we can embed any one kind of the secret data into any one 

of the feature of a digital puzzle image, by choice. We will embed a secret message by 

puzzle piece orientation modification in Section 3.3, embed a watermark by puzzle 

piece size modification in Section 3.4, and embed authentication signals by puzzle 

piece angle modification in Section 3.5, respectively. Of course, a puzzle piece feature 

detection process will also be discussed. 

In principle, we embed data in the horizontal lines (denoted as Xaxisi) of the 

digital puzzle image first, and then the rest of the data will be embedded in the 

vertical lines (denoted as Yaxisi) of it. That is, we embed the data in the south side of 

each puzzle piece except the puzzle pieces which are located in the last row of the 

digital puzzle image, and embed the remaining data in the east side of each puzzle 
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piece except the puzzle pieces which are located in the rightmost column of the digital 

puzzle image. As illustrated in Figure 3.1, each number written on a purple circle 

indicates the data embedding order of each region. 
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Figure 3.1 The purple circles indicate the regions where the data are embedded. 

3.1.2 Secret Sharing by Digital Puzzle Image 

By applying the digital puzzle image decomposition and reconstruction 

processes proposed in Section 2.2.2.2 and Section 2.3, respectively, to deal with 

data-embedded digital puzzle image, we can fulfill a concept of secret sharing using 

the digital puzzle image. A flowchart of the proposed secret sharing concept is shown 

in Figure 3.2. 

We randomly divide the data-embedded digital puzzles into several groups by 

applying the digital puzzle image decomposition process proposed in Section 2.2.2.2. 

In a sense, this process is similar to cutting apart a real treasure map. Each secret 

sharing participant will receive one group of the puzzle pieces, like receiving a piece 

of a torn map. After all of the puzzle pieces have been collected from the participants, 

we can perform the digital puzzle image reconstruction process proposed in Section 

2.3, and the complete data-embedded digital puzzle image will be recovered 

automatically. Secret information embedded in the digital puzzle image will not be 

extracted successfully unless all of the participants have returned their own parts of 
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puzzle pieces in this process.  
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Figure 3.2 A flowchart of the information sharing process. 

3.2 Proposed Puzzle Piece Feature 
Detection Techniques 

In this section, we will refer to all of the parameters which were defined in 

Chapter 2. 

3.2.1 Puzzle Piece Orientation Detection 

Before performing the proposed digital puzzle image reconstruction process 

proposed in Section 2.3, we have to figure out the orientation values (denoted as OVs) 
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of the four sides (denoted as N, E, W, and S, respectively) of each puzzle piece region 

map (denoted as PM). Then, we can apply the digital puzzle piece orientation 

detection process proposed in Section 2.3.2.1 when performing the puzzle piece 

orientation detection process in this chapter to find out the orientation pixels number 

(denoted as OPN) and the OV of each detected PMs. 

However, different from the digital puzzle pieces orientation detection process 

proposed in Section 2.3.2.1, we do not have to scan all sides of each PM of a digital 

puzzle image. We only scan S of each PM except those PMs whose corresponding 

puzzle pieces are located in the last row of the digital puzzle image, and scan E of 

each PM except those PMs whose corresponding puzzle pieces are located in the 

rightmost column of the digital puzzle image in this section. We denote these kinds of 

PMs as ORPMs (meaning orientation-related PMs) while performing the puzzle piece 

orientation detection process. 

3.2.2 Puzzle Piece Size Detection 

We utilize the parameter BigR mentioned in Section 2.2.2.1 to modify the feature 

of size (denoted as SZ), which is the area of the big circle as shown in Figure 2.5. The 

value of the parameter BigR is either “BR” or “SR,” and the values of BR and SR are 

derived by Formulas (2.1) and (2.2), respectively. 

We only scan S of each PM except the PMs whose corresponding puzzle pieces 

are located in the last row of a digital puzzle image, and scan E of each PM except the 

PMs whose corresponding puzzle pieces are located in the most east column of the 

digital puzzle image, and we denote these kinds of PMs as SRPMs (meaning 

size-related PMs) while performing the puzzle piece size detection process. 

While scanning each SRPMi, we calculate the number of black pixels (denoted as 
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BPs) within the red rectangles as shown in Figure 3.3(b) and (d), and calculate the 

number of white pixels (denoted as WPs) within the red rectangles as shown in Figure 

3.3(a) and (c), and we denote BP and WP as size pixels numbers (SPNs). We utilize 

the SPN of each SRPMi to figure out a total size pixel number (denoted as SPNtotal), 

and an average size pixel number (denoted as SPNavg). 

The derived SPNavg will be utilized in the watermark extraction process 

proposed in Section 3.4.3 to figure out a size value (denoted as SV) of each detected 

PM. We denote the SV as SVSmall when we find out that the parameter BigR is equal 

to SR, and denote the SV as SVBig when we find out that the parameter BigR is equal 

to BR. 

Algorithm 3.1: Puzzle piece size detection process. 

Input: Digital puzzle piece images and their corresponding SRPMs. 

Output: An average size pixel number (denoted as SPNavg). 

Steps: 

Step 1 Applying the puzzle piece orientation detection process proposed in Section 

3.2.1, and figure out an orientation value (denoted as OV) of E and S of each 

ORPMi first. 

Step 2 Scan each SRPMi. 

Case 1. : If the OV of S of the ORPMi is equal to -1, perform the following 

steps  

2.1 Perform a raster scan of the SRPMi, and calculate the number of 

the WPs, and denote this value as size pixels number (SPN). The 

scanning region is illustrated in Figure 3.3(a). 

2.2 Scan all of the SRPMi in Case 1, and sum up the SPNs of them. 

Case 2. : If the OV of S of the ORPMi is equal to 1, perform the following 
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steps. 

2.3 Perform a raster scan of the SRPMi, and calculate the number of 

the BPs, and denote this value as SPN, too. The scanning region 

is illustrated in Figure 3.3(b).  

2.4 Scan all of the SRPMi in Case 2, and sum up the SPNs of them. 

Case 3. : If the OV of E of the ORPMi is equal to -1, perform the following 

steps. 

2.5 Perform a raster scan of the SRPMi and calculate the number of 

the WPs, and denote this value as SPN, too. The scanning region 

is illustrated in Figure 3.3(c). 

2.6 Scan all of the SRPMi in Case 3, and sum up the SPNs of them. 

Case 4. : If the OV of E of the ORPMi is equal to 1, perform the following 

steps.  

2.7 Perform a raster scan of the SRPMi , and calculate the number of 

the BPs, and denote this value as SPN, too. The scanning region 

is illustrated in Figure 3.3(d). 

2.8 Scan all of the SRPMi in Case 4, and sum up the SPNs of them. 

Step 3 Figure out a total size pixel number (denoted as SPNtotal) by summing up all 

of the SPNs derived from the four cases discussed in Step 2. 

Step 4 Figure out an average size pixel number (denoted as SPNavg) by dividing the 

SPNtotal by the number of SRPMi. 

 

    
(a) (b) (c) (d) 

Figure 3.3 Scanning regions of the puzzle piece size detection process are within the red rectangles. 
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3.2.3 Puzzle Piece Angle Detection 

We utilize the parameter θ  mentioned in Section 2.2.2.1 to modify the feature 

of angle (denoted as AG), which is a notation shown in Figure 2.5. The value of θ  is 

taken to be either “40o” or “48o” in this study. 

In this section, we only scan S of each PM except the PMs whose corresponding 

puzzle pieces are located in the last row of a digital puzzle image, and scan E of each 

PM except the PMs whose corresponding puzzle pieces are located in the rightmost 

column of the digital puzzle image, and we denote these kinds of PMs as ARPMs 

(meaning angle-related PMs) while performing the puzzle piece angle detection 

process. 

While scanning S and E, respectively, of each ARPMi, we calculate the number 

of black pixels (denoted as BPs) of each side, and we denote the value of BP as an 

angle pixel number (APN). 

The derived APN will be utilized by the authentication signal extraction process 

proposed in Section 3.5.3 to figure out an angle value for each detected PM. We 

denote the angle value as AVSmall when we find out that the parameter θ is equal to 

40o, and denote it as AVBig when we find out that the parameter θ is equal to 48o.  

Algorithm 3.2: Puzzle piece angle detection process. 

Input: Digital puzzle piece images and their corresponding ARPMs. 

Output: A parameter angel pixels number (APN).  

Steps: 

Step 1 Scan S of each ARPMi and perform the following step. The scanning region 

is shown in Figure 3.4(a). 

1.1 Calculate the number of the BPs on the scanning line, and denote this 
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value as APNi.  

Step 2 Scan E of each ARPMi and perform the following step. The scanning region 

is shown in Figure 3.4(b). 

2.1 Calculate the number of the BPs on the scanning line, and also denote 

this value as APNi.  

 
 

  

 

 (a) (b)  

Figure 3.4 The scanning region of the puzzle piece angle detection process is on the red line. 

3.3 Proposed Secret Hiding Method by 
Puzzle Orientation Modification 

3.3.1 Core Concept 

The core concept of secret data hiding method by puzzle orientation modification 

is shown in Figure 3.5(a). Assume that we want to embed a bit sequence of a secret 

message (denoted as Mesi) into an ORPMi, which was defined in Section 3.2.1. As 

shown in Figure 3.5(a), by checking the input bit sequence of a secret key (denoted as 

SKeyi), we can know whether we need to modify the orientation value (denoted as OV) 

or not. If the answer is “Yes,” we will assign a value “-1” to the parameter UpDown, 

which was mentioned in Section 2.2.2.1, and assign a value “1” to the parameter 

UpDown while the answer is “No.” 
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As shown by the flowchart of the data extraction process in Figure 3.5(b), for 

each ORPMi, we try to figure out whether it is an indent or an outdent side by 

comparing the value of PMW×
4
1  with the value of iOPN . By the checking result 

and the input SKeyi, we can get the embedded Mesi. 
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Figure 3.5 Concepts of data embedding and data extraction by puzzle orientation modification. 

3.3.2 Secret Message Embedding Process 

The proposed information embedding process is similar to the digital puzzle 

image creation process proposed in Section 2.2.2.1. When performing the digital 

puzzle image creation process, we randomly assign a value “1” or “-1” to a parameter 

UpDown, but when performing this proposed process, the value of the parameter 

UpDown is decided by an input secret message, and a secret key (denoted as SKeyi). 

Algorithm 3.3: Information embedding by digital puzzle image orientation 

modification. 

Input: A digital image, secret message, and SKeyi. 

Output: A secret message embedded digital puzzle image.  
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Steps: 

Step 1 Transform the secret message into a bit sequence (denoted as Mesi). 

Step 2 Append an ending pattern (sixteen successive 0s) at the end of Mesi, that is, 

0=iMes , if nin ≤<−16 .  

Step 3 Decide a value of UpDowni by performing a bitwise Exclusive OR operation 

to Mesi and SKeyi. A diagrammatic explanation is shown in Figure 3.6. 

Step 4 Execute the digital puzzle image creation process proposed in Section 

2.2.2.1 by utilizing the value of UpDowni derived from Step 3. 

 

In Step 2, by utilizing the ending pattern, we can determine where the secret 

information ends in a sequence of extracted bits after performing the information 

extraction process. 

 

 

i = 0   1   2   3   4   5   6   7   8   9   10 …..   

Skeyi 1   0   1   0   1   0   1   1   0   1   1   …..

1   0   0   1   0   1   0   1   1   0   0   …..

1   1   0   1   1   0   1   0   1   0   1   …..
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Take Orientation6 for example,
we denote UpDown as 1 while embedding bit 1.

Orientationi

 

     Figure 3.6 A bitwise Exclusive OR operation applied to Mesi and SKeyi. 

3.3.3 Secret Message Extraction Process 

The proposed secret information extraction process is also an inverse of the 

embedding process. A flowchart of the secret information extraction process is shown 

in Figure 3.7. 
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Figure 3.7 A flowchart of the secret information extraction process. 

In this section, we will describe how we apply the puzzle piece orientation 

detection process proposed in Section 3.2.1, and the algorithm of the information 

extraction process is discussed as follows. 

Algorithm 3.4: Information extraction by digital puzzle image orientation 

detection process. 

Input: A secret message embedded digital puzzle image, an ORPMi, and an SKeyi. 

Output: A Mesi.  

Steps: 

Step 1 Detect each ORPMi of the secret message embedded digital puzzle image 

Step 2 Derive an OPNi by performing the orientation detection process proposed in 

Section 3.2.1. 
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Step 3 Compare each OPNi with PMW×
4
1  in the following way. 

3.1 If PMWOPNi ×<
4
1 , set 1=iUpDown . 

3.2 If PMWOPNi ×>
4
1 , set 1−=iUpDown . 

Step 4 Decide the value of Mesi by performing an inverse bitwise Exclusive OR 

operation to the UpDowni and the SKeyi, and a diagrammatic explanation is 

shown in Figure 3.8. 

Step 5 Search the Mesi for the ending pattern (16 successive 0s) and truncate the 

redundant bits at the rear of the Mesi. 
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Figure 3.8 The inverse bitwise Exclusive OR operation applied to UpDowni and SKeyi. 

3.3.4 Experimental Results 

Some experimental results are shown in Figure 3.9. Figure 3.9(a) is a digital 

puzzle image with the secret message, “阿祥，有一句話我一直很想告訴你，那就是

我喜歡你!!,” embedded. Figure 3.9(b) shows the secret message extracted from 

Figure 3.9(a). Figure 3.9(c) is the secret message extracted from Figure 3.9(a) with a 

wrong key. Therefore, Figure 3.9(c) shows the secret message is protected by the key 

properly. 
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(a) 

  

(b) 

  

(c) 

Figure 3.9 Experimental results. (a) A digital puzzle image with a secret message embedded. (b) The 

secret message extracted from (a) with a correct key. (c) The secret message extracted from 

(a) with a wrong key. 
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3.4 Proposed Watermarking Method 
by Puzzle Size Modification 

3.4.1 Core Concept 

The core concept of the proposed watermarking method by puzzle size 

modification is shown in Figure 3.10(a). Before embedding a watermark in a digital 

puzzle image, we transform a watermark into a bit sequence (denoted as Wateri) first, 

and embed it into each SRPMi, which is defined in Section 3.2.2. By checking an 

input secret key (denoted as SKeyi), we can know whether we need to modify the 

feature of size or not. If the answer is yes, we denote the parameter BigRi as SR, and if 

the answer is no, we denote the parameter BigRi as BR. 

As shown by the flowchart of the data extracting process in Figure 3.10(b), by 

applying the puzzle piece size detection proposed in Section 3.2.2, we can figure out 

the size pixels number (denoted as SPNi) of each SRPMi and the average size pixel 

number (denoted as SPNavg). If the SPNi is bigger than SPNavg, we can figure out 

that the size value (denoted as SV) of SRPMi is SVBig, and if the SPNi is smaller than 

SPNavg, we can figure out that the SV of SRPMi is SVSmall. By the checking result 

and the input SKeyi, we can get the embedded Wateri.  
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Figure 3.10 Concepts of data embedding and data extraction by puzzle size modification. 
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3.4.2 Watermark Embedding Process 

When performing the digital puzzle image creation process proposed in Section 

2.2.2.1, we randomly assign the value 272.4×PPS  (SR) or 1272.4 +×PPS  (BR) 

to the parameter BigR, but when performing the proposed process in this section, the 

value of the parameter BigR is decided by the input Wateri and a SKeyi.  

Algorithm 3.5: Watermark embedding by digital puzzle image size modification. 

Input: A digital image, a watermark, and a SKeyi. 

Output: A watermark embedded digital puzzle image.  

Steps: 

Step 1 Transform the watermark into a bit sequence (denoted as Wateri). 

Step 2 Append an ending pattern (sixteen successive 0s) at the end of Wateri, that is, 

set 0=iWater  if nin ≤<−16 .  

Step 3 Decide a value of BigRi by performing a bitwise Exclusive OR operation to 

Wateri and SKeyi. A diagrammatic explanation is shown in Figure 3.11. 

Step 4 Perform the digital puzzle image creation process proposed in Section 

2.2.2.1 by utilizing the parameter BigRi derived from Step 3. 

 

In Step 2, by utilizing the ending pattern, we can determine where the watermark 

ends in a sequence of extracted bits after performing the information extraction 

process. 

 

Sizei i = 0   1   2   3   4   5   6   7   8   9   10 …..   

Skeyi 1   0   1   0   1   0   1   1   0   1   1   …..

1   0   0   1   0   1   0   1   1   0   0   …..

1   1   0   1   1   0   1   0   1   0   1   …..
Wateri

BigR6 = BR

BigR6 = SR

Take Size6 for example,
we denote BigR6 as BR while embedding bit 1

 
Figure 3.11 A bitwise Exclusive Or operation between Wateri and SKeyi. 
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3.4.3 Watermark Extraction Process 

The proposed watermark extraction process is an inverse of the embedding 

process. A flowchart of the watermark extraction process is shown in Figure 3.12.  

In this section, we describe how we apply the secret message extraction process 

and the puzzle piece size detection process proposed in Section 3.3.3 and 3.2.2, and 

the algorithm of the watermark extraction process is described as follows. 

Algorithm 3.6: Process of watermark extraction by digital puzzle image size 
detection. 

Input: A watermark-embedded digital puzzle image, an SRPMi, and an SKeyi. 

Output: A Wateri.  

Steps: 

Step 1 Detect each SRPMi of the watermark-embedded digital puzzle image. 

Step 2 Derive an average size pixel number (denoted as SPNavg) and a size pixels 

number (denoted as SPNi) of each SRPMi by performing the puzzle piece size 

detection process proposed in Section 3.2.2. 

Step 3 Compare the SPNi with the SPNavg, and perform the following steps. 

3.1 If SPNavgSPNi > , that is, if size valuei (denoted as SVi) is SVBig, then 

set BRBigRi = . 

3.2 If SPNavgSPNi < , that is, if the SVi is SVSmall, then set SRBigRi = . 

Step 4 Decide the Wateri by performing an inverse bitwise Exclusive OR operation 

to the BigRi and the SKeyi, and a diagrammatic explanation is shown in 

Figure 3.13. 

Step 5 Search the Wateri for the ending pattern (16 successive 0s) and truncate the 

redundant bits at the rear of the Wateri. 
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Figure 3.12 A flowchart of the watermark extraction process. 
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 Figure 3.13 An inverse bitwise Exclusive OR operation applied to BigRi and SKeyi. 
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3.4.4 Experimental Results 

Some experimental results are shown in Figure 3.14. Figure 3.14(b) is an input 

watermark. Figure 3.14(a) is a digital puzzle image with the watermark Figure 3.14(b) 

embedded. Figure 3.14(c) is a watermark extracted from Figure 3.14(a). From Figure 

3.14(d), we can see that the watermark can-not be extracted with a wrong key. 

 

 (a) 

 (b)  (c)  (d) 

Figure 3.14 Experimental results. (a) A digital puzzle image with the watermark (b) embedded. (b) An 

input watermark. (c) A watermark extracted from (a) with a correct key. (d) A watermark 

extracted from (a) with a wrong key. 
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3.5 Proposed Authentication Method 
by Puzzle Angle Modification 

3.5.1 Core Concept 

The core concept of the proposed authentication method by puzzle angle 

modification is shown in Figure 3.15. We propose the use of a hash function to derive 

authentication signals (denoted as ASi) first, and then embed them into each ARPMi, 

which was defined in Section 3.2.3. By checking the ASi, we can know whether we 

need to modify the feature of angle or not.  

 

Authentication signali Anglei

Modify the Angle ?
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Θ = 40

Hash function

Mesi Wateri

Skeyi

Θ = 48

Yes

 
Figure 3.15 Concepts of data embedding process by puzzle Angle modification. 

 

As shown by the flowchart of the data extracting process in Figure 3.16, by 

applying the puzzle piece angle detection process proposed in Section 3.2.3, we can 

figure out an angel pixels number (denoted as APN) of each ARPMi. Before utilizing 

the APNi to derive the embedded ASi, we apply the puzzle piece orientation and size 

detection processes proposed in Section 3.2.1 and 3.2.2, respectively first, and then 

derive the values of UpDown and BigR. By utilizing the values of UpDown and BigR, 
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we can divide the ARPMi into four kinds and start to detect the authentication signals. 

By the checking result, we can get the embedded ASi. 
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Figure 3.16 Concepts of data extraction process by puzzle angle modification. 

3.5.2 Authentication Signal Embedding Process 

When performing the digital puzzle image creation process proposed in Section 

2.2.2.1, we randomly assign a value “40o” or “48o” to a parameter θ , but when 

performing the proposed process in this section, the value of the parameter θ  is 

decided by input authentication signals (denoted as ASi).  
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Algorithm 3.7: Authentication signal embedding by digital puzzle image angle 
modification. 

Input: A digital image, a Mesi, a Wateri, a Skeyi., and an empty array of 

OrientationHashi, and an empty array of SizeHashi. 

Output: An authentication-signal-embedded digital puzzle image.  

Steps: 

Step 1 Derive authentication signals (denoted as ASi) by performing the following 

steps. 

1.1 Read in the bit code Mesi, and assign the bit value of each Mesi to each 

OrientationHashi in order. 

1.2 Read in the bit code Wateri, and assign the bit value of each Wateri to 

each SizeHashi in order. 

1.3 Derive a hash value (denoted as Hashi) by applying the hash function 

as shown in Formula (3.1) below: 

2mod3mod))()1()1(( iiii SkeyRandomSizeHashnHashOrientatioHash ×+×+= . 
 (3.1) 

 

1.4 Read in the Hashi, and assign the bit value of each Hashi to each ASi in 

order. 

Step 2 Decide a value of iθ  by checking the ASi in the following way.  

2.1 If the ASi is 1, assign a value “40o” to the iθ . 

2.2 If the ASi is 0, assign a value “48o” to the iθ . 

Step 3 Performing the digital puzzle image creation process proposed in Section 

2.2.2.1 by utilizing the value of the iθ  derived from Step 3. 
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3.5.3 Authentication Signal Extraction Process 

The proposed authentication signal extraction process is an inverse of the 

embedding process. A flowchart of the authentication signal extraction process by 

puzzle angle modification is shown in Figure 3.17.  

In this section, we describe how we apply the secret message extraction process, 

the watermark extraction process, and the puzzle piece angle detection process 

proposed in Section 3.3.3, 3.4.3, and 3.2.3, respectively. And the algorithm of the 

proposed authentication signal extraction process is described as follows. 

A parameter neck value is used to represent the height ( AM ) of the triangle 

shown in Figure 2.5. We denote the parameter neck value as NVSmall when the value 

of θ  shown in Figure 2.5 is °40 , and denote it as NVBig when θ  is °48 . We can 

derive the values of NVSmall and NVBig by applying Formulas (3.1) and (3.2) below, 

respectively: 

o40tan
6PPSNVSmall = ; (3.2) 

 

o48tan
6PPSNVBig = . (3.3) 

Before performing the information extraction process in this section, we should 

figure out the values of some parameters. We derive the values of BR, SR, NVSmall, 

and NVBig by applying Formulas (2.1), (2.2), (3.2), and (3.3), respectively first, and 

the values of STheta_BR, BTheta_BR, STheta_SR, BTheta_SR, BR_Up, SR_Up, 

BR_Down, and SR_Down by applying Formulas (3.4) through (3.11), respectively, 

below:  

BRNVSmallBRSTheta +=_ ; (3.4) 
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Figure 3.17 A flowchart of the Authentication signals extraction process by puzzle angle modification. 

 

BRNVBigBRBTheta +=_ ; (3.5) 
 

SRNVSmallSRSTheta +=_ ; (3.6) 
 

SRNVBigSRBTheta +=_ ; (3.7) 
 

2
___ BRBThetaBRSThetaPPSUpBR −−

= ; (3.8) 
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2
___ SRBThetaSRSThetaPPSUpSR −−

= ; (3.9) 

 

2
___ BRBThetaBRSThetaPPSDownBR ++

= ; (3.10) 

 

2
___ SRBThetaSRSThetaPPSDownSR ++

= . (3.11) 

Algorithm 3.8: Process of authentication signal extraction by digital puzzle 

image angle detection. 

Input: A digital puzzle image in which a secret message, a watermark, and 

authentication signals are embedded; an Skeyi; and an ARPMi. 

Output: Authentication signals (denoted as ASi), and an authenticated image.  

Steps: 

Step 1 Apply the secret message and the watermark extraction processes proposed 

in Section 3.3.3 and 3.4.3, respectively, in the following 

1.1 Apply these processes to extract Mesi and Wateri. 

1.2 Apply these processes to figure out the values of UpDowni and BigRi 

of each ARPMi. 

Step 2 Derive a Hash value (denoted as Hashi) by applying the hash function shown 

in Formula (3.1) utilizing the extracted Mesi and Wateri. 

Step 3 Figure out the values of BR_Up, SR_Up, BR_Down, and SR_Down by 

applying Formulas (3.8) to (3.11), respectively. 

Step 4 Derive an angle pixels number (denoted as APNi) of each ARPMi by 

performing the puzzle piece angle detection process proposed in Section 

3.2.3. 

Step 5 Compare each APNi with the value of BR_Up, SR_Up, BR_Down, or 
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SR_Down in the following four kinds of cases. 

Case 1. : If the parameter UpDowni of ARPMi is 1, and the parameter BigRi of 

the ARPMi is BR, then compare APNi with BR_Up in the following 

way.  

5.1 If UpBRAPNi _> , that is, if the neck value is NVBig, then set 

°= 48iθ .  

5.2 If UpBRAPNi _< , that is, if the neck value is NVSmall, then set 

°= 40iθ . 

Case 2. : If the parameter UpDowni of ARPMi is 1, and the parameter BigRi of 

the ARPMi is SR, then compare APNi with SR_Up in the following 

way.  

5.3 If UpSRAPNi _> , that is, if the neck value is NVBig, then set 

°= 48iθ .  

5.4 If UpSRAPNi _< , that is, if the neck value is NVSmall, then set 

°= 40iθ . 

Case 3. : If the parameter UpDowni of ARPMi is -1, and the parameter BigRi of 

the ARPMi is BR, then compare APNi with BR_Down in the following 

way.  

5.5 If DownBRAPNi _> , that is, if the neck value is NVSmall, then 

set °= 40iθ . 

5.6 If DownBRAPNi _< , that is, if the neck value is NVBig, then 

set °= 48iθ . 

Case 4. : If the parameter UpDowni of ARPMi is -1, and the parameter BigRi of 

the ARPMi is SR, then compare APNi with SR_Down in the following 

way.  

5.7 If DownSRAPNi _> , that is, if the neck value is NVSmall, then 
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set °= 40iθ . 

5.8 If DownSRAPNi _< , that is, if the neck value is NVBig, then 

set °= 48iθ . 

Step 6 If °= 40iθ , then denote the bit value of the ASi as 1, and if °= 48iθ , then 

denote the bit value of the ASi as 0. 

Step 7 Compare the Hashi with the ASi: if the Hashi is not equal to the ASi, decide 

that the ith bit of the Mesi or the Wateri has been tampered. 

Step 8 Create an authentication image according to the above comparison results. 

 

3.5.4 Experimental Results 

As discussed in the previous sections, we can verify the fidelity of embedded 

secret information by the proposed digital puzzle image authentication system. 

Because we embed only one bit into a puzzle piece angle, it is 
2
1  in probability that 

we may miss to detect a puzzle piece that has been damaged. However, if one 

damaged bit has successfully been detected by this system, we can regard this digital 

puzzle image as being tampered with. 

Figure 3.18(a) is a digital puzzle image with a secret message, a watermark, and 

authentication signals embedded. Figure 3.18(b) is a secret message extracted from 

Figure 3.18(a), and Figure 3.18(c) is a watermark extracted from Figure 3.18(a). 

Figure 3.18(d) is an authentication image, which shows a verification result of Figure 

3.18(a). In Figure 3.18(d), we can see that there are only black dots on it, which 

means that all of the puzzle pieces have not been modified. By Figure 3.18(b), (c), 

and (d), we can claim that a secret message, a watermark, and authentication signals 
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can be embedded in a digital puzzle image simultaneously by utilizing the proposed 

methods.  

Figure 3.18(e) is a copy of Figure 3.18(a) with some puzzle pieces being 

tampered with. Figure 3.18(h) shows a verification result of Figure 3.18(e), we can 

see that there are some red dots appearing on it. The locations of the red dots indicate 

those puzzle pieces which have been modified. Figure 3.18(i) shows two pieces of 

original digital puzzle pieces, and Figure 3.18(j) shows two pieces of digital puzzle 

pieces which have been tampered with, and the yellow notations shown in Figure 

3.18(k) indicate the locations of the puzzle pieces shown in Figure 3.18(i) and (j). If 

people who know the proposed secret message embedding process plan to tamper 

with the secret message, they can replace some original puzzle piece images with 

some modified puzzle piece images, such as replacing the puzzle pieces shown in 

Figure 3.18(i) with those shown in Figure 3.18(j). Figure 3.18(f) shows a secret 

message extracted from Figure 3.18(e), and Figure 3.18(g) shows a watermark 

extracted from Figure 3.18(e). We can see that both the secret message and the 

watermark have been extracted successfully, which means that the watermark has not 

been modified, and the secret message “might” not have been modified. However, 

because some modified digital puzzle images are found by the proposed 

authentication process, users can decide whether he/she will accept the extracted 

secret message or not by the authentication image shown in Figure 3.18(h).  
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(a) 

(b) 
   

 
(c) 

 

(d) 

Figure 3.18 Experimental results. (a) An original image. (b) A digital puzzle image with a secret 

message, a watermark, and authentication signals embedded. (c) A secret message 

extracted from (b). (d) A watermark extracted from (b). (e) A verification result of (b). (f) 

A copy of (b) with some tampered puzzle pieces. (g) A secret message extracted from (f). 

(h) A watermark extracted from (f). (i) A verification result of (f). (j) Two pieces of 

original digital puzzle pieces. (k) Two pieces of tampered digital puzzle pieces. (l) The 

yellow notations indicate locations of (j) and (k). 
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(e) 

Figure 3.18 Experimental results. (a) An original image. (b) A digital puzzle image with a secret 

message, a watermark, and authentication signals embedded. (c) A secret message 

extracted from (b). (d) A watermark extracted from (b). (e) A verification result of (b). (f) 

A copy of (b) with some tampered puzzle pieces. (g) A secret message extracted from (f). 

(h) A watermark extracted from (f). (i) A verification result of (f). (j) Two pieces of 

original digital puzzle pieces. (k) Two pieces of tampered digital puzzle pieces. (l) The 

yellow notations indicate locations of (j) and (k). (continued). 
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(f) 
 

(g) 

 

(h) 

Figure 3.18 Experimental results. (a) An original image. (b) A digital puzzle image with a secret 

message, a watermark, and authentication signals embedded. (c) A secret message 

extracted from (b). (d) A watermark extracted from (b). (e) A verification result of (b). (f) 

A copy of (b) with some tampered puzzle pieces. (g) A secret message extracted from (f). 

(h) A watermark extracted from (f). (i) A verification result of (f). (j) Two pieces of 

original digital puzzle pieces. (k) Two pieces of tampered digital puzzle pieces. (l) The 

yellow notations indicate locations of (j) and (k). (continued). 
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(i) 

Figure 3.18 Experimental results. (a) An original image. (b) A digital puzzle image with a secret 

message, a watermark, and authentication signals embedded. (c) A secret message 

extracted from (b). (d) A watermark extracted from (b). (e) A verification result of (b). (f) 

A copy of (b) with some tampered puzzle pieces. (g) A secret message extracted from (f). 

(h) A watermark extracted from (f). (i) A verification result of (f). (j) Two pieces of 

original digital puzzle pieces. (k) Two pieces of tampered digital puzzle pieces. (l) The 

yellow notations indicate locations of (j) and (k). (continued). 
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(j) (k) 

 

 
(l) 

Figure 3.18 Experimental results. (a) An original image. (b) A digital puzzle image with a secret 

message, a watermark, and authentication signals embedded. (c) A secret message 

extracted from (b). (d) A watermark extracted from (b). (e) A verification result of (b). (f) 

A copy of (b) with some tampered puzzle pieces. (g) A secret message extracted from (f). 

(h) A watermark extracted from (f). (i) A verification result of (f). (j) Two pieces of 

original digital puzzle pieces. (k) Two pieces of tampered digital puzzle pieces. (l) The 

yellow notations indicate locations of (j) and (k). (continued). 
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Figure 3.19 shows the performing time of embedding information in digital 

puzzle images and separating them, and the performing time of reconstructing digital 

puzzle images and extracting the embedded information from them. 
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Figure 3.19 The performing time of experimental result




