
 46

Chapter 3
Covert Communication,
Watermarking, Data Authentication,
and Secret Sharing by Digital Puzzle
Images

3.1 Overview of Proposed Method

3.1.1 Information Hiding in Digital Puzzle Image

In this chapter, we embed information into certain features of a digital puzzle

image during the digital puzzle image creation process proposed in Section 2.2. We

will describe how to hide data in the orientations, sizes, and angles of digital puzzle

images in this chapter. The data could be a secret message, a watermark, or

authentication signals, and we can embed any one kind of the secret data into any one

of the feature of a digital puzzle image, by choice. We will embed a secret message by

puzzle piece orientation modification in Section 3.3, embed a watermark by puzzle

piece size modification in Section 3.4, and embed authentication signals by puzzle

piece angle modification in Section 3.5, respectively. Of course, a puzzle piece feature

detection process will also be discussed.

In principle, we embed data in the horizontal lines (denoted as Xaxisi) of the

digital puzzle image first, and then the rest of the data will be embedded in the

vertical lines (denoted as Yaxisi) of it. That is, we embed the data in the south side of

each puzzle piece except the puzzle pieces which are located in the last row of the

digital puzzle image, and embed the remaining data in the east side of each puzzle

 47

piece except the puzzle pieces which are located in the rightmost column of the digital

puzzle image. As illustrated in Figure 3.1, each number written on a purple circle

indicates the data embedding order of each region.

2Xaxis

1Xaxis

1Yaxis 2Yaxis

1 2 3

4 5 6

 2Yaxis1Yaxis

1Xaxis

2Xaxis
9

10

8 11

7

12

 (a) (b)

Figure 3.1 The purple circles indicate the regions where the data are embedded.

3.1.2 Secret Sharing by Digital Puzzle Image

By applying the digital puzzle image decomposition and reconstruction

processes proposed in Section 2.2.2.2 and Section 2.3, respectively, to deal with

data-embedded digital puzzle image, we can fulfill a concept of secret sharing using

the digital puzzle image. A flowchart of the proposed secret sharing concept is shown

in Figure 3.2.

We randomly divide the data-embedded digital puzzles into several groups by

applying the digital puzzle image decomposition process proposed in Section 2.2.2.2.

In a sense, this process is similar to cutting apart a real treasure map. Each secret

sharing participant will receive one group of the puzzle pieces, like receiving a piece

of a torn map. After all of the puzzle pieces have been collected from the participants,

we can perform the digital puzzle image reconstruction process proposed in Section

2.3, and the complete data-embedded digital puzzle image will be recovered

automatically. Secret information embedded in the digital puzzle image will not be

extracted successfully unless all of the participants have returned their own parts of

 48

puzzle pieces in this process.

Decompose the digital
puzzle image

N folders of
puzzle pieces

Divide puzzle pieces into N
groups for secret sharing

Digital puzzle
pieces

Digital puzzle image decomposition process

Proposed puzzle pieces detection process

Recover the digital puzzle image

Digital puzzle
image

Digital puzzle
image

Digital puzzle image reconstruction process

Input N =
ShareNum

Figure 3.2 A flowchart of the information sharing process.

3.2 Proposed Puzzle Piece Feature
Detection Techniques

In this section, we will refer to all of the parameters which were defined in

Chapter 2.

3.2.1 Puzzle Piece Orientation Detection

Before performing the proposed digital puzzle image reconstruction process

proposed in Section 2.3, we have to figure out the orientation values (denoted as OVs)

 49

of the four sides (denoted as N, E, W, and S, respectively) of each puzzle piece region

map (denoted as PM). Then, we can apply the digital puzzle piece orientation

detection process proposed in Section 2.3.2.1 when performing the puzzle piece

orientation detection process in this chapter to find out the orientation pixels number

(denoted as OPN) and the OV of each detected PMs.

However, different from the digital puzzle pieces orientation detection process

proposed in Section 2.3.2.1, we do not have to scan all sides of each PM of a digital

puzzle image. We only scan S of each PM except those PMs whose corresponding

puzzle pieces are located in the last row of the digital puzzle image, and scan E of

each PM except those PMs whose corresponding puzzle pieces are located in the

rightmost column of the digital puzzle image in this section. We denote these kinds of

PMs as ORPMs (meaning orientation-related PMs) while performing the puzzle piece

orientation detection process.

3.2.2 Puzzle Piece Size Detection

We utilize the parameter BigR mentioned in Section 2.2.2.1 to modify the feature

of size (denoted as SZ), which is the area of the big circle as shown in Figure 2.5. The

value of the parameter BigR is either “BR” or “SR,” and the values of BR and SR are

derived by Formulas (2.1) and (2.2), respectively.

We only scan S of each PM except the PMs whose corresponding puzzle pieces

are located in the last row of a digital puzzle image, and scan E of each PM except the

PMs whose corresponding puzzle pieces are located in the most east column of the

digital puzzle image, and we denote these kinds of PMs as SRPMs (meaning

size-related PMs) while performing the puzzle piece size detection process.

While scanning each SRPMi, we calculate the number of black pixels (denoted as

 50

BPs) within the red rectangles as shown in Figure 3.3(b) and (d), and calculate the

number of white pixels (denoted as WPs) within the red rectangles as shown in Figure

3.3(a) and (c), and we denote BP and WP as size pixels numbers (SPNs). We utilize

the SPN of each SRPMi to figure out a total size pixel number (denoted as SPNtotal),

and an average size pixel number (denoted as SPNavg).

The derived SPNavg will be utilized in the watermark extraction process

proposed in Section 3.4.3 to figure out a size value (denoted as SV) of each detected

PM. We denote the SV as SVSmall when we find out that the parameter BigR is equal

to SR, and denote the SV as SVBig when we find out that the parameter BigR is equal

to BR.

Algorithm 3.1: Puzzle piece size detection process.

Input: Digital puzzle piece images and their corresponding SRPMs.

Output: An average size pixel number (denoted as SPNavg).

Steps:

Step 1 Applying the puzzle piece orientation detection process proposed in Section

3.2.1, and figure out an orientation value (denoted as OV) of E and S of each

ORPMi first.

Step 2 Scan each SRPMi.

Case 1. : If the OV of S of the ORPMi is equal to -1, perform the following

steps

2.1 Perform a raster scan of the SRPMi, and calculate the number of

the WPs, and denote this value as size pixels number (SPN). The

scanning region is illustrated in Figure 3.3(a).

2.2 Scan all of the SRPMi in Case 1, and sum up the SPNs of them.

Case 2. : If the OV of S of the ORPMi is equal to 1, perform the following

 51

steps.

2.3 Perform a raster scan of the SRPMi, and calculate the number of

the BPs, and denote this value as SPN, too. The scanning region

is illustrated in Figure 3.3(b).

2.4 Scan all of the SRPMi in Case 2, and sum up the SPNs of them.

Case 3. : If the OV of E of the ORPMi is equal to -1, perform the following

steps.

2.5 Perform a raster scan of the SRPMi and calculate the number of

the WPs, and denote this value as SPN, too. The scanning region

is illustrated in Figure 3.3(c).

2.6 Scan all of the SRPMi in Case 3, and sum up the SPNs of them.

Case 4. : If the OV of E of the ORPMi is equal to 1, perform the following

steps.

2.7 Perform a raster scan of the SRPMi , and calculate the number of

the BPs, and denote this value as SPN, too. The scanning region

is illustrated in Figure 3.3(d).

2.8 Scan all of the SRPMi in Case 4, and sum up the SPNs of them.

Step 3 Figure out a total size pixel number (denoted as SPNtotal) by summing up all

of the SPNs derived from the four cases discussed in Step 2.

Step 4 Figure out an average size pixel number (denoted as SPNavg) by dividing the

SPNtotal by the number of SRPMi.

(a) (b) (c) (d)

Figure 3.3 Scanning regions of the puzzle piece size detection process are within the red rectangles.

 52

3.2.3 Puzzle Piece Angle Detection

We utilize the parameter θ mentioned in Section 2.2.2.1 to modify the feature

of angle (denoted as AG), which is a notation shown in Figure 2.5. The value of θ is

taken to be either “40o” or “48o” in this study.

In this section, we only scan S of each PM except the PMs whose corresponding

puzzle pieces are located in the last row of a digital puzzle image, and scan E of each

PM except the PMs whose corresponding puzzle pieces are located in the rightmost

column of the digital puzzle image, and we denote these kinds of PMs as ARPMs

(meaning angle-related PMs) while performing the puzzle piece angle detection

process.

While scanning S and E, respectively, of each ARPMi, we calculate the number

of black pixels (denoted as BPs) of each side, and we denote the value of BP as an

angle pixel number (APN).

The derived APN will be utilized by the authentication signal extraction process

proposed in Section 3.5.3 to figure out an angle value for each detected PM. We

denote the angle value as AVSmall when we find out that the parameter θ is equal to

40o, and denote it as AVBig when we find out that the parameter θ is equal to 48o.

Algorithm 3.2: Puzzle piece angle detection process.

Input: Digital puzzle piece images and their corresponding ARPMs.

Output: A parameter angel pixels number (APN).

Steps:

Step 1 Scan S of each ARPMi and perform the following step. The scanning region

is shown in Figure 3.4(a).

1.1 Calculate the number of the BPs on the scanning line, and denote this

 53

value as APNi.

Step 2 Scan E of each ARPMi and perform the following step. The scanning region

is shown in Figure 3.4(b).

2.1 Calculate the number of the BPs on the scanning line, and also denote

this value as APNi.

 (a) (b)

Figure 3.4 The scanning region of the puzzle piece angle detection process is on the red line.

3.3 Proposed Secret Hiding Method by
Puzzle Orientation Modification

3.3.1 Core Concept

The core concept of secret data hiding method by puzzle orientation modification

is shown in Figure 3.5(a). Assume that we want to embed a bit sequence of a secret

message (denoted as Mesi) into an ORPMi, which was defined in Section 3.2.1. As

shown in Figure 3.5(a), by checking the input bit sequence of a secret key (denoted as

SKeyi), we can know whether we need to modify the orientation value (denoted as OV)

or not. If the answer is “Yes,” we will assign a value “-1” to the parameter UpDown,

which was mentioned in Section 2.2.2.1, and assign a value “1” to the parameter

UpDown while the answer is “No.”

 54

As shown by the flowchart of the data extraction process in Figure 3.5(b), for

each ORPMi, we try to figure out whether it is an indent or an outdent side by

comparing the value of PMW×
4
1 with the value of iOPN . By the checking result

and the input SKeyi, we can get the embedded Mesi.

Mesi Orientationi

Modify the
Orientation?

UpDowni = -1 UpDowni = 1

Skeyi

Concept of data embedding

Yes
No

O P N i

S ke yi

C onc e pt of da ta e x tra c t ion

Y e s /N o

P M W
4
1
×

? P M W
4
1

iO P N ×<

M e s i

(a) (b)

Figure 3.5 Concepts of data embedding and data extraction by puzzle orientation modification.

3.3.2 Secret Message Embedding Process

The proposed information embedding process is similar to the digital puzzle

image creation process proposed in Section 2.2.2.1. When performing the digital

puzzle image creation process, we randomly assign a value “1” or “-1” to a parameter

UpDown, but when performing this proposed process, the value of the parameter

UpDown is decided by an input secret message, and a secret key (denoted as SKeyi).

Algorithm 3.3: Information embedding by digital puzzle image orientation

modification.

Input: A digital image, secret message, and SKeyi.

Output: A secret message embedded digital puzzle image.

 55

Steps:

Step 1 Transform the secret message into a bit sequence (denoted as Mesi).

Step 2 Append an ending pattern (sixteen successive 0s) at the end of Mesi, that is,

0=iMes , if nin ≤<−16 .

Step 3 Decide a value of UpDowni by performing a bitwise Exclusive OR operation

to Mesi and SKeyi. A diagrammatic explanation is shown in Figure 3.6.

Step 4 Execute the digital puzzle image creation process proposed in Section

2.2.2.1 by utilizing the value of UpDowni derived from Step 3.

In Step 2, by utilizing the ending pattern, we can determine where the secret

information ends in a sequence of extracted bits after performing the information

extraction process.

i = 0 1 2 3 4 5 6 7 8 9 10 …..

Skeyi 1 0 1 0 1 0 1 1 0 1 1 …..

1 0 0 1 0 1 0 1 1 0 0 …..

1 1 0 1 1 0 1 0 1 0 1 …..
Mesi

UpDown6=1

UpDown6=-1

Take Orientation6 for example,
we denote UpDown as 1 while embedding bit 1.

Orientationi

 Figure 3.6 A bitwise Exclusive OR operation applied to Mesi and SKeyi.

3.3.3 Secret Message Extraction Process

The proposed secret information extraction process is also an inverse of the

embedding process. A flowchart of the secret information extraction process is shown

in Figure 3.7.

 56

OPNi

Secret message extraction process

PMW
4
1
×

Orientationi

Orientation detection process

UpDowni = 1 UpDowni = -1

Yes No

? PMW
4
1

iOPN ×<

Orientation deriving process

Skeyi

Mesi

Inverse bitwise XOR operation

Skeyi UpDowni

Digital puzzle image
with information

embedded

Figure 3.7 A flowchart of the secret information extraction process.

In this section, we will describe how we apply the puzzle piece orientation

detection process proposed in Section 3.2.1, and the algorithm of the information

extraction process is discussed as follows.

Algorithm 3.4: Information extraction by digital puzzle image orientation

detection process.

Input: A secret message embedded digital puzzle image, an ORPMi, and an SKeyi.

Output: A Mesi.

Steps:

Step 1 Detect each ORPMi of the secret message embedded digital puzzle image

Step 2 Derive an OPNi by performing the orientation detection process proposed in

Section 3.2.1.

 57

Step 3 Compare each OPNi with PMW×
4
1 in the following way.

3.1 If PMWOPNi ×<
4
1 , set 1=iUpDown .

3.2 If PMWOPNi ×>
4
1 , set 1−=iUpDown .

Step 4 Decide the value of Mesi by performing an inverse bitwise Exclusive OR

operation to the UpDowni and the SKeyi, and a diagrammatic explanation is

shown in Figure 3.8.

Step 5 Search the Mesi for the ending pattern (16 successive 0s) and truncate the

redundant bits at the rear of the Mesi.

Mes6 = 0

i = 0 1 2 3 4 5 6 7 8 9 10 …..

Skeyi 1 0 1 0 1 0 1 1 0 1 1 …..

UpDown6 = 1

UpDown6 = -1

PMW
4
1

6OPN ×< Mes6 = 1

PMW
4
1

6OPN ×>

Take Orientation6 for example,
if UpDown = 1, the embedded bit code is 1.

Orientationi

Figure 3.8 The inverse bitwise Exclusive OR operation applied to UpDowni and SKeyi.

3.3.4 Experimental Results

Some experimental results are shown in Figure 3.9. Figure 3.9(a) is a digital

puzzle image with the secret message, “阿祥，有一句話我一直很想告訴你，那就是

我喜歡你!!,” embedded. Figure 3.9(b) shows the secret message extracted from

Figure 3.9(a). Figure 3.9(c) is the secret message extracted from Figure 3.9(a) with a

wrong key. Therefore, Figure 3.9(c) shows the secret message is protected by the key

properly.

 58

(a)

(b)

(c)

Figure 3.9 Experimental results. (a) A digital puzzle image with a secret message embedded. (b) The

secret message extracted from (a) with a correct key. (c) The secret message extracted from

(a) with a wrong key.

 59

3.4 Proposed Watermarking Method
by Puzzle Size Modification

3.4.1 Core Concept

The core concept of the proposed watermarking method by puzzle size

modification is shown in Figure 3.10(a). Before embedding a watermark in a digital

puzzle image, we transform a watermark into a bit sequence (denoted as Wateri) first,

and embed it into each SRPMi, which is defined in Section 3.2.2. By checking an

input secret key (denoted as SKeyi), we can know whether we need to modify the

feature of size or not. If the answer is yes, we denote the parameter BigRi as SR, and if

the answer is no, we denote the parameter BigRi as BR.

As shown by the flowchart of the data extracting process in Figure 3.10(b), by

applying the puzzle piece size detection proposed in Section 3.2.2, we can figure out

the size pixels number (denoted as SPNi) of each SRPMi and the average size pixel

number (denoted as SPNavg). If the SPNi is bigger than SPNavg, we can figure out

that the size value (denoted as SV) of SRPMi is SVBig, and if the SPNi is smaller than

SPNavg, we can figure out that the SV of SRPMi is SVSmall. By the checking result

and the input SKeyi, we can get the embedded Wateri.

Wateri Sizei

Modify the Size?

BigRi = SR BigRi = BR

Skeyi

Concept of data embedding

Yes
No

(a)

SP N i

SPN i < SPN a vg ?Ske yi

C onc e pt of da ta e x tra c t ion

Ye s /N o

SPN a vg

W a te ri

(b)

Figure 3.10 Concepts of data embedding and data extraction by puzzle size modification.

 60

3.4.2 Watermark Embedding Process

When performing the digital puzzle image creation process proposed in Section

2.2.2.1, we randomly assign the value 272.4×PPS (SR) or 1272.4 +×PPS (BR)

to the parameter BigR, but when performing the proposed process in this section, the

value of the parameter BigR is decided by the input Wateri and a SKeyi.

Algorithm 3.5: Watermark embedding by digital puzzle image size modification.

Input: A digital image, a watermark, and a SKeyi.

Output: A watermark embedded digital puzzle image.

Steps:

Step 1 Transform the watermark into a bit sequence (denoted as Wateri).

Step 2 Append an ending pattern (sixteen successive 0s) at the end of Wateri, that is,

set 0=iWater if nin ≤<−16 .

Step 3 Decide a value of BigRi by performing a bitwise Exclusive OR operation to

Wateri and SKeyi. A diagrammatic explanation is shown in Figure 3.11.

Step 4 Perform the digital puzzle image creation process proposed in Section

2.2.2.1 by utilizing the parameter BigRi derived from Step 3.

In Step 2, by utilizing the ending pattern, we can determine where the watermark

ends in a sequence of extracted bits after performing the information extraction

process.

Sizei i = 0 1 2 3 4 5 6 7 8 9 10 …..

Skeyi 1 0 1 0 1 0 1 1 0 1 1 …..

1 0 0 1 0 1 0 1 1 0 0 …..

1 1 0 1 1 0 1 0 1 0 1 …..
Wateri

BigR6 = BR

BigR6 = SR

Take Size6 for example,
we denote BigR6 as BR while embedding bit 1

Figure 3.11 A bitwise Exclusive Or operation between Wateri and SKeyi.

 61

3.4.3 Watermark Extraction Process

The proposed watermark extraction process is an inverse of the embedding

process. A flowchart of the watermark extraction process is shown in Figure 3.12.

In this section, we describe how we apply the secret message extraction process

and the puzzle piece size detection process proposed in Section 3.3.3 and 3.2.2, and

the algorithm of the watermark extraction process is described as follows.

Algorithm 3.6: Process of watermark extraction by digital puzzle image size
detection.

Input: A watermark-embedded digital puzzle image, an SRPMi, and an SKeyi.

Output: A Wateri.

Steps:

Step 1 Detect each SRPMi of the watermark-embedded digital puzzle image.

Step 2 Derive an average size pixel number (denoted as SPNavg) and a size pixels

number (denoted as SPNi) of each SRPMi by performing the puzzle piece size

detection process proposed in Section 3.2.2.

Step 3 Compare the SPNi with the SPNavg, and perform the following steps.

3.1 If SPNavgSPNi > , that is, if size valuei (denoted as SVi) is SVBig, then

set BRBigRi = .

3.2 If SPNavgSPNi < , that is, if the SVi is SVSmall, then set SRBigRi = .

Step 4 Decide the Wateri by performing an inverse bitwise Exclusive OR operation

to the BigRi and the SKeyi, and a diagrammatic explanation is shown in

Figure 3.13.

Step 5 Search the Wateri for the ending pattern (16 successive 0s) and truncate the

redundant bits at the rear of the Wateri.

 62

SPNi

Watermark extraction process

Sizei

BigRi = BR BigRi = SR

Yes No
SPNi > SPNavg ?

Skeyi

Orientation deriving process

Size detection process

UpDowni = 1 UpDowni = -1

Size detection process

Orientation deriving process

Size detection process

UpDowni = 1 UpDowni = -1

Size detection process

All of the Sizei

SPNavg

Size value = SVBig Size value = SVSmall

BigRi

Wateri

Inverse bitwise XOR operation

Size deriving process

Digital puzzle image
with information

embedded

Secret message
extraction process

Skeyi

Figure 3.12 A flowchart of the watermark extraction process.

i = 0 1 2 3 4 5 6 7 8 9 10 …..

Skeyi 1 0 1 0 1 0 1 1 0 1 1 …..

Take Size6 for example,
if BigR6 = BR, the embedded bit code is 1.

Sizei

Water6 = 0

BigR6 = BR

BigR6 = SR

Water6 = 1SPN6 > SPNavg

SPN6 < SPNavg

SVBig

SVSmall

 Figure 3.13 An inverse bitwise Exclusive OR operation applied to BigRi and SKeyi.

 63

3.4.4 Experimental Results

Some experimental results are shown in Figure 3.14. Figure 3.14(b) is an input

watermark. Figure 3.14(a) is a digital puzzle image with the watermark Figure 3.14(b)

embedded. Figure 3.14(c) is a watermark extracted from Figure 3.14(a). From Figure

3.14(d), we can see that the watermark can-not be extracted with a wrong key.

 (a)

 (b) (c) (d)

Figure 3.14 Experimental results. (a) A digital puzzle image with the watermark (b) embedded. (b) An

input watermark. (c) A watermark extracted from (a) with a correct key. (d) A watermark

extracted from (a) with a wrong key.

 64

3.5 Proposed Authentication Method
by Puzzle Angle Modification

3.5.1 Core Concept

The core concept of the proposed authentication method by puzzle angle

modification is shown in Figure 3.15. We propose the use of a hash function to derive

authentication signals (denoted as ASi) first, and then embed them into each ARPMi,

which was defined in Section 3.2.3. By checking the ASi, we can know whether we

need to modify the feature of angle or not.

Authentication signali Anglei

Modify the Angle ?

Concept of data embedding

No

Θ = 40

Hash function

Mesi Wateri

Skeyi

Θ = 48

Yes

Figure 3.15 Concepts of data embedding process by puzzle Angle modification.

As shown by the flowchart of the data extracting process in Figure 3.16, by

applying the puzzle piece angle detection process proposed in Section 3.2.3, we can

figure out an angel pixels number (denoted as APN) of each ARPMi. Before utilizing

the APNi to derive the embedded ASi, we apply the puzzle piece orientation and size

detection processes proposed in Section 3.2.1 and 3.2.2, respectively first, and then

derive the values of UpDown and BigR. By utilizing the values of UpDown and BigR,

 65

we can divide the ARPMi into four kinds and start to detect the authentication signals.

By the checking result, we can get the embedded ASi.

APNi

APNi < BR_Up ?

BR_Up

Yes/No

Authentication signali

Hash valuei

Hash function

Mesi Wateri

Skeyi

Hash valui =
Authentication signali ?

Yes/No

Truthi

APNi

APNi < SR_Up ?

BR_Up

Yes/No

Authentication signali

Hash valuei

Hash function

Mesi Wateri

Skeyi

Hash valui =
Authentication signali ?

Yes/No

Truthi

APNi

APNi < BR_Down?

BR_Up

Yes/No

Authentication signali

Hash valuei

Hash function

Mesi Wateri

Skeyi

Hash valui =
Authentication signali ?

Yes/No

Truthi

APNi

APNi < SR_Down?

BR_Up

Yes/No

Authentication signali

Hash valuei

Hash function

Mesi Wateri

Skeyi

Hash valui =
Authentication signali ?

Yes/No

Truthi

Concept of data extraction

 UpDowni = 1 &
BigRi = BR

 UpDowni = 1 &
BigRi = SR

 UpDowni = -1 &
BigRi = BR

 UpDowni = -1 &
BigRi = SR

Figure 3.16 Concepts of data extraction process by puzzle angle modification.

3.5.2 Authentication Signal Embedding Process

When performing the digital puzzle image creation process proposed in Section

2.2.2.1, we randomly assign a value “40o” or “48o” to a parameter θ , but when

performing the proposed process in this section, the value of the parameter θ is

decided by input authentication signals (denoted as ASi).

 66

Algorithm 3.7: Authentication signal embedding by digital puzzle image angle
modification.

Input: A digital image, a Mesi, a Wateri, a Skeyi., and an empty array of

OrientationHashi, and an empty array of SizeHashi.

Output: An authentication-signal-embedded digital puzzle image.

Steps:

Step 1 Derive authentication signals (denoted as ASi) by performing the following

steps.

1.1 Read in the bit code Mesi, and assign the bit value of each Mesi to each

OrientationHashi in order.

1.2 Read in the bit code Wateri, and assign the bit value of each Wateri to

each SizeHashi in order.

1.3 Derive a hash value (denoted as Hashi) by applying the hash function

as shown in Formula (3.1) below:

2mod3mod))()1()1((iiii SkeyRandomSizeHashnHashOrientatioHash ×+×+= .
 (3.1)

1.4 Read in the Hashi, and assign the bit value of each Hashi to each ASi in

order.

Step 2 Decide a value of iθ by checking the ASi in the following way.

2.1 If the ASi is 1, assign a value “40o” to the iθ .

2.2 If the ASi is 0, assign a value “48o” to the iθ .

Step 3 Performing the digital puzzle image creation process proposed in Section

2.2.2.1 by utilizing the value of the iθ derived from Step 3.

 67

3.5.3 Authentication Signal Extraction Process

The proposed authentication signal extraction process is an inverse of the

embedding process. A flowchart of the authentication signal extraction process by

puzzle angle modification is shown in Figure 3.17.

In this section, we describe how we apply the secret message extraction process,

the watermark extraction process, and the puzzle piece angle detection process

proposed in Section 3.3.3, 3.4.3, and 3.2.3, respectively. And the algorithm of the

proposed authentication signal extraction process is described as follows.

A parameter neck value is used to represent the height (AM) of the triangle

shown in Figure 2.5. We denote the parameter neck value as NVSmall when the value

of θ shown in Figure 2.5 is °40 , and denote it as NVBig when θ is °48 . We can

derive the values of NVSmall and NVBig by applying Formulas (3.1) and (3.2) below,

respectively:

o40tan
6PPSNVSmall = ; (3.2)

o48tan
6PPSNVBig = . (3.3)

Before performing the information extraction process in this section, we should

figure out the values of some parameters. We derive the values of BR, SR, NVSmall,

and NVBig by applying Formulas (2.1), (2.2), (3.2), and (3.3), respectively first, and

the values of STheta_BR, BTheta_BR, STheta_SR, BTheta_SR, BR_Up, SR_Up,

BR_Down, and SR_Down by applying Formulas (3.4) through (3.11), respectively,

below:

BRNVSmallBRSTheta +=_ ; (3.4)

 68

Information extraction process

Angle deriving process

Anglei

Orientation deriving process
UpDowni = 1 UpDowni = -1

Yes No
APNi > SR_Up ?

Yes No
APNi > BR_Down ?

Size deriving process

Angle detection process Angle detection process

BigRi = SRBigRi = BR

BR_Down

Yes No
APNi > BR_Up ?

NVBig

BR_Up

Size deriving process

Angle detection process Angle detection process

BigRi = SRBigRi = BR

APNi APNi

NVSmall NVBig NVSmall

Θ
i
 = 40 Θ

i
 = 40Θ

i
= 48 Θ

i
= 48

SR_Up

Yes No

APNi

NVSmall NVBig NVBig

Θi = 40 Θi = 48

SR_Down APNi

NVSmall

APNi > SR_Down ?

Θi = 40 Θi = 48

Check Θi
If Θi = 40 If Θi = 48

Authentication signali = 1 Authentication signali = 0

Digital puzzle image
with information

embedded

Secret message
extraction process

Watermark
extraction process

Hash function

Mesi

Wateri

If Hash valuei !=
Authentication signali

The Mesi or the Wateri has been tampered !

Skeyi

Hash valuei

Hash valui Authentication signali

Authentication
Image

Figure 3.17 A flowchart of the Authentication signals extraction process by puzzle angle modification.

BRNVBigBRBTheta +=_ ; (3.5)

SRNVSmallSRSTheta +=_ ; (3.6)

SRNVBigSRBTheta +=_ ; (3.7)

2
___ BRBThetaBRSThetaPPSUpBR −−

= ; (3.8)

 69

2
___ SRBThetaSRSThetaPPSUpSR −−

= ; (3.9)

2
___ BRBThetaBRSThetaPPSDownBR ++

= ; (3.10)

2
___ SRBThetaSRSThetaPPSDownSR ++

= . (3.11)

Algorithm 3.8: Process of authentication signal extraction by digital puzzle

image angle detection.

Input: A digital puzzle image in which a secret message, a watermark, and

authentication signals are embedded; an Skeyi; and an ARPMi.

Output: Authentication signals (denoted as ASi), and an authenticated image.

Steps:

Step 1 Apply the secret message and the watermark extraction processes proposed

in Section 3.3.3 and 3.4.3, respectively, in the following

1.1 Apply these processes to extract Mesi and Wateri.

1.2 Apply these processes to figure out the values of UpDowni and BigRi

of each ARPMi.

Step 2 Derive a Hash value (denoted as Hashi) by applying the hash function shown

in Formula (3.1) utilizing the extracted Mesi and Wateri.

Step 3 Figure out the values of BR_Up, SR_Up, BR_Down, and SR_Down by

applying Formulas (3.8) to (3.11), respectively.

Step 4 Derive an angle pixels number (denoted as APNi) of each ARPMi by

performing the puzzle piece angle detection process proposed in Section

3.2.3.

Step 5 Compare each APNi with the value of BR_Up, SR_Up, BR_Down, or

 70

SR_Down in the following four kinds of cases.

Case 1. : If the parameter UpDowni of ARPMi is 1, and the parameter BigRi of

the ARPMi is BR, then compare APNi with BR_Up in the following

way.

5.1 If UpBRAPNi _> , that is, if the neck value is NVBig, then set

°= 48iθ .

5.2 If UpBRAPNi _< , that is, if the neck value is NVSmall, then set

°= 40iθ .

Case 2. : If the parameter UpDowni of ARPMi is 1, and the parameter BigRi of

the ARPMi is SR, then compare APNi with SR_Up in the following

way.

5.3 If UpSRAPNi _> , that is, if the neck value is NVBig, then set

°= 48iθ .

5.4 If UpSRAPNi _< , that is, if the neck value is NVSmall, then set

°= 40iθ .

Case 3. : If the parameter UpDowni of ARPMi is -1, and the parameter BigRi of

the ARPMi is BR, then compare APNi with BR_Down in the following

way.

5.5 If DownBRAPNi _> , that is, if the neck value is NVSmall, then

set °= 40iθ .

5.6 If DownBRAPNi _< , that is, if the neck value is NVBig, then

set °= 48iθ .

Case 4. : If the parameter UpDowni of ARPMi is -1, and the parameter BigRi of

the ARPMi is SR, then compare APNi with SR_Down in the following

way.

5.7 If DownSRAPNi _> , that is, if the neck value is NVSmall, then

 71

set °= 40iθ .

5.8 If DownSRAPNi _< , that is, if the neck value is NVBig, then

set °= 48iθ .

Step 6 If °= 40iθ , then denote the bit value of the ASi as 1, and if °= 48iθ , then

denote the bit value of the ASi as 0.

Step 7 Compare the Hashi with the ASi: if the Hashi is not equal to the ASi, decide

that the ith bit of the Mesi or the Wateri has been tampered.

Step 8 Create an authentication image according to the above comparison results.

3.5.4 Experimental Results

As discussed in the previous sections, we can verify the fidelity of embedded

secret information by the proposed digital puzzle image authentication system.

Because we embed only one bit into a puzzle piece angle, it is
2
1 in probability that

we may miss to detect a puzzle piece that has been damaged. However, if one

damaged bit has successfully been detected by this system, we can regard this digital

puzzle image as being tampered with.

Figure 3.18(a) is a digital puzzle image with a secret message, a watermark, and

authentication signals embedded. Figure 3.18(b) is a secret message extracted from

Figure 3.18(a), and Figure 3.18(c) is a watermark extracted from Figure 3.18(a).

Figure 3.18(d) is an authentication image, which shows a verification result of Figure

3.18(a). In Figure 3.18(d), we can see that there are only black dots on it, which

means that all of the puzzle pieces have not been modified. By Figure 3.18(b), (c),

and (d), we can claim that a secret message, a watermark, and authentication signals

 72

can be embedded in a digital puzzle image simultaneously by utilizing the proposed

methods.

Figure 3.18(e) is a copy of Figure 3.18(a) with some puzzle pieces being

tampered with. Figure 3.18(h) shows a verification result of Figure 3.18(e), we can

see that there are some red dots appearing on it. The locations of the red dots indicate

those puzzle pieces which have been modified. Figure 3.18(i) shows two pieces of

original digital puzzle pieces, and Figure 3.18(j) shows two pieces of digital puzzle

pieces which have been tampered with, and the yellow notations shown in Figure

3.18(k) indicate the locations of the puzzle pieces shown in Figure 3.18(i) and (j). If

people who know the proposed secret message embedding process plan to tamper

with the secret message, they can replace some original puzzle piece images with

some modified puzzle piece images, such as replacing the puzzle pieces shown in

Figure 3.18(i) with those shown in Figure 3.18(j). Figure 3.18(f) shows a secret

message extracted from Figure 3.18(e), and Figure 3.18(g) shows a watermark

extracted from Figure 3.18(e). We can see that both the secret message and the

watermark have been extracted successfully, which means that the watermark has not

been modified, and the secret message “might” not have been modified. However,

because some modified digital puzzle images are found by the proposed

authentication process, users can decide whether he/she will accept the extracted

secret message or not by the authentication image shown in Figure 3.18(h).

 73

(a)

(b)

(c)

(d)

Figure 3.18 Experimental results. (a) An original image. (b) A digital puzzle image with a secret

message, a watermark, and authentication signals embedded. (c) A secret message

extracted from (b). (d) A watermark extracted from (b). (e) A verification result of (b). (f)

A copy of (b) with some tampered puzzle pieces. (g) A secret message extracted from (f).

(h) A watermark extracted from (f). (i) A verification result of (f). (j) Two pieces of

original digital puzzle pieces. (k) Two pieces of tampered digital puzzle pieces. (l) The

yellow notations indicate locations of (j) and (k).

 74

(e)

Figure 3.18 Experimental results. (a) An original image. (b) A digital puzzle image with a secret

message, a watermark, and authentication signals embedded. (c) A secret message

extracted from (b). (d) A watermark extracted from (b). (e) A verification result of (b). (f)

A copy of (b) with some tampered puzzle pieces. (g) A secret message extracted from (f).

(h) A watermark extracted from (f). (i) A verification result of (f). (j) Two pieces of

original digital puzzle pieces. (k) Two pieces of tampered digital puzzle pieces. (l) The

yellow notations indicate locations of (j) and (k). (continued).

 75

(f)

(g)

(h)

Figure 3.18 Experimental results. (a) An original image. (b) A digital puzzle image with a secret

message, a watermark, and authentication signals embedded. (c) A secret message

extracted from (b). (d) A watermark extracted from (b). (e) A verification result of (b). (f)

A copy of (b) with some tampered puzzle pieces. (g) A secret message extracted from (f).

(h) A watermark extracted from (f). (i) A verification result of (f). (j) Two pieces of

original digital puzzle pieces. (k) Two pieces of tampered digital puzzle pieces. (l) The

yellow notations indicate locations of (j) and (k). (continued).

 76

(i)

Figure 3.18 Experimental results. (a) An original image. (b) A digital puzzle image with a secret

message, a watermark, and authentication signals embedded. (c) A secret message

extracted from (b). (d) A watermark extracted from (b). (e) A verification result of (b). (f)

A copy of (b) with some tampered puzzle pieces. (g) A secret message extracted from (f).

(h) A watermark extracted from (f). (i) A verification result of (f). (j) Two pieces of

original digital puzzle pieces. (k) Two pieces of tampered digital puzzle pieces. (l) The

yellow notations indicate locations of (j) and (k). (continued).

 77

(j) (k)

(l)

Figure 3.18 Experimental results. (a) An original image. (b) A digital puzzle image with a secret

message, a watermark, and authentication signals embedded. (c) A secret message

extracted from (b). (d) A watermark extracted from (b). (e) A verification result of (b). (f)

A copy of (b) with some tampered puzzle pieces. (g) A secret message extracted from (f).

(h) A watermark extracted from (f). (i) A verification result of (f). (j) Two pieces of

original digital puzzle pieces. (k) Two pieces of tampered digital puzzle pieces. (l) The

yellow notations indicate locations of (j) and (k). (continued).

 78

Figure 3.19 shows the performing time of embedding information in digital

puzzle images and separating them, and the performing time of reconstructing digital

puzzle images and extracting the embedded information from them.

0

5

10

15

20

25

30

35

40

25 36 49 64 81 100 121 144

The number of puzzle pieces

P
er

fo
rm

in
g

tim
e

(s
ec

on
ds

)

Puzzle image reconstruction

and information extraction

Information hiding

Figure 3.19 The performing time of experimental result

