
 79

Chapter 4
A New Digital Pointillistic Image
Creation Method for Information
Hiding by A Palette Color Coding
Technique

4.1 Overview of Proposed Method

The idea of the proposed method comes from the paintings of Georges Seurat

who was a French leading painter in the Neo-impressionist movement of the late 19th

century. He placed pure colors side by side by applying tiny strokes, dots, and dashes

to the surface of the canvas. When seen from a distance, the tiny strokes blend

together in the eye and are perceived as secondary colors. This technique has become

known as Pointillism. In this chapter, we try to imitate the style of the pointillistic

painter via a computer, and we name this kind of image digital pointillistic image.

In order to achieve the purpose of information hiding, we try to embed data into

certain features of the digital pointillistic image. We propose a new pointillistic image

creation method and a method for information hiding in digital pointillistic images by

a palette color coding technique. By this method, we can embed secret data in a

digital pointillistic image during the image creation process.

4.2 Proposed Digital Pointillistic Image
Creation Method

 80

4.2.1 Idea of Proposed Method

In a sense, the gimmick of creating pointillism is similar to the process of

creating a digital image via a computer. A computer draws a digital image using

colored pixels. However, because the pixels are too small, computer monitors will not

give us a picture like one that a neo-impressionist paints.

A flowchart of the proposed digital pointillistic image creation process is shown

in Figure 4.1. In order to imitate the pointillistic style while creating a digital image,

we distort an input image and enlarge the color pixels of it to become “dotlike.”

Besides, we also overlap the enlarged color dots of the created digital pointillistic

image. In principle, pixels are drawn onto a digital image serially, starting from the

top-left pixel, and moving horizontally on a row-by-row basis. However, while

performing the proposed digital pointillistic image creation process described in

Section 4.2.3, we should disarrange the drawing order of the

enlarged-and-overlapped-color-dots (denoted as EOCDs) by applying a random array

creation process discussed in Section 4.2.3 first. Besides, if we want to create the

digital pointillistic image to have a watercolor look, we can apply the digital

watercolor image creation process proposed in Section 4.2.2 to deal with the original

digital image before performing the digital pointillistic image creation process.

Digital pointillistic image

Random array creation process

Color dots drawing process

Digital pointillistic image creation process

Input digital image

Digital watercolor
image creation

process
Digital watercolor image

WCCAi

CCAi

Figure 4.1 A flowchart of the digital pointillistic image creation process.

 81

4.2.2 Proposed Digital Watercolor Image Creation

Process

In principle, the digital watercolor image creation process proposed in this study

and described in this section is an auxiliary for the digital pointillistic image creation

process. That is, we can transform an original digital image into a digital watercolor

image before creating a digital pointillistic image, and this is helpful to let the output

digital pointillistic image becomes more like a real painting. Of course, this is not an

essential process, and we can either apply it or not before performing the digital

pointillistic image creation process.

The operations of the proposed method include quantization and filtering as

shown in Figure 4.2. We quantize an input digital image into nine bits per pixel, that is,

three bits per channel of R, G, or B of each single pixel. Then, we apply a voting filter

to deal with the quantized image. For each pixel in the quantized image, we

accumulate the number of the colors of the pixels within a square (the square size

being 55×), and the square is centered at the currently-processed pixel. We find out

the color, say denoted as Cnew, which has the maximum accumulation value, and set

the color of that pixel to be Cnew.

Digital watercolor image
WCCAi

Digital image

Digital watercolor image creation process

Quantization process

Voting filter

Figure 4.2 Digital watercolor image creation process.

 82

4.2.3 Proposed Pointillistic Image Creation Process

As mentioned in Section 4.2.1, we have to enlarge and overlap the color pixels of

an input digital image to form a digital pointillistic image. As shown in Figure 4.3, we

set the value of DAD (meaning the distance between the centers of two adjacent

EOCDs) as “5,” and set the value of DOD (meaning the diameter of each EOCDi) as

“8.”

Before drawing the EOCDs in the digital pointillistic image, we create a random

array (denoted as RA) first by applying a random array creation process illustrated in

Figure 4.4. The RA is an array with the drawing order of the EOCDs, and the detailed

process is described as an algorithm below.

Algorithm 4.1: Scheme of digital pointillistic image creation process.

Input: A digital image.

Output: A digital pointillistic image.

Steps:

Step 1 Figure out how many EOCDs will be drawn on a digital pointillistic image,

and denote the number as NOD.

Step 2 Create an RA utilizing the NOD derived by Step 1 and a random number

generator.

Step 3 Decide a drawing order by applying the RA derived by Step 2, and draw the

EOCDs on their proper locations with their specific colors.

In Step 1, we figure out the width (denoted as ImageWidth) and the height

(denoted as ImageHeight) of the input digital image first, and then derive the value of

 83

the NOD by applying Formula (4.1) below:

DAD
timageHeigh

DAD
imageWidthNOD ×= (4.1)

In Step 2, we create an empty array (denoted as UA) first, with the size of the UA

being equal to the value of NOD, and set the value of each element of the array as “0”

to “ 1−NOD ” in order. Then, we utilize a random number generator, and set the

“generation range” of that from “0” to “ 1−NOD .” Besides, we create two other

empty arrays, namely, ID_0 and ID_1 with sizes equal to the value of NOD, too. We

set the value of element ID_0i as the (12 −x)-th value generated from the random

number generator, and the value of ID_1i as the (x2)-th value generated from the

random number generator, where the parameters 1~0 −= NODi and NODx ~1= .

Then, we swap the element in UAID_0i and the element in UAID_1i in order, and denote

the swapped UA as random array RA. A flowchart of the random array creation

process is illustrated in Figure 4.4.

In Step 3, first, by utilizing the values of DAD and DOD, we can figure out the

coordinates of the center of each EOCDi in order. Second, we get the RGB values of

the pixels at these coordinates of an input digital image, and then store the RGB

values into a Center-Color-Array (denoted as CCA) in order. Furthermore, if we apply

the digital watercolor image creation process proposed in Section 4.2.2 before

applying the digital pointillistic image creation process to deal with the input digital

image, we will derive a digital watercolor image. Then, we get the RGB value of the

pixel at the center of each EOCDi of the digital watercolor image, and then store the

RGB values into a digital watercolor image’s Center-Color-Array (denoted as

WCCA).

 84

Finally, we apply the drawing order stored in the RA to draw each EOCDi with

the RGB value obtained from the CCAi or WCCAi in a digital pointillistic image.

5=DAD

8=DOD

Figure 4.3 An illustration of DAD and DOD.

…… NOD-13210

UAk, k= …… NOD-13210

Un-swapped array

Random number generator

ID_0i = the (2X-1)th generated number

ID_1i = the (2X)th generated number

For i = 0 ~ NOD-1
Swap the value in UA(ID_0i) and UA(ID_1i)

Swapped UA = RA

X = 1~NOD, i = 0~NOD-1

(The generation range is from 0 to NOD-1)

⎪
⎩

⎪
⎨

⎧
Skeyi

Figure 4.4 A flowchart of the random array creation process.

 85

4.2.4 Experimental Results and Discussions

Figure 4.5(a) is an original image. Figure 4.5(b) is the final digital pointillistic

image created form Figure 4.5(a) by applying directly the digital pointillistic image

creation process proposed in Section 4.2.3. Figure 4.5(c) is the final digital watercolor

image created form Figure 4.5(a) by applying the digital watercolor image creation

process proposed in Section 4.2.2. Figure 4.5(d) is the final digital pointillistic image

created from the digital watercolor image shown in Figure 4.5(c).

Figure 4.6, Figure 4.7, and Figure 4.8 show some other experimental results of

this section.

(a)

Figure 4.5 Experimental results. (a) An original image. (b) A digital pointillistic image of (a). (c) A

digital watercolor image of (a). (d) A digital pointillistic image of (c).

 86

(b)

Figure 4.5 Experimental results. (a) An original image. (b) A digital pointillistic image of (a). (c) A

digital watercolor image of (a). (d) A digital pointillistic image of (c). (continued).

 87

(c)

Figure 4.5 Experimental results. (a) An original image. (b) A digital pointillistic image of (a). (c) A

digital watercolor image of (a). (d) A digital pointillistic image of (c). (continued).

 88

(d)

Figure 4.5 Experimental results. (a) An original image. (b) A digital pointillistic image of (a). (c) A

digital watercolor image of (a). (d) A digital pointillistic image of (c). (continued).

 89

(b)

(c)

(a)

(d)

Figure 4.6 Experimental results. (a) An original image. (b) A digital pointillistic image of (a). (c) A

digital watercolor image of (a). (d) A digital pointillistic image of (c).

 90

 (b)

 (c)

(a)

(d)

Figure 4.7 Experimental results. (a) An original image. (b) A digital pointillistic image of (a). (c) A

digital watercolor image of (a). (d) A digital pointillistic image of (c).

 91

 (b)

 (c)

(a)

(d)

Figure 4.8 Experimental results. (a) An original image. (b) A digital pointillistic image of (a). (c) A

digital watercolor image of (a). (d) A digital pointillistic image of (c).

 92

4.3 Proposed Data Hiding in
Pointillistic Images by A Palette
Color Coding Technique

4.3.1 Core Concept

The main concept of proposed Information hiding in digital pointillistic images

by a palette color coding technique is to utilize the variations of the RGB values of

enlarged-and-overlapped-color-dots (denoted as EOCDs) of a digital pointillistic

image to implement the information hiding process. For this aim, we derive a palette

image (or a palette watercolor image) by applying a palette color coding technique,

which will be proposed in Section 4.3.3 to deal with an input digital image (or a

digital watercolor image) before applying the digital pointillistic image creation

process. Then, we get the RGB values of the pixel at the center of each EOCDi of the

palette image (or the palette watercolor image), and store the RGB values into a

palette of the CCA (denoted as PCCA) or a palette of the WCCA (denoted as PWCCA).

Note that the CCA means the Center-Color-Array and that the WCCA means the

digital watercolor image’s Center-Color-Array as mentioned in Section 4.2.3. A

flowchart of the PCCA and the PWCCA deriving processes is shown in Figure 4.9.

A flowchart illustrating the above core concept is shown in Figure 4.9. If we

want to embed a bit code, Datai, into PCCAi (or PWCCAi), as shown in Figure 4.9(a),

by applying the data combination and disarrangement process proposed in Section

4.3.2 with utilizing the input secret key (denoted as Skeyi), we derive a Disordered

Datai (denoted as DDatai), and we can then know whether we need to modify the

RGB values of PCCAi (or PWCCAi) or not by checking if the bit value of the DDatai

 93

is equal to zero or not. If the answer is “Yes,” we will modify the RGB values of

PCCAi (or PWCCAi), and then derive a data embedded Center-Color-Array (denoted

as ECCAi). We apply the proposed digital pointillistic image creation process with the

RBG values stored in the ECCA to create a data-embedded digital pointillistic image.

While performing the data extraction process proposed in Section 4.3.4, we

apply the palette color coding technique proposed in Section 4.3.3 first, to deal with a

data-embedded digital pointillistic image, and derive a palette data-embedded digital

pointillistic image’s Center-Color-Array (denoted as PECCA). Referring to Figure

4.10(b), for each EOCDi of a digital pointillistic image, we check whether the ECCAi

is equal to the PECCAi or not. By the checking result, we can realize whether the

RGB values of this EOCDi have been modified or not. If the ECCAi is equal to the

PECCAi, we view this EOCDi as a non-modified one. Otherwise, we will view this

EOCDi as a modified one. Eventually, we derive a DDatai, and by applying the data

recovering process discussed in Section 4.3.4, we can recover a Datai from the DDatai.

The details of the data extraction process will be described in Section 4.3.4.

Input digital image

Digital watercolor
image creation

process

Pallet color
coding technique

Digital watercolor image
WCCAi

CCAi

PWCCAiPCCAi

PCCAi / PWCCAi deriving process

Figure 4.9 A flowchart of a PCCA and a PWCCA deriving processes. (We can follow the black arrows

to derive the PCCAi or follow the red arrows to derive the PWCCAi).

 94

 Concept of data embedding

Information
disarrangement

process

Disordered Datai PCCAi / PWCCAi

Disordered Datai = 0 ?

Yes
Modify the RBG value
of PCCAi or PWCCAi

Skeyi

Datai

ECCAi

 Concept of data extrating

PECCAiECCAi

Information recovering
process

ECCAi = PECCAi ?

Disordered Datai

Yes/No

Skeyi

Datai

(a) (b)

Figure 4.10 The core concept of information hiding in digital pointillistic images by a palette color

coding technique.

4.3.2 Data Combination and Data Disarrangement

Process

As mentioned in Chapter 3, we embed data into three features of a digital puzzle

image, but in this chapter, we can only embed data into one feature, i.e., the RGB

values of each EOCDi, of a digital pointillistic image. However, the capacity of the

embedded data is equal to the NOD of a digital pointillistic image, that is, as long as

the digital pointillistic image is not too small, the capacity will be quite large. So, we

try to combine two kinds of secret information and embed them in the digital

pointillistic image in the mean time.

Besides, the secret information might be extracted by people who know this

algorithm, so it is necessary to utilize a secret key to disorder the secret information

before embedding it.

The details of the data combination and disarrangement process are described as

an algorithm below.

 95

Algorithm 4.2: Data combination and disarrangement process.

Input: A bit sequence of a secret message (denoted as Mesi), a bit sequence of a

watermark (denoted as Wateri), and a bit sequence of a secret key (denoted as

SKeyi).

Output: A disordered bit sequence of the combination of the inputs Mesi and Wateri

(denoted as DDatai).

Steps:

Step 1 Create an empty array (denoted as DData), with the size of the DData being

equal to the value of NOD.

Step 2 Derive an data array (denoted as Data) by appending an ending pattern of

sixteen successive 0s at the end of Mesi, that is, set 0=iMes if nin ≤<−16 ,

and connect Wateri after the ending pattern, and then, append the ending

pattern again at the end of Wateri.

Step 3 Arrange the elements of Data into the DData in order.

Step 4 Randomly set the value of each redundant element of the DData (at the rear

of the Datai) as 0 or 1.

Step 5 Swap the elements of DDatai by applying the random array creation process

described in Section 4.2.3 utilizing the input Skeyi (to perform the random

number generation operation), and then derive a swapped DDatai.

In Step 1, by utilizing the ending pattern, we can determine where Mesi and

Wateri end in a sequence of extracted bits after performing the proposed data

extraction process. Besides, we can find out where Wateri starts in the sequence of

extracted bits by utilizing the ending pattern, too. The details of how to utilize the

ending pattern to separate Datai into Mesi and Wateri will be discussed in Section

4.3.5.

 96

4.3.3 Data Hiding Process

A flowchart of the data hiding process is shown in Figure 4.11. First, we derive a

Disordered Datai (denoted as DDatai) from an input Mesi and an input Wateri, and

derive a PCCA (or a PWCCA) from an input digital image (or a digital watercolor

image). Then, we derive the data embedded PCCAi or PWCCAi (denoted as ECCAi).

Finally, we apply the proposed digital pointillistic image creation process with the

RBG values stored in the ECCA to create a data-embedded digital pointillistic image.

Algorithm 4.3: Data hiding in digital pointillistic images by a palette color coding

technique.

Input: A digital image (or a digital watercolor image); a Mesi, a Wateri, and an SKeyi.

Output: A data embedded digital pointillistic image.

Steps:

Step 1 Derive a Disordered Datai (denoted as DDatai) from the inputs Mesi and

Wateri by applying the data combination and disarrangement process

proposed in Section 4.3.2 utilizing the input SKeyi.

Step 2 Derive a PCCA (or a PWCCA) from the input digital image (or the digital

watercolor image) by performing the palette color coding technique described

as an algorithm below.

Step 3 Derive an ECCA by checking DDatai. If DDatai is equal to zero, modify the

RGB values of the PCCA (or the PWCCA) by the method illustrated in

Figure 4.12.

Step 4 Apply the proposed digital pointillistic image creation process proposed in

Section 4.2.3 with the RBG values stored in the ECCA to create a data

embedded digital pointillistic image.

 97

Of course, because of the data embedding process, some RGB values of the

ECCA are different from those of the CCA or the WCCA. However, in our opinion,

this will not destroy the aesthetic of the digital pointillistic image.

Before performing the proposed palette color coding technique, we have to

establish a color table, denoted as CT, which is an array of RGB values. All of the

elements in CT are decided by the user, that is, the user can choose his/her favorite

colors and arrange them into CT. After applying the proposed palette color coding

technique to process a digital image, the colors of the output digital image (denoted as

palette image) will all be in CT.

Algorithm 4.4: Palette color coding technique.

Input: A digital image’s Center-Color-Array (denoted as CCA).

Output: A Palette CCA (denoted as PCCA).

Steps:

Step 1 Establish a CT.

Step 2 For each CCAi, compute the distance between CCAi and CTi.

Step 3 Figure out the CCAi with the minimum distance, and replace the RGB values

of the minimum-distance CCAi with those of CTi. Then, rename CCAi as

PCCAi.

In Step 2, if (RA, GA, BA) represents the RGB values of CCAi, and (RB, GB, BB)

represents the RGB values of CTi, then we compute the distance between them by

222)()()(ABABAB BBGGRR −+−+− . Besides, if an input array is WCCAi or ECCAi,

then the output array will be PWCCAi or PECCAi.

 98

Information hiding process

Skeyi

Information
disarrangement

process

Disordered Datai PCCAi / PWCCAi

Disordered Datai = 0 ?

Yes

Modify the RGB value
of PCCAi / PWCCAi

Datai

Input digital image

ECCAi

Mesi & Wateri

Information
combination

process

PCCAi / PWCCAi

deriving process

Digital pointillistic
image creation

process

 Data embedded digital pointillistic image

Figure 4.11 A flowchart of the information hiding in digital pointillistic images by a palette color

technique.

Modify the RGB value of PCCA i / PWCCAi

⎪
⎩

⎪
⎨

⎧

(RA, GA, BA) represents the RGB value of PCCAi / PWCCAi

(RB, GB, BB) represents the RGB value of ECCAi

RB = RA + 1 or RA - 1

GB = GA + 1 or GA - 1

BB = BA + 1 or BA - 1

Figure 4.12 A diagrammatic explanation of how to modify the RGB value of PCCAi /PWCCAi while

the Disordered Datai = 0.

 99

4.3.4 Data Extraction Process

A flowchart of the data extraction process is shown in Figure 4.13, and the

procedure is described as an algorithm below.

Algorithm 4.5: Data extracting from digital pointillistic images by a palette color

technique.

Input: A data embedded digital pointillistic image, and an SKeyi.

Output: A Mesi, and a Wateri.

Steps:

Step 1 Utilize the values of DAD and DOD defined in Section 4.2.3 to figure out the

data-embedded Center-Color-Array (denoted as ECCA) of the input digital

pointillistic image.

Step 2 Derive PECCAi from ECCAi by performing the palette color coding

technique proposed in Section 4.3.3.

Step 3 Compare each ECCAi with each PECCAi, and check if ECCAi is equal to

PECCAi or not to derive a DDatai in the following way.

3.1 Set DDatai = 1 if the answer is “yes.”

3.2 Set DDatai = 0 if the answer is “no.”

Step 4 Derive the embedded Mesi and Wateri from the DDatai by applying the data

recovering and separation process proposed in Section 4.3.5.

 100

 Information extraction process

Pallet color
coding technique

Data embedded
digital pointillistic image

PECCAiECCAi

ECCAi = PECCAi ?

Disordered Datai

Yes/No

Skeyi

Datai

Information
recovering

process

Information
separation

process

Mesi & Wateri

Figure 4.13 A flowchart of data extracting from digital pointillistic images by a palette color technique.

4.3.5 Data Recovering and Data Separation Process

The data recovering and separation process is an inverse version of the data

combination and disarrangement process proposed in Section 4.3.2. It is described as

an algorithm below.

Algorithm 4.6: Information recovering and separation process.

Input: A DDatai, and an SKeyi.

Output: A bit sequence of a secret message (Mesi), and a bit sequence of a watermark

(Wateri).

Steps:

Step 1 Swap the elements of DDatai to derive a Datai by applying the “inverse”

random array creation process illustrated in Figure 4.14, and start up the

 101

random number generator with using Skeyi.

Step 2 Extract Mesi from Datai in the following way.

2.1 Search Datai for the first ending pattern (16 successive 0s), and truncate

the redundant bits at the rear of Mesi.

Step 3 Extract Wateri from Datai in the following way.

3.1 Search Datai for the first ending pattern (16 successive 0s), and get the

index (denoted as w) of the first bit after the ending pattern. The element

of Dataw is taken as the first bit of Wateri.

3.2 Search Datai for the second ending pattern (16 successive 0s), and

truncate the redundant bits at the rear of Wateri.

In Step 1, different from the processing steps of the random array creation

process illustrated in Figure 4.4, we swap the values in DDataID_0i and DDataID_1i, for

0~)1(−= NODi but not for 0 ~ (1)i NOD= − .

Random number generator

ID_0i = the (2X-1)th generated number

ID_1i = the (2X)th generated number

For i = NOD-1 ~ 0
Swap the value in DData(ID_0i) and DData(ID_1i)

X = 1~NOD, i = 0~NOD-1

(The generation range is from 0 to NOD-1)
Skeyi

Disordered Data Array
(DData)

Data Array
(Data)

⎪
⎩

⎪
⎨

⎧

Figure 4.14 A flowchart of the data recovering process by utilizing the inverse random array creation

process.

 102

4.3.6 Experimental Results and Discussions

Figure 4.16 and Figure 4.17 show some experimental results of secret hiding in a

digital pointillistic image. Figure 4.16(a) is a digital pointillistic image with the secret

message, “阿祥，有一句話我一直很想告訴你，那就是我喜歡你!!,” and the

watermark, Figure 4.16(c), embedded. Figure 4.16(b) is the secret message extracted

from Figure 4.16(a) with a correct key. Figure 4.16(d) is the watermark extracted from

Figure 4.16(a) with a correct key. Figure 4.16(e) shows the extraction result of Figure

4.16(a) with a wrong key.

The only one difference between Figure 4.16 and Figure 4.17 is: before

performing the data hiding process proposed is Section 4.3, we have performed the

proposed digital watercolor image creation process proposed in Section 4.2.2 first to

deal with the Figure 4.15(a).

(a)

(b)

Figure 4.15 An experimental result of a digital watercolor image (b) created from an original image (a).

 103

(a)

(b) (c) (d)

(e)

Figure 4.16 Experimental results of secret hiding in a pointillistic image. (a) A pointillistic image with

secret message and the watermark, (c), embedded. (b) The secret message extracted from

(a) with a correct key. (d) A watermark extracted from (a) with a correct key. (e) The

extraction result of (a) with a wrong key.

 104

(a)

(b) (c) (d)

(e)

Figure 4.17 Experimental results of secret hiding in a pointillistic image. (Transform an original image

into a digital watercolor image first) (a) A pointillistic image with secret message and the

watermark, (c), embedded. (b) The secret message extracted from (a) with a correct key. (d)

A watermark extracted from (a). (e) The extraction result of (a) with a wrong key.

 105

Figure 4.18 shows the performing time of information embedding in and

extracting from digital pointillistic images.

0

50

100

150

200

250

300

350

400

2 3 4 5 6 7 8 9 10

Image size (×104 pixels)

P
er

fo
rm

in
g

tim
e

(s
ec

on
ds

)

Information embedding

Information extraction

Figure 4.18 The performing time of experimental results.

