

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

CAKE – 合作式演化性知識擷取方法

CAKE - Collaborative Acquisition for Knowledge Evolution

研 究 生：鄧嘉文

指導教授：曾憲雄 教授

中 華 民 國 九 十 五 年 六 月

合作式演化性知識擷取方法

Collaborative Acquisition for Knowledge Evolution

研 究 生：鄧嘉文 Student：Chia-Wen Teng

指導教授：曾憲雄博士 Advisor：Dr. Shian-Shyong Tseng

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis
Submitted to Institute of Computer Science and Engineering

College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master

in

Computer Science

June 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年六月

 i

CAKE – 合作式演化性知識擷取方法

研究生：鄧嘉文 指導教授：曾憲雄 博士

國立交通大學資訊科學與工程研究所

摘要

由於知識爆炸，知識可以分類為靜態知識和動態知識。儘管已有很多的知識

擷取方法可以系統化的從領域專家那取得靜態知識的規則，卻沒有任何一種方法

去深入討論發掘動態知識，其原因在於欠缺足夠的情境資訊 (context

information)。在本篇論文裡，我們提出一個方法命名為合作式演化性知識擷取

(CAKE)的新知識擷取方法，其透過收集足夠的情境資訊來幫助專家發現動態物

件的產生進而發掘動態知識。我們首先定義靜態個性化配置檔案(Profile)和動態

行為來做為情境資訊並以服務敏感性和症狀相似性等事件來做為合作啟發

(heuristic)以輔助專家意識到動態知識的發生。CAKE 中我們用變異物件知識擷取

(VODKA)和趨勢事件擷取(TEA)來建立動態擷取表格以增進發現變異物件的效率

並自動的調整屬性順序表格(AOT)內物件與屬性之間的重要程度來更進一步發

現演化性知識。這對協助專家了解屬性對物件之間的改變有很大的幫助。再來，

我們設計 CAKE 讓動態 EMCUD 增加新的物件或新的物件屬性來更新已存在的

知識表格並進而透過動態 AOT 將其原來的隱含規則具有適應的能力。除此之

外，我們開發了一個電腦蠕蟲偵測雛型系統來驗證 CAKE 的效能。

關鍵字：靜態知識，動態知識，知識擷取，VODKA，動態 EMCUD，TEA，CAKE

 ii

CAKE – Collaborative Acquisition for
Knowledge Evolution

Student: Chia-Wen Teng Advisor: Dr. Shian-Shyong Tseng

Department of Computer Science
National Chiao Tung University

Abstract

Due to the knowledge explosion, the knowledge can be classified into static

knowledge and dynamic knowledge. Although many knowledge acquisition

methodologies have been proposed to systematically elicit rules of static knowledge

from domain experts, none of these methods discusses the issue of discovering

dynamic knowledge due to the lack of sufficient context information. In this thesis,

we will propose a new collaborative knowledge acquisition methodology,

Collaborative Acquisition for Knowledge Evolution (CAKE), to solve the issue of

discovering dynamic knowledge by collecting sufficient relevant context information

to help experts notice the occurrence of dynamic object. First, we define static profiles

and dynamic behaviors as the context information to assist experts to be aware of the

occurrence of dynamic knowledge based on several collaborative heuristics for

service-sensitive and symptom-similar events. Variant Objects Discovering

Knowledge Acquisition (VODKA) and Trend Event Acquisition (TEA) are used to

construct a new dynamic acquisition table to facilitate the acquisition of variant

knowledge and to automatically adjust the relative importance of each attribute to

each object in the attribute ordering table (AOT) to discover the evolutional

knowledge in CAKE. This is useful to help experts understand the changing behaviors

 iii

of attributes to each object. Furthermore, CAKE is designed to use Dynamic EMCUD,

a new version of an existing knowledge acquisition system called EMCUD which

relies on the repertory grids knowledge acquisition technique to manage object/

attribute-values tables and to produce inferences rules from these tables, to update

existing tables by adding new objects or new object attributes in new acquisition for

adapting the original embedded rules with the dynamic AOT. Besides, a Worm

detection prototype system is implemented to evaluate the effectiveness of CAKE.

Keywords: static knowledge, dynamic knowledge, knowledge acquisition,
VODKA, dynamic EMCUD, TEA, CAKE

 iv

致謝

能順利完成本篇論文，最重要的必須感謝我的指導教授，曾憲雄博士。曾教

授在我碩士班兩年期間相當耐心的對我指導、與我討論；從他身上能學習到許多

不只論文研究上甚至領導處事中的技巧，所有這些寶貴的經驗讓我獲益匪淺，感

激不盡。同時也感謝我的口試委員，黃國禎教授、陳年興教授和胡毓志教授，他

們給予了我相當多的寶貴意見，讓本篇論文更有價值。

 第二位要感謝的人是林順傑學長，碩士期間讓我學會許多理論知識及研究方

法，也盡心盡力與我一起討論並分享想法，兩年先後完成的會議論文、期刊論文、

直到碩士論文，中間接受我的詢問和討論，並協助我論文修改工作，深表感激。

 此外我必須感謝實驗室學長平日的諸多幫助，同時也感謝實驗室同窗夥伴，

蔡昇翰、葉展彰、張晉璿、林永彧、林喚宇、任珍妮、施南極、羅仁杰等人在生

活上和課業上互相幫忙的情誼；以及學妹陳曉涵、王芙民等人在論文實驗上的支

援，深表感激。

 最後我要感謝我的家人對於我的支持與鼓勵，讓我在面對挫折的時候能夠繼

續向前，也讓我能夠有相當的自信完整本篇論文，深表感激。

 v

Table of Contents
摘要...i

Abstract...ii

致謝...iv

Table of Contents ...v

List of Figures..vi

List of Algorithms ..vii

List of Tables... viii

Chapter 1 Introduction..1

Chapter 2 Related Work..6

2.1 Knowledge Acquisition Review ..6
2.2 EMCUD ...9
2.3 Variant Object Discovering Knowledge Acquisition...11

Chapter 3 Context Representations ...15

3.1 Behavior Description Markup Language...15
3.2 Ontology Support...19

Chapter 4 The Framework of CAKE...24

4.1 The Collaborative Architecture..24
4.2 Trend Capturing and Analysis..29

4.2.1 Constructing Attribute Signal Table..31
4.2.2 Constructing Attribute Ordering Table ...32

4.3 Collaborative Heuristics...36

Chapter 5 Case Study and Experiment..39

5.1 Brief of Worms...39
5.2 Example of Computer Worms Detection ...41
5.3 Worm Immune Service Expert System..46
5.4 Experimental Results ...49

Chapter 6 Concluding Remarks ...52

Reference ..53

 vi

List of Figures

Figure 2.1: The Variant Object Discovering Knowledge Acquisition Flow................12
Figure 3.1: The Structure of BDML ..16
Figure 3.2: The Historical Context analysis ..17
Figure 3.3: Ontology Construction Flow...20
Figure 3.4: Example of CodeRed Concept Tree ..21
Figure 3.5: Example of Nimda Concept Tree ..22
Figure 3.6: Example of Blaster Concept Tree..22
Figure 4.1: The Architecture of CAKE..24
Figure 4.2: The Learning Module ..26
Figure 4.3: The Example of Collaborative Environment...28
Figure 4.4: The Flow of TEA ...29
Figure 4.5: Unfolding...30
Figure 4.6: Reconstructing...31
Figure 5.1: Worm Life Cycle ...39
Figure 5.2: Example of Nimda Concept Tree ..42
Figure 5.3: Example of Nimda Ontology ..45
Figure 5.4: Example of Nimda ontology ...46
Figure 5.5: Worm Immune Service Expert System ...47
Figure 5.6: WISE environment ..48

 vii

List of Algorithms

Algorithm 2.1: EMCUD algorithm..11
Algorithm 2.2: VODKA algorithm ..13

 viii

List of Tables

Table 3.1: Static Profile DTD ..18
Table 3.2: Dynamic Behavior DTD ...19
Table 4.1: An example of AST table ..32
Table 4.2: A simple acquisition table for Blaster and Sasser38
Table 4.3: A simple AOT for Blaster and Sasser..38
Table 4.4: Part of inference logs record ...38
Table 5.1: An Example of Nimda acquisition table ...42
Table 5.2: An Example of Nimda AST ..43
Table 5.3: An Example of Nimda AOT ...43
Table 5.4: An Example of Nimda AST ..44
Table 5.5: An Example of Nimda acquisition table ...44
Table 5.6: An Example of Nimda acquisition table ...44
Table 5.7: An Example of Nimda AOT ...44
Table 5.8: An example of Nimda acquisition table..45
Table 5.9: An example of Nimda AOT ..46
Table 5.10: Knowledge base construction efficiency ..49
Table 5.11: Inference efficiency...50
Table 5.12: Variant Discovering ratio ..50

 1

Chapter 1 Introduction

Knowledge acquisition (KA) is a methodology of obtaining the knowledge of

special domain from the domain expert, and knowledge based system (KBS) is an

intelligent computer program that uses knowledge and inference procedures to solve

problems that are difficult enough to require significant human expertise for their

solutions, such as disease diagnosis, investment prediction, or computer science.

Meanwhile, KA is one of the critical bottlenecks in developing a KBS for obtaining

the knowledge. Traditionally, knowledge engineers retrieve knowledge from human

experts by interviewing, and then a computer can be applied to perform the similar

problem as human experts do in the real world. In order to facilitate the efficiency,

knowledge engineers draw support from technical documents to interact with human

experts; therefore, the idea of ontology helps knowledge base system overcome

several bottlenecks such as knowledge representation, sharing and reusing. However,

in the real world environment, there is not only static knowledge but also dynamic

knowledge which is intensely fickle. With the changing environment as time goes on,

new objects in many domains are incrementally evolved or developed due to the

explosion of knowledge. It results in the creation of new knowledge due to the new

evolved objects. Avoiding a downward efficiency spiral involves constantly hatching

latest information while trying to defend an existing knowledge line. Hence,

knowledge can be classified as static knowledge and dynamic knowledge according to

the stability of knowledge in dynamic environment over time. The static knowledge

remains the same in the changing environment as time goes on. Since the different

environment can change over time, the original knowledge constructed at a time may

degrade or upgrade in the near future. Therefore, the dynamic knowledge means that

 2

the knowledge will be updated or evolved over time due to the adaptation of the

changing environment. The knowledge evolution we proposed in this thesis is the

iterative process to acquire evolutional knowledge in the changing environment.

Traditional KA methodologies, which are capable of acquiring static knowledge,

can be classified into interviewing, machine learning and knowledge acquisition

systems; however, the dynamic knowledge acquisition has hardly been discussed.

Knowledge engineers directly retrieve domain knowledge by interviewing with

human experts, and transform the knowledge into the computerized format to help

experts solve difficult problems in the real world. In general, to acquire dynamic

knowledge, the experts are required to be aware of the occurrence of new objects in

the interviewing approach and knowledge acquisition systems. However, it is still

difficult for experts to be aware of the new object without any additional related

information. The machine learning approaches, which can learn the useful knowledge

of static objects according to the selected training cases, are usually lack of the ability

of discovering new objects without new cases of dynamic objects in the training

process. As we know, many KA systems and tools such as NeoETS [5], ACQUINS [6],

KITTEN [24], EMCUD [17], KSSO [14], have been proposed to rapidly build

prototypes and improve the quality of the elicited static knowledge of well-known

objects by domain experts with/without knowledge engineers in the past twenty years.

However, most of them lack the ability of incrementally acquiring dynamic

knowledge since the experts may not be aware of the occurrence of new objects

without sufficient information.

EMCUD (Embedded Meaning Capturing and Uncertainty Deciding) [Hwang,

1991] was proposed to elicit the embedded meanings of knowledge (embedded rules

bearing on m objects (O1, O2, …, Om) and k object attributes) following repertory

 3

grids principles, which represents the information that domain experts take for granted

but are implicit to the people who are not familiar with the application domain, and

guide experts to decide the certainty degree of each embedded rule for extending the

coverage of the original rules generated by acquisition table. Since the relative

importance of each attribute to each object could be represented as attribute ordering

table (AOT) in EMCUD, some minor attributes can be relaxed or ignored to capture

the embedded meanings with acceptable CF. Assume some objects in O1 class, which

are classified by original rules of O1, belong to the original object class (OO1) of O1;

the other objects in O1 class, which are classified by embedded rules of O1, belong to

the extended object class (EO1) of O1. However, some embedded rules may be with

marginally acceptable certainty factor (CF) values due to the weak suggestions of

domain experts. In the age of the knowledge explosion, some objects might be

evolved with the times and could be classified by the embedded rules of O1 with weak

CF values since some related ambiguous attributes (minor attributes) are ignored to

classify these new evolved objects into O1 class. Although EMCUD extends the

ability of KA system to classify a new object into an original object class with the

weak embedded rules with lower CF values, it still lacks the ability to incrementally

discover the new objects and integrate the corresponding dynamic knowledge of new

objects into original knowledge base without rerunning the whole KA procedure to

generate the knowledge. Moreover, the human experts are unlikely to be aware of the

occurrence of the new evolved objects due to the lack of sufficient relevant

information about the new objects.

In this thesis, we will propose a new collaborative knowledge acquisition method

(CAKE – Collaborative Acquisition for Knowledge Evolution) to collect useful

evidence through monitoring the frequent inference behaviors of weak embedded

 4

rules and tracing trend events of objects with time in order to assist experts to

efficiently adapt the certainty factor of dynamic knowledge of new objects according

to the sufficient context information. In order to discover the new object, the VODKA

(Variant Object Discovering Knowledge Acquisition) is proposed to facilitate the

acquisition of new knowledge of variant objects by monitoring the frequently fired

weak embedded rules. Since the evidence of object evolution may appear diversely in

unpredictable time, a time interval tracing oriented mechanism, Trend Event

Acquisition (TEA) [22], for constructing dynamic knowledge of new objects is

proposed to adapt knowledge to current time by recording each interested attribute’s

information in each time interval and update evolutional knowledge base. The

VODKA generates a new acquisition table of new object, and the TEA generates a

dynamic AOT table for capturing the evolutional embedded meaning of these objects.

However, some dynamic knowledge might be invisible in each KBS with VODKA

and TEA. Several heuristics are proposed to assist experts in discovering the new

evolved objects, including service-sensitive and symptom-similar heuristics. The

context information, including static profile and dynamic behaviors, is designed to

assist experts to be aware of the occurrence of dynamic objects according to

service-sensitive heuristic and symptom-similar heuristic by collecting sufficient

information of multiple sensors. The service-sensitive heuristic can help experts to

discover similar behaviors result in different symptoms due to different individual or

environment configurations. The symptom-similar heuristic can assist experts to

recognize different behaviors result in similar symptoms between multiple sensors

due to the polymorphic configurations. We think the legacy knowledge acquisition

methods are inefficient to acquire the evolutional knowledge because it is unable to

learn the evidences of variation and development. Finally, we will propose the

 5

Dynamic EMCUD (D-EMCUD) to integrate new dynamic knowledge into original

knowledge base.

Based upon the CAKE framework, a worm detection prototype system with the

CAKE module is implemented to evaluate the effectiveness of integrating the new

evolved knowledge into original knowledge base. Based upon the collaborative

framework, the dynamic knowledge of new evolved objects could be elicited to

discover the new variant worms generated by the attacking traffic generator in the

experimental environment.

 6

Chapter 2 Related Work

Several knowledge acquisition methodologies and related systems are introduced

in this chapter. Here we also introduce repertory grid, one of the popular indirect

knowledge acquisition techniques. Finally, the elicitation of embedded meaning and

some problems of traditional knowledge acquisition methodologies are discussed.

2.1 Knowledge Acquisition Review

In general, there are three approaches for knowledge acquisition (Mcgraw et al.,

1989; Hwang and Tseng, 1990; Crowther and Hartnett, 1996):

(1) Interviewing experts by experienced knowledge engineers: interviewing

experts is usually time-consuming if the communication between domain

experts and knowledge engineers is insufficient.

(2) Machine learning: learning the knowledge by collecting many useful cases and

instances with/without the involvement of domain experts. However, the

quality of the results usually relies on the selected training cases.

(3) Knowledge acquisition systems: assisting domain experts in generating useful

rules using knowledge acquisition systems with/without the help of knowledge

engineers. These tools could reduce the effort of communication between

knowledge engineers and domain experts and could reduce the risk and

difficulty of selecting the suitable training cases.

Many researches like ETS [4], AQUINAS [6], RuleCons [23], MOLE [12] and

KSSO [14] were developed to build rapid prototypes (knowledge acquisition systems)

and to improve the quality of the elicited static knowledge. Most of them employed

the repertory grid test originally developed by George Kelly [19], and had discovered

 7

unexpected interesting results. The repertory grid could be used as efficient

knowledge acquisition technique in identifying different objects and distinguishing

these objects in a domain. A single repertory grid represented as a matrix whose

columns have element objects (labels) and whose rows have construct attributes

(labels) can classify a class of objects, or individuals. The value assigned to an

element-construct pair need not be Boolean. Grid values have numeric ratings,

probabilities, and other characteristics, where each value reflects the degree. Then, the

expert is asked to fill the grid with 5-scale ratings, where “1” represents the most

relevant attribute to the object; “2” represents that the attribute may relevant to the

object; “3” represents “unknown” or “no relevance”; “4” represents that the object

may have the opposite characteristic; “5” represents the most relevant opposite

characteristic to the object. Also, several researches focused on building an intelligent

expert system like MYCIN project [1], a well-known medical expert system for

diagnosing infectious diseases, encouraged the advent of expert system studies.

Moreover, ontologies and information sharing have a major role to play in the

development of knowledge-based agents and the overcome of the knowledge

acquisition bottleneck. Then, in 2003, an intelligent DNS management system [9], a

web-based DNS expert system, was proposed to assist DNS administrators in

managing their DNS by efficiently eliciting rules from experts or cases based on an

efficient DNS ontology construction algorithm.

In summary, the knowledge acquisition bottleneck can be described as follows

[26].

(1) Narrow bandwidth:

The existing channels converting organizational knowledge from its source (either

experts or documents, or transactions) are relatively narrow. Knowledge engineers can

 8

only focus on a few key applications, but not the bulk of all organizational knowledge.

The uses of data and text mining are limited by cost and mining effort. End user

experts are slow in capturing their own knowledge.

(2) Acquisition latency:

The slow speed of acquisition is frequently accompanied by a delay between the

time when knowledge (or the underlying data) is created and when the acquired

knowledge becomes available to be shared. This is especially a concern in dynamic

environments where knowledge changes quickly and therefore the knowledge

repositories always appear outdated. This challenge is related to the method of

knowledge acquisition as well as the incentive systems, which often do not encourage

experts to freely share their newest, most innovative, and most personal or tacit

knowledge.

(3) Knowledge inaccuracy:

Experts make mistakes and so do data mining technologies. Furthermore,

maintenance can introduce inaccuracies or inconsistencies into previously correct

knowledge bases. With little available bandwidth to create new knowledge, even

fewer resources are likely available to check the accuracy of knowledge already in the

system. Furthermore, correction procedures can be difficult and cumbersome (Who is

permitted to correct errors? What is the procedure? What incentives are there to report

errors?).

(4) Maintenance Trap:

As the knowledge in the knowledge base grows, so does the requirement for

maintenance. Furthermore, previous updates that were made with sufficient care and

foresight (“hacks”) will accumulate and render future maintenance.

 9

It appears there are few opportunities for breaking the knowledge acquisition

bottleneck. Several possible remedies have been discussed, for example, the work of

Boicu [7] described a practical approach, methodology and tool, for the development

of static knowledge bases and agents by subject matter experts, with limited

assistance from knowledge engineers. And the work of Wagner [26] described the use

of collaborative, conversational knowledge management to demonstrate the

opportunity for more effective knowledge acquisition. Obviously, the idea of

collaboratively and systematically constructing the dynamic knowledge bases is

launched. However, the dynamic environment limits all their efficiencies for the

knowledge acquisition methodologies. The real world knowledge in a dynamic

environment is often considered evolutional, because the knowledge can change or

evolve over time due to the advent of information century. The speed changing in

knowledge is too fast to manually accumulate the information by experts, and it

usually results in the ritualistic batch process analysis which is always tough and time

consuming.

Although many methodologies are proposed to extend the ability of uncertain

reasoning to classify the objects, none of them discusses the issue of discovering

dynamic knowledge of the new objects. It is also difficult for experts to notice the

occurrence of new object, which is evolved with dynamic environment as time goes

on.

2.2 EMCUD

The “embedded meanings” referred in this thesis represent the information that

domain experts take for granted but are implicit to people who may not feel familiar

with the application domain. The lack of embedded meaning will probably make an

 10

expert system fail to infer some cases being trivial to experts. SEEK (Politakis and

Weiss, 1987) and SEEK2 (Ginsberg et al., 1988) have been proposed to obtain

embedded meanings by some efficient refinement processes. EMCUD is proposed to

elicit the embedded meanings of knowledge from the existing hierarchical repertory

grids given by experts (Hwang and Tseng, 1990). EMCUD, a table-based knowledge

acquisition method, is proposed to be able to elicit the embedded meanings of rules

and guide experts to decide certainty factors from the existing hierarchical repertory

grids. Additionally, it interacts with experts and guides them to decide the certainty

degree with the embedded meaning. To capture the embedded meanings of the

resulting grids, the Attribute-Ordering Table (AOT), recording the relative importance

of each attribute to each object, is employed. There are three kinds of values in each

AOT attribute/object entry: “X”, “D” or an integer. “X” represents “don’t care” which

means that the attribute does not relate to the object, “D” represents “Dominate”

which means that the object cannot be supported without the attribute, and an integer

represents the relative degree of importance for the attributes to the object.

It is noticed that the integer ranges from 0 to 5, and 0 is treated as “X” while 5 is

treated as “D”. Besides the original rules, embedded rules can be generated by

negating the minor (non-dominate) attributes recorded in AOT. Each embedded rule is

assigned a certainty sequence (CS) by formula (1) and the certainty factor (CF)

calculated by formula (2) which is between 0 and 1 can represent the degree of

certainty for each embedded rule. Each of them is assigned a certainty factor (CF)

between 0 and 1 while the value approaches to 1 means more important; otherwise,

the value approaches to 0 means less important,

i k iCS(R) = SUM(AOT[Att , Obj]) (1)

where Attk belongs to the attribute set of Ri, and Obji is the object of Ri.

 11

()i
i a a a

i

CS(R)CF(R) = UB(R) - UB(R) - LB(R)
MAX(CS)

⎛ ⎞
×⎜ ⎟

⎝ ⎠
 (2)

MAX(CSi) is the maximum CS value in all embedded rules generated from the

original Ra with the same object. The EMCUD algorithm is listed in Algorithm 2.1:

EMCUD algorithm.

Algorithm 2.1: EMCUD algorithm

Input: The hierarchical grids.

Output: The guiding rules with embedded meaning.

Step1: Build the corresponding AOT with each grid of the hierarchical

multiple grids.

Step2: Generate the possible rules with embedded meaning.

Step3: Select the accepted rules with embedded meaning through the

interaction with experts.

Step4: Generate automatically the CF of each rule with embedded meaning.

To decide the CF of each embedded rule, the upper and the lower bounds values

are defined for accepted embedded rules. Then CF values of each rule can be

automatically determined by mapping function, formula (2). Thus, the useful

embedded rules with corresponding CF values could be used to cover more

uncertainty cases.

All rules generated by EMCUD can be categorized into two classes: original and

embedded rules with acceptable CF value, and discarded rules with unacceptable CF

value, according to the confidence degree of domain experts.

2.3 Variant Object Discovering Knowledge Acquisition

Although EMCUD successfully solves the problems of the conventional

 12

repertory grids, including knowledge representation and embedded meaning, it might

still exist several problems such as hard to explain the rules with lower CF value,

difficulty in deciding attribute ordering, and infeasible to elicit the knowledge of a

new variant object due to the knowledge explosion of the changing environment over

time. Hence, VODKA [25] is proposed to help experts be aware of the occurrence the

occurrence of the new objects by monitoring the inference behaviors of the weak

embedded rules with the lower CF values and incrementally extract the knowledge of

the new discovered objects to enhance the explanation power of the original

embedded knowledge base.

Embedded
Rule Base

Objects

Inference
Engine

Weak
Inference

Log

Experts

New Variants
Acquiring

Learning
Module

New Variants
Acquisition

Table

Frequent Events Analysis

Figure 2.1: The Variant Object Discovering Knowledge Acquisition Flow

The novelty of VODKA approach, shown in Figure 2.1, collects the inference logs

of weak embedded rules from KBS to learn the candidates of new evolved objects.

Since the new evolved objects may derive from well-known objects, some of them

can be classified into well-known object class with lower certainty factor according to

the nature of embedded rules in EMCUD. The learning module can be customized

according to the different applications. In this thesis, we use the frequent based

heuristic in learning module to discover the frequent attribute-value pairs between

collected inference logs since the new object could be fired frequently when it is

evolved. Hence, the discovered frequent attribute-value pairs could be used to help

 13

experts find out the new objects using the new variant acquiring module includes

three recommendations. Furthermore, the input facts which are different from original

acquisition table may be considered as the possible new attributes or attribute values

of a variant object. Therefore, if the variants could be detected and recommended as

the new objects by experts, the related ambiguous attributes (minor attributes) which

might result in the marginally acceptable CF values of original rules suggested by

experts could be refined or new attributes could be added to improve the classification

ability. According to the complexity of relations between objects and attributes or

even each relation between different tables, it is hard for experts to cooperate with

each other in building every column and every row for each table. The acquired new

objects can be used to construct the new variant acquisition table. The algorithm of

VODKA [25] is shown as follows.

Algorithm 2.2: VODKA algorithm

Input: The original main acquisition table T and embedded rule base RB.

Output: The rules with embedded meaning about variants.

Stage I: Collect all facts of the weak embedded rules as real inference log of the RB.

Stage II: Generate the new variants acquisition table T’.

Step1: Discover large itemsets L using the inference log.

Step2: Generate T’ using L and additional attributes provided by experts.

Stage III: Use E-EMCUD to generate rules of new variants.

Step1: Generate rules according to T’.

Step2: Merge T’ into original main acquisition table T.

VODKA has been implemented based upon DRAMA [21], an object-oriented

inference engine with NORM (New Oriented-original Rule-based Model) knowledge

representation providing high maintainability, reusability, sharability, and abstraction

for rule-based system, and the E-EMCUD (Extended EMCUD) has also been

 14

implemented to refine the embedded rule base.

However, it is still hard to have a certain command of the evolutional knowledge,

so we proposed CAKE to efficiently discover the evolutional knowledge by context

information analysis and collaborative heuristics. On the other hand, the repertory

grid-oriented method to construct acquisition table is somehow strenuous for an

expert and even more strenuous to solve the adaptive problem in a dynamic

environment; therefore, we proposed TEA to cope with the problems above by further

enhancing the original EMCUD method to become D-EMCUD (Dynamic EMCUD)

method [22].

 15

Chapter 3 Context Representations

We use XML, a simplified dialect of SGML (Standard Generalized Markup

Language), to model the behavior as a kind of context information for several reasons.

First, XML-based applications and tools are widely used and developed, and it has

been standard in World Wide Web Consortium (W3C) already. Seconds, software

tools for processing XML documents are easily obtained since file of XML is also

machine-readable. It provides a common descriptive specification framework that can

be used to enhance the reusability of the software documents. The heart of an XML

application is a file called the DTD (Document Type Definition), which describes the

hierarchical structure of a class of documents. Note that DTD is an XML document on

which we can reuse the content of the document.

3.1 Behavior Description Markup Language

In this thesis, a Behavior Description Markup Language (BDML) based upon

XML protocol is proposed to provide a general model for expressing computer’s

network behavior. But, there are two categories of context information should be

considered. First, static profile including environment configuration and individual

configuration represents the location information and the basic information of the

object. Second, dynamic behavior including individual trend and environment trend

records the historical behaviors of the objects and objects’ environment to further help

experts analyze the variant trend information and evolutional behaviors.

 16

BDML
Editing Page Extracting Tagging Writing

BDML
Document

BDML
DTD

Domain Ontology

Static Profile

Dynamic
Behavior

Events
preprocess

CAKE

Knowledge
Base

Profile
DB

Figure 3.1: The Structure of BDML

It is noticed that the dynamic context information includes static profile, dynamic

behaviors, the frequency, time based trend, and the correlations information between

individual and environmental behaviors to assist experts to be aware of the occurrence

of dynamic knowledge according to several collaborative heuristics for

service-sensitive and symptom-similar events. The structure of BDML is shown in

Figure 3.1. Since knowledge can be evolved with the dynamic environment as time

goes on, how to acquire and represent the dynamic context information becomes an

important issue. The context information can be classified into two categories: static

profiles and dynamic behaviors information.

(1) Static Profile:

In the real world, the environment includes individuals, the relationships between

individuals, and the related configurations. The environment could be considered as a

collection of network properties and each individual has its own properties in the

environment. Therefore, the static profile can be considered as environment

configuration and individual configuration. The environment configurations describe

the description of the environment, members in the environment, the status of the

 17

environment, and other relative properties rely on domain. The individual

configurations describe the individual ID, Location, Role of individual, and other

relative properties depending on the domain. Through the static profile, we could

classify the knowledge occurred in similar configuration.

(2) Dynamic Behaviors:

Some knowledge will be evolved to adapt the dynamic environment due to the

natural of knowledge evolution. Owing to clear representing the behaviors of

individual and environment, the trend of individual and environment can be easily

acquired. The individual trend consists of the sequence of status of time and the

occurrence of events pair. Also, the other relative properties should be also considered

in each domain. Like the individual trend, the evolutional trend also combines the

sequence of environment status and other properties to analyze the trend of

environment for capturing evolutional knowledge.

Figure 3.2 shows the analysis of historical context information which is

considered as dynamic. First it receives the information of uncertain variant frequency

from VODKA, and then processes the trend analysis by TEA. Finally, the BDML can

be constructed by combining all the static and dynamic components.

U n c e r t a i n t y V a r i a n t
F r e q u e n c y

T i m e i n t e r v a l a s s i g n m e n t

E n t r o p y b a s e d
i n f o r m a t i o n i n t e g r a t i o n

T i m e t r e n d t u n i n g

T r e n d A n a l y s i s

B D M L d o c u m e n t a n a l y s i s

H i s t o r i c a l C o n t e x t a n a l y s i s

Figure 3.2: The Historical Context analysis

 18

We design an XML based language that facilitates the machine readability for the

KA framework to model the context information. In this model, not only the static

profile but also the dynamic behaviors can be modeled using XML based description

because the structure of XML is regular expression. Furthermore, the stored context

can be easily reused, and the representation can be extended to describe new added

properties of individual or environmental profile and behaviors due to the

standardized property of XML.

Modeling the internet behavior by BDML, static profile DTD and dynamic

behavior DTD can be shown in Table 3.1 and Table 3.2. The corresponding DTD of

static profile in BDML includes environment configuration (network configuration)

and individual configuration (host configuration). The environment configuration

consists of description, members, status, and set of other properties, and the individual

configuration consists of ID (IP address), location (LAN address), Roles (Server or

Client), status, and a set of other properties.

Table 3.1: Static Profile DTD
<? Xml version=“1.0” encoding=“Big5”>

<!DOCTYPE Static Profile [

 <!ELEMENT Static Profile (Environment configuration, Individual configuration)>

 <!ELEMENT Environment configuration (Description, Members, Status, Properties)>

 <!ELEMENT Description (#PCDATA)>

 <!ELEMENT Members (#PCDATA)>

 <!ELEMENT Status (#PCDATA)>

<!ELEMENT Properties (#PCDATA)>

 <!ELEMENT Individual configuration (ID, Location, Roles, Status, Properties)>

 <!ELEMENT ID(#PCDATA)>

 <!ELEMENT Location(#PCDATA)>

 <!ELEMENT Roles(#PCDATA)>

 <!ELEMENT Status(#PCDATA)>

 <!ELEMENT Properties(#PCDATA)>

]>

 19

Table 3.2: Dynamic Behavior DTD
<? Xml version=“1.0” encoding=“Big5”>

<!DOCTYPE Dynamic Behavior [

 <!ELEMENT Dynamic Behavior (Individual trend, Environment trend)>

 <!ELEMENT Individual trend (#PCDATA)>

 <!ELEMENT Environment trend (#PCDATA)>

]>

 The corresponding DTD of dynamic behavior in BDML includes individual

trend and environment trend, including information of time, environment status,

individual events and some set of properties. Taking computer worms as an example,

the properties mentioned above consist of the basic information of the worms, the

service what the worms aim at, the exploitation what the worms use, the carrier what

the worms provide, the symptoms what the worms bring and the defense instructions

to the worms.

3.2 Ontology Support

According to the complexity of relations between objects and attributes, it is hard

for experts to cooperate with each other in building every column and every row for

each table. Therefore, an ontology strategy is firstly designed in this thesis to help

experts construct the knowledge in ontology and then the ontology will be

transformed into the acquisition table. Therefore, we can easily define every relation

between objects and attributes, and can easily assign a new attribute ordering value.

One of the purposes of applying ontology is to provide domain of discourse that

is understandable by human and computers, so ontology can be represented by

machine readable markup languages such as RDF. Moreover, the reusability of

ontology has become increasingly important for developing intelligent systems. In

 20

this thesis, we proposed an ontology based knowledge acquisition method that makes

the ontology not only reusable but also adaptive to the current environment. The

method of constructing the ontology is based upon a concept tree consisting of several

prior knowledge including BDML model and real cases provided by knowledge

engineers and domain experts to further help experts to construct the original EMCUD

method as an initial prototype of knowledge.

B D M L M o d e l

C a s e s d ia g n o s is

D o m a in C o n c e p t T r e e

M e r g e
P r o c e d u r e

H A S : 4
H A S : D

H A S :2

IS

I S

IS

I S

D o m ia n O n t o lo g y

E x p e r t

A tt r i b u te O r d e r i n g
I d e n t i f i c a t i o n

A t tr i b u te S i g n a l
T a b l e C o n s tr u c t i o n

U n c er t a in

C e r t a in

O b j e c ts a n d A tt r ib u te s
E x t r a c t io n

O b j e c t

A t t r ib u t e

V a lu e

H A S :V a l u e H a s : A tt r ib u t e o r d e r in g v a lu e
I S I s

C o n c e p t
B D M L

R o o t

S ta t i c
P r o f i le

D y n a m i c
B e h a v io r

E n v i ro n m e n t
C o n fi g u ra t i o n

In d i v i d u a l
C o n fi g u ra t i o n

E n v i ro n m en t
T ren d

In d i v i d u a l
T re n d

Figure 3.3: Ontology Construction Flow

Figure 3.3 illustrates the flow of constructing the domain ontology. To construct

the ontology more easily, the following four steps are proposed:

Step 1, BDML model construction:

Create the BDML model according to the components, including static profile and

 21

dynamic behavior. For example, we can model a worm BDML by identifying each

worm with six general attributes, including the basic information and the service for

static profile, then the exploitation, the carrier, the symptoms and the defense

instruction for dynamic behavior.

Step 2, Concept tree construction:

Since it is often easier and more accurate for experts to provide critical cases

rather than domain ontology, the power of critical cases described in terms of relevant

objects and attributes to build domain ontology is remarkable. Therefore, after case

diagnosing a concept tree is created based upon the skeletal model in Step 1. The

example of CodeRed worm, Nimda worm and Blaster worm concept trees are shown

in Figure 3.4, Figure 3.5 and Figure 3.6, respectively.

CodeRed

Basic
information

2000 NT

Service Defense
instruction

2001/07 4,039
bytes Target list

Indexing
Service

100

Reboot

Windows

Exploitation

IIS

SymptomsCarrier

TCP_port

80

Root.exe Explorer.exe
MS01-026 MS01-033

From
Microsoft

Discovery
Date Length Target

Selection
OS New File

Modify
File

Denial of
Service

Buffer
Overflow

Path Remove
Number

of Thread

Figure 3.4: Example of CodeRed Concept Tree

 22

Nimda

Basic
information

98

2000
NT

Exploitation

Symptoms

Defense instruction

Word,Wordpad
abnormal

Me

2001/09
57,344
bytes

scanning

XP

Readme.exe

Data
sharing

Web
traversal

MIME
header

Code red II Sadmind
/IIS

Load.exe

Admin.dll

Riched.dll
System/ini

Droped.dll
MS01-020

MS01-044

From Symantec

Windows

Service Carrier

IE IIS

guest

Discovery
Date Length

Target
Selection

OS

Back
Door

Upload
Medium

New
User

Account Executed
File

Name
Mail

Attachment

Path Remove

Send
Large
Mail

True

Figure 3.5: Example of Nimda Concept Tree

Blaster

Basic information

2000
XP

Symptoms

Defense instruction

New
file

TCP_port

2003/08

6,176 bytes

scannning

DCOM RPC
msblast .exe

MS03-026From Symantec

Send large RPC
packet and HTTP

packet
Reboot

2003

NT

1354444

UDP_port

69

System Crash

Internet
Explorer

Microsoft
Outlook

Outlook
Express

Microsoft
Office

From Trend

Windows

Carrier

Application
program

Abnormal

Denial of
Service

Remove PatchDiscovery
date

Length

Target
selection

O.S

Service

Exploitation

Figure 3.6: Example of Blaster Concept Tree

Step 3, Concept tree transformation:

The concept tree is transformed into acquisition table, and attribute ordering will

be next acquired from experts. Then the original EMCUD method can be processed

to generate the initial rules. However, because it is not easy to identify some attribute

ordering values precisely, the attribute which is uncertain to identify the ordering

 23

value should be traced and analyzed with time by constructing an AST. Each

attribute signal is recorded in each time interval, when the attribute appears

important the signal equals one and when it appears unimportant the signal equals

zero. Then the attribute ordering table will be reconstructed according to the attribute

signals collected with time.

Step 4, Merge procedure:

There are only two relations for constructing worm ontology during the merge

procedure, including “has” relation and “is” relation. The “has” relation embeds

attribute ordering value, for example, when the attribute ordering value equals 3 then

the relation should be “HAS:3”. Therefore, from Step 3, the ordering value would be

retrieved from the reconstructed AOT by AST method. Hence, the ontology can be

easily transformed into D-EMCUD method, and be updated whenever the AOT is

reconstructed or the variants are discovered.

 24

Chapter 4 The Framework of CAKE

4.1 The Collaborative Architecture

For the evolving environment, the important evidences could occur in every

location and in every minute; therefore, deploying several kinds of specific inference

engines to the significant environment is designed to cope with the problem. The

collaborative architecture is shown in Figure 4.1. By collecting inference results from

each inference engine, some results in the same period or in the sequential periods can

further approve or disprove the evidence.

Lo cal Sen so r Lo cal Sen so r L o cal Sen so r

L earning
Module

K B K B K B

V ariant
events

H euristics 1 H eur istics 2 H euristics 3

Collaborative H euristics

G lo b al
D- EM C U D

W eak var iant
events

1.
 H

eu
ri

sti
cs

 a
ss

ig
nm

en
t

2.
 E

ve
nt

s
In

te
gr

at
io

n

…

G lobal K now ledge
Base

E mbedded
L ogs

…
Suspected

L ogs

Suspected
var iant events 3.

 C
an

di
da

te
s

ge
ne

ra
tio

n

L earning
Module

E mbedded
L ogs

Suspected
L ogs

L earning
Module

E mbedded
L ogs

Suspected
L ogs

E x pert
Context D B

C A KE

Figure 4.1: The Architecture of CAKE

For example, suppose there are smoke detectors and temperature detectors in a

hotel. A simple meta rule can show that if there is a result of smoke form smoke

 25

engine and the other result of sparkle form temperature engine then it then triggers the

fire alarm service; however, if temperature engine sends back the result which is

around the temperature of a human body then it disproves the evidence of fire and

further approves that someone is smoking under the detectors. Obviously, the scenario

described above can not be handled by single sensor environment. Hence, we use

sensors with different configurations to represent such kind of expert systems or KBS

with embedded rule bases. When the system is operating, some inference logs of

cases, including old and new, will be recorded. By collecting and analyzing the

relationships between these inference logs using the collaborative heuristics with

sufficient context information, the occurrence of candidates of dynamic knowledge

could be discovered. The CAKE consists of log collector, frequency analysis, trend

analysis, collaborative analysis, dynamic EMCUD, and context DB to learn the

dynamic behaviors and to record the configurations of different environment. The

frequency-based analysis is proposed to discover significant variant knowledge by

monitoring the inference behaviors of weak embedded rules. Moreover, the sequence

of inference log will be considered to discover the relations between them to monitor

the occurrence of evolutional knowledge as time goes on. All discovered information

will be collected and further be analyzed by using collaborative analysis with

consideration of the static configurations and dynamic behaviors, since some

insignificant variant or evolutional knowledge might evade the frequency-based and

time-based analysis. Finally, the dynamic EMCUD will incrementally integrate the

discovered evolutional knowledge confirmed by experts, and then update the

evolutional knowledge base.

In Figure 4.1, every local sensor collects logs from the inference engine based on

the knowledge base (KB). Through the learning module, including components of

 26

VODKA and TEA, can provide information of embedded logs and suspected logs.

Embedded logs can be learned by VODKA to discover variants, and some of them

which are weak to be identified by VODKA can be traced by TEA methodology to

adjust the importance and further discover the variants. However, the logs considered

suspected are logs without fired rules but are suspected of evolutional knowledge.

When there is no matching rule after inferring through the inference engine, the log

then contains no information of fired rule. The unexpected patterns were too uncertain

to be accepted by experts at the beginning; however, they may evolve and become

new knowledge as time goes on. Therefore, those suspected logs can be retrieved by

context analysis based upon several collaborative heuristics and further the events of

suspected variant can be identified via experts. The learning module is shown in

Figure 4.2.

Embedded
Logs

Suspected
Logs

Trend Event
Acquisition

(TEA)

Acquisition Table
and AOT
Updating Local

D-EMCU D

Variant Object
Discovering Knowledge

Acquisition
(VODKA)

CA KE
Module

Figure 4.2: The Learning Module

We consider that the knowledge can be classified into static one and dynamic one.

The static knowledge can be designed and built by following the static knowledge

acquisition methodology such as EMCUD. But the dynamic knowledge could be

variant or evolutional. For variant knowledge, it can be discovered by VODKA

strategy when human experts themselves have enough abilities to decide the variant

configuration; however, human experts have no abilities to discover the evolutional

knowledge if without sufficient information, so in many situations, the evolutional

 27

knowledge is negated easily when experts select the acceptable embedded rules.

Hence, BDML based behavior context analysis is proposed to model ones’ behavior

according to their own environments. By BDML, the profile database can be

constructed to support the collaborative analysis, and finally the experts can use

D-EMCUD to construct or adjust the knowledge bases.

Taking Internet security as an example, there are many researches work on

collaborative intrusion detection system (CIDS), many of them use lots of techniques

such as the data mining technique to discover the intrusion; however they still have

several limitations like false alarm reduction and inability to discover the variants.

False alarms are too many to be handled due to lacking of environment context

analysis. Different host computers may have different symptoms but suffered with the

same attack. By the way, several attacks like computer worms may mutate in order to

evade the detection mechanism of CIDS. Therefore, Figure 4.3 shows the example of

collaborative architecture for CIDS, each of them has their own sensors and

knowledge bases according to their profile configurations. The monitoring report

from each one of sensors will be collected by the collaborative analysis center to

further manage the security tasks in their network environment.

 28

LANLAN

Internet

C ollabora tive A na lysis C ente r

R outer

LAN

P C

P C

P C

S erver

Server

N etw ork
Sensor

System
Sensor

L o ca l
K B

L o ca l
K B

L o ca l
K B

L o ca l
K B

L o ca l
KB

G lo bal
KB

Profile

Profile

Pro file

P rofile

Pro file

Network
Sensor

System
Sensor

System
Sensor

Figure 4.3: The Example of Collaborative Environment

In Internet, the environment configuration can be considered as network

configuration while the individual configuration can be considered as host

configuration. Hence, the network configuration can involve information like the

network description, the number of members, the status information and other

properties. Also, the host configuration can then involve the unique ID such as IP

address, network location, the role it plays as server or client, the status information

and also the other properties. For the dynamic behavior, the individual trend is

retrieved from the TEA analysis drawn support from VODKA, and for the environment

trend, the context information modeled by BDML is additionally retrieved to support

the collaborative analysis.

 29

4.2 Trend Capturing and Analysis

Embedded
Rule Base

Objects

Inference
Engine

Weak
Inference

Log

Experts

Attribute
Significance
Sequencing

Objects
Selecting

Trend Events Analysis

New Variants
Acquisition

Table

Dynamic
AOT

Constructing

Dynamic
AOT Table

Figure 4.4: The Flow of TEA

 The flow of Trend Event Acquisition (TEA) is shown in Figure 4.4. As mentioned

before, VODKA [25] has been proposed to help experts to discover the knowledge of

variant object by monitoring the inference behaviors but it lacks the ability of

discovering evolutional knowledge over time. Although the original idea of

constructing AOT table makes it more adaptive to elicit embedded meanings, it may

not be so sure to exactly define each relative importance of each attribute to each

object since the dynamic knowledge may change or evolve over time. It means that

some rules, which are recommended by experts now, may become uncertain in the

near future. Moreover, VODKA learns the behaviors of weak embedded rules with

low CF values, and if the CF value is not adaptive in the past few days then it may

encounter the problem of inefficiency in learning the variant object. In this thesis,

decomposing each object in the AOT to record the relative importance of each

attribute to the object into several time intervals is proposed. Each time interval

represents in a short period according to the viewpoints of experts or the learning

results of VODKA. It can simply assign “0” or “1” for each attribute to each object in

each time interval, where “0” represents the attribute is considered as the unimportant

attribute to the object and “1” represents the attribute is important to the object in this

 30

time interval.

The signals of “0” and “1” are called the attribute signals in each time interval,

and a table recording the information is called the attribute signal table (AST). There

are two steps, including unfolding and reconstructing to help experts trace the

evolutional behaviors. In order to capture the evolutional information of each object,

the original AOT table will be decomposed into several AST tables to record the

specific information in each interval with time in the first step shown in Figure 4.5.

Then, we will reconstruct the AOT table by renewing the relative importance of each

attribute to each object (ordering values) according to the sequence of “0” and “1”

signal recording with time in the second step shown in Figure 4.6. Since the ordering

values are recalculated at the present time according to all the evidences collected

with time, the AOT table becomes more flexible and robust to adapt the changing

environment.

Figure 4.5: Unfolding

 31

Figure 4.6: Reconstructing

4.2.1 Constructing Attribute Signal Table

In the changing environment, the knowledge will evolve over time. The relative

importance of each attribute to each object may need to be adjusted. Since not all the

attributes are working well after a period of time because of some characteristics of

the attribute. The domain expert can decide which attributes are required to be traced

with time if ordering values of the ambiguous attributes are hard to be decided

immediately. There are two ways of constructing AST:

(1) Interacted with human experts:

It is designed to acquire the attribute signals from domain experts in every time

interval for deciding whether the attribute is important or not. It is simpler to decide

whether it is “1” or “0” rather than to decide a relative importance of each attribute to

each object, the ordering value ranged from 0 to 5.

(2) Interacted with VODKA:

As mentioned above, VODKA can be used to learn and level up the CF of each

weak embedded rule by monitoring their inference behaviors. It can be helpful to

decide the attribute signal of importance or unimportance by directly mapping each

embedded rule to the AST.

 32

For example, assume VODKA generated after learning the candidates of variant

and then confirmed by experts, is shown as follows:

R1: IF A and B and not C Then Goal *2

R2: IF A and not B and C Then Goal *3

where *2 represents that the rule R1 has been fired two times, and R2 is inferred after

R1. The AST can be constructed as Table 4.1 according to the inference logs collected

in the five time intervals.

Table 4.1: An example of AST table
Attribute/ Object Goal.1 Goal.2 Goal.3 Goal.4 Goal.5

A 1 1 1 1 1

B 1 1 0 0 0

C 0 0 1 1 1

Since the attribute B is not negated in R1 according to the first two inference

results, but it is negated three times after in R2, the signal would be collected as

“11000” shown in the second row of Table 4.1. Finally the scoring method is

presented in the following subsection to help experts automatically renew the ordering

value in the AOT table to enhance the dynamic ability of AOT table.

4.2.2 Constructing Attribute Ordering Table

To capture the adaptively relative importance of each attribute to each object from

the AST table after a time period, the dynamic value adjusting method based upon

entropy formula (3) [16] is applied to transform AST to AOT instead of simple

leveling up the attribute’s ordering value when the attribute’s signal is “1” or leveling

down when the attribute’s signal is “0” ,

 33

2 2log logpos pos neg negEntropy
pos neg pos neg pos neg pos neg

⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠

 (3)

where “pos” represents positive case and “neg” represents negative case. In this case,

the positive case means that the attribute is decided as an important attribute to this

object such as signal “1” in AST table, and the negative value occurred in AST table

can not be an important attribute in this time interval such as signal “0”.

As you move from perfect balance or perfect homogeneity, entropy function

could be smoother between zero and one. The entropy is zero when the set of

collecting instances is perfectly homogeneous like all positive or negative instances,

and the entropy is one when the set is perfectly heterogeneous like half positive and

half negative instances. Hence, it is obvious to decide the new adjusting value of the

attribute in dynamic AOT table which should be set into a dominated attribute (D in

AOT) or irrelevant attribute (X in AOT) to the object depending on number of

positive and negative instances in this set when the entropy value approximates to

zero. In other words, if an attribute is continuous important (unimportant) to an object

in the collecting time period, then it could be a dominated (irrelevant) attribute to the

object in this time moment. The strategy of dynamic EMCUD is shown as follows:

Step 1, Summing:

Add up each number of positives and negatives, and then apply entropy formula

(3) to calculate the entropy weight of each attribute to each object.

Step 2, Mapping:

Transform the obtained entropy weight into relative importance of each attribute

to each object according to the following three cases:

Case 1:

If the entropy weight approximates to zero and the number of positive

instances is larger than that of negative instances, the ordering value of the

 34

attribute to the object could be assigned into “D” or “4” in the dynamic AOT

table.

Case 2:

In case 1, if the number of negative instances is larger than that of positive

instances, the ordering value of the attribute to the object could be assigned into

“X” or “1” in the dynamic AOT table.

Case 3:

If the entropy weight approximates to one, the ordering value of the

attribute to the object could be set into “2” or “3” in the dynamic AOT table.

Step 3, Tuning:

If the attribute is time relevant, the trend of the attribute should be applied to

adapt the obtained entropy weight according to the following three cases.

Case 1: Increasing trend.

The ordering value of this kind of attribute should be increased since the

attribute seems to become more and more important in the collected period such

as the sequence “001111”.

Case 2: Decreasing trend.

The ordering value of this kind of attribute should be degraded since the

attribute seems to become less and less important in the collected period such as

the sequence of “110000”.

Case 3: Uncertain trend.

The ordering values of this kind of attribute would not be tuned since this

kind of attribute has no significant trend in the collected period such as the

sequence of “010101” or “101010”.

In Step 1, it is very simple by summing up each number of “1” and “0” in AST

 35

table for comparing the numbers of positive and negative instances. The entropy

weight will be calculated to represent the distribution of “1” and “0” in each set in

Step 2. When the number of positives surpasses the number of negatives, the entropy

weight approximates zero and vice versa. It is obvious to assign a higher ordering

value (D or 4) when most of information represent important; otherwise, a lower

ordering value (X or 1) would be assigned due to the observation of unimportant

attribute. However, other relative importance of each attribute to each object would be

assigned when the entropy weight approximates one, which would be considered

uncertain degree. That is, it is usually uncertain to decide a decision when getting half

positive advices and half negative advices at a time; moreover, in Step 3, when the set

is heterogeneous, but the characteristic of attribute is time relevant then it can be

considered homogenous in some ways.

For example, suppose there are two sets in AST recorded as “000111” and

“111000”. After Step 1, both of “000111” and “111000” in entropy method are

considered uncertain because of perfectly heterogeneous. Since these two sets can be

considered time relevant, it is very certain that attribute with signals “000111” should

be assigned a higher ordering since it is important in the present time intervals.

Therefore, after calculating with entropy method in Step 2, there is still a time bonus

weighting in Step 3 to adjust each ordering value at final. Accordingly, the AOT is

considered dynamic by following the time interval tracing oriented mechanism, and

each CF value of a rule can now be leveled up or down automatically.

The mechanism not only applies VODKA to construct AST but also offers more

robust information for VODKA to learn the variant objects since each CF value is also

updated by the dynamic AOT.

 36

4.3 Collaborative Heuristics

Furthermore, according to the specific environment for a particular domain,

heuristic approach makes the collaborative analysis workable. Since some invisible or

unrecognizable behaviors might be ignored without sufficient information,

collaborative multiple sensors to collect more evidence of evolutional knowledge

becomes more important. The static profile and dynamic behaviors of individual and

environment could be used to help discover evolutional knowledge since they could

assist experts to trace the changing behaviors. The static profile can be used to analyze

the co-occurrence behaviors between different profiles since some behaviors might

exist in similar environment. The dynamic behavior can be used to analyze the similar

behaviors in different environment as time goes on. Based upon the collection of the

sufficient context information including the unrecognizable or invisible behaviors in

single sensor to discover the evolutional knowledge, the static profile and dynamic

behaviors of individual and environment could be used to help discover evolutional

knowledge. We propose two simple heuristics as followings based upon three

distributed inference engines, including Service-Exploitation Engine, Carrier Engine,

and Symptoms Engine.

(1) Service-sensitive event:

Different configuration may encounter with different symptoms or different

degree of damage in each progress. When several Service-Exploitation Engines

responds higher frequency of similar intrusion behaviors but with different behavior

presentations from the corresponding Symptoms Engines, CAKE then triggers the

trend analysis mechanism on the Symptom Knowledge Class by the aid of BDML.

Consequently, by the trend from BDML we may learn that it is because the firewall

 37

setting of some computer hosts are different from others. The central administrator

can thus forward the better firewall settings to those who do not have the proper

settings; furthermore, we may stumble upon a solution that the intrusion may be

limited to some special configuration setting. For example, some intrusion behavior

such as SQL Slammer which uses UDP port 1434 to exploit a buffer overflow in MS

SQL server, then it can simply switch off this port since CAKE learns that others SQL

servers which are unavailable to the Internet are immune.

(2) Symptom-similar event:

However, some computers come up with similar symptoms but with sort of

different behavior from the Carrier sensor or even the Service-Exploitation sensor. We

consider it is kind of polymorphic process for the intrusion like polymorphic worm

which is considered as the variant knowledge or the evolutional knowledge in this

thesis.

For heuristics above, the knowledge which is variant or evolutional, CAKE

triggers the specific trend analysis process on special knowledge class like Carrier

Knowledge Class or Service-Exploitation Class for symptom-similar events and

Symptom Knowledge Class for the those events which are service-sensitive

respectively. For example, D-EMCUD generates rules for Blaster and Sasser from

acquisition table and AOT shown in Table 4.2 and Table 4.3. VODKA discovers

variants from Log1 and Log2 in Table 4.4 since we suppose expert define CS value as

4 to be a threshold. According to the embedded rule represented as “IF A1 and A2 and

NotA3”, VODKA confirms the variants named as Blaster.B and Sasser.D. However,

Log3, a suspected log in Table 4.4, is negated since both of attribute A2 and A3 are

negative; therefore, the CS value is 7 (3+4) which is higher then the defined threshold.

Unfortunately, it is the variant information of Sasser.E; hence, to enhance the

 38

weakness, CAKE is applied and discovers the variant by Service-sensitive heuristic to

find out the evolutional information such as 1022 for port number and ftplog.txt for

carrier. By applying the heuristic, all information of suspected logs will be integrated

by intersection. Then those suspected logs with most frequency (suspected events)

will be further compared by BDML documents. Subsequently, the candidates of

evolutional knowledge will be generated and further confirmed by experts.

Table 4.2: A simple acquisition table for Blaster and Sasser
 Object

Attribute Blaster Sasser

Symptom (A1)
System Reboot; System

Crash; Word, Excel, Power
point abnormal

System Reboot; System
Crash; 128-threads

Service & Exploitation (A2)
RPC Buffer Overflow

(135;4444)
RPC Buffer Overflow

(445;5554;9996)
Carrier (A3) Msblast.exe avserve.exe; win2.log

Table 4.3: A simple AOT for Blaster and Sasser
 Blaster Sasser

A1 4 4
A2 4 4
A3 4 3

Table 4.4: Part of inference logs record

IF Part Then
Part Logs #

A1 A2 A3 Rule
CF

Log1 System Reboot Port:4444 penis32.exe RBlaster 0.6
Log2 System Crash Port:445 skynetave.exe RSasser 0.74
Log3 System Crash Port:1022 ftplog.txt - -

 39

Chapter 5 Case Study and Experiment

5.1 Brief of Worms

In order to understand the threat posed by computer worms, Figure 5.1 shows the

life cycle of worms [13] consists of five phases. In Initial Phase, each worm agent

begins with installing software, determining the configuration of the local machine,

instantiating global variables and beginning the main worm process. To find

vulnerable candidates in Target Selection Phase, a worm usually first discovers that

the other potential victim exists. Then in Network Reconnaissance Phase, a worm can

actively spread itself among machines or can be carried along as part of normal

communication traffic through the network. Next in Infect Phase, system which is

attacked may result in many abnormal behaviors in Attack Phase and may further

infect other victims.

Initial Target Selection Network Reconnaissance Attack Infect

Target Scanning

Network Propagation
Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Figure 5.1: Worm Life Cycle

Since most of the worms follow the life cycle, we can construct the

semi-structured document represented as a worm concept tree by interaction between

domain experts and knowledge engineers with support of BDML model, then the

meaningful information can be extracted according to the worms’ life cycle, including

 40

basic information of the worms, the service what the worms aim at, the exploitation

what the worms use, the carrier what the worms provide, the symptoms what the

worms bring and the defense instructions to the worms.

There are many companies or associations working on the research of network

security such as Symantec [30], F-Secure [29], and Trend [31]. Symantec, the world

leader in providing solutions to help individuals and enterprises assure the security,

availability, and integrity of their information, provides Norton Antivirus, a popular

software world wide, to scan the status of the host system and offer the solutions to

the security problems. However, it needs to be updated by downloading the latest

virus definition every period of time because of lacking self learning mechanism.

Additionally, users spend lots of time finding the meaningful solution through the

search engine when the report after scanning is not clear. Zero-day worms which are

resulted from variants for most of the time are a serious wide-scale threat due to the

monoculture problem. If there exits a standard signature-based detector which is blind

to a zero-day attack, we can say that all installations of it are also blind to the same

attack. The work of PAYL [27] anomalous payload detection sensor are demonstrated

to accurately detect and generate signatures for zero-day worms; however, it can only

be aware of the specific pattern that correlates ingress/egress payload alerts to identify

the worm’s initial propagation. Therefore, WISE [28] helps overcome these

drawbacks by collecting all the meaningful information through EMCUD and then

further discover more varieties of variants by VODKA. In advance, we make WISE

integrate the BDML based technical documents of worms and real cases from experts

into a tree-like structure, which is called concept tree, by knowledge engineers and

domain experts. Subsequently, more meaningful information will be merged to

construct the ontology in Figure 3.3 and also the learning methodology is applied to

 41

discover the variant worms based upon the knowledge acquisition method. Finally,

WISE provides tutorial guidelines to teach users to solve the problems with their own

antivirus products or other solutions from the Internet. Hence, the WISE strengthens

the power of general antivirus products and makes them more flexible based upon

knowledge bases. However, large numbers of replicated vulnerable systems allow

wide-spread infection that challenges the efficiency of WISE. We then employ WISE

based upon the architecture of CAKE and discover more interesting and surprising

knowledge to overcome WISE its’ original disadvantage of signal host-based

knowledge acquisition. The differences of WISE between with and without CAKE can

be seen in the experiments in Section 5.4.

5.2 Example of Computer Worms Detection

Nimda, an incredibly sophisticated worm that made headlines worldwide, is taken

as an example. Nimda is the first worm to modify existing web sites to start offering

infected files for download by using Unicode exploit to infect IIS web server. It is the

first worm to use normal end user machines to scan the vulnerable web sites. This

technique enables Nimda to easily infect intranet web sites located behind firewalls.

According to the dynamic behavior such as symptoms and carrier from BDML of

worm in Figure 3.3, we may suppose after case diagnosis the Nimda concept tree is

created in Figure 5.2 and can be transformed into acquisition table like Table 5.1. The

three attributes, including the name of the e-mail attachment used by worms, the

medium used by worms to upload themselves (the worm body), and the name of the

file used by worms to start execution on servers, are used to recognize Nimda in this

example. After constructing the acquisition table, the AOT table is needed to record

the relative importance of each attribute to the Nimda object. Suppose Nimda is the

 42

latest worm occurred in the recent cyber world, a worm domain expert might not have

strong confidence to decide the relative importance of each attribute because the

variants of Nimda may evolve quickly and the original ordering value needs to be

modified in a short period. Hence, the expert can easily identify the importance of

each attribute to Nimda1 and Nimda2 in each time interval according to the AST table

with two time intervals, and then assign the first interval a signal which equals one in

Table 5.2. Because the second time interval is pre-specified, the initial signal value is

zero. Next the entropy weight of each attribute is first calculated to obtain the

ordering value according to the AST. Since it is time irrelevant during the initial step

of construction, the ordering value is “2” after calculation while entropy equals one

because there is a positive instance and a negative instance. Therefore the initial AOT

is constructed as shown in Table 5.3.

Nimda

Mail_Attachment Upload_Medium Excuted_File_Name

Symptoms Carrier

Readme.exe cool.dllputa!!.scr Admin.dll

Figure 5.2: Example of Nimda Concept Tree

Table 5.1: An Example of Nimda acquisition table
Attribute/ Object Nimda

Mail_Attachment Readme.exe

Upload_Medium Admin.dll

Executed_File_Name Riched20.dll

 43

Table 5.2: An Example of Nimda AST
Attribute/ Object Nimda1 Nimda2

Mail_Attachment 1 0

Upload_Medium 1 0

Executed_File_Name 1 0

Table 5.3: An Example of Nimda AOT
Attribute/ Object Nimda

Mail_Attachment 2

Upload_Medium 2

Executed_File_Name 2

Having both acquisition table and AOT, eight embedded rules are generated using

EMCUD and some of them have low CF such as rule R1: ‘IF Not Mail_Attachment =

Readme.exe and Upload_Medium = Admin.dll and Executed_File_Name =

Riched20.dll Then Nimda’ with CF = 0.67. Therefore, suppose that the constructing

worm KBS receives several worm instances in the real world, the R1 rule above is

always fired by VODKA during a period, and suppose in the last two intervals the

embedded rule R2: ‘IF Not Mail_ Attachment = Readme.exe and Not

Upload_Medium = Admin.dll and Not Executed_File_ Name = Riched20.dll Then

Nimda’ with CF = 0.4 is fired by VODKA, the AST to record the evolutional trend is

shown in Table 5.4.

In Table 5.4, the Mail_Attachment attribute is calculated by entropy-based method,

and the entropy weight may lower the value because of its’ decreasing trend in

interval 6 and 7. Finally, the attribute is assigned a new ordering value equaling 1

since it is very possible to change again over time, subsequently, ordering value 3 is

assigned for both attributes Upload_Medium and Excuted_File_Nam according to the

AST. Therefore, the rule which has CF value equals 0.67 could be leveled up to 0.74.

 44

Moreover, several new attributes’ values are learned by VODKA with

Mail_Attachment = puta!!.scr in R1 ,then a new variant Nimda.B can be found in

Table 5.5 and can be integrated into Table 5.6, and also an AOT is updated as Table

5.7, then after merge procedure, the ontology is constructed as shown in Figure 5.3.

Table 5.4: An Example of Nimda AST
Attribute/ Object N1 N2 N3 N4 N5 N6 N7

Mail_Attachment 1 0 0 1 0 0 0

Upload_Medium 1 1 1 1 0 0 0

Executed_File_Name 1 1 1 0 1 0 0

Table 5.5: An Example of Nimda acquisition table
Attribute/ Object Nimda.A Nimda.B

Mail_Attachment Readme.exe puta!!.scr

Upload_Medium Admin.dll cool.dll

Executed_File_Name Riched20.dll httpodbc.dll

Table 5.6: An Example of Nimda acquisition table
Attribute/ Object Nimda

Mail_Attachment {Readme.exe; puta!!.scr }

Upload_Medium {Admin.dll; cool.dll}

Executed_File_Name {Riched20.dll; httpodbc.dll }

Table 5.7: An Example of Nimda AOT
Attribute/ Object Nimda

Mail_Attachment 1

Upload_Medium 3

Executed_File_Name 3

 45

Nimda

HAS:1
HAS:2 HAS:2

IS

IS

Mail_Attachment Upload_Medium Excuted_File_Name

Readme.exe
Admin.dll

IS

puta!!.scr

IS

cool.dll

Figure 5.3: Example of Nimda Ontology

With the accumulated inference logs, VODKA can learn variants, and the time

interval tracing oriented mechanism can be also used to incrementally update the

knowledge to adapt the changing environment over time. Suppose VODKA learns a

new attribute values, including Mail_Attachment = sample.exe, Upload_Medium =

cool.dll and Executed_File_Name = httpodbc.dll in R2 while the rule R2 has already

been fired in each time interval in a short period, another variant Nimda.E could be

found. Finally the updated tables are shown in Table 5.8 and Table 5.9 and meanwhile,

the ontology is also updated as Figure 5.4. Finally, the system will be set up in the

current environment and guide the people who are not familiar in the domain by

giving them a picture of worms for helping further preventing or removing the

malicious worms.

Table 5.8: An example of Nimda acquisition table
Attribute/ Object Nimda

Mail_Attachment {Readme.exe; puta!!.scr; sample.exe}

Upload_Medium {Admin.dll; cool.dll}

Executed_File_Name {Riched20.dll; httpodbc.dll }

 46

Table 5.9: An example of Nimda AOT
Attribute/ Object Nimda

Mail_Attachment 1

Upload_Medium 2

Executed_File_Name 2

Nimda

HAS:1
HAS:2 HAS:2

IS IS
IS

Mail_Attachment Upload_Medium Excuted_File_Name

Readme.exe
Admin.dll

Riched20.dll
IS

puta!!.scr

IS

sample.exe

IS

IS

cool.dll

httpodbc.dll

Figure 5.4: Example of Nimda ontology

5.3 Worm Immune Service Expert System

Up to now, there are many antivirus products that can discover worms, virus or

Trojan horse in a computer system. However, these products are hard to automatically

discover the variants of worms because the signature based approach appears fails

when the signatures are changed. To overcome the weakness, the WISE is proposed to

enhance the commercial antivirus products instead of replacing them. WISE, unlike

pattern matching system, does not need to rewrite the program but just updates the

knowledge base to modify the defense mechanism when the worms’ mutation

occurred; as a result, WISE can be maintained by simply updating the knowledge

bases. Since the knowledge of worms accumulates in fast speed, the knowledge

constructed today may be degraded in the near future. Therefore, we need to design a

knowledge acquisition method to solve the adaptive problem in the dynamic changing

 47

domain like the worm domain, and the knowledge in such domain we call it the

evolutional knowledge. Moreover, since the situation of different configurations from

different hosts complicates the intrusion behavior analysis, we propose a collaborative

architecture for WISE. The collaborative architecture of WISE is shown in Figure 5.5.

I n f e r e n c e e n g i n e 1

W o r m
K n o w l e d g e

B a s e

T u t o r i a l

D i s c o v e r y

D i a g n o s i s b

L o g s
c o l l e c t i o n

b b

F r e q u e n c y b a s e d a n a l y s i s

T i m e b a s e d a n a l y s i s

I n f e r e n c e e n g i n e 2 I n f e r e n c e e n g i n e 3

W o r m I m m u n e S e r v i c e
S e r v e r

P r o f i l e
D a t a B a s e

C o n t e x t b a s e d a n a l y s i s

Figure 5.5: Worm Immune Service Expert System

Since there is abundant information of worms from Internet, many technological

documents are easy to collect. Then the network environment can be further deployed

the multiple inference engines for gathering different inference results according to

the different BDML context configurations.

VODKA is applied to collect relevant information to help experts discover the

occurrence of variants form the original knowledge base. Also in the architecture,

VODKA helps D-EMCUD construct Attribute-Signal Table (AST) to reconstruct AOT

and update acquisition table through three stages, including log collecting stage (time

interval tracing stage), knowledge learning stage which would also draw support form

profile database, a BDML context information, based on CAKE architecture and

further polishes the knowledge.

 48

The environment is to provide a web interface to interact with the users by

inferring all the symptoms inputted by them or discovered by scanning tools. For

example, if worm infects a system, the user can scan the host computer by some

general antivirus software or can look for help from the Internet. Then WISE collects

all the information from the users and infers the information based upon the

knowledge base constructed by CAKE method. Consequently, the result after inferring

will be passed to the users and can be used to teach them how to recover the system to

the normal state. The example of collaborative WISE environment, shown in Figure

5.6, includes local analysis and global analysis. Frequency based analysis (VODKA)

and time based analysis (TEA) are used in each local learning module, and the

information after analysis are recorded as context based BDML documents. Then the

collaborative analysis center analyzes all the context information from locals based

upon several heuristics to discover the evolutional knowledge.

LANLAN

Internet

Collaborative Analysis Center

Router

LAN

PC

PC

PC

Server

Server

Sensor
Local

Analysis

Sensor
Local

Analysis

Sensor
Local

Analysis
Sensor

Local
Analysis

Sensor
Local

Analysis

Local
KB

Local
KB

Local
KB

Local
KB

Local
KB

Global
KB

Global Analysis

Profile

Profile

Profile

Profile

Local Analysis :
1. Frequency based
2. Time based

Global Analysis :
1. Context based

Figure 5.6: WISE environment

 49

5.4 Experimental Results

We implemented a D-EMCUD web based system based upon architecture of

CAKE, and WISE is used as an experiment domain. We set up three computers with

the D-EMCUD system and each one is designed with the specific knowledge base

according to the BDML profile. To evaluate the performance of CAKE architecture,

we test the system to generate 100 rules, 200 rules, 400 rules, 800 rules and 1000

rules respectively. The difference between the signal host knowledge based

construction and multiple hosts knowledge based construction is shown in Table 5.10

which shows the acquisition from multiple hosts based upon CAKE architecture is

more efficient.

Notice that it does not mean the environment with multiple sensors is always the

best. The collaborative heuristics between sensors can affect the whole system’s

performance. However, after the experiment, we do improve the performance through

the environment with multiple sensors based upon CAKE architecture.

Table 5.10: Knowledge base construction efficiency
rules 100 200 400 800 1000

Single host 63 ms 126 ms 280 ms 656 ms 1172 ms

Multiple hosts 48 ms 93 ms 187 ms 438 ms 969 ms

Subsequently, each host or computer performs each duty of inference, and every

inference process will be controlled by the collaborative heuristics to decide whether

each knowledge base should be inferred. From the collection of the inference results,

some evidences of worms may be further approved or disapproved. The experimental

results in inference performances on designed models are sets with 100 rules, 200

 50

rules, 400 rules, 800 rules and 1000 rules respectively to infer a goal. Examining the

inference time to reach the goal, Table 5.11 shows the better performance in

multiple-hosts environment.

Table 5.11: Inference efficiency
rules 100 200 400 800 1000

Single host 15142 ms 27579 ms 32807 ms 47438 ms 60697 ms

Multiple hosts 7240 ms 17485 ms 20960 ms 28611 ms 31202 ms

Finally, we did an experiment of the evaluation of discovering variants. We

generated all kinds of test simples including the behaviors of original worms and

variants (polymorphic worms) to randomly attack the network. Then we found that

CAKE successfully discovers the variants those can not be discovered by VODKA.

Since some critical weak embedded rules may be ignored in the beginning of

knowledge based construction, some specific variants will never be found by VODKA

unless the KB is reconstructed and experts accept the rules which had been ignored

before, then apply VODKA once again. However, CAKE uses a collaborative learning

mechanism based upon all information of the historical logs to reveal the rules which

had been ignored at the beginning. In the experiment, we define “inference number”,

which represents the minima number of rules that inference engine has to go through,

as a measure of inference efficiency. The experimental result is shown in Table 5.12.

Table 5.12: Variant Discovering ratio
 Original worms Variant Worms Inference number

VODKA 100% 60% 193

VODKAR 100% 100% 294

CAKE 100% 100% 200

The second row of Table 5.12, VODKAR, shows that the VODKA is applied

 51

again on the knowledge which has been reconstructed. Obviously, after KB

reconstruction, VODKA can learn all of the variants; however it needs extra inference

number about 100. On the other hand, CAKE can also learn all of the variant

information, but in the case of CAKE, it needs only 7 extra inference costs to reach the

goal. Therefore, CAKE is more efficient.

 52

Chapter 6 Concluding Remarks

We have proposed CAKE, a new knowledge acquisition method enhanced from

legacy EMCUD, to make the knowledge more adaptive for the current environment.

CAKE uses TEA to record important information in each time interval by interacting

with human experts and also the VODKA’s learning strategy is used to discover the

variant knowledge. Finally, D-EMCUD is used to generate the adaptive rules for the

current environment. A case study of variants of the computer worm detection is

illustrated to ease the experts’ efforts from analyzing and learning and to help

retrieving meaningful information for making proper decisions since the knowledge

bases become more adaptive for a changing environment.

The prototype of WISE has been implemented which can enhance variants

detecting and defending abilities in commercial antivirus products by using learning

method based upon CAKE. We are enriching the worm knowledge bases of WISE by

CAKE to provide more flexible and reliable worm immune services which can

discover the variants that can not be discovered by the original WISE based upon

VODKA and single host-based architecture.

In the near future, CAKE will be applied to different domains and applications. By

further identifying more interesting information in BDML, it can cover as many

aspects as possible to completely represent the specific domain behaviors. Moreover,

designing abundant collaborative heuristics to enrich the scalabilities of CAKE is

going to be an important topic.

 53

Reference

[1] J. Adams, “Probabilistic and certainty factors”, In: B. Buchanan and E. Shortliffe, Eds,

Rule-Base Expert Systems: The MYCIN Experiments of the Stanford Heuristic

Programming Project. Reading, MA: Addison-Wesley, 1985.

[2] J. H. Boose, “Personal construct theory and the transfer of human expertise”, American

Association for Artificial Intelligence, 1984.

[3] J. H. Boose, “A knowledge acquisition program for expert systems based on personal

construct psychology”, International Journal of Man Machine Studies, Vol. 23, 1985, pp

495-525.

[4] J. H. Boose, “ETS: A PCP-based program for building knowledge-based systems”, IEEE

Western Conference on Expert Systems, 1986.

[5] J. H. Boose and J.M. Bradshaw, “NeoETS: Capturing expert system knowledge in

hierarchical rating grids”, IEEE Expert System in Government Symposium, 1986.

[6] J. H. Boose and J.M. Bradshaw, “Expertise transfer and complex problems: using

AQUINAS as a knowledge-acquisition workbench for knowledge-based systems”,

International Journal of Man Machine Studies, Vol. 26, 1987, pp 29-40.

[7] M. Boicu, “Automatic Knowledge Acquisition from Subject Matter Experts”, IEEE

International Conference on Tool with Artificial Intelligent, 2001

[8] P. Crowther and J. Hartnett, “Using repertory grids for knowledge acquisition for spatial

expert system” Processing on Intelligent Information System, November 1996.

[9] C. S. Chen, S. S. Tseng and C. L. Liu, “A Unifying Framework for Intelligent DNS

Management”, International Journal of Human-Computer Studies, Vol.58, No.4, pp.

415-445, 2003.

 54

[10] J. Diederich, I. Ruhmann and M. May, “KRITON: a knowledge-acquisition workbench

for knowledge-based systems”, International Journal of Man Machine Studies, Vol 26,

1987, pp 3-27.

[11] R. Davis, “Interactive transfer of expertise”, Artificial Intelligent, Vol. 56, 1987, pp.

121-157

[12] L. Eshelman, D. Ehret, J. McDermott and M. Tan, “MOLE: a tenacious knowledge

acquisition tool”, International Journal of Man Machine Studies, Vol. 26, 1987, pp 41-54.

[13] D. Ellis, Dr. McLean, “Worm Anatomy and Model” ACM CCS workshop on Rapid

Malcode (WORM’03), October 2003.

[14] B. R. Gaines, “An overview of knowledge-acquisition and transfer”, International

Journal of Man Machine Studies, Vol. 26, 1987, pp 453-427.

[15] W. A. Gale, “Knowledge-based knowledge acquisition for statistical consulting system”,

International Journal of Man Machine Studies, Vol. 26, 1987, pp 55-64

[16] J. Han and M. Kamber, Data Mining Concept and Techniques, Elsevier (Singapore) Pte

Ltd, 2003.

[17] G. J. Hwang and S. S. Tseng, “EMCUD: A knowledge acquisition method which

captures embedded meanings under uncertainty.” International Journal of Man-Machine

Studies, Vol. 33, No. 4, pp. 431-451, 1990.

[18] G. J. Hwang and S. S. Tseng, “On building a medical diagnostic system of acute

exanthema.” Journal of Chinese Institute of Engineers, Vol. 14, No. 2, pp. 185-195, 1991.

[19] G. A. Kelly, The psychology of personal construct, New York: Norton, 1955.

[20] M. Karresand, “Separating Trojan Horses, Virus, and Worms- A Proposed Taxonomy of

Software Weapons” IEEE Workshop, 2003.

 55

[21] Y. T. Lin, S. S. Tseng and C. F. Tsai, “Design and implementation of New

Object-Oriented Rule base Management system.” Journal of Expert Systems with

Applications, Vol. 25, pp. 369-385. 2003.

[22] S. C. Lin, C. W. Teng and S. S. Tseng, “Capturing Evolutional Knowledge using Time

Interval Tracing”, accepted by Journal of Advance Computational Intelligence and

Intelligent Informatics, 2006.

[23] R. M. O’Bannon, “An Intelligent aid to assist knowledge engineers with interviewing

experts”, IEEE Western Conference on Expert System, 1987.

[24] M. L. G. Shaw and B. R. Gaines, “Knowledge initiation and transfer tools for experts

and novices”, International Journal of Man Machine Studies, Vol. 27, 1987, pp 251-280.

[25] S. S. Tsegn, S. C. Lin and L. H. Liu, “VODKA: Variant Objects Discovering

Knowledge Acquisition”, submitted to International Journal of Human-Computer Study,

2006.

[26] C. Wagner, “Breaking the Knowledge Acquisition Bottleneck through Conversational

Knowledge Management”, Information Resources Management Journal Vol. 19, Issue 1,

2006.

[27] K. Wang, G. Cretu and S. J. Stolfo, “Anomalous Payload-based Worm Detection and

Signature Generation”, International Symposium on Recent Advance In Intrusion

Detection, 2005

[28] C. L. Wu, ”A Worm Immune Service Expert system for denial of service attacks”,

National Chiao Tung University, Master thesis, June 2005.

[29] F-Secure Corporation, 1988-2005, http://www.f-secure.com/

[30] Symantec Corporation, 1995-2005, http://www.symantec.com/corporate/

[31] Trend Corporation, 1989-2005, http://www.trendmicro.com/tw/home/enterprise.htm

