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CAKE – 合作式演化性知識擷取方法 
 
 

研究生：鄧嘉文       指導教授：曾憲雄 博士 

 

國立交通大學資訊科學與工程研究所 

 

摘要 

由於知識爆炸，知識可以分類為靜態知識和動態知識。儘管已有很多的知識

擷取方法可以系統化的從領域專家那取得靜態知識的規則，卻沒有任何一種方法

去深入討論發掘動態知識，其原因在於欠缺足夠的情境資訊 (context 

information)。在本篇論文裡，我們提出一個方法命名為合作式演化性知識擷取

(CAKE)的新知識擷取方法，其透過收集足夠的情境資訊來幫助專家發現動態物

件的產生進而發掘動態知識。我們首先定義靜態個性化配置檔案(Profile)和動態

行為來做為情境資訊並以服務敏感性和症狀相似性等事件來做為合作啟發

(heuristic)以輔助專家意識到動態知識的發生。CAKE 中我們用變異物件知識擷取

(VODKA)和趨勢事件擷取(TEA)來建立動態擷取表格以增進發現變異物件的效率

並自動的調整屬性順序表格(AOT)內物件與屬性之間的重要程度來更進一步發

現演化性知識。這對協助專家了解屬性對物件之間的改變有很大的幫助。再來，

我們設計 CAKE 讓動態 EMCUD 增加新的物件或新的物件屬性來更新已存在的

知識表格並進而透過動態 AOT 將其原來的隱含規則具有適應的能力。除此之

外，我們開發了一個電腦蠕蟲偵測雛型系統來驗證 CAKE 的效能。 

 
關鍵字：靜態知識，動態知識，知識擷取，VODKA，動態 EMCUD，TEA，CAKE 
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Abstract 

Due to the knowledge explosion, the knowledge can be classified into static 

knowledge and dynamic knowledge. Although many knowledge acquisition 

methodologies have been proposed to systematically elicit rules of static knowledge 

from domain experts, none of these methods discusses the issue of discovering 

dynamic knowledge due to the lack of sufficient context information. In this thesis, 

we will propose a new collaborative knowledge acquisition methodology, 

Collaborative Acquisition for Knowledge Evolution (CAKE), to solve the issue of 

discovering dynamic knowledge by collecting sufficient relevant context information 

to help experts notice the occurrence of dynamic object. First, we define static profiles 

and dynamic behaviors as the context information to assist experts to be aware of the 

occurrence of dynamic knowledge based on several collaborative heuristics for 

service-sensitive and symptom-similar events. Variant Objects Discovering 

Knowledge Acquisition (VODKA) and Trend Event Acquisition (TEA) are used to 

construct a new dynamic acquisition table to facilitate the acquisition of variant 

knowledge and to automatically adjust the relative importance of each attribute to 

each object in the attribute ordering table (AOT) to discover the evolutional 

knowledge in CAKE. This is useful to help experts understand the changing behaviors 
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of attributes to each object. Furthermore, CAKE is designed to use Dynamic EMCUD, 

a new version of an existing knowledge acquisition system called EMCUD which 

relies on the repertory grids knowledge acquisition technique to manage object/ 

attribute-values tables and to produce inferences rules from these tables, to update 

existing tables by adding new objects or new object attributes in new acquisition for 

adapting the original embedded rules with the dynamic AOT. Besides, a Worm 

detection prototype system is implemented to evaluate the effectiveness of CAKE. 

 
Keywords: static knowledge, dynamic knowledge, knowledge acquisition, 
VODKA, dynamic EMCUD, TEA, CAKE 
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Chapter 1  Introduction 

Knowledge acquisition (KA) is a methodology of obtaining the knowledge of 

special domain from the domain expert, and knowledge based system (KBS) is an 

intelligent computer program that uses knowledge and inference procedures to solve 

problems that are difficult enough to require significant human expertise for their 

solutions, such as disease diagnosis, investment prediction, or computer science. 

Meanwhile, KA is one of the critical bottlenecks in developing a KBS for obtaining 

the knowledge. Traditionally, knowledge engineers retrieve knowledge from human 

experts by interviewing, and then a computer can be applied to perform the similar 

problem as human experts do in the real world. In order to facilitate the efficiency, 

knowledge engineers draw support from technical documents to interact with human 

experts; therefore, the idea of ontology helps knowledge base system overcome 

several bottlenecks such as knowledge representation, sharing and reusing. However, 

in the real world environment, there is not only static knowledge but also dynamic 

knowledge which is intensely fickle. With the changing environment as time goes on, 

new objects in many domains are incrementally evolved or developed due to the 

explosion of knowledge. It results in the creation of new knowledge due to the new 

evolved objects. Avoiding a downward efficiency spiral involves constantly hatching 

latest information while trying to defend an existing knowledge line. Hence, 

knowledge can be classified as static knowledge and dynamic knowledge according to 

the stability of knowledge in dynamic environment over time. The static knowledge 

remains the same in the changing environment as time goes on. Since the different 

environment can change over time, the original knowledge constructed at a time may 

degrade or upgrade in the near future. Therefore, the dynamic knowledge means that 
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the knowledge will be updated or evolved over time due to the adaptation of the 

changing environment. The knowledge evolution we proposed in this thesis is the 

iterative process to acquire evolutional knowledge in the changing environment. 

Traditional KA methodologies, which are capable of acquiring static knowledge, 

can be classified into interviewing, machine learning and knowledge acquisition 

systems; however, the dynamic knowledge acquisition has hardly been discussed. 

Knowledge engineers directly retrieve domain knowledge by interviewing with 

human experts, and transform the knowledge into the computerized format to help 

experts solve difficult problems in the real world. In general, to acquire dynamic 

knowledge, the experts are required to be aware of the occurrence of new objects in 

the interviewing approach and knowledge acquisition systems. However, it is still 

difficult for experts to be aware of the new object without any additional related 

information. The machine learning approaches, which can learn the useful knowledge 

of static objects according to the selected training cases, are usually lack of the ability 

of discovering new objects without new cases of dynamic objects in the training 

process. As we know, many KA systems and tools such as NeoETS [5], ACQUINS [6], 

KITTEN [24], EMCUD [17], KSSO [14], have been proposed to rapidly build 

prototypes and improve the quality of the elicited static knowledge of well-known 

objects by domain experts with/without knowledge engineers in the past twenty years. 

However, most of them lack the ability of incrementally acquiring dynamic 

knowledge since the experts may not be aware of the occurrence of new objects 

without sufficient information. 

EMCUD (Embedded Meaning Capturing and Uncertainty Deciding) [Hwang, 

1991] was proposed to elicit the embedded meanings of knowledge (embedded rules 

bearing on m objects (O1, O2, …, Om) and k object attributes) following repertory 
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grids principles, which represents the information that domain experts take for granted 

but are implicit to the people who are not familiar with the application domain, and 

guide experts to decide the certainty degree of each embedded rule for extending the 

coverage of the original rules generated by acquisition table. Since the relative 

importance of each attribute to each object could be represented as attribute ordering 

table (AOT) in EMCUD, some minor attributes can be relaxed or ignored to capture 

the embedded meanings with acceptable CF. Assume some objects in O1 class, which 

are classified by original rules of O1, belong to the original object class (OO1) of O1; 

the other objects in O1 class, which are classified by embedded rules of O1, belong to 

the extended object class (EO1) of O1. However, some embedded rules may be with 

marginally acceptable certainty factor (CF) values due to the weak suggestions of 

domain experts. In the age of the knowledge explosion, some objects might be 

evolved with the times and could be classified by the embedded rules of O1 with weak 

CF values since some related ambiguous attributes (minor attributes) are ignored to 

classify these new evolved objects into O1 class. Although EMCUD extends the 

ability of KA system to classify a new object into an original object class with the 

weak embedded rules with lower CF values, it still lacks the ability to incrementally 

discover the new objects and integrate the corresponding dynamic knowledge of new 

objects into original knowledge base without rerunning the whole KA procedure to 

generate the knowledge. Moreover, the human experts are unlikely to be aware of the 

occurrence of the new evolved objects due to the lack of sufficient relevant 

information about the new objects. 

In this thesis, we will propose a new collaborative knowledge acquisition method 

(CAKE – Collaborative Acquisition for Knowledge Evolution) to collect useful 

evidence through monitoring the frequent inference behaviors of weak embedded 
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rules and tracing trend events of objects with time in order to assist experts to 

efficiently adapt the certainty factor of dynamic knowledge of new objects according 

to the sufficient context information. In order to discover the new object, the VODKA 

(Variant Object Discovering Knowledge Acquisition) is proposed to facilitate the 

acquisition of new knowledge of variant objects by monitoring the frequently fired 

weak embedded rules. Since the evidence of object evolution may appear diversely in 

unpredictable time, a time interval tracing oriented mechanism, Trend Event 

Acquisition (TEA) [22], for constructing dynamic knowledge of new objects is 

proposed to adapt knowledge to current time by recording each interested attribute’s 

information in each time interval and update evolutional knowledge base. The 

VODKA generates a new acquisition table of new object, and the TEA generates a 

dynamic AOT table for capturing the evolutional embedded meaning of these objects. 

However, some dynamic knowledge might be invisible in each KBS with VODKA 

and TEA. Several heuristics are proposed to assist experts in discovering the new 

evolved objects, including service-sensitive and symptom-similar heuristics. The 

context information, including static profile and dynamic behaviors, is designed to 

assist experts to be aware of the occurrence of dynamic objects according to 

service-sensitive heuristic and symptom-similar heuristic by collecting sufficient 

information of multiple sensors. The service-sensitive heuristic can help experts to 

discover similar behaviors result in different symptoms due to different individual or 

environment configurations. The symptom-similar heuristic can assist experts to 

recognize different behaviors result in similar symptoms between multiple sensors 

due to the polymorphic configurations. We think the legacy knowledge acquisition 

methods are inefficient to acquire the evolutional knowledge because it is unable to 

learn the evidences of variation and development. Finally, we will propose the 
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Dynamic EMCUD (D-EMCUD) to integrate new dynamic knowledge into original 

knowledge base.   

Based upon the CAKE framework, a worm detection prototype system with the 

CAKE module is implemented to evaluate the effectiveness of integrating the new 

evolved knowledge into original knowledge base. Based upon the collaborative 

framework, the dynamic knowledge of new evolved objects could be elicited to 

discover the new variant worms generated by the attacking traffic generator in the 

experimental environment. 
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Chapter 2  Related Work 

Several knowledge acquisition methodologies and related systems are introduced 

in this chapter. Here we also introduce repertory grid, one of the popular indirect 

knowledge acquisition techniques. Finally, the elicitation of embedded meaning and 

some problems of traditional knowledge acquisition methodologies are discussed. 

2.1  Knowledge Acquisition Review 

In general, there are three approaches for knowledge acquisition (Mcgraw et al., 

1989; Hwang and Tseng, 1990; Crowther and Hartnett, 1996): 

(1) Interviewing experts by experienced knowledge engineers: interviewing 

experts is usually time-consuming if the communication between domain 

experts and knowledge engineers is insufficient. 

(2) Machine learning: learning the knowledge by collecting many useful cases and 

instances with/without the involvement of domain experts. However, the 

quality of the results usually relies on the selected training cases. 

(3) Knowledge acquisition systems: assisting domain experts in generating useful 

rules using knowledge acquisition systems with/without the help of knowledge 

engineers. These tools could reduce the effort of communication between 

knowledge engineers and domain experts and could reduce the risk and 

difficulty of selecting the suitable training cases. 

Many researches like ETS [4], AQUINAS [6], RuleCons [23], MOLE [12] and 

KSSO [14] were developed to build rapid prototypes (knowledge acquisition systems) 

and to improve the quality of the elicited static knowledge. Most of them employed 

the repertory grid test originally developed by George Kelly [19], and had discovered 
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unexpected interesting results. The repertory grid could be used as efficient 

knowledge acquisition technique in identifying different objects and distinguishing 

these objects in a domain. A single repertory grid represented as a matrix whose 

columns have element objects (labels) and whose rows have construct attributes 

(labels) can classify a class of objects, or individuals. The value assigned to an 

element-construct pair need not be Boolean. Grid values have numeric ratings, 

probabilities, and other characteristics, where each value reflects the degree. Then, the 

expert is asked to fill the grid with 5-scale ratings, where “1” represents the most 

relevant attribute to the object; “2” represents that the attribute may relevant to the 

object; “3” represents “unknown” or “no relevance”; “4” represents that the object 

may have the opposite characteristic; “5” represents the most relevant opposite 

characteristic to the object. Also, several researches focused on building an intelligent 

expert system like MYCIN project [1], a well-known medical expert system for 

diagnosing infectious diseases, encouraged the advent of expert system studies. 

Moreover, ontologies and information sharing have a major role to play in the 

development of knowledge-based agents and the overcome of the knowledge 

acquisition bottleneck. Then, in 2003, an intelligent DNS management system [9], a 

web-based DNS expert system, was proposed to assist DNS administrators in 

managing their DNS by efficiently eliciting rules from experts or cases based on an 

efficient DNS ontology construction algorithm. 

In summary, the knowledge acquisition bottleneck can be described as follows 

[26]. 

(1) Narrow bandwidth:  

The existing channels converting organizational knowledge from its source (either 

experts or documents, or transactions) are relatively narrow. Knowledge engineers can 
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only focus on a few key applications, but not the bulk of all organizational knowledge. 

The uses of data and text mining are limited by cost and mining effort. End user 

experts are slow in capturing their own knowledge. 

(2) Acquisition latency:  

The slow speed of acquisition is frequently accompanied by a delay between the 

time when knowledge (or the underlying data) is created and when the acquired 

knowledge becomes available to be shared. This is especially a concern in dynamic 

environments where knowledge changes quickly and therefore the knowledge 

repositories always appear outdated. This challenge is related to the method of 

knowledge acquisition as well as the incentive systems, which often do not encourage 

experts to freely share their newest, most innovative, and most personal or tacit 

knowledge. 

(3) Knowledge inaccuracy:  

Experts make mistakes and so do data mining technologies. Furthermore, 

maintenance can introduce inaccuracies or inconsistencies into previously correct 

knowledge bases. With little available bandwidth to create new knowledge, even 

fewer resources are likely available to check the accuracy of knowledge already in the 

system. Furthermore, correction procedures can be difficult and cumbersome (Who is 

permitted to correct errors? What is the procedure? What incentives are there to report 

errors?). 

(4) Maintenance Trap:  

As the knowledge in the knowledge base grows, so does the requirement for 

maintenance. Furthermore, previous updates that were made with sufficient care and 

foresight (“hacks”) will accumulate and render future maintenance. 
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It appears there are few opportunities for breaking the knowledge acquisition 

bottleneck. Several possible remedies have been discussed, for example, the work of 

Boicu [7] described a practical approach, methodology and tool, for the development 

of static knowledge bases and agents by subject matter experts, with limited 

assistance from knowledge engineers. And the work of Wagner [26] described the use 

of collaborative, conversational knowledge management to demonstrate the 

opportunity for more effective knowledge acquisition. Obviously, the idea of 

collaboratively and systematically constructing the dynamic knowledge bases is 

launched. However, the dynamic environment limits all their efficiencies for the 

knowledge acquisition methodologies. The real world knowledge in a dynamic 

environment is often considered evolutional, because the knowledge can change or 

evolve over time due to the advent of information century. The speed changing in 

knowledge is too fast to manually accumulate the information by experts, and it 

usually results in the ritualistic batch process analysis which is always tough and time 

consuming.  

Although many methodologies are proposed to extend the ability of uncertain 

reasoning to classify the objects, none of them discusses the issue of discovering 

dynamic knowledge of the new objects. It is also difficult for experts to notice the 

occurrence of new object, which is evolved with dynamic environment as time goes 

on. 

2.2  EMCUD 

The “embedded meanings” referred in this thesis represent the information that 

domain experts take for granted but are implicit to people who may not feel familiar 

with the application domain. The lack of embedded meaning will probably make an 



 10

expert system fail to infer some cases being trivial to experts. SEEK (Politakis and 

Weiss, 1987) and SEEK2 (Ginsberg et al., 1988) have been proposed to obtain 

embedded meanings by some efficient refinement processes. EMCUD is proposed to 

elicit the embedded meanings of knowledge from the existing hierarchical repertory 

grids given by experts (Hwang and Tseng, 1990). EMCUD, a table-based knowledge 

acquisition method, is proposed to be able to elicit the embedded meanings of rules 

and guide experts to decide certainty factors from the existing hierarchical repertory 

grids. Additionally, it interacts with experts and guides them to decide the certainty 

degree with the embedded meaning. To capture the embedded meanings of the 

resulting grids, the Attribute-Ordering Table (AOT), recording the relative importance 

of each attribute to each object, is employed. There are three kinds of values in each 

AOT attribute/object entry: “X”, “D” or an integer. “X” represents “don’t care” which 

means that the attribute does not relate to the object, “D” represents “Dominate” 

which means that the object cannot be supported without the attribute, and an integer 

represents the relative degree of importance for the attributes to the object.  

It is noticed that the integer ranges from 0 to 5, and 0 is treated as “X” while 5 is 

treated as “D”. Besides the original rules, embedded rules can be generated by 

negating the minor (non-dominate) attributes recorded in AOT. Each embedded rule is 

assigned a certainty sequence (CS) by formula (1) and the certainty factor (CF) 

calculated by formula (2) which is between 0 and 1 can represent the degree of 

certainty for each embedded rule. Each of them is assigned a certainty factor (CF) 

between 0 and 1 while the value approaches to 1 means more important; otherwise, 

the value approaches to 0 means less important,  

i k iCS( R  ) = SUM( AOT[Att , Obj ] )                     (1) 

where Attk belongs to the attribute set of Ri, and Obji is the object of Ri. 
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( )i
i a a a

i

CS(R )CF(R ) = UB(R ) -  UB( R ) - LB( R  ) 
MAX(CS )

⎛ ⎞
×⎜ ⎟

⎝ ⎠
         (2) 

MAX(CSi) is the maximum CS value in all embedded rules generated from the 

original Ra with the same object. The EMCUD algorithm is listed in Algorithm 2.1: 

EMCUD algorithm. 

 

Algorithm 2.1: EMCUD algorithm 

Input: The hierarchical grids. 

Output: The guiding rules with embedded meaning.  

 

Step1: Build the corresponding AOT with each grid of the hierarchical 

multiple grids. 

Step2: Generate the possible rules with embedded meaning.  

Step3: Select the accepted rules with embedded meaning through the 

interaction with experts. 

Step4: Generate automatically the CF of each rule with embedded meaning.  

 

To decide the CF of each embedded rule, the upper and the lower bounds values 

are defined for accepted embedded rules. Then CF values of each rule can be 

automatically determined by mapping function, formula (2). Thus, the useful 

embedded rules with corresponding CF values could be used to cover more 

uncertainty cases. 

All rules generated by EMCUD can be categorized into two classes: original and 

embedded rules with acceptable CF value, and discarded rules with unacceptable CF 

value, according to the confidence degree of domain experts. 

2.3  Variant Object Discovering Knowledge Acquisition 

Although EMCUD successfully solves the problems of the conventional 
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repertory grids, including knowledge representation and embedded meaning, it might 

still exist several problems such as hard to explain the rules with lower CF value, 

difficulty in deciding attribute ordering, and infeasible to elicit the knowledge of a 

new variant object due to the knowledge explosion of the changing environment over 

time. Hence, VODKA [25] is proposed to help experts be aware of the occurrence the 

occurrence of the new objects by monitoring the inference behaviors of the weak 

embedded rules with the lower CF values and incrementally extract the knowledge of 

the new discovered objects to enhance the explanation power of the original 

embedded knowledge base. 

 

Embedded 
Rule Base

Objects

Inference
Engine

Weak 
Inference 

Log

Experts

New Variants 
Acquiring

Learning 
Module

New Variants 
Acquisition 

Table

Frequent Events Analysis
 

Figure 2.1: The Variant Object Discovering Knowledge Acquisition Flow 

 

The novelty of VODKA approach, shown in Figure 2.1, collects the inference logs 

of weak embedded rules from KBS to learn the candidates of new evolved objects. 

Since the new evolved objects may derive from well-known objects, some of them 

can be classified into well-known object class with lower certainty factor according to 

the nature of embedded rules in EMCUD. The learning module can be customized 

according to the different applications. In this thesis, we use the frequent based 

heuristic in learning module to discover the frequent attribute-value pairs between 

collected inference logs since the new object could be fired frequently when it is 

evolved. Hence, the discovered frequent attribute-value pairs could be used to help 
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experts find out the new objects using the new variant acquiring module includes 

three recommendations. Furthermore, the input facts which are different from original 

acquisition table may be considered as the possible new attributes or attribute values 

of a variant object. Therefore, if the variants could be detected and recommended as 

the new objects by experts, the related ambiguous attributes (minor attributes) which 

might result in the marginally acceptable CF values of original rules suggested by 

experts could be refined or new attributes could be added to improve the classification 

ability. According to the complexity of relations between objects and attributes or 

even each relation between different tables, it is hard for experts to cooperate with 

each other in building every column and every row for each table. The acquired new 

objects can be used to construct the new variant acquisition table.  The algorithm of 

VODKA [25] is shown as follows. 

 

Algorithm 2.2: VODKA algorithm 

Input: The original main acquisition table T and embedded rule base RB.  

Output: The rules with embedded meaning about variants.  

Stage I: Collect all facts of the weak embedded rules as real inference log of the RB. 

Stage II: Generate the new variants acquisition table T’.  

Step1: Discover large itemsets L using the inference log.  

Step2: Generate T’ using L and additional attributes provided by experts.  

Stage III: Use E-EMCUD to generate rules of new variants.  

Step1: Generate rules according to T’.  

Step2: Merge T’ into original main acquisition table T.  

 

VODKA has been implemented based upon DRAMA [21], an object-oriented 

inference engine with NORM (New Oriented-original Rule-based Model) knowledge 

representation providing high maintainability, reusability, sharability, and abstraction 

for rule-based system, and the E-EMCUD (Extended EMCUD) has also been 
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implemented to refine the embedded rule base. 

However, it is still hard to have a certain command of the evolutional knowledge, 

so we proposed CAKE to efficiently discover the evolutional knowledge by context 

information analysis and collaborative heuristics. On the other hand, the repertory 

grid-oriented method to construct acquisition table is somehow strenuous for an 

expert and even more strenuous to solve the adaptive problem in a dynamic 

environment; therefore, we proposed TEA to cope with the problems above by further 

enhancing the original EMCUD method to become D-EMCUD (Dynamic EMCUD) 

method [22]. 
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Chapter 3  Context Representations 

We use XML, a simplified dialect of SGML (Standard Generalized Markup 

Language), to model the behavior as a kind of context information for several reasons. 

First, XML-based applications and tools are widely used and developed, and it has 

been standard in World Wide Web Consortium (W3C) already. Seconds, software 

tools for processing XML documents are easily obtained since file of XML is also 

machine-readable. It provides a common descriptive specification framework that can 

be used to enhance the reusability of the software documents. The heart of an XML 

application is a file called the DTD (Document Type Definition), which describes the 

hierarchical structure of a class of documents. Note that DTD is an XML document on 

which we can reuse the content of the document.  

3.1  Behavior Description Markup Language 

In this thesis, a Behavior Description Markup Language (BDML) based upon 

XML protocol is proposed to provide a general model for expressing computer’s 

network behavior. But, there are two categories of context information should be 

considered. First, static profile including environment configuration and individual 

configuration represents the location information and the basic information of the 

object. Second, dynamic behavior including individual trend and environment trend 

records the historical behaviors of the objects and objects’ environment to further help 

experts analyze the variant trend information and evolutional behaviors. 
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Figure 3.1: The Structure of BDML 

 

It is noticed that the dynamic context information includes static profile, dynamic 

behaviors, the frequency, time based trend, and the correlations information between 

individual and environmental behaviors to assist experts to be aware of the occurrence 

of dynamic knowledge according to several collaborative heuristics for 

service-sensitive and symptom-similar events. The structure of BDML is shown in 

Figure 3.1. Since knowledge can be evolved with the dynamic environment as time 

goes on, how to acquire and represent the dynamic context information becomes an 

important issue. The context information can be classified into two categories: static 

profiles and dynamic behaviors information.  

(1) Static Profile: 

In the real world, the environment includes individuals, the relationships between 

individuals, and the related configurations. The environment could be considered as a 

collection of network properties and each individual has its own properties in the 

environment. Therefore, the static profile can be considered as environment 

configuration and individual configuration. The environment configurations describe 

the description of the environment, members in the environment, the status of the 



 17

environment, and other relative properties rely on domain. The individual 

configurations describe the individual ID, Location, Role of individual, and other 

relative properties depending on the domain. Through the static profile, we could 

classify the knowledge occurred in similar configuration.  

(2) Dynamic Behaviors:  

Some knowledge will be evolved to adapt the dynamic environment due to the 

natural of knowledge evolution. Owing to clear representing the behaviors of 

individual and environment, the trend of individual and environment can be easily 

acquired. The individual trend consists of the sequence of status of time and the 

occurrence of events pair. Also, the other relative properties should be also considered 

in each domain. Like the individual trend, the evolutional trend also combines the 

sequence of environment status and other properties to analyze the trend of 

environment for capturing evolutional knowledge.  

Figure 3.2 shows the analysis of historical context information which is 

considered as dynamic. First it receives the information of uncertain variant frequency 

from VODKA, and then processes the trend analysis by TEA. Finally, the BDML can 

be constructed by combining all the static and dynamic components. 
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Figure 3.2: The Historical Context analysis 
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We design an XML based language that facilitates the machine readability for the 

KA framework to model the context information. In this model, not only the static 

profile but also the dynamic behaviors can be modeled using XML based description 

because the structure of XML is regular expression. Furthermore, the stored context 

can be easily reused, and the representation can be extended to describe new added 

properties of individual or environmental profile and behaviors due to the 

standardized property of XML. 

Modeling the internet behavior by BDML, static profile DTD and dynamic 

behavior DTD can be shown in Table 3.1 and Table 3.2. The corresponding DTD of 

static profile in BDML includes environment configuration (network configuration) 

and individual configuration (host configuration). The environment configuration 

consists of description, members, status, and set of other properties, and the individual 

configuration consists of ID (IP address), location (LAN address), Roles (Server or 

Client), status, and a set of other properties. 

 

Table 3.1: Static Profile DTD 
<? Xml version=“1.0” encoding=“Big5”> 

<!DOCTYPE Static Profile [ 

  <!ELEMENT Static Profile (Environment configuration, Individual configuration)> 

  <!ELEMENT Environment configuration (Description, Members, Status, Properties)> 

  <!ELEMENT Description (#PCDATA)> 

  <!ELEMENT Members (#PCDATA)> 

  <!ELEMENT Status (#PCDATA)> 

<!ELEMENT Properties (#PCDATA)> 

   <!ELEMENT Individual configuration (ID, Location, Roles, Status, Properties)> 

       <!ELEMENT ID(#PCDATA)> 

       <!ELEMENT Location(#PCDATA)> 

       <!ELEMENT Roles(#PCDATA)> 

       <!ELEMENT Status(#PCDATA)> 

       <!ELEMENT Properties(#PCDATA)> 

]> 
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Table 3.2: Dynamic Behavior DTD 
<? Xml version=“1.0” encoding=“Big5”> 

<!DOCTYPE Dynamic Behavior [ 

  <!ELEMENT Dynamic Behavior (Individual trend, Environment trend)> 

     <!ELEMENT Individual trend (#PCDATA)> 

 <!ELEMENT Environment trend (#PCDATA)> 

]> 

 

 The corresponding DTD of dynamic behavior in BDML includes individual 

trend and environment trend, including information of time, environment status, 

individual events and some set of properties. Taking computer worms as an example, 

the properties mentioned above consist of the basic information of the worms, the 

service what the worms aim at, the exploitation what the worms use, the carrier what 

the worms provide, the symptoms what the worms bring and the defense instructions 

to the worms. 

3.2  Ontology Support 

According to the complexity of relations between objects and attributes, it is hard 

for experts to cooperate with each other in building every column and every row for 

each table. Therefore, an ontology strategy is firstly designed in this thesis to help 

experts construct the knowledge in ontology and then the ontology will be 

transformed into the acquisition table. Therefore, we can easily define every relation 

between objects and attributes, and can easily assign a new attribute ordering value. 

One of the purposes of applying ontology is to provide domain of discourse that 

is understandable by human and computers, so ontology can be represented by 

machine readable markup languages such as RDF. Moreover, the reusability of 

ontology has become increasingly important for developing intelligent systems. In 
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this thesis, we proposed an ontology based knowledge acquisition method that makes 

the ontology not only reusable but also adaptive to the current environment. The 

method of constructing the ontology is based upon a concept tree consisting of several 

prior knowledge including BDML model and real cases provided by knowledge 

engineers and domain experts to further help experts to construct the original EMCUD 

method as an initial prototype of knowledge. 
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Figure 3.3: Ontology Construction Flow 

 

Figure 3.3 illustrates the flow of constructing the domain ontology. To construct 

the ontology more easily, the following four steps are proposed: 

Step 1, BDML model construction:  

Create the BDML model according to the components, including static profile and 
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dynamic behavior. For example, we can model a worm BDML by identifying each 

worm with six general attributes, including the basic information and the service for 

static profile, then the exploitation, the carrier, the symptoms and the defense 

instruction for dynamic behavior.  

Step 2, Concept tree construction:  

Since it is often easier and more accurate for experts to provide critical cases 

rather than domain ontology, the power of critical cases described in terms of relevant 

objects and attributes to build domain ontology is remarkable. Therefore, after case 

diagnosing a concept tree is created based upon the skeletal model in Step 1. The 

example of CodeRed worm, Nimda worm and Blaster worm concept trees are shown 

in Figure 3.4, Figure 3.5 and Figure 3.6, respectively. 
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Figure 3.4: Example of CodeRed Concept Tree 
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Figure 3.5: Example of Nimda Concept Tree 
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Figure 3.6: Example of Blaster Concept Tree 

 

Step 3, Concept tree transformation:  

The concept tree is transformed into acquisition table, and attribute ordering will 

be next acquired from experts. Then the original EMCUD method can be processed 

to generate the initial rules. However, because it is not easy to identify some attribute 

ordering values precisely, the attribute which is uncertain to identify the ordering 
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value should be traced and analyzed with time by constructing an AST. Each 

attribute signal is recorded in each time interval, when the attribute appears 

important the signal equals one and when it appears unimportant the signal equals 

zero. Then the attribute ordering table will be reconstructed according to the attribute 

signals collected with time. 

Step 4, Merge procedure:  

There are only two relations for constructing worm ontology during the merge 

procedure, including “has” relation and “is” relation. The “has” relation embeds 

attribute ordering value, for example, when the attribute ordering value equals 3 then 

the relation should be “HAS:3”. Therefore, from Step 3, the ordering value would be 

retrieved from the reconstructed AOT by AST method. Hence, the ontology can be 

easily transformed into D-EMCUD method, and be updated whenever the AOT is 

reconstructed or the variants are discovered. 
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Chapter 4  The Framework of CAKE 

4.1  The Collaborative Architecture 

For the evolving environment, the important evidences could occur in every 

location and in every minute; therefore, deploying several kinds of specific inference 

engines to the significant environment is designed to cope with the problem. The 

collaborative architecture is shown in Figure 4.1. By collecting inference results from 

each inference engine, some results in the same period or in the sequential periods can 

further approve or disprove the evidence.  
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Figure 4.1: The Architecture of CAKE 

 

For example, suppose there are smoke detectors and temperature detectors in a 

hotel. A simple meta rule can show that if there is a result of smoke form smoke 
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engine and the other result of sparkle form temperature engine then it then triggers the 

fire alarm service; however, if temperature engine sends back the result which is 

around the temperature of a human body then it disproves the evidence of fire and 

further approves that someone is smoking under the detectors. Obviously, the scenario 

described above can not be handled by single sensor environment. Hence, we use 

sensors with different configurations to represent such kind of expert systems or KBS 

with embedded rule bases. When the system is operating, some inference logs of 

cases, including old and new, will be recorded. By collecting and analyzing the 

relationships between these inference logs using the collaborative heuristics with 

sufficient context information, the occurrence of candidates of dynamic knowledge 

could be discovered. The CAKE consists of log collector, frequency analysis, trend 

analysis, collaborative analysis, dynamic EMCUD, and context DB to learn the 

dynamic behaviors and to record the configurations of different environment. The 

frequency-based analysis is proposed to discover significant variant knowledge by 

monitoring the inference behaviors of weak embedded rules. Moreover, the sequence 

of inference log will be considered to discover the relations between them to monitor 

the occurrence of evolutional knowledge as time goes on. All discovered information 

will be collected and further be analyzed by using collaborative analysis with 

consideration of the static configurations and dynamic behaviors, since some 

insignificant variant or evolutional knowledge might evade the frequency-based and 

time-based analysis. Finally, the dynamic EMCUD will incrementally integrate the 

discovered evolutional knowledge confirmed by experts, and then update the 

evolutional knowledge base. 

In Figure 4.1, every local sensor collects logs from the inference engine based on 

the knowledge base (KB). Through the learning module, including components of 
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VODKA and TEA, can provide information of embedded logs and suspected logs. 

Embedded logs can be learned by VODKA to discover variants, and some of them 

which are weak to be identified by VODKA can be traced by TEA methodology to 

adjust the importance and further discover the variants. However, the logs considered 

suspected are logs without fired rules but are suspected of evolutional knowledge. 

When there is no matching rule after inferring through the inference engine, the log 

then contains no information of fired rule. The unexpected patterns were too uncertain 

to be accepted by experts at the beginning; however, they may evolve and become 

new knowledge as time goes on. Therefore, those suspected logs can be retrieved by 

context analysis based upon several collaborative heuristics and further the events of 

suspected variant can be identified via experts. The learning module is shown in 

Figure 4.2. 
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Figure 4.2: The Learning Module 

 

We consider that the knowledge can be classified into static one and dynamic one. 

The static knowledge can be designed and built by following the static knowledge 

acquisition methodology such as EMCUD. But the dynamic knowledge could be 

variant or evolutional. For variant knowledge, it can be discovered by VODKA 

strategy when human experts themselves have enough abilities to decide the variant 

configuration; however, human experts have no abilities to discover the evolutional 

knowledge if without sufficient information, so in many situations, the evolutional 
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knowledge is negated easily when experts select the acceptable embedded rules. 

Hence, BDML based behavior context analysis is proposed to model ones’ behavior 

according to their own environments. By BDML, the profile database can be 

constructed to support the collaborative analysis, and finally the experts can use 

D-EMCUD to construct or adjust the knowledge bases. 

Taking Internet security as an example, there are many researches work on 

collaborative intrusion detection system (CIDS), many of them use lots of techniques 

such as the data mining technique to discover the intrusion; however they still have 

several limitations like false alarm reduction and inability to discover the variants. 

False alarms are too many to be handled due to lacking of environment context 

analysis. Different host computers may have different symptoms but suffered with the 

same attack. By the way, several attacks like computer worms may mutate in order to 

evade the detection mechanism of CIDS. Therefore, Figure 4.3 shows the example of 

collaborative architecture for CIDS, each of them has their own sensors and 

knowledge bases according to their profile configurations. The monitoring report 

from each one of sensors will be collected by the collaborative analysis center to 

further manage the security tasks in their network environment. 

 

 



 28

LANLAN

Internet

C ollabora tive A na lysis C ente r

R outer

LAN

P C

P C

P C

S erver

Server

N etw ork 
Sensor

System 
Sensor

L o ca l
K B

L o ca l 
K B

L o ca l 
K B

L o ca l 
K B

L o ca l 
KB

G lo bal 
KB

Profile

Profile

Pro file

P rofile

Pro file

Network 
Sensor

System 
Sensor

System 
Sensor

 
Figure 4.3: The Example of Collaborative Environment 

 

In Internet, the environment configuration can be considered as network 

configuration while the individual configuration can be considered as host 

configuration. Hence, the network configuration can involve information like the 

network description, the number of members, the status information and other 

properties. Also, the host configuration can then involve the unique ID such as IP 

address, network location, the role it plays as server or client, the status information 

and also the other properties. For the dynamic behavior, the individual trend is 

retrieved from the TEA analysis drawn support from VODKA, and for the environment 

trend, the context information modeled by BDML is additionally retrieved to support 

the collaborative analysis. 
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4.2  Trend Capturing and Analysis 
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Figure 4.4: The Flow of TEA 

 

 The flow of Trend Event Acquisition (TEA) is shown in Figure 4.4. As mentioned 

before, VODKA [25] has been proposed to help experts to discover the knowledge of 

variant object by monitoring the inference behaviors but it lacks the ability of 

discovering evolutional knowledge over time. Although the original idea of 

constructing AOT table makes it more adaptive to elicit embedded meanings, it may 

not be so sure to exactly define each relative importance of each attribute to each 

object since the dynamic knowledge may change or evolve over time. It means that 

some rules, which are recommended by experts now, may become uncertain in the 

near future. Moreover, VODKA learns the behaviors of weak embedded rules with 

low CF values, and if the CF value is not adaptive in the past few days then it may 

encounter the problem of inefficiency in learning the variant object. In this thesis, 

decomposing each object in the AOT to record the relative importance of each 

attribute to the object into several time intervals is proposed. Each time interval 

represents in a short period according to the viewpoints of experts or the learning 

results of VODKA. It can simply assign “0” or “1” for each attribute to each object in 

each time interval, where “0” represents the attribute is considered as the unimportant 

attribute to the object and “1” represents the attribute is important to the object in this 
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time interval.  

The signals of “0” and “1” are called the attribute signals in each time interval, 

and a table recording the information is called the attribute signal table (AST). There 

are two steps, including unfolding and reconstructing to help experts trace the 

evolutional behaviors. In order to capture the evolutional information of each object, 

the original AOT table will be decomposed into several AST tables to record the 

specific information in each interval with time in the first step shown in Figure 4.5. 

Then, we will reconstruct the AOT table by renewing the relative importance of each 

attribute to each object (ordering values) according to the sequence of “0” and “1” 

signal recording with time in the second step shown in Figure 4.6. Since the ordering 

values are recalculated at the present time according to all the evidences collected 

with time, the AOT table becomes more flexible and robust to adapt the changing 

environment. 

 
Figure 4.5: Unfolding 

 



 31

 

Figure 4.6: Reconstructing 

4.2.1 Constructing Attribute Signal Table 

In the changing environment, the knowledge will evolve over time. The relative 

importance of each attribute to each object may need to be adjusted. Since not all the 

attributes are working well after a period of time because of some characteristics of 

the attribute. The domain expert can decide which attributes are required to be traced 

with time if ordering values of the ambiguous attributes are hard to be decided 

immediately. There are two ways of constructing AST: 

(1) Interacted with human experts:  

It is designed to acquire the attribute signals from domain experts in every time 

interval for deciding whether the attribute is important or not. It is simpler to decide 

whether it is “1” or “0” rather than to decide a relative importance of each attribute to 

each object, the ordering value ranged from 0 to 5. 

(2) Interacted with VODKA:  

As mentioned above, VODKA can be used to learn and level up the CF of each 

weak embedded rule by monitoring their inference behaviors. It can be helpful to 

decide the attribute signal of importance or unimportance by directly mapping each 

embedded rule to the AST.  
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For example, assume VODKA generated after learning the candidates of variant 

and then confirmed by experts, is shown as follows: 

R1: IF A and B and not C Then Goal  *2 

R2: IF A and not B and C Then Goal *3 

where *2 represents that the rule R1 has been fired two times, and R2 is inferred after 

R1. The AST can be constructed as Table 4.1 according to the inference logs collected 

in the five time intervals. 

Table 4.1: An example of AST table 
Attribute/ Object Goal.1 Goal.2 Goal.3 Goal.4 Goal.5 

A 1 1 1 1 1 

B 1 1 0 0 0 

C 0 0 1 1 1 

 

Since the attribute B is not negated in R1 according to the first two inference 

results, but it is negated three times after in R2, the signal would be collected as 

“11000” shown in the second row of Table 4.1. Finally the scoring method is 

presented in the following subsection to help experts automatically renew the ordering 

value in the AOT table to enhance the dynamic ability of AOT table. 

 

4.2.2 Constructing Attribute Ordering Table 

To capture the adaptively relative importance of each attribute to each object from 

the AST table after a time period, the dynamic value adjusting method based upon 

entropy formula (3) [16] is applied to transform AST to AOT instead of simple 

leveling up the attribute’s ordering value when the attribute’s signal is “1” or leveling 

down when the attribute’s signal is “0” ,  
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2 2log logpos pos neg negEntropy
pos neg pos neg pos neg pos neg

⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠

             (3) 

where “pos” represents positive case and “neg” represents negative case. In this case, 

the positive case means that the attribute is decided as an important attribute to this 

object such as signal “1” in AST table, and the negative value occurred in AST table 

can not be an important attribute in this time interval such as signal “0”. 

As you move from perfect balance or perfect homogeneity, entropy function 

could be smoother between zero and one. The entropy is zero when the set of 

collecting instances is perfectly homogeneous like all positive or negative instances, 

and the entropy is one when the set is perfectly heterogeneous like half positive and 

half negative instances. Hence, it is obvious to decide the new adjusting value of the 

attribute in dynamic AOT table which should be set into a dominated attribute (D in 

AOT) or irrelevant attribute (X in AOT) to the object depending on number of 

positive and negative instances in this set when the entropy value approximates to 

zero. In other words, if an attribute is continuous important (unimportant) to an object 

in the collecting time period, then it could be a dominated (irrelevant) attribute to the 

object in this time moment. The strategy of dynamic EMCUD is shown as follows:  

Step 1, Summing:  

Add up each number of positives and negatives, and then apply entropy formula 

(3) to calculate the entropy weight of each attribute to each object. 

Step 2, Mapping:  

Transform the obtained entropy weight into relative importance of each attribute 

to each object according to the following three cases: 

Case 1:  

If the entropy weight approximates to zero and the number of positive 

instances is larger than that of negative instances, the ordering value of the 
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attribute to the object could be assigned into “D” or “4” in the dynamic AOT 

table. 

Case 2:  

In case 1, if the number of negative instances is larger than that of positive 

instances, the ordering value of the attribute to the object could be assigned into 

“X” or “1” in the dynamic AOT table. 

Case 3:  

If the entropy weight approximates to one, the ordering value of the 

attribute to the object could be set into “2” or “3” in the dynamic AOT table. 

Step 3, Tuning:  

If the attribute is time relevant, the trend of the attribute should be applied to 

adapt the obtained entropy weight according to the following three cases.  

Case 1: Increasing trend.  

The ordering value of this kind of attribute should be increased since the 

attribute seems to become more and more important in the collected period such 

as the sequence “001111”. 

Case 2: Decreasing trend.  

The ordering value of this kind of attribute should be degraded since the 

attribute seems to become less and less important in the collected period such as 

the sequence of “110000”. 

Case 3: Uncertain trend.  

The ordering values of this kind of attribute would not be tuned since this 

kind of attribute has no significant trend in the collected period such as the 

sequence of “010101” or “101010”. 

In Step 1, it is very simple by summing up each number of “1” and “0” in AST 
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table for comparing the numbers of positive and negative instances. The entropy 

weight will be calculated to represent the distribution of “1” and “0” in each set in 

Step 2. When the number of positives surpasses the number of negatives, the entropy 

weight approximates zero and vice versa. It is obvious to assign a higher ordering 

value (D or 4) when most of information represent important; otherwise, a lower 

ordering value (X or 1) would be assigned due to the observation of unimportant 

attribute. However, other relative importance of each attribute to each object would be 

assigned when the entropy weight approximates one, which would be considered 

uncertain degree. That is, it is usually uncertain to decide a decision when getting half 

positive advices and half negative advices at a time; moreover, in Step 3, when the set 

is heterogeneous, but the characteristic of attribute is time relevant then it can be 

considered homogenous in some ways.  

For example, suppose there are two sets in AST recorded as “000111” and 

“111000”. After Step 1, both of “000111” and “111000” in entropy method are 

considered uncertain because of perfectly heterogeneous. Since these two sets can be 

considered time relevant, it is very certain that attribute with signals “000111” should 

be assigned a higher ordering since it is important in the present time intervals. 

Therefore, after calculating with entropy method in Step 2, there is still a time bonus 

weighting in Step 3 to adjust each ordering value at final. Accordingly, the AOT is 

considered dynamic by following the time interval tracing oriented mechanism, and 

each CF value of a rule can now be leveled up or down automatically. 

The mechanism not only applies VODKA to construct AST but also offers more 

robust information for VODKA to learn the variant objects since each CF value is also 

updated by the dynamic AOT. 
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4.3  Collaborative Heuristics 

Furthermore, according to the specific environment for a particular domain, 

heuristic approach makes the collaborative analysis workable. Since some invisible or 

unrecognizable behaviors might be ignored without sufficient information, 

collaborative multiple sensors to collect more evidence of evolutional knowledge 

becomes more important. The static profile and dynamic behaviors of individual and 

environment could be used to help discover evolutional knowledge since they could 

assist experts to trace the changing behaviors. The static profile can be used to analyze 

the co-occurrence behaviors between different profiles since some behaviors might 

exist in similar environment. The dynamic behavior can be used to analyze the similar 

behaviors in different environment as time goes on. Based upon the collection of the 

sufficient context information including the unrecognizable or invisible behaviors in 

single sensor to discover the evolutional knowledge, the static profile and dynamic 

behaviors of individual and environment could be used to help discover evolutional 

knowledge. We propose two simple heuristics as followings based upon three 

distributed inference engines, including Service-Exploitation Engine, Carrier Engine, 

and Symptoms Engine. 

(1) Service-sensitive event:  

Different configuration may encounter with different symptoms or different 

degree of damage in each progress. When several Service-Exploitation Engines 

responds higher frequency of similar intrusion behaviors but with different behavior 

presentations from the corresponding Symptoms Engines, CAKE then triggers the 

trend analysis mechanism on the Symptom Knowledge Class by the aid of BDML. 

Consequently, by the trend from BDML we may learn that it is because the firewall 
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setting of some computer hosts are different from others. The central administrator 

can thus forward the better firewall settings to those who do not have the proper 

settings; furthermore, we may stumble upon a solution that the intrusion may be 

limited to some special configuration setting. For example, some intrusion behavior 

such as SQL Slammer which uses UDP port 1434 to exploit a buffer overflow in MS 

SQL server, then it can simply switch off this port since CAKE learns that others SQL 

servers which are unavailable to the Internet are immune. 

(2) Symptom-similar event:  

However, some computers come up with similar symptoms but with sort of 

different behavior from the Carrier sensor or even the Service-Exploitation sensor. We 

consider it is kind of polymorphic process for the intrusion like polymorphic worm 

which is considered as the variant knowledge or the evolutional knowledge in this 

thesis. 

For heuristics above, the knowledge which is variant or evolutional, CAKE 

triggers the specific trend analysis process on special knowledge class like Carrier 

Knowledge Class or Service-Exploitation Class for symptom-similar events and 

Symptom Knowledge Class for the those events which are service-sensitive 

respectively. For example, D-EMCUD generates rules for Blaster and Sasser from 

acquisition table and AOT shown in Table 4.2 and Table 4.3. VODKA discovers 

variants from Log1 and Log2 in Table 4.4 since we suppose expert define CS value as 

4 to be a threshold. According to the embedded rule represented as “IF A1 and A2 and 

NotA3”, VODKA confirms the variants named as Blaster.B and Sasser.D. However, 

Log3, a suspected log in Table 4.4, is negated since both of attribute A2 and A3 are 

negative; therefore, the CS value is 7 (3+4) which is higher then the defined threshold. 

Unfortunately, it is the variant information of Sasser.E; hence, to enhance the 
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weakness, CAKE is applied and discovers the variant by Service-sensitive heuristic to 

find out the evolutional information such as 1022 for port number and ftplog.txt for 

carrier. By applying the heuristic, all information of suspected logs will be integrated 

by intersection. Then those suspected logs with most frequency (suspected events) 

will be further compared by BDML documents. Subsequently, the candidates of 

evolutional knowledge will be generated and further confirmed by experts. 

 

Table 4.2: A simple acquisition table for Blaster and Sasser 
             Object 

Attribute  Blaster Sasser 

Symptom (A1) 
System Reboot; System 

Crash; Word, Excel, Power 
point abnormal 

System Reboot; System 
Crash; 128-threads 

Service & Exploitation (A2) 
RPC Buffer Overflow 

(135;4444) 
RPC Buffer Overflow 

(445;5554;9996)  
Carrier (A3) Msblast.exe avserve.exe; win2.log 

 
 

Table 4.3: A simple AOT for Blaster and Sasser 
 Blaster Sasser 

A1 4 4 
A2 4 4 
A3 4 3 

 
 

Table 4.4: Part of inference logs record 

IF Part Then 
Part Logs # 

A1 A2 A3 Rule 
CF 

Log1 System Reboot Port:4444 penis32.exe RBlaster 0.6 
Log2 System Crash Port:445 skynetave.exe RSasser 0.74
Log3 System Crash Port:1022 ftplog.txt - - 
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Chapter 5  Case Study and Experiment 

5.1  Brief of Worms 

In order to understand the threat posed by computer worms, Figure 5.1 shows the 

life cycle of worms [13] consists of five phases. In Initial Phase, each worm agent 

begins with installing software, determining the configuration of the local machine, 

instantiating global variables and beginning the main worm process. To find 

vulnerable candidates in Target Selection Phase, a worm usually first discovers that 

the other potential victim exists. Then in Network Reconnaissance Phase, a worm can 

actively spread itself among machines or can be carried along as part of normal 

communication traffic through the network. Next in Infect Phase, system which is 

attacked may result in many abnormal behaviors in Attack Phase and may further 

infect other victims. 

 

Initial Target Selection Network Reconnaissance Attack Infect

Target Scanning

Network Propagation
Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

 

Figure 5.1: Worm Life Cycle 

 

Since most of the worms follow the life cycle, we can construct the 

semi-structured document represented as a worm concept tree by interaction between 

domain experts and knowledge engineers with support of BDML model, then the 

meaningful information can be extracted according to the worms’ life cycle, including 
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basic information of the worms, the service what the worms aim at, the exploitation 

what the worms use, the carrier what the worms provide, the symptoms what the 

worms bring and the defense instructions to the worms. 

There are many companies or associations working on the research of network 

security such as Symantec [30], F-Secure [29], and Trend [31]. Symantec, the world 

leader in providing solutions to help individuals and enterprises assure the security, 

availability, and integrity of their information, provides Norton Antivirus, a popular 

software world wide, to scan the status of the host system and offer the solutions to 

the security problems. However, it needs to be updated by downloading the latest 

virus definition every period of time because of lacking self learning mechanism. 

Additionally, users spend lots of time finding the meaningful solution through the 

search engine when the report after scanning is not clear. Zero-day worms which are 

resulted from variants for most of the time are a serious wide-scale threat due to the 

monoculture problem. If there exits a standard signature-based detector which is blind 

to a zero-day attack, we can say that all installations of it are also blind to the same 

attack. The work of PAYL [27] anomalous payload detection sensor are demonstrated 

to accurately detect and generate signatures for zero-day worms; however, it can only 

be aware of the specific pattern that correlates ingress/egress payload alerts to identify 

the worm’s initial propagation. Therefore, WISE [28] helps overcome these 

drawbacks by collecting all the meaningful information through EMCUD and then 

further discover more varieties of variants by VODKA. In advance, we make WISE 

integrate the BDML based technical documents of worms and real cases from experts 

into a tree-like structure, which is called concept tree, by knowledge engineers and 

domain experts. Subsequently, more meaningful information will be merged to 

construct the ontology in Figure 3.3 and also the learning methodology is applied to 
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discover the variant worms based upon the knowledge acquisition method. Finally, 

WISE provides tutorial guidelines to teach users to solve the problems with their own 

antivirus products or other solutions from the Internet. Hence, the WISE strengthens 

the power of general antivirus products and makes them more flexible based upon 

knowledge bases. However, large numbers of replicated vulnerable systems allow 

wide-spread infection that challenges the efficiency of WISE. We then employ WISE 

based upon the architecture of CAKE and discover more interesting and surprising 

knowledge to overcome WISE its’ original disadvantage of signal host-based 

knowledge acquisition. The differences of WISE between with and without CAKE can 

be seen in the experiments in Section 5.4. 

5.2  Example of Computer Worms Detection 

Nimda, an incredibly sophisticated worm that made headlines worldwide, is taken 

as an example. Nimda is the first worm to modify existing web sites to start offering 

infected files for download by using Unicode exploit to infect IIS web server. It is the 

first worm to use normal end user machines to scan the vulnerable web sites. This 

technique enables Nimda to easily infect intranet web sites located behind firewalls. 

According to the dynamic behavior such as symptoms and carrier from BDML of 

worm in Figure 3.3, we may suppose after case diagnosis the Nimda concept tree is 

created in Figure 5.2 and can be transformed into acquisition table like Table 5.1. The 

three attributes, including the name of the e-mail attachment used by worms, the 

medium used by worms to upload themselves (the worm body), and the name of the 

file used by worms to start execution on servers, are used to recognize Nimda in this 

example. After constructing the acquisition table, the AOT table is needed to record 

the relative importance of each attribute to the Nimda object. Suppose Nimda is the 
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latest worm occurred in the recent cyber world, a worm domain expert might not have 

strong confidence to decide the relative importance of each attribute because the 

variants of Nimda may evolve quickly and the original ordering value needs to be 

modified in a short period. Hence, the expert can easily identify the importance of 

each attribute to Nimda1 and Nimda2 in each time interval according to the AST table 

with two time intervals, and then assign the first interval a signal which equals one in 

Table 5.2. Because the second time interval is pre-specified, the initial signal value is 

zero. Next the entropy weight of each attribute is first calculated to obtain the 

ordering value according to the AST. Since it is time irrelevant during the initial step 

of construction, the ordering value is “2” after calculation while entropy equals one 

because there is a positive instance and a negative instance. Therefore the initial AOT 

is constructed as shown in Table 5.3. 

 

Nimda

Mail_Attachment Upload_Medium Excuted_File_Name

Symptoms Carrier

Readme.exe cool.dllputa!!.scr Admin.dll  

Figure 5.2: Example of Nimda Concept Tree 

 
 

Table 5.1: An Example of Nimda acquisition table 
Attribute/ Object Nimda 

Mail_Attachment Readme.exe 

Upload_Medium Admin.dll 

Executed_File_Name Riched20.dll 
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Table 5.2: An Example of Nimda AST 
Attribute/ Object Nimda1 Nimda2 

Mail_Attachment 1 0 

Upload_Medium 1 0 

Executed_File_Name 1 0 

 

Table 5.3: An Example of Nimda AOT 
Attribute/ Object Nimda 

Mail_Attachment 2 

Upload_Medium 2 

Executed_File_Name 2 

 

Having both acquisition table and AOT, eight embedded rules are generated using 

EMCUD and some of them have low CF such as rule R1: ‘IF Not Mail_Attachment = 

Readme.exe and Upload_Medium = Admin.dll and Executed_File_Name = 

Riched20.dll Then Nimda’ with CF = 0.67. Therefore, suppose that the constructing 

worm KBS receives several worm instances in the real world, the R1 rule above is 

always fired by VODKA during a period, and suppose in the last two intervals the 

embedded rule R2: ‘IF Not Mail_ Attachment = Readme.exe and Not 

Upload_Medium = Admin.dll and Not Executed_File_ Name = Riched20.dll Then 

Nimda’ with CF = 0.4 is fired by VODKA, the AST to record the evolutional trend is 

shown in Table 5.4. 

In Table 5.4, the Mail_Attachment attribute is calculated by entropy-based method, 

and the entropy weight may lower the value because of its’ decreasing trend in 

interval 6 and 7. Finally, the attribute is assigned a new ordering value equaling 1 

since it is very possible to change again over time, subsequently, ordering value 3 is 

assigned for both attributes Upload_Medium and Excuted_File_Nam according to the 

AST. Therefore, the rule which has CF value equals 0.67 could be leveled up to 0.74. 
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Moreover, several new attributes’ values are learned by VODKA with 

Mail_Attachment = puta!!.scr in R1 ,then a new variant Nimda.B can be found in 

Table 5.5 and can be integrated into Table 5.6, and also an AOT is updated as Table 

5.7, then after merge procedure, the ontology is constructed as shown in Figure 5.3. 

 

Table 5.4: An Example of Nimda AST 
Attribute/ Object N1 N2 N3 N4 N5 N6 N7 

Mail_Attachment 1 0 0 1 0 0 0 

Upload_Medium 1 1 1 1 0 0 0 

Executed_File_Name 1 1 1 0 1 0 0 

 
 

Table 5.5: An Example of Nimda acquisition table 
Attribute/ Object Nimda.A Nimda.B 

Mail_Attachment Readme.exe  puta!!.scr 

Upload_Medium Admin.dll cool.dll 

Executed_File_Name Riched20.dll httpodbc.dll 

 
 

Table 5.6: An Example of Nimda acquisition table 
Attribute/ Object Nimda 

Mail_Attachment {Readme.exe; puta!!.scr } 

Upload_Medium {Admin.dll; cool.dll} 

Executed_File_Name {Riched20.dll; httpodbc.dll } 

 
 

Table 5.7: An Example of Nimda AOT 
Attribute/ Object Nimda 

Mail_Attachment 1 

Upload_Medium 3 

Executed_File_Name 3 
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Nimda

HAS:1
HAS:2 HAS:2

IS

IS

Mail_Attachment Upload_Medium Excuted_File_Name

Readme.exe
Admin.dll

IS

puta!!.scr

IS

cool.dll

 

Figure 5.3: Example of Nimda Ontology 

 

With the accumulated inference logs, VODKA can learn variants, and the time 

interval tracing oriented mechanism can be also used to incrementally update the 

knowledge to adapt the changing environment over time. Suppose VODKA learns a 

new attribute values, including Mail_Attachment = sample.exe, Upload_Medium = 

cool.dll and Executed_File_Name = httpodbc.dll in R2 while the rule R2 has already 

been fired in each time interval in a short period, another variant Nimda.E could be 

found. Finally the updated tables are shown in Table 5.8 and Table 5.9 and meanwhile, 

the ontology is also updated as Figure 5.4. Finally, the system will be set up in the 

current environment and guide the people who are not familiar in the domain by 

giving them a picture of worms for helping further preventing or removing the 

malicious worms. 

 

Table 5.8: An example of Nimda acquisition table 
Attribute/ Object Nimda 

Mail_Attachment {Readme.exe; puta!!.scr; sample.exe} 

Upload_Medium {Admin.dll; cool.dll} 

Executed_File_Name {Riched20.dll; httpodbc.dll } 
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Table 5.9: An example of Nimda AOT 
Attribute/ Object Nimda 

Mail_Attachment 1 

Upload_Medium 2 

Executed_File_Name 2 

 

Nimda

HAS:1
HAS:2 HAS:2

IS IS
IS

Mail_Attachment Upload_Medium Excuted_File_Name

Readme.exe
Admin.dll

Riched20.dll
IS

puta!!.scr

IS

sample.exe

IS

IS

cool.dll

httpodbc.dll
 

Figure 5.4: Example of Nimda ontology 

 

5.3  Worm Immune Service Expert System 

Up to now, there are many antivirus products that can discover worms, virus or 

Trojan horse in a computer system. However, these products are hard to automatically 

discover the variants of worms because the signature based approach appears fails 

when the signatures are changed. To overcome the weakness, the WISE is proposed to 

enhance the commercial antivirus products instead of replacing them. WISE, unlike 

pattern matching system, does not need to rewrite the program but just updates the 

knowledge base to modify the defense mechanism when the worms’ mutation 

occurred; as a result, WISE can be maintained by simply updating the knowledge 

bases. Since the knowledge of worms accumulates in fast speed, the knowledge 

constructed today may be degraded in the near future. Therefore, we need to design a 

knowledge acquisition method to solve the adaptive problem in the dynamic changing 
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domain like the worm domain, and the knowledge in such domain we call it the 

evolutional knowledge. Moreover, since the situation of different configurations from 

different hosts complicates the intrusion behavior analysis, we propose a collaborative 

architecture for WISE. The collaborative architecture of WISE is shown in Figure 5.5. 

 

I n f e r e n c e  e n g i n e  1

W o r m  
K n o w l e d g e  

B a s e

T u t o r i a l

D i s c o v e r y

D i a g n o s i s b

L o g s  
c o l l e c t i o n

b b

F r e q u e n c y  b a s e d  a n a l y s i s

T i m e  b a s e d  a n a l y s i s

I n f e r e n c e  e n g i n e  2 I n f e r e n c e  e n g i n e  3

W o r m  I m m u n e  S e r v i c e  
S e r v e r

P r o f i l e  
D a t a B a s e

C o n t e x t  b a s e d  a n a l y s i s

 

Figure 5.5: Worm Immune Service Expert System 

 

Since there is abundant information of worms from Internet, many technological 

documents are easy to collect. Then the network environment can be further deployed 

the multiple inference engines for gathering different inference results according to 

the different BDML context configurations. 

VODKA is applied to collect relevant information to help experts discover the 

occurrence of variants form the original knowledge base. Also in the architecture, 

VODKA helps D-EMCUD construct Attribute-Signal Table (AST) to reconstruct AOT 

and update acquisition table through three stages, including log collecting stage (time 

interval tracing stage), knowledge learning stage which would also draw support form 

profile database, a BDML context information, based on CAKE architecture and 

further polishes the knowledge. 



 48

The environment is to provide a web interface to interact with the users by 

inferring all the symptoms inputted by them or discovered by scanning tools. For 

example, if worm infects a system, the user can scan the host computer by some 

general antivirus software or can look for help from the Internet. Then WISE collects 

all the information from the users and infers the information based upon the 

knowledge base constructed by CAKE method. Consequently, the result after inferring 

will be passed to the users and can be used to teach them how to recover the system to 

the normal state. The example of collaborative WISE environment, shown in Figure 

5.6, includes local analysis and global analysis. Frequency based analysis (VODKA) 

and time based analysis (TEA) are used in each local learning module, and the 

information after analysis are recorded as context based BDML documents. Then the 

collaborative analysis center analyzes all the context information from locals based 

upon several heuristics to discover the evolutional knowledge. 
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Figure 5.6: WISE environment 
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5.4  Experimental Results 

We implemented a D-EMCUD web based system based upon architecture of 

CAKE, and WISE is used as an experiment domain. We set up three computers with 

the D-EMCUD system and each one is designed with the specific knowledge base 

according to the BDML profile. To evaluate the performance of CAKE architecture, 

we test the system to generate 100 rules, 200 rules, 400 rules, 800 rules and 1000 

rules respectively. The difference between the signal host knowledge based 

construction and multiple hosts knowledge based construction is shown in Table 5.10 

which shows the acquisition from multiple hosts based upon CAKE architecture is 

more efficient. 

Notice that it does not mean the environment with multiple sensors is always the 

best. The collaborative heuristics between sensors can affect the whole system’s 

performance. However, after the experiment, we do improve the performance through 

the environment with multiple sensors based upon CAKE architecture. 

 

Table 5.10: Knowledge base construction efficiency 
rules 100 200 400 800 1000 

Single host 63 ms 126 ms 280 ms 656 ms 1172 ms 

Multiple hosts 48 ms 93 ms 187 ms 438 ms 969 ms 

 

Subsequently, each host or computer performs each duty of inference, and every 

inference process will be controlled by the collaborative heuristics to decide whether 

each knowledge base should be inferred. From the collection of the inference results, 

some evidences of worms may be further approved or disapproved. The experimental 

results in inference performances on designed models are sets with 100 rules, 200 
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rules, 400 rules, 800 rules and 1000 rules respectively to infer a goal. Examining the 

inference time to reach the goal, Table 5.11 shows the better performance in 

multiple-hosts environment. 

Table 5.11: Inference efficiency 
rules 100 200 400 800 1000 

Single host 15142 ms 27579 ms 32807 ms 47438 ms 60697 ms 

Multiple hosts 7240 ms 17485 ms 20960 ms 28611 ms 31202 ms 

 

Finally, we did an experiment of the evaluation of discovering variants. We 

generated all kinds of test simples including the behaviors of original worms and 

variants (polymorphic worms) to randomly attack the network. Then we found that 

CAKE successfully discovers the variants those can not be discovered by VODKA. 

Since some critical weak embedded rules may be ignored in the beginning of 

knowledge based construction, some specific variants will never be found by VODKA 

unless the KB is reconstructed and experts accept the rules which had been ignored 

before, then apply VODKA once again. However, CAKE uses a collaborative learning 

mechanism based upon all information of the historical logs to reveal the rules which 

had been ignored at the beginning. In the experiment, we define “inference number”, 

which represents the minima number of rules that inference engine has to go through, 

as a measure of inference efficiency. The experimental result is shown in Table 5.12. 

 

Table 5.12: Variant Discovering ratio 
 Original worms Variant Worms Inference number 

VODKA 100% 60% 193 

VODKAR 100% 100% 294 

CAKE 100% 100% 200 

 

The second row of Table 5.12, VODKAR, shows that the VODKA is applied 
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again on the knowledge which has been reconstructed. Obviously, after KB 

reconstruction, VODKA can learn all of the variants; however it needs extra inference 

number about 100. On the other hand, CAKE can also learn all of the variant 

information, but in the case of CAKE, it needs only 7 extra inference costs to reach the 

goal. Therefore, CAKE is more efficient. 
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Chapter 6  Concluding Remarks 

We have proposed CAKE, a new knowledge acquisition method enhanced from 

legacy EMCUD, to make the knowledge more adaptive for the current environment. 

CAKE uses TEA to record important information in each time interval by interacting 

with human experts and also the VODKA’s learning strategy is used to discover the 

variant knowledge. Finally, D-EMCUD is used to generate the adaptive rules for the 

current environment. A case study of variants of the computer worm detection is 

illustrated to ease the experts’ efforts from analyzing and learning and to help 

retrieving meaningful information for making proper decisions since the knowledge 

bases become more adaptive for a changing environment. 

The prototype of WISE has been implemented which can enhance variants 

detecting and defending abilities in commercial antivirus products by using learning 

method based upon CAKE. We are enriching the worm knowledge bases of WISE by 

CAKE to provide more flexible and reliable worm immune services which can 

discover the variants that can not be discovered by the original WISE based upon 

VODKA and single host-based architecture. 

In the near future, CAKE will be applied to different domains and applications. By 

further identifying more interesting information in BDML, it can cover as many 

aspects as possible to completely represent the specific domain behaviors. Moreover, 

designing abundant collaborative heuristics to enrich the scalabilities of CAKE is 

going to be an important topic. 
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