

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

延伸 Globus Toolkit Java WS Core 並提供

可 靠 的 格 網 訊 息 服 務

Extending Globus Toolkit Java WS Core to Support

Reliable Grid Messaging Services

研 究 生：陳勇宇

指導教授：袁賢銘 教授

中 華 民 國 九 十 五 年 六 月

延伸 Globus Toolkit Java WS Core 並提供可靠的格網訊息服

務

Extending Globus Toolkit Java WS Core to Support Reliable Grid
Messaging Services

研 究 生：陳勇宇 Student：Yung-Yu Chen

指導教授：袁賢銘 Advisor：Shyan-Ming Yuan

國 立 交 通 大 學
資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年六月

 i

延伸 Globus Toolkit Java WS Core並提供可靠的格網訊息服務

研究生：陳勇宇 指導教授：袁賢銘

國立交通大學資訊科學與工程研究所

摘要

近年來，隨著格網運算的熱潮，企業也漸漸地採用格網技術來整合新舊系統。

Globus Toolkit 是目前業界通用地用來建構格網環境的主要工具之一，最新版的

Globus Toolkit (GT4) 採用了服務導向架構，提供了以網路服務為基礎的格網環

境。然而，Globus Toolkit 卻沒有保證在網路服務訊息互相傳遞的情況下能可靠

地傳送與接收訊息，一旦在訊息在傳遞過程中，發生了系統癱瘓或是網路問題，

則會造成訊息的流失，對於企業而言，將會造成非常嚴重的影響。此外，Globus

Toolkit Java Web Services core所提供的訊息傳遞機制是基於資源特性的改變，意

即它把訊息當作是資源特性，以程式設計師的角度來看是不太合理的。

由於網路的快速發展，訊息導向中介軟體成為企業間傳遞訊息最普遍使用的工

具，昇陽公司制定了 Java 訊息服務應用程式設計介面 (JMS API)，提供一個統

一的標準介面，讓建立於訊息導向中介軟體之上的應用程式具有可移植性。我們

實驗室所開發的Persistent Fast Java Message (PFJM) 即是一套基於 JMS所開發的

產品，擁有可靠的訊息傳遞機制，並且加強了永續訊息與效能等特性。在這篇研

究當中，我們將整合 PFJM與 GT4 Java WS core，將 PFJM包裝成網路服務，並

設計合理的程式邏輯，以及提供方便有用的工具讓開發網路服務的使用者使用。

最後我們測試了分別以 GT4 Java WS core與 PFJM WS 來傳遞訊息的應用程式，

由測試結果可以看出，透過我們的PFJM WS來傳遞訊息擁有比GT4 Java WS core

傳送訊息有較好的效能。

 ii

Extending Globus Toolkit Java WS Core to Support Reliable Grid
Messaging Services

Student：Yung-Yu Chen Advisor：Shyan-Ming Yuan

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

In the recent years, with the upsurge of the grid computing technology, enterprises

adopt the grid technology to integrate legacy and new systems gradually. Globus

Toolkit is one of the most important tools in the industry to construct grid

environment. The newest version of Globus Toolkit (GT4) adopts Services Oriented

Architecture (SOA) to provide grid environment based on Web Services. However,

Globus Toolkit does not guarantee to reliably send and receive messages during

messages passing between Web Services. Once systems crash or network fails during

messages communication, it will cause the messages to be lost. For enterprise, this

will make very serious effect. Furthermore, the messages communication mechanism

which Globus Toolkit Java Web Services core provides is based on the changes of

resource properties. In other words, it regards messages as resources properties but

that is unreasonable for the perspectives of the programmers.

With the rapidly growth of Internet, Message Oriented Middleware (MOM) has

become the widespread used tool for delivering messages between enterprises. Sun

Corporation has defined the Java Message Service Application Programming

Interface (JMS API) to provide a unified interface for portability of the programs

 iii

developed on the Message Oriented Middleware. Persistent Fast Java Message (PFJM)

is a JMS compliant Message Oriented Middleware developed by our laboratory and it

has a reliable messages passing mechanism and some improved features such as

persistent message and high performance. In this research, we will integrate PFJM

and GT4 Java WS core to design reasonable programming styles and provide

convenient and useful tools for Web Services development users by wrapping PFJM

into PFJM Web Services (PFJM WS). Finally, we give a throughput test of messages

communication respectively for GT4 Java WS core and PFJM WS. In the report, we

can see that PFJM WS has a higher performance than GT4 Java WS core.

 iv

Acknowledgements

首先感謝我的指導教授 袁賢銘教授 教導分散式系統上的基礎以及給予我論文

重要的意見。在分散式系統實驗室的博士後研究學長葉秉哲，及博士班學長蕭存

喻、吳瑞祥、鄭明俊、高子漢，感謝他們在自己研究之餘能為我的論文給予不少

的意見，祝福他們能順利地獲得博士學位。另外也恭喜實驗室的其他碩二生，林

良彥、陳俊元、李杰樷、林家鋒、蔡紀暘以及范志歆能順利地畢業。

此外，秀玲，謝謝妳能給予我精神上的鼓勵與支持，陪伴我順利地過完兩年碩士

生涯。

最後感謝我的父母 陳三郎先生 和 林里女士，由於你們的辛勞付出，才能讓我

進入國立交通大學就讀，並且能無後顧之憂地完成學業，真的非常感激你們。

 v

Table of Contents

Chinese Abstract ...i

English Abstract ...ii

Acknowledgements ...iv

Table of Contents ...v

List of Figures...vii

List of Tables...x

Chapter 1 Introduction..1

1.1 Preface..1

1.2 Motivation..2

1.3 Research Objectives...5

1.3.1 Reliable messaging...5
1.3.2 Reasonable programming styles...5

1.4 Organization...5

Chapter 2 Background ..7

2.1 Java Messaging Service (JMS) ..7

2.1.1 Design Architecture ..7
2.1.2 Message Delivery Models ..9
2.1.3 Reliable Messaging ..9

2.2 Persistent Fast Java Messaging (PFJM)...10

2.3 Globus Toolkit..11

2.3.1 Architecture .. 11
2.3.2 Service Oriented Architecture (SOA)..13
2.3.3 Web Services...14
2.3.4 Web Services Resource Framework (WSRF)..17
2.3.5 Web Services Addressing (WSA)...20
2.3.6 Web Services Notifications (WSN)..21
2.3.7 Java WS Core ...22

 vi

Chapter 3 System Architecture and Design...24

3.1 Overview..24

3.2 System Architecture ...24

3.3 Service PortTypes ..25

3.3.1 JMSFactory PortType...25
3.3.2 JMSPublisher PortType..28
3.3.3 JMSSubscriber PortType ..29

3.4 Mechanism of Communication..30

3.4.1 Publish Mechanism ..30
3.4.2 Subscribe Mechanism...31
3.4.3 Delivery Mechanism...32
3.4.4 Recovery Mechanism..32

Chapter 4 Comparison of Programming Styles ..34

4.1 A Gird Service Application..34

4.2 The Scenario for PFJM WS ...35

4.3 The Scenario for GT4 Java WS Core ..36

4.4 The Detail Implementation for PFJM WS ...38

4.5 The Detail Implementation for GT4 Java WS Core44

4.6 Discussion..51

Chapter 5 Experiment ...52

5.1 Experiment Environment ...52

5.2 Experiment Results ..53

5.2.1 The Throughput for One-to-One Communication ..53
5.2.2 The Throughput for One-to-Many Communication..54

5.3 Discussion..54

Chapter 6 Conclusion and Future Works ..55

6.1 Conclusion ...55

6.2 Future Works..56

Bibliography ...59

 vii

List of Figures

Figure 1-1 Enterprise Traditional Model ..3

Figure 1-2 Enterprise Grid Based Model ..3

Figure 2-1 Central Architecture of MOM Design..8

Figure 2-2 Distributed Architecture of MOM Design..8

Figure 2-3 Architecture of PFJM...10

Figure 2-4 GT4 Architecture..12

Figure 2-5 The Web Services Architecture ...15

Figure 2-6 A Typical Web Service Invocation ..16

Figure 2-7 A Stateless Web Service Invocation..17

Figure 2-8 A Stateful Web Service Invocation..18

Figure 2-9 The Resource Approach to Statefulness ...19

Figure 2-10 A Web Service with Three Resources and Each Resource Has Two

Properties...19

Figure 2-11 WS-Resource ..20

Figure 2-12 Capabilities of A GT4 Container ...22

Figure 3-1 The System Architecture...25

Figure 3-2 The Relationship of Service Manager and Resource Home26

Figure 3-3 The Sequence Diagram of Creating A JMSPublisherService27

Figure 3-4 The Sequence Diagram of Creating A JMSSubscriberService27

Figure 3-5 The Simplified WSDL File of JMSPublisherService28

Figure 3-6 The Simplified Example of A Message Receiver ..29

Figure 3-7 The Sequence Diagram of Publish Mechanism ...30

Figure 3-8 The Sequence Diagram of Subscribe Mechanism......................................31

 viii

Figure 3-9 The Sequence Diagram of Delivery Mechanism..32

Figure 4-1 A Grid Service Application ..34

Figure 4-2 The Scenario for PFJM WS - 1 ..35

Figure 4-3 The Scenario for PFJM WS – 2 ...36

Figure 4-4 The Scenario for GT4 Java WS Core – 1 ...37

Figure 4-5 The Scenario for GT4 Java WS Core - 2..37

Figure 4-6 The Detail Implementation for PFJM WS ...38

Figure 4-7 The Detail Implementation for PFJM WS - Step 139

Figure 4-8 The Detail Implementation for PFJM WS - Step 239

Figure 4-9 The Detail Implementation for PFJM WS - Step 340

Figure 4-10 The Detail Implementation for PFJM WS - Step 440

Figure 4-11 The Detail Implementation for PFJM WS - Step 5...................................40

Figure 4-12 The Detail Implementation for PFJM WS - Step 641

Figure 4-13 The Detail Implementation for PFJM WS - Step 741

Figure 4-14 The Detail Implementation for PFJM WS - Step 841

Figure 4-15 The Detail Implementation for PFJM WS - Step 9.142

Figure 4-16 The Detail Implementation for PFJM WS - Step 9.243

Figure 4-17 The Detail Implementation for PFJM WS - Step 1043

Figure 4-18 WSN in GT4 Java WS Core..44

Figure 4-19 The Detail Implementation for GT4 Java WS Core45

Figure 4-20 The Detail Implementation for GT4 Java WS Core – Step 146

Figure 4-21 The Detail Implementation for GT4 Java WS Core – Step 247

Figure 4-22 The Detail Implementation for GT4 Java WS Core – Step 347

Figure 4-23 The Detail Implementation for GT4 Java WS Core – Step 448

Figure 4-24 The Detail Implementation for GT4 Java WS Core – Step 548

Figure 4-25 The Detail Implementation for GT4 Java WS Core – Step 649

 ix

Figure 4-26 The Detail Implementation for GT4 Java WS Core – Step 749

Figure 4-27 The Detail Implementation for GT4 Java WS Core – Step 850

Figure 4-28 The Detail Implementation for GT4 Java WS Core – Step 950

Figure 5-1 The Throughput for One-to-One Communication......................................53

Figure 5-2 The Throughput for One-to-Many Communication54

Figure 6-1 Messaging Model ...57

Figure 6-2 Structure of WS-Reliability elements ...58

 x

List of Tables

Table 5-1 The Hardware and Software Specifications ...52

Table 6-1 Pub/Sub Reliability ..57

 1

Chapter 1 Introduction

1.1 Preface

Due to the improvement of the technology or the new demands of the long-standing

companies which have a large number of legacy systems, they may like to purchase or

develop new systems to enhance services providing by those legacy systems.

Nevertheless, for example, companies do not want to drop the legacy database storing

bulky datasets and indeed throwing away a system may have unexpected risks. So

what they want is to retain the legacy systems and the new ones simultaneously. If

there is a fine mechanism to integrate those legacy and new systems, enterprises will

save a lot of efforts and money when emerging systems appear frequently.

As a result of the importance of communication between systems and systems,

Message Oriented Middleware (MOM) [1] has been brought up. MOM is the term for

software that connects separate systems in a network by carrying and distributing

messages between them. Unlike Remote Procedure Call (RPC) [2] it is an

asynchronous form of communication, i.e. the sender does not block waiting for the

recipient to participate in the exchange. If the message service offers persistence and

reliability then the receiver need not be up and running when the message is sent.

However, there are so many MOM venders in the world and each vender provides its

own proprietary API. When application developers who develop applications to

communicate with each other using MOM move from this MOM to another, the codes

can not be used again, i.e. developers must spend extra effort to rewrite new codes

 2

applied to the new MOM. For portability, Sun Microsystems and its partners wrote

the Java Message Service (JMS) spec [3]. One objective of JMS is to minimize the

learning curve for writing messaging applications and to maximize the portability of

messaging applications. And the Advantage of the standard interface is that

applications written by JMS API can run on every JMS compliant MOM.

Nowadays there are many MOM providers such as SonicMQ [4], FioranoMQ [5], and

OpenJMS [6] which support the JMS 1.1 standard finalized at 2002 at least. Persistent

Fast Java Messaging (PFJM) [7] [8] is a Message-oriented Middleware designed by

our laboratory. In addition to support JMS 1.1 standard, we enhance the persistent

message and high performance features for increasing the scalability greatly.

1.2 Motivation

In recent years, with the rise of grid technology [29] [30] enterprises are willing to

take grid technology as the opportunity to integrate their resources inside such as

computing powers, storages, and so on. In traditional enterprise environment, for

example, the specific service enterprises provide may reside on specific server such as

Figure 1-1 which depicts the traditional enterprise system model. If the capability of

the server reaches its limit, what enterprises can do is to buy another more powerful

server to replace with the old one. This is a very wasted solution since other servers

which users access seldom may still have a lot of computing power or resources left.

 3

Figure 1-1 Enterprise Traditional Model

Figure 1-2 Enterprise Grid Based Model

 4

Nowadays enterprises have considered adopting the grid solution to integrate their

overall resources. By means of grid technology depicted in Figure 1-2, users access a

service virtualization layer instead of accessing to the specific server directly. The

service virtualization layer can abstract the underlying all kinds of services to a single,

large virtual world so every server can exhaust himself to reach the most effective

avail.

The Globus Toolkit (GT) [9] [32] [33] is an open source software toolkit used for

building Grid systems and applications. It is being developed by the Globus Alliance

and many others all over the world. Java WS Core [10] is one of GT common runtime

components and it provides APIs and tools for developing Grid services and offers a

run-time environment capable of hosting them. The Java WS Core in GT4 implements

the Web Services Resource Framework (WSRF) [11] [12] [13] [31] and the Web

Service Notification (WSN) [14] family of standards. However the communication

mechanism between web services does not guarantee reliable messaging. In other

words, the notification consumer can not reliably receive the messages sent by

notification producer since the unreliable network. Furthermore communication

between applications in enterprise environment is expected to be reliable because the

messages lost may case a very serious consequence. It stands to reason that we extend

Globus Toolkit WS Core to support reliable messaging.

Fortunately JMS fits the features, Web Service Notification which GT Java WS Core

implements, and it is more important that JMS provides the guarantee of reliable

messaging. So in this research we will integrate PFJM, a JMS compliant product

developed by our lab, into GT Java Web Core to provide useful web services for

reliable messaging.

 5

1.3 Research Objectives

In this research, we discuss the necessity of reliable messaging and the defective GT4

Java WS core. There are two objectives in this research including reliable messaging

and reasonable programming styles.

1.3.1 Reliable messaging

Since the GT4 Java WS core lacks reliable messaging which is important for grid

applications, we integrate a JMS compliant product, PFJM, into GT4 Java WS core to

provide reliable messaging mechanism. The features are described in the following：

1. Persistent messaging：Persistent messages are guaranteed to survive through JMS

provider failure. If a message is set as persistent, before it is sent to the network,

it must be stored in a persistent storage.

2. Durable subscription：Durable subscribers are guaranteed to receive persistent

message published during their registration and de-registration, even they are not

always active.

1.3.2 Reasonable programming styles

Since messages in GT4 Java WS core are always marked as a resource property

discussed more detailed in Section 4.2, this is unreasonable from the programmer’s

point of view. For programmers, they expect to use Topic as the message destination

to send and receive messages. Through our system, PFJM WS, clients can use

JMS-like programming style to send and receive messages reliably.

1.4 Organization

This research is organized as following: In Chapter 2, the background will be

reviewed. We will talk about JMS including its architecture, message delivery model,

 6

and its main feature, reliable messaging. Then we will introduce PFJM which is a

JMS compliant product developed by our lab. Also the Globus Toolkit will be

introduced in details including its architecture, the specifications it implements, and

the leading role GT4 Java WS core. In Chapter 3, we will describe my system, PFJM

WS, including architecture, the service portTypes we provide, and the mechanism of

communication. In Chapter 4, we will give scenarios respectively for PFJM WS and

for GT4 Java WS core and discuss the execution sequence from a programmer’ point

of view in details. In Chapter 5 we will experiment the throughput of PFJM WS and

GT4 Java WS core based on the scenarios described in Chapter 4. Finally in Chapter 6,

there is a conclusion of this research and we also give an idea for the future work.

 7

Chapter 2 Background

2.1 Java Messaging Service (JMS)

The Java Message Service (JMS), which is designed by Sun Microsystems and

several other companies under the Java Community Process as JSR 914 [15], is the

first enterprise messaging API that has received wide industry support. The Java

Message Service (JMS) was designed to make it easy to develop business applications

that asynchronously send and receive business data and events. It defines a common

enterprise messaging API that is designed to be easily and efficiently supported by a

wide range of enterprise messaging products.

2.1.1 Design Architecture

The design architecture of JMS can be divided into two categories：

1. Central Architecture：Figure 2-1 depicts the central architecture of MOM design.

JMS Server is responsible for message delivery. JMS Client is a so-called

publisher or a subscriber in JMS field. Each application uses JMS API to be a

publisher or a subscriber to send or receive messages. Once JMS Server receives

the messages from a publisher, it then sends the messages to a subscriber. The

shortcoming of central architecture is the server-bottleneck problem. If the central

server gets low performance or even becomes failure, the overall message

exchange system will becomes unavailable. However, it has the advantages of

easy management and uncomplicated design.

 8

Figure 2-1 Central Architecture of MOM Design

2. Distributed Architecture：Figure 2-2 depicts the distributed architecture of MOM

design. Under this architecture there is no central server any more and messages

delivery jobs are distributed to every JMS client participating in the messages

communication. Because there is no longer a server, every client must be aware of

some information of other clients, for example, IP and Port. The advantage of

distributed architecture is the loading of original central server is divided and

distributed to every client. So the single-point-failure problem does not exist. On

the contrary, resource management will be complicated and difficult.

Figure 2-2 Distributed Architecture of MOM Design

JMS Server

JMS Client

JMS Client

JMS API JMS API

Application

Application

Application

API

MOM

Application

API

MOM

Application

API

MOM

 9

2.1.2 Message Delivery Models

JMS supports two different message delivery models:

1. Point-to-Point (Queue destination): In this model, a message is delivered from a

producer to one consumer. The messages are delivered to the destination, which is

a queue, and then delivered to one of the consumers registered for the queue.

While any number of producers can send messages to the queue, each message is

guaranteed to be delivered, and consumed by one consumer. If no consumers are

registered to consume the messages, the queue holds them until a consumer

registers to consume them.

2. Publish/Subscribe (Topic destination): In this model, a message is delivered from

a producer to any number of consumers. Messages are delivered to the topic

destination, and then to all active consumers who have subscribed to the topic. In

addition, any number of producers can send messages to a topic destination, and

each message can be delivered to any number of subscribers. If there are no

consumers registered, the topic destination doesn't hold messages unless it has

durable subscription for inactive consumers. A durable subscription represents a

consumer registered with the topic destination that can be inactive at the time the

messages are sent to the topic.

2.1.3 Reliable Messaging

JMS defines two reliability-related specifications：

1. Persistent messaging: “The PERSISTENT mode instructs the JMS provider to take

extra care to insure the message is not lost in transit due to a JMS provider failure.

A JMS provider must deliver a PERSISTENT message once-and-only-once. This

means a JMS provider failure must not cause it to be lost, and it must not deliver it

 10

twice.”

2. Durable subscription: “A durable subscriber registers a durable subscription with

a unique identity that is retained by JMS. Subsequent subscriber objects with the

same identity resume the subscription in the state it was left in by the prior

subscriber.”

2.2 Persistent Fast Java Messaging (PFJM)

Persistent Fast Java Messaging is a JMS compliant product designed by our laboratory.

PFJM adopts the distributed architecture and implements the message delivery

protocol using IP multicast technology. Figure 2-3 illustrates the overall architecture

of PFJM.

Figure 2-3 Architecture of PFJM

In a distributed computing environment that uses PFJM, every participated program

(or host) has to execute the required PFJM run-time components, which are different

due to the role of hosts. In the publisher part, the activated components are Serializer

Message Producer Message Listener

Serializer

Carrier

Dispatcher

Composer

Carrier

IP Multicast

PFJM

MBU

 11

and Carrier. In the subscriber part, the activated components are Dispatcher,

Composer, and Carrier.

In publisher, Serializer serializes all messages into sequence of bytes, and then divides

the bytes stream into appropriate-sized Memory Block Unit (MBU). Theses MBUs

are put into a sending queue. Then, carrier delivers MBUs in sending queue to

subscribers in order. Subscriber’s Carrier receives MBUs which were sent by

publisher and put them into Input Memory. If message listener is set, once all MBUs

of one JMS message arrived, the message will recomposed and send to Dispatcher.

Dispatcher will dispatch the message to participate application.

In addition to following JMS standard, PFJM also emphasizes on some features such

as persistent message and high performance.

2.3 Globus Toolkit

The Globus Toolkit (GT) has been developed since the late 1990s to support the

development of distributed computing applications and infrastructures. The objective

of the GT is to provide a set of libraries and programs that address common problems

which occur when building distributed system services and applications. The

following sections will introduce the details of Globus Toolkit.

2.3.1 Architecture

GT4, the latest version, is composed of several components such as Security [16],

Data Management [17], Information Services [18],Execution Management [19],

and the Common Runtime [20] as shown in the Figure 2-4. With the popularity of

 12

Web Services GT4 has already focused on Web Service’s tool development. Even so

GT4 also provide both tools including WS and non-WS components.

Figure 2-4 GT4 Architecture

Let us take a look at what these five components can provide：

1. Common Runtime：The Common Runtime components provide fundamental

libraries and tools which are needed to build WS and non-WS services.

2. Security：The Security components can ensure communication being secure

based on Grid Security Infrastructure (GSI).

 13

3. Data Management：The Data Management components can allow us to manage

large sets of data in our virtual organization.

4. Execution Management：The Execution Management components deal with the

initiation, monitoring, management, scheduling and coordination of executable

programs, usually called jobs, in a Grid.

5. Information Services：The Information Services components can be used to

discover and monitor resources in a virtual organization.

2.3.2 Service Oriented Architecture (SOA)

GT4 is a set of software components for building distributed systems in which diverse

and discrete software agents interact via message exchanges over a network to

perform some tasks. GT4 is, more specifically, a set of software components that

(with some exceptions) implement Web services mechanisms for building distributed

systems. Web services provide flexible, extensible, and widely adopted XML-based

mechanisms for discovering, describing, and invoking network services; in addition,

its document-oriented protocols are well suited to the loosely coupled interactions.

These mechanisms facilitate the development of service-oriented architectures –

systems and applications structured as communication services in which services are

discovered, interfaces are described, operation are invoked, and so on, all in uniform

ways.

So, what is Service Oriented Architecture [21]? SOA can be characterized by the

following aspects：

1. Logical view：The service is abstracted from actual programs, database, business

logic, and etc. It defines what it does and carries out business operations.

 14

2. Message orientation：The service is defined in terms of messages exchanged

between service provider and service requester but not the properties of the

service itself. Using SOA one does not know the actual implementation of the

service including language, architecture, and etc. So the legacy systems can be

used by means of the message passing mechanism and hidden implementation

details from service requesters.

3. Description orientation：The service is described by machine-readable metadata.

Only the details exposed to the public and important for the use of the service are

should be included in the description.

4. Granularity：Services are composed of a small number of operations with

relatively large and complex messages.

5. Network orientation：Services tend to be deployed over network.

6. Platform neutral ： Due to XML technology, messages are sent in a

platform-neutral and standardized format

2.3.3 Web Services

As mentioned in previous section, GT4 is set of components that implement Web

Services [22]. Now let us take a look at what is Web Service and how does it work：A

Web Service is a software system designed to support interoperable

machine-to-machine interaction over a network. It has an interface described in a

machine-processable format (WSDL [23]). The interface defines the operations in

which clients can use that to interact with Web Services by SOAP [24] messages

conveyed by HTTP.

 15

Figure 2-5 The Web Services Architecture

Figure 2-5 depicts the Web Services Architecture and the most popular protocol or

function used in each layer：

1. Service Processes：The highest layer usually contains many Web Services. From

Figure 2-5 the discovery service can allow us to locate one particular service

from a collection of Web Services.

2. Service Description：Once you have located a Web Service, you can ask it to

“describe itself” and tell you what operations it supports and how to invoke it.

This is handled by the Web Service Definition Language (WSDL).

3. Service Invocation：SOAP (Simple Object Access Protocol) specifies how we

should format requests to the server and how the server should format responses

to requesters.

4. Transport：Finally all the messages must be transmitted by HTTP.

So how does the invocation of Web Services work？Figure 2-6 depicts the process of

the invocation between clients and Web Services. Let us supposes that we have

already located the Web Service we want to use and the stubs have been generated

from WSDL files. The following steps describe the overall process：

1. Whenever our program calls the Web Service, it in fact calls the client stubs. The

Transport (HTTP)

Invocation (SOAP)

Description (WSDL)

Processes (Discovery)

 16

client stubs will turn the “local invocation” into a proper SOAP message. This is

called marshaling or serializing process.

2. The SOAP request is sent to Server via internet. After receiving the SOAP

request, the server stubs will convert that into something the Web Service

implementation can understand (this is typically called unmarshaling or

deserializing process).

3. Once the SOAP request has been deserialized, the server stubs call the Web

Service implementation and ask it to do the proper operation.

4. After the Web Service handles the request operation, it returns the result of the

operation to server stubs which turn the result into SOAP response.

5. The SOAP response is set to Client via internet. After receiving the SOAP

response, the client stubs convert that into something our program can

understand.

6. Finally our program receives the result of Web Service invocation and uses it.

Figure 2-6 A Typical Web Service Invocation

Internet
Our
Program

Web Service
Implementation

Client
Stubs

Server
Stubs

Client Server 1

5

2 3

46

 17

2.3.4 Web Services Resource Framework (WSRF)

So far we have discussed the Web Services which are the technology for building

internet-based loosely coupled applications. That makes them the natural choice for

building next generation of grid-based applications. However Web Services have

some limitation that is inadequate for grid applications. For example, plain Web

Services are usually stateless. This means that Web Services cannot remember

information from one invocation to another. As shown in Figure 2-7, this is an integer

accumulator Web Service handling requests from clients to execute add operation.

Due to the integer accumulator Web Service cannot keep the state which previous

invocation brings out, the Web Service always returns the same response to clients.

Figure 2-7 A Stateless Web Service Invocation

Although the Web Service cannot keep state, this is not a bad thing for certain

applications such as Weather Web Service returning information of weather. However,

Grid applications do generally require statefulness. From Figure 2-8 we can see how

an integer accumulator Web Service using State works.

Service Response：
10

Service Request：
Add 5

Service Response：
5

Service Request：
Add 10

Client

Integer
Accumulator

Web
Service

Time

 18

Figure 2-8 A Stateful Web Service Invocation

Now let us take a look at how GT4 implements WSRF to support stateful Web

Services. Instead of putting the state in the Web Service, GT4 keeps state in a separate

resource which stores all the state information of Web Services. Each resource has a

unique key so whenever we want to interact with a Web Service, we simply instruct

the Web Service which resource we want to use.

As shown in Figure 2-9, we specify the resource B that we want to execute the add

operation. When the Web Service receives the request, it will try to retrieve resource

B and perform add operation on that resource. The resources themselves will be

stored in memory, database, or secondary storages depending on different

implementations.

(Initial)

Service Response：
15

Service Request：
Add 5

Service Response：
5

Service Request：
Add 10

Client

Integer
Accumulator

Web
Service

Time State

0

5

15

 19

Figure 2-9 The Resource Approach to Statefulness

Of course, resource can come in different shapes and can have multiple properties as

shown in Figure 2-10.

Figure 2-10 A Web Service with Three Resources and Each Resource Has Two
Properties

(New Value)

Resources B

Resources A

Service Response：
15

Service Request：
Add 10, use resource B

Client

Web

Service

Resources

0

5

15

Resource B

Resource C

Resource A

Web
Service

Resources

Book name：“Book1”
Price：760

Book name：“Book2”
Price：360

Book name：“Book3”
Price：550

 20

Figure 2-11 WS-Resource

Figure 2-11 depicts the relation between Web Service and Resource. WS-Resource

[25] is a combination of a stateful resource and a Web Service and by the way

WS-Resource Properties [26] is the properties in the resource.

In brief, WSRF defines a number of operations that can be performed on a

WS-Resource, from getting and setting its properties to adding it to a ServiceGroup

with other similar services. It is also possible to use WSRF to destroy a WS-Resource

or to set an "expiration date" for it.

2.3.5 Web Services Addressing (WSA)

From the previous section we have known what WS-Resource is. But how does a

client locate a specific WS-Resource. Once upon a time, it was easy to specify the

address of a Web service. All you really needed was the URL. Nowadays, with Web

Resource B

Resource C

Resource A

Web
Service

Resources

Book name：“Book1”
Price：760

Book name：“Book2”
Price：360

Book name：“Book3”
Price：550

Web Service
+

Resource
=

WS-Resource

 21

service applications getting increasingly complex, it's not always that simple. What if

you want the reply to be sent somewhere other than the original requestor？What if

you simply need to attach to a particular instance of a Web service?

The Web Services Addressing [27] comes to solve this problem. WS-Addressing

provides a way to specify information about a location other than just a simple

Universal Resource Identifier (URI) or URL. WS-Addressing introduces the concept

of an EndpointReference. The EndpointReference is a way to specify the

information needed to get a message to the right place. In WS-Addressing, the address

of a particular WS-Resource is called an endpoint reference. Specifically, this

specification (WS-Addressing) defines XML elements to identify Web service

endpoints and to secure end-to-end endpoint identification in messages. GT4

implements WS-Addressing in WSRF to solve the issues of addressing of

WS-Resource.

2.3.6 Web Services Notifications (WSN)

We have talked about WS-Resources which are the combination of a stateful resource

and a Web service. One common situation in WSRF is the need for one resource to

know when the properties of another have changed. For example as shown in Figure

2-10, a client may want to know the price of the book has changed when a publisher

changes its price. WSN lets it easy. We can create a structure in which client

components can "subscribe" to a particular topic such as a change in the book’s price

and when the event takes place, those components get a notification message. In short,

WSN enables us to emulate an event-based system using Web services.

 22

GT4 currently doesn't implement the WS-Notifications family of specifications

completely. For example, no support for brokered notification is included. However,

GT4 does allow us to perform effective topic-based notification. One of the more

interesting parts of the GT4 implementation of WS-Notifications is that it will allow

us to effortlessly expose a resource property as a topic, triggering a notification each

time the value of the resource property changes.

2.3.7 Java WS Core

The Java WS Core is an implementation of the Web Services Resource Framework

(WSRF) and the Web Service Notification (WSN) family of standards. It provides

APIs and tools for building stateful Web services. More specifically, GT4 provides

three Web Services containers including Java, C, and Python to deal with such issues

as message handling, resource management, and security, thus allowing the

developers to focus their attention on implementing application logic.

Figure 2-12 Capabilities of A GT4 Container

User Applications

Custom
Web

Services

Custom
WSRF Web

Services

GT4
WSRF Web

Services

WS-Addressing, WSRF,
WS-Notifications

WSDL, SOAP, WS-Security

R
eg

is
try

A

dm
in

is
tra

tio
n

G
T

4
C

on
ta

in
er

 23

As illustrated in Figure 2-12, GT4 containers implement many WS specifications such

as WSDL, SOAP, WS-Security, WS-Addressing, WSRF, and WS-Notifications to

support basic Web Services functionality and support services that want to expose and

manage state associated with services, back-end resources, or application activities.

In general, the Java container provides the most advanced programming environment,

the C container the highest performance, and the Python container the nicest language.

In this paper, we will focus on the Java WS core because JMS is a spec based on Java

language.

 24

Chapter 3 System Architecture and Design

3.1 Overview

In order to solve the reliable messaging problem which Globus Toolkit does not

support, we integrated PFJM, a JMS compliant product developed by our lab, with

Globus Java Web Services Core. From previous chapter we know Globus Java WS

Core is an implementation of WSRF, WSN, and other relevant Web Services family of

standards. It provides an environment and tools to help develop plain Web Services

and stateful Web Services. So the solution we use is to utilize these components Java

WS core provides to wrap PFJM into Web Services. Whenever a client wants to

communicate with others using reliable messaging, it can simply exploit the Web

Services we provide to easily achieve its goal.

In Section 3.2, we will show the system architecture and introduce the basic operation

and relationship of each component in the architecture. Then we will introduce the

individual service portType we support in Section 3.3 and the mechanism of

communication in Section 3.4.

3.2 System Architecture

Figure 3-1 depicts the simplified system architecture. Whenever a client wants to be a

message sender or a message receiver, it firstly must locate the persistent

JMSFactoryService. A persistent service is a service which resides in the Web

Services container when the container starts. After locating the JMSFactoryService,

the client can use that to create a transient JMSPublisherService or

 25

JMSSubscriberService depending on what the client wants to be. Compared to a

persistent service, a transient service is a service which can be created and destroyed

dynamically. Then the client can use JMSPublisherService or JMSSubscriberService

to create a PFJM instance, a publisher or a subscriber, and finally use the PFJM

instance to do publish or subscribe operation via reliable messaging.

Figure 3-1 The System Architecture

3.3 Service PortTypes

3.3.1 JMSFactory PortType

First of all, as mentioned in Section 2.3.5 a Web Service can be addressed by a

so-called EndpointReference. By passing the EndpointReference to a

ServiceAddressingLocator, a client can get the service’s portType implementation

defined in the WSDL file. As well as JMSFactory portType which we provide using

LAN

PFJM

Publisher
PFJM

Subscriber
Multicast

Client

Client

JMS Factory
Service

JMS Factory
Service

JMS Publisher
Service

JMS Subscriber
Service

 26

Factory design pattern, the client can use JMSFactoryAddressingLocator to locate the

JMSFactory service.

The position of the JMSFactory is to create a JMSPublisher service or a

JMSSubscriber service. Now let us take a look at how the JMSFactory works. For the

purpose of managing created services, we provide two auxiliary managers,

JMSPublisherManager and JMSSubscriberManager respectively in charge of

JMSPublisher and JMSSubscriber services. When a client asks the JMSFactory to

create an instance service, the JMSFactory passes the job to the manager. The service

manager takes care of actually creating a new JMSPublisher or JMSSubscriber

service and receives an object of type ResourceKey returned from a service resource

home which implements ResourceHome interface provided by GT WS core. The

ResourceKey is the identifier which we need to create the endpoint reference

returning to the client. Figure 3-2 depicts the relationship of the service manager and

the service resource home.

Figure 3-2 The Relationship of Service Manager and Resource Home

The following two figures, Figure 3-3 and Figure 3-4, depict the sequence diagrams

Service
Manager

Service Resource
Home

Client

1. Use resource home to create resource

2. Return a resource key

3. Use the resource key to create an endpoint reference and
return to the client

 27

of creating a JMSPublisherService and a JMSSubscriberService. Both of them use

JMSFactoryAddressingLocator to get the JMSFactory portType and then acquire the

JMSPublisher or JMSSubscriber endpoint reference from the service manager.

Figure 3-3 The Sequence Diagram of Creating A JMSPublisherService

Figure 3-4 The Sequence Diagram of Creating A JMSSubscriberService

 28

3.3.2 JMSPublisher PortType

JMSPublisherService created from JMSFactoryService is a transient service

responsible to publish messages to a specific Topic. Whenever clients want to

communicate to each other with reliable messages, the message sender can create a

JMSPublisherService by passing specified topic name to JMSFactoryService and then

utilize the created JMSPublisherService to publish messages. More precisely speaking,

the JMSPublisherService is a PFJM instance which actually handles message sending.

The JMSPublisherService exposes only one operation, publish, to the public. And the

publish operation has one parameter which is a String object indicating the sending

messages. Figure 3-5 shows the simplified WSDL file of JMSPublisherService.

Figure 3-5 The Simplified WSDL File of JMSPublisherService

<types>

<xsd:schema>

 <xsd:element name="publish" type="xsd:string"/>

</xsd:schema>

</types>

<message name="PublishInputMessage">

 <part name="parameters" element="tns:publish"/>

</message>

<portType name="JMSPublishPortType">

 <operation name="publish">

 <input message="tns:PublishInputMessage"/>

 <output message="tns:PublishOutputMessage"/>

 </operation>

</portType>

 29

3.3.3 JMSSubscriber PortType

As described in Section 3.3.2, JMSSubscriber is also created from JMSFactoryService

and responsible to subscribe to the specific Topic. When a message receiver has

created a JMSSubscriberService from JMSFactory Service by passing topic name, it

then could use the JMSSubscriberService to do subscribe operation. In addition, the

message receiver must implement a NotifyCallback interface which defines one

function called deliver and pass itself to the subscribe operation of

JMSSubscriberService. The deliver function is the callback function which the

message receiver wants to be called back asynchronously when messages arrive.

Figure 3-6 depicts the simplified example of a message receiver.

Figure 3-6 The Simplified Example of A Message Receiver

The same as JMSPublisherService, JMSSubscriberService is a PFJM instance which

actually handles message receiving. In addition to expose subscribe operation to the

public class Subscriber implements NotifyCallback{

public void deliver(Object message)

 {

 ...

 }

 public static void main(String[] args) {

 JMSSubscribePortType jmsSubscribe =

instanceLocator.getJMSSubscribePortTypePort(

instanceEPR);

 jmsSubscribe.subscribe(this);

 }

}

 30

public, the JMSSubscriberService must also implement an interface,

MessageListener, which JMS spec defines for asynchronously receiving messages.

3.4 Mechanism of Communication

3.4.1 Publish Mechanism

Whenever a client wants to publish messages, in the beginning it must locate the

JMSPublisherService by passing endpoint reference got from JMSFactoryService to

JMSPublisherAddressingLocator. After locating the JMSPublisherService, it can call

the publish function exposed by JMSPublisherService to send messages to a topic.

Then JMSPublisherService activates the real publish operation provided by PFJM

instance. Figure 3-7 depicts the sequence diagram of publish mechanism.

Figure 3-7 The Sequence Diagram of Publish Mechanism

 31

3.4.2 Subscribe Mechanism

Whenever a client wants to subscribe to a topic, it firstly locates the JMSSubscriber

by passing endpoint reference got from JMSFactoryService to

JMSSubscriberAddressingLocator. After locating the JMSSubscriberService, it passes

itself implementing NotifyCallback interface as a parameter to the subscribe function

exposed by JMSSubscriberService. Then the JMSSubscriberService activates the real

durable subscribe operation provided by PFJM instance. Figure 3-8 depicts the

sequence diagram of subscribe mechanism.

Figure 3-8 The Sequence Diagram of Subscribe Mechanism

 32

3.4.3 Delivery Mechanism

As long as messages are sent to Topic, the PFJM core will invoke the onMessage

method which JMSSubscriberService implements. Then JMSSubscriberService will

invoke the callback function deliver implemented by the client. Finally the client will

receive the messages. Figure 3-9 depicts the sequence diagram of delivery

mechanism.

Figure 3-9 The Sequence Diagram of Delivery Mechanism

3.4.4 Recovery Mechanism

Now let’s take a look at how the recovery mechanism works when the receiver

crashes or the network fails and later the receiver revives again. In JMS lingo, when a

client wants to receive reliable messages, it must register a durable subscription with a

unique identity also known as subscription name that is retained by the JMS provider.

Subsequent subscriber objects with the same identity resume the subscription in the

state in which it was left by the previous subscriber. If a durable subscription has no

active subscriber, the JMS provider retains the subscription’s messages until they are

received by the subscription or until they expire.

 33

In PFJM WS, the receiver also passes a subscription name in addition to a topic name

to the JMSFactoryService to register itself. After getting the EPR of

JMSSubscriberService returning from JMSFactoryService, the receiver can use the

EPR to locate JMSSubscriberService and then subscribe to the specific topic with the

subscription name. Then the JMS provider will be in charge of sending messages

reliably to the receiver.

If the network fails, the JMS provider will store the messages published to the topic.

Until the receiver revives with the same topic and subscription name, the subscription

will be reactivated, and the JMS provider will deliver the messages that are published

while the subscriber is inactive.

 34

Chapter 4 Comparison of Programming Styles

In this chapter, we will discuss GT4 Java WS core and the integrated system, PFJM

WS, which we provide to support reliable messaging. We will give a grid service

application in Section 4.1. Based on the example described in Section 4.1, we will

give scenarios respectively for PFJM WS in Section 4.2 and for GT4 Java WS core in

Section 4.3. In Section 4.4 and Section 4.5, we will discuss the detail implementation

about using messaging mechanism respectively for PFJM WS and for GT4 Java WS

core. Finally, we will give a discussion about the comparison of programming styles

between PFJM WS and GT4 Java WS core.

4.1 A Gird Service Application

Figure 4-1 A Grid Service Application

Task

a*b

A

divide

c/d

B

dispatch

merge

X+Y

X Y

 35

In Grid Computing domain, there is a famous example called divide-and-conquer [34].

As shown in Figure 4-1, when the arithmetic grid service responsible for the four

fundamental operations of arithmetic receives a task, it then divides the task into two

subtasks, a multiplication subtask and a division subtask. Afterward, the arithmetic

grid service will locate two other grid services respectively responsible for

multiplication and division and dispatch the divided subtasks to those. After the

multiplication and division grid service finish their operation, they will pass the

results to the arithmetic grid service. Finally the arithmetic grid service will merge the

results and return to the client.

4.2 The Scenario for PFJM WS

Here we will use the example in Section 4.1 to describe how to implement the

scenario from PFJM WS.

Figure 4-2 The Scenario for PFJM WS - 1

Grid Env.

Arithmetic
Service

A

B

Clienta*b + c/d
Pub

Sub

Sub

a*b

c/d

 36

As shown in Figure 4-2, after a client submits a task to the Arithmetic Service, the

service internally divides the task into two subtasks and locates two other grid

services responsible for multiplication and division services. Then the Arithmetic

Service being a publisher dispatches the two subtasks to the multiplication service and

division service being subscribers.

Figure 4-3 The Scenario for PFJM WS – 2

Once the multiplication and division services finish their work, they will become

publishers and return the results to the Arithmetic Service being a subscriber. And the

Arithmetic Service will merge the results and finally return to the client. Figure 4-3

depicts the scenario.

4.3 The Scenario for GT4 Java WS Core

Here we will also use the example in Section 4.1 to describe how to implement the

scenario from GT4 Java WS core.

Grid Env.

Arithmetic
Service

A

B

Client

Sub

Pub

Pub

X

Y

 37

Figure 4-4 The Scenario for GT4 Java WS Core – 1

Figure 4-5 The Scenario for GT4 Java WS Core - 2

As shown in Figure 4-4, after a client submits a task to the Arithmetic Service, the

service internally divides the task into two subtasks and declares two resources, X and

Y, standing for the results of the two subtasks. The Arithmetic Service also locates

two other grid services responsible for multiplication and division services and

Grid Env.

Arithmetic
Service A

B

X

Y

Client

a*b + c/d a*b

c/d

Grid Env.

Arithmetic
Service A

B

X

Y

Client

X+Y

 38

dispatches the two subtasks to them.

Once the multiplication and division services finish their work, they will utilize the

operation provided by the Arithmetic Service to update the properties of the resources.

While the Arithmetic Service receives the notification about changing of resources

properties from Java WS core, it finally merges the results and returns to the client.

Figure 4-5 depicts the scenario.

4.4 The Detail Implementation for PFJM WS

As described in Chapter 3, we introduce the architecture of my system called “PFJM

WS”, and show how the components of PFJM WS work in details. Here we give

implementation details for PFJM WS about messaging. Figure 4.1 demonstrates the

scenario for users sending and receiving messages with PFJM WS.

Figure 4-6 The Detail Implementation for PFJM WS

10

Sender JMS Factory JMS Publisher

Topic

JMS Factory JMS Subscriber

5 6

7

8

3

1 2
4

9Receiver

 39

The following describes the process step by step：

1. First the receiver uses EPR of JMSFactory to locate JMSFactoryService.

Figure 4-7 The Detail Implementation for PFJM WS - Step 1

2. After locating JMSFactoryService, the receiver uses JMSFactoryService to

create a JMSSubscriberService and gets the EPR of JMSSubscriberService.

Figure 4-8 The Detail Implementation for PFJM WS - Step 2

3. The receiver uses the EPR of JMSSubscriberService to locate

JMSSubscriberService.

JMSFactoryServiceAddressingLocator instanceLocator =

new JMSFactoryServiceAddressingLocator();

EndpointReferenceType instanceEPR;

 // First argument contains a URI

 String serviceURI = args[0];

 // Create endpoint reference to service

 instanceEPR = new EndpointReferenceType();

 instanceEPR.setAddress(new Address(serviceURI));

 // Get PortType

 JMSFactoryPortType jmsFactory =

instanceLocator.getJMSFactoryPortTypePort(instanceEPR);

 EndpointReferenceType subscriberEPR;

 // Use topic name and subscription name to register a durable

// subscription

subscriberEPR = jmsFactory.createJMSSubscriberService(topic ,

subscriptoinName);

 40

Figure 4-9 The Detail Implementation for PFJM WS - Step 3

4. The receiver uses the JMSSubscriberService to subscribe to the specific topic.

Figure 4-10 The Detail Implementation for PFJM WS - Step 4

5. On the other side, the sender also uses EPR of JMSFactory to locate

JMSFactoryService.

Figure 4-11 The Detail Implementation for PFJM WS - Step 5

JMSSubscribeServiceAddressingLocator instanceLocator = new

JMSSubscribeServiceAddressingLocator();

 // Get PortType

 JMSSubscribePortType jmsSubscribe = instanceLocator

 .getJMSSubscribePortTypePort(subscriberEPR);

jmsSubscribe.jmsSubscribe(this);

JMSFactoryServiceAddressingLocator instanceLocator =

new JMSFactoryServiceAddressingLocator();

EndpointReferenceType instanceEPR;

 // First argument contains a URI

 String serviceURI = args[0];

 // Create endpoint reference to service

 instanceEPR = new EndpointReferenceType();

 instanceEPR.setAddress(new Address(serviceURI));

 // Get PortType

 JMSFactoryPortType jmsFactory =

instanceLocator.getJMSFactoryPortTypePort(instanceEPR);

 41

6. After locating JMSFactoryService, the sender uses JMSFactoryService to create

a JMSPublisherService and gets the EPR of JMSPublisherService.

Figure 4-12 The Detail Implementation for PFJM WS - Step 6

7. The sender uses the EPR of JMSPublisherService to locate

JMSPublisherService.

Figure 4-13 The Detail Implementation for PFJM WS - Step 7

8. The sender uses the JMSPublisherService to publish messages to the specific

topic.

Figure 4-14 The Detail Implementation for PFJM WS - Step 8

EndpointReferenceType publisherEPR;

// Use topic name to create a publisher

publisherEPR = jmsFactory.createJMSPublisherService(topic);

JMSPublishServiceAddressingLocator instanceLocator = new

JMSPublishServiceAddressingLocator();

 // Get PortType

 JMSPublishPortType jmsPublish = instanceLocator

 .getJMSPublishPortTypePort(publisherEPR);

jmsPublish.jmsPublish(mesg);

 42

9. When messages arrive to the specific topic, the callback function of

JMSSubscriberService will be invoked.

Figure 4-15 The Detail Implementation for PFJM WS - Step 9.1

public void onMessage(Message mesg) {

 String text = "";

 try{

 TextMessage textMessage = (TextMessage) mesg;

 text = textMessage.getText();

 } catch(JMSException jmse) {

 jmse.printStackTrace();

 }

 NotificationConsumerServiceAddressingLocator consumerLocator =

 new NotificationConsumerServiceAddressingLocator();

 try{

 Consumer consumerPort =

 consumerLocator.getConsumerPort(consumer);

org.oasis.wsn.Notify notification =

new org.oasis.wsn.Notify();

 NotificationMessageHolderType[] message = {

new NotificationMessageHolderType()};

 EndpointReferenceType producerEndpoint =

 new EndpointReferenceType();

Address producerAddress = new

Address("http://localhost/client");

 producerEndpoint.setAddress(producerAddress);

 TopicExpressionType topic = new TopicExpressionType(

 WSNConstants.SIMPLE_TOPIC_DIALECT,

 PSQNames.TOPIC_1);

 43

Figure 4-16 The Detail Implementation for PFJM WS - Step 9.2

10. The JMSSubscriberService will finally notify the receiver that the messages have

already arrived. And the receiver can handle these messages now.

Figure 4-17 The Detail Implementation for PFJM WS - Step 10

public void deliver(List topicPath, EndpointReferenceType producer,

 Object message) {

 if (Num_Message == 1)

 stime = System.currentTimeMillis();

 else if(Num_Message == Total_Message) {

 etime = System.currentTimeMillis();

 // output

System.out.println("Throughput:\t" + (Data_Size *

(Total_Message-1) *1000.0)/(etime-stime));

 // reset

 Num_Message = 1;

 return;

 }

 Num_Message++;

}

 message[0].setProducerReference(producerEndpoint);

 message[0].setMessage(text);

 message[0].setTopic(topic);

 notification.setNotificationMessage(message);

 consumerPort.notify(notification);

} catch (Exception e){

 e.printStackTrace();

 }

}

 44

4.5 The Detail Implementation for GT4 Java WS Core

From Chapter 2, we know that the existence of Web Services Notifications in GT4

Java WS core is to notify changes of resource property to clients who need that info.

As shown in Figure 4-2, for example, there is a grid service, SystemHealthService,

returning to users if the system is healthy. In this example, the SystemHealthService

also needs other grid services including CPUService returning if the CPU usage is

greater than 95% and StorageService returning if the storage usage is greater than

90%. Here “CPU usage” and “Storage usage” are regarded as resource properties.

When the resource properties change, the change info will be sent to

SystemHealthService and SystemHealthService will use that info to construct its

service’s logistic.

Figure 4-18 WSN in GT4 Java WS Core

Grid Service

Grid Service

Grid Service

System Health

CPU usage > 95%

Storage usage > 90%
Grid Environment

 45

Now let us take a look at how users utilize GT4 Java WS core to send and receive

messages. Figure 4.18 demonstrates the scenario for users sending and receiving

messages with GT4 Java WS core. It deserves to be mentioned that the resource

property is the so-called Topic in JMS and sending messages to Topic means to

change the value of the resource property.

Figure 4-19 The Detail Implementation for GT4 Java WS Core

Sender

Notification
Consumer
Manager

Notification
Consumer

Resource
Property

Notification
Producer

Message Sender
Service

4

5

6

7

2

1

3

Receiver

8

9

 46

The following describes the process step by step：

1. First, when the service container starts, the MessageSenderService developed by

a user will declare a resource property which is regarded as a Topic and used for

message communication.

Figure 4-20 The Detail Implementation for GT4 Java WS Core – Step 1

/* Resource Property set */

 private ResourcePropertySet propSet;

 /* Resource properties */

 private ResourceProperty mesgRP;

 /* Topic list */

 private TopicList topicList;

/* Create RP set */

 this.propSet = new SimpleResourcePropertySet(

 PubSubQNames.RESOURCE_PROPERTIES);

 /* Initialize the RP's */

 try {

 mesgRP = new SimpleResourceProperty(PubSubQNames.RP_MESG);

 mesgRP.add("no mesg");

 } catch (Exception e) {

 throw new RuntimeException(e.getMessage());

 }

 /* Configure the Topics */

 this.topicList = new SimpleTopicList(this);

 mesgRP = new ResourcePropertyTopic(mesgRP);

 ((ResourcePropertyTopic) mesgRP).setSendOldValue(true);

 this.topicList.addTopic((Topic) mesgRP);

 this.propSet.add(mesgRP);

 47

2. The receiver is going to act as a notification consumer. This means that the

receiver will have to expose a callback function that will be invoked by the

notification producer. For this to happen, the receiver has to act as both a client

and a server. Fortunately, thanks to a Globus-supplied class called

NotificationConsumerManager, it will help us to do so. In this step, the receiver

creates a NotificationConsumerManager.

Figure 4-21 The Detail Implementation for GT4 Java WS Core – Step 2

3. The receiver uses the NotificationConsumerManager created in step 2 to create a

NotificationConsumer and assigns itself implementing NotifyCallback interface

as a parameter to the NotificationConsumer which will act as a client. And then

the receiver will get the EPR of NotificationConsumer since the EPR will be

used by the NotificationProducer to deliver the messages.

Figure 4-22 The Detail Implementation for GT4 Java WS Core – Step 3

NotificationConsumerManager consumer;

consumer = NotificationConsumerManager.getInstance();

consumer.startListening();

EndpointReferenceType consumerEPR = consumer

 .createNotificationConsumer(this);

 48

4. The receiver uses the EPR of NotificationProducer to locate the

NotificationProducerService.

Figure 4-23 The Detail Implementation for GT4 Java WS Core – Step 4

5. The receiver passes the EPR of NotificationConsumer gotten in step 3 as a

parameter to the located NotificationProducer.

Figure 4-24 The Detail Implementation for GT4 Java WS Core – Step 5

// Get a reference to the NotificationProducer portType

 WSBaseNotificationServiceAddressingLocator notifLocator =

 new WSBaseNotificationServiceAddressingLocator();

 EndpointReferenceType endpoint = new EndpointReferenceType();

 endpoint.setAddress(new Address(serviceURI));

 NotificationProducer producerPort =

notifLocator.getNotificationProducerPort(endpoint);

// Create the request to the remote Subscribe() call

 Subscribe request = new Subscribe();

 // Must the notification be delivered using the Notify operation

 request.setUseNotify(Boolean.TRUE);

 // Indicate what the client's EPR is

 request.setConsumerReference(consumerEPR);

 // The TopicExpression specifies what topic we want to subscribe

to

 TopicExpressionType topicExpression = new TopicExpressionType();

 topicExpression.setDialect(WSNConstants.SIMPLE_TOPIC_DIALECT);

 topicExpression.setValue(PubSubQNames.RP_MESG);

 request.setTopicExpression(topicExpression);

 49

6. In this step the receiver actually sends the subscription request to GT4 Java WS

core by invoking the method subscribe of NotificationProducer. GT4 Java WS

core will then monitor if the resource properties change or not.

Figure 4-25 The Detail Implementation for GT4 Java WS Core – Step 6

7. The sender uses the EPR of MessageSenderService to locate the

MessageSenderService.

Figure 4-26 The Detail Implementation for GT4 Java WS Core – Step 7

// Start the ball rolling...

 producerPort.subscribe(request);

PubSubServiceAddressingLocator instanceLocator = new

PubSubServiceAddressingLocator();

 try {

 EndpointReferenceType instanceEPR;

 if (args[0].startsWith("http")) {

 String serviceURI = args[0];

 // Create endpoint reference to service

 instanceEPR = new EndpointReferenceType();

 instanceEPR.setAddress(new Address(serviceURI));

 } else {

 // First argument contains an EPR file name

 String eprFile = args[0];

 // Get endpoint reference of WS-Resource from file

 FileInputStream fis = new FileInputStream(eprFile);

instanceEPR = (EndpointReferenceType)

ObjectDeserializer.deserialize(new InputSource(fis),

 EndpointReferenceType.class);

 fis.close();

 }

 // Get PortType

 PubSubPortType pubsub = instanceLocator

 .getPubSubPortTypePort(instanceEPR);

 50

8. The sender executes the operation provided by MessageSenderService to change

the value of the resource property declared initially. Actually changing the value

of resource property means sending messages to the specific topic.

Figure 4-27 The Detail Implementation for GT4 Java WS Core – Step 8

9. If GT4 Java WS core detects that the resource property is changed, the receiver

will be notified and received the changed value which is the message sent by the

sender.

Figure 4-28 The Detail Implementation for GT4 Java WS Core – Step 9

// Perform operation

for (int i = 0; i < Total_Message; i++)

 pubsub.publish(sb.toString());

/* This method is called when a notification is delivered */

public void deliver(List topicPath, EndpointReferenceType

producer, Object message) {

if (Num_Message == 1)

 stime = System.currentTimeMillis();

 else if(Num_Message == Total_Message) {

 etime = System.currentTimeMillis();

// output

 System.out.println("Throughput:\t" + (Data_Size *

(Total_Message-1) *1000.0)/(etime-stime));

 // reset

 Num_Message = 1;

 return;

 }

 Num_Message++;

}

 51

4.6 Discussion

From Section 4.1 to Section 4.5, we can know that if a client wants to use messaging

mechanism based on GT4 Java WS core, it can achieve this goal by means of

modifying the resource properties and receiving the notification. This is not intuitive

from the point of view of a programmer since messages are received passively.

Besides, the API of GT4 Java WS core is complex for a programmer and a lot of

processes must be done by the client himself. On the contrary, if a client uses PFJM

WS to do message communication, it is not only reasonable for the point of the view

of a programmer, but the programmer also can use the API provided by PFJM WS

more easily than GT4 Java WS core.

 52

Chapter 5 Experiment

In this chapter, we will introduce the performance test between original GT4 Java WS

core and the integrated system, PFJM WS, we provide to support reliable messaging.

The experiment environment will be described in Section 5.1 and the experiment

results are described in Section 5.2. Finally we will give some discussion about the

experiment in Section 5.3.

5.1 Experiment Environment

During the experiment, we use the FX-05EA 5 Ports 10/100M Switching Hub to form

a local area network (LAN) with one notebook and three PCs connecting to a 100

Mbps fast Ethernet. The hardware and software specifications of these PCs are

depicted by the Table 5-1.

 Notebook PC1 PC2 PC3

CPU PM 1.6GHz P4 2.40GHz P4 2.40GHz P4 2.40GHz

Memory 760MB 512MB 512MB 512MB

NIC Intel(R) PRO/100

VM Network

Connection

ASUSTeK/Broadcom

440x 10/100

Integrated Controller

ASUSTeK/Broadcom

440x 10/100

Integrated Controller

ASUSTeK/Broadcom

440x 10/100

Integrated Controller

OS Windows XP

Service Pack 2

Windows XP

Service Pack 2

Windows XP

Service Pack 2

Windows XP

Service Pack 2

Java Sun JDK

1.4.2-b28

Sun JDK

1.4.2_03-b02

Sun JDK

1.5.0-06-b05

Sun JDK

1.4.2_08-b03

Table 5-1 The Hardware and Software Specifications

 53

5.2 Experiment Results

We divide the experiment into two categories: The first is one-to-one communication

using notebook as a message sender and PC1 as a message receiver. The second is

one-to-many communication also using notebook as a message sender and PC1~PC3

as message receivers.

5.2.1 The Throughput for One-to-One Communication

0.063 0.133 0.533 2 8.533 32
136.533

546.133

2184.533

16.516
66.065

205.026

1057.032

4.1290.2580.0650.058 1.0320

500

1000

1500

2000

2500

Message Size (Bytes)

T
hroughput (K

B
ytes/s)

PFJM WS GT4 Java WS Core

Figure 5-1 The Throughput for One-to-One Communication

0 1 2 8 32 128 512 2048 8192 32768

 54

5.2.2 The Throughput for One-to-Many Communication

0.063 0.107 0.350 2.000 8.178 16.600

110.199

440.797

1365.333

8.135
55.662

191.629

940.947

0.6500.034 0.058 0.243 3.7040

200

400

600

800

1000

1200

1400

1600

Message Size (Bytes)

T
hroughput (K

B
ytes/s)

PFJM WS GT4 Java WS Core

Figure 5-2 The Throughput for One-to-Many Communication

5.3 Discussion

The benchmark is performed on 2 PCs for one to one communication and 4 PCs for

one to three communications in May 2006. We use the default setting for PFJM and

measure throughput of different data sizes for GT4 Java WS core and PFJM WS. For

each data sizes, we perform one hundred times message transmission and calculate

the average throughput in bytes per second. As shown in Figure 5-1 and Figure 5-2,

the x-axis stands for data size in bytes and the y-axis stands for throughput in Kbytes

per second. We can see the experiment results from Section 5.2. The throughput of

PFJM WS is better than GT4 Java WS core in both cases. If a user wants to use

reliable messaging in GT4 Java WS environment, our PFJM WS providing a

convenient manner and having nice efficiency is a good choice.

0 1 2 8 32 128 512 2048 8192 32768

 55

Chapter 6 Conclusion and Future Works

6.1 Conclusion

With the rising of grid technology, GT4 has become the most popular tool in the

industry. However the Java WS core in GT4 has a serious drawback that is not

support reliable messaging. But in grid environment reliable messaging is expectable

since lose messages may cause critical effects. Fortunately Java Messaging Service

(JMS) designed by Sun Microsystems and several other companies has an excellent

advantage that does not support by GT4 Java WS core. The advantage is messages are

guaranteed to be successfully consumed once and only once.

Due to the superiority of JMS, we adopt PFJM, a JMS compliant product developed

by our lab, as the internal communication framework in GT4 Java WS core. Thus we

wrap PFJM into PFJM WS to provide useful tools and reasonable programming styles

than GT4 Java WS core about sending and receiving messages discussed in Chapter 4

since messages in GT4 Java WS core are always resource properties. And we can see

using PFJM WS to send and receive messages is more effective than GT4 Java WS

core discussed in Chapter 5. In a short word, the PFJM WS not only provides a better

programming style and a reliable messaging mechanism but also is more effective

than GT4 Java WS core about message communication.

 56

6.2 Future Works

Web Services Reliability (WS-Reliability) [28] is an OASIS standard and is

announced on 15 November 2004. The purpose of the OASIS WSRM TC is to create

a generic and open model for ensuring reliable message delivery for Web Services.

WS-Reliability is a SOAP-based protocol for exchanging SOAP messages with

guaranteed delivery, no duplicates, and guaranteed message ordering. WS-Reliability

is defined as SOAP header extensions and is independent of the underlying protocol.

Although our developed PFJM WS is noted for reliable messaging but it doesn’t

follow WS-Reliability yet. We know that following standard specification brings

many advantages such as portability so in the future we may exploit PFJM WS and

follow WS-Reliability to extend GT4 Java WS core to have reliable messaging.

Now we give some analysis about the benefit and the influence of implementing

WS-Reliability by means of PFJM WS. According to OASIS, WS-Reliability 1.1

supports “guaranteed delivery”. In other words, it ensures that a message is delivered

at least once. It also eliminates duplication, certifying that a message was delivered

just once. And it provides message delivery ordering, which guarantees that messages

in a sequence are delivered in the order sent, according to OASIS. Fortunately, JMS

1.1 also defines reliability of messaging. As shown in Table 6-1, if a client adopts

“Durable Subscriber” and “PERSISTENT” options simultaneously to do message

communication, it can achieve “once-and-only-once” effect the same as

WS-Reliability. Moreover, JMS defines that messages sent by a session to a

destination must be received in the order they were sent. From the characteristics of

JMS, it seems that JMS has the natural instinct to implement WS-Reliability.

 57

How Published Non-Durable Subscriber Durable Subscriber

NON_PERSISTENT at-most-once

(missed if inactive)

at-most-once

PERSISTENT once-and-only-once

(missed if inactive)

once-and-only-once

Table 6-1 Pub/Sub Reliability

Besides, due to WS-Reliability is a SOAP-based protocol, everything we have to do is

to design SOAP header and messaging models according to WS-Reliability

specification (as shown in Figure 6-1 and Figure 6-2) and modify the SOAP

processor in GT4 Java WS core to handle SOAP message. From the point of view of a

client, he still uses the same operation PFJM WS provides to do message

communication and does not need to understand how the WS-Reliability is

implemented into PFJM WS.

Figure 6-1 Messaging Model

 58

Figure 6-2 Structure of WS-Reliability elements

 59

Bibliography

[1] Markku Korhonen, “Message Oriented Middleware”, Tik-110.551

Internetworking Seminar, Department of Computer Science, Helsinki University

of Technology, http://www.tml.tkk.fi/Opinnot/Tik-110.551/1997/mqs.htm

[2] “Remote procedure call specification”, Sun Microsystems, Mountain View, CA,

Jan. 1985.

[3] Sun Microsystems. “Java Message Service”, Version 1.1, April 2002.

[4] “SonicMQ”, http://www.sonicsoftware.com

[5] “FioranoMQ”, http://www.fiorano.com

[6] “OpenJMS”, http://openjms.sourceforge.net

[7] Chuan-Pao Hung, Hsin-Ta Chiao, Yue-Shan Chang, Tsun-Yu Hsiao, Tzu-Han

Kao, Shyan-Ming Yuan , “FJM: A Fast Java Message Delivery Mechanism based

on IPMulticast”, Third International Conference on Communications in

Computing (CIC 2002), Monte, June 24–27, 2002.

[8] Yu-Fang Huang, Tsun-Yu Hsiao, Shyan-Ming Yuan. “A Java Message Service

with Persistent Message”, Proceeding of Symposium on Digital Life and Internet

Technologies 2003.

[9] “Globus Toolkit”, http://www.globus.org/toolkit/

[10] “GT 4.0: Java WS Core”,

http://www.globus.org/toolkit/docs/4.0/common/javawscore/

[11] Globus Alliance, IBM, and HP, “Web Services Resource Framework”,

http://www.globus.org/wsrf/, January 20, 2004.

[12] Vladimir Silva, Contractor, Pervasive Systems Development, “Globus Toolkit 4

Early Access: WSRF”,

 60

http://www-128.ibm.com/developerworks/cn/grid/gr-gt4early/, October 26,

2004.

[13] K. Czajkowski, DF Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D.

Snelling, S.Tuecke, and W. Vambenepe, “The WS- Resource Framework”,

http://www.globus.org/wsrf/specs/ws-wsrf.pdf, March 2004.

[14] Mike Weaver, “Web Service Notification”,

http://www-128.ibm.com/developerworks/cn/grid/gr-ws-not/, February 06, 2005.

[15] “JSR-000914 JavaTM Message Service”,

http://www.jcp.org/aboutJava/communityprocess/final/jsr914/index.html

[16] Frank Siebenlist, Von Welch, “Overview of GT4 Security”,

http://www.globus.org/toolkit/presentations/GlobusWorld_2005_Session_3c.pdf

[17] Bill Allcock, Ann Chervenak, Neil P. Chue Hong, EPCC, “Overview of GT4

Data Management”,

http://www.globus.org/toolkit/presentations/GlobusWorld_2005_Session_1c.pdf

[18] Ben Clifford, “GT4 Monitoring and Discovery”,

http://www.globus.org/toolkit/presentations/GlobusWorld_2005_Session_9c.pdf

[19] Karl Czajkowski, “Overview of GT4 Execution Management”,

http://www.globus.org/toolkit/presentations/GlobusWorld_2005_Session_2c.pdf

[20] “Common Runtime”, http://www.globus.org/toolkit/common/

[21] I. Foster, “Globus Toolkit Version 4: Software for Service-Oriented Systems.”,

IFIP International Conference on Network and Parallel Computing,

Springer-Verlag LNCS 3779, pp 2-13, 2005.

[22] “Web services”, http://www.w3.org/2002/ws/

[23] W3C Note, “Web Services Description Language 1.1”,

http://www.w3.org/TR/wsdl, March 15, 2001.

 61

[24] W3C Note, “Simple Object Access Protocol 1.1”, http://www.w3.org/TR/soap/,

May 08, 2000.

[25] OASIS Working Draft 02, “WS-Resource 1.2”,

http://docs.oasis-open.org/wsrf/2004/11/wsrf-WS-Resource-1.2-draft-02.pdf,

December 9, 2004.

[26] Steve Graham, Karl Czajkowski, Donald F Ferguson, Ian Foster, Jeffrey Frey,

Frank Leymann, Tom Maguire, Nataraj Nagaratnam, Martin Nally, Tony Storey,

Igor Sedukhin, David Snelling, Steve Tuecke, William Vambenepe, Sanjiva

Weerawarana, “WS-Resource Properties 1.1”,

http://www.ibm.com/developerworks/library/ws-resource/ws-resourceproperties.

pdf, March 15, 2003.

[27] W3C Member Submission, “WS-Addressing”,

http://www.w3.org/Submission/ws-addressing/, 10 August 2004

[28] OASIS Standard, “WS-Reliability 1.1”,

http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec

-os.pdf, 15 November 2004.

[29] I. Foster, C. Kesselman, J. Nick, S. Tuecke, “The Physiology of the Grid: An

Open Grid Services Architecture for Distributed Systems Integration.”, Open

Grid Service Infrastructure WG, Global Grid Forum, June 22, 2002.

[30] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, F.

Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell, “The Open Grid Services

Architecture, Version 1.0.”, J. Von Reich. Informational Document, Global Grid

Forum (GGF), January 29, 2005.

[31] M. Humphrey, G. Wasson, K. Jackson, J. Boverhof, M. Rodriguez, Joe Bester, J.

Gawor, S. Lang, I. Foster, S. Meder, S. Pickles, and M. McKeown, “State and

Events for Web Services: A Comparison of Five WS-Resource Framework and

 62

WS-Notification Implementations.”, 4th IEEE International Symposium on High

Performance Distributed Computing (HPDC-14), Research Triangle Park, NC,

24-27 July 2005.

[32] “GT4_Primer_0.6”,

http://www.globus.org/toolkit/docs/4.0/key/GT4_Primer_0.6.pdf

[33] “GT4 Admin Guide”,

http://www.globus.org/toolkit/docs/4.0/admin/docbook/admin.pdf

[34] I-Chen Wu , H. T. Kung, “Communication complexity for parallel

divide-and-conquer”, Proceedings of the 32nd annual symposium on

Foundations of computer science, p.151-162, September 1991, San Juan, Puerto

Rico.

