CRESTRN £
TSR] S T AT

I

-3

2t @ (Globus ToolkitlJava WS Core T # i
¥ OH o F o 4 JROF%

Extending Globus ToolkitJava WS Core to Support
Reliable Grid Messaging Services

Moy o4 iml 3

B R Fe Foe

Hr & XNl Je o o & A4 F

#t @ Globus Toolkit Java WS Core I #% &+ et LR
3%
Extending Globus Toolkit Java WS Core to Support Reliable Grid
Messaging Services

MopoA imEiF Student : Yung-Yu Chen
hERE R Advisor : Shyan-Ming Yuan
SRR AR
FRPLEFEE 1A
MLm=
A Thesis

Submitted to Institute of Computer Science and Engineering
College of . Computer Science
National ‘Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

June 2006

Hsinchu, Taiwan, Republic of China

PEARAY LT ESD

#t ¢ Globus Toolkit Java WS Core & #% & v 3L efe 20 4 JR7%

PydimyF TR R T

CIRISIE TR SN W S S Bl S

#F &

TER S "EFREFTE 0 0 f S bbb R R HERE S ATE kAo
G%%T@WH{B%%%E?%?%éﬁﬁ%%ﬁﬁiilii—’&%%ﬁ
Globus Toolkit (GT4) # * 7 JRAx o JE 4 » 17 R IR & A AR e Ik
B o 2@ > Globus Toolkit #riX § iz G B RN L T AP BRI T 0 7 1
PgEaEe L 0 - L e Sk BikaEAnT g 4 0k iRk & B R B R RE
Pl i 32 Lamnd o 0 ol = 0 Mg A2 f B s 88 o L oh > Globus
Toolkit Java Web Services core #5#% it S @ R 4] £ A > FihF ot g &

TR ML FLFREE) TR R kS A A Ao

bRk EFE M S Ee Y RS L EF RN LAY
E RBP4 Java AL IRIAREY 250w (JMS API) s & E- B L
— RN G UL Ee P AR PR BN E G TR AP
? % 3 “TH 3 arPersistent Fast Java Message (PFIM) T §_— & 23 JMS #7 B 3 e

G TR L B B R AR L e E RN AR

%
=k

¢ A iEr & PRIM &2 GT4 Java WS core > #-PRIM & 55 =0 e B2 PRF%: > T
R 6 e Bl 2 RS 1 SRR RRIRIE R Y F R o
B 1S 2N i pIER 1 A w2 GT4 Java WS core ¥2 PEIM WS & @ 3vf2 & s * £258 »
dREEEET g I BN P HPRIMWS k@i L35 v+ GT4 Java WS core

B L AT e o

Extending Globus Toolkit Java WS Core to Support Reliable Grid
Messaging Services

Student Yung-Yu Chen Advisor Shyan-Ming Yuan

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

In the recent years, with the upsurge of the grid computing technology, enterprises
adopt the grid technology to integrate legacy and new systems gradually. Globus
Toolkit is one of the most important tools in the industry to construct grid
environment. The newest version ,of Globus Toolkit«(GT4) adopts Services Oriented
Architecture (SOA) to provide-grid ienvironment based on Web Services. However,
Globus Toolkit does not guarantee. to.reliably “send and receive messages during
messages passing between Web Services. Once systems crash or network fails during
messages communication, it will cause the messages to be lost. For enterprise, this
will make very serious effect. Furthermore, the messages communication mechanism
which Globus Toolkit Java Web Services core provides is based on the changes of
resource properties. In other words, it regards messages as resources properties but

that is unreasonable for the perspectives of the programmers.

With the rapidly growth of Internet, Message Oriented Middleware (MOM) has
become the widespread used tool for delivering messages between enterprises. Sun
Corporation has defined the Java Message Service Application Programming

Interface (JMS API) to provide a unified interface for portability of the programs

developed on the Message Oriented Middleware. Persistent Fast Java Message (PFJM)
is a JMS compliant Message Oriented Middleware developed by our laboratory and it
has a reliable messages passing mechanism and some improved features such as
persistent message and high performance. In this research, we will integrate PFIM
and GT4 Java WS core to design reasonable programming styles and provide
convenient and useful tools for Web Services development users by wrapping PFIM
into PFJM Web Services (PFIM WS). Finally, we give a throughput test of messages
communication respectively for GT4 Java WS core and PFJIM WS. In the report, we

can see that PFJM WS has a higher performance than GT4 Java WS core.

Acknowledgements

JL}':& FB’Ti\ m#ﬂ %?’(*ﬂ i‘ %"‘ ?;tﬁ ?:t%'/n\ %:t;\‘ /:“ ﬁjul, Eﬁz%&'/ z “/‘3—\.‘:5 ;1\‘ ;%Q

ERL A ARSI AT RE AL P B LAY A B AN LB

S AL B G B R A L B LR AT % 7
&i’ﬁmwﬂﬁ%ﬂ%&%f4§zoyﬂsﬁ%%%i'ﬂ oAk

g’\’}% ‘Fﬁ@;b\ %E *#w‘yi‘fglliﬁéﬁ/gmﬁﬁ .

B R e R A G S AU et L35 5 BRI RS AL

BSRHMA A Mz AT Bl d il SRR Y H D RS

D
—

S TR SU T N TP R e L

A LA

Table of Contents

ChiINESE ADSTIACT ..o et i
ENGlISN ADSTIACT........ooiieecic e nneas i
ACKNOWIEAGEMENTS ...t \Y;
Table OF CONTENTS ..o bbb %
ST OF FIQUIES ...ttt ettt nns vii
LISt OF TADIES......c.eieee e X
Chapter 1 INEFOAUCTION ..t 1
11 PIETACE. ... e 1

1.2 MOTIVAEION ... cifint et crsi o ettt bbbt 2

1.3 ReSEArCh ODJECTIVES . uiiui ittt it e 5

131 Reliable MESSAGING.t s ihe ettt 5

1.3.2 Reasonable programming StylES .. it i 5

1.4 OrganiZatiON.......ccveee s e el sttt sae e sreenre s 5
Chapter 2 BacKgroundccoviiiiiiii e 7
2.1 Java Messaging Service (JMS)ccviieiieiecicceee e 7

211 DeSIgN AFCRITECIUIE ..o 7

2.1.2 Message Delivery MOGEIScoooviiiiiiiiiiice e 9

2.13 Reliable MESSAGINGcviviieiiiiieiirieei s 9

2.2 Persistent Fast Java Messaging (PFIM).......cccccviriienininniencce e 10

2.3 GIODUS TOOIKIL......o.veeeiiicicee s 11

23.1 F AN (o 011 (=T od (0 ¢SSP 1u

2.3.2 Service Oriented Architecture (SOA).......ooiiiriirirriree e 13

233 WED SEIVICES....cueieiie ettt e sb et ne e 14

234 Web Services Resource Framework (WSRF)cccvvriiniiiiineiencece s 17

2.35 Web Services Addressing (WSA)coovreiiireineeineee e 20

2.3.6 Web Services Notifications (WSN) ..ot 21

2.3.7 JAVA WS COTE ..ttt be e 22

Chapter 3~ System Architecture and DeSigncccccveveviieie e 24

3.1 OVEIVIBW ...ttt sttt e st e et te et e aeesre e nnes 24

3.2 SYStEM AICHITECTUIE ... 24

3.3 SEIVICE POMTYPES ..uveeeieciee ettt 25

331 Y S = Tox () Y o 1Y/ o1 S 25

3.3.2 JMSPUDIISNEr POMTYPEcviciicie et 28

3.33 JMSSUDSCIIDEr POITYPE ...eveiiciece et 29

3.4 Mechanism of CoOmMMUNICALION........cccoviiriiierieiesee e 30

34.1 PuUblish MEChANISIMocuiiiiiiiieie e 30

3.4.2 SUDSCriDE MECRANISIM ...ttt 31

3.4.3 Delivery MEChANISMoiiiiiiie et 32

3.4.4 RECOVEIY MECNANISIM. ...ttt e 32

Chapter 4 ~ Comparison of Programming Stylescccccevviiiiniieniiincninns 34
4.1 A Gird Service ApPlCaEION . it .o 34

4.2 The Scenario for PFIM WS . i e 35

4.3 The Scenario for:GT4 JAVaA WS COre il .ccvereeieieenie e 36

4.4 The Detail Implementation for PEIMWS ..., 38

4.5 The Detail Implementation for GT4 Java WS COreccccceeevvvieennene. 44

4.6 DISCUSSION ...ttt ettt re e re e sreesteenbesneenne s 51
Chapter5 EXPEIIMENTc.coviiiiiieceece et 52
5.1 EXperiment ENVIFONMENT...........ccovoiiiieiie e 52

5.2 EXPeriment RESUIESoov i 53

521 The Throughput for One-to-One COMMUNICALIONcc.covevereieniiecieeeee 53

522 The Throughput for One-to-Many Communication............ccocoeeevrieeieienenienn 54

5.3 DISCUSSION ...ttt sbe e te e sraesteeneesraenre s 54
Chapter 6 Conclusion and Future WOrks...........cccccccvvveiieie s 55
6.1 (@00 0 [0d [V [0 o OSSR 55

6.2 FULUIE WOTKS ...ttt 56
BIDIIOGIapNY ... 59

List of Figures

Figure 1-1 Enterprise Traditional Modelccoooiiiiiiiiiiiiee e 3
Figure 1-2 Enterprise Grid Based MOlc.cooeiieieiiieiieiece e 3
Figure 2-1 Central Architecture of MOM DeSIgN........ccccouiiieieiieiieiisie e 8
Figure 2-2 Distributed Architecture of MOM DEeSIgN.......ccccoveveirieiiierreie e e 8
Figure 2-3 ArchiteCture of PEIMc.oooiiiiiiiiee e s 10
Figure 2-4 GT4 ArChItECTUIE..........eeie et 12
Figure 2-5 The Web Services ArchiteCture..........ccocveviieieiiiiieee e 15
Figure 2-6 A Typical Web Service INVOCatION...........cccccveveeieiieii e 16
Figure 2-7 A Stateless Web Service INVOCAION.&s., .c..o.veveieeieiiiieieieiese e 17
Figure 2-8 A Stateful Web Service INVOCALION. ... oot veee e 18
Figure 2-9 The Resource Approach t0 Statefulnessc.covveviviiiiiieieeee e 19

Figure 2-10 A Web Service with Three Resources.and Each Resource Has Two

(0] 01T LT PSSP 19
FIQUIe 2-11 WS-RESOUITEveeuveieeesieeriesieesieetesiee e eseestee e esaesseessseneesseessesssesseensssssesses 20
Figure 2-12 Capabilities of A GT4 CONLAINETcccviiiiiiieiiereeee e 22
Figure 3-1 The System ArChiteCtUIe..........coveiviiieiiee e e 25
Figure 3-2 The Relationship of Service Manager and Resource Home 26
Figure 3-3 The Sequence Diagram of Creating A JMSPublisherService................... 27
Figure 3-4 The Sequence Diagram of Creating A JMSSubscriberService................... 27
Figure 3-5 The Simplified WSDL File of IMSPublisherService.........ccccccoovvivevvenenee. 28
Figure 3-6 The Simplified Example of A Message ReCEIVEr.........ccccoveevereeiieiinnenen 29
Figure 3-7 The Sequence Diagram of Publish Mechanismcccccoveviveiienniene. 30
Figure 3-8 The Sequence Diagram of Subscribe Mechanism.............ccocevvevivencienne. 31

vii

Figure 3-9 The Sequence Diagram of Delivery Mechanism............cccccooeveiiiininnnnns 32

Figure 4-1 A Grid Service ApPliCatIONcccveiiiiici e 34
Figure 4-2 The Scenario for PEIM WS - L. 35
Figure 4-3 The Scenario for PFEIM WS — 2 ... 36
Figure 4-4 The Scenario for GT4 Java WS Core — L......ccccoovoviincininencieneneeene 37
Figure 4-5 The Scenario for GT4 Java WS COre - 2.......cccveveveeiicie e cie e 37
Figure 4-6 The Detail Implementation for PFEIM WS ... 38
Figure 4-7 The Detail Implementation for PFIMWS - Step Lcccoovevviieiieiecee, 39
Figure 4-8 The Detail Implementation for PFEIM WS - Step 2coeiiiiiiiiiiiiins 39
Figure 4-9 The Detail Implementation for PFIM WS - Step 3cccoovevviieieeveciee, 40
Figure 4-10 The Detail Implementation for PEIM WS - Step 4cooeivvviiiiniinnnns 40
Figure 4-11 The Detail Implementation for PFIMWS - Step 5......ccccovevveieiveiccene. 40
Figure 4-12 The Detail Implementation for PEIM WS - Step 6cccccevvviiininnnnns 41
Figure 4-13 The Detail Implementation for-PEIM WS - Step 7ooovveevieieeiee 41
Figure 4-14 The Detail Implementation.for PEIM'WS - Step 8 ..o 41
Figure 4-15 The Detail Implementation for PFIM WS - Step 9.1cccoviivivevncnnne. 42
Figure 4-16 The Detail Implementation for PFIM WS - Step 9.2 ..o 43
Figure 4-17 The Detail Implementation for PFIM WS - Step 10cccccevivevvevircnnenee. 43
Figure 4-18 WSN in GT4 JAVa WS COrE......ccciiiiiieieiesie e 44
Figure 4-19 The Detail Implementation for GT4 Java WS COre........ccccceevvevveveennenne. 45
Figure 4-20 The Detail Implementation for GT4 Java WS Core —Step 1ccocuvuee 46
Figure 4-21 The Detail Implementation for GT4 Java WS Core —Step 2ccccu...... 47
Figure 4-22 The Detail Implementation for GT4 Java WS Core —Step 3......cccvvvneeee 47
Figure 4-23 The Detail Implementation for GT4 Java WS Core —Step 4 48
Figure 4-24 The Detail Implementation for GT4 Java WS Core — Step 5......ccccvvveeee 48
Figure 4-25 The Detail Implementation for GT4 Java WS Core — Step 6 49

viii

Figure 4-26 The Detail Implementation for GT4 Java WS Core —Step 7ccccvevneeee 49

Figure 4-27 The Detail Implementation for GT4 Java WS Core —Step 8.................... 50
Figure 4-28 The Detail Implementation for GT4 Java WS Core —Step 9......cccovvvneeee 50
Figure 5-1 The Throughput for One-to-One Communication...........c.cccccvevvevvereeneenne. 53
Figure 5-2 The Throughput for One-to-Many Communicationc.ccocevvrerirnnnns 54
Figure 6-1 Messaging MOdel ..o 57
Figure 6-2 Structure of WS-Reliability elements ..o 58

List of Tables

Table 5-1 The Hardware and Software Specifications............ccoccevvvevviveiiienesie s 52

Table 6-1 Pub/Sub Reliability ..o o7

Chapter 1 Introduction

1.1 Preface

Due to the improvement of the technology or the new demands of the long-standing
companies which have a large number of legacy systems, they may like to purchase or
develop new systems to enhance services providing by those legacy systems.
Nevertheless, for example, companies do not want to drop the legacy database storing
bulky datasets and indeed throwing away a system may have unexpected risks. So
what they want is to retain the legacy systems and the new ones simultaneously. If
there is a fine mechanism to integrate those legacy and new systems, enterprises will

save a lot of efforts and money when emerging'systems appear frequently.

As a result of the importance’of communication between systems and systems,
Message Oriented Middleware (MOM) [1] has been brought up. MOM is the term for
software that connects separate systems in a network by carrying and distributing
messages between them. Unlike Remote Procedure Call (RPC) [2] it is an
asynchronous form of communication, i.e. the sender does not block waiting for the
recipient to participate in the exchange. If the message service offers persistence and

reliability then the receiver need not be up and running when the message is sent.

However, there are so many MOM venders in the world and each vender provides its
own proprietary API. When application developers who develop applications to
communicate with each other using MOM move from this MOM to another, the codes

can not be used again, i.e. developers must spend extra effort to rewrite new codes

applied to the new MOM. For portability, Sun Microsystems and its partners wrote
the Java Message Service (JMS) spec [3]. One objective of JMS is to minimize the
learning curve for writing messaging applications and to maximize the portability of
messaging applications. And the Advantage of the standard interface is that

applications written by JMS API can run on every JMS compliant MOM.

Nowadays there are many MOM providers such as SonicMQ [4], FioranoMQ [5], and
OpenJMS [6] which support the JMS 1.1 standard finalized at 2002 at least. Persistent
Fast Java Messaging (PFIM) [7] [8] is a Message-oriented Middleware designed by
our laboratory. In addition to support JMS 1.1 standard, we enhance the persistent

message and high performance features for increasing the scalability greatly.

1.2 Motivation

In recent years, with the rise of-grid technology [29] [30] enterprises are willing to
take grid technology as the opportunity: to ‘integrate their resources inside such as
computing powers, storages, and so on. In traditional enterprise environment, for
example, the specific service enterprises provide may reside on specific server such as
Figure 1-1 which depicts the traditional enterprise system model. If the capability of
the server reaches its limit, what enterprises can do is to buy another more powerful
server to replace with the old one. This is a very wasted solution since other servers

which users access seldom may still have a lot of computing power or resources left.

® & &

/

File Server Web Server Email Server Apps Server

. J

Database
Server

pgrade to a
new server
to handle

more users

Web Server

Figure 1-1 Enterprise Traditional Model

T "
Y ke
[] h
¥ ot SO
Kl 1o =

e e WL

& & & &
I AW /N

Service Virtualization Layer & Load Balancing

oo

Database
Server

File Server Web Server Email Server Apps Server

Horizontal integration of Database, File, Web, Email, and
Apps servers

Figure 1-2 Enterprise Grid Based Model

Nowadays enterprises have considered adopting the grid solution to integrate their
overall resources. By means of grid technology depicted in Figure 1-2, users access a
service virtualization layer instead of accessing to the specific server directly. The
service virtualization layer can abstract the underlying all kinds of services to a single,
large virtual world so every server can exhaust himself to reach the most effective

avail.

The Globus Toolkit (GT) [9] [32] [33] is an open source software toolkit used for
building Grid systems and applications. It is being developed by the Globus Alliance
and many others all over the world. Java WS Core [10] is one of GT common runtime
components and it provides APIs and tools for developing Grid services and offers a
run-time environment capable of hasting them. The Java WS Core in GT4 implements
the Web Services Resource Framework (WSRF) [11] [12] [13] [31] and the Web
Service Notification (WSN) [14] family-of standards. However the communication
mechanism between web services ‘does.not.guarantee reliable messaging. In other
words, the notification consumer can not reliably receive the messages sent by
notification producer since the unreliable network. Furthermore communication
between applications in enterprise environment is expected to be reliable because the
messages lost may case a very serious consequence. It stands to reason that we extend

Globus Toolkit WS Core to support reliable messaging.

Fortunately JMS fits the features, Web Service Notification which GT Java WS Core
implements, and it is more important that JMS provides the guarantee of reliable
messaging. So in this research we will integrate PFIJM, a JMS compliant product
developed by our lab, into GT Java Web Core to provide useful web services for

reliable messaging.

1.3 Research Objectives

In this research, we discuss the necessity of reliable messaging and the defective GT4
Java WS core. There are two objectives in this research including reliable messaging

and reasonable programming styles.

1.3.1 Reliable messaging

Since the GT4 Java WS core lacks reliable messaging which is important for grid

applications, we integrate a JMS compliant product, PFJM, into GT4 Java WS core to

provide reliable messaging mechanism. The features are described in the following :

1. Persistent messaging : Persistent messages are guaranteed to survive through JIMS
provider failure. If a message is:set as persistent, before it is sent to the network,
it must be stored in a persistent storage.

2. Durable subscription : Durable subscribers are -guaranteed to receive persistent
message published during their.registration.and de-registration, even they are not

always active.
1.3.2 Reasonable programming styles

Since messages in GT4 Java WS core are always marked as a resource property
discussed more detailed in Section 4.2, this is unreasonable from the programmer’s
point of view. For programmers, they expect to use Topic as the message destination
to send and receive messages. Through our system, PFJM WS, clients can use

JMS-like programming style to send and receive messages reliably.

1.4 Organization

This research is organized as following: In Chapter 2, the background will be

reviewed. We will talk about JMS including its architecture, message delivery model,

5

and its main feature, reliable messaging. Then we will introduce PFJM which is a
JMS compliant product developed by our lab. Also the Globus Toolkit will be
introduced in details including its architecture, the specifications it implements, and
the leading role GT4 Java WS core. In Chapter 3, we will describe my system, PFIM
WS, including architecture, the service portTypes we provide, and the mechanism of
communication. In Chapter 4, we will give scenarios respectively for PFIM WS and
for GT4 Java WS core and discuss the execution sequence from a programmer’ point
of view in details. In Chapter 5 we will experiment the throughput of PFIM WS and
GT4 Java WS core based on the scenarios described in Chapter 4. Finally in Chapter 6,

there is a conclusion of this research and we also give an idea for the future work.

Chapter 2 Background

2.1 Java Messaging Service (JMS)

The Java Message Service (JMS), which is designed by Sun Microsystems and
several other companies under the Java Community Process as JSR 914 [15], is the
first enterprise messaging API that has received wide industry support. The Java
Message Service (JMS) was designed to make it easy to develop business applications
that asynchronously send and receive business data and events. It defines a common
enterprise messaging API that is designed to be easily and efficiently supported by a

wide range of enterprise messaging products,

2.1.1 Design Architecture

The design architecture of JMS can be‘divided into-two categories :

1. Central Architecture : Figure 2-1 depicts the central architecture of MOM design.
JMS Server is responsible for message delivery. JMS Client is a so-called
publisher or a subscriber in JMS field. Each application uses JMS API to be a
publisher or a subscriber to send or receive messages. Once JMS Server receives
the messages from a publisher, it then sends the messages to a subscriber. The
shortcoming of central architecture is the server-bottleneck problem. If the central
server gets low performance or even becomes failure, the overall message
exchange system will becomes unavailable. However, it has the advantages of

easy management and uncomplicated design.

Application

JMS Client

A

JMS Server

Application

Ll

JMS Client

Figure 2-1 Central Architecture of MOM Design

2. Distributed Architecture : Figure 2-2 depicts the distributed architecture of MOM
design. Under this architecture there is no central server any more and messages
delivery jobs are distributed to every JMS client participating in the messages
communication. Because there is no longer a server, every client must be aware of
some information of other clients, for_example, IP and Port. The advantage of
distributed architecture is theyloading of original central server is divided and

distributed to every client. So the:sSingle=point-failure problem does not exist. On

the contrary, resource management will-be complicated and difficult.

()
Application
\ <
API
(N
MOM
& J

Vs

~N

Application
>~ <
API
e ~
MOM

\\ J

(N\
Application
\ Z
API
_
()
MOM

\\ J

Figure 2-2 Distributed Architecture of MOM Design

2.1.2 Message Delivery Models

JMS supports two different message delivery models:

1. Point-to-Point (Queue destination): In this model, a message is delivered from a
producer to one consumer. The messages are delivered to the destination, which is
a queue, and then delivered to one of the consumers registered for the queue.
While any number of producers can send messages to the queue, each message is
guaranteed to be delivered, and consumed by one consumer. If no consumers are
registered to consume the messages, the queue holds them until a consumer
registers to consume them.

2. Publish/Subscribe (Topic destination): In this model, a message is delivered from
a producer to any number of consumers. Messages are delivered to the topic
destination, and then to all active consumers who have subscribed to the topic. In
addition, any number of producers can-send messages to a topic destination, and
each message can be delivered~to ‘any-number of subscribers. If there are no
consumers registered, the topic destination doesn't hold messages unless it has
durable subscription for inactive consumers. A durable subscription represents a
consumer registered with the topic destination that can be inactive at the time the

messages are sent to the topic.

2.1.3 Reliable Messaging

JMS defines two reliability-related specifications :

1. Persistent messaging: “The PERSISTENT mode instructs the JMS provider to take
extra care to insure the message is not lost in transit due to a JMS provider failure.
A JMS provider must deliver a PERSISTENT message once-and-only-once. This

means a JMS provider failure must not cause it to be lost, and it must not deliver it

twice.”

2. Durable subscription: “A durable subscriber registers a durable subscription with

a unique identity that is retained by JMS. Subsequent subscriber objects with the

same identity resume the subscription in the state it was left in by the prior

subscriber.”

2.2 Persistent Fast Java Messaging (PFIJM)

Persistent Fast Java Messaging is a JMS compliant product designed by our laboratory.

PFJM adopts the distributed architecture and implements the message delivery

protocol using IP multicast technology. Figure 2-3 illustrates the overall architecture

of PFIM.

!

Message Producer | ':' Message Listener

Serializer

Carrier

Dispatcher

Composer

Carrier

MBU

iyt

T

Figure 2-3 Architecture of PFIM

In a distributed computing environment that uses PFJM, every participated program

(or host) has to execute the required PFJM run-time components, which are different

due to the role of hosts. In the publisher part, the activated components are Serializer

10

and Carrier. In the subscriber part, the activated components are Dispatcher,

Composer, and Carrier.

In publisher, Serializer serializes all messages into sequence of bytes, and then divides
the bytes stream into appropriate-sized Memory Block Unit (MBU). Theses MBUs
are put into a sending queue. Then, carrier delivers MBUs in sending queue to
subscribers in order. Subscriber’s Carrier receives MBUs which were sent by
publisher and put them into Input Memory. If message listener is set, once all MBUs
of one JMS message arrived, the message will recomposed and send to Dispatcher.

Dispatcher will dispatch the message to participate application.

In addition to following JMS standard, PFJM also.emphasizes on some features such

as persistent message and high performance.

2.3 Globus Toolkit

The Globus Toolkit (GT) has been developed since the late 1990s to support the
development of distributed computing applications and infrastructures. The objective
of the GT is to provide a set of libraries and programs that address common problems
which occur when building distributed system services and applications. The

following sections will introduce the details of Globus Toolkit.

2.3.1 Architecture

GT4, the latest version, is composed of several components such as Security [16],
Data Management [17], Information Services [18],Execution Management [19],

and the Common Runtime [20] as shown in the Figure 2-4. With the popularity of

11

Web Services GT4 has already focused on Web Service’s tool development. Even so

GT4 also provide both tools including WS and non-WS components.

Globus Toolkit® version 4 (GT4)
! Community
I scheduler
| Framework
P .G;d- — S R e
I Telecontrol | | WebMDS |1 m
I Protocol i s
i Index c
I Management WS Core
Grid +
Aesource Java WS
Trigger
Allocation & figg WS Core Components
Ma%mﬂm |
— |
Resource | + Monioning & § | & common Non-WS
Afocaiion 8. | 20 msz. oy Libraries Components
Managemant | * (MDS2)
exXtensible
(0]
(XI0)
Execution Information Common
Management Services Runtime

L]

Core GT Component: public interfaces frozen between incremental releases; best effort suppor

I ContriputioniTech Praview: puslic interfaces may change between incremental releases

-
#

1
|

®

w omg

: Deprecated Component: not supported; will be dropped in a future release

& @ %

Figure 2-4 GT4 Architecture

Let us take a look at what these five components can provide :

1. Common Runtime : The Common Runtime components provide fundamental
libraries and tools which are needed to build WS and non-WS services.

2. Security : The Security components can ensure communication being secure

based on Grid Security Infrastructure (GSI).

12

3. Data Management : The Data Management components can allow us to manage
large sets of data in our virtual organization.

4. Execution Management : The Execution Management components deal with the
initiation, monitoring, management, scheduling and coordination of executable
programs, usually called jobs, in a Grid.

5. Information Services : The Information Services components can be used to

discover and monitor resources in a virtual organization.

2.3.2 Service Oriented Architecture (SOA)

GT4 is a set of software components for building distributed systems in which diverse
and discrete software agents interact, via. message exchanges over a network to
perform some tasks. GT4 is, more specifically, a.set of software components that
(with some exceptions) implement Web services mechanisms for building distributed
systems. Web services provide flexible; extensible,-and widely adopted XML-based
mechanisms for discovering, describing, and invoking network services; in addition,
its document-oriented protocols are well suited to the loosely coupled interactions.
These mechanisms facilitate the development of service-oriented architectures —
systems and applications structured as communication services in which services are
discovered, interfaces are described, operation are invoked, and so on, all in uniform

ways.

So, what is Service Oriented Architecture [21]? SOA can be characterized by the
following aspects :
1. Logical view : The service is abstracted from actual programs, database, business

logic, and etc. It defines what it does and carries out business operations.

13

2. Message orientation : The service is defined in terms of messages exchanged
between service provider and service requester but not the properties of the
service itself. Using SOA one does not know the actual implementation of the
service including language, architecture, and etc. So the legacy systems can be
used by means of the message passing mechanism and hidden implementation
details from service requesters.

3. Description orientation : The service is described by machine-readable metadata.
Only the details exposed to the public and important for the use of the service are
should be included in the description.

4. Granularity : Services are composed of a small number of operations with
relatively large and complex messages.

5. Network orientation : Services tend to be deployed over network.

6. Platform neutral : Due~to ‘XML technology, messages are sent in a

platform-neutral and standardized format

2.3.3 Web Services

As mentioned in previous section, GT4 is set of components that implement Web
Services [22]. Now let us take a look at what is Web Service and how does it work : A
Web Service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described in a
machine-processable format (WSDL [23]). The interface defines the operations in
which clients can use that to interact with Web Services by SOAP [24] messages

conveyed by HTTP.

14

Processes (Discovery)
Description (WSDL)
Invocation (SOAP)
Transport (HTTP)

Figure 2-5 The Web Services Architecture

Figure 2-5 depicts the Web Services Architecture and the most popular protocol or

function used in each layer :

1. Service Processes : The highest layer usually contains many Web Services. From
Figure 2-5 the discovery service can allow us to locate one particular service
from a collection of Web Seryices.

2. Service Description : Once you have located a\Web Service, you can ask it to
“describe itself” and tell you. what-operations it supports and how to invoke it.
This is handled by the Web Service Definition Language (WSDL).

3. Service Invocation : SOAP (Simple Object Access Protocol) specifies how we
should format requests to the server and how the server should format responses
to requesters.

4. Transport : Finally all the messages must be transmitted by HTTP.

So how does the invocation of Web Services work ? Figure 2-6 depicts the process of
the invocation between clients and Web Services. Let us supposes that we have
already located the Web Service we want to use and the stubs have been generated

from WSDL files. The following steps describe the overall process :

1. Whenever our program calls the Web Service, it in fact calls the client stubs. The

15

client stubs will turn the “local invocation” into a proper SOAP message. This is
called marshaling or serializing process.

The SOAP request is sent to Server via internet. After receiving the SOAP
request, the server stubs will convert that into something the Web Service
implementation can understand (this is typically called unmarshaling or
deserializing process).

Once the SOAP request has been deserialized, the server stubs call the Web
Service implementation and ask it to do the proper operation.

After the Web Service handles the request operation, it returns the result of the
operation to server stubs which turn the result into SOAP response.

The SOAP response is set to Client via internet. After receiving the SOAP
response, the client stubs .convert that into something our program can
understand.

Finally our program receives the.result-of Web Service invocation and uses it.

Client 1 2 3 Server

Our Web Service

Program Implementation
6 57 4

Figure 2-6 A Typical Web Service Invocation

16

2.3.4 \Web Services Resource Framework (WSRF)

So far we have discussed the Web Services which are the technology for building
internet-based loosely coupled applications. That makes them the natural choice for
building next generation of grid-based applications. However Web Services have
some limitation that is inadequate for grid applications. For example, plain Web
Services are usually stateless. This means that Web Services cannot remember
information from one invocation to another. As shown in Figure 2-7, this is an integer
accumulator Web Service handling requests from clients to execute add operation.
Due to the integer accumulator Web Service cannot keep the state which previous

invocation brings out, the Web Service always returns the same response to clients.

Time Service Request
Add 5
) Service Response
5 Integer
Accumulator
Client Web
Service Request Service
Add 10
v) Service Response
10

Figure 2-7 A Stateless Web Service Invocation

Although the Web Service cannot keep state, this is not a bad thing for certain
applications such as Weather Web Service returning information of weather. However,
Grid applications do generally require statefulness. From Figure 2-8 we can see how

an integer accumulator Web Service using State works.

17

Time

Client

Service Request
Add 5

State

0

v

A

Service Response
5

Service Request
Add 10

v

Now let us take a look at how GT4 implements WSRF to support stateful Web
Services. Instead of putting the state in:the’'\Web Service, GT4 keeps state in a separate
resource which stores all the state information of Web Services. Each resource has a
unique key so whenever we want to interact with a Web Service, we simply instruct

the Web Service which resource we want to use.

As shown in Figure 2-9, we specify the resource B that we want to execute the add
operation. When the Web Service receives the request, it will try to retrieve resource
B and perform add operation on that resource. The resources themselves will be

stored in memory, database, or secondary storages depending on different

implementations.

A

Service Response
15

18

Integer
Accumulator
Web
Service

(Initial)

15

Figure 2-8 A Stateful' Web Service Invocation

Resources

. 0 \
Service Request ' \

Add 10, use resource B Web Resources A
Client | < > Service !
Service Response \ c
15 ‘\ "

Resources B

15
(New Value)

Figure 2-9 The Resource Approach to Statefulness

Of course, resource can come in=different shapes and can have multiple properties as

shown in Figure 2-10.

Resources
Book name “Book1”
Price 760
Resource A
Web Book name “Book2”
Service Price 360
Resource B

Book name “Book3”
Price 550

Resource C

Figure 2-10 A Web Service with Three Resources and Each Resource Has Two
Properties

19

Resources

Book name “Bookl”

Price 760
Resource A
AT TET DT " Ty Web Service
I | web Book name “Book2” I +
|l | Service Price 360 Resource
\ Resource B I =

——_—_—_—_/

WS-Resource

Book name “Book3”
Price 550

Resource C

Figure 2-11 WS-Resource

Figure 2-11 depicts the relation- between-Web Service and Resource. WS-Resource
[25] is a combination of a stateful resource.and a Web Service and by the way

WS-Resource Properties [26] is the properties.in-the resource.

In brief, WSRF defines a number of operations that can be performed on a
WS-Resource, from getting and setting its properties to adding it to a ServiceGroup
with other similar services. It is also possible to use WSRF to destroy a WS-Resource

or to set an "expiration date" for it.

2.3.5 Web Services Addressing (WSA)

From the previous section we have known what WS-Resource is. But how does a
client locate a specific WS-Resource. Once upon a time, it was easy to specify the

address of a Web service. All you really needed was the URL. Nowadays, with Web

20

service applications getting increasingly complex, it's not always that simple. What if
you want the reply to be sent somewhere other than the original requestor ? What if

you simply need to attach to a particular instance of a Web service?

The Web Services Addressing [27] comes to solve this problem. WS-Addressing
provides a way to specify information about a location other than just a simple
Universal Resource Identifier (URI) or URL. WS-Addressing introduces the concept
of an EndpointReference. The EndpointReference is a way to specify the
information needed to get a message to the right place. In WS-Addressing, the address
of a particular WS-Resource is called an endpoint reference. Specifically, this
specification (WS-Addressing) defines XML elements to identify Web service
endpoints and to secure end-tosend endpoint:.identification in messages. GT4
implements WS-Addressing in MWSRF | to- solve- the issues of addressing of

WS-Resource.

2.3.6 Web Services Notifications (WSN)

We have talked about WS-Resources which are the combination of a stateful resource
and a Web service. One common situation in WSRF is the need for one resource to
know when the properties of another have changed. For example as shown in Figure
2-10, a client may want to know the price of the book has changed when a publisher
changes its price. WSN lets it easy. We can create a structure in which client
components can "subscribe"” to a particular topic such as a change in the book’s price
and when the event takes place, those components get a notification message. In short,

WSN enables us to emulate an event-based system using Web services.

21

GT4 currently doesn't implement the WS-Notifications family of specifications
completely. For example, no support for brokered notification is included. However,
GT4 does allow us to perform effective topic-based notification. One of the more
interesting parts of the GT4 implementation of WS-Notifications is that it will allow
us to effortlessly expose a resource property as a topic, triggering a notification each

time the value of the resource property changes.

2.3.7 Java WS Core

The Java WS Core is an implementation of the Web Services Resource Framework
(WSRF) and the Web Service Notification (WSN) family of standards. It provides
APIs and tools for building stateful Web services. More specifically, GT4 provides
three Web Services containers includingJava; 'C, and Python to deal with such issues
as message handling, resource “management, and security, thus allowing the

developers to focus their attention on-implementing application logic.

User Applications

’ \ 4 v v \ 4 |
Custom Custom GT4 C
g Web | WSRFWeb | WSRFWeb | _ i
! & | Services Services Services B g
E & o £ !
S WS-Addressing, WSRF, L |
1 |_ . . < !
: ¢ WS-Notifications
| WSDL, SOAP, WS-Security

Figure 2-12 Capabilities of A GT4 Container

22

As illustrated in Figure 2-12, GT4 containers implement many WS specifications such
as WSDL, SOAP, WS-Security, WS-Addressing, WSRF, and WS-Noatifications to
support basic Web Services functionality and support services that want to expose and

manage state associated with services, back-end resources, or application activities.

In general, the Java container provides the most advanced programming environment,
the C container the highest performance, and the Python container the nicest language.
In this paper, we will focus on the Java WS core because JMS is a spec based on Java

language.

23

Chapter 3 System Architecture and Design

3.1 Overview

In order to solve the reliable messaging problem which Globus Toolkit does not
support, we integrated PFJM, a JMS compliant product developed by our lab, with
Globus Java Web Services Core. From previous chapter we know Globus Java WS
Core is an implementation of WSRF, WSN, and other relevant Web Services family of
standards. It provides an environment and tools to help develop plain Web Services
and stateful Web Services. So the solution we use is to utilize these components Java
WS core provides to wrap PFJM into, Web Services. Whenever a client wants to
communicate with others using reliablesmessaging, it can simply exploit the Web

Services we provide to easily achieve its goal.

In Section 3.2, we will show the systemarchitecture and introduce the basic operation
and relationship of each component in the architecture. Then we will introduce the
individual service portType we support in Section 3.3 and the mechanism of

communication in Section 3.4.

3.2 System Architecture

Figure 3-1 depicts the simplified system architecture. Whenever a client wants to be a
message sender or a message receiver, it firstly must locate the persistent
JMSFactoryService. A persistent service is a service which resides in the Web
Services container when the container starts. After locating the JMSFactoryService,

the client can wuse that to create a transient JMSPublisherService or

24

JMSSubscriberService depending on what the client wants to be. Compared to a
persistent service, a transient service is a service which can be created and destroyed
dynamically. Then the client can use JMSPublisherService or JMSSubscriberService
to create a PFJM instance, a publisher or a subscriber, and finally use the PFIM

instance to do publish or subscribe operation via reliable messaging.

JMS Factory JMS Factory
Service Service
//v i\
LAN .

PFIM PFIM
Publisher) tSubscriber

N L/

JMS Publisher JMS Subscriber
Service Service

Figure 3-1 The System Architecture

3.3 Service PortTypes

3.3.1 JMSFactory PortType

First of all, as mentioned in Section 2.3.5 a Web Service can be addressed by a
so-called EndpointReference. By passing the EndpointReference to a
ServiceAddressingLocator, a client can get the service’s portType implementation

defined in the WSDL file. As well as JMSFactory portType which we provide using

25

Factory design pattern, the client can use JMSFactoryAddressingLocator to locate the

JMSFactory service.

The position of the JMSFactory is to create a JMSPublisher service or a
JMSSubscriber service. Now let us take a look at how the JMSFactory works. For the
purpose of managing created services, we provide two auxiliary managers,
JMSPublisherManager and JMSSubscriberManager respectively in charge of
JMSPublisher and JMSSubscriber services. When a client asks the JMSFactory to
create an instance service, the JMSFactory passes the job to the manager. The service
manager takes care of actually creating a new JMSPublisher or JMSSubscriber
service and receives an object of type ResourceKey returned from a service resource
home which implements ResourceHome interface provided by GT WS core. The
ResourceKey is the identifier- which ‘we need.to- create the endpoint reference
returning to the client. Figure 3-2 depicts-the-relationship of the service manager and

the service resource home.

1. Use resource home to create resource

Service ™ Service Resource
Manager | Home
2. Return a resource key

3. Use the Tesource key to create an endpoint reference and
return to the thient

Client

Figure 3-2 The Relationship of Service Manager and Resource Home

The following two figures, Figure 3-3 and Figure 3-4, depict the sequence diagrams

26

of creating a JMSPublisherService and a JMSSubscriberService. Both of them use
JMSFactoryAddressingLocator to get the JMSFactory portType and then acquire the

JMSPublisher or IMSSubscriber endpoint reference from the service manager.

Client JMSFactory JMSF actory ISP uhlisher
T Addressing Locator Manager

I
~ I
1: getIMSFactonPorTyped |

|
|
|
|
|
|
return JMSFactoryPodType | |
|

2 createJMSFIuhlisherﬂ
T

I 2.1 createdMSPublisherd

| E‘j]
R
< — . return JMSPublisher EFR

I
return JMSPdblisher EPR I
| | | |

I

X

Figure 3-3 The Sequence Diagram-of-Creating A IMSPublisherService

Client JMSFactony JMEFactory JMSSubscriber
T Addressing Locator mManager

[
~ I
1: getIMSF actoryPortTyped |

returh JMSFactoryPorType |

2 createJMSEIubscribero
T

return JMSSubgcriber EPR
| | |

Figure 3-4 The Sequence Diagram of Creating A JIMSSubscriberService

27

3.3.2 JMSPublisher PortType

JMSPublisherService created from JMSFactoryService is a transient service
responsible to publish messages to a specific Topic. Whenever clients want to
communicate to each other with reliable messages, the message sender can create a
JMSPublisherService by passing specified topic name to JMSFactoryService and then
utilize the created JMSPublisherService to publish messages. More precisely speaking,

the JIMSPublisherService is a PFIJM instance which actually handles message sending.

The JMSPublisherService exposes only one operation, publish, to the public. And the
publish operation has one parameter which is a String object indicating the sending

messages. Figure 3-5 shows the simplified WSDL file of IMSPublisherService.

<types>
<xsd:schema>
<xsd:element name="publish”™ type="'xsd:string"/>
</xsd:schema>
</types>

<message name="‘PublishlnputMessage'>
<part name="‘parameters’ element=""tns:publish"/>
</message>

<portType name="JMSPublishPortType">
<operation name="‘publish">
<input message=""tns:PublishlnputMessage"/>
<output message=""tns:PublishOutputMessage'/>
</operation>
</portType>

Figure 3-5 The Simplified WSDL File of JMSPublisherService

28

3.3.3 JMSSubscriber PortType

As described in Section 3.3.2, IMSSubscriber is also created from JMSFactoryService
and responsible to subscribe to the specific Topic. When a message receiver has
created a JMSSubscriberService from JMSFactory Service by passing topic name, it
then could use the JMSSubscriberService to do subscribe operation. In addition, the
message receiver must implement a NotifyCallback interface which defines one
function called deliver and pass itself to the subscribe operation of
JMSSubscriberService. The deliver function is the callback function which the
message receiver wants to be called back asynchronously when messages arrive.

Figure 3-6 depicts the simplified example of a message receiver.

public class Subscriber implements NotifyCallback{
public void deliver(Object message)

{

}

public static void main(String[] args) {
JMSSubscribePortType jmsSubscribe =
instancelLocator.getJMSSubscribePortTypePort(
instanceEPR);
JmsSubscribe.subscribe(this);

Figure 3-6 The Simplified Example of A Message Receiver

The same as JMSPublisherService, JMSSubscriberService is a PFJM instance which

actually handles message receiving. In addition to expose subscribe operation to the

29

public, the JMSSubscriberServicer must also implement an interface,

MessageL.istener, which JMS spec defines for asynchronously receiving messages.

3.4 Mechanism of Communication

3.4.1 Publish Mechanism

Whenever a client wants to publish messages, in the beginning it must locate the
JMSPublisherService by passing endpoint reference got from JMSFactoryService to
JMSPublisherAddressingLocator. After locating the JMSPublisherService, it can call
the publish function exposed by JMSPublisherService to send messages to a topic.
Then JMSPublisherService activates the real publish operation provided by PFIM

instance. Figure 3-7 depicts the sequence-diagram of publish mechanism.

Client JSFPublisher JSPublisher
Addressing Locator

I

| I
™ |
1. getIMSPublisherPortTyped |

return JMSPublisherFodType

2 publish$

|

7
X

Figure 3-7 The Sequence Diagram of Publish Mechanism

30

3.4.2 Subscribe Mechanism

Whenever a client wants to subscribe to a topic, it firstly locates the JIMSSubscriber
by passing endpoint reference got from JMSFactoryService to
JMSSubscriberAddressingLocator. After locating the JMSSubscriberService, it passes
itself implementing NotifyCallback interface as a parameter to the subscribe function
exposed by JMSSubscriberService. Then the JMSSubscriberService activates the real
durable subscribe operation provided by PFJM instance. Figure 3-8 depicts the

sequence diagram of subscribe mechanism.

Client JMSSubscriber JSSubscriber
Addressing Locator

1: getIM5SubscriberPorTyped |

return IMSSubscriberPodType|

112: subscribed

ﬂ

T
X

Figure 3-8 The Sequence Diagram of Subscribe Mechanism

31

3.4.3 Delivery Mechanism

As long as messages are sent to Topic, the PFIM core will invoke the onMessage
method which JMSSubscriberService implements. Then JMSSubscriberService will
invoke the callback function deliver implemented by the client. Finally the client will
receive the messages. Figure 3-9 depicts the sequence diagram of delivery

mechanism.

PEJIM Core JMESubscriber Client

I I
I I
1. onMessage) |
Ij U 1.1: deliverd
I 1
I I
I I
I I
I I
|

X

Figure 3-9 The Sequence Diagram of Delivery Mechanism

3.4.4 Recovery Mechanism

Now let’s take a look at how the recovery mechanism works when the receiver
crashes or the network fails and later the receiver revives again. In JMS lingo, when a
client wants to receive reliable messages, it must register a durable subscription with a
unique identity also known as subscription name that is retained by the JMS provider.
Subsequent subscriber objects with the same identity resume the subscription in the
state in which it was left by the previous subscriber. If a durable subscription has no
active subscriber, the JMS provider retains the subscription’s messages until they are

received by the subscription or until they expire.

32

In PFJM WS, the receiver also passes a subscription name in addition to a topic name
to the JMSFactoryService to register itself. After getting the EPR of
JMSSubscriberService returning from JMSFactoryService, the receiver can use the
EPR to locate JMSSubscriberService and then subscribe to the specific topic with the
subscription name. Then the JMS provider will be in charge of sending messages

reliably to the receiver.

If the network fails, the JMS provider will store the messages published to the topic.
Until the receiver revives with the same topic and subscription name, the subscription
will be reactivated, and the JMS provider will deliver the messages that are published

while the subscriber is inactive.

33

Chapter 4 Comparison of Programming Styles

In this chapter, we will discuss GT4 Java WS core and the integrated system, PFJM
WS, which we provide to support reliable messaging. We will give a grid service
application in Section 4.1. Based on the example described in Section 4.1, we will
give scenarios respectively for PFJIM WS in Section 4.2 and for GT4 Java WS core in
Section 4.3. In Section 4.4 and Section 4.5, we will discuss the detail implementation
about using messaging mechanism respectively for PFJIM WS and for GT4 Java WS
core. Finally, we will give a discussion about the comparison of programming styles

between PFIM WS and GT4 Java WS core.

4.1 A Gird Service Application

Task
@ divide
a*b c/d
dispatch
X Y merge
X+Y

Figure 4-1 A Grid Service Application

34

In Grid Computing domain, there is a famous example called divide-and-conquer [34].
As shown in Figure 4-1, when the arithmetic grid service responsible for the four
fundamental operations of arithmetic receives a task, it then divides the task into two
subtasks, a multiplication subtask and a division subtask. Afterward, the arithmetic
grid service will locate two other grid services respectively responsible for
multiplication and division and dispatch the divided subtasks to those. After the
multiplication and division grid service finish their operation, they will pass the
results to the arithmetic grid service. Finally the arithmetic grid service will merge the

results and return to the client.

4.2 The Scenario for PFIM WS

Here we will use the example.in Section 4.1 to.describe how to implement the

scenario from PFIM WS.

Sub
a*b Pub
5 . * +
Sub Arithmetic | a*b +c/d IEEEE
Service
c/d
Grid Env.

Figure 4-2 The Scenario for PFIM WS - 1

35

As shown in Figure 4-2, after a client submits a task to the Arithmetic Service, the
service internally divides the task into two subtasks and locates two other grid
services responsible for multiplication and division services. Then the Arithmetic
Service being a publisher dispatches the two subtasks to the multiplication service and

division service being subscribers.

Pub
X
Sub
Pub Arithmetic /_E -
Service
Y
Grid Env.

Figure 4-3 The Scenario for PFIM WS - 2

Once the multiplication and division services finish their work, they will become
publishers and return the results to the Arithmetic Service being a subscriber. And the
Arithmetic Service will merge the results and finally return to the client. Figure 4-3

depicts the scenario.

4.3 The Scenario for GT4 Java WS Core

Here we will also use the example in Section 4.1 to describe how to implement the

scenario from GT4 Java WS core.

36

a*b

c/d

Grid Env.

Arithmetic
Service

a*b + c/d

Client

Figure 4-4 The Scenario for GT4 Java WS Core — 1

Grid Env.

Arithmetic
Service

Client

Figure 4-5 The Scenario for GT4 Java WS Core - 2

As shown in Figure 4-4, after a client submits a task to the Arithmetic Service, the

service internally divides the task into two subtasks and declares two resources, X and

Y, standing for the results of the two subtasks. The Arithmetic Service also locates

two other grid services responsible for multiplication and division services and

37

dispatches the two subtasks to them.

Once the multiplication and division services finish their work, they will utilize the
operation provided by the Arithmetic Service to update the properties of the resources.
While the Arithmetic Service receives the notification about changing of resources
properties from Java WS core, it finally merges the results and returns to the client.

Figure 4-5 depicts the scenario.

4.4 The Detail Implementation for PFJM WS

As described in Chapter 3, we introduce the architecture of my system called “PFIM
WS”, and show how the components_of PFEJM WS work in details. Here we give
implementation details for PFIM*WS about messaging. Figure 4.1 demonstrates the

scenario for users sending and receiving messages with PFJIM WS.

Sender 5 | JMS Factory 6 .| JMS Publisher
‘¥//1 8
7
3
/’/\4 4
Receiver 1 | JMS Factory 2 ,| JMS Subscriber 9
10

Figure 4-6 The Detail Implementation for PFIJM WS

38

The following describes the process step by step :

1. First the receiver uses EPR of JMSFactory to locate JMSFactoryService.

JMSFactoryServiceAddressinglLocator instancelLocator =
new JMSFactoryServiceAddressinglLocator();

EndpointReferenceType instanceEPR;

// First argument contains a URI

String serviceURI = args[0];

// Create endpoint reference to service
instanceEPR = new EndpointReferenceType();

instanceEPR.setAddress(new Address(serviceURI));

// Get PortType
JMSFactoryPortType jmsFactory =
instancelLocator.getJMSFactoryPortTypePort(instanceEPR);

Figure 4-7 The Detail.lmplementation for PFJM WS - Step 1

2. After locating JMSFactoryService;the receiver uses JMSFactoryService to

create a JMSSubscriberService and gets the EPR of JIMSSubscriberService.

EndpointReferenceType subscriberEPR;

// Use topic name and subscription name to register a durable
// subscription

subscriberEPR = jmsFactory.createJMSSubscriberService(topic ,

subscriptoinName);

Figure 4-8 The Detail Implementation for PFJM WS - Step 2

3. The receiver uses the EPR of JMSSubscriberService to locate

JMSSubscriberService.

39

JMSSubscribeServiceAddressinglLocator instancelLocator = new

JMSSubscribeServiceAddressingLocator();

// Get PortType
JMSSubscribePortType jmsSubscribe = instancelLocator

.getIMSSubscribePortTypePort(subscriberEPR);

Figure 4-9 The Detail Implementation for PFJIM WS - Step 3

The receiver uses the IMSSubscriberService to subscribe to the specific topic.

JmsSubscribe. jmsSubscribe(this);

Figure 4-10 The Detail Implementation for PFJIM WS - Step 4

On the other side, the=sender also uses EPR of JMSFactory to locate

JMSFactoryService.

JMSFactoryServiceAddressinglLocator instancelLocator =
new JMSFactoryServiceAddressinglLocator();

EndpointReferenceType instanceEPR;

// First argument contains a URI

String serviceURI = args[0];

// Create endpoint reference to service
instanceEPR = new EndpointReferenceType();

instanceEPR.setAddress(new Address(serviceURI));

// Get PortType
JMSFactoryPortType jmsFactory =
instancelLocator.getJMSFactoryPortTypePort(instanceEPR);

Figure 4-11 The Detail Implementation for PFIM WS - Step 5

40

6.

After locating JMSFactoryService, the sender uses JMSFactoryService to create

a JMSPublisherService and gets the EPR of JMSPublisherService.

EndpointReferenceType publisherEPR;
// Use topic name to create a publisher

publisherEPR = jmsFactory.createJMSPublisherService(topic);

Figure 4-12 The Detail Implementation for PFJM WS - Step 6

The sender wuses the EPR of JMSPublisherService to locate

JMSPublisherService.

JMSPublishServiceAddressinglocator, instancelLocator = new

JMSPublishServiceAddressinglocator();

// Get PortType
JMSPublishPortType jmsPublish = iInstancelLocator
-getIMSPublishPortTypePort(publisherEPR);

Figure 4-13 The Detail Implementation for PFIM WS - Step 7

The sender uses the JMSPublisherService to publish messages to the specific

topic.

JmsPublish. jmsPublish(mesg);

Figure 4-14 The Detail Implementation for PFJM WS - Step 8

4

9. When messages arrive to the specific topic, the callback function of

JMSSubscriberService will be invoked.

public void onMessage(Message mesg) {
String text = "'';
try{
TextMessage textMessage = (TextMessage) mesg;
text = textMessage.getText();
} catch(JOMSException jmse) {

Jmse.printStackTrace();

NotiFficationConsumerServiceAddressingLocator consumerLocator =
new NotificationConsumerServiceAddressingLocator();

try{
Consumer consumerPort =

consumerlLocator.getConsumerPort(consumer);

org.oasis.wsn.Notify: notification =
new org.oasis.wsn.:Notify();
NotiFficationMessageHolderType[] message = {

new NotificationMessageHolderType()};

EndpointReferenceType producerEndpoint =
new EndpointReferenceType();

Address producerAddress = new
Address('http://localhost/client™);

producerEndpoint.setAddress(producerAddress);

TopicExpressionType topic = new TopicExpressionType(
WSNConstants.SIMPLE_TOPIC_DIALECT,
PSQNames.TOPIC_1);

Figure 4-15 The Detail Implementation for PFJIM WS - Step 9.1

42

message[0] -setProducerReference(producerEndpoint);
message[0] - setMessage(text);
message[0] -setTopic(topic);
notification.setNotificationMessage(message);
consumerPort.notify(notification);

} catch (Exception e){
e.printStackTrace();

Figure 4-16 The Detail Implementation for PFJIM WS - Step 9.2

10. The JMSSubscriberService will finally notify the receiver that the messages have

already arrived. And the receiver can handle these messages now.

public void deliver(List*topicPath, EndpointReferenceType producer,
Object message) {
if (Num Message == 1)
stime = System.currenthimeMilbis();
else if(Num Message == Total Message) {

etime = System.currentTimeMillis();

// output
System.out.printIn("'Throughput:\t" + (Data_Size *
(Total _Message-1) *1000.0)/(etime-stime));

// reset
Num_Message = 1;
return;

}

Num_Message++;

Figure 4-17 The Detail Implementation for PFJIM WS - Step 10

43

4.5 The Detail Implementation for GT4 Java WS Core

From Chapter 2, we know that the existence of Web Services Notifications in GT4
Java WS core is to notify changes of resource property to clients who need that info.
As shown in Figure 4-2, for example, there is a grid service, SystemHealthService,
returning to users if the system is healthy. In this example, the SystemHealthService
also needs other grid services including CPUService returning if the CPU usage is
greater than 95% and StorageService returning if the storage usage is greater than
90%. Here “CPU usage” and “Storage usage” are regarded as resource properties.
When the resource properties change, the change info will be sent to
SystemHealthService and SystemHealthService will use that info to construct its

service’s logistic.

CPU usage > 95%

Storage usage > 90%

System Health

Grid Environment

Figure 4-18 WSN in GT4 Java WS Core

44

Now let us take a look at how users utilize GT4 Java WS core to send and receive
messages. Figure 4.18 demonstrates the scenario for users sending and receiving
messages with GT4 Java WS core. It deserves to be mentioned that the resource
property is the so-called Topic in JMS and sending messages to Topic means to

change the value of the resource property.

’

Sender Message Sender
> Service

Resource
Property

Notification

Receiver O

Notification
Consumer Notification
Manager "I Consumer

Figure 4-19 The Detail Implementation for GT4 Java WS Core

45

The following describes the process step by step :
1. First, when the service container starts, the MessageSenderService developed by
a user will declare a resource property which is regarded as a Topic and used for

message communication.

/* Resource Property set */

private ResourcePropertySet propSet;

/* Resource properties */

private ResourceProperty mesgRP;

/* Topic list */

private TopiclList topicList;

/* Create RP set */
this.propSet = new SimpleResourcePropertySet(
PubSubQNames sRESOURCE _PROPERTIES) ;

/* Initialize the RPTs */

try {
mesgRP = new SimpleResourceProperty(PubSubQNames.RP_MESG);
mesgRP.add(*'no mesg');

} catch (Exception e) {

throw new RuntimeException(e.getMessage());

/* Configure the Topics */

this.topicList = new SimpleTopicList(this);

mesgRP = new ResourcePropertyTopic(mesgRP);

((ResourcePropertyTopic) mesgRP).setSendOldvalue(true);

this.topicList.addTopic((Topic) mesgRP);
this.propSet.add(mesgRP);

Figure 4-20 The Detail Implementation for GT4 Java WS Core — Step 1

46

The receiver is going to act as a notification consumer. This means that the
receiver will have to expose a callback function that will be invoked by the
notification producer. For this to happen, the receiver has to act as both a client
and a server. Fortunately, thanks to a Globus-supplied class called
NotificationConsumerManager, it will help us to do so. In this step, the receiver

creates a NotificationConsumerManager.

NotificationConsumerManager consumer;

consumer = NotificationConsumerManager.getlnstance();

consumer.startListening();

Figure 4-21 The Detail Implementation for-GT4 Java WS Core — Step 2

The receiver uses the NotificationConsumerManager created in step 2 to create a
NotificationConsumer and assigns itself implementing NotifyCallback interface
as a parameter to the NotificationConsumer which will act as a client. And then
the receiver will get the EPR of NotificationConsumer since the EPR will be

used by the NotificationProducer to deliver the messages.

EndpointReferenceType consumerEPR = consumer

-createNotificationConsumer(this);

Figure 4-22 The Detail Implementation for GT4 Java WS Core — Step 3

47

4. The receiver uses the EPR of NotificationProducer to locate the

NotificationProducerService.

// Get a reference to the NotificationProducer portType
WSBaseNotiFicationServiceAddressinglLocator notiflLocator =

new WSBaseNotificationServiceAddressinglLocator();
EndpointReferenceType endpoint = new EndpointReferenceType();
endpoint.setAddress(new Address(serviceURl));
NotificationProducer producerPort =

notifLocator.getNotiFficationProducerPort(endpoint);

Figure 4-23 The Detail Implementation for GT4 Java WS Core — Step 4

5. The receiver passes the EPR of NotificationConsumer gotten in step 3 as a

parameter to the located NotificationProducer:

// Create the request to the.remote Subscribe() call

Subscribe request = new Subscribe() ;

// Must the notification be delivered using the Notify operation
request.setUseNotify(Boolean.TRUE);

// Indicate what the client"s EPR 1is

request.setConsumerReference(consumerEPR);

// The TopicExpression specifies what topic we want to subscribe
to

TopicExpressionType topicExpression = new TopicExpressionType();

topicExpression.setDialect(WSNConstants.SIMPLE_TOPIC_DIALECT);
topicExpression.setValue(PubSubQNames.RP_MESG) ;

request._setTopicExpression(topicExpression);

Figure 4-24 The Detail Implementation for GT4 Java WS Core — Step 5

48

6. In this step the receiver actually sends the subscription request to GT4 Java WS
core by invoking the method subscribe of NotificationProducer. GT4 Java WS
core will then monitor if the resource properties change or not.

// Start the ball rolling...
producerPort.subscribe(request);
Figure 4-25 The Detail Implementation for GT4 Java WS Core — Step 6
7. The sender uses the EPR of MessageSenderService to locate the

MessageSenderService.

PubSubServiceAddressinglLocator instancelLocator = new
PubSubServiceAddressingLocator();
try {

EndpointReferenceType TnstanceEPR;

if (args[0].startsWith(C'http'™)) {
String serviceURI = args[0];
// Create endpoint reference to service
instanceEPR =+new ‘EndpointReferenceType();
instanceEPR.setAddress(new Address(serviceURI));

} else {
// First argument contains an EPR file name
String eprFile = args[0];
// Get endpoint reference of WS-Resource from file
FilelnputStream fis = new FilelnputStream(eprFile);
instanceEPR = (EndpointReferenceType)
ObjectDeserializer.deserialize(new InputSource(fis),

EndpointReferenceType.class);

Fis.close();

}

// Get PortType

PubSubPortType pubsub = instancelLocator
-getPubSubPortTypePort(instanceEPR);

Figure 4-26 The Detail Implementation for GT4 Java WS Core — Step 7

49

8.

The sender executes the operation provided by MessageSenderService to change
the value of the resource property declared initially. Actually changing the value

of resource property means sending messages to the specific topic.

// Perform operation
for (int i = 0; 1 < Total Message; i++)

pubsub.publish(sb.toString());

9.

Figure 4-27 The Detail Implementation for GT4 Java WS Core — Step 8

If GT4 Java WS core detects that the resource property is changed, the receiver

will be notified and received the changed value which is the message sent by the

sender.

(Total _Message-1) *1000.0)/(etime-stime));

/* This method is called when a notification is delivered */
public void deliver(List topicPath, EndpointReferenceType
producer, Object message) {
iT (Num_Message == 1)
stime = System.currentTimeMillis(Q);
else if(Num Message == Total Message) {

etime = System.currentTimeMillis(Q);

// output
System.out._printIn(""Throughput:\t" + (Data_Size *

// reset
Num_Message = 1;
return;

}

Num_Message++;

Figure 4-28 The Detail Implementation for GT4 Java WS Core — Step 9

50

4.6 Discussion

From Section 4.1 to Section 4.5, we can know that if a client wants to use messaging
mechanism based on GT4 Java WS core, it can achieve this goal by means of
modifying the resource properties and receiving the notification. This is not intuitive
from the point of view of a programmer since messages are received passively.
Besides, the APl of GT4 Java WS core is complex for a programmer and a lot of
processes must be done by the client himself. On the contrary, if a client uses PFIM
WS to do message communication, it is not only reasonable for the point of the view
of a programmer, but the programmer also can use the API provided by PFIM WS

more easily than GT4 Java WS core.

51

Chapter 5 Experiment

In this chapter, we will introduce the performance test between original GT4 Java WS

core and the integrated system, PFJM WS, we provide to support reliable messaging.

The experiment environment will be described in Section 5.1 and the experiment

results are described in Section 5.2. Finally we will give some discussion about the

experiment in Section 5.3.

5.1 Experiment Environment

During the experiment, we use the FX-05EA 5 Ports 10/100M Switching Hub to form

a local area network (LAN) with one_noetebook and three PCs connecting to a 100

Mbps fast Ethernet. The hardware and software Specifications of these PCs are

depicted by the Table 5-1.

Notebook PC1 PC2 PC3
CPU PM 1.6GHz P4 2.40GHz P4 2.40GHz P4 2.40GHz
Memory 760MB 512MB 512MB 512MB
NIC Intel(R) PRO/100 | ASUSTeK/Broadcom | ASUSTeK/Broadcom | ASUSTeK/Broadcom
VM Network 440x 10/100 440x 10/100 440x 10/100
Connection Integrated Controller | Integrated Controller | Integrated Controller
0S Windows XP Windows XP Windows XP Windows XP
Service Pack 2 Service Pack 2 Service Pack 2 Service Pack 2
Java Sun JDK Sun JDK Sun JDK Sun JDK
1.4.2-h28 1.4.2_03-b02 1.5.0-06-b05 1.4.2_08-b03

Table 5-1 The Hardware and Software Specifications

52

5.2 Experiment Results

We divide the experiment into two categories: The first is one-to-one communication
using notebook as a message sender and PC1 as a message receiver. The second is
one-to-many communication also using notebook as a message sender and PC1~PC3

aS message receivers.

5.2.1 The Throughput for One-to-One Communication

2500

|~—PFIM WS == GT4 Java WS Core 2184.533

2000

1500

1000 - 1057.032

('s/sa14g>) ndyBnoay L

0.063 0.133 0.533 2 8.533

O U.\ISU U.\IU: U.LSO 1.UQL S.129

0 1 2 8 32 128 512 2048 8192 32768

Message Size (Bytes)

Figure 5-1 The Throughput for One-to-One Communication

53

5.2.2 The Throughput for One-to-Many Communication

1600
‘-’— PFIM WS —# GT4 Java WS Core ‘
1365.333

1400

1200
=
S 1000 -
Q 940.947
2
~ 800
X
@
s
& 600

400

200 110.1 191.629

0.063 0107 0350 2.000 8178 16.600
0 0:634—=-6:056—=-0243—=- 0650315
0 1 2 8 32 128 512 2048 8192 32768
Message Size (Bytes)

Figure 5-2 The Throughput.for’One-to-Many Communication

5.3 Discussion

The benchmark is performed on 2 PCs for ‘one to one communication and 4 PCs for
one to three communications in May 2006. We use the default setting for PFIM and
measure throughput of different data sizes for GT4 Java WS core and PFJM WS. For
each data sizes, we perform one hundred times message transmission and calculate
the average throughput in bytes per second. As shown in Figure 5-1 and Figure 5-2,
the x-axis stands for data size in bytes and the y-axis stands for throughput in Kbytes
per second. We can see the experiment results from Section 5.2. The throughput of
PFIJM WS is better than GT4 Java WS core in both cases. If a user wants to use
reliable messaging in GT4 Java WS environment, our PFJM WS providing a

convenient manner and having nice efficiency is a good choice.

54

Chapter 6 Conclusion and Future Works

6.1 Conclusion

With the rising of grid technology, GT4 has become the most popular tool in the
industry. However the Java WS core in GT4 has a serious drawback that is not
support reliable messaging. But in grid environment reliable messaging is expectable
since lose messages may cause critical effects. Fortunately Java Messaging Service
(JMS) designed by Sun Microsystems and several other companies has an excellent
advantage that does not support by GT4 Java WS core. The advantage is messages are

guaranteed to be successfully consumed once and only once.

Due to the superiority of JMS,:we adopt PFIM, a JMS compliant product developed
by our lab, as the internal communication.-framework in GT4 Java WS core. Thus we
wrap PFJM into PFJM WS to provide useful tools and reasonable programming styles
than GT4 Java WS core about sending and receiving messages discussed in Chapter 4
since messages in GT4 Java WS core are always resource properties. And we can see
using PFJIM WS to send and receive messages is more effective than GT4 Java WS
core discussed in Chapter 5. In a short word, the PFJIM WS not only provides a better
programming style and a reliable messaging mechanism but also is more effective

than GT4 Java WS core about message communication.

55

6.2 Future Works

Web Services Reliability (WS-Reliability) [28] is an OASIS standard and is
announced on 15 November 2004. The purpose of the OASIS WSRM TC is to create
a generic and open model for ensuring reliable message delivery for Web Services.
WS-Reliability is a SOAP-based protocol for exchanging SOAP messages with
guaranteed delivery, no duplicates, and guaranteed message ordering. WS-Reliability

is defined as SOAP header extensions and is independent of the underlying protocol.

Although our developed PFIM WS is noted for reliable messaging but it doesn’t
follow WS-Reliability yet. We know that following standard specification brings
many advantages such as portability so,in the future we may exploit PFIM WS and

follow WS-Reliability to extend GT4 JavaWS ‘core'to have reliable messaging.

Now we give some analysis about-the benefit and the influence of implementing
WS-Reliability by means of PFIM WS. According to OASIS, WS-Reliability 1.1
supports “guaranteed delivery”. In other words, it ensures that a message is delivered
at least once. It also eliminates duplication, certifying that a message was delivered
just once. And it provides message delivery ordering, which guarantees that messages
in a sequence are delivered in the order sent, according to OASIS. Fortunately, JIMS
1.1 also defines reliability of messaging. As shown in Table 6-1, if a client adopts
“Durable Subscriber” and “PERSISTENT” options simultaneously to do message
communication, it can achieve *“once-and-only-once” effect the same as
WS-Reliability. Moreover, JMS defines that messages sent by a session to a
destination must be received in the order they were sent. From the characteristics of

JMS, it seems that JMS has the natural instinct to implement WS-Reliability.

56

How Published Non-Durable Subscriber | Durable Subscriber

NON_PERSISTENT at-most-once at-most-once

(missed if inactive)

PERSISTENT once-and-only-once once-and-only-once

(missed if inactive)

Table 6-1 Pub/Sub Reliability

Besides, due to WS-Reliability is a SOAP-based protocol, everything we have to do is
to design SOAP header and messaging models according to WS-Reliability
specification (as shown in Figure 6-1 and Figure 6-2) and modify the SOAP
processor in GT4 Java WS core to handle SOAP message. From the point of view of a
client, he still uses the same.‘operation. PFJIM WS provides to do message
communication and does not need to understand how the WS-Reliability is

implemented into PFJM WS.

Producer Consumer
it} $hotr iverf
Submit = Notify Deliver | _¢Respond
—p
{Reliable Message)
Sending Receiving
RMP RMP
0 —

[RM-Reply) (Respond Payload)

Figure 6-1 Messaging Model

57

soap:Envelope Soap:Envelope (continued)

soap:Header

wsrm:Request wsrm:Response

*

any * any
|

wsrm:Messageld wsrm:NonSequenceReply *
———————————————————|

wsrm:SequenceNum

wsrm:SequenceReplies

wsrm:ExpiryTime wsrm:ReplyRange *

wsrm:ReplyPattern

any *
wsrm:Value
wsrm:ReplyTo |

——— soap:Body

wsrm:AckRequested

wsrm:DuplicateElimination

wsrm:MessageOrder

I Cardinality - 1 I

Cardinality - 0 or 1

* - An element with this mark may
appear more than one time

Figure 6-2 Structure of WS-Reliability elements

58

Bibliography

[1]

[2]

3]
[4]
[5]
[6]
[7]

[8]

[9]

Markku Korhonen, “Message Oriented Middleware”, Tik-110.551
Internetworking Seminar, Department of Computer Science, Helsinki University

of Technology, http://www.tml.tkk.fi/Opinnot/Tik-110.551/1997/mgs.htm

“Remote procedure call specification”, Sun Microsystems, Mountain View, CA,
Jan. 1985.
Sun Microsystems. “Java Message Service”, Version 1.1, April 2002.

“SonicMQ?”, http://www.sonicsoftware.com

“FioranoMQ”, http://www.fiorano.com

“OpenJMS”, http://openjms.sourceforge.net

Chuan-Pao Hung, Hsin-Ta" Chiao, Yue-Shan'Chang, Tsun-Yu Hsiao, Tzu-Han
Kao, Shyan-Ming Yuan , “FJM: A Fast Java Message Delivery Mechanism based
on IPMulticast”, Third International Conference on Communications in
Computing (CIC 2002), Monte, June 24—27, 2002.

Yu-Fang Huang, Tsun-Yu Hsiao, Shyan-Ming Yuan. “A Java Message Service
with Persistent Message”, Proceeding of Symposium on Digital Life and Internet
Technologies 2003.

“Globus Toolkit”, http://www.globus.org/toolkit/

[10] “GT 4.0: Java WS Core”,

http://www.globus.org/toolkit/docs/4.0/common/javawscore/

[11] Globus Alliance, IBM, and HP, “Web Services Resource Framework”,

http://www.globus.org/wsrf/, January 20, 2004.

[12] Vladimir Silva, Contractor, Pervasive Systems Development, “Globus Toolkit 4

Early Access: WSRF”,

59

http://www-128.ibm.com/developerworks/cn/grid/qgr-gt4early/, October 26,

2004.

[13] K. Czajkowski, DF Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D.
Snelling, S.Tuecke, and W. Vambenepe, “The WS- Resource Framework”,
http://www.globus.org/wsrf/specs/ws-wsrf.pdf, March 2004.

[14] Mike Weaver, “Web Service Notification”,

http://www-128.ibm.com/developerworks/cn/grid/gr-ws-not/, February 06, 2005.

[15] “JSR-000914 Java™ Message Service”,
http://www.jcp.org/aboutJava/communityprocess/final/jsr914/index.html

[16] Frank Siebenlist, Von Welch, “Overview of GT4 Security”,
http://www.globus.org/toolkit/presentations/GlobusWorld_2005_Session_3c.pdf

[17] Bill Allcock, Ann Chervenak,:Neil P. Chue'Hong, EPCC, “Overview of GT4
Data Management”,
http://www.globus.org/toolkit/presentations/GlobusWorld_2005_Session_1c.pdf

[18] Ben Clifford, “GT4 Monitoring and. Discovery”,
http://www.globus.org/toolkit/presentations/GlobusWorld_2005_Session_9c.pdf

[19] Karl Czajkowski, “Overview of GT4 Execution Management”,
http://www.globus.org/toolkit/presentations/GlobusWorld_2005_Session_2c.pdf

[20] “Common Runtime”, http://www.globus.org/toolkit/common/

[21] I. Foster, “Globus Toolkit Version 4: Software for Service-Oriented Systems.”,
IFIP International Conference on Network and Parallel Computing,
Springer-Verlag LNCS 3779, pp 2-13, 2005.

[22] “Web services”, http://www.w3.0rg/2002/ws/

[23] W3C Note, “Web Services Description Language 1.1”,

http://www.w3.org/TR/wsdl, March 15, 2001.

60

[24] W3C Note, “Simple Object Access Protocol 1.1, http://www.w3.0rg/TR/soap/,

May 08, 2000.

[25] OASIS Working Draft 02, “WS-Resource 1.2,
http://docs.oasis-open.org/wsrf/2004/11/wsrf-WS-Resource-1.2-draft-02.pdf,
December 9, 2004.

[26] Steve Graham, Karl Czajkowski, Donald F Ferguson, lan Foster, Jeffrey Frey,
Frank Leymann, Tom Maguire, Nataraj Nagaratnam, Martin Nally, Tony Storey,
Igor Sedukhin, David Snelling, Steve Tuecke, William Vambenepe, Sanjiva
Weerawarana, “WS-Resource Properties 1.1”,

http://www.ibm.com/developerworks/library/ws-resource/ws-resourceproperties.

pdf, March 15, 2003.
[27] W3C Member Submission, “WS-Addressing”,

http://www.w3.0org/Submission/ws-addressing/, 10 August 2004

[28] OASIS Standard, “WS-Rehability 1.1,

http://docs.oasis-open.org/wsrmAws-reliability/v1.1/wsrm-ws reliability-1.1-spec

-0s.pdf, 15 November 2004.

[29] I. Foster, C. Kesselman, J. Nick, S. Tuecke, “The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration.”, Open
Grid Service Infrastructure WG, Global Grid Forum, June 22, 2002.

[30] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, F.
Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell, “The Open Grid Services
Architecture, Version 1.0.”, J. Von Reich. Informational Document, Global Grid
Forum (GGF), January 29, 2005.

[31] M. Humphrey, G. Wasson, K. Jackson, J. Boverhof, M. Rodriguez, Joe Bester, J.
Gawor, S. Lang, I. Foster, S. Meder, S. Pickles, and M. McKeown, “State and

Events for Web Services: A Comparison of Five WS-Resource Framework and

61

WS-Notification Implementations.”, 4th IEEE International Symposium on High
Performance Distributed Computing (HPDC-14), Research Triangle Park, NC,
24-27 July 2005.

[32] “GT4_Primer_0.6”,
http://www.globus.org/toolkit/docs/4.0/key/GT4_Primer_0.6.pdf

[33] “GT4 Admin Guide”,

http://www.globus.org/toolkit/docs/4.0/admin/docbook/admin.pdf

[34] I-Chen Wu , H. T. Kung, “Communication complexity for parallel
divide-and-conquer”, Proceedings of the 32nd annual symposium on
Foundations of computer science, p.151-162, September 1991, San Juan, Puerto

Rico.

62

