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Student: Sheng-Han Tsai Advisor: Dr. Shian-Shyong Tseng

Institute of Computer Science Engineering

National Chiao Tung University

Abstract

The purpose and the essence of developing Intelligent Transportation System (ITS) are
to utilize advanced communication techniques, traffic control and information to
achieve a convenient, economi¢*benefitsrand safety traffic environment. In ITS area,
real-time travel time predigtion (T'TP):topic has been discussed recently, because this
important topic covers four of nine research subjects in ITS domain. Such as : Advance
Traffic Management System, Advance Traveler Information System, Commercial
Vehicle Operation and Emergency Medical Services. Also, it presents an index of
real-time traffic condition and useful traffic information.

However, most previous researches focus on the predicting the travel time on freeway or
simple arterial network. The real-time TTP in urban network is hard to be achieved in
four reasons: complexity and routing problem in road network, sensor data is either not
available in real time or is not cost-effective to get in real time, spatiotemporal data
coverage problem of sensor based or vehicle based travel time prediction, and lost
precision because lack of traffic event response mechanism. In this thesis, the knowledge
based real-time TTP system is proposed, which uses data mining technique to discover
some target traffic patterns/rules with location based service (LBS), and then uses

inference engine with previous traffic pattern/rules and real-time traffic information to

il



predict the real-time travel time. When traffic events occur in some road sections, the
meta-rules are triggered by the system to dynamically combine real-time and historical
travel time predictors. The proposed system is implemented for Taipei urban network,
and experiment results show that weighted combination of real-time and historical

predictors outperforms either single predictor.

Keywords: Travel Time Prediction, Data Mining, Expert System, Location Based

Service, ITS.
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CHAPTER 1. Introduction

Increasing trips of heavy vehicles on traffic transportation environment had been
causing serious congestion and air pollutions many years ago. Many traffic experts have
been attempting to alleviate such problems and to minimize the social cost by
developing some traffic researches and proposing the intelligent transportation system
(ITS). The purpose and the essence of developing ITS are to utilize advanced
communication techniques, traffic control and information to achieve a convenient,
economic benefits and safety traffic environment. In ITS area, there are nine research
topics. Every topic has its traffic domain and plays an important role to coordinate with
each others. Such as, Advance Traffic Management System (ATMS) plays a kernel
position in traffic monitor and management for, making the global traffic network more
smooth; The objective of Advanced Traveler Information System (ATIS) is to deliver
reliable and useful real-time ftraffic-information to travelers; Commercial Vehicle
Operation (CVO) topic is aboutcost efficiency on private company and making
convenient public transportations for users, likes taxi. In this thesis, we focus on the
real-time Travel Time Prediction (TTP), which provides important information for
travelers or drivers to understand how long he or she might reach the destination on

their pre-trip job and skip traffic jam sections.

Travel time information which can help travelers to understand the current
traffic condition for saving time through the selection of travel routes in pre-trip and
en-route job. Besides, accurate travel time estimation could avoid congested sections to
reduce transport costs and increase the service quality of commercial delivery by

delivering goods within required time. For traffic managers, travel time information is



an important index of traffic system operation. Furthermore, using travel time
information can scatter the condensed traffic volume and sharply reduce the habitual
traffic congestion in effective, because people might choose various public
transportations as their wishes. So, real-time TTP is a meaningful traffic index to be

referred.

However, TTP is highly stochastic and time-dependent due to random
fluctuations in travel demands, interruptions caused by traffic control devices, incidents,
road construction, and weather conditions. In other words, TTP is affected by a range of
traffic factors including speed, traffic volume, routing path selected, occupancy of road,
and traffic facilities (e.g. Roads, lights, signs) as well as non-traffic factors including
traffic event, weather, road construction, ete. But, most previous researches predict travel
time based on the assumption of some historical or real-time traffic factors, such as speed
or occupancy, and ignore the non-ttaffic factors.- Thus, the results in the previous works

may work well only in some special condition, but not in real-time traffic condition.

Study by Iryo [7] has found that level of reduction in congestion depends on the
complexity of the road network. While vehicular flows on freeways are often treated as
uninterrupted flows, flows on urban network are conceivably much more complicated
since vehicles traveling on urban network are subject not only to queuing delays but also
to signal delays. Besides, TTP for urban network has the routing problem to suggest a
path on a given O,D pair as request. Hence, in this thesis, we are concerned with
predicting travel time in an urban network instead of predicting in freeway or single
arterial road. Many models had been proposed for travel time prediction in these decades,
but most of them focus on the predicting the travel time on freeway [10,14,22] or simple

arterial network [11,15,24]. Travel time prediction for urban network in real-time is hard



to achieve for four reasons: complexity of routing problem in road network,
spatiotemporal data coverage problem of static traffic probing tools, unavailability of

real-time sensor data, and improper precision of lacking real-time events consideration.

In the traditional way, traffic statuses are collected by loop sensors or monitored
by supervising cameras, which are installed on intersections called sensor-based and
site-based [10]. Then, traffic center managers analyze the collected data and discover the
traffic patterns in order to make some actions for optimizing the global traffic network.
In recent years, some ITS projects use specially designated OBU installed on limited
probing vehicles to collect traffic information, which called vehicle-based. However, all
these methods can only get traffic information on the fixed location. Because they have
cost down incentive to establish the stationary traffic detection equipments and quantity
shortage in the amount of designated .probing vehicles, which are not enough for
covering all target traffic network inboth spatial-and temporal aspects. Thus, most traffic
probing studies were resulted ‘in simulated experiments. This thesis, we propose a more
cost-effective traffic information collection method using location based service (LBS),
which is generally described as a mobile information service is to provide useful
location aware information, at a minimum cost and resources, to its user. In this method,
we regard the vehicles of LBS-based applications as the traffic status probing vehicles.
A vehicle of the LBS-based application is equipped with an OBU (On-Board Unit),
which has GPS (Global Positioning System) positioning module and GPRS
communication module. OBU collects vehicle position, traveling direction, and speed
from the GPS module and uplinks the vehicle status to the backend system through
GPRS module. Using the LBS-based probing vehicle is possible to collect various
traffic information and concerns much larger traffic area than traditional sited-based or

sensor-based probing method.



TTP can be estimated from historical data by analyzing the collected traffic
information from different methods as discussed above. For instance, traffic speed and
location of probe vehicle can be used to compute the historical travel time. And various
techniques such as Al, statistics, and mathematical, could be adopted to develop travel
time estimation model. However, there are many interference factors and attributive
parameters to impact the accuracy of TTP. For example: construction, accident event,

and weather can influence TTP on some links.

The objective of this thesis is to propose a real-time TTP expert system on urban
network which predicts travel time by linear combination of real-time and historical
travel time predictors based on the request of an origin (O) and destination (D) pair. The
model of this system is knowledge based mechanism, which can handle the issues of
non-traffic factors, and having'no cost problem of vehicle-based TTP as well as the
coverage problem of site-based orsensor-based TTP. We utilize the raw data of location
based services (LBS); transform it into" the traffic information by combining the
geographical information system (GIS), then use data mining technique (A traffic pattern
mining system-TPMS) to find some significantly historical traffic rules and patterns in
various traffic conditions, and predict travel time by integrating these historical traffic
patterns, real-time traffic information and real-time external information sources. The
external information sources provide the real-time information may affect TTP, but
meta-rules offered by traffic experts dynamically tune the combination weights of
historical and real-time TTP in order to raise the precision of real-time TTP. For example,
if a current car accident is happening on the link of OD pair, TTP system may trigger one
of the meta-rules to raise the weight of real-time TTP on that link. Because the delay of
travel time on that link will be reflected immediately by the real-time LBS, thus raise the

weight of real-time TTP will get higher precision.



The rest of this thesis is organized as follows. Chapter 2 shows the related works of
traffic probing tools and TTP issues. Chapter 3 gives the introduction of LBS, and talks
about the important historical traffic information, which is derived from LBS. And
Chapter 4 is the kernel part in this thesis, which describes our target real-time TTP
expert system and separates four phases to organize our system. Each phase goes detail
in each section. In Chapter 5, we implement the prototype of TTP system in Taipei urban
network, and utilize the taxi dispatch system as our LBS data source. Real-time,
historical and linear combination predictor are evaluated and compared in this chapter.

Finally, conclusions and future research are presented in Chapter 6.



Chapter 2 Related Works

Travel time prediction is a hot research topic in ITS area, many researches focus at
prediction of travel time on either freeway or arterial road network. The methodologies
of these researches are highly dependent on the type of traffic data collected. In this
Chapter, we depict the categories of traffic data collecting tools and then discuss the

literature of travel time prediction.

2.1. Traffic Probing Tools

The probing tools can be used for measuring traffic data in two ways [10]: (1)
logging the passage of vehig¢les fromyseleécted’points along a road section or route that
we regarded as site-based, or (2) using moving: observation platforms traveling in the
traffic stream itself and recording information about their progress, which we classify to
vehicle-based. Concerning the site-based method, which includes registration plate
matching, remote or indirect tracking, and input output methods and so on. The
stationary observer techniques that include loop detectors, transponders, radio beacons,
video surveillance, etc. In the past, many ITS studies and transportation agencies use the
traffic data from dual-loop detectors which are readily available in many locales of
freeways and urban roadways [10]. Dual-loop detector systems are capable of archiving
with traffic count (the number of vehicles that pass over the detector in that period of
time), velocity, and occupancy (the fraction of time that vehicles are detected). These
records can be used for further traffic statistic research. On the other hand, the
development and application of Radio Frequency Identification (RFID) might be

extended to the real-time goods tracking in freight transport and the TTP issue in the



near future. In another way, the advanced registration plate matching techniques consist
of collecting vehicles license plate and arrival times at various checkpoints, matching
the license plates between consecutive checkpoints, and computing travel times from
the difference between arrival times. Such as Automatic Vehicle Identification (AVI)
method can recognize the license plate by video and transform it into digital data for
later research. In addition, the cellular telephone systems are one of the potential

techniques to provide travel time.

In group (2), the moving observer methods (vehicle-based) include the floating car,
volunteer driver and probe vehicle methods are developed incrementally by collecting
traffic dataset in recently years. The micro computer instrumentations (such as OBU)
are designed and installed on yehicles to record vehicle speed, travel times, directions or
distance it passed. Additionally, mobile data such as GPS is useful, and the GPS-GIS
combination can contribute thesefficiency. in both data collection and results analysis

[23], especially for volunteer driver and fleets of probe vehicles.

However, there exists no traffic information collection methodology can solve the
above problems. For example, site-based TTP methods have the spatial coverage
problem because the sensors or AVI devices are fixed and limited to obtain the real-time
traffic data, and vehicle-based TTP methods have the cost and temporal coverage
problems because the cost of probing vehicles is very high if a dedicated fleet of probing
vehicle is maintained. In this thesis, we propose an LBS-based method which is
vehicle-based. And the commercial fleets we used in experiment are taxi fleets equipped
with LBS to record the real-time traffic data, and we regarded them as our probing

tools.



2.2. Travel Time Prediction

There are numerous methodologies of TTP had been proposed in previous works,
which can be categorized as follows [10]: regression methods (mathematics model),
time series estimation methods, hybrid of data fusion or combinative models [21] and
artificial intelligence method like neural network [14] Most of past studies estimate the
travel time based on historical traffic data. In [16], Auto Regression (AR) model and
state space model for time series modeling were used to predict travel time. The Kalman
Filtering provides an efficient computational (recursive) in many TTP researches [2, 11,
23], because this filter is very powerful in several aspects: it supports estimations of past,
present, and even future states, and it can do so even when the precise nature of the
modeled system is unknown. dn [22], the Support Vector Regression (SVR) model was
used to predict travel time for highway users. [1] presented the pattern matching
technique in TTP. For example, the_traffic patterns similar to the current traffic are
searched among the historical: patterns, and the closest matched patterns are used to
extrapolate the present traffic condition. [3] developed an OD estimation method to
make more accurate estimation of traffic flow and traffic volume in congestion traffic
status. Moreover, the data fusion models of TTP integrated grey theory [19] and neural
network-based. [23] developed some hybrid models toward data treatment and data

fusion for traffic detector data on freeway.

Besides, some artificial intelligence methods were applied to solve TTP issue.
PARAMICS of a real-world freeway section model [14] was proposed to develop an
artificial neural network (ANN). [18] studied genetic algorithm to optimize performance
of TTP. However, most of existing researches predicted travel time based on historical

traffic data analysis and lost the precision because of disturbance of real-time events, such



as accidents, construction, signal break, and traffic block. In other words, most studies
have been shown that prediction accuracy was often compromised by the underlying
mechanism of prediction methods more than other influencing factors [4]. To extend the
application of travel time information in open environments, such as arterial roads, the
overcome of current difficulty is necessary [7]. For instance, signals and intersections
are the main factors to influence prediction accuracy in arterial road sections of urban
network. In this thesis, we propose a knowledge-based method with data mining
technique to discover the spatiotemporal traffic rules and patterns from LBS-based
applications, and also consider the intersection delay, links traffic conditions, weather,
traffic events, and road geometry (attributes/interferences of TTP) to construct

knowledge classes for solving the travel time issue.



Chapter 3 Traffic Information Derived from LBS

In this chapter, LBS system which uses the commercial taxi fleet system in Taipei
Metropolitan is introduced and then the important component of historical traffic
information in TTP that plays an important role of our real-time TTP system is

discussed.

3.1. LBS Introduction

LBS system provides appropriate information service for the users in different
locations through the wireless communication network such as GPRS/3G. There are
various kinds of LBS applications, for examples, vehicle positioning system (VPS) for
electronic toll collection 8], taxi dispatching-system (TDS) [12], commercial fleet
management systems, and wvehiele’security. systems. The main components of the LBS
system (Figure 1) are on-board units (OBU), communication system (cellular network
and M-Server), and backend systems (E-Server). OBU is a small computer system which
is installed on the vehicle with computing, positioning, communication, and human
interface modules. It receives the GPS signal from the positioning module, sending and
receiving the messages to and from the backend system through the communication
module, and interacts with user via the human interface module. And backend system
caches the latest positions and status (e.g. speed, state, etc.) of all the taxies by collecting
the uplink reports of OBU. So, the OBU and the backend system interact with each other
through the communication system, and they complete the application scenario by

complying with the same application protocols.
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Figure 1. Components of LBS application

The model proposed by this_thesis is using vehicle-based method, which is cost
effective without spatiotemporal coverage problem as stated above. This is because the
traffic information is derived by data-mining ffom the raw data of LBS, without any
additional cost comparing to traditional-vehicle-based TTP. Meanwhile, the size of the
LBS fleet has the temporal and spatial coverage advantages. Traffic information can be
dynamically gathered in the fleet operation area of LBS and 24 hours per day in real-time.
The vehicles of LBS applications are regarded as the traffic status probing vehicles of the
road network. A vehicle in the LBS application is equipped with an OBU, which has GPS
(Global Positioning System) positioning module and wireless communication module
such as GPRS or 3G. OBU collects vehicle position, traveling direction, and speed from
the GPS module and then uplinks the vehicle status to the backend system through

communication module.

The raw data collection is the uplink and downlink interaction logs between OBU

and LBS backend system. There are three kinds of uplink logs: periodically report (on

11



fixed time interval), cross boundary report (on taxi drive through the geographical
boundary), and event report (on status change or event happens). The messages of
uplink report packet (referred as URP) include current location, direction, speed, and
other business-related messages of the taxi fleet vehicles. By combining the road
network database in GIS, the traffic information can be collected in real-time by
transforming the vehicle status into traffic information of the link that the vehicle located
[19]. The transferring function of coordinate address in the GIS engine transforms GPS
position of the vehicle into the nearest address by interpolating the GPS position with the
road network database. The traveling speed of the vehicle at that address can be a sample
of real-time traffic information at the link. Then, the real-time traffic information of the
road network can be generated by transforming all the uplink packets in the backend

system of LBS.

3.2. Historical Traffic’Patterns

After deriving traffic data from LBS, there may exist some embedded traffic
information can be applied in various research domains, especially for our TTP expert
system. In general, actual TTP has a time lag as it takes a vehicle to travel the whole
distance before the actual travel time can be known. Hence, when the actual travel time
is measured, the information maybe not in current traffic state to transmit to users.
Ideally, when the travel time information is provided, it should be the travel time that
the drivers are encountering during their trips. A general method used to estimate
current travel time is by summing the travel time derived from speed measurements at
different sections of the road simultaneously. The assumption of instantaneous TTP is
that present traffic conditions are operative for vehicles entering the road section. This

assumption is valid only in free flow condition but as congestion starts building up, the

12



instantaneous travel time starts lagging. Needless to say, the real-time TTP system is not
suitable for predicting at a longer time horizon of saying 1 hour. In addition, our
real-time TTP is based on the 24 hours online system, and sometime the probing data
will occasionally breaking when probing vehicles entering the tunnel or elevated road to
result in losing the important real-time traffic information. Or perhaps, some probing
vehicles are not entering in target links (separated by suggested paths of system output).
Therefore, there is an urgent need to predict travel time based on historical databases in
combination with similar traffic patterns or statistical techniques as well as the real-time

traffic information consideration.
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Chapter 4 Knowledge-based Travel Time Prediction

The knowledge based real-time TTP model is proposed for travel time prediction
in this chapter. There are four phases to achieve the TTP goal: traffic information
generation, traffic patterns mining, rules construction, and travel time prediction. In the
following sections, the system architecture of our TTP model in the first section is
introduced, and the following four sections give detailed discussion of the four phases

in this model.

4.1. System Architecture of Travel Time Prediction

In the real life, there are'some non=traffic as well as traffic factors which have some
impacts to make travel time more unpredictable, such as events, weather, accidents, etc.
In order to take these factors-into consideration for higher precision of real-time TTP, we
propose a real-time knowledge based TTP model to predict travel time. There are two
categories in the TTP rules: (a) general rules for real-time and historical TTP are
generated from the traffic patterns, (b) meta-rules for tuning the weight of real-time and

historical TTP combination ratio are extracted from the human experts.

The basic idea of the model is that travel time can be estimated by using the linear
combination of historical and real-time TTP with intersection delay, as shown in (1),
where Origin (O), destination (D) and journey start time (t) are the input parameters of the
prediction formula, T, and T}, are the sub-functions of real-time and historical TTP results,
and Ty presents the intersection delay of each consecutive links, a,  are the weighted

combination variables for real-time and historical TTP.
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TO,D,t)=«-T,(O,D)+ £-T,(0,D,t)+T,(0,D,1) ..(1)
where a+ =1

In the road network of urban area, an OD pair may have many path choices, and each
path consists of several road links. There are many strategies for choosing paths, such as
shortest path, expressway first, etc. In this thesis, we adapt the selection scheme of taxi
driver’s candidate path, which is discussed in section 4.5. Once the path is decided, travel
time along the selected path can be predicted by summarizing travel time of the links in
the path and the delays between consecutive links. Assume each L; represents a link in the
selected path: P(O,D), o, Bi are the weight control variables of the link Li, and D; s

presents the intersection delay between link 1 and i+1. We have the following equation:

TODY= M(a-TW)+A Td.t)+ YD, Q)

VL,eP(O,D) vL,eP(O,D)
where ¢ +4 =l Vi

As shown in Figure 2, the users’ vehicle starts from origin site to reach the
destination site, and the path is a candidate path obtained by our TTP system, will be
separated to consecutive links. In upper part of Figure 2, the real-time TTP of each link
is estimated according to its average flow speed. Thereafter, historical TTP of each link
is inferred by the rules transformed from historical traffic patterns. Once there is no
similar historical traffic pattern, the TTP system use the default patterns which are
default values depending on the attributes of links, such as elevated road, main line,

second main line, etc.
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The architecture of TTP expert system contains three modules: traffic pattern
mining system (TPMS) moldlilllé; tré¥?1-~ltinl.lle ﬁ.l"l.es construction module, and travel time
expert system module, as shown in Eiéﬁfé 3. Th‘é? highlight of two red thick lines with o
and B combinative Variablé's;are‘ ~£;Blétﬁfrom r]eal—time and historical traffic database.
After transferring some trafﬁc.‘ data from LBS server, we define some target traffic rules
and patterns, and then use some data mining strategy to discover the traffic rules and
patterns in the TPMS module. Second, in travel time rules construction module, human
experts construct meta-rules and transform some traffic patterns into travel time rules
which were mined before at TPMS module. For TTP attributes, we build the knowledge
classes in travel time rules construction module. Module three presents inference engine
of TTP expert system, which computes TTP according to the users’ OD pairs and the
candidate path. The verification is also an important subtask of module three, which
adjusts a, B, and certainly factors parameters by the past records. The records contained

taxi driver’s travel time with equal OD pairs in past. The detail of the above tasks will

be discussed in later sections.
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In Figure 4, data stre;fn{ng of our target knowledge based TTP expert system
consisting of four phases including traffic information generation, traffic patterns mining,
rules construction, and travel time prediction is proposed. The main distinction can be
observed from Figure 3 in Phase I, which is a data preprocessing task for generating our
TTP application from LBS server. (Because there involve some meaningless dataset in
the original LBS server, and need to be pruned out for our TTP application.) And in

Figure 4, two information flows including real-time information flow and batch running

historical information flow are highlighted by solid and dotted line respectively.
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4.2. Phase I: Traffic Information Generation

The phase I is traffic information generation, including processes of data collection,
preprocessing, and transformation from LBS. The process is first creating journey table
and traffic information spot (TIS) table schemas, which are derived from LBS, and
cleaning some useless raw data to make our probing data more robust (accurate). At last,
some categorized traffic patterns in spatial and temporal dimension is defined for

storing the results of traffic patterns in the historical traffic database.

4.2.1 Table Schema Derived from LBS

After collecting the raw data of LBS server, data transformation process including
three steps is applied to generate the traffic information, as shown in Figure 5. The first
step is journey selection, whichefilters-out the meaningless raw data and generates the
journey tour of each taxi. There ate two cases in a journey of a taxi, one is the tour from
dispatched state to occupied state, and the other is the tour from occupied state to the
empty state. The former means taxi driver is dispatched to serve the customer, taxi goes
from the current location to the customer’s location. The latter means the journey from
the customer get on the taxi to the customer’s destination. After journey selection, we can
build the OD (Origin and Destination) table, called journey table, as shown in Figure 5.
The journey table is a table storing the touring records, where each tour contains one OD
pair and a sequence of several URP of the same OBU. These sequences will be stored in
TIS table, as shown in the right side of Figure 5. The definition of URP is : URPi = (TSi,
(X1,Y1), Si, Di, Ai), where TSi is the timestamp of the URP, (Xi,Yi) stands for the
coordinates of the vehicle, Si and Di are speed and direction of the vehicle, and Ai means

the nearest address of the URP location.
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The second step combines the road network data and GIS engine to transform the
locations of the URP into real address, which helps mapping the vehicle traveling status
to the traffic status of relative road section. Finally the third step summarizes all URP in

the journey table of a same temporal section to get average speed of each road section.

As discussed above, the two generated table schema will be used to analyze by
data mining technique for producing the historical traffic patterns and rules, and the
detail will be introduced in the following sections. By the way, raw data is collected
from LBS in real-time at Phase I, and each collected records from LBS application
represents location, speed, direction, and status of a vehicle at somewhere the OBU
reports to the backend. Hence, we name the real-time location information as traffic
information spot (TIS) and# ecreate the third table schema for real-time traffic
consideration, which is so-called real-time traffic spot table. At meanwhile, the traffic
information generation process is. done.at the same time, and the GIS engine [21] helps to
convert the coordinates of the vehicle location into address. The speed of the vehicle can
be regarded as a sample of each link. The generated traffic information will send the
real-time road network status to the expert system, and this information is the inference

data source for real-time TTP.

LBS TIS Table
Server Journey Table Time

Stamp Position Speed Direction Address
N Origin  Pestination| Trgvel
=[] Time
1

TS1 |[(X1,Y1)] St D1 At

Stamp Position Speed Direction Address

TSn ((Xn,Yn)| Sn Dn An

Figure 5. Journey and TIS Table
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4.2.2 Data Cleaning

After creating our journey and TIS table, we find some noise raw data which are
useless, e.g., invalid values of GPS position, speed, and directions, need to be removed

from the sequences of TIS table.

Missing values: There are some links of which probing vehicles do not record the
traffic status information. The problem could be caused by GPRS communication or
GPS errors. GPS errors might occur when a probing vehicle passes under an
infrastructure such as tunnel or the vicinity of elevated structures (the so called urban
canon). GPRS communication might be the same reason or any unknown events to

cause missing values.

Useless data: In the ‘content - of URP, probing vehicle’s speed is 0 in the same
position with a long time. The teason of this happening is probing vehicles were stopping
in the ranking station and waiting for servicing. This is because the LBS based probing

vehicles are commercial taxi fleet and have “taxi behaviors” on their operating.

Redundant: Some reports of URP show the same message from the same vehicle.
This is because there were several events happened immediately, such as periodically
report event after the cross boundary event. So, the reports of message are counted twice

and need to be pruned.

21



4.2.3 Spatiotemporal Traffic Patterns Classification

In this section, we give the definition of spatial and temporal dimensions in order to
present our traffic rules and patterns. Classifying the traffic patterns is beneficial to our
TTP expert system, but it may have some drawbacks in other situations. The benefit is
effective to reduce the computation time on classified historical database, so that only
similar segments of the historical database are searched [2]. But, if the searching
window time is too large, the real-time online TTP system will be suspended. For
example, holiday traffic patterns may be different from the other days of the week.
Therefore, predicting the travel time on Sunday can be done by only searching all
historical traffic patterns on Sunday in one year. As a result, prediction time can be
reduced to 1/7 * 365 (7 days a:week). The drawback of classifying the traffic patterns is
pattern matching problem, because the fluctuation of TTP is affected by many
inferences factors, such as-incidents, weather, and driver behaviors. But it is doubtful
about only using historical traffic patternsto-predict real-time travel time. Here, we give
some flexible solutions to handle this problem. Solution one uses dynamic variables of a
and B to compute the real-time and historical TTP. Solution two uses the designed
TTP system to mine some historical traffic patterns (holiday, working day, etc) which
are cleaner without any noise factors (raining, accidents, etc). The system will trigger
the meta-rules to dynamically control a and B variables when there are some traffic

events on the links for achieving higher accuracy TTP.

The classification method in temporal dimension was grouped into “Year”,
“Season”, “Month”, “Date”, “Hour”, and “half an hour” in nature way, and spatial
dimension was defined as “City”, “Zone”, and “Road section”. Because the limited

speed of Taipei Metropolitan Area is 40 km/hr, we classify 9 fuzzy traffic level statuses.
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The average speed of collected records between 0-5 km/hr is defined as level 1 and 6-10
km/hr is level 2, as shown in Table 1. We also define some characteristics for traffic
status, such as “Congestion (B)” means the average speed falls below 25 km/hr, and if
the average speed is below 15 km/hr, called “Extreme Congestion (A)”. “Normal (C)” is

the average speed falls between 26~35 km/hr. “Free Flow (D)” is above 36 km/hr,

Table 1. Classification of Traffic Levels

Traffic Level 1 2 3 4 5 6 7 8 9
Average Speed
0-5 | 6-10 | 11-15 | 16-20 | 21-25 | 26-30 | 31-35 | 36-40 | >41
(Km/Hr)
Extreme Congestion | Congestion Normal Free Flow
Characteristic
(A) (B) ©) (D)

The above spatial and temporal-granularities are used to formulate traffic rules. In
this thesis, we choose the “month”.as temporal granularity with two types of days (e.g.
workday and holiday) for calculating the interesting values (e.g. support, confidence).
As in spatial granularity, the “road section” granularity is considered in the target area.
And the target area of this thesis focuses on the arterial roads of Taipei urban area, as

shown in Figure 6.
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Figure 6. Road Network in Taipei Urban Area

4.3. Phase Il: Traffic Patterns Mining System

After finishing traffic information generation in Phase I, the traffic information of
journey tables are generated and used to discover traffic rules and patterns by data
mining technology in phase I, as shown in Figure 7, where the mining results are stored
in historical traffic database. There are two types of traffic patterns: link travel time
(LTT) and intersection delay (ID). The LTT traffic patterns are used for computing travel

time on the target link and the ID traffic patterns are used for predicting intersection
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delays of consecutive links. Combining these two types of traffic patterns could

generate the historical TTP results and these patterns are discussed in the following

sections.
Journey Table
i | Origin [Destination I.F.'m"l Data Mini
LILIE Inlng
5 N———
—p | Knowledge of
TIS Table ~ Traffic Rules &
lime . irectionl Address
] g Posion ] Spsd it s ¥ cociaion Rule Mining ~faors
. Cluster Analysis

JFigure ? Concebt of Phase Il

1

4.3.1. Link Travel Time (LSCT)Co

This section discusses some traffic rules and patterns, which display the traffic
congestion levels and the relationship of spatial and temporal dimensions in traffic
network. The influences of traffic network may cause traffic flow to raise the delay of
vehicles. Also, LTT traffic patterns are the main component to produce our historical
TTP. As shown in Figure 8, there are the three knowledge patterns of LTT: Spatial and
Temporal Patterns (STP), Crossover of Spatial and Temporal Rules (CSTR) and

Crossover of Spatial and Series Temporal Patterns (CSSTP).
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Figure 8. Concept of Three ITT
Spatial and Temporal Patterns (STP)
The first knowledge of LTT:presents about the traffic condition between time and

location as shown in top of’ ~Figure 8{'W¢ dénoniinate this kind of pattern as “Spatial and

Temporal Patterns®. The STP 1S mlned from h1$t0r1ca1 traffic database by aggregating

the TIS table in spatial and temporal dlmensmns Support and confidence of each STP
are determined by calculating numbers of days and times of each traffic levels in every
time interval. Spatial dimension stands for the link identification attribute, and temporal
dimension is the classified index of time domain. The classified temporal dimension
categories include peak or off-peak hour, and holiday or workday, etc. Congestion level,
support and confidence can be calculated by aggregating the TIS table in the same
spatiotemporal conditions. The STP flow chart is shown in Figure 9 and the format of
STP is listed in (3). The Time index are 1~48 and each for half hour of 24 hours a day. If
today is holiday then the holiday slot is 1, but for workday is 0. Loc. is road section, Dir.
is vehicle’s direction, and traffic level stands for congestion level ranged from 1~9,

respectively.
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Figure 9. Flow Chart of STP

[Example of STP]

Considering 8 AM Monday (office day), support value on July 2005 (31 days) is
(21/31)*100%= 67.74%. The confidence value is concerned the traffic condition of
objective location. If congestion occurred in workday 18 times during that month, then
the confidence is (18/21)*100%= 85.71%. From above discussion, the meaningful STP

is:

STP-(Date, Time index, Holiday, Laoc:; Dir., Traffic level, Support, Confidence)..(3)
= (Mon., 16, 0, FuXing S; Secud,~4+4:67.74%, 85.71%)

Traffic status is in congestion:

Additionally, STP are stored in the knowledge class, and can be easily transformed
into rules for the TTP inference at run time by combining the link attribute in table of
traffic network. The congestion level can be transformed into estimated traveling speed
on that link, and thus the estimated travel time can be calculated by dividing the length

of the link with the estimated speed.

Crossover of Spatial and Temporal Rules (CSTR)

The second LTT knowledge is used to find the traffic information of crossover road

sections, which consists of two space dimension and one time dimension. So the name
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of this knowledge is “Crossover of Spatial and Temporal Rules”. The CSTR is
generated by integrating two traffic sequences of the crossover road sections. The
correlations between two crossover road sections may be independent with each other.
Thus, what correlation (positive or negative) in the target crossover is concerned? If
positive correlation, it means that the traffic flows of vehicles’ directions on the former
road section has a tendency to drift towards the latter road section. This is called as
“transmit probability” on this intersection. According to the CSTR knowledge, we can
understand the impaction of congested vehicles, and realize the drivers’ behaviors that
they used to route. The correlation value between two road sections can be calculated as

follows (4).

Correlation = P(A)*P(B) / P(A)P(B) ...(4)

Here the equation, P(A)"P(B).=_P(A)*P(B), means traffic sequences of two
crossover road sections (A and-B).are in congested status in the same time interval. Also,
support values in CSTR are calculate by P(A)"P(B). The CSTR flow chart is shown in
Figure 10. The first process executes to encode the sequence patterns of the target
direction road sections. If average speed of road section is below 25 km/sec, encode 1
(Because we are interested in congested status). Higher the average speed 25 km/sec is
encoded 0. After this transformation, the road section congestion sequence can be
generated. Then, the computation of correlation values of crossover sections can refer to
the equation (4) for generating CSTR. Thus, if A and B is negatively correlated, then the

result of correlation value is less than 1.
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[Example of CSTR]
Considering two STP on Monday of FuXing S. Sec. 1 (1) and RenAi Sec.3 (=),
we encode the average speed in binary code with half hour interval from 6 AM to 11
PM, as following:
FuXing S. Sec. 1 (1): 0011110101 11111 11011 11111 11111 1110
RenAi Sec.3 (=2): 00011 11111 11111 00001 10011 11110 1100
Then, the support value is 20/34 = 0.5882, and correlation value is 0.5882 / (22/34)
* (28/34) = 1.104 that calculated be equation (4). From above discussion, the

meaningful CSTR is:

CSTR-(Date, Holiday, Location, Direction, Support, Correlation) ... (5)
= (Mon., 0, FuXing S. Sec. 2,4 ) ™ (Mon.;.0, RenAi Sec. 3, =)

It’s positively correlated congestion in this crossover, Sup.= 58.82%, Corr.= 1.104

Compute Binary coding Calculate Calculate

TIS average traffic pattemn N Support Corr. Value CSTR
Table speed of road (road section Value (use corr.
section AB) (PAVFB) ) function)

Figure 10. Flow Chart of CSTR

Crossover of Spatial and Series Temporal Patterns (CSSTP)

The third LTT knowledge: CSSTP, which is shown in the bottom of Figure 8. The
main difference motive between CSSTP and CSTR is, “how long the traffic condition
status will continue?” In other words, the CSSTP can find out a period of time that the
congestion status will continue on crossover road sections, or it is just a short period

phenomenon. This knowledge patterns can provide more useful information for the
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traffic center manager, and help them to do some actions for improving the traffic flow.
The name of this knowledge patterns is called “Crossover of Spatial and Series

Temporal Patterns” (CSSTP). The format (6) and a CSSTP record are listed below:

[Example of CSSTP]

CSSTP-(Date, Time index start, Time index end, Holiday, Loc.1 Dir., Loc.2 Dir.,
Traffic level, min. Sup., min. Con., min. Corr.) ...(6)
= (Mon., 16, 19, 0, FuXing S. Sec. 1 (1), RenAi Sec. 3 (), 4, 60%, 80%, 1.1)

Traffic status is congestion in this crossover from 8AM to10AM.

In CSSTP, the ARCS (Association Rule Clustering System) [9] technique is
applied to find out the continue traffic crohdition (e.g. congestion) of CSTR. As the flow
chart of Figure 11, first, ARCS use the j‘bi‘r“ming ‘I‘nethod to replace the data of attributes
(e.g. space, time) with théir qorrespogding bin number, and segmentation criteria

separate every crossover road sections of €STR into parts by human expert.

g Association Rule g ot
e 4—— Segmentation

in. currclalilin Engine criteria
i Association Rules

Heuristic Rule to bitmap conversion
Optimizer Clustering
(j l Clustered Association Rules
¥ 1
EL- plenier . — Test data
(cluster analysis)
CSSTP

Figure 11. Flow Chart of CSSTP
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In association rule engine of ARCS, we recomputed support and confidence of
CSTR in order to compare the min. support and min. confidence of the heuristic
optimizer. Then, we transform these association rules into two dimensions bitmap and
use grid clustering technique to find out the temporal continuity of the traffic condition
in the same crossover road sections. The bitmap clustering is shown in Figure 12.If the
association rules of CSTR are corresponding to threshold of min. support, min.
confidence and min. correlation, it will encode “X” on the bitmap. Then, the Euler
formulation is used to compute the distance in grid map for clustering the nearest grids.
The clustering mechanism may extend the temporal dimension of traffic levels and
group them together. (Here, we consider the time dimension). Thus, the results of these
groups are regarded as CSSTP. In order to make CSSTP more accurate, the clustering
analysis is verified with test data, and use heuristic optimizer to adjust the parameters
(e.g. min. support, min conf., min. corr.) in'loop procedure. Finally, more accurate

results of CSSTP can be generated-after.the loop process of ARCS.

Bitrmrap
Clustering

Traffic
Levels {

e E—

Time

Figure 12. Bitmap clustering of CSSTP

4.3.2. Intersection Delay

Intersection delay is a delay of travel time between two consecutive links, which is
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mostly caused by signal delay and queuing delay. Estimation of the intersection delay is
too hard to be defined by mathematical model; thus many past researches just give a
default values as a solution. However, in urban traffic network, there are too many
intersections and each of them has different signal delay (arterial road may have more
time slot). Here we proposed two ways to estimate the intersection delay: traffic patterns
and meta-rule from expertise. Traffic patterns related to intersection delay can be
classified by Through Delay (TD), Left Turn Delay (LTD, as Figure 13) and Right Turn
Delay (RTD), which are the delays of three possible directions from one link connect to
another link, and can be extracted from the historical journey set of traffic database. In
general, TD might be caused by traffic signals of red light or none by green lights. Here,
we adopt average TD values for TTP system. The LTD might be the largest average
delay value of these three kinds intersection delay, because it combines signal time and
queuing time as shown in-Figure 13."And normally, RTD is the lowest average delay

value in this research.

Figure 13. Example of LTD

Equation (7) shows the general format of TD/LTD/RTD, where P is the pattern

type (0-LTD, 1-TD, 2-RTD), SOi4 and Sl4 are the two consecutive links ID where

vehicle leave out the link SO;4q and come into the SIig link (Link id reference to Figure 7),
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T is the temporal index (0-nonpeak hour, 1-peak hour, 2-default), and D, is the

average delay time of this pattern.

[TD/LTD/RTD] : (P, SO, Slig, Tid, Davg) ... (7)

Intersection delay pattern can be aggregated by consecutive two TISs with different
links in the historical journey set table. Figure 14 shows an example of RTD pattern: a
probing vehicle drives on north direction then turn right to east, and report TIS at
location A of Link L, and consecutively report TIS at location B of Link L. The
symbols of the TIS format (T,L,X,Y,D,S) in Figure 14 stand for timestamp (T), link id
(L), coordinates (X,Y), direction (D) and speed (S) respectively. The distances d, and dy
in Figure 14 stand for the distance from A;.B to the intersection of links L, and Ly
respectively. The right through delay time from the L, to L, can be estimated by
subtracting travel time of d, and d,-from elapsed time between two TIS, A and B. To

sum up, the flow chart of intersection delay is shown in Figure 15.

0|

A = A,B : two consecutive TISs
with different link id

AT, L, X,,Y,,D,,S)

— B (Tbi Lhr xbr Ybr Dbr Sh)

Figure 14. Intersection Delay of RTD.
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Intersection delay can be easily estimated by another strategy expert heuristics.
Average delay value in the rule of TD/LTD/RTD for each consecutive link is extracted
from human experts and stored in the knowledge base. The experiments will compare

traffic pattern and expert heuristic strategies to find out which one has better results.

L.oop (until end of data}

Calcylate
M averape
LTD
. Find the Subtract the
Find the :
TIS freet start and end Judge the fwo continue Calculate
U sequences of directions of sequence of - average
Table Infersection ) *
. farget vehicles delay 1D
of two roads ) )
infersection patterns
Calculate
B average
RTD

Figure 15. Flow Chart of Intersection delay

4.4. Phase I11: Meta Rules and Knowledge Class

The concept of Phase III, as shown in Figure 16, discusses about the interferences
(attributes) of TTP and the building of knowledge class for later TTP expert system.
Also, the transformation of the results of traffic patterns (ID and STP patterns) from
Phase II into travel time rules will be described. The construction of meta-rules, which
can dynamic control the variables (@ and 5) on the travel time rules of the historical

and real-time travel time estimations, will be discussed at last.
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4.4.1. Interferences and Attributes of Travel Time Prediction

As shown in Figure:‘l‘6, the!.-\}'efhiélle sfdgts at an origin position to reach its
destination has many attri@ﬁtes foﬁ'f@;q_;?utir}g é)ur TTP, and some of these attributes
(facts) are regarded as inte;rfére:-nces, Which"‘might delay the vehicles to reach the
destination. Here, we list and briefly describe all attributes of TTP. First, Time and
Location are not only the important index to present traffic information but also the
basic materials to formulate our traffic patterns and travel time rules. As we mentioned
above, in this thesis, 1~48 time index to present 24 hours a day: 1 present 00:00 to
00:30, 2 present 00:30 to 01:00 and so on. The Location in this thesis is considered road
sections in Taipei urban network as Figure 6, such as the sections of Zhong Xiao East
Road. The Direction of LBS-based vehicles is also an attribute of TTP. Then, after
considering time and location facts, the most important fact is Traffic Status, which has

level 1-9 of average traffic speed. Then, we use the above facts to construct our STP

knowledge.
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In TTP, some geometry information is necessary material, such as Road Length
and the Coordinates (X, Y) of intersection in GIS map. Because system can not
compute the link travel time when it has the average speed in the target road but do not
know the length of road. Thus the length of each section (Link) is needed in our target
urban network. The coordinates (X, Y) of intersection are referred to GIS map and GPS
position. These longitude and latitude of intersections are necessary for TTP system to
precisely compute the ID patterns. The default patterns are used to handle missing or
no related historical patterns (STP) in historical database. According to the Directorate
General of Highways, we use some classified roads for making our default pattern. For
example, the speed limit of freeway is 100KM/HR and second main line of urban
network is 40KM/HR, etc. Then, TTP system can use this limit speed and the length of
road to compute link travel time. Real-Time-Events are the significant interferences of
TTP. Here, we take incidents, road constructions and heavy raining events into account.
Types of Day, such as holiday. ‘and workday -are also considered. Because different
traffic flows in the traffic network will have different traffic patterns, and we need to
separate it for making our historical TTP more accurate. At last, Meta-rules and
Knowledge Class of traffic patterns (STP, ID patterns) are also the portions of our TTP

considerations, which will be discussed in following sections.

4.4.2. Generation of Travel Time Rules

After data mining process in Phase II, the three knowledge traffic patterns were
found. Some of them are meaningful in TTP but some are not. In our goal of TTP expert
system, we only use the STP knowledge and transform it into knowledge class [13].
Because, STP knowledge can be easily transformed into travel time rules for the TTP

inference at run time by combining the link attributes in the road network table. Also, the
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intersection delay patterns will be transformed into knowledge classes. And these
knowledge classes can be used in the inference engine of TTP expert system at Phase I'V.

Here are some transformation examples of STP and ID patterns as shown below.

B STPto Travel Time Rules

STP- (Date, Time index, Holiday, Location, Dir. , Traffic level, Sup., Conf.)
Here, we assume min. sup. =0.7, min. con. =0.8,

Ex: STP- (1, 16, 0, A1, 1, 4, 70%, 85%)

— If Workday & 8am & Al E. , then traffic level 4 ...... (Travel time rule)

First, according to STP format in (3), time index, holiday, location, direction, and
traffic level are chosen to transform the 'STP into travel time rules. Then, the “if...
then...” style is used to formulate our target travel time rules. The fact in RHS of travel
time rules is only the traffic level,-and the remaining facts are in the LHS of travel time
rules. The thresholds of minimum support and minimum confidence are given by

human expert for making our travel time rules more robust.

The transformation of ID patterns can refer to the format of ID patterns as (6). Every
slot of ID format can be used to formulate travel time rules, where the fact in RHS of
travel time rules is only the delay value and the other facts are in the LHS of travel time

rules. The example is shown below:

B |D Patterns to Travel Time Rules
[TD/LTD/RTD]: (P, SOid, Skid, Tid, Dave)
Ex: TD - (1, Al, B1, 1, 50)

— If peak hour & A1 & B1 , then TD =50 second ...... (Travel time rule)
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4.4.3. Meta Rules Construction

The meta-rule is designed as a reaction mechanism to the current external traffic or
non-traffic events in order to raise the precision of the real-time TTP in this section. In
equation (1) and (2), control variables o and /3 represent the weight of real-time and
historical TTP respectively. Meta-rule, which is extracted from the expert, is the tuning
mechanism for weighted combination of real-time and historical TTP. That is,
meta-rules dynamically tune the value of weight control variables: « and 5. For
example, if system receives a current external event, such as car accident on a link in the
selected path, meta-rule mechanism will then reduce the weight of historical and raise
the weight of real-time TTP. Because the effect of that car accident can reflect at that
link immediately, so raising the ratio of real-time TTP can get higher precision. Here,
the meta-rule is shown below and the style of meta-rules is as same as “if... then...”
format of travel time rulés. Insaddition, the initial values of @wand 8 are given by
human expert. In order to emphasize the real-time traffic status is more important in our
real-time TTP system, the initial value of @ and 5 are set 0.7 and 0.3 by human expert,

respectively.

[Meta-Rule]: If link is under construction, then « +=0.05, £-=0.05

On the other hand, some meta-rules may raise the weight of historical TTP in
several conditions: One, if there is no event happening or lacks real-time traffic
information of LBS-based vehicles, Two, if the support and confidence values of the
related traffic patterns (mining from the historical database) are higher than the
thresholds. It means that there is a strong support that traffic status is possible to regress

to the intents of related historical traffic patterns. Therefore, raising the weight of

38



historical TTP might get higher precision of TTP. The general format of this type

meta-rule is like:

[Meta-Rule]: If link covers fewer probing vehicles, then «-=0.05, B+=0.05

4.5. Phase IV: Travel Time Prediction

In Phase IV, the TTP calculation of our knowledge-based expert system will be
described. At first, when user gives the OD pair, TTP expert system uses this OD to
output some suggested paths with travel time results for user. But, how these paths are
generated for TTP expert system? And what are the procedure and reasoning step in
inference engine for producing the travel time results with these paths? These questions

will be discussed in later section.

4.5.1. Candidate Paths Generation

The TTP expert system contains some well solutions (shortest paths), which are
corresponding to users’ given OD pairs to output for users. If there are no well paths in
TTP expert system, calculating TTP results is in vain. However, the path selection
problem in the urban road network is more complicated than in freeway. There are
fewer path choices in freeway routing if the OD pair is given. But in urban network,
there is a combination explosion problem. There are many strategies for path routing on
a given OD pair in the urban network, such as shortest path first, expressway first or
signal less path first, etc. The path selection problem is beyond the scope of this thesis.
Fortunately, LBS application gives a statistic solution here. The drivers (such as taxi

driver) of the LBS application are the path routing experts in the urban network. They
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tend to select heuristic paths depend on their experience and the traffic status. So the
candidate path classification subtask of travel time expert system module in Figure 3 is
implemented according to this concept. Top 3 paths will be selected from the journey set
in the historical traffic database as the candidate paths, and each one of them will be
evaluated to decide which path is the suggested path, which will be discussed in later
section. The flow chart of candidate paths generation is shown in Figure 17. In this
Figure, it uses the journey table and TIS table as data sources, then according to the
classified OD pairs to do the statistic process for computing top 3 candidate paths.
Finally, TTP system will store these candidate paths in database with human expert for

later querying.

Expert

TIS
Table

Classify
sequencs of
target O

Journey
Table

Record: (O, D)

J"’" '\_. L." -'-.-i.: :

Sratistic . .
(Seq.l-L1 ., Seg.2- L2 ... ]

Frocess

Candidate’
__PathSigsy

Figure 17. Flow Chart of Candidate Paths Generation

4.5.2. Suggested Paths Generation

After generating the candidate paths, TTP system has many candidate paths of each
OD pairs. However, the urban traffic network in Taipei is complex and OD pairs might
have many combinations of user’s demands (different origins with different

destinations). So, here we just assume our candidate paths generation can cover all
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users’ demands. On the other hand, these candidate paths are generated by taxi driver’s
experience, as we mentioned above. But there still are some disadvantages of these
candidate paths. Although the taxi drivers have their experience paths in mind to take
passengers to their destination, their “experience shortest paths” may be not the optimal
paths in current traffic status. Besides, when taxi drivers were driving their cars, they
did not understand the traffic events or congestion links were happening on their
experience paths during their trips (seldom of taxi drivers were hearing the traffic
reports on radio). Thus, using the statistic process to generate some candidate paths on
their experience paths still needs to optimize these paths with current traffic status (such
as real-time events or link traffic levels). In this section, the optimized procedure in our
designed knowledge based TTP expert system will be described. The concept of our
TTP expert system is shown in Figure 18. Inthis Figure, the input data are OD pair with
time, and output data is -I'TP'with suggested-paths. The inference engine will use
knowledge classes of ID patterns and STP-with some auxiliary documents, such as road
geometry (length of road sections), meta-rule, default patterns, candidate paths and

external real-time events, to compute the real-time and historical travel time.
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Figure 18. Inference Engine of TTP Expert System
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The procedure of knowledge based TTP expert system is shown in Figure 19. At
first, the expert system uses the given OD pair with current time to search the candidate
paths, and decomposes these paths to links in order to calculate travel time in each
different traffic levels. Then, inference engine of expert system triggers knowledge
classes of STP to know the historical traffic level of each links. If link has no
corresponding STP, default patterns will be used as the link speed. Later, system uses
road geometry document to know each link’s length for computing the historical travel
time (divided average link speed). After historical travel time process, the real-time
travel time process computes the average speed of each link using the real-time traffic
spot schema and collected datasets. Thereafter, system can dynamically set up o and 3
variables using meta-rules with real-time events and calculate final TTP results for each
candidate path. The verification process with-OD pairs in dotted line is used for turning
robust variables (such as ., 3 and certainly factors of travel time rules) by journey
table’s travel time slots. This vetification proceés has been done during the simulated

period.
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Figure 19. Procedure of Travel Time Prediction
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Chapter 5 Experiment

5.1. System Architecture

The TTP prototype system was implemented based on a real-time LBS: taxi
dispatching system (TDS) [12]. The TDS is an online 7*24 system operated in Taipei
urban area, and the current fleet size is about 1000 taxis, where the OBU installed on the
taxi can report its current status periodically (30 sec), or when some events occur. The
events may include spatial trigger event, dispatch/response event, customer on/off taxi
events, etc. By translating the OBU reports to TISs, currently the TDS raw data could be
half a million TISs per day, and becomes a good data source for this prototype TTP
system. At the data collecting and, clearing phase, the OBU report raw data has been
collected and translated to TIS in asperied of 5 minutes in order to catch the real-time
traffic information, and all:‘the TISs are filtered out except the OBU being in ‘dispatch’
or ‘occupied’ state since the traffic’information extracted from these two states is
meaningful. Besides, the OBU report will be filtered out if the location of its TIS is not
in the interested links (links in Figure 6). Historical traffic information consisted of
journey sets, which are parsed from the raw data by combining the GIS road network. A
journey is a tour with explicit origin and destination, and consists of several TISs
between origin and destination. For example, ‘dispatch’ state journey starts from the
dispatch location to the customer’s location, and ‘occupied’ state journey starts from the

customer’s location to customer’s destination.
As shown in Figure 6, the target area of this prototype system focuses on arterial

roads in Taipei urban area, and each arterial road may have one or several links. Link

attributes are defined and default values are given by domain experts in order to
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facilitate link travel time estimation including category, length, direction, speed limit,
average signal delays, and geographical coordinate’s vectors. At the traffic patterns
mining Phase (Phase II), traffic level (1-9) is classified by aggregating the TISs at
temporal and spatial domain and normalized by two link attributes: category, speed

limit.

The TTP prototype system was implemented by the expert system shell, DRAMA
[5], a NORM (New Object-oriented Rule Model) [13] knowledge modeled rule base
system platform implemented using pure Java language, includes Drama Server,
Console, Knowledge Extractor, and Rule Editor. TTP rules generated from the Phase I1I
and meta-rules extracted from traffic experts are categorized to several knowledge
classes. Each functional module in Figure 20.is completed by one or more KCs. In the
prototype system, the relations of NORM: are used to represent the interaction of

different knowledge classes of DDoS intrusion tolerance.

In order to raise the precision of the TTP system, a real-time traffic information
database, e-IOT [6], is connected as an external data source. E-IOT is a centralized
real-time traffic information database including the data of traffic block, traffic jam,
construction, signal break, disaster, and accident provided by institute of traffic of
Taiwan government. The external traffic information is used as a trigger input for
meta-rules, which dynamically tunes the weighted combination of real-time and
historical link TTP. The essence of the weight tuning meta-rules can be induced in two
principles: meta-rules raise the ratio (o) of real-time TTP when a real-time traffic event
is happening at some links, and return to the origin ratio when the event has been

relieved.
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System prototype is demonstrated in Figure 20, which shows two parts of system
internal process and external resources. In external resources, probing vehicles collect
traffic information dataset and transmit to LBS server via GPRS network. Generation of
our TTP application server with some table schemas in data preprocessing was
mentioned before Phase I. Then, after TPMS process, we refer the DRAMA
specification to transform our knowledge classes (STP and ID patterns) into XML file.
Also, the external resources of e-IOT server continue to report the real-time traffic
events. The user interface of system internal process is implemented by Tomcat web
server and JSP language to build our TTP web service. Users can input OD pairs and

numbers of suggested paths (K) and system will output the suggested paths with TTP.
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Figure 20. System Prototype of TTP
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5.2. Experiment Results

We collect five months (from 2006/02 to 2006/06) LBS raw data for the
experiment, the data of first four months is used for mining the traffic patterns (STP and
ID patterns) and the fifth month is used for testing the TTP. In the experiment, three
predictors: current-time predictor, traffic pattern predictor and weighted combination
predictor had been implemented. Current time predictor makes TTP by summing up the
current speed on the links of the candidate path and the related intersection delays.
Traffic pattern predictor predicts travel time by reasoning the historical traffic patterns
(STP, ID) only. Two performance indices: relative mean errors (RME) and root mean

squared errors (RMSE) are applied for comparing these predictors and listed as

equations (8) and (9), whete n issthe.number of prediction, Xi and Xi present the
travel time and prediction-time, respectively. The last of linear combination predictor
use the meta-rules to dynamically ‘adjust o -and P variables with real-time events

consideration, as mentioned before.

1 & X =X
RME =— AT (8
nZ} X (®)
1 &X =X
RMSE—\/— i i‘ ..(9)
n=| X

In the experiment results, we design two different categories (workday and holiday)
of traffic patterns for predicting the real-time travel time, and then show the integrated

experiment results at last.
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In the TTP of workday traffic, we random took some experiments of different OD
pairs at 8AM and 7PM (peak hours) on June 15th, 2006 (Sunny), and then we calculated
the error values with each predictors. The experiment results show the weight

combination predictor has the lowest RME and RMSE values in Table 2.

Table 2. RME and RMSE of Different Predictors on Workday

Traffic pattern Current time Weight combination
predictor predictor predictor

RME 20.5% 13% 10.8%

RMSE | 24.82% 18.13% 15.92%

In the TTP of Holiday traffic, we also random took some experiments of different
OD pairs at 8AM on June 18th,:2006 (Sufiny). The experiment results show the weight
combination predictor has the lowest RME™and RMSE values in Table 3, too.
Additionally, the RME and RMSE wvalues of Holiday are greater than Workday is
because the collected real-time traffic data (TIS) is fewer or no TIS data on the target
spatial (links) and temporal (time index) granularities. Besides, the traffic status in
holiday is better than workday to lead fewer probing vehicles of taxi fleet to uplink TIS
data for doing our real-time TTP experiments. Although the error values are seemed
higher in Table 3, the inaccuracy minutes with comparison data are less than 5 minutes

in acceptable time [4].

Table 3. RME and RMSE of Different Predictors on Holiday

Traffic pattern Current time Weight combination
predictor predictor predictor

RME 29.6% 21% 20%

RMSE | 35.78% 32.21% 30.55%
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At last, the integrated experiment results are calculated in RME and RMSE values

with three different predictors, as shown in Table 4.

Table 4. RME and RMSE of Different Predictors with Real-Time TTP

Traffic pattern Current time Weight combination
predictor predictor predictor

RME 23.55% 15.73% 13.9%

RMSE | 28.94% 23.8% 21.9%
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Chapter 6 Conclusion and Future Work

Travel time prediction for urban network is a hard and complicated task so that it is
regarded as theoretically feasible but difficult to accomplish using traditional models.
Knowledge based TTP model proposed in this thesis has demonstrated that TTP for
urban network could be achieved by utilizing the LBS application data. The data mining
technique is used to discover some traffic patterns for building some knowledge classes
and expertise with human expert, and then formalize a TTP equation in complex Taipei
urban traffic network. Real-time external traffic data sources and meta-rules mechanism
dynamically tunes the combination ratio of real-time and historical travel time
predictors promote the precision one step further. The result of experiments shows that

TTP in urban network can bgrachieyediin-tolerable range.

In the experiment, we-found thatlink granularity might be a problem in system
implementation. We choose section in airoad as our link granularity, which may contain
several crosses with other streets. Greater link choice reduces the complexity of road

network but loses the precision comparing with small link choice.

In the implemented prototype system, we categorized the temporal domain as
“holiday”, “weekday”, “rush hour”, and “normal hour”. The granularity of this
categorization seems too simple to make advance traffic status analyzing. In the near
future work, we may focus on finding more historical traffic patterns to make the
historical TTP more precisely, such as after a long vocation days or Monday after
Sunday, etc. [1, 2] Besides, in order to make our historical TTP more robust, the Kalman

Filter technique can help to regress the TTP with previous travel time for promoting our
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historical TTP part more smoothly.

In real-time TTP issue, the consideration of the real-time events is important for
our TTP results, but how can we estimate the impact on real-time TTP? For example,
how long the vehicles will be delayed when there is a traffic accident on the candidate
path? Or, how a heavy rainfall affects our real-time TTP? The Case Base Reasoning
(CBR) might solve this problem. We can analyze historical traffic events in the past to
realize the average traffic speed and the recovery time slot, then record it to our CBR

database for measuring our real-time TTP in advanced.

In further research of this thesis, CSTR and CSSTP can be utilized for other topics,
such as routing problem. This:thesis dealsthe routing problem with statistic method to
find the taxi driver’s candidate paths, but sometime these paths may not be the best
solutions according to the current traffic status (The candidate paths were calculated in
past traffic time or there maybe exist some disguisedly optimal paths).The CSTR,
CSSTP or other designed traffic patterns can be used to solve the routing problem in
order to generate suggested-best paths by considering real-time events and traffic status

in the future.
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