SN2 T2

Attack Session Extraction and Replay from Real Traffic

Moy o2 REsS

hERE HPE %

RFERKEB L+A FXA

Attack Session Extraction and Replay from Real Traffic

MoyoA T RES Student : Chi-Chung Luo
Ry kel Advisor : Dr. Ying-Dar Lin
B = = i = %‘f
A S S R S

A -

AThesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science
June 2006
Hsinchu, Taiwan, Republic of China

PERRA LT ES

2

KERerRE? Sradgafint

g4 ¥4 hEERE: Hhpd

SRR S LRI

S3EEU Plena B §_ G % ¢hIRcnfeirinE 4 AR - Bk AanE - JRIFE
ERECKPF FALE FIRF o ARa SRR T R A M bRk
Yorpdd gl FH ¥ P avsE SRR BRSO T AP R 2 F

Ferc ORGP R BiBLCER L 0 B R Nt S ko

BT AE LR - BRI R AT L BB F BRI

T

£ RAFRe R E A N E R R E R HE P BER
FARR BB A B A RIS - BB DSM - RA o - B
ESCET R G T 5B kiR A - BRI F il Fp o A

FEEESITRECRY D S 2B LB FZ BEHHI M F AW

BRI A5 B kg o BRI R kST eh 83Y%
I FE XA AR ER i MRt B 5 T F
{?%%ﬁ%iﬁfﬁ%ﬁﬁ°éﬁﬁ&ﬁﬁﬁﬁ»ipf%ﬂ?u

EBo R RS A e P A B s R

MAED: BRE > BB REIE AR EE N G A AW

Attack Session Extraction and Replay from Real Traffic

Student: Chi-Chung Luo Advisor: Dr. Ying-Dar Lin

Department of Computer and Information Science

National Chiao Tung University

Abstract

The tools of vulnerability assessment (VA) can be used to check the system
security. One kind of the VA tools is using the network traffic to request the system
service and waiting the response of the service. By the response of the service, the VA
tool can find out the vulnerability.of the system.. However, this tool can not actualy
find out the vulnerability of the:system because the tool can not check the vulnerability
of the system is destruct or not. Therefore, we need to use the real attacks to test the
system vulnerability. In fact, the real attacks are difficult to collect. Therefore, this
work proposes an attack session extraction system. The attack session extraction system
has the three key points. First, the attack session extraction system is replaying the
recorded traffic to IDP products to get alarm logs. Second, the attack session extraction
system found out the critical packet that the IDP products make alarm by the alarm logs.
The first and second key points of the attack session extraction system can find out the
packets that have the same network characteristic and merge to a set as a connection of
network attacks. However, a network attack maybe have many attackers or single
attacker but multi connections. Therefore, this work analyzed the attacks and designed
the third key point. The third key point is using the packet payload similarity to find out

the attacks that have the multi attackers. The 83% of the extracted attacks have low

variation. The 71% of the low variation attacks can be verified as completeness and
purity. By the help of attack session extraction, this work can extract the complete
attacks and also use the extracted attacks to compare the different between the VA tools

and real attacks.

Index Terms. Network Security, Vulnerability Assessment, Network Attacks, Session
Extraction, Payload Similarity

Acknowledgement

Many people have helped me with this thesis. | deeply appreciate my thesis
advisor, Dr Ying Dar Lin, for hisintensive advice and instruction. | would like to thank
all the classmates in High Speed Networks Laboratory for their invaluable assistance
and suggestions.

Finaly, | thank my Father and Mother for their endless love and support.

Contents

Abstract (in Chinese) i
Abstract (in English) I
Acknowledgements \
Contents vi
List of Figures viii
List of Tables iX
1. INTRODUCTION. ctitttiitiiiiiiiieiiniiietintintessssstonsssssiisssssssssssonsssssanss 1
2. BACKGROUNDL.. .ctiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiitetesisetassnssans 4
2.1 Vulnerability Assessment toolS. . i iifia, ..o 4
2.2 Nessus. port-based security scanner and emulated attacks...................... 4
2.3 IDPPrOdUCES ..o et e e e 5
2.4 Trafficrecord and replay tools cccv i 6
25 Attack identifiersand attaCk typescovivviiiii 6
3. SESSION EXTRACTION SYSTEM..uiiuiiiiiiiiiiiiiiiiiiiiiiiiieiiieiieiineenn.. 8
3.1 OVERVIEW. .ttt et 8
3.2 Extract attack sessions from recorded traffic............c.coooiiiiiiiiiii, 8
3.3 Analysis of the difference between Nessus traffic and real attacks........... 13
3.4 Theexample of the session extraction system.................cooeviiiinenin, 15
4. EVALUATION AND DISCUSSION.......ccoceeierrreeeiecireeennee, 17
4.1 Theresult of SeSSION EXEractiono.iviuiiiiiiiiiiiiie, 17
4.2 Variation, completenessand purity...........cooviiiiiiiiiiiiiie e, 20
4.3 Anadysis of the difference between Nessus traffic and thereal attacks........ 25
5. CONCLUTIONAND FUTURE WORK .cuiiiiiiiiiiiiiiiiiiiiiiiiiiieineenene. 27

Vi

REFERENCES.....cu e e e e e e s, 28

Vi

List of Figures

Figure 1.
Figure 2.

Figure 3.

Figure 4.
Figure 5.
Figure 6.
Figure7.
Figure 8.
Figure 9.

Figure 10.

Coverage of Nessus attacks and real traffic attacks. 2
The flowchart of the session extraction algorithm.cccccueeeee. 14

Replay traffic to the IDP products and mark attack packets in the

aarmlogtable.... ... 16
Thefrequency of thel5attacks.cooiiiiiii i, 19

Thefilesizesof thel5attacks.cocoviiiiiiii 19

The variation of extracted attacks, 21
The different sizes of attackslessthan3 ...l 22
The different sizes of attacksequal t0 0ciiiiin 22
The different sizes of attackslargethan 3. 23
Thereal attacks Vis NessUSTraffic. .o lu.......ooviveiiiiiiiiii, 25

viii

List of Tables

Table 1. Threetypes of attack definitions. ... 7
Table 2. The definition of the components in session extraction algorithm ...9

Table 3. The 15 attacks detected by the IDP product, Snort..................... 18

Chapter 1

| ntroduction

Vulnerability Assessment (VA), an important technology to detect deficiencies of
products and systems, can check whether a system is robust to malicious attacks. A VA
tool should know attack definitions to examine the vulnerability of a system. Among
VA tools, Nessus (http://mww.nessus.org) is popular because of its rich database of
attack definitions. Having the attack definitions, Nessus can point out possible security
breaches by playing partial attacks to the systems under test. The partial attacks
emulated by Nessus are helpful to detect the deficiencies of products and systems
without harming them. In other words, Nessus can only indicate possible security
breaches but does not know whether they are harmful. A complete episode of rea
attacks is mandatory to test whether a system can be harmed. However, the real attacks
are very difficult to collect. Therefore; this work: proposes a way of the attacks
collection by extracting the recorded real attacksfrem the real traffic.

Extracting a complete episode of attacks from an overwhelmingly large amount of
recorded traffic is non-trivial. For this goal, rea traffic is recorded and then replayed to
the intrusion detection and prevention (IDP) products to extract the complete episode of
attacks. Such an approach to record traffic and send it to IDP products has been used for
evaluation of the performance of the IDP[1], [2]. The IDP products indicate the signs
of detected attacks on its logging system, but do not record the attack traffic. This work
designs a method to extract attacks according to the logs of IDP products. This method
records real traffic and then extracts attacks by associating packets via logs with
connections and then with sessions. This session extraction system therefore can extract
the desired complete episode of attacks.

Moreover, the association between the extracted real attacks through IDP and the

emulated attacks from Nessus deserves further study. By understanding the difference
of the real attacks and Nessus traffic, the newly extracted attacks could be possibly
inserted into Nessus as new plug-ins in the database to enhance the capability of
Nessus.

This work defines two sets of attack definitions. One is the attacks extracted from
the IDP products, and the other is the collected attacks in Nessus. Both attack
definitions are to be studied before the association between them is understood. First,
whether the attacks covered in Nessus can be detected by the IDP products are
unknown. Therefore, we conduct Nessus to send attacks to the IDP products to watch
the detection by the IDP products. Second, the recorded traffic can be replayed to the
IDP products to see how many rea attacks can be detected. We can then build up a set
of real attacks that can be detected.by the IDP products. Therefore, the coverage of both
types of attacks could be derived. Because the Nessus attacks are only partial attacks,
the proposed extraction method .compares-both-Nessus attacks and complete real attacks
detected by the IDP products to find out. their difference. The new attacks that Nessus

does not have can be inserted into it.

D
Real wraffic

attacks

[] Feal sttacks

fin] Esxdracted veal
attacks

Hessus attacks

Figure 1. Coverage of Nessus attacks and real traffic attacks

In Fig. 1, D isthe set of al types of attacks in real traffic. C is the set of types of

attacks identified by existing IDP products. A is al the types of attacks in Nessus.

2

Therefore, C-A (or C-B) is the set of types of attacks newly found from rea traffic,
where B is the intersection of A and C, to be added, if extractable, into the Nessus
database. Although some attacks might not be detected by existing IDP products, i.e.
D-C, such a method at least guarantees that the Nessus database includes all attacks
known by existing IDP products.

The rest of this paper is organized as follows. Section 2 presents the background
and related works. Section 3 describes the session extraction system. Section 4 presents

the experimental results. Finally, Section 5 summarizes the key resullts.

Chapter 2

Background

This section justifies the need to extract real attacks from the network traffic.
Some tools and studies are introduced herein.
2.1 Vulnerability Assessment tools

VA tools can detect the system vulnerability in a number of ways. For example,
VA tools can be installed on a host to detect the vulnerability by checking the system
configuration and status. A well-known open-source security tool, Tiger
(http:/immw.nongnu.org/tiger), is such a kind. Besides, VA tools can aso detect the
vulnerability externally. Nessus, a port-based security scanner, uses techniques such as
port scanning and attack emulationto-detect: vulnerability. Nessus is useful when
installing a VA tool on the system to be detected ts not feasible. For example, most
network security products do nat allow installing third-party tools on their systems.
2.2 Nessus:. port-based security scanner and emulated attacks

Nessus is a port-based security scanner, which means that Nessus scans the
TCP/UDP ports of the target system before detecting the vulnerability. Nessus records
the opened ports and sends emulated attacks through them to detect the vulnerability of
the target system. The emulated attacks are not destructive, i.e., they will not harm the
target system. Nessus collects already known attacks into its plug-in database without
the harming part. Nessus aso adds some detection content (to test the system
vulnerability) into their traffic and then wait the response from the target system. In
other words, Nessus uses three steps to detect the vulnerability. The first step is
scanning the target ports and recording the opened ports. The second step is sending the
emulated attacks. Finally, Nessus receives the vulnerability report. The emulated

attacks in Nessus are different from rea attacks because the Nessus traffic includes the

detection part and the report part but excludes the harm part.

Although Nessus can find out the vulnerability, it does not mean the target system
could get hurt by real attacks. Some systems may patch the vulnerability or use devices
like firewalls to protect the system security. The vulnerability may still exist under the
protection of firewalls or patches. Nessus can only indicate possible security breaches
but does not know whether a real attack will harm or not. For this reason, rea attacks
are needed to verify the system security accurately.

2.3 DP products

Extracting a complete episode of attacks is non-trivial. Two problems exist with
the attack extraction. The first one is the attacks definition. This work does not intend to
define an attack because it is a well-known skill and it also takes adequate human
works. In this work, we replay thereal traffic to existing IDP products individually and
identify attacks by the log of these IDP products. The second problem is how to extract
multi-connection attacks. An attack:session-may involve multiple connections. It is
challenging to extract an attack session.from.ahuge traffic trace. Besides, we aso need
to define an attack session and extract it. Therefore, this work designs a method to
extract attacks through the logs of IDP products. For this design, real traffic is recorded
by Tcpdump and then replayed by Tcpreplay to the IDP to extract the compl ete episode
of attacks.

However, each IDP product has its own signature set, false positive rate, log style
and darm level. The different signature sets effect the number of the detected attacks.
The different false positive rates effect the correction of the detected attacks. The
different log styles and alarm levels affect the types of the detected attacks because the
same attack maybe has different names. This work needs to extract attacks as possible
as we can, therefore, more than one IDP is needed to get the complete attack and

avoided the incorrect detect. Beside, we design a method to associate the different log

5

styles and alarm levels of each IDP products. The section 2.5 will describe the detall
content.

Therefore, the set of C in Figure 1 (C is the set of types of attacks identified by

existing IDP products) can be consider asC=UCi , where {C, |i =1,...... N},

i=1

assuming we have N IDP products. The one goal of this work is extracting the union of
the detected attacks by IDP products.

2.4 Trafficrecord and replay tools

Tepdump(http: //mwww.tcpdump.org)and Tcpreplay (http://tcpreplay.sourceforge.net)
are used in this work. Both Tcpdump and Tcpreplay are famous open-source tools.
Tcpdump can record network traffic ordered by timestamp over important routes or
backbone networks. The recorded traffic.is stored in a file of PACP format. Tcpreplay
can play the recorded traffic packet by packet-according to their timestamps. Tcpreplay
can also send packets at specified speed to the target system. They both can help this
work to extract attacks by recording and replaying packets to the IDP products.

2.5 Attack identifiers and attack types

The association between the extracted real attacks and the Nessus plug-in(s) is one
of our research goals. Newly found attacks can be possibly added into the Nessus
database. The CVE (http://cve.mitre.or/) attack identifier here is used to make
association between the extracted real attacks and the Nessus plug-in(s). CVE
(Common Vulnerabilities and Exposures) is a list of security vulnerabilities and
exposures that provides common names for publicly known problems. Its goal is to
make it easier to share data across separate vulnerability capabilities (tools, repositories,
and services) with this "common enumeration™. The organization of CVE studies new
attacks and defines the attack identifiers and descriptions. The Nessus traffic has the

CVE attack identifiers and the IDP products often have, too. The CVE attack identifier

can be used to check whether an attack belongs to the Nessus plug-in database or not.

This work collects 83 attacks as the samples for the extraction system. These

attacks can be divided into three types according to the number of attackers and the

number of connections per attack, as presented in Table 1. We assume only one target is

in each attack. An attack of the first type involves one attacker and a single connection.

An example is the MySQL Authentication Bypass Exploit. This attack can login in a

MySQL database without the password. An attack of the second type involves one

attacker and more than one connection. An example is the Blaster worm, which

establishes three connections when it tries to attack atarget. An attack of the third type

involves multiple attackers and a single connection from each attacker. A DDoS attack

belongs to thistype. This observation is helpful to build an extraction system [3], [4].

Table 1. Threetypes of attack definitions

Number of attackers | Number-of connections per Example
attack
1 1 MySQL Authentication Bypass Exploit
1 N Blaster worm
N 1 DDoS

Chapter 3

The Session Extraction System

The proposed session extraction system includes logs and traffic analysis. This
system has two parts. The first part is an agorithm to extract sessions from the attack
traffic. The second part is the analysis of the difference between Nessus traffic and the
real attacks.

3.1 Overview

There are two goals in this work. First, because the partial attacks emulated by
Nessus can only indicate possible security breaches but does not know whether a real
attack will harm or not, this work proposes to extract the complete episode of attacks to
make sure the system vulnerability, £or thisgoal, the rea traffic is recorded and then
replayed to the IDP products to extract the complete episode of attacks. Trivialy, the
logs of the IDP products can help this work to find out the connection of the detected
attacks. However, the attack may ‘have the multiple-connections. All related connections
of the attack can not be al extracted by the logs of the IDP products because the IDP
products only alarm and log the most important connection. Therefore, this work
proposes an agorithm to extract multi connections from the attack traffic. We named
the multi connections extraction a gorithm as the session extraction algorithm.

The new attacks that Nessus does not have can be inserted into Nessus is the
second goal of this work. Also, this work can add or replace the attacks that Nessus
plug-in database already has, depending on whether a complete episode is needed.
Therefore, the association between the extracted real attacks from IDP and the emulated
attacks from Nessus is needed to understand. This work proposes a method to analyze
the difference between Nessus traffic and the real attacks extracted.

3.2 Extract attack sessions from recorded tr affic

One god of this work is to extract a complete episode of attacks from a large
amount of traffic. The session extraction algorithm is a three-pass algorithm designed
for this goal by associating packets, connections and sessions to extract attack sessions.
Before the description of the session extraction agorithm, Table 2 shows the definition
of the components in session extraction algorithm. The algorithm consists of five steps
as follows. Step (i), (ii), (iii) and (v) are trivial works while the step (iv) is the essence
of thiswork.

Table 2. The definition of the componentsin session extraction algorithm

Names Descriptions
Sp Source |P address
Sport Source Port number
D, Distance |P address
Dot Distance Port number
Tcp/Udp The TCP packet or UDP flag
Payload The content of the packet
P A TCP or UDP packet in the |P network.
Tuple(P) Thefive-tuple of a packet
A The anchor packet of the attack
_ The data structure that store the packets
PDA (Possible DoS Attacks)
could be the DoS attacks
_ The data structure that store the packets
PNDA (Possible Not DoS attacks)
could be not the DoS attacks

(i) Replay real traffic to IDP products by Tcpreplay.

This agorithm uses the domain knowledge of IDP products, including the
well-known Open Source tool, Snort [5]. A IDP product illustrate what attacks have

happened with its logs.

(if) Find out anchor packets by the first-pass scan.

This step finds out anchor packets, the critical packets that IDP products alarm
when receiving them. There are two tables used herein. One is the aarm log table ,
which records the alarms of attacks from the replay of attack traffic. The other is the
replay log table, which records the time when Tcpreplay replays each packet.(The
timestamps from the replay log table are used to mark the attack types by looking for
the relation from the alarm log table. The replay log table is then compared with the
alarm log table to identify the attack packets.)

Time synchronization could be a problem between the replay system and the IDP
products. Even if the time has been synchronized, IDP products may not log the times
accurately. Therefore, the five-tuple information is used herein. Many IDP products also
log the five-tuple information of an attack (some.may record fewer than five tuples).
The five-tuple information and-the timestamp _from the alarm log table and the replay
log table can locate the anchor packetsin-thereal traffic.

(iii) Find out the association among attack packets within the same connection by the
second-pass scan.

This step discovers the anchor connection by looking for the relation of the
recorded packets with the anchor packets. If the packets have common five tuples with
the anchor packet, they belong to the same connection.

(iv) Find out the association among attack connections within the same session by the
third-pass scan.

The attack connections can be associated with their session. The association may
be difficult since the relation among the connections is obscure. Because the attacks
have more than one connection, only five tuples and timestamp are insufficient to find
out the other connections. The obscurest relation among the connections is the attack of

multiple attackers and a single connection from each attacker because the five tuples of

10

the packets from these attackers are different. A common attack of this type is the
DDoS or DoS attack. These two types of attacks overwhelm a server to deny its
capability of providing services. From our observation, such an attack often has only
the TCP ACK or SYN message, as well as a number of packets with the same data
payload. The session extraction algorithm is designed based on the above observation.
The algorithm parses the recorded traffic packet by packet and extracts an attack
session by analyzing the attack types.

After anchor packets of an attack have been found, the algorithm checks each
following packet to see if its source IP address or destination IP address is identical to
the target IP address of the anchor packet. If not, the packet will be classified to other
type of attacks. If the packet belongs to this attack, the algorithm will compare each
packet’s payload for similarity. The agorithm duplicates a copy in the possible DDoS
attack buffer and increases the packet count by one if the similarity is high. The
similarity is defined according to thellongest-common subsequence (LCS) of two packet
payloads [6]. Formally, given a sequence X'=(X,,X,,...,X,), another sequence
Z :(il,iz,...,ik) is a subsequence of X if there exists a strictly increasing sequence
(iy,ip,...,i,) oOf indices of X. given two sequences X and Y, we say that asequence Z is a
common subsequence of X and Y if Z is a subsequence of both X and Y. The longest
common subsequence is the longest subsequence of the al common subsequence.
Consider the payloads of two packets as two sequences of bytes, S; and $. The LCS of
S and S, LCS (S, &), isthe longest sequence of bytes that are subsequences of S; and

S. The similarity is defined by the equation

2x|LCS(S,S,)

*100%. (1)
S/ +[S,|

Similarity(S,, S,)=

The similarity threshold is 80% in the proposed algorithm because the packets we

collected in the DDoS or DoS attacks are often the minimum Ethernet packets of 64

11

bytes. Excluding 14-byte MAC header, 20-bytes IP header, 20-bytes TCP header and
4-byte checksum, the payload is only 6 bytes long. From our observation, the packet
payloads of the DDoS or DoS attacks we collected are often the same, and the
difference is only one byte if the payloads are different. The similarity in this case is
83.33%, so the similarity threshold is set to 80%.

After identifying similar packets, the session extraction algorithm watches the
source IP address and the destination |IP address at the same time. The step keeps only
the packets that come from the attacker and go to the target and those in the opposite
direction. The others are simply dropped. This step intends to distinguish the attacks
that possibly have one attacker from those that are possibly DDoS attacks.

The agorithm continues to watch the next packet until the end. The agorithm
returns the packet count in the possible DDoS attack buffer. The attack might be a
DDoS attack if the count is larger than 200, and might be a 1-1 attack otherwise. Figure
2 shows the flowchart of the algorithm:

The algorithm can be written"as some formulas and pseudo code as follows. We
defined the packet P isthe set of five-tuple and payload. TheTuple(R) is the five-tuple
of the packet i, i >1. The anchor packet A isthe set of the five-tuple and payload that

the IDP products make alarm when they receiveit.

P={S,, Sy Dip» Dport» TCP/Udp, Payload} , (2

Tuple(R) = (S, (R), Syt (R), Dy (R), Dy (R), Tep/Udp(R)) 3)

Therefore, the session extraction problem turns into a problem to find out the set
of packets that have the high similarity of payload with anchor packet A or the same
source IP address and distance IP address with anchor packet A. Assume the x is the
sequence number of anchor packet in the al packets. The session extraction algorithm

can be described as follow.

12

The pseudo code of the session extraction algorithm

PDA = ¢; /] aset of packets, possiblethe DoSattack
PNDA = ¢; //aset of packets, possible not the DoSattack
DDos.packet_number = 0;
Given x,
A=PR,;
For all i{
if (Tuple(R).S,, =Tuple(P,).D,, [| Tuple(R).D,, = Tuple(P,).D,, X
if (Similarity(P..Payload, P,.Payload)> 80%){
PDA =PDAUR;
DDos.packet_number + +;
HI End of if
if ((Tuple(R).S, =Tuple(R,).S, & &Tuple(R).D,, = Tuple(R,).D,)) |
Tuple(R).S, = Tuple(P,).D;, & &Tuple(R,).D,, = Tuple(P,).S,)A
PNDA =PNDAUR;
I End of if
} /1 End of if
}H/end of for
if (DDos.packet_number > 200){
return PDA;
}else{
return PDNA,;
Hiend of if

(v) Replay the extracted attack session to IDP products to verify whether the same logs

are generated. If it istrue, the extraction isvalid.

Finally, we replay the extracted attack sessions to IDP products to verify the

correctness of the extraction. The extracted session must cause the same alarms as the

whole traffic was replayed to the same IDP product. If an IDP product cannot find the

attack, the extraction isinvalid.

3.3 Analysis of the difference between Nessus traffic and real attacks
The second part is to compare the extracted attack sessions with the attacks from

the Nessus plug-in database. The comparison depends on replaying both real traffic and

13

Nessusto IDP products in the following five steps.

(i) Use Tcpdump to record traffic at the backbone network.

(i)Replay the real traffic to each IDP product to obtain a set of
attacks,{C, |i =1,...... , N}, assuming we have N IDP products.

(iii) Replay the Nessus Plug-in traffic to each IDP product to generate another set of

attacks,{ A |i =1,...... ,N}.

Recorded

tratfic
(each packets)

similar(Packet.payload, Target:
payload) =80%

MNext packet |
- >

Yes
Yes
¥ ‘ P
No- Copy_packet()
Src.ip=Target ip || To
. Dstip=Target ip Possible Ddos
attacks
v
: Ddos.packet number++
No | o ap—=Attpcker ip && Dstyp=Turzet 13
No I -
stip—Atmcker ip && Sregp=—=Turzet
Yes
Copy packet()
w—-?o y Retumn
¥, ¥ =
Possible 1-1 Ne i)
attacks SRR
< Return
Yes{ Possible Ddus)
attacks -

Figure 2. The flowchart of the session extraction algorithm

Some IDP products mark the detected Nessus traffic as “Nessus attack”, but the

others do not. The mark is confusing because an attack may be marked different in

14

different IDP products. We solve this problem with the CVE identifier of Nessus traffic.
Each Nessus attack has its own CVE identifier, and the alarm log also marks the attacks
with the identifier. An attack can be identified from the CVE identifier if the mark is

confusing.
(iv) For every attack record in C-A, where C = UCi and A= U A , i.e. attacks which
i=1 i=1

are not in the Nessus Plug-in database, exercise the extraction algorithm to extract its
attack session.
(V) Those new attack sessions can be added into the Nessus plug-in database.

This work can also add or replace the attacks that already exist in Nessus plug-in
database. Nessus is a convenient tool for updating its database. Because a complete
episode of real attacks is necessary to detect the rea vulnerability of a system, both the
complete episode and the partial attack-of ‘an attack can be used arbitrarily for the
system vulnerability assessment, depending on whether a complete episode is needed.
3.4 The example of the session-extraction system

Fig. 3 presents the alarm log table that records the alarms of attacks during the
replay of attack traffic. We replay traffic from 13:23:52 to 13:26:12 to an IDP product,
and the IDP generates two alarms (buffer overflow and LSASS) into the log table.
Second, the anchor packet can be found by logs of the IDP product. As the Figure 3
shows, the anchor packet can be the 5™, 6" or 7" packet and we choose the 6™. If the
five-tuple of the packets are the same, the chosen packet has no difference. Third, the
five-tuple of anchor packet can be known. Fourth, each packet will be checked the
payload similarity and the IP address comparison by session extraction agorithm. If the
5" and 7" packets have different five-tuple, the session extraction agorithm will find
them. After the session extraction algorithm, the result is a recorded attack file. In this

example, the recorded attack file is the 5", 6™ and 7™ packets. Finally, the recorded

15

attack file can be replay to IDP product. The extracted session must cause the same

alarms as the whole traffic was replayed to the same IDP product. If an IDP product

cannot find the extracted attack, the extraction isinvalid.

Replayed packets

IEEHERE,

TcpReplay
Replay Log Table

Pkt | Sending Mark

I__'_E_)___Ti_r?‘_e ______________ IDP Product

E L B BoF IEI Alarm Log Table

- 2_ - |- 1‘2’-24_1_5 ----- BLQF- ——— Alarm StartTime | StopTime
3 13:24:35 L. Buffer 13:23:52 | 13:24:15
4 | 13:24:49 o

i_ _g_ o _iééébi _____ Lsass™ ~ 13:25:01 13:25:41

i 6 | 132516 LSAss

i 7 _|132541 ____tssss il Feedback alarms
8 13:26:01 for Marking
9 13:26:12

Figure 3. Replay traffic to the IDP products and mark attack packetsin the alarm log table

16

Chapter 4

Evaluation and Discussion

We used Tcpdump on a Linux PC to collect and record al traffic from the other 50
PCs in our lab during the period from 10/23/2005 to 10/29/2005. The 50 PCs belong to
the same subnet and have the same gateway to the outside. Therefore, we recorded the
traffic by mirroring al traffic through that gateway.

Three evaluations are designed for this work. First, the number of real attacks that
could be extracted by the session extraction system is evaluated. The evaluation also
looks for the mapping of the real attacks to the Nessus plug-in traffic. We use Tcpreplay
to replay the recorded traffic to the IDP product, Snort in this evaluation. The CVE
identifiers and Nessus identifiers are @so'used for the mapping.

Second, the completeness and purity of ‘the extracted attacks are evaluated. This
evaluation aso answers the variability of the session extraction system. For this
evaluation, we replay the recorded traffic and also play the Nessus traffic at the same
time.

Finally, the differences between Nessus traffic and the real attacks are evaluated.
For this evaluation, we chose a Nessus attack and a real attack with the same CVE
identifier, and observe their differences with Ethereal.

4.1 Theresult of session extraction

Table 3 presents the 15 attacks detected by the IDP product (Snort) from the
recorded traffic. They are ordered by the detection time. These attacks all have CVE
identifiers when they are detected by Snort.

4.1.1 The occurring percentage of the extracted result
Fig. 4 shows the occurring percentage of each attack in the recorded traffic. We

can see the famous worm of Worm.Win32.Slammer has high percentage. The Slammer

17

worm would be the highest occurring rate of the world during the 2005 to 2006. As
Figure 4 shows, the top 6 attacks had 74% of total frequency and the sum of the fewest

3 attacks only 3% of total. The top 1 attack has 16% of total. This result told us the

common attacks are the most part of the total attacks.

Table 3. The 15 attacks detected by the IDP product, Snort

Types Name Nessusid |[CVE id

DoS Apache.CGl.Byterange.Request.DoS no CVE-2005-2728
\Worm \Worm.Win32.Slammer 11214 |CVE-2002-0649
Windows (1-1) |IE.File.Download.Ext.Spoof no CVE-2002-0875
Dos(N-1) Smtp service logging NULL session 11308 CVE-2002-0054
SMTP(1-1) smtp_decoder: unknown emd 10885 CVE-2002-0055
RPC(1-1) RPC portmapper 10223 CVE-1999-0632
SMTP(1-1) Smtp unauthorized user 10703 CVE-2001-0504
General(1-1) 1S server HTR ISAPI filter mapped 10932 CAN-2002-0071
Dos(N-1) DoS. FrontPage server Extensions 11311 CAN-2002-0692
Backdoors(1-1) [Sasser Virus Detection 12219 CAN-2003-0533
General (1-1) Netbios-ssn 10394 CVE-2000-0222
Genera(1-1) |ICMPtimestamp request 10114 |CAN-1999-0524
General(1-1) Remote OS guess 11268 CAN-1999-0454
FTP(1-1) ftp: Overflow.CWD no CAN-2002-0126
DNS(1-1) FTP Serv-U 2.5e Dos 10488 CVE-200-0837

18

T

5%

39,2%3%

16%

13%

13%

a1
)
O3
04
M5
ds
W7
OR
LB
W10
011
a1z

Apache CGL Byterange Request. DoS

Worm Win3 2 Slammer

IE File. Diownload Ext. Spoof

smtp_decoder: nested_request

smtp_decoder: unknown_cmd

RPC portmapper

http_decoder: overlong_uri

tcp_reassembler: stealth activity

fip_decoder: nested_request

Sasser Virus Detection

Wy S0QL various flaws

Checlks the version of Apache

others

Figure 4 the frequency of the 15 attacks

12000
10000
B000
6000
430
2000

size(KB)

. I e I 1

I |’_V|l_|||_||r_|||_|||—||ﬂ|

1

2 3 4 5

& 7 8 9 10 11 12 13 14 15

types

Apache CGL Byterange Request. Do

Worm Win32 Slammer

IE.File. Download Ext. S8poof

smtp_decoder: nested_request

smtp_decoder: unknown_cmd

RPC portmapper

hitp_decoder: overlong_uri

tep_reassembler: stealth_activity

R T e B o N L I o By

fip_decoder: nested request

10| sasser Virus Detection

—
—

MyS0L various flaws

12| Checks the version of Apache

13| statp_decoder: syntax_error

14| fp: Overflow. CWD

15| dns_decoder: invalid_pointer

4.1.2 Thefilesize of the extracted result

Figure 5 thefile sizes of the 15 attacks

The definition of size is the file size of the extracted attack including all packet

headers and payloads. Figure 5 shows the file size of extracted attacks by session

extraction system. The x-axis is the 15 extracted attacks and order by the occurring

frequency. The largest size of those attacks is 9731 Kbytes. The smallest size of those

attacks is 491 Kbytes. However, the session extraction system just only excludes the

“must not” packets of the attack from real traffic and reserves the possible packets of

19

the attack at the same session form the real traffic. Therefore, the extracted attacks of
the same type maybe have different sizes at different dates. For example, a normal
HTTP request maybe extracted with HTTP attacks when the attacks and the request
happen at the same time between attacker and target. For this reason, we choose the
attack size equal to the size that the most times in our experiment. If the attacks are the
DDoS or DoS attacks we choose the attacks size by smallest size the IDP product can
detect. Next section will describe the variability of the session extraction system.

4.2 Variation, completeness and purity

4.2.1 Thevariation of the session extraction system

The definition of variation in this work is the complement of the probability of the
extracted attack’s mode value. The mode value is the most frequent value. Therefore,
the variation is defined by the equation

Variation(Attack;) = (1— P(mode(Attack,))) * 100%. 4)

In our experiment, the different. extracted-attack sizes for each attack when they
could classify as the same attacks come from.theresult of the comparing the attack size
with the size that the most frequent size. The low variation of the session extraction
system must be proved if we want to use the results of the session extraction system. In
this experiment, we replay 100 attacks and the common real traffic at the same time.
We mixed the 100 attacks with 10 different real traffics to observe the variation.
Therefore, there are total 10 results (the extracted attacks) of the each attack and the
total 1000 results by session extraction system.

Figure 7, 8 and 9 show the 3 case of the result that we extracted the attacks from
the real traffic. The x-axis is 10 extracted attacks of each attack. Figure 7 shows the
case one that is the different sizes of attacks less than 3. In this experiment, the 37% of
the 100 attacks were in case one. Figure 8 shows the case two that is different sizes of

attacks equal to 0. In this experiment, the 46% of the 100 attacks were in case two.

20

Figure 9 shows the case three that is the different sizes of attacks more than 3. In this
experiment, the 17% of the 100 attacks were in case three. Figure 6 shows the
accumulated number of the attacks of each variation by increasing. The 83% of the
extracted attacks is less than 30% variation. The 30% variation could be easy to choose
the attack size equal to the size that the most times in our experiment. But, there are also 17%
of the extracted attacks could be hard to choose the result of the experiment because they had

high variation.

120

100 0o

80
/ﬂ/’wr/
&)
&
40 /
20

0% 0% 20% 30% 40% 50% 60% 0% 80% 90%

variation(%)

attacks

Figure 6. The variation of extracted attacks

4.2.2 The completeness and purity of the session extraction system

By adding a new step in the experiment of variation, we can use to observer the
completeness and purity. The new step is only playing and recording the 100 attacks
without other traffic. therefore, we can get original attacks of the 100 attacks. In this
experiment, we compared the 10 results of each attack from the experiment of variation
with the original attacks.

The definition of completeness and purity are as following. If the size of the

extracted attacks is less than the original attack size, we will say the extracted attack is

21

not completeness. If the size of the extracted attacks more than the original attacks size,
we will say the extracted attack is not purity. If the size of the extracted attack equal to
the original attack size, we will compare the extracted attack with the original attack by
bits comparison. The bits comparison compares to the bits in the extracted attack file
and in the original attack file individually. If the extracted attacks are different with the

original attack, we will say the extracted attacks are not compl eteness and purity.

nessus attack 1

7000
6000
5000

% 4000

3 3000

2000

@ nessus attack 1

1000

Figure 7. Thed tacks lessthan 3

nessus attack 2
1200
1000
800

% 600

400

@ nessus attack 2|

200

1 2 3 4 5 6 7 8 9 10

times

Figure 8. The different sizes of attacks equal to O

22

nessus attack 3

35000

30000 —

25000

20000
O nessus attack 3|

15000

10000

5000 Dﬁ
— | \El\::u\l:l — | o I T

1 2 3 4 5 6 7 8 9 10

times

Figure 9. The different sizes of attacks large than 3

For this definition, we consider an attack as completeness and purity by sizes
comparison and bits comparison. However, because the different size between the
extracted attacks and the original, attack can: hot comparing the bits, we can not
definition the completeness if the size of-the extracted attack is large than the origina
atack size (they are not purity already). For this reason, we assumed they are
“Undefined”. We also assumed Some attacks can-'not define the purity for the same
reason.

By our definition, the total 370 attacks in the case one had 71% completeness (1%
not completeness by different size, 4% not completeness by comparing and 24% can
not define) and 71% purity (24% not purity by different size, 4% not purity by
comparing and 1% can not define). The total 460 attacks in the case two had 100%
completeness and 100% purity. The total 170 attacks in the case three had 12%
completeness (23% not completeness by different size, 29% not completeness by
comparing and 36% can not define) and 12% purity (36% not purity by different size,
29% not purity by comparing and 23% can not define).. Table 3 shows the comparing
of those three cases.

The completeness and purity of the case three was very interesting. By our

23

observation, the 170 attacks (the 17 different types mix with the 10 rea traffic) of the
case three had 15 DDoS or DoS attacks. The size of DDoS and Dos attacks are not
fixed. The 500 packets, 300 packets and 1000 packets of a DDoS or DoS attack al can
say they are the attack. Therefore, the 11" attack that we recorded by playing a DDoS
or DoS attack can not be a standard because the smaller or larger one also can be
considered as attack. For this reason, the completeness and purity are not good in case
three and the variability also because the same reason.

Table 4. The completeness and purity of the extracted attacks

(Variation) Completeness|Not Not Undefined

Number (Purity) Completeness|Compl eteness

of different (Purity) (Purity)

sizes by . different|by comparing

sizes

Completeness |O<Variation |262(71%) 4.(1%) 15 (4%) 89 (24%)
(Total 370) |=30%
Purity O<Varigtion (262 (71%) |89 (24%) |15 (4%) 4 (1%)
(Total 370) |=30%
Completeness |[Equal to 0 460 (100%) |0 (0%) 0 (0%) 0 (0%)
(Total 460)
Purity Equal to 0 460 (100%) |0 (0%) 0 (0%) 0 (0%)
(Total 460)
Completeness |Variation 20 (12%) 39 (23%) 50 (29%) 61 (36%)
(Total 170) [>40%
Purity Variation 20 (12%) 61 (36%) 50 (29%) 39 (23%)
(Total 170) [>40%

24

4.3 Analysis of the difference between Nessus traffic and the real
attacks

In this experiment, we also play the Nessus Plug-in traffic that can mapping to
those 15 attacks. Figure 10 shows the sizes of the nessus traffic and the real attacksin
the same attack, we only choose the largest 4 attacks to show their relation. We can see
the Nessus traffic have the fewer size. The Nessus Plug-in traffic often only has the
emulated attacks (sometimes they only have request of the service) and waiting the
response to know the existence of the vulnerability. Therefore, the size of the Nessus

Plug-in traffic is usually smaller than the real attacks.

nessus vs real attacks

12000

10000

8000 |

=
6000 & real attacks

size(KB)

B nessus

4000 -

2000

types

Figure 10 Theredl attacks v.s Nessus traffic

25

Chapter 5

Conclusions and Future Work

This work proposes a session extraction algorithm to extract a compl ete episode of
attacks from a large amount of real traffic. The extraction uses the three-pass scanning
to find out the anchor packet of an attack. It excludes the packets that do not belong to
an attack from the real traffic and reserves the possible packets of the attack in the same
session. Similarity between two packets is also defined to extract the attacks of DDoS
and DoS accurately.

In the evaluation of the session extraction system, 15 attacks can be extracted from
the real traffic in our lab. Six of the 15 attacks can be mapped to Nessus plug-ins. By
the session extraction system, we can extract, the Nessus plug-in traffic that had
mapping with the extracted attacks. In Section 4.1 and Section 4.3, the result of the
experiment told us the size of Nessus plug-in traffic often less than real attack, and the
Nessus Plug-in traffic often only“request the service and waiting the response. In this
work, we also prove the variation of our session extraction system is low. The 87% of
our extracted attacks had low variation. The lower variation of the extracted attacks also
had high completeness and purity. The variation of the extracted attacks less than 30%
had 87% completeness and purity. The variation of the extracted attacks equal to 0 had
100% completeness and purity. However, the higher variation of the extracted attacks
had low completeness and purity, but it is because the DDoS and DoS attacks had no
fixed size. This work also proved the Nessus Plug-in traffic is the smaller than the real
attacks. The Nessus Plug-in traffic requests the system service and waits the response of
the service. Therea attack not only requests the services but also destroy the system.

The future work is automatic inserting the new attacks into Nessus Plug-in. Also,

the Nessus Plug-in can add a new function that test a system by normal Nessus

26

detecting and real attacks detecting.

27

References

[1]

[2]

[3]

[4]

[S]

[6]

[7]

[8]

H. G Kayacik and A. N. Zincir-Heywood, “Using Intrusion Detection
Systems with a Firewall: Evaluation on DARPA 99 Dataset”, Project in
Dahousie University, [Onling].
Available:http://projects.cs.dal .ca/proj ectx/files/NIMS06-2003. pdf.

DARPA 99 Intrusion Detection Data Set Attack Documentation. [Onling].

Available: http://www.ll.mit.edu/I ST/ideval/docs/1999/attackDB.html.

Christoph L. Schuba, Ivan V. Krsul, Markus G. Kuhn, Eugene H. spafford,
Aurobindo Sundaram, Diego Zamboni, "Analysis of a Denial of Service
Attack on TCPR" sp, p. 0208, 1997 IEEE Symposium on Security and
Privacy, 1997.

Vern Paxson, “An analysis of usingreflectors for distributed denial-of-service
attacks” ACM SIGCOMM Computer Communication Review, 2001

Martin Roesch, “Network ‘Security: 'Snort - Lightweight Intrusion Detection
for Networks”, Proceedings of "the 13th USENIX conference on System
administration, November. 1999.

T. H. Coemen, C. E. Leiserson, R. L. Rivest, ”Introduction to Algorithms”,
pages 314-320, 1990.

T. Ye, D. Veitch, G lannaccone and S. Bhattacharyya, “Divide and Conquer:
PC-Based Packet Trace Replay at OC-48 Speeds”, IEEE TRIDENTCOM,
2005.

W. C. Feng, A. Godl, A. Bezzaz, W. C. Feng, and J. Walpole. “TCPivo: A
high-performance packet replay engine”. ACM S GCOMM Wbrkshop on
Models, Methods and Tools for Reproducible Network Research (MoMeTools),

Aug. 2003.

28

