
國立交通大學

資訊科學與工程研究所

碩 士 論 文

從真實網路流量中萃取與重製攻擊流量

Attack Session Extraction and Replay from Real Traffic

研 究 生：羅棨鐘

指導教授：林盈達 教授

中 華 民 國 九 十 五 年 六 月

2

從真實網路流量中萃取與重製攻擊流量

Attack Session Extraction and Replay from Real Traffic

研 究 生：羅棨鐘 Student：Chi-Chung Luo

指導教授：林盈達 Advisor：Dr. Ying-Dar Lin

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis
Submitted to Institute of Computer Science and Engineering

College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer Science

June 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年六月

i

從真實網路流量中萃取與重製攻擊流量

學生: 羅棨鐘 指導教授: 林盈達

國立交通大學資訊科學與工程研究所

摘要

一個系統是否安全通常會使用弱點偵測的工具來進行測試，有一類

弱點偵測的工具是使用外部的網路流量去詢問一個系統的某一服務是

否開啟來找尋系統是否有漏洞。然而這樣的測試並不能精準的抓出系

統的缺點，因其並非真知道系統漏洞可否破壞，因此我們想利用真實

的網路攻擊來測試系統的弱點。事實上，真實的網路攻擊並不容易收

集，因此本研究設計了一個攻擊流量的萃取系統。這個萃取攻擊流量

的系統主要有三個重點，第一，本系統利用播放錄製的流量到入侵探

測和防護系統來取得警示紀錄。第二，根據警示紀錄從真實流量中找

出令入侵探測和防護系統發出警示的最重要封包，藉由前兩個重點，

有相同網路特徵值的封包集合則稱為一個網路攻擊連線。然而，一個

網路攻擊可能會有多個來源，或者一個來源卻有多條連線，因此，本

研究經過分析觀察後設計了第三個重點。第三個重點是藉由內容相似

ii

度比對來找出多個來源的攻擊。透過萃取攻擊流量系統所取得的 83%

攻擊是不容易受外在影響而變化的，在低變化量攻擊中有 71%的攻擊

是可被驗証為完整且無雜質的。透過此系統的協助，本研究除了可以

萃取出完整無雜質的攻擊外，同時也透過這些被萃取的攻擊來比較與

弱點偵測的工具流量的差異性。

關鍵字: 網路安全、弱點偵測、網路攻擊、流量萃取、內容相似度比

對

iii

Attack Session Extraction and Replay from Real Traffic

Student: Chi-Chung Luo Advisor: Dr. Ying-Dar Lin

Department of Computer and Information Science

National Chiao Tung University

Abstract

The tools of vulnerability assessment (VA) can be used to check the system

security. One kind of the VA tools is using the network traffic to request the system

service and waiting the response of the service. By the response of the service, the VA

tool can find out the vulnerability of the system. However, this tool can not actually

find out the vulnerability of the system because the tool can not check the vulnerability

of the system is destruct or not. Therefore, we need to use the real attacks to test the

system vulnerability. In fact, the real attacks are difficult to collect. Therefore, this

work proposes an attack session extraction system. The attack session extraction system

has the three key points. First, the attack session extraction system is replaying the

recorded traffic to IDP products to get alarm logs. Second, the attack session extraction

system found out the critical packet that the IDP products make alarm by the alarm logs.

The first and second key points of the attack session extraction system can find out the

packets that have the same network characteristic and merge to a set as a connection of

network attacks. However, a network attack maybe have many attackers or single

attacker but multi connections. Therefore, this work analyzed the attacks and designed

the third key point. The third key point is using the packet payload similarity to find out

the attacks that have the multi attackers. The 83% of the extracted attacks have low

iv

variation. The 71% of the low variation attacks can be verified as completeness and

purity. By the help of attack session extraction, this work can extract the complete

attacks and also use the extracted attacks to compare the different between the VA tools

and real attacks.

Index Terms: Network Security, Vulnerability Assessment, Network Attacks, Session
Extraction, Payload Similarity

v

Acknowledgement

Many people have helped me with this thesis. I deeply appreciate my thesis

advisor, Dr Ying Dar Lin, for his intensive advice and instruction. I would like to thank

all the classmates in High Speed Networks Laboratory for their invaluable assistance

and suggestions.

Finally, I thank my Father and Mother for their endless love and support.

vi

Contents

Abstract (in Chinese) i

Abstract (in English) ii

Acknowledgements v

Contents vi

List of Figures viii

List of Tables ix

1. INTRODUCTION…………………………………………...………………….1

2. BACKGROUND………………………………………………………...………4

2.1 Vulnerability Assessment tools………………..……………….………...…4

2.2 Nessus: port-based security scanner and emulated attacks………………….4

2.3 IDP products …………………………………………………………….5

2.4 Traffic record and replay tools ……………………………………………6

2.5 Attack identifiers and attack types………………………………………….6

3. SESSION EXTRACTION SYSTEM………………………………………..….8

3.1 OVERVIEW…………………………………………………………………...8

3.2 Extract attack sessions from recorded traffic…………………………..…....8

3.3 Analysis of the difference between Nessus traffic and real attacks………..13

3.4 The example of the session extraction system………………………..…....15

4. EVALUATION AND DISCUSSION…………………………….....17

4.1 The result of session extraction…………………………………………….17

4.2 Variation, completeness and purity……..………………………………...…20

4.3 Analysis of the difference between Nessus traffic and the real attacks……..25

5. CONCLUTION AND FUTURE WORK ……………………………………...27

vii

REFERENCES…………………………………………………………………….....28

viii

List of Figures

Figure 1. Coverage of Nessus attacks and real traffic attacks.……...……...…2

Figure 2. The flowchart of the session extraction algorithm.14

Figure 3. Replay traffic to the IDP products and mark attack packets in the

alarm log table .………………...…………...……………...………16

Figure 4. The frequency of the 15 attacks .…………………………………..19

Figure 5. The file sizes of the 15 attacks.………………………….………....19

Figure 6. The variation of extracted attacks . .………………………………...21

Figure 7. The different sizes of attacks less than 3 .………………..……….22

Figure 8. The different sizes of attacks equal to 0 .………………..……….....22

Figure 9. The different sizes of attacks large than 3.………………..………..23

Figure 10. The real attacks v.s Nessus traffic.………………………….………....25

ix

List of Tables

Table 1. Three types of attack definitions.……..………..…………………..7

Table 2. The definition of the components in session extraction algorithm…9

Table 3. The 15 attacks detected by the IDP product, Snort…………………18

1

Chapter 1

Introduction

Vulnerability Assessment (VA), an important technology to detect deficiencies of

products and systems, can check whether a system is robust to malicious attacks. A VA

tool should know attack definitions to examine the vulnerability of a system. Among

VA tools, Nessus (http://www.nessus.org) is popular because of its rich database of

attack definitions. Having the attack definitions, Nessus can point out possible security

breaches by playing partial attacks to the systems under test. The partial attacks

emulated by Nessus are helpful to detect the deficiencies of products and systems

without harming them. In other words, Nessus can only indicate possible security

breaches but does not know whether they are harmful. A complete episode of real

attacks is mandatory to test whether a system can be harmed. However, the real attacks

are very difficult to collect. Therefore, this work proposes a way of the attacks

collection by extracting the recorded real attacks from the real traffic.

Extracting a complete episode of attacks from an overwhelmingly large amount of

recorded traffic is non-trivial. For this goal, real traffic is recorded and then replayed to

the intrusion detection and prevention (IDP) products to extract the complete episode of

attacks. Such an approach to record traffic and send it to IDP products has been used for

evaluation of the performance of the IDP [1], [2]. The IDP products indicate the signs

of detected attacks on its logging system, but do not record the attack traffic. This work

designs a method to extract attacks according to the logs of IDP products. This method

records real traffic and then extracts attacks by associating packets via logs with

connections and then with sessions. This session extraction system therefore can extract

the desired complete episode of attacks.

Moreover, the association between the extracted real attacks through IDP and the

2

emulated attacks from Nessus deserves further study. By understanding the difference

of the real attacks and Nessus traffic, the newly extracted attacks could be possibly

inserted into Nessus as new plug-ins in the database to enhance the capability of

Nessus.

This work defines two sets of attack definitions. One is the attacks extracted from

the IDP products, and the other is the collected attacks in Nessus. Both attack

definitions are to be studied before the association between them is understood. First,

whether the attacks covered in Nessus can be detected by the IDP products are

unknown. Therefore, we conduct Nessus to send attacks to the IDP products to watch

the detection by the IDP products. Second, the recorded traffic can be replayed to the

IDP products to see how many real attacks can be detected. We can then build up a set

of real attacks that can be detected by the IDP products. Therefore, the coverage of both

types of attacks could be derived. Because the Nessus attacks are only partial attacks,

the proposed extraction method compares both Nessus attacks and complete real attacks

detected by the IDP products to find out their difference. The new attacks that Nessus

does not have can be inserted into it.

Figure 1. Coverage of Nessus attacks and real traffic attacks

In Fig. 1, D is the set of all types of attacks in real traffic. C is the set of types of

attacks identified by existing IDP products. A is all the types of attacks in Nessus.

3

Therefore, C-A (or C-B) is the set of types of attacks newly found from real traffic,

where B is the intersection of A and C, to be added, if extractable, into the Nessus

database. Although some attacks might not be detected by existing IDP products, i.e.

D-C, such a method at least guarantees that the Nessus database includes all attacks

known by existing IDP products.

The rest of this paper is organized as follows. Section 2 presents the background

and related works. Section 3 describes the session extraction system. Section 4 presents

the experimental results. Finally, Section 5 summarizes the key results.

4

Chapter 2

Background

This section justifies the need to extract real attacks from the network traffic.

Some tools and studies are introduced herein.

2.1 Vulnerability Assessment tools

VA tools can detect the system vulnerability in a number of ways. For example,

VA tools can be installed on a host to detect the vulnerability by checking the system

configuration and status. A well-known open-source security tool, Tiger

(http://www.nongnu.org/tiger), is such a kind. Besides, VA tools can also detect the

vulnerability externally. Nessus, a port-based security scanner, uses techniques such as

port scanning and attack emulation to detect vulnerability. Nessus is useful when

installing a VA tool on the system to be detected is not feasible. For example, most

network security products do not allow installing third-party tools on their systems.

2.2 Nessus: port-based security scanner and emulated attacks

Nessus is a port-based security scanner, which means that Nessus scans the

TCP/UDP ports of the target system before detecting the vulnerability. Nessus records

the opened ports and sends emulated attacks through them to detect the vulnerability of

the target system. The emulated attacks are not destructive, i.e., they will not harm the

target system. Nessus collects already known attacks into its plug-in database without

the harming part. Nessus also adds some detection content (to test the system

vulnerability) into their traffic and then wait the response from the target system. In

other words, Nessus uses three steps to detect the vulnerability. The first step is

scanning the target ports and recording the opened ports. The second step is sending the

emulated attacks. Finally, Nessus receives the vulnerability report. The emulated

attacks in Nessus are different from real attacks because the Nessus traffic includes the

5

detection part and the report part but excludes the harm part.

Although Nessus can find out the vulnerability, it does not mean the target system

could get hurt by real attacks. Some systems may patch the vulnerability or use devices

like firewalls to protect the system security. The vulnerability may still exist under the

protection of firewalls or patches. Nessus can only indicate possible security breaches

but does not know whether a real attack will harm or not. For this reason, real attacks

are needed to verify the system security accurately.

2.3 IDP products

Extracting a complete episode of attacks is non-trivial. Two problems exist with

the attack extraction. The first one is the attacks definition. This work does not intend to

define an attack because it is a well-known skill and it also takes adequate human

works. In this work, we replay the real traffic to existing IDP products individually and

identify attacks by the log of these IDP products. The second problem is how to extract

multi-connection attacks. An attack session may involve multiple connections. It is

challenging to extract an attack session from a huge traffic trace. Besides, we also need

to define an attack session and extract it. Therefore, this work designs a method to

extract attacks through the logs of IDP products. For this design, real traffic is recorded

by Tcpdump and then replayed by Tcpreplay to the IDP to extract the complete episode

of attacks.

However, each IDP product has its own signature set, false positive rate, log style

and alarm level. The different signature sets effect the number of the detected attacks.

The different false positive rates effect the correction of the detected attacks. The

different log styles and alarm levels affect the types of the detected attacks because the

same attack maybe has different names. This work needs to extract attacks as possible

as we can, therefore, more than one IDP is needed to get the complete attack and

avoided the incorrect detect. Beside, we design a method to associate the different log

6

styles and alarm levels of each IDP products. The section 2.5 will describe the detail

content.

Therefore, the set of C in Figure 1 (C is the set of types of attacks identified by

existing IDP products) can be consider as 
n

i
iCC

1

 , where },,1|{ NiCi  ,

assuming we have N IDP products. The one goal of this work is extracting the union of

the detected attacks by IDP products.

2.4 Traffic record and replay tools

Tcpdump(http://www.tcpdump.org)and Tcpreplay (http://tcpreplay.sourceforge.net)

are used in this work. Both Tcpdump and Tcpreplay are famous open-source tools.

Tcpdump can record network traffic ordered by timestamp over important routes or

backbone networks. The recorded traffic is stored in a file of PACP format. Tcpreplay

can play the recorded traffic packet by packet according to their timestamps. Tcpreplay

can also send packets at specified speed to the target system. They both can help this

work to extract attacks by recording and replaying packets to the IDP products.

2.5 Attack identifiers and attack types

The association between the extracted real attacks and the Nessus plug-in(s) is one

of our research goals. Newly found attacks can be possibly added into the Nessus

database. The CVE (http://cve.mitre.or/) attack identifier here is used to make

association between the extracted real attacks and the Nessus plug-in(s). CVE

(Common Vulnerabilities and Exposures) is a list of security vulnerabilities and

exposures that provides common names for publicly known problems. Its goal is to

make it easier to share data across separate vulnerability capabilities (tools, repositories,

and services) with this "common enumeration". The organization of CVE studies new

attacks and defines the attack identifiers and descriptions. The Nessus traffic has the

CVE attack identifiers and the IDP products often have, too. The CVE attack identifier

7

can be used to check whether an attack belongs to the Nessus plug-in database or not.

This work collects 83 attacks as the samples for the extraction system. These

attacks can be divided into three types according to the number of attackers and the

number of connections per attack, as presented in Table 1. We assume only one target is

in each attack. An attack of the first type involves one attacker and a single connection.

An example is the MySQL Authentication Bypass Exploit. This attack can login in a

MySQL database without the password. An attack of the second type involves one

attacker and more than one connection. An example is the Blaster worm, which

establishes three connections when it tries to attack a target. An attack of the third type

involves multiple attackers and a single connection from each attacker. A DDoS attack

belongs to this type. This observation is helpful to build an extraction system [3], [4].

Table 1. Three types of attack definitions

Number of attackers Number of connections per

attack

Example

1 1 MySQL Authentication Bypass Exploit

1 N Blaster worm

N 1 DDoS

8

Chapter 3

The Session Extraction System

The proposed session extraction system includes logs and traffic analysis. This

system has two parts. The first part is an algorithm to extract sessions from the attack

traffic. The second part is the analysis of the difference between Nessus traffic and the

real attacks.

3.1 Overview

There are two goals in this work. First, because the partial attacks emulated by

Nessus can only indicate possible security breaches but does not know whether a real

attack will harm or not, this work proposes to extract the complete episode of attacks to

make sure the system vulnerability. For this goal, the real traffic is recorded and then

replayed to the IDP products to extract the complete episode of attacks. Trivially, the

logs of the IDP products can help this work to find out the connection of the detected

attacks. However, the attack may have the multiple connections. All related connections

of the attack can not be all extracted by the logs of the IDP products because the IDP

products only alarm and log the most important connection. Therefore, this work

proposes an algorithm to extract multi connections from the attack traffic. We named

the multi connections extraction algorithm as the session extraction algorithm.

The new attacks that Nessus does not have can be inserted into Nessus is the

second goal of this work. Also, this work can add or replace the attacks that Nessus

plug-in database already has, depending on whether a complete episode is needed.

Therefore, the association between the extracted real attacks from IDP and the emulated

attacks from Nessus is needed to understand. This work proposes a method to analyze

the difference between Nessus traffic and the real attacks extracted.

3.2 Extract attack sessions from recorded traffic

9

One goal of this work is to extract a complete episode of attacks from a large

amount of traffic. The session extraction algorithm is a three-pass algorithm designed

for this goal by associating packets, connections and sessions to extract attack sessions.

Before the description of the session extraction algorithm, Table 2 shows the definition

of the components in session extraction algorithm. The algorithm consists of five steps

as follows. Step (i), (ii), (iii) and (v) are trivial works while the step (iv) is the essence

of this work.

Table 2. The definition of the components in session extraction algorithm

Names Descriptions

ipS Source IP address

portS Source Port number

ipD Distance IP address

portD Distance Port number

UdpTcp/ The TCP packet or UDP flag

Payload The content of the packet

P A TCP or UDP packet in the IP network.

)(iPTuple The five-tuple of a packet

A The anchor packet of the attack

PDA(Possible DoS Attacks)
The data structure that store the packets

could be the DoS attacks

PNDA(Possible Not DoS attacks)
The data structure that store the packets

could be not the DoS attacks

(i) Replay real traffic to IDP products by Tcpreplay.

This algorithm uses the domain knowledge of IDP products, including the

well-known Open Source tool, Snort [5]. A IDP product illustrate what attacks have

happened with its logs.

10

(ii) Find out anchor packets by the first-pass scan.

This step finds out anchor packets, the critical packets that IDP products alarm

when receiving them. There are two tables used herein. One is the alarm log table ,

which records the alarms of attacks from the replay of attack traffic. The other is the

replay log table, which records the time when Tcpreplay replays each packet.(The

timestamps from the replay log table are used to mark the attack types by looking for

the relation from the alarm log table. The replay log table is then compared with the

alarm log table to identify the attack packets.)

Time synchronization could be a problem between the replay system and the IDP

products. Even if the time has been synchronized, IDP products may not log the times

accurately. Therefore, the five-tuple information is used herein. Many IDP products also

log the five-tuple information of an attack (some may record fewer than five tuples).

The five-tuple information and the timestamp from the alarm log table and the replay

log table can locate the anchor packets in the real traffic.

(iii) Find out the association among attack packets within the same connection by the

second-pass scan.

This step discovers the anchor connection by looking for the relation of the

recorded packets with the anchor packets. If the packets have common five tuples with

the anchor packet, they belong to the same connection.

(iv) Find out the association among attack connections within the same session by the

third-pass scan.

The attack connections can be associated with their session. The association may

be difficult since the relation among the connections is obscure. Because the attacks

have more than one connection, only five tuples and timestamp are insufficient to find

out the other connections. The obscurest relation among the connections is the attack of

multiple attackers and a single connection from each attacker because the five tuples of

11

the packets from these attackers are different. A common attack of this type is the

DDoS or DoS attack. These two types of attacks overwhelm a server to deny its

capability of providing services. From our observation, such an attack often has only

the TCP ACK or SYN message, as well as a number of packets with the same data

payload. The session extraction algorithm is designed based on the above observation.

The algorithm parses the recorded traffic packet by packet and extracts an attack

session by analyzing the attack types.

After anchor packets of an attack have been found, the algorithm checks each

following packet to see if its source IP address or destination IP address is identical to

the target IP address of the anchor packet. If not, the packet will be classified to other

type of attacks. If the packet belongs to this attack, the algorithm will compare each

packet’s payload for similarity. The algorithm duplicates a copy in the possible DDoS

attack buffer and increases the packet count by one if the similarity is high. The

similarity is defined according to the longest common subsequence (LCS) of two packet

payloads [6]. Formally, given a sequence  mxxxX ,...,, 21 , another sequence

 kiiiZ ,...,, 21 is a subsequence of X if there exists a strictly increasing sequence

 kiii ,...,, 21 of indices of X. given two sequences X and Y, we say that a sequence Z is a

common subsequence of X and Y if Z is a subsequence of both X and Y. The longest

common subsequence is the longest subsequence of the all common subsequence.

Consider the payloads of two packets as two sequences of bytes, S1 and S2. The LCS of

S1 and S2, LCS (S1, S2), is the longest sequence of bytes that are subsequences of S1 and

S2. The similarity is defined by the equation

  %100*
)LCS(2

,Similarity
21

21
21 SS

,SS
SS




 . (1)

The similarity threshold is 80% in the proposed algorithm because the packets we

collected in the DDoS or DoS attacks are often the minimum Ethernet packets of 64

12

bytes. Excluding 14-byte MAC header, 20-bytes IP header, 20-bytes TCP header and

4-byte checksum, the payload is only 6 bytes long. From our observation, the packet

payloads of the DDoS or DoS attacks we collected are often the same, and the

difference is only one byte if the payloads are different. The similarity in this case is

83.33%, so the similarity threshold is set to 80%.

After identifying similar packets, the session extraction algorithm watches the

source IP address and the destination IP address at the same time. The step keeps only

the packets that come from the attacker and go to the target and those in the opposite

direction. The others are simply dropped. This step intends to distinguish the attacks

that possibly have one attacker from those that are possibly DDoS attacks.

The algorithm continues to watch the next packet until the end. The algorithm

returns the packet count in the possible DDoS attack buffer. The attack might be a

DDoS attack if the count is larger than 200, and might be a 1-1 attack otherwise. Figure

2 shows the flowchart of the algorithm.

The algorithm can be written as some formulas and pseudo code as follows. We

defined the packet P is the set of five-tuple and payload. The)(iPTuple is the five-tuple

of the packet i, 1i . The anchor packet A is the set of the five-tuple and payload that

the IDP products make alarm when they receive it.

},/,,,,{ PayloadUdpTcpDDSSP portipportip , (2)

))(/),(),(),(),(()(iiportiipiportiipi PUdpTcpPDPDPSPSPTuple  , (3)

Therefore, the session extraction problem turns into a problem to find out the set

of packets that have the high similarity of payload with anchor packet A or the same

source IP address and distance IP address with anchor packet A . Assume the x is the

sequence number of anchor packet in the all packets. The session extraction algorithm

can be described as follow.

13

The pseudo code of the session extraction algorithm

 

ifof}//end
PDNA;return

}else{
PDA;return

){200t_numberDDos.packe(if
forof//end}

ifofEnd//}
ifofEnd}//

;PNDAPNDA

)){).().(&&).().(

||))).().(&&).().(((if
ifofEnd}//

;t_numberDDos.packe
;PDAPDA

80%){.,.y(Similaritif

){).().(||).().((if
{allFor

;
,Given

0;t_numberDDos.packe
attackDoSnot thepossiblepackets,ofset//a;PNDA

attackDoSthepossiblepackets,ofseta//;PDA























i

ipxipiipxipi

ipxipiipxipi

i

xi

ipxipiipxipi

x

P

SPTupleDPTupleDPTupleSPTuple

DPTupleDPTupleSPTupleSPTuple

P

PayloadPPayloadP

DPTupleDPTupleDPTupleSPTuple
i

PA
x








(v) Replay the extracted attack session to IDP products to verify whether the same logs

are generated. If it is true, the extraction is valid.

Finally, we replay the extracted attack sessions to IDP products to verify the

correctness of the extraction. The extracted session must cause the same alarms as the

whole traffic was replayed to the same IDP product. If an IDP product cannot find the

attack, the extraction is invalid.

3.3 Analysis of the difference between Nessus traffic and real attacks

The second part is to compare the extracted attack sessions with the attacks from

the Nessus plug-in database. The comparison depends on replaying both real traffic and

14

Nessus to IDP products in the following five steps.

(i) Use Tcpdump to record traffic at the backbone network.

(ii)Replay the real traffic to each IDP product to obtain a set of

attacks, },,1|{ NiCi  , assuming we have N IDP products.

(iii) Replay the Nessus Plug-in traffic to each IDP product to generate another set of

attacks, },,1|{ NiAi  .

Figure 2. The flowchart of the session extraction algorithm

Some IDP products mark the detected Nessus traffic as “Nessus attack”, but the

others do not. The mark is confusing because an attack may be marked different in

15

different IDP products. We solve this problem with the CVE identifier of Nessus traffic.

Each Nessus attack has its own CVE identifier, and the alarm log also marks the attacks

with the identifier. An attack can be identified from the CVE identifier if the mark is

confusing.

(iv) For every attack record in C-A, where 
n

i
iCC

1

 and 
n

i
iAA

1

 , i.e. attacks which

are not in the Nessus Plug-in database, exercise the extraction algorithm to extract its

attack session.

(v) Those new attack sessions can be added into the Nessus plug-in database.

This work can also add or replace the attacks that already exist in Nessus plug-in

database. Nessus is a convenient tool for updating its database. Because a complete

episode of real attacks is necessary to detect the real vulnerability of a system, both the

complete episode and the partial attack of an attack can be used arbitrarily for the

system vulnerability assessment, depending on whether a complete episode is needed.

3.4 The example of the session extraction system

Fig. 3 presents the alarm log table that records the alarms of attacks during the

replay of attack traffic. We replay traffic from 13:23:52 to 13:26:12 to an IDP product,

and the IDP generates two alarms (buffer overflow and LSASS) into the log table.

Second, the anchor packet can be found by logs of the IDP product. As the Figure 3

shows, the anchor packet can be the 5th, 6th or 7th packet and we choose the 6th. If the

five-tuple of the packets are the same, the chosen packet has no difference. Third, the

five-tuple of anchor packet can be known. Fourth, each packet will be checked the

payload similarity and the IP address comparison by session extraction algorithm. If the

5th and 7th packets have different five-tuple, the session extraction algorithm will find

them. After the session extraction algorithm, the result is a recorded attack file. In this

example, the recorded attack file is the 5th, 6th and 7th packets. Finally, the recorded

16

attack file can be replay to IDP product. The extracted session must cause the same

alarms as the whole traffic was replayed to the same IDP product. If an IDP product

cannot find the extracted attack, the extraction is invalid.

Figure 3. Replay traffic to the IDP products and mark attack packets in the alarm log table

19 8 7 6 5 4

13:25:4113:25:01LSASS.

13:24:1513:23:52Buffer
overflow
(BOF)

StopTimeStartTimeAlarm

13:25:4113:25:01LSASS.

13:24:1513:23:52Buffer
overflow
(BOF)

StopTimeStartTimeAlarm

3 2
Alarm Log Table

IDP Product

Replay Log Table

TcpReplay

LSASS

LSASS

LSASS

BOF

BOF

Mark

LSASS

LSASS

LSASS

BOF

BOF

Mark

Feedback alarms
for Marking

13:25:166

13:25:015

13:24:494

13:26:12

13:26:01

13:25:41

13:24:35

13:24:15

13:23:52

Sending
Time

2

1

7

3

9

8

Pkt
ID

13:25:166

13:25:015

13:24:494

13:26:12

13:26:01

13:25:41

13:24:35

13:24:15

13:23:52

Sending
Time

2

1

7

3

9

8

Pkt
ID Replayed packets

17

Chapter 4

Evaluation and Discussion

We used Tcpdump on a Linux PC to collect and record all traffic from the other 50

PCs in our lab during the period from 10/23/2005 to 10/29/2005. The 50 PCs belong to

the same subnet and have the same gateway to the outside. Therefore, we recorded the

traffic by mirroring all traffic through that gateway.

Three evaluations are designed for this work. First, the number of real attacks that

could be extracted by the session extraction system is evaluated. The evaluation also

looks for the mapping of the real attacks to the Nessus plug-in traffic. We use Tcpreplay

to replay the recorded traffic to the IDP product, Snort in this evaluation. The CVE

identifiers and Nessus identifiers are also used for the mapping.

Second, the completeness and purity of the extracted attacks are evaluated. This

evaluation also answers the variability of the session extraction system. For this

evaluation, we replay the recorded traffic and also play the Nessus traffic at the same

time.

Finally, the differences between Nessus traffic and the real attacks are evaluated.

For this evaluation, we chose a Nessus attack and a real attack with the same CVE

identifier, and observe their differences with Ethereal.

4.1 The result of session extraction

Table 3 presents the 15 attacks detected by the IDP product (Snort) from the

recorded traffic. They are ordered by the detection time. These attacks all have CVE

identifiers when they are detected by Snort.

4.1.1 The occurring percentage of the extracted result

Fig. 4 shows the occurring percentage of each attack in the recorded traffic. We

can see the famous worm of Worm.Win32.Slammer has high percentage. The Slammer

18

worm would be the highest occurring rate of the world during the 2005 to 2006. As

Figure 4 shows, the top 6 attacks had 74% of total frequency and the sum of the fewest

3 attacks only 3% of total. The top 1 attack has 16% of total. This result told us the

common attacks are the most part of the total attacks.

Table 3. The 15 attacks detected by the IDP product, Snort

Types Name Nessus id CVE id

DoS Apache.CGI.Byterange.Request.DoS no CVE-2005-2728

Worm Worm.Win32.Slammer 11214 CVE-2002-0649

Windows (1-1) IE.File.Download.Ext.Spoof no CVE-2002-0875

Dos(N-1) Smtp service logging NULL session 11308 CVE-2002-0054

SMTP(1-1) smtp_decoder: unknown_cmd 10885 CVE-2002-0055

RPC(1-1) RPC portmapper 10223 CVE-1999-0632

SMTP(1-1) Smtp unauthorized user 10703 CVE-2001-0504

General(1-1) IIS server HTR ISAPI filter mapped 10932 CAN-2002-0071

Dos(N-1) DoS: FrontPage server Extensions 11311 CAN-2002-0692

Backdoors(1-1) Sasser Virus Detection 12219 CAN-2003-0533

General (1-1) Netbios-ssn 10394 CVE-2000-0222

General(1-1) ICMP timestamp request 10114 CAN-1999-0524

General(1-1) Remote OS guess 11268 CAN-1999-0454

FTP(1-1) ftp: Overflow.CWD no CAN-2002-0126

DNS(1-1) FTP Serv-U 2.5e Dos 10488 CVE-200-0837

19

Figure 4 the frequency of the 15 attacks

Figure 5 the file sizes of the 15 attacks

4.1.2 The file size of the extracted result

The definition of size is the file size of the extracted attack including all packet

headers and payloads. Figure 5 shows the file size of extracted attacks by session

extraction system. The x-axis is the 15 extracted attacks and order by the occurring

frequency. The largest size of those attacks is 9731 Kbytes. The smallest size of those

attacks is 491 Kbytes. However, the session extraction system just only excludes the

“must not”packets of the attack from real traffic and reserves the possible packets of

20

the attack at the same session form the real traffic. Therefore, the extracted attacks of

the same type maybe have different sizes at different dates. For example, a normal

HTTP request maybe extracted with HTTP attacks when the attacks and the request

happen at the same time between attacker and target. For this reason, we choose the

attack size equal to the size that the most times in our experiment. If the attacks are the

DDoS or DoS attacks we choose the attacks size by smallest size the IDP product can

detect. Next section will describe the variability of the session extraction system.

4.2 Variation, completeness and purity

4.2.1 The variation of the session extraction system

The definition of variation in this work is the complement of the probability of the

extracted attack’s mode value. The mode value is the most frequent value. Therefore,

the variation is defined by the equation

%100*)))kmode(Attac(1()AttackVariation(ii P . (4)

In our experiment, the different extracted attack sizes for each attack when they

could classify as the same attacks come from the result of the comparing the attack size

with the size that the most frequent size. The low variation of the session extraction

system must be proved if we want to use the results of the session extraction system. In

this experiment, we replay 100 attacks and the common real traffic at the same time.

We mixed the 100 attacks with 10 different real traffics to observe the variation.

Therefore, there are total 10 results (the extracted attacks) of the each attack and the

total 1000 results by session extraction system.

Figure 7, 8 and 9 show the 3 case of the result that we extracted the attacks from

the real traffic. The x-axis is 10 extracted attacks of each attack. Figure 7 shows the

case one that is the different sizes of attacks less than 3. In this experiment, the 37% of

the 100 attacks were in case one. Figure 8 shows the case two that is different sizes of

attacks equal to 0. In this experiment, the 46% of the 100 attacks were in case two.

21

Figure 9 shows the case three that is the different sizes of attacks more than 3. In this

experiment, the 17% of the 100 attacks were in case three. Figure 6 shows the

accumulated number of the attacks of each variation by increasing. The 83% of the

extracted attacks is less than 30% variation. The 30% variation could be easy to choose

the attack size equal to the size that the most times in our experiment. But, there are also 17%

of the extracted attacks could be hard to choose the result of the experiment because they had

high variation.

Figure 6. The variation of extracted attacks

4.2.2 The completeness and purity of the session extraction system

By adding a new step in the experiment of variation, we can use to observer the

completeness and purity. The new step is only playing and recording the 100 attacks

without other traffic. therefore, we can get original attacks of the 100 attacks. In this

experiment, we compared the 10 results of each attack from the experiment of variation

with the original attacks.

The definition of completeness and purity are as following. If the size of the

extracted attacks is less than the original attack size, we will say the extracted attack is

22

not completeness. If the size of the extracted attacks more than the original attacks size,

we will say the extracted attack is not purity. If the size of the extracted attack equal to

the original attack size, we will compare the extracted attack with the original attack by

bits comparison. The bits comparison compares to the bits in the extracted attack file

and in the original attack file individually. If the extracted attacks are different with the

original attack, we will say the extracted attacks are not completeness and purity.

Figure 7. The different sizes of attacks less than 3

Figure 8. The different sizes of attacks equal to 0

nessus attack 1

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10

times

si
ze
(K
B
)

nessus attack 1

nessus attack 2

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

times

si
ze
(K
B
)

nessus attack 2

23

Figure 9. The different sizes of attacks large than 3

For this definition, we consider an attack as completeness and purity by sizes

comparison and bits comparison. However, because the different size between the

extracted attacks and the original attack can not comparing the bits, we can not

definition the completeness if the size of the extracted attack is large than the original

attack size (they are not purity already). For this reason, we assumed they are

“Undefined”. We also assumed some attacks can not define the purity for the same

reason.

By our definition, the total 370 attacks in the case one had 71% completeness (1%

not completeness by different size, 4% not completeness by comparing and 24% can

not define) and 71% purity (24% not purity by different size, 4% not purity by

comparing and 1% can not define). The total 460 attacks in the case two had 100%

completeness and 100% purity. The total 170 attacks in the case three had 12%

completeness (23% not completeness by different size, 29% not completeness by

comparing and 36% can not define) and 12% purity (36% not purity by different size,

29% not purity by comparing and 23% can not define).. Table 3 shows the comparing

of those three cases.

The completeness and purity of the case three was very interesting. By our

nessus attack 3

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10

times

si
ze
(K
B
)

nessus attack 3

24

observation, the 170 attacks (the 17 different types mix with the 10 real traffic) of the

case three had 15 DDoS or DoS attacks. The size of DDoS and Dos attacks are not

fixed. The 500 packets, 300 packets and 1000 packets of a DDoS or DoS attack all can

say they are the attack. Therefore, the 11th attack that we recorded by playing a DDoS

or DoS attack can not be a standard because the smaller or larger one also can be

considered as attack. For this reason, the completeness and purity are not good in case

three and the variability also because the same reason.

Table 4. The completeness and purity of the extracted attacks

(Variation)

Number

of different

sizes

Completeness

(Purity)

Not

Completeness

(Purity)

by different

sizes

Not

Completeness

(Purity)

by comparing

Undefined

Completeness

(Total 370)

0<Variation

≦30%

262(71%) 4 (1%) 15 (4%) 89 (24%)

Purity

(Total 370)

0<Variation

≦30%

262 (71%) 89 (24%) 15 (4%) 4 (1%)

Completeness

(Total 460)

Equal to 0 460 (100%) 0 (0%) 0 (0%) 0 (0%)

Purity

(Total 460)

Equal to 0 460 (100%) 0 (0%) 0 (0%) 0 (0%)

Completeness

(Total 170)

Variation

>40%

20 (12%) 39 (23%) 50 (29%) 61 (36%)

Purity

(Total 170)

Variation

>40%

20 (12%) 61 (36%) 50 (29%) 39 (23%)

25

4.3 Analysis of the difference between Nessus traffic and the real

attacks

In this experiment, we also play the Nessus Plug-in traffic that can mapping to

those 15 attacks. Figure 10 shows the sizes of the nessus traffic and the real attacks in

the same attack, we only choose the largest 4 attacks to show their relation. We can see

the Nessus traffic have the fewer size. The Nessus Plug-in traffic often only has the

emulated attacks (sometimes they only have request of the service) and waiting the

response to know the existence of the vulnerability. Therefore, the size of the Nessus

Plug-in traffic is usually smaller than the real attacks.

Figure 10 The real attacks v.s Nessus traffic

nessus vs real attacks

0

2000

4000

6000

8000

10000

12000

1 2 3 4

types

si
ze
(K
B
)

real attacks

nessus

26

Chapter 5

Conclusions and Future Work

This work proposes a session extraction algorithm to extract a complete episode of

attacks from a large amount of real traffic. The extraction uses the three-pass scanning

to find out the anchor packet of an attack. It excludes the packets that do not belong to

an attack from the real traffic and reserves the possible packets of the attack in the same

session. Similarity between two packets is also defined to extract the attacks of DDoS

and DoS accurately.

In the evaluation of the session extraction system, 15 attacks can be extracted from

the real traffic in our lab. Six of the 15 attacks can be mapped to Nessus plug-ins. By

the session extraction system, we can extract the Nessus plug-in traffic that had

mapping with the extracted attacks. In Section 4.1 and Section 4.3, the result of the

experiment told us the size of Nessus plug-in traffic often less than real attack, and the

Nessus Plug-in traffic often only request the service and waiting the response. In this

work, we also prove the variation of our session extraction system is low. The 87% of

our extracted attacks had low variation. The lower variation of the extracted attacks also

had high completeness and purity. The variation of the extracted attacks less than 30%

had 87% completeness and purity. The variation of the extracted attacks equal to 0 had

100% completeness and purity. However, the higher variation of the extracted attacks

had low completeness and purity, but it is because the DDoS and DoS attacks had no

fixed size. This work also proved the Nessus Plug-in traffic is the smaller than the real

attacks. The Nessus Plug-in traffic requests the system service and waits the response of

the service. The real attack not only requests the services but also destroy the system.

The future work is automatic inserting the new attacks into Nessus Plug-in. Also,

the Nessus Plug-in can add a new function that test a system by normal Nessus

27

detecting and real attacks detecting.

28

References

[1] H. G. Kayacıkand A. N. Zincir-Heywood, “Using Intrusion Detection

Systems with a Firewall: Evaluation on DARPA 99 Dataset”, Project in

Dalhousie University, [Online].

Available:http://projects.cs.dal.ca/projectx/files/NIMS06-2003.pdf.

[2] DARPA 99 Intrusion Detection Data Set Attack Documentation. [Online].

Available: http://www.ll.mit.edu/IST/ideval/docs/1999/attackDB.html.

[3] Christoph L. Schuba, Ivan V. Krsul, Markus G. Kuhn, Eugene H. spafford,

Aurobindo Sundaram, Diego Zamboni, "Analysis of a Denial of Service

Attack on TCP," sp, p. 0208, 1997 IEEE Symposium on Security and

Privacy, 1997.

[4] Vern Paxson,“An analysis of using reflectors for distributed denial-of-service

attacks”ACM SIGCOMM Computer Communication Review, 2001

[5] Martin Roesch, “Network Security: Snort - Lightweight Intrusion Detection

for Networks”, Proceedings of the 13th USENIX conference on System

administration, November. 1999.

[6] T. H. Coemen, C. E. Leiserson, R. L. Rivest, ”Introduction to Algorithms”,

pages 314-320, 1990.

[7] T. Ye, D. Veitch, G. Iannaccone and S. Bhattacharyya, “Divide and Conquer:

PC-Based Packet Trace Replay at OC-48 Speeds”, IEEE TRIDENTCOM,

2005.

[8] W. C. Feng, A. Goel, A. Bezzaz, W. C. Feng, and J. Walpole. “TCPivo: A

high-performance packet replay engine”. ACM SIGCOMM Workshop on

Models, Methods and Tools for Reproducible Network Research (MoMeTools),

Aug. 2003.

