
國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

以 Bloom filters 硬體實作加速傳統次線性時間字串比對演

算法: 設計、實作與評估

A sub-linear time string matching algorithm with Bloom filters

acceleration: Design, Implementation and Evaluation

研 究 生：鄭伊君

指導教授：林盈達 教授

中 華 民 國 九 十 五 年 六 月

 1

以Bloom filters硬體實作加速傳統次線性時間字串比對演算法: 設

計、實作與評估

A sub-linear time string matching algorithm with Bloom filters
acceleration: Design, Implementation and Evaluation

研 究 生： 鄭伊君 Student : Yi-Jun Zheng

指導教授： 林盈達 Advisor : Dr. Ying-Dar Lin

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2006

HsinChu, Taiwan, Republic of China

中華民國九十五年六月

 2

以Bloom filters硬體實作加速傳統次線性比對時間字串比對演算法:

設計、實作與評估

學生：鄭伊君 指導教授：林盈達

國立交通大學資訊科學與工程研究所

摘要

 目前針對封包內容作檢查的網路應用程式主要是用字串比對的方式來偵測

封包中是否有入侵行為、病毒、廣告等惡意的傳輸資料。雖然目前針對字串比對

演算法的研究已多不勝數，但用一般處理器跑軟體的運作方式上，由於其大計算

量和頻繁的記憶體存取使得字串比對的處理速度存在一定的上限。所以在高速應

用中已經走向使用硬體加速器來加速字串比對的運算。

 本研究提出了一個應用 Bloom filter 的特性實作表格的查詢來達到次線性比

對時間的硬體架構。此架構中利用二個機制來克服原本次線性時間演算法不適於

硬體實作的因素，分別是：一、以平行詢問(parallel query)多個 Bloom filter 來取

代原本演算法中需要存取在於外部記憶體的表格查詢動作。在次線性時間演算法

中，普遍存在一個置於外部記憶體的大表格用以查詢判斷下一步掃描的動作；用

Bloom filter 的方式，不但可以模擬取代查詢表格的動作，更提供了比原本表格

查詢更精確的資訊。二、設計一個非阻斷式(non-blocking) 的驗證介面，使得最

差情況下的處理速度仍達到線性時間。次線性時間演算法在一般情形下的處理速

度雖然是次線性時間，但是基於演算法原理，最糟情形下處理時間會比線性時間

演算法長數倍。經由非阻斷式介面實作使得掃描與驗證的工作得以同時進行來達

到最慢的處理速度會是線性時間演算法的處理速度。

 I

 本實作經過軟體模擬和 Xilinx FPGA 合成模擬後驗證無誤，最高速度可達將

近 9.2Gbps；完全是病毒碼的驗證速度是 600Mbps。

關鍵字: 次線性時間、Bloom filter、字串比對、硬體、加速。

 II

A sub-linear time string matching algorithm with Bloom filters

acceleration: Design, Implementation and Evaluation

Student: Yi-Jun Zheng Advisor: Dr. Ying-Dar Lin

Department of Computer and Information Science

Nation Chiao Tung University

Abstract

Many network security applications heavily rely on string matching to detect

malicious intrusions, viruses, spam, and so on. A software-based implementation may

not meet the performance requirement of high-speed applications due to intensive

computation and frequent memory accesses. A hardware solution to take advantage of

hardware parallelism is a promising trend to inspect the packet payload at line rate.

In this work, we propose an innovative memory-based architecture using Bloom

filters to realize a sub-linear time algorithm that can effectively process multiple

characters simultaneously. The two key ideas to realize the sub-linear time algorithm

in this architecture are (1) replacing the slow table lookup in the external memory

with simultaneous queries to several Bloom filters and (2) designing a non-blocking

verification interface to keep the worst-case performance in linear time.

The proposed architecture is verified in both behavior simulation in C and timing

simulation in HDL. The simulation result shows that the throughput is nearly 10 Gbps

for Windows executable files and 600 Mbps in the worst case.

Keywords: sub-linear time, Bloom filter, string match, hardware, acceleration

 III

Contents
Chapter 1 Introduction ...1
Chapter 2 Related Works ...4

2.1 String Matching Algorithms ..4
2.1.1 Linear time algorithms..4
2.1.2 Sub-linear time algorithms..5

2.2 Hardware accelerators..6
2.2.1 Hardwire-based accelerators...6
2.2.2 Memory-based accelerators ..7

3.1 The Bloom Filter Accelerated Sub-linear Time algorithm.............................10
3.1.1 Drawbacks of using a shift table...10
3.1.2 Implicit shift table using Bloom filters ...11
3.1.3 Additional checking in the Bloom filters ..13
3.1.4 Worst case handling ..14
3.1.5 Advantages of the proposed architecture ..14

3.2 Design issues..15
3.2.1 Characteristics of the pattern set ...15
3.2.2 Hash functions ..16

Chapter 4 Implementation details ..17
4.1 String match architecture ...17

4.1.1 Text memory fetching ...18
4.1.2 Bloom filter querying..18
4.1.3 Text position controller ...20
4.1.4 Verification interface...21
4.1.5 Pipeline the design ..22

4.2 Integration to Vertex II pro platform..23
Chapter 5 Experimental Results...25

5.1 Simulation and synthesizing result ..25
5.1.1 C Simulation result ...25
5.1.2 HDL simulation result...26

5.2 Comparisons ..28
5.2.1 Compare with the Dharmapurikar et al.’s Bloom filter28
5.2.2 Compare with the other related works. ...29

Chapter6. Conclusion and future works...31

 IV

List of Figures
Figure 1. The search window can be safely shifted by m-B+1 characters by

looking up the shift table according to the heuristic in the WM
algorithm...6

Figure 2. Shift distance of a block can be derived from its position in the patterns
..11

Figure 3. Grouping of blocks in the patterns for deriving the shift distance from
querying Bloom filters. The shift table in the WM algorithm becomes
implicit in the Bloom filters herein...12

Figure 4. Overview of the string matching architecture ..17
Figure 5. An example of fetching four bytes in 0001, 0010, 0011 and 0100.18
Figure 6. BloomFilterQuery module architecture ...19
Figure 7. Text position controller state transition diagram....................................20
Figure 8. Verification Job Descriptor format ..21
Figure 9. (a) State diagram of pipelining ...23
Figure 10. Addressing space of string matching..24
Figure 11.. Shift distance in different pattern counts (read/random)25
Figure 12. Scanning module false positive rate in different pattern counts26
Figure 13. The pattern size comparison of different hardware architecture30
Figure 14. The throughput comparison of different hardware architecture........30

 V

List of Tables
Table 1. Top 10 appearance blocks in 1,000 windows files.15
Table 2. Comparisons between Dharmapurikar’s Bloom filter and BFAST.29
Table 3. Comparisons of circuit sizes of Multi-character decoder NFA,

Pre-decoded CAM comparator and BFAST..30

 VI

Chapter 1 Introduction

Detecting and filtering proliferating attacks and viruses on the Internet requires

content classification at the application layer, as opposed to traditional packet

classification at the network and transport layers. Content classification involves

string matching for patterns of malicious signatures, but string matching has been

reported to be a bottleneck of network content security applications [1], [2], such as

intrusion detection systems (IDS) and anti-virus systems. Consequently, the efficiency

of string matching is critical to content processing. String matching algorithms

implemented on general purpose processors is often not efficient enough to afford the

escalating amount of Internet traffic, so several specialized hardware-based solutions

have been proposed for high-speed applications.

A hardware accelerator can hardwire the signatures into logic cells [3-5] on the

FPGA or store the signatures into memory [6]. The former can generally achieve

higher performance because it is easier to implement pipelining and process multiple

bytes per cycle with high area cost. The disadvantages are that the number of

signatures is limited by the gate count, and that dynamic signature updates during

matching is difficult due to long programming time. An ASIC implementation is also

impossible since it is not reconfigurable. The latter is easily reconfigurable in

signature updates. The number of signatures is limited by the memory size, but the

limitation is a tiny problem if external memory is used. Moreover, the hardware can

be implemented on an ASIC chip.

A study in [7] surveys and summarizes several architectures of string matching

engines. As far as we know, existing solutions all implement linear time algorithms,

say the well-known Aho-Corasick (AC) algorithm [8], that have to read every

character in the text, and hence the time complexity is O(n), where n is the text length.

 1

Although some designs can process multiple characters at a time at the cost of

duplicating matching hardware components, the number of characters under

simultaneous processing is quite limited in practice due to hardware complexity.

Unlike linear time algorithms, many existing sub-linear time algorithms can skip

characters that can not be a match so that multiple characters are processed at a time

in effect [9], [10]. Although they generally have higher performance than a linear time

algorithm in software [10], [11], they are rarely implemented in hardware, probably

because of two reasons. First, sub-linear time algorithms skip unnecessary characters

according to some heuristics, typically by looking up a large table. The table may be

too large to fit on the embedded memory, and thus be stored in external memory

which is time-consuming to access. Second, although the average time complexity of

the sub-linear time algorithms is roughly O(n/m), where m is the pattern length, the

worst-case time complexity is O(mn), worse than O(n) in linear time algorithms.

Therefore, sub-linear time algorithms are less resilient to algorithmic attacks that

exploit the worst case of an algorithm to reduce its performance.

In this work, we propose an innovative memory-based architecture using Bloom

filters [12] to realize a sub-linear time algorithm enhanced from the Wu-Manber (WM)

algorithm [13], namely the Bloom Filter Accelerated Sub-linear Time (BFAST)

algorithm herein. The proposed architecture stores the signatures in the Bloom filters

that can represent a set of strings in a space-efficient bit vector for membership query,

so this proposed architecture can accommodate a large pattern set and have low cost

in pattern reconfiguration. The proposed architecture replaces the table lookup in the

WM algorithm with simultaneous queries of several Bloom filters to derive the same

shift distance of the search window. Thanks to the space efficiency of Bloom filters,

the required memory space can fit into the embedded memory. To handle the worst

case, a heuristic similar to the bad-character heuristic in the Boyer-Moore algorithm

 2

[14] is adopted to reduce the number of required verifications in the WM algorithm.

When a suspicious match is found in a position called the anchor, the anchor is passed

to a verification engine without blocking the scan. The system also supports searching

for a simplified form of regular expressions specified in terms of a sequence of

sub-patterns spaced by bounded gaps, which can be found in some virus patterns [15].

The implementation result shows that this architecture can processes multiple

bytes a time based on the theory of the sub-linear time algorithm to increase the

throughput up to 9.2Gbps and utilize the efficient memory-usage Bloom filter to

accommodate more than 10,000 patterns. The simplicity of the circuit design of this

architecture makes this design can be integrated into the Xilinx XC2VP30 SOC

platform to become a customized anti-virus chip.

The rest of this work is organized as follows. Chapter 2 reviews typical string

matching algorithms and existing hardware accelerators. Chapter 3 introduces the

architecture of the proposed sub-linear time algorithm. Chapter 4 discusses the

detailed implementation issues, such as the interface between the search engine and

the verification engine. This chapter also presents the system architecture as well as

each component inside. Chapter 5 evaluates the proposed architecture and compares it

with existing works. Chapter 6 concludes this work.

 3

Chapter 2 Related Works

2.1 String Matching Algorithms

The single string matching problem is to search for all the occurrences of a string

p, called the pattern, in the text T = t1t2…tn on the same alphabet set, where n is the

text length. The multiple string matching allows to simultaneously search for the

patterns in the set P= {p1, p2…, pr}, where r is the number of patterns. Many

algorithms have been proposed for various purposes, such as text searching, network

content security, and bioinformatics. Some recent textbooks, such as [10] and [16],

cover the algorithms for general applications. Lin et al. review and evaluate the

algorithms particularly for network content security [9].

String matching algorithms can be linear time or sub-linear time in terms of time

complexity. Linear time algorithms track every character in the text to decide whether

a match occurs, so their running time is O(n). Sub-linear time algorithms can skip

characters that can not be a match according to some heuristics, and thus can process

multiple characters at a time in effect. The latter algorithms achieve the time

complexity of roughly O(n/m) on average, so they are generally faster than the former.

2.1.1 Linear time algorithms

 The Aho-Corasick (AC) algorithm [8] is a typical linear time algorithm found in

some hardware designs. It constructs a finite automaton from the patterns, and then

feeds the automaton with input characters one by one in the text for state transition. A

match is claimed if one of the final states is reached. The time complexity of AC

algorithm is O(n).

A state transition involves two memory accesses. One reads a character from the

input text and the other accesses the transition table to determine the next state.

Reading one character at a time limits the performance of AC. Modern data buses

 4

allow reading four or eight characters at a time, so the state transition from only one

character is inefficient. Some hardware architectures allow processing more than one

character at a time [17], [18]. Moreover, the transition table in AC is large for a large

pattern set. Some compression methods have been proposed to reduce the memory

requirement [19], [20].

2.1.2 Sub-linear time algorithms

 The Boyer-Moore (BM) algorithm can skip characters that cannot be a match

according to the bad-character and the good-suffix heuristics [14]. Some algorithms

[13], [21], [22] based on similar heuristics extend the BM algorithm for multiple

string matching. Among them, the Wu-Manber (WM) algorithm has been

implemented in some popular open-source packages, such as Snort

(http://www.snort.org) for intrusion detection systems and ClamAV

(http://www.clamav.net) for anti-virus systems. Some variants of WM are also

proposed for short patterns and longer skip distance [23], [24]. These algorithms are

very efficient and their time complexity is sub-linear time on average.

The WM algorithm searches for the patterns by moving a search window of

length m along the text, where m is the length of the shortest pattern in the pattern set.

WM matches the rightmost block of the search window against the patterns. If the

block does not appear in any of the patterns, the search window can safely shift

m–B+1 characters without missing a match, where B is the block size. Otherwise, the

shift distance is m–j, where j is the position of the last character in the rightmost

occurrence of the block in the patterns. If the shift distance is 0, i.e., the block is the

suffix of some patterns in the pattern set, the verification should follow to verify if a

true match occurs. Without loss of generality, Fig. 1 illustrates an example with only

one pattern for easy illustration. The search window can be shifted by 11–4+1 = 8

characters since the block ‘TEST’ does not appear in the patterns.

 5

The WM algorithm calculates the shift values for every possible block of B

characters and stores them in a shift table in the pre-processing stage. The larger the

block size, the less likely the block appears in the patterns. However, a large block

size also implies a large shift table for every possible block and limits the shortest

pattern length that is allowed. The block size is 2 or 3 in practice. The mapping from

the block to the table is not necessarily one-to-one. If more than one block is mapped

to the same entry, the minimum shift value of them is filled in this entry. Such a

mapping can save the table space at the cost of smaller shift values.

Figure 1. The search window can be safely shifted by m-B+1 characters by looking up the shift

table according to the heuristic in the WM algorithm

Although the WM algorithm is fast on average, its worst-case performance is

worse than linear time. For example, if a pattern in the pattern set is ‘aaaaa’ and the

text is composed of all a’s, the search window cannot skip any characters. The time

complexity becomes O(mn) because the verification takes O(m) in every position of

the text.

2.2 Hardware accelerators

 The patterns can be either hardwired into logic cells on FPGA or stored in the

memory in existing hardware accelerators. Among these accelerators, we particularly

pay more attention on Bloom filters which the proposed architecture is based on.

2.2.1 Hardwire-based accelerators

 Although storing the patterns into the look-up tables (LUTs) on the FPGA is

 6

feasible, the reconfiguration is costly. Updating the patterns takes hours to regenerate

a new bit-stream including the patterns and a few minutes to download it onto the

chip. The cost can be reduced by incremental MAP and PAR [25] or by partial

reconfiguration. Besides the reconfiguration cost, the size of the pattern set is limited

by the number of available gate counts on the FPGA, so these accelerators are not

scalable to a large pattern set. A few typical designs are introduced below.

 Sidhu et al. [26] designed a low-cost solution for matching regular expressions. It

represents the patterns in regular expressions as non-deterministic finite automata

(NFA) or deterministic finite automata (DFA). Its performance is not high due to the

state transition of only one single character per cycle. Moscola et al. duplicated

matching modules to scan multiple packets concurrently. They quadrupled the

throughput up to 1.184Gbps [27].

 Cho et al. [3] designed a pipelining architecture of discrete comparators. Each

pattern is matched in a pattern match unit. Each stage in the unit involves four sets of

four 8-bit comparators to simultaneously match four consecutive characters each

starting from four consecutive positions in each cycle. The matching results in each

stage are fed to the next stage for the pipelining. This approach can operate at high

frequency, so the performance can be fairly good. Sourdis [28] improved the

architecture by fully pipelining the entire system and using a fast fan out tree to

distribute the incoming data to each comparator. Thus, it can work at 344MHz on the

Xilinx VirtexII-1000 FPGA, and the throughput is up to 11 Gbps. However, its area

cost is high. Several following studies were devoted to area reduction, such as [5].

2.2.2 Memory-based accelerators

 The memory-based accelerators store patterns in the memory, which can be

either the embedded memory on the FPGA or the external memory connected through

the system bus. The accelerators can be implemented on either ASIC or FPGA. When

 7

the patterns are updated, only the memory content is reloaded with the new pattern set

and the processing logic remains unchanged. Hence the reconfiguration cost is low.

Storing the patterns in the embedded memory is helpful to a high-speed design

because of the high memory bandwidth. However, the size of embedded memory is

usually too small to store a large pattern set. A memory-efficient mechanism, namely

Bloom filtering, can be used in a high-speed matching engine [29].

 A Bloom filter can represent a set of strings compactly in an m-bit bit vector for

efficient membership queries [30]. Given a string x, the Bloom filter computes k hash

functions h1(x), h2(x), …, hk(x) that produce k hash values ranging from 1 to m. The

filter then sets k bits at positions h1(x), h2(x), …, hk(x) in the bit vector. The procedure

repeats for each string in the string set to program the filter. A membership query for a

string w looks up the bits at positions h1(w), h2(w), …, hk(w). If any one of the k bits is

unset, it is impossible for w to be a member in the pattern set; otherwise, a match may

occur. A verification phase follows a suspicious match to verify whether a true match

occurs. Bloom filtering does not have false negatives, but may have false positives.

The number of false positives can be reduced with proper choices of k and m.

Dharmapurikar et al. [29] designed a hardware architecture using Bloom filters

to inspect packet content. Assume that the signature lengths range from Lmin to Lmax.

The architecture groups the signatures by length and stores each group of signatures

in an individual Bloom filters, so totally Lmax-Lmin+1 Bloom filters are in this

architecture. A window of Lmax characters reads one character from the text in each

cycle. Each Bloom filter matches in parallel a substring of length i, Lmin ≤ i ≤ Lmax in

the window. If a suspicious match is declared by one of the Bloom filters, this match

will receive further probing by an analyzer that verifies if it is indeed a true match.

Otherwise, if no match is found, the window can safely advance to next character

because no false negatives can occur. This architecture can be extended to advance G

 8

characters at a time at the cost of duplicating G sets of parallel Bloom filters. The

number of Bloom filters in this architecture becomes G(Lmax-Lmin+1). Parallel access

to the bit vector from so many Bloom filters is not always feasible, and thus G is quite

limited in practice.

 9

Chapter 3 Algorithm Design

3.1 The Bloom Filter Accelerated Sub-linear Time algorithm

 This work designs the hardware architecture for the sub-linear time algorithm

extended from the WM algorithm to accelerate multiple string matching. The key

points to embody the design are avoiding the need of a large shift table and reducing

the impact from the worst case on performance.

3.1.1 Drawbacks of using a shift table

 The WM algorithm looks up the shift values in the shift table by indexing the

block in the suffix of the search window during scanning stage. A block of fewer than

three characters is very likely to appear in a large pattern set, say that of virus

signatures, and thus the shift distance will be mostly short and the verifications will be

frequent according to the WM heuristic. A larger block of at least three characters can

improve the situation, but it also leads to a large shift table. For example, 2563 entries

in the shift table are required to store the shift value of every block of three characters.

It amounts to memory space of 16 MB if each entry takes one byte. A block size of

larger than three is almost impractical due to the huge table size. Although

compressing the table by mapping more than two blocks to an entry is possible, the

shift distance will be reduced because the shift value in an entry is the minimum of all

the blocks mapped to that entry. The shift distance will be reduced and the number of

verifications will be increased significantly if the table is compressed too much.

A large table is unable to fit into the embedded memory, but if the table is stored

in the external memory, the slow memory access will slow down the overall

performance. Moreover, the shift values in the shift table can be indexed only from

the rightmost block of the search window. If a shift value of zero happens frequently,

the frequent verifications will slow down the overall performance. The BFAST

 10

algorithm keeps the positions of the blocks in the patterns so that not only the

rightmost block, but also the other blocks in the search window can derive their

position in the patterns. Therefore, the algorithm can use a heuristic similar to the

bad-character heuristic in the Boyer-Moore algorithm to determine a better shift value.

This benefit will be demonstrated in the next sub-section.

3.1.2 Implicit shift table using Bloom filters

 Let BBo be the rightmost block in the search window. The shift distance is a

function of the positions of BoB or its suffix in the patterns [24], so separately storing

the blocks in each position of the patterns is sufficient to derive the shift distance. Fig.

2 shows an example of this derivation. Assume current block of the text is ‘XAMP’ ,

it appears in the fourth last block of the pattern ‘EXAMPLE1’, and thus the shift

distance of ‘XAMP’ should be 4 to fetch the block ‘PLE1’ and check if its shift

distance is 0 as illustrated in the Section 2.1.2. The shift value is derived formally

from the Equation (1)

Figure 2. Shift distance of a block can be derived from its position in the patterns

)1(
s

,
s

,

,

,

)(0

0

0

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−

−

=

otherwise
patternsomeofprefixtheisklengthof

suffixlongestitsbutpatternstheinappearnotdoesBif
patternsomeofjpositionin

isBofoccurrencerightmosttheif

m

km

jm

BShift

 11

 With this derivation of shift distance, we can replace the shift table lookup

operation with membership query of parallel Bloom filters. Bloom filtering is a

space-efficient approach to store strings in the same length for membership query, i.e.

to check if one string belongs the string set or not. By grouping the blocks in different

positions of the patterns and storing these groups in separate Bloom filters, we can

know whether a block belongs to the pattern or not and its position by querying these

Bloom filters in parallel.

Fig. 3 illustrates how to establish an implicit shift table using Bloom filters.

Assume the pattern set is {P1, P2, P3}. After dividing by position, the Group 0 is

{efgh,mnop,vuts}, Group 1 is {defg,lmno,wvut}, and so on. If the block of text is

“cdef”, the query result will be Group 2 hit, so the shift distance is 2. If there is no hit

reported, then it means there is no such block in the patterns, we can safely shift

maximum shift distance or 8 in this example.

Figure 3. Grouping of blocks in the patterns for deriving the shift distance from querying Bloom

filters. The shift table in the WM algorithm becomes implicit in the Bloom filters herein.

 12

The grouping is defined formally in Equation 2:

setpatterntheP
miBmPppp
BmiPppp

G
im

imBim
i :,

11||},|...{
||0},|...{

01

01

⎩
⎨
⎧

−≤≤+−∈
−≤≤∈

=
−

−+−− . (2)

The membership query of the Bloom filters may have false positives. In other

words, a block may not exist in a group, but the corresponding Bloom filter of that

group may be hit. The shift distance will be smaller than it should be as the false

positives happen, but the search is still safe: no match will be missed. As long as the

number of false positives is controlled within a small value with proper parameter

setting of the Bloom filter, say the length of the bit vector, the false positives will not

be an issue.

3.1.3 Additional checking in the Bloom filters

Although G0 is rarely hit for random samples, i.e. the block is not in the

rightmost block of the pattern, this is not always the case in practice such as the

reason illustrated in Section 3.2.1. Therefore, unlike the original WM that verifies the

possible match immediately, the BFAST algorithm continues the checking the block

BB1, B2B , …, BBm-|B| like the bad-character heuristic in the Boyer-Moore algorithm, where

BjB stands for the |B| characters that are j characters away from the rightmost character

backward in the search window. If the Bloom filter of Gi is hit, where i > j, the shift

distance can be i - j. The reason is much like the bad-character heuristic in the

Boyer-Moore algorithm. A shift less than i - j cannot lead to a match because BBj

cannot match any blocks in groups from Gi-1 to Gj. The verification procedure will

follow to check whether a true match occurs only if every block from B0B to BBm-|B| is in

Bloom filters of G0 to Gm-|B|. For example, Assume the text is abcdefghijklmn….

When the querying result of a block hijk is reported hit in the group 0, i.e. the shift

distance equals to 0, we take the preceding block ghij to query the bloom filter of

group 1. If it still hit, we continue to use the preceding block fghi to query group 2,

 13

otherwise, we declaim verification end and move on to scan the block ijkl which is the

next block of the one caused the verification, i.e. the block which shift distance is 0.

This verification procedure repeats until querying the last group. If all the groups are

hit, Anchored AC verification is involved. This further verification can reduce

significantly the number of verifications in the WM algorithm. In the simulation using

10,000 patterns, this approach can reduce the number of verifications by around 50%.

3.1.4 Worst case handling

 The performance of a sub-linear time algorithm, say the WM algorithm, may be

low in some cases. First, when the pattern length is close to the block size, the shift

distance of m - |B0| + 1 will be very short, given m ≥ |B0|. The BFAST algorithm can

process at least four characters in each shift of the search window, while the shift

distance in the WM algorithm can be as short as one or two characters in the same

case. Second, the worst case time complexity can be as high as O(mn) if the patterns

occur in the text frequently. Consider the extreme case that the characters both in the

text and in some patterns are all a’s, verification is required after each shift of only

one character. To increase the performance in the worst case, this work uses a linear

time algorithm, Anchored-AC, to co-work with this sub-linear time algorithm for the

verification. The verification result is reported to software (upper-layer applications)

directly by the verification engine. The interface between the search engine and

verification engine communicates through a descriptor buffer. As long as the buffer is

not full, the search engine can always offload the verification and move on to scan the

next block without blocking after finding a potential match.

3.1.5 Advantages of the proposed architecture

 This architecture can successfully process multiple characters at a time with the

number of Bloom filters on the order of at most O(m). Compared with other

Bloom-filter-based architectures, such as [29], which demands the Bloom filters on

 14

the order of O(ms), where s is the allowed shift distance, the proposed architecture has

the two major advantages. First, the number of Bloom filters required is reduced for

the same purpose of processing multiple characters at a time. Second, the proposed

architecture allows long shift distance. For example, if the shortest pattern length is 10,

the proposed architecture allows shifting as many as 10 characters at a time. This is

not feasible in the architecture of [29] because the number of Bloom filters is large

and simultaneous accesses to the bit vector from so many Bloom filters are difficult.

Moreover, as far as we know, no other hardware architecture can have such long shift

distance so far.

3.2 Design issues

Besides the algorithm itself, the implementation impacts on the performance

significantly. This section focuses on the practical design issues in the

implementation.

3.2.1 Characteristics of the pattern set

 Because this design benefits the application with a large pattern set, we choose

anti-virus as the target application. Therefore, we analyze Windows executable files as

the text. The block distribution in the Windows executable files is non-uniform. Table

1 presents the top 10 appearing blocks in 1,000 Windows files we selected.

Table 1. Top 10 appearance blocks in 1,000 windows files.

 block % block %

1 000000 48.7% 6 202020 0.6%

2 ffffff 4.7% 7 020000 0.4%

3 909090 4.3% 8 00008b 0.4%

4 010000 1.1% 9 0083c4 0.3%

5 cccccc 0.7% 10 404040 0.3%

The ‘000000’ appears very frequently in the text, up to 48.7%. This non-uniform

distribution leads to the high frequent hit in the Bloom filter of G0 when there is a

pattern that ends with an all zero block.

 15

3.2.2 Hash functions

 The formula of false positive rate in the Bloom filter is based on the universal

hash functions. If the hash function is not universal, the false positive rate will be

higher. The more false positives happen, the more verification procedures are required.

Therefore, the selection of proper hash functions is critical to the system performance.

This works uses the class of universal hash functions which are easily implemented in

hardware proposed by [34]. For any bit in the block X with b bits represented as X=

<x1, x2, x3… xb>, the hash function is calculated as h(x) = d1．x1 ♁d2．x2 ♁….. ♁ db．

xb, where “．” is a bitwise AND operator and ♁ is a bitwise OR operator, where di are

pre-generated random number ranging from 0 to the bit vector size of m. After

simulating the Bloom filters by randomly generated text, we find this hash function

can achieve lower false positive rate.

 16

Chapter 4 Implementation details

4.1 String match architecture

The string matching architecture includes two main components: (1) the

scanning module, which is the main block performing the proposed algorithm that

queries Bloom filters and shifts the text according to this querying result, and (2) the

verification module and interface. When the scanning module finds a potential match,

it instructs a verification job by filling an entry in verification job buffer in the

verification interface. Fig. 4 shows the block diagram of the entire architecture. Each

component in this architecture is described in following sections.

Figure 4. Overview of the string matching architecture

 Each shift in the text includes three operations implemented in three separate

sub-modules in the scanning module.

1. TextMemoryFetch fetches the suffix block of the search window in the text

memory.

2. BloomFilterQuery queries the Bloom filters to find which group(s) the block

belongs to.

3. TextPositionController calculates the location (address) of the search window in

 17

the text memory on the next round according to querying result from the Bloom

filters.

4.1.1 Text memory fetching

The block size is set to a word of four bytes for accessing memory efficiently

and reducing matching probability of a random block. For parallel accessing four

continuous memory bytes, the text memory is divided into four interleaving banks.

Fig. 5 illustrates an example of fetching a word of ‘BCDE’ starting with the byte

addresses 00012. Note that the characters in the text are interleaved in each memory

bank and the first character to fetch locates in bank1. The underlined bits in the

address except the last two are word address. The byte offset is decoded to fetch the

correct byte in each bank. The fetched word is rotated according to the byte offset

from a multiple of four.

Figure 5. An example of fetching four bytes in 0001, 0010, 0011 and 0100.

4.1.2 Bloom filter querying

 There are N independent Bloom filters storing different block sets in the patterns

grouping with their positions in the patterns, where N corresponds to the group

 18

number. The block fetched by the TextMemoryFetch module queries these N Bloom

filters in parallel to get the membership information. After the query, the priority

encoder in TextPositionController encodes the membership information into the shift

distance as illustrated in Chapter3. The block diagram of the BloomFilterQuery

module is presented in Fig. 6.

Figure 6. BloomFilterQuery module architecture

Because the bit vector has to be long enough to reduce the false positive rate, the

on-chip dual-port block RAM is a lower cost way to implement it than flip-flops. Fig

6 is a example using 16kb block RAM on Xilinx XC2VP30 to implement one Bloom

filter. Each block RAM is configured as a single bit wide and 16kb long bit array, and

can be read write on two port simultaneously to support two hash function. Thus, the

false positive rate f of ONE block memory is
2

16384
2n-

e-1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 [29], where n is the

number of pattern blocks stored in that bit vector. Using k block memory can reduce

this rate to f k, it is very close to the false positive rate of one k*16kb memory of 2k

ports. The hash functions are independent, so they can be calculated and fetch the

M-bit bit vector in parallel.

 19

4.1.3 Text position controller

 The TextPositionController maintains the position of the suffix block in the

search window of the text and calculate the next position according to the

membership information of the BloomFilterQuery and current matching state. A finite

state machine keeps five states to control how the position is calculated. Fig. 7

illustrates the state transition diagram.

Figure 7. Text position controller state transition diagram.

1. In the beginning, set the initial address according to the scan window size and

block size. For example, the scan windows size is l and the block size = b, the

initial text position is l - b

2. When the shift distance is non-zero, i.e. no potential match, it adds the shift

distance to the text position to get the next one.

3. When the shift distance is zero, it substrates 1 from the text position to get the

preceding block in the text to take additional checking illustrated in Section 3.2.2

and stores the text position of this hit block for going to next block as verification

finished.

4. When the additional checking finished, it shifts by the shift distance of the non-hit

block if no match or report a match and just shift one byte to find next match.

 20

5. When there is a potential match, i.e. additional checking reporting match, but the

verification job buffer is full and thus there is no space for instructing a

verification job. TextPositionController halts to wait for a free entry to be filled,

so the text position is not change in this state.

4.1.4 Verification interface

This work defines a flexible verification interface rather than implements a

specific verification mechanism to let verification mechanism to be replaceable

according to different applications. The verification mechanism is beyond this work,

so we just briefly describe the advantages of the approach we take in this work.

 This work takes anchored Aho-Croasick algorithm to verify the suspicious data

for two reasons. (1) Its data structure allows high compression rate. It compresses the

original AC date structure to 1 Mb that stores 1000 patterns, almost 0.2%, that can be

put into the Virtex-II Pro platform we used for experiment. (2) Its time complexity is

linear in the worst case. Due to the potential match is very possible to be a true match,

i.e. a virus; a linear worst case time algorithm is efficient to discover it.

There are two parts in the verification interface: JobDispatcher and

VerificationJobBuffer (VJB). When the scanning module discovers a potential match,

it instructs the JobDispatcher to fill the verification job descriptor (VJD), composed

of text position, length and other related information to the VJB. The format of VJD is

illustrated in Fig. 8. The most significant bit of the VJB is set when it is allocated. The

verification module should test this bit to know if there is a new verification job and

decode the text position and length and other information it needs to verify. After it

finishes the verification, it should clear the entry it verified to free the entry.

Figure 8. Verification Job Descriptor format

 21

The VJB is implemented with one 16 kb dual-port block RAM too, so there are

16k/32 or 512 entries in it. The JobDispatcher keeps a VJB pointer. After scanning

modules allocated one entry, the pointer is moved to the next entry. When it finds a

potential match next time it reads the allocation bit to tell if it is empty. The pointer

will rotate when it comes to bottom of VJB, so if it finds allocation bit is set; which

means the VJB is full. This can be improved by more than one verification module to

verify the jobs in the VJB to balance the verification and scanning speed.

4.1.5 Pipeline the design

 In the original multi-cycle design, the location of next block is decided by the

shift values derived from the Bloom filters to continue the next round of matching, so

there is only one active module at a time like the Fig. 9(a). We pipeline the design by

dividing the text into four independent segments like the example of Fig. 9(b). If the

length of text is m. The segments are the 0 ~ 1-
4
m , 1s-

4
m

+ ~ 1-
2
m ,

1s-
2
m

+ ~ 1-3
4
m
∗ , 1s-3*

4
m

+ ~ 1-m . The range of one segment is decided by

dividing the original text by four plus the scan-window-size to avoiding the pattern

across the segments. For example, assume length of text is 40. The four segments will

be 0~9, 3~19, 13~29, 23~39. In this way of dividing the text to four independent

segments, the TextPositionController can assign four start addresses at every cycle of

four in the beginning, and calculate the second block position of the first segment at

the fifth cycle: 7+S1, and the second block position of the second segment at the sixth

cycle: 10+S2, and so on, where S1 is the shift distance of first segment at the first time

query, and S2 is the shift distance of second segment at the first time query.

 22

Figure 9. (a) State diagram of pipelining

4.2 Integration to Vertex II pro platform

 Besides the string match module, this work needs additional efforts to integrate it

into the system to test its functionality on FPGA chip. This work is implemented on a

Xilinx SOC FPGA development platform XC2VP30. The well-tested soft IP

supported by Xilinx with this chip can be used to quickly integrate the user-defined

logic using Xilinx development tool EDK to become a complete and customized

system. The user-defined logic only needs to use a generalized IP interface (IPIF) as a

wrapper to communicate with the other components in the system without dealing

with the timing. The functions in the IPIF can also been customized using the EDK,

such as interrupt supporting, S/W register supporting, address range supporting, or

DMA supporting. Therefore, we only need to define the communication interface, use

the template files generated by development tool, and connect the I/O between IPIF

and our designs.

 The interface between processor and string matching module in this work

defined as figure 10.

 23

Figure 10. Addressing space of string matching

There are two copies of the communication data to scanning one text segment

and transferring another segment at the same time. One communication data includes

(1) a command register that sets up the length and enable bit of one transaction, (2) a

status register to report the matching virus count, (3) a block of virus index memory

to report all the matching virus identifications and (4) a block of text memory to store

the text to be scanned. Besides the data communication in scanning time, scanning

data like m-bit vector and hash functions or verification data like transition states of

Anchored-AC are needed to be updated before scanning.

 24

Chapter 5 Experimental Results

5.1 Simulation and synthesizing result

 To verify the design, this work runs a behavior simulation in C to measure the

performance in different pattern count. Besides, this work also runs a timing

simulation in HDL to find the critical path delay to estimate the clock rate.

5.1.1 C Simulation result

Setting the same false positive rate of each group of Bloom filter by let the m/n

and k are all the same in the Bloom filter false positive rate formula

k

m
nk-

e-1f ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= [29], where m is memory size, n is pattern count, k is hash function

number, we measured the shift distance in different pattern count showed in Fig 11.

We use both windows executable files and random generated data as scanning text to

run simulations. Although the shift distance becomes smaller as the pattern set going

larger, it maintains at greater than 5 that means five times faster than traditional linear

time algorithm as the pattern count is 52k larger than 30k in Anti-Virus.

0

1

2

3

4

5

6

7

8

9

1.6k 3.2k 6.4k 12.8k 25.6k 51.2k

pattern count

shift dist.

win exec file

random data

Figure 11.. Shift distance in different pattern counts (read/random)

 The positive rate in the scanning module and the positive rate of a single Bloom

filter for different pattern counts are showed in Fig. 12. The false positive rate of a

single Bloom filter is set to constant as before. There are three observations in this

 25

false positive simulation result:

1. Positive rate of the result confirms to theoretical false positive rate when the

text is random generated files, but goes much higher when the text is

Windows executable files because the same reason mentioned in Section 3.2.1.

Therefore, we can simply take the curve of random generated files as false

positive rate curve and take the curve of Windows executive files as the true

positive plus false positive rate in this figure.

2. The positive rate of scanning Windows executable files increases as the

pattern set goes larger, but keeps almost the same in scanning the random

generated files whatever the single Bloom filter or entire scanning module.

Taking the observation in 1, we verify the positive reported and we find that

this difference is also induced by many true positive happening as the pattern

count growing.

3. The additional check of checking the preceding block of the first hitting

block is useful as the pattern count growing. When the pattern count is 52k, it

almost filters the verification to 50%.

Positive rate

0

0.005

0.01

0.015

0.02

0.025

1.6k 3.2k 6.4k 12.8k 25.6k 51.2k

pat. cnt.

scan module, win exe

scan module, random

single BF, win exe

single BF, random

Figure 12. Scanning module false positive rate in different pattern counts

5.1.2 HDL simulation result

Xilinx XCVP30 FPGA has 136 dual-port embedded block memories. Each of it

 26

can be configured single bit wide, 16384 bit long array. We use 16 block memories

which implement 8 Bloom filter groups, two for each that supporting 4 hash functions

and storing 1000 blocks. The theoretical positive rate of each Bloom filter is 0.017%,

and becomes 0.498% in the simulation of the windows executive files and 0.0015% of

random generated files. Besides the m-bit vector of Bloom filters, this works takes

2*4 or 8 to implement two four-bank text memories. Furthermore, for fast prototyping,

the state transition data needed by verification module, Anchored AC, is moving into

the FPGA embedded memory. That costs almost 1 Mb to store 1000 patterns which is

the reason why the pattern count of this HDL simulation is limited in 1000. The total

account of memory cost is about 1.4 Mb in this implementation. If the verification

data keeps in external memory, the pattern set of scanning module using this platform

can be scale to about 10k and maintaining the scanning performance. The penalty is

the longer worst case running time, i.e. verification time.

This architecture implementation consumes 16% usage of LUT of XC2VP30 and

the system operates at 150MHz, and the average shift distance is 7.71 bytes. If the

scanning module is not blocked by the verification module, i.e. the VJB is always not

full; the throughput can be up to 150*7.71*8 or 9.26 Gbps. In our simulation of clean

windows executive files, the verification module needs 5 cycles to verify one entry is

not virus in average, but the scanning module issues a verification job every 26 cycles

in average. Therefore, the assumption of not being block is established in average

case.

The worst case performance occurring when the text are full of viruses is

depends on the virus ratio in the text, the signature length and the matching policy, i.e.

one match or multiple matches. The throughput in different parameters combination is

aimed to be implemented in the future work and not being analysis in this work. We

only simply measure the worse case performance in one condition: when the VJB is

 27

full. Verification speed is the bottleneck of entire system, which is one character for

two clock cycles equaling to 150/2*8 or 600Mbps.

5.2 Comparisons

5.2.1 Compare with the Dharmapurikar et al.’s Bloom filter

 The Bloom filters have been used to inspect packet in the research of

Dharmapurikar et al. in 1997 [29]. They hash the m-bit vector with entire patterns, not

only a fix-length (scan window size) prefix of patterns in this work. Therefore, there

are Lmax-Lmin Bloom filter engines in their design, where Lmax is the longest pattern

length, and Lmin is the shortest pattern length, i.e. the number of Bloom filter engine

depends on the pattern length distribution. On the other hand, in this work, the Bloom

filter number is decided flexibly by the scan window size. The bigger scan window

size, the larger shift distance, and the less verification rate in general. Of course, the

scan window size has to be shorter than the shortest pattern length following the way

of WM algorithm works. Besides, the Dharmapurikar’s design scans the packets from

the beginning straightforwardly and shifts one byte if no match. It duplicates scan

engines to process multiple bytes a time unlike this design utilizing the algorithm

advantage to meet this requirement. Altogether, the low circuit cost and the high

throughput are the main advantages of this work comparing with the Dharmapurikar’s

design. The disadvantage of this design is the higher verification rate. This design

only matches the fix-length prefix of patterns, and thus the matching rate is higher

then the rate of matching entire pattern of the Dharmapurikar’s design, especially

when the block distribution is very non-uniform like Windows executive file. Thanks

to the implementation of verification interface in this design, the verification job can

be finished on time before the next verification job is assigned to complement this

defect in average. Table3 lists the comparison results in more detail. One thing of this

table needs to be addressed. The false positive rate of [29] is simulated with the

 28

unknown signatures, and the false positive rate of this work is simulated with

ClamAV virus database. The distribution of these two kinds of signature is different,

so the number of false positive rate is just for information; the ratio between them is

meaningless.

Table 2. Comparisons between Dharmapurikar’s Bloom filter and BFAST.

False Memory
Name

Pattern
count

Signature Text
positive rate usage

Bloom 35,475 N/A
Filter[6] (1419/BF) length 2~26

live traffic 0.39% 629,146

BFAST Win.exec.files 0.323%
(1,000)

1,000 clamav virus
random 0.0%

262,144

BFAST Win.exec.files 0.390%
(10,000)

10,000 clamav virus
random 0.0%

1,048,576

Circuit Size Frequency Throughput
Name Implement

 (LC)
Bloom filter

engine # (Mhz) (Mbps)
Bloom Xilinx
Filter Virtex 2000e

23328 25 80 502

BFAST Xilinx
(1,000) Vertex2p30

3325 ≦8 156 9,631

BFAST Xilinx
(10,000) Vertex2p30

5438 ≦8 140 5,775

 5.2.2 Compare with the other related works.

 Fig.13 and Fig.14 show the pattern size and the throughput of several

accelerators of string matching. The architecture of the researches may have high

performance like Tan’s Bit-split AC [18] or accommodate large pattern set like

Dharmapurikar’s [29], but there are few architectures can both accommodate large

pattern set and maintain a high throughput like BFAST. One thing need to be

mentioned in this figure is the throughput of the BFAST is depending on the

verification rate. We assume the verification rate is low enough (<0.4%) herein so that

the scanning module will not be blocked by the verification module, and thus the

throughput is full-speeding 9.2Gbps.

 29

0

100,000

200,000

300,000

400,000

500,000

600,000

[6] [18] [35] [27] [4] [36] [37] [26] [38] [39] [40] [41] [42] [28] [5] [43] [29] BFAST

approach

pa
tt

er
n

si
ze

 (
by

te
)

Figure 13. The pattern size comparison of different hardware architecture

0

2

4

6

8

10

12

[6] [18] [35] [27] [4] [36] [37] [26] [38] [39] [40] [41] [42] [28] [5] [43] [29] BFAST

approach

th
ro

ug
hp

ut
 (

G
bp

s)

Figure 14. The throughput comparison of different hardware architecture

 Besides the large pattern capacity and the high throughput, another advantage of

the BFAST is the simple circuit design. Table3 compares with the INOSIDICE and

the clarks’ design which have more little pattern capacity but higher throughput, Table

the circuit size of BFAST is much smaller with storing the patterns in memory instead

of flip-flops.

Table 3. Comparisons of circuit sizes of Multi-character decoder NFA, Pre-decoded CAM

comparator and BFAST

Type Approach
Circuit Size

(LC)

Decoder NFA Clark’s Multi-character decoder NFA [29] 29,281

Parallel Comparator Sourdis et al.'s Pre-decoded CAM Comp. [33] 64,268

Bloom Filter Implicit shift table using Bloom filters 5,438

 30

Chapter6. Conclusion and future works

 This work implement an implicit shift table using Bloom filters to realize a

sub-linear time algorithm with hardware. It processes multiple bytes a time based on

the theory of the sub-linear time algorithm to increase the throughput up to 9.2Gbps

and utilize the efficient memory-usage Bloom filter to accommodate more than

10,000 patterns. The simplicity of the circuit design of this architecture makes this

design can be integrated into the Xilinx XC2VP30 SOC platform to become a

customized anti-virus chip. After coordinating the packet flow and the other processor

communication, it can become a complete security system.

 After the implementation, we find that although the performance of this design is

good in average case, but it will decrease when the verification rate going higher, i.e.

when the virus appearing more often. The slow verification speed will slowdown

overall system performance. It can be fixed by utilizing more than one verification

engine to balance the speed between verification and scanning. Analysis of the speed

differencing in various virus appearing ratio and the different packet lengthes is also

interesting in this topic. Although this work implements only a heuristic like

Bad-Character in the BM algorithm, the Good-Suffix heuristic is designed with this

architecture and illustrated in Appendix too. The improvement of this heuristic is

predictable.

 31

References
[1] S. Antonatos, K. G. Anagnostakis and E. P. Markatos, “Generating realistic

workloads for network intrusion detection systems,” ACM Workshop on
Software and Performance (WOSP), Redwood, CA, Jan. 2004.

[2] Ying-Dar Lin, Chih-Wei Jan, Po-Ching Lin and Yuan-Cheng Lai, “Designing an
Integrated Architecture for Network Content Security Gateways,” IEEE
Computer, June 2006.

[3] Y. H. Cho, S. Navab and W. H. Mangione-Smith, “Specialized hardware for
deep network packet filtering,” Proc. of 12th International Conference on Field
Programmable Logic and Applications (FPL), La Grand Motte, France, Sept.
2002.

[4] Z. K. Baker and V. K. Prasanna, “Time and area efficient pattern matching on
FPGAs,” Proc. of International Symposium on Field-Programmable Gate Arrays
(FPGA), Monterey, CA, Feb. 2004.

[5] I. Sourdis and D. Pnevmatikatos, “Pre-decoded CAMs for efficient and
high-speed NIDS Pattern Matching,” IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), Napa Valley, CA, April 2004.

[6] M. Aldwairi, T. Conte and P. Franzon, “Configurable string matching hardware
for speeding up intrusion detection,” ACM SIGARCH Computer Architecture
News, vol. 33, no. 1, pp. 99-107, Mar. 2005.

[7] I. Sourdis, “Efficient and high-speed FPGA-based string matching for packet
inspection,” MS Thesis, Dept. Elec. Comput. Eng., Tech. Univ. Crete, Jul. 2004.

[8] A. Aho and M. Corasick, “Efficient string matching: An aid to bibliographic
search,” Comm. of the ACM, vol. 18, issue 6, pp.333-343, Jun. 1975.

[9] P. C. Lin, Z. X. Li, Y. D. Lin, Y. C. Lai and F. C. Lin, “Profiling and Accelerating
String Matching Algorithms in Three Network Content Security Applications,”
IEEE Communications Surveys and Tutorials, to appear.

[10] G. Navarro and M. Raffinot, Flexible pattern matching in strings, Cambridge
Univ. Press, 2002.

[11] M. Norton and D. Roelker, “High performance multi-rule inspection engine,”
[Online]. Available: http://www.snort.org/docs/.

[12] A. Broder and M. Mitzenmacher, “Network applications of Bloom Filters: A
survey,” Internet Mathematics, vol. 1, no. 4, pp. 485-509, 2004.

[13] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching," Tech. Rep.
TR94-17, Dept. Comput. Sci., Univ. Arizona, May 1994.

[14] R. S. Boyer and J. S. Moore. “A Fast String Searching Algorithm,” Comm. of the
ACM, vol. 20, issue 10, pp.762-772, Oct. 1977.

 32

[15] ClamAV document, “Creating signatures for ClamAV,” [Online]. Available:
http://www.clamav.net/doc/0.88/signatures.pdf.

[16] M. Chrochemore and W. Rytter, Jewels of Stringology, World Scientific
Publishing, 2003.

[17] Y. Sugawara, M. Inaba and K. Hiraki, “Over 10Gbps String Matching
Mechanism for Multi-Stream Packet Scanning Systems,” Proc. of 14th
International Conference on Field Programmable Logic and Applications (FPL),
Antwerpen, Belgium, Aug. 2004.

[18] L. Tan and T. Sherwood, “A High Throughput String Matching Architecture for
Intrusion Detection and Prevention,” Proc. 32nd Annual International
Symposium on Computer Architecture (ISCA), Madison, WI, June 2005.

[19] N. Tuck, T. Sherwood, B. Calder and G. Varghese. “Deterministic
Memory-Efficient String Matching Algorithms for Intrusion Detection,” Proc. of
the IEEE INFOCOM, Hong Kong, Mar. 2004.

[20] M. Norton, “Optimizing Pattern Matching for Intrusion Detection,” [Online].
Available: http://www.snort.org/docs/.

[21] C. J. Coit, S. Staniford and J. McAlerney, “Towards faster string matching for
intrusion detection or exceeding the speed of Snort,” Proceedings of the 2nd
DARPA Information Survivability Conference and Exposition (DISCEX II),
Anaheim, CA, June 2001.

[22] M. Fisk and G. Varghese. “Fast Content-Based Packet Handling for Intrusion
Detection”. Tech. Rep. CS2001-0670, UC San Diego, May 2001.

[23] R. T. Liu, N. F. Huang, C. H. Chen and C. N. Kao, “A fast string-matching
algorithm for network processor-based intrusion detection system,” ACM Trans.
Embedded Computing Systems, vol. 3, no. 3, pp. 614-633, Aug. 2004.

[24] P. C. Lin, Y. D. Lin, Y. C. Lai, T. H. Lee, “A Multiple-String Matching Algorithm
with Backward Hashing for Generic Network Content Security”, __.

[25] Xilinx, “Two flows for partial reconfiguration: Module based and difference
based,” [Online]. Available: http://www.xilinx.com/bvdocs/appnotes/xapp290.pdf.

[26] R. Sidhu, V. K. Prasanna, “Fast regular expression matching using FPGAs,” Proc.
of IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM), Rohnert Park, CA. Apr. 2001.

[27] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos. “Implementation of a
Content-Scanning Module for an Internet Firewall,” Proc. of IEEE Symposium
on Field-Programmable Custom Computing Machines (FCCM), Napa Valley,
CA, April 2003.

[28] I. Sourdis and D. Pnevmatikatos. “Fast, Large-Scale String Match for a 10Gbps
FPGA-Based Network Intrusion Detection System,” Proc. of 13th International

 33

Conference on Field Programmable Logic and Applications (FPL), Lisbon,
Portugal, Sep. 2003.

[29] S. Dharmapurikar, P. Krishnamurthy, T. Sproull and J. Lockwood. “Deep packet
inspection using parallel bloom filters,” 11th Symposium on High Performance
Interconnects, Stanford, CA, Aug. 2003.

[30] B. Bloom. “Space/Time Tradeoffs in Hash Coding with Allowable Errors,”
Comm. of the ACM, vol. 13, issue 7, pp 422-426, July 1970.

[31] R. A. Baeza-Yates and G. H. Gonnet, “A New Approach to Text Searching,”
Comm. of ACM, vol. 35, issue 10, pp.74-82, Oct. 1992.

[32] Z. Galil, “On improving the worst case running time of the Boyer-Moore string
searching algorithm,” Comm. of the ACM, vol. 22, issue 9, pp. 505-508, 1979.

[33] M. Attig, S. Dharmapurikar, and J. Lockwood. “Implementation results of bloom
filters for string matching.” In IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), Napa, CA, Apr. 2004.

[34] M.V. Remekrshna, E. Fu and E. Bahcekapili, "A performance study of hashing
function for hardware applications," In Proc. of Int. Conf. on Computing and
Information, pages 1621-1636,1994

[35] J. Lockwood. “An Open Platform for Development of Network Processing
Modules in Reconfigurable Hardware.” IEC DesignCon 2001, Santa Clara, CA,
Jan. 2001.

[36] G. Tripp. “A Finite-State-Machine Based String Matching System For Intrusion
Detection on High-Speed Network.” Proc. of EICAR 2005, p. 26-40, May 2005.

[37] L. Bu, J. A. Chandy. “A Keyword Match Processor Architecture Using Content
Addressable Memory.” Proc. of the 14th ACM Great Lakes Symp. on VLSI, Apr.
2004.

[38] B.L. Hutchings, R. Franklin, and D. Carver, “Assisting Network Intrusion
Detection with Reconfigurable Hardware,” Proc. 10th Ann. IEEE Symp.
Field-Programmable Custom Computing Machines (FCCM 02), IEEE CS Press,
2002, pp. 111-120.

[39] C. R. Clark, D. E. Schimmel “Efficient Reconfigurable Logic Circuits for
Matching Complex Network Intrusion Detection Patterns.” Lecture Notes in
Computer Science, Vol. 2778, Jan 2003

[40] C. R. Clark, D. E. Schimmel. “Scalable Pattern Matching for High Speed
Networks.” Proc. of 12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM'04), 2004

[41] C. R. Clark, D. E. Schimmel. “A Pattern-Matching Co-Processor for Network
Intrusion Detection Systems.” Proc. of IEEE International Conference on
Field-Programmable Technology (FPT), Tokyo, Japan, Dec 2003

 34

[42] Y. H. Cho, W. H. Mangione-Smith, “A Pattern Matching Coprocessor For
Network Security.” Proc. of the 42nd Annual Conference on Design Automation,
California, USA, Jun 2005.

[43] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole, and V. Hogsett.
“Granidt: Towards Gigabit Rate Network Intrusion Detection Technology.”
Lecture Notes in Computer Science, Vol. 2438, Jan 2002.

 35

	
	Chapter 1 Introduction
	 Chapter 2 Related Works
	2.1 String Matching Algorithms
	2.1.1 Linear time algorithms
	2.1.2 Sub-linear time algorithms

	2.2 Hardware accelerators
	2.2.1 Hardwire-based accelerators
	2.2.2 Memory-based accelerators

	3.1 The Bloom Filter Accelerated Sub-linear Time algorithm
	3.1.1 Drawbacks of using a shift table
	3.1.2 Implicit shift table using Bloom filters
	3.1.3 Additional checking in the Bloom filters
	3.1.4 Worst case handling
	3.1.5 Advantages of the proposed architecture

	3.2 Design issues
	3.2.1 Characteristics of the pattern set
	3.2.2 Hash functions

	 Chapter 4 Implementation details
	4.1 String match architecture
	4.1.1 Text memory fetching
	4.1.2 Bloom filter querying
	4.1.3 Text position controller
	4.1.4 Verification interface
	4.1.5 Pipeline the design

	4.2 Integration to Vertex II pro platform

	 Chapter 5 Experimental Results
	5.1 Simulation and synthesizing result
	5.1.1 C Simulation result
	5.1.2 HDL simulation result

	5.2 Comparisons
	5.2.1 Compare with the Dharmapurikar et al.’s Bloom filter
	 5.2.2 Compare with the other related works.

	 Chapter6. Conclusion and future works

