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以Bloom filters硬體實作加速傳統次線性比對時間字串比對演算法: 

設計、實作與評估 

 

學生：鄭伊君  指導教授：林盈達 

國立交通大學資訊科學與工程研究所 

 

摘要 

 目前針對封包內容作檢查的網路應用程式主要是用字串比對的方式來偵測

封包中是否有入侵行為、病毒、廣告等惡意的傳輸資料。雖然目前針對字串比對

演算法的研究已多不勝數，但用一般處理器跑軟體的運作方式上，由於其大計算

量和頻繁的記憶體存取使得字串比對的處理速度存在一定的上限。所以在高速應

用中已經走向使用硬體加速器來加速字串比對的運算。 

 本研究提出了一個應用 Bloom filter 的特性實作表格的查詢來達到次線性比

對時間的硬體架構。此架構中利用二個機制來克服原本次線性時間演算法不適於

硬體實作的因素，分別是：一、以平行詢問(parallel query)多個 Bloom filter 來取

代原本演算法中需要存取在於外部記憶體的表格查詢動作。在次線性時間演算法

中，普遍存在一個置於外部記憶體的大表格用以查詢判斷下一步掃描的動作；用

Bloom filter 的方式，不但可以模擬取代查詢表格的動作，更提供了比原本表格

查詢更精確的資訊。二、設計一個非阻斷式(non-blocking) 的驗證介面，使得最

差情況下的處理速度仍達到線性時間。次線性時間演算法在一般情形下的處理速

度雖然是次線性時間，但是基於演算法原理，最糟情形下處理時間會比線性時間

演算法長數倍。經由非阻斷式介面實作使得掃描與驗證的工作得以同時進行來達

到最慢的處理速度會是線性時間演算法的處理速度。 
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 本實作經過軟體模擬和 Xilinx FPGA 合成模擬後驗證無誤，最高速度可達將

近 9.2Gbps；完全是病毒碼的驗證速度是 600Mbps。 

關鍵字: 次線性時間、Bloom filter、字串比對、硬體、加速。 
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Student: Yi-Jun Zheng   Advisor: Dr. Ying-Dar Lin 

Department of Computer and Information Science 

Nation Chiao Tung University 

 
Abstract 

Many network security applications heavily rely on string matching to detect 

malicious intrusions, viruses, spam, and so on. A software-based implementation may 

not meet the performance requirement of high-speed applications due to intensive 

computation and frequent memory accesses. A hardware solution to take advantage of 

hardware parallelism is a promising trend to inspect the packet payload at line rate. 

In this work, we propose an innovative memory-based architecture using Bloom 

filters to realize a sub-linear time algorithm that can effectively process multiple 

characters simultaneously. The two key ideas to realize the sub-linear time algorithm 

in this architecture are (1) replacing the slow table lookup in the external memory 

with simultaneous queries to several Bloom filters and (2) designing a non-blocking 

verification interface to keep the worst-case performance in linear time. 

The proposed architecture is verified in both behavior simulation in C and timing 

simulation in HDL. The simulation result shows that the throughput is nearly 10 Gbps 

for Windows executable files and 600 Mbps in the worst case. 

Keywords: sub-linear time, Bloom filter, string match, hardware, acceleration 
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Chapter 1 Introduction 

Detecting and filtering proliferating attacks and viruses on the Internet requires 

content classification at the application layer, as opposed to traditional packet 

classification at the network and transport layers. Content classification involves 

string matching for patterns of malicious signatures, but string matching has been 

reported to be a bottleneck of network content security applications [1], [2], such as 

intrusion detection systems (IDS) and anti-virus systems. Consequently, the efficiency 

of string matching is critical to content processing. String matching algorithms 

implemented on general purpose processors is often not efficient enough to afford the 

escalating amount of Internet traffic, so several specialized hardware-based solutions 

have been proposed for high-speed applications. 

A hardware accelerator can hardwire the signatures into logic cells [3-5] on the 

FPGA or store the signatures into memory [6]. The former can generally achieve 

higher performance because it is easier to implement pipelining and process multiple 

bytes per cycle with high area cost. The disadvantages are that the number of 

signatures is limited by the gate count, and that dynamic signature updates during 

matching is difficult due to long programming time. An ASIC implementation is also 

impossible since it is not reconfigurable. The latter is easily reconfigurable in 

signature updates. The number of signatures is limited by the memory size, but the 

limitation is a tiny problem if external memory is used. Moreover, the hardware can 

be implemented on an ASIC chip. 

A study in [7] surveys and summarizes several architectures of string matching 

engines. As far as we know, existing solutions all implement linear time algorithms, 

say the well-known Aho-Corasick (AC) algorithm [8], that have to read every 

character in the text, and hence the time complexity is O(n), where n is the text length. 
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Although some designs can process multiple characters at a time at the cost of 

duplicating matching hardware components, the number of characters under 

simultaneous processing is quite limited in practice due to hardware complexity. 

Unlike linear time algorithms, many existing sub-linear time algorithms can skip 

characters that can not be a match so that multiple characters are processed at a time 

in effect [9], [10]. Although they generally have higher performance than a linear time 

algorithm in software [10], [11], they are rarely implemented in hardware, probably 

because of two reasons. First, sub-linear time algorithms skip unnecessary characters 

according to some heuristics, typically by looking up a large table. The table may be 

too large to fit on the embedded memory, and thus be stored in external memory 

which is time-consuming to access. Second, although the average time complexity of 

the sub-linear time algorithms is roughly O(n/m), where m is the pattern length, the 

worst-case time complexity is O(mn), worse than O(n) in linear time algorithms. 

Therefore, sub-linear time algorithms are less resilient to algorithmic attacks that 

exploit the worst case of an algorithm to reduce its performance. 

In this work, we propose an innovative memory-based architecture using Bloom 

filters [12] to realize a sub-linear time algorithm enhanced from the Wu-Manber (WM) 

algorithm [13], namely the Bloom Filter Accelerated Sub-linear Time (BFAST) 

algorithm herein. The proposed architecture stores the signatures in the Bloom filters 

that can represent a set of strings in a space-efficient bit vector for membership query, 

so this proposed architecture can accommodate a large pattern set and have low cost 

in pattern reconfiguration. The proposed architecture replaces the table lookup in the 

WM algorithm with simultaneous queries of several Bloom filters to derive the same 

shift distance of the search window. Thanks to the space efficiency of Bloom filters, 

the required memory space can fit into the embedded memory. To handle the worst 

case, a heuristic similar to the bad-character heuristic in the Boyer-Moore algorithm 
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[14] is adopted to reduce the number of required verifications in the WM algorithm. 

When a suspicious match is found in a position called the anchor, the anchor is passed 

to a verification engine without blocking the scan. The system also supports searching 

for a simplified form of regular expressions specified in terms of a sequence of 

sub-patterns spaced by bounded gaps, which can be found in some virus patterns [15]. 

The implementation result shows that this architecture can processes multiple 

bytes a time based on the theory of the sub-linear time algorithm to increase the 

throughput up to 9.2Gbps and utilize the efficient memory-usage Bloom filter to 

accommodate more than 10,000 patterns. The simplicity of the circuit design of this 

architecture makes this design can be integrated into the Xilinx XC2VP30 SOC 

platform to become a customized anti-virus chip. 

The rest of this work is organized as follows. Chapter 2 reviews typical string 

matching algorithms and existing hardware accelerators. Chapter 3 introduces the 

architecture of the proposed sub-linear time algorithm. Chapter 4 discusses the 

detailed implementation issues, such as the interface between the search engine and 

the verification engine. This chapter also presents the system architecture as well as 

each component inside. Chapter 5 evaluates the proposed architecture and compares it 

with existing works. Chapter 6 concludes this work. 
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Chapter 2 Related Works 

2.1 String Matching Algorithms 

The single string matching problem is to search for all the occurrences of a string 

p, called the pattern, in the text T = t1t2…tn on the same alphabet set, where n is the 

text length. The multiple string matching allows to simultaneously search for the 

patterns in the set P= {p1, p2…, pr}, where r is the number of patterns. Many 

algorithms have been proposed for various purposes, such as text searching, network 

content security, and bioinformatics. Some recent textbooks, such as [10] and [16], 

cover the algorithms for general applications. Lin et al. review and evaluate the 

algorithms particularly for network content security [9].  

String matching algorithms can be linear time or sub-linear time in terms of time 

complexity. Linear time algorithms track every character in the text to decide whether 

a match occurs, so their running time is O(n). Sub-linear time algorithms can skip 

characters that can not be a match according to some heuristics, and thus can process 

multiple characters at a time in effect. The latter algorithms achieve the time 

complexity of roughly O(n/m) on average, so they are generally faster than the former. 

2.1.1 Linear time algorithms 

 The Aho-Corasick (AC) algorithm [8] is a typical linear time algorithm found in 

some hardware designs. It constructs a finite automaton from the patterns, and then 

feeds the automaton with input characters one by one in the text for state transition. A 

match is claimed if one of the final states is reached. The time complexity of AC 

algorithm is O(n). 

A state transition involves two memory accesses. One reads a character from the 

input text and the other accesses the transition table to determine the next state. 

Reading one character at a time limits the performance of AC. Modern data buses 
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allow reading four or eight characters at a time, so the state transition from only one 

character is inefficient. Some hardware architectures allow processing more than one 

character at a time [17], [18]. Moreover, the transition table in AC is large for a large 

pattern set. Some compression methods have been proposed to reduce the memory 

requirement [19], [20]. 

2.1.2 Sub-linear time algorithms 

 The Boyer-Moore (BM) algorithm can skip characters that cannot be a match 

according to the bad-character and the good-suffix heuristics [14]. Some algorithms 

[13], [21], [22] based on similar heuristics extend the BM algorithm for multiple 

string matching. Among them, the Wu-Manber (WM) algorithm has been 

implemented in some popular open-source packages, such as Snort 

(http://www.snort.org) for intrusion detection systems and ClamAV 

(http://www.clamav.net) for anti-virus systems. Some variants of WM are also 

proposed for short patterns and longer skip distance [23], [24]. These algorithms are 

very efficient and their time complexity is sub-linear time on average. 

The WM algorithm searches for the patterns by moving a search window of 

length m along the text, where m is the length of the shortest pattern in the pattern set. 

WM matches the rightmost block of the search window against the patterns. If the 

block does not appear in any of the patterns, the search window can safely shift 

m–B+1 characters without missing a match, where B is the block size. Otherwise, the 

shift distance is m–j, where j is the position of the last character in the rightmost 

occurrence of the block in the patterns. If the shift distance is 0, i.e., the block is the 

suffix of some patterns in the pattern set, the verification should follow to verify if a 

true match occurs. Without loss of generality, Fig. 1 illustrates an example with only 

one pattern for easy illustration. The search window can be shifted by 11–4+1 = 8 

characters since the block ‘TEST’ does not appear in the patterns. 
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The WM algorithm calculates the shift values for every possible block of B 

characters and stores them in a shift table in the pre-processing stage. The larger the 

block size, the less likely the block appears in the patterns. However, a large block 

size also implies a large shift table for every possible block and limits the shortest 

pattern length that is allowed. The block size is 2 or 3 in practice. The mapping from 

the block to the table is not necessarily one-to-one. If more than one block is mapped 

to the same entry, the minimum shift value of them is filled in this entry. Such a 

mapping can save the table space at the cost of smaller shift values. 

 
Figure 1. The search window can be safely shifted by m-B+1 characters by looking up the shift 

table according to the heuristic in the WM algorithm 

Although the WM algorithm is fast on average, its worst-case performance is 

worse than linear time. For example, if a pattern in the pattern set is ‘aaaaa’ and the 

text is composed of all a’s, the search window cannot skip any characters. The time 

complexity becomes O(mn) because the verification takes O(m) in every position of 

the text.  

2.2 Hardware accelerators 

 The patterns can be either hardwired into logic cells on FPGA or stored in the 

memory in existing hardware accelerators. Among these accelerators, we particularly 

pay more attention on Bloom filters which the proposed architecture is based on. 

2.2.1 Hardwire-based accelerators 

 Although storing the patterns into the look-up tables (LUTs) on the FPGA is 
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feasible, the reconfiguration is costly. Updating the patterns takes hours to regenerate 

a new bit-stream including the patterns and a few minutes to download it onto the 

chip. The cost can be reduced by incremental MAP and PAR [25] or by partial 

reconfiguration. Besides the reconfiguration cost, the size of the pattern set is limited 

by the number of available gate counts on the FPGA, so these accelerators are not 

scalable to a large pattern set. A few typical designs are introduced below. 

 Sidhu et al. [26] designed a low-cost solution for matching regular expressions. It 

represents the patterns in regular expressions as non-deterministic finite automata 

(NFA) or deterministic finite automata (DFA). Its performance is not high due to the 

state transition of only one single character per cycle. Moscola et al. duplicated 

matching modules to scan multiple packets concurrently. They quadrupled the 

throughput up to 1.184Gbps [27]. 

 Cho et al. [3] designed a pipelining architecture of discrete comparators. Each 

pattern is matched in a pattern match unit. Each stage in the unit involves four sets of 

four 8-bit comparators to simultaneously match four consecutive characters each 

starting from four consecutive positions in each cycle. The matching results in each 

stage are fed to the next stage for the pipelining. This approach can operate at high 

frequency, so the performance can be fairly good. Sourdis [28] improved the 

architecture by fully pipelining the entire system and using a fast fan out tree to 

distribute the incoming data to each comparator. Thus, it can work at 344MHz on the 

Xilinx VirtexII-1000 FPGA, and the throughput is up to 11 Gbps. However, its area 

cost is high. Several following studies were devoted to area reduction, such as [5].  

2.2.2 Memory-based accelerators 

 The memory-based accelerators store patterns in the memory, which can be 

either the embedded memory on the FPGA or the external memory connected through 

the system bus. The accelerators can be implemented on either ASIC or FPGA. When 

 7



the patterns are updated, only the memory content is reloaded with the new pattern set 

and the processing logic remains unchanged. Hence the reconfiguration cost is low. 

Storing the patterns in the embedded memory is helpful to a high-speed design 

because of the high memory bandwidth. However, the size of embedded memory is 

usually too small to store a large pattern set. A memory-efficient mechanism, namely 

Bloom filtering, can be used in a high-speed matching engine [29]. 

 A Bloom filter can represent a set of strings compactly in an m-bit bit vector for 

efficient membership queries [30]. Given a string x, the Bloom filter computes k hash 

functions h1(x), h2(x), …, hk(x) that produce k hash values ranging from 1 to m. The 

filter then sets k bits at positions h1(x), h2(x), …, hk(x) in the bit vector. The procedure 

repeats for each string in the string set to program the filter. A membership query for a 

string w looks up the bits at positions h1(w), h2(w), …, hk(w). If any one of the k bits is 

unset, it is impossible for w to be a member in the pattern set; otherwise, a match may 

occur. A verification phase follows a suspicious match to verify whether a true match 

occurs. Bloom filtering does not have false negatives, but may have false positives. 

The number of false positives can be reduced with proper choices of k and m. 

Dharmapurikar et al. [29] designed a hardware architecture using Bloom filters 

to inspect packet content. Assume that the signature lengths range from Lmin to Lmax. 

The architecture groups the signatures by length and stores each group of signatures 

in an individual Bloom filters, so totally Lmax-Lmin+1 Bloom filters are in this 

architecture. A window of Lmax characters reads one character from the text in each 

cycle. Each Bloom filter matches in parallel a substring of length i, Lmin ≤ i ≤ Lmax in 

the window. If a suspicious match is declared by one of the Bloom filters, this match 

will receive further probing by an analyzer that verifies if it is indeed a true match. 

Otherwise, if no match is found, the window can safely advance to next character 

because no false negatives can occur. This architecture can be extended to advance G 
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characters at a time at the cost of duplicating G sets of parallel Bloom filters. The 

number of Bloom filters in this architecture becomes G(Lmax-Lmin+1). Parallel access 

to the bit vector from so many Bloom filters is not always feasible, and thus G is quite 

limited in practice.
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Chapter 3 Algorithm Design 

3.1 The Bloom Filter Accelerated Sub-linear Time algorithm 

 This work designs the hardware architecture for the sub-linear time algorithm 

extended from the WM algorithm to accelerate multiple string matching. The key 

points to embody the design are avoiding the need of a large shift table and reducing 

the impact from the worst case on performance. 

3.1.1 Drawbacks of using a shift table 

 The WM algorithm looks up the shift values in the shift table by indexing the 

block in the suffix of the search window during scanning stage. A block of fewer than 

three characters is very likely to appear in a large pattern set, say that of virus 

signatures, and thus the shift distance will be mostly short and the verifications will be 

frequent according to the WM heuristic. A larger block of at least three characters can 

improve the situation, but it also leads to a large shift table. For example, 2563 entries 

in the shift table are required to store the shift value of every block of three characters. 

It amounts to memory space of 16 MB if each entry takes one byte. A block size of 

larger than three is almost impractical due to the huge table size. Although 

compressing the table by mapping more than two blocks to an entry is possible, the 

shift distance will be reduced because the shift value in an entry is the minimum of all 

the blocks mapped to that entry. The shift distance will be reduced and the number of 

verifications will be increased significantly if the table is compressed too much. 

A large table is unable to fit into the embedded memory, but if the table is stored 

in the external memory, the slow memory access will slow down the overall 

performance. Moreover, the shift values in the shift table can be indexed only from 

the rightmost block of the search window. If a shift value of zero happens frequently, 

the frequent verifications will slow down the overall performance. The BFAST 
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algorithm keeps the positions of the blocks in the patterns so that not only the 

rightmost block, but also the other blocks in the search window can derive their 

position in the patterns. Therefore, the algorithm can use a heuristic similar to the 

bad-character heuristic in the Boyer-Moore algorithm to determine a better shift value. 

This benefit will be demonstrated in the next sub-section. 

3.1.2 Implicit shift table using Bloom filters 

 Let BBo be the rightmost block in the search window. The shift distance is a 

function of the positions of BoB  or its suffix in the patterns [24], so separately storing 

the blocks in each position of the patterns is sufficient to derive the shift distance. Fig. 

2 shows an example of this derivation. Assume current block of the text is ‘XAMP’ , 

it appears in the fourth last block of the pattern ‘EXAMPLE1’, and thus the shift 

distance of ‘XAMP’ should be 4 to fetch the block ‘PLE1’ and check if its shift 

distance is 0 as illustrated in the Section 2.1.2. The shift value is derived formally 

from the Equation (1) 

 
Figure 2. Shift distance of a block can be derived from its position in the patterns 
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 With this derivation of shift distance, we can replace the shift table lookup 

operation with membership query of parallel Bloom filters. Bloom filtering is a 

space-efficient approach to store strings in the same length for membership query, i.e. 

to check if one string belongs the string set or not. By grouping the blocks in different 

positions of the patterns and storing these groups in separate Bloom filters, we can 

know whether a block belongs to the pattern or not and its position by querying these 

Bloom filters in parallel.  

Fig. 3 illustrates how to establish an implicit shift table using Bloom filters. 

Assume the pattern set is {P1, P2, P3}. After dividing by position, the Group 0 is 

{efgh,mnop,vuts}, Group 1 is {defg,lmno,wvut}, and so on. If the block of text is 

“cdef”, the query result will be Group 2 hit, so the shift distance is 2. If there is no hit 

reported, then it means there is no such block in the patterns, we can safely shift 

maximum shift distance or 8 in this example. 

 

Figure 3. Grouping of blocks in the patterns for deriving the shift distance from querying Bloom 

filters. The shift table in the WM algorithm becomes implicit in the Bloom filters herein. 
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The grouping is defined formally in Equation 2: 
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The membership query of the Bloom filters may have false positives. In other 

words, a block may not exist in a group, but the corresponding Bloom filter of that 

group may be hit. The shift distance will be smaller than it should be as the false 

positives happen, but the search is still safe: no match will be missed. As long as the 

number of false positives is controlled within a small value with proper parameter 

setting of the Bloom filter, say the length of the bit vector, the false positives will not 

be an issue.  

3.1.3 Additional checking in the Bloom filters 

Although G0 is rarely hit for random samples, i.e. the block is not in the 

rightmost block of the pattern, this is not always the case in practice such as the 

reason illustrated in Section 3.2.1. Therefore, unlike the original WM that verifies the 

possible match immediately, the BFAST algorithm continues the checking the block 

BB1, B2B , …, BBm-|B| like the bad-character heuristic in the Boyer-Moore algorithm, where 

BjB  stands for the |B| characters that are j characters away from the rightmost character 

backward in the search window. If the Bloom filter of Gi is hit, where i > j, the shift 

distance can be i - j. The reason is much like the bad-character heuristic in the 

Boyer-Moore algorithm. A shift less than i - j cannot lead to a match because BBj 

cannot match any blocks in groups from Gi-1 to Gj. The verification procedure will 

follow to check whether a true match occurs only if every block from B0B  to BBm-|B| is in 

Bloom filters of G0 to Gm-|B|. For example, Assume the text is abcdefghijklmn…. 

When the querying result of a block hijk is reported hit in the group 0, i.e. the shift 

distance equals to 0, we take the preceding block ghij to query the bloom filter of 

group 1. If it still hit, we continue to use the preceding block fghi to query group 2, 
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otherwise, we declaim verification end and move on to scan the block ijkl which is the 

next block of the one caused the verification, i.e. the block which shift distance is 0. 

This verification procedure repeats until querying the last group. If all the groups are 

hit, Anchored AC verification is involved. This further verification can reduce 

significantly the number of verifications in the WM algorithm. In the simulation using 

10,000 patterns, this approach can reduce the number of verifications by around 50%. 

3.1.4 Worst case handling  

 The performance of a sub-linear time algorithm, say the WM algorithm, may be 

low in some cases. First, when the pattern length is close to the block size, the shift 

distance of m - |B0| + 1 will be very short, given m ≥ |B0|. The BFAST algorithm can 

process at least four characters in each shift of the search window, while the shift 

distance in the WM algorithm can be as short as one or two characters in the same 

case. Second, the worst case time complexity can be as high as O(mn) if the patterns 

occur in the text frequently. Consider the extreme case that the characters both in the 

text and in some patterns are all a’s, verification is required after each shift of only 

one character. To increase the performance in the worst case, this work uses a linear 

time algorithm, Anchored-AC, to co-work with this sub-linear time algorithm for the 

verification. The verification result is reported to software (upper-layer applications) 

directly by the verification engine. The interface between the search engine and 

verification engine communicates through a descriptor buffer. As long as the buffer is 

not full, the search engine can always offload the verification and move on to scan the 

next block without blocking after finding a potential match. 

3.1.5 Advantages of the proposed architecture 

 This architecture can successfully process multiple characters at a time with the 

number of Bloom filters on the order of at most O(m). Compared with other 

Bloom-filter-based architectures, such as [29], which demands the Bloom filters on 
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the order of O(ms), where s is the allowed shift distance, the proposed architecture has 

the two major advantages. First, the number of Bloom filters required is reduced for 

the same purpose of processing multiple characters at a time. Second, the proposed 

architecture allows long shift distance. For example, if the shortest pattern length is 10, 

the proposed architecture allows shifting as many as 10 characters at a time. This is 

not feasible in the architecture of [29] because the number of Bloom filters is large 

and simultaneous accesses to the bit vector from so many Bloom filters are difficult. 

Moreover, as far as we know, no other hardware architecture can have such long shift 

distance so far. 

3.2 Design issues 

Besides the algorithm itself, the implementation impacts on the performance 

significantly. This section focuses on the practical design issues in the 

implementation. 

3.2.1 Characteristics of the pattern set 

 Because this design benefits the application with a large pattern set, we choose 

anti-virus as the target application. Therefore, we analyze Windows executable files as 

the text. The block distribution in the Windows executable files is non-uniform. Table 

1 presents the top 10 appearing blocks in 1,000 Windows files we selected.  

Table 1. Top 10 appearance blocks in 1,000 windows files. 

 block %  block % 

1 000000 48.7% 6 202020 0.6% 

2 ffffff 4.7% 7 020000 0.4% 

3 909090 4.3% 8 00008b 0.4% 

4 010000 1.1% 9 0083c4 0.3% 

5 cccccc 0.7% 10 404040 0.3% 

The ‘000000’ appears very frequently in the text, up to 48.7%. This non-uniform 

distribution leads to the high frequent hit in the Bloom filter of G0 when there is a 

pattern that ends with an all zero block.  
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3.2.2 Hash functions 

 The formula of false positive rate in the Bloom filter is based on the universal 

hash functions. If the hash function is not universal, the false positive rate will be 

higher. The more false positives happen, the more verification procedures are required. 

Therefore, the selection of proper hash functions is critical to the system performance. 

This works uses the class of universal hash functions which are easily implemented in 

hardware proposed by [34]. For any bit in the block X with b bits represented as X= 

<x1, x2, x3… xb>, the hash function is calculated as h(x) = d1．x1 ♁d2．x2 ♁….. ♁ db．

xb, where “．” is a bitwise AND operator and ♁ is a bitwise OR operator, where di are 

pre-generated random number ranging from 0 to the bit vector size of m. After 

simulating the Bloom filters by randomly generated text, we find this hash function 

can achieve lower false positive rate. 
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Chapter 4 Implementation details 

4.1 String match architecture  

The string matching architecture includes two main components: (1) the 

scanning module, which is the main block performing the proposed algorithm that 

queries Bloom filters and shifts the text according to this querying result, and (2) the 

verification module and interface. When the scanning module finds a potential match, 

it instructs a verification job by filling an entry in verification job buffer in the 

verification interface. Fig. 4 shows the block diagram of the entire architecture. Each 

component in this architecture is described in following sections. 

 
Figure 4. Overview of the string matching architecture 

 Each shift in the text includes three operations implemented in three separate 

sub-modules in the scanning module. 

1. TextMemoryFetch fetches the suffix block of the search window in the text 

memory. 

2. BloomFilterQuery queries the Bloom filters to find which group(s) the block 

belongs to. 

3. TextPositionController calculates the location (address) of the search window in 
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the text memory on the next round according to querying result from the Bloom 

filters. 

4.1.1 Text memory fetching 

The block size is set to a word of four bytes for accessing memory efficiently 

and reducing matching probability of a random block. For parallel accessing four 

continuous memory bytes, the text memory is divided into four interleaving banks. 

Fig. 5 illustrates an example of fetching a word of ‘BCDE’ starting with the byte 

addresses 00012. Note that the characters in the text are interleaved in each memory 

bank and the first character to fetch locates in bank1. The underlined bits in the 

address except the last two are word address. The byte offset is decoded to fetch the 

correct byte in each bank. The fetched word is rotated according to the byte offset 

from a multiple of four. 

 

Figure 5. An example of fetching four bytes in 0001, 0010, 0011 and 0100. 

4.1.2 Bloom filter querying 

 There are N independent Bloom filters storing different block sets in the patterns 

grouping with their positions in the patterns, where N corresponds to the group 
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number. The block fetched by the TextMemoryFetch module queries these N Bloom 

filters in parallel to get the membership information. After the query, the priority 

encoder in TextPositionController encodes the membership information into the shift 

distance as illustrated in Chapter3. The block diagram of the BloomFilterQuery 

module is presented in Fig. 6. 

 
Figure 6. BloomFilterQuery module architecture 

Because the bit vector has to be long enough to reduce the false positive rate, the 

on-chip dual-port block RAM is a lower cost way to implement it than flip-flops. Fig 

6 is a example using 16kb block RAM on Xilinx XC2VP30 to implement one Bloom 

filter. Each block RAM is configured as a single bit wide and 16kb long bit array, and 

can be read write on two port simultaneously to support two hash function. Thus, the 

false positive rate f of ONE block memory is 
2

16384
2n-

e-1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 [29], where n is the 

number of pattern blocks stored in that bit vector. Using k block memory can reduce 

this rate to f k, it is very close to the false positive rate of one k*16kb memory of 2k 

ports. The hash functions are independent, so they can be calculated and fetch the 

M-bit bit vector in parallel.  
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4.1.3 Text position controller  

 The TextPositionController maintains the position of the suffix block in the 

search window of the text and calculate the next position according to the 

membership information of the BloomFilterQuery and current matching state. A finite 

state machine keeps five states to control how the position is calculated. Fig. 7 

illustrates the state transition diagram. 

 

Figure 7. Text position controller state transition diagram. 

1. In the beginning, set the initial address according to the scan window size and 

block size. For example, the scan windows size is l and the block size = b, the 

initial text position is l - b 

2. When the shift distance is non-zero, i.e. no potential match, it adds the shift 

distance to the text position to get the next one. 

3. When the shift distance is zero, it substrates 1 from the text position to get the 

preceding block in the text to take additional checking illustrated in Section 3.2.2 

and stores the text position of this hit block for going to next block as verification 

finished. 

4. When the additional checking finished, it shifts by the shift distance of the non-hit 

block if no match or report a match and just shift one byte to find next match. 
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5. When there is a potential match, i.e. additional checking reporting match, but the 

verification job buffer is full and thus there is no space for instructing a 

verification job. TextPositionController halts to wait for a free entry to be filled, 

so the text position is not change in this state. 

4.1.4 Verification interface 

This work defines a flexible verification interface rather than implements a 

specific verification mechanism to let verification mechanism to be replaceable 

according to different applications. The verification mechanism is beyond this work, 

so we just briefly describe the advantages of the approach we take in this work. 

 This work takes anchored Aho-Croasick algorithm to verify the suspicious data 

for two reasons. (1) Its data structure allows high compression rate. It compresses the 

original AC date structure to 1 Mb that stores 1000 patterns, almost 0.2%, that can be 

put into the Virtex-II Pro platform we used for experiment. (2) Its time complexity is 

linear in the worst case. Due to the potential match is very possible to be a true match, 

i.e. a virus; a linear worst case time algorithm is efficient to discover it.  

There are two parts in the verification interface: JobDispatcher and 

VerificationJobBuffer (VJB). When the scanning module discovers a potential match, 

it instructs the JobDispatcher to fill the verification job descriptor (VJD), composed 

of text position, length and other related information to the VJB. The format of VJD is 

illustrated in Fig. 8. The most significant bit of the VJB is set when it is allocated. The 

verification module should test this bit to know if there is a new verification job and 

decode the text position and length and other information it needs to verify. After it 

finishes the verification, it should clear the entry it verified to free the entry. 

 

Figure 8. Verification Job Descriptor format 
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The VJB is implemented with one 16 kb dual-port block RAM too, so there are 

16k/32 or 512 entries in it. The JobDispatcher keeps a VJB pointer. After scanning 

modules allocated one entry, the pointer is moved to the next entry. When it finds a 

potential match next time it reads the allocation bit to tell if it is empty. The pointer 

will rotate when it comes to bottom of VJB, so if it finds allocation bit is set; which 

means the VJB is full. This can be improved by more than one verification module to 

verify the jobs in the VJB to balance the verification and scanning speed.  

4.1.5 Pipeline the design 

 In the original multi-cycle design, the location of next block is decided by the 

shift values derived from the Bloom filters to continue the next round of matching, so 

there is only one active module at a time like the Fig. 9(a). We pipeline the design by 

dividing the text into four independent segments like the example of Fig. 9(b). If the 

length of text is m. The segments are the 0 ~ 1-
4
m , 1s-

4
m

+ ~ 1-
2
m , 

1s-
2
m

+ ~ 1-3
4
m
∗ , 1s-3*

4
m

+ ~ 1-m . The range of one segment is decided by 

dividing the original text by four plus the scan-window-size to avoiding the pattern 

across the segments. For example, assume length of text is 40. The four segments will 

be 0~9, 3~19, 13~29, 23~39.  In this way of dividing the text to four independent 

segments, the TextPositionController can assign four start addresses at every cycle of 

four in the beginning, and calculate the second block position of the first segment at 

the fifth cycle: 7+S1, and the second block position of the second segment at the sixth 

cycle: 10+S2, and so on, where S1 is the shift distance of first segment at the first time 

query, and S2 is the shift distance of second segment at the first time query. 
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Figure 9. (a) State diagram of pipelining 

4.2 Integration to Vertex II pro platform 

 Besides the string match module, this work needs additional efforts to integrate it 

into the system to test its functionality on FPGA chip. This work is implemented on a 

Xilinx SOC FPGA development platform XC2VP30. The well-tested soft IP 

supported by Xilinx with this chip can be used to quickly integrate the user-defined 

logic using Xilinx development tool EDK to become a complete and customized 

system. The user-defined logic only needs to use a generalized IP interface (IPIF) as a 

wrapper to communicate with the other components in the system without dealing 

with the timing. The functions in the IPIF can also been customized using the EDK, 

such as interrupt supporting, S/W register supporting, address range supporting, or 

DMA supporting. Therefore, we only need to define the communication interface, use 

the template files generated by development tool, and connect the I/O between IPIF 

and our designs. 

 The interface between processor and string matching module in this work 

defined as figure 10. 
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Figure 10. Addressing space of string matching 

There are two copies of the communication data to scanning one text segment 

and transferring another segment at the same time. One communication data includes 

(1) a command register that sets up the length and enable bit of one transaction, (2) a 

status register to report the matching virus count, (3) a block of virus index memory 

to report all the matching virus identifications and (4) a block of text memory to store 

the text to be scanned. Besides the data communication in scanning time, scanning 

data like m-bit vector and hash functions or verification data like transition states of 

Anchored-AC are needed to be updated before scanning. 
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Chapter 5 Experimental Results 

5.1 Simulation and synthesizing result 

 To verify the design, this work runs a behavior simulation in C to measure the 

performance in different pattern count. Besides, this work also runs a timing 

simulation in HDL to find the critical path delay to estimate the clock rate.  

5.1.1 C Simulation result 

Setting the same false positive rate of each group of Bloom filter by let the m/n 

and k are all the same in the Bloom filter false positive rate formula 

k

m
nk-

e-1f ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= [29], where m is memory size, n is pattern count, k is hash function 

number, we measured the shift distance in different pattern count showed in Fig 11. 

We use both windows executable files and random generated data as scanning text to 

run simulations. Although the shift distance becomes smaller as the pattern set going 

larger, it maintains at greater than 5 that means five times faster than traditional linear 

time algorithm as the pattern count is 52k larger than 30k in Anti-Virus. 
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Figure 11.. Shift distance in different pattern counts (read/random) 

 The positive rate in the scanning module and the positive rate of a single Bloom 

filter for different pattern counts are showed in Fig. 12. The false positive rate of a 

single Bloom filter is set to constant as before. There are three observations in this 
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false positive simulation result: 

1. Positive rate of the result confirms to theoretical false positive rate when the 

text is random generated files, but goes much higher when the text is 

Windows executable files because the same reason mentioned in Section 3.2.1. 

Therefore, we can simply take the curve of random generated files as false 

positive rate curve and take the curve of Windows executive files as the true 

positive plus false positive rate in this figure. 

2. The positive rate of scanning Windows executable files increases as the 

pattern set goes larger, but keeps almost the same in scanning the random 

generated files whatever the single Bloom filter or entire scanning module. 

Taking the observation in 1, we verify the positive reported and we find that 

this difference is also induced by many true positive happening as the pattern 

count growing. 

3. The additional check of checking the preceding block of the first hitting 

block is useful as the pattern count growing. When the pattern count is 52k, it 

almost filters the verification to 50%. 
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Figure 12. Scanning module false positive rate in different pattern counts 

5.1.2 HDL simulation result 

Xilinx XCVP30 FPGA has 136 dual-port embedded block memories. Each of it 
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can be configured single bit wide, 16384 bit long array. We use 16 block memories 

which implement 8 Bloom filter groups, two for each that supporting 4 hash functions 

and storing 1000 blocks. The theoretical positive rate of each Bloom filter is 0.017%, 

and becomes 0.498% in the simulation of the windows executive files and 0.0015% of 

random generated files. Besides the m-bit vector of Bloom filters, this works takes 

2*4 or 8 to implement two four-bank text memories. Furthermore, for fast prototyping, 

the state transition data needed by verification module, Anchored AC, is moving into 

the FPGA embedded memory. That costs almost 1 Mb to store 1000 patterns which is 

the reason why the pattern count of this HDL simulation is limited in 1000. The total 

account of memory cost is about 1.4 Mb in this implementation. If the verification 

data keeps in external memory, the pattern set of scanning module using this platform 

can be scale to about 10k and maintaining the scanning performance. The penalty is 

the longer worst case running time, i.e. verification time.  

This architecture implementation consumes 16% usage of LUT of XC2VP30 and 

the system operates at 150MHz, and the average shift distance is 7.71 bytes. If the 

scanning module is not blocked by the verification module, i.e. the VJB is always not 

full; the throughput can be up to 150*7.71*8 or 9.26 Gbps. In our simulation of clean 

windows executive files, the verification module needs 5 cycles to verify one entry is 

not virus in average, but the scanning module issues a verification job every 26 cycles 

in average. Therefore, the assumption of not being block is established in average 

case.  

The worst case performance occurring when the text are full of viruses is 

depends on the virus ratio in the text, the signature length and the matching policy, i.e. 

one match or multiple matches. The throughput in different parameters combination is 

aimed to be implemented in the future work and not being analysis in this work. We 

only simply measure the worse case performance in one condition: when the VJB is 
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full. Verification speed is the bottleneck of entire system, which is one character for 

two clock cycles equaling to 150/2*8 or 600Mbps.  

5.2 Comparisons 

5.2.1 Compare with the Dharmapurikar et al.’s Bloom filter  

 The Bloom filters have been used to inspect packet in the research of 

Dharmapurikar et al. in 1997 [29]. They hash the m-bit vector with entire patterns, not 

only a fix-length (scan window size) prefix of patterns in this work. Therefore, there 

are Lmax-Lmin Bloom filter engines in their design, where Lmax is the longest pattern 

length, and Lmin is the shortest pattern length, i.e. the number of Bloom filter engine 

depends on the pattern length distribution. On the other hand, in this work, the Bloom 

filter number is decided flexibly by the scan window size. The bigger scan window 

size, the larger shift distance, and the less verification rate in general. Of course, the 

scan window size has to be shorter than the shortest pattern length following the way 

of WM algorithm works. Besides, the Dharmapurikar’s design scans the packets from 

the beginning straightforwardly and shifts one byte if no match. It duplicates scan 

engines to process multiple bytes a time unlike this design utilizing the algorithm 

advantage to meet this requirement. Altogether, the low circuit cost and the high 

throughput are the main advantages of this work comparing with the Dharmapurikar’s 

design. The disadvantage of this design is the higher verification rate. This design 

only matches the fix-length prefix of patterns, and thus the matching rate is higher 

then the rate of matching entire pattern of the Dharmapurikar’s design, especially 

when the block distribution is very non-uniform like Windows executive file. Thanks 

to the implementation of verification interface in this design, the verification job can 

be finished on time before the next verification job is assigned to complement this 

defect in average. Table3 lists the comparison results in more detail. One thing of this 

table needs to be addressed. The false positive rate of [29] is simulated with the 
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unknown signatures, and the false positive rate of this work is simulated with 

ClamAV virus database. The distribution of these two kinds of signature is different, 

so the number of false positive rate is just for information; the ratio between them is 

meaningless. 

Table 2. Comparisons between Dharmapurikar’s Bloom filter and BFAST. 

False  Memory 
Name 

Pattern  
count 

Signature Text 
positive rate  usage 

Bloom 35,475 N/A 
Filter[6] (1419/BF) length 2~26

live traffic 0.39% 629,146  

BFAST Win.exec.files 0.323% 
(1,000) 

1,000 clamav virus
random 0.0% 

262,144  

BFAST Win.exec.files 0.390% 
(10,000) 

10,000 clamav virus
random 0.0% 

1,048,576 

Circuit Size Frequency Throughput
Name Implement 

 (LC) 
Bloom filter 

engine # (Mhz) (Mbps) 
Bloom Xilinx 
Filter Virtex 2000e 

23328 25 80 502  

BFAST Xilinx  
(1,000) Vertex2p30 

3325 ≦8 156 9,631  

BFAST Xilinx  
(10,000) Vertex2p30 

5438 ≦8 140 5,775  

 5.2.2 Compare with the other related works. 

 Fig.13 and Fig.14 show the pattern size and the throughput of several 

accelerators of string matching. The architecture of the researches may have high 

performance like Tan’s Bit-split AC [18] or accommodate large pattern set like 

Dharmapurikar’s [29], but there are few architectures can both accommodate large 

pattern set and maintain a high throughput like BFAST. One thing need to be 

mentioned in this figure is the throughput of the BFAST is depending on the 

verification rate. We assume the verification rate is low enough (<0.4%) herein so that 

the scanning module will not be blocked by the verification module, and thus the 

throughput is full-speeding 9.2Gbps.  
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Figure 13. The pattern size comparison of different hardware architecture 
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Figure 14. The throughput comparison of different hardware architecture 

 Besides the large pattern capacity and the high throughput, another advantage of 

the BFAST is the simple circuit design. Table3 compares with the INOSIDICE and 

the clarks’ design which have more little pattern capacity but higher throughput, Table 

the circuit size of BFAST is much smaller with storing the patterns in memory instead 

of flip-flops.  

Table 3. Comparisons of circuit sizes of Multi-character decoder NFA, Pre-decoded CAM 

comparator and BFAST 

Type Approach 
Circuit Size 

(LC) 

Decoder NFA Clark’s Multi-character decoder NFA [29] 29,281  

Parallel Comparator Sourdis et al.'s Pre-decoded CAM Comp. [33] 64,268  

Bloom Filter Implicit shift table using Bloom filters 5,438  
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Chapter6. Conclusion and future works 

 This work implement an implicit shift table using Bloom filters to realize a 

sub-linear time algorithm with hardware. It processes multiple bytes a time based on 

the theory of the sub-linear time algorithm to increase the throughput up to 9.2Gbps 

and utilize the efficient memory-usage Bloom filter to accommodate more than 

10,000 patterns. The simplicity of the circuit design of this architecture makes this 

design can be integrated into the Xilinx XC2VP30 SOC platform to become a 

customized anti-virus chip. After coordinating the packet flow and the other processor 

communication, it can become a complete security system.  

 After the implementation, we find that although the performance of this design is 

good in average case, but it will decrease when the verification rate going higher, i.e. 

when the virus appearing more often. The slow verification speed will slowdown 

overall system performance. It can be fixed by utilizing more than one verification 

engine to balance the speed between verification and scanning. Analysis of the speed 

differencing in various virus appearing ratio and the different packet lengthes is also 

interesting in this topic. Although this work implements only a heuristic like 

Bad-Character in the BM algorithm, the Good-Suffix heuristic is designed with this 

architecture and illustrated in Appendix too. The improvement of this heuristic is 

predictable.  
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