
 

國 立 交 通 大 學 
 

資訊科學與工程研究所 
 

碩 士 論 文 

 
 
 
 

利用自動化多立方體映射及王氏磚之紋理貼圖 

 
Texture Tiling Using Automatic Polycube-Maps and Wang Tiles 

 
 
 

研 究 生：林震雨 

指導教授：施仁忠  教授 

       張勤振  教授 

 
 

中 華 民 國  九 十 六  年 六 月 



 I

利用自動化多立方體映射及王氏磚之紋理貼圖 

Texture Tiling Using Automatic Polycube-Maps and Wang Tiles 
 
 
 
 

研 究 生：林震雨          Student：Chen-Yu Lin 

指導教授：施仁忠          Advisor：Zen-Chung Shih 

          張勤振                  Chin-Chen Chang 

 
 
 

國 立 交 通 大 學 
資 訊 科 學 與 工 程 研 究 所 

碩 士 論 文 
 
 

A Thesis 
Submitted to Institute of Computer Science and Engineering 

College of Computer Science 
National Chiao Tung University 

in partial Fulfillment of the Requirements 
for the Degree of  

Master 
in 
 

Computer Science 
 

June 2006 
 

Hsinchu, Taiwan, Republic of China 
 
 

中華民國九十五年六月 



 II

 

 

 

利用自動化多立方體映射及王氏磚之紋理貼圖 

Texture Tiling Using Automatic Polycube-Maps and Wang Tiles 

 

 

研究生: 林震雨                  指導教授: 施仁忠 教授 

                        張勤振 教授 

 

國立交通大學資訊科學系 

 

摘        要 

 

關於 3D 模型的紋理貼圖，如何避免縫隙及扭曲的產生是很重要的。以往曾

有正立方體映射法來達到無縫隙的紋理貼圖，但受限於 3D 模型必須和正立方體

相似。多立方體映射法突破了此限制，它的形狀接近於 3D 模型而減低扭曲的產

生，但是它需要透過使用者介入而浪費額外的時間。基於此，我們提出一個結合

多立方體映射及王氏磚的系統來做紋理貼圖，藉由自動建立的多立方體及鋪磚方

法讓多立方體佈滿紋理。最後，我們便能在多立方體及 3D 模型間完成無縫隙的

紋理貼圖。 
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ABSTRACT 

In mapping textures onto 3D models, it is essential to eliminate the presence of 

seams and avoid excessive distortions. In the past, cube maps provide a method for 

seamless texture mapping. However, the shape of the 3D model should resemble 

cubic shape. Polycube-maps whose shape of the polycube is similar to the given mesh 

not only breaks this restriction but also decreases the distortion. However, it needs 

user to involve and spend extra time. Therefore, we propose an approach that 

combines polycube-maps and Wang tiles to generate texture mapping. The polycube 

is constructed automatically and a tiling mechanism is used to fill the tiles on the 

polycube. Finally, we accomplish seamless texture mapping between 3D model and 

polycube. 
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Chapter 1  

Introduction 

1.1 Motivation 

In mapping textures onto 3D models, enhancing the visual appearance of a 3D 

model is important. Therefore, it is essential to eliminate the presence of seams and 

avoid excessive distortions. The multi-chart or atlas approach [2] cuts the surface into 

several disk-like patches. Each patch can be parameterized with low distortion, as 

shown in Figure 1.1. However, this approach produces seams on the boundary of   

patches.  

 
Figure 1.1 The concept of multi-chart approach [20] 
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Polycube-maps [20] extend the concept of the cube-map to avoid seams and 

distortion, but it needs users to involve and spends extra time. Fu and Leung [9] 

combines the methods of polycube-maps [20] with Wang tiles [4]. It maintains the 

algorithm of polycube-maps [20] and reformulates the texture tiling mechanism of 

Wang tiles [4] for 3D models. In this thesis, we propose a system to accomplish it 

automatically. Our system can automatically construct a polycube which consists of 

cubes. An example is shown in Figure 1.2. Finally, it achieves seamless texture 

mapping between the 3D model and the polycube.  

     
(a)                                 (b) 

Figure 1.2 (a) An input model (b) A polycube of the model 

1.2 Overview 

The flow chart of the proposed system is shown in Figure 1.3. First, a user inputs 

a 3D model and a sample texture image. We process these two inputs separately. In 

next step, the polycube generation, the system will find the polycube of the input 

model. Then it will randomly select four diamond-shaped samples from the input 

texture in the sample selection. 

According to the above-listed outputs, we reformulate the mechanism of Wang 

tiles [4] tiling textures onto a polycube seamlessly. In the step of rectangular cells 
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generation, the system converts the structure of a polycube to rectangular cells. 

Finally, in cells mapping, we find texture mapping between the 3D model and the 

polycube according to the mapping function of each rectangular cell. 

 

Figure 1.3 the system flowchart 

 

The major contribution for this thesis is that we avoid user intervention and 

reduce extra time. We automatically construct a polycube by using a simple method. 
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The rectangular cells solve the problem that some portions of a model can not search 

for mapping region of the polycube. Furthermore, users can easily obtain a desired 

texture mapping through a simple interface. 

The rest of this thesis is organized as follows. In Chapter 2 we review related 

work of polycube-maps [20] and Wang tiles [4]. Then we present how to construct a 

polycube with tiled textures in Chapter 3. In Chapter 4, we introduce the rectangular 

cells mapping in detail. Chapters 5 and 6 show the results and conclusions. 
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Chapter 2  

Related Works 

In this chapter, we discuss previous work related to our work. We focus on two 

topics: tile based texture and texture mapping. 

2.1 Tile-Based Texture 

Texture synthesis is roughly divided into three parts: pixel based [8] [24] [12], 

patch based [7] [21], and tile based. Tile based texture is our major previous work. 

Wang tiles [23] [22], a tiling set consisting of a set of square tiles, was proposed 

by Wang [4] at first. The edges of a tile are assigned different colors each of which 

corresponds to one sample. All shared edges should have matched colors. Grunbaum 

and Shepherd [10] provided how to tile a plane with a finite set of Wang tiles 

aperiodically. They can create large non-repetitive textures. Culik [5] proved that 

thirteen tiles are enough to tile aperiodically. 

Stam [19] was the first to consider non-periodic Wang tiles for texture synthesis. 

He applied it to the rendering of water surface and caustic. Cohen et al. [4] further   

investigated this approach and invented an automatic method. They presented a 
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simple stochastic system which could non-periodically tile a large texture with a small 

set of Wang tiles. Their advantage is that creating a large texture with filled tiles is 

very efficient at runtime. An example is shown in Figure 2.1. 

 

Figure 2.1 Four samples are combined to construct a set of eight tiles [4] 

2.2  Texture Mapping 

Texture mapping mostly followed the multi-chart approach. This approach 

focuses on partitioning, parameterization, and packing. Cignonoi et al. [3] and Carr 

and Hart [2] assigned a patch which consists of a single or pairs of triangles. However, 

it has seams all over the mesh. Other approaches [11] [13] [14] [16] [18] considered 

large patches and parameterized each patch. They still can not deal with this drawback. 

In order to avoid this problem, several researchers [13] [17] [15] cut the surface where 

the seam is less visible. 

Cube maps [1] achieved a seamless texture mapping but it requires the 3D 

model’s shape to be similar to cubic shape. Marco et al. [20] extended this concept to 

arbitrary meshes and provided a new mechanism, called polycube-maps. The 

flowchart of their algorithm is shown in Figure 2.2. Figure 2.2(a) is an input model.  

A User defines the shape of the polycube which approximates the 3D model roughly, 
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as shown in Figure 2.2(d). Then he warps the polycube to approximate the model, as 

shown in Figure 2.2(b). The vertices of the model are projected on the polycube, as 

shown in Figure 2.3(c). Finally, the system warps the polycube inversely and 

optimizes the projections, as shown in Figure 2.2(e) and 2.2(f). 

  

Figure 2.2 2D analogue: flowchart of polycube-maps [20] 

For texture mapping, the 2D analogue is shown in Figure 2.3. First, a user 

roughly approximates the 3D model with a polycube. The system defines the dual 

space of the polycube. Each cell of the dual space was centered in a corner of the 

polycube, as shown in Figure 2.3(b). Finally, we may obtain the projection function of 

the cells, as shown in Figure 2.3(c). 

Figure 2.4 shows that the polycube is converted to the dual cells. The advantage 

of this dual partition can decrease distortion because the projection function is varied 

with the structure of cell configuration. 
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(a)                       (b)                      (c) 

Figure 2.3 2D analogue of polycube-maps (a) Polycube defined by a user (b) Dual 
space of the polycube (c) Projection function of the non-empty cells [20] 

(a)                                    (b) 

Figure 2.4 (a) Polycube that consists of 10 cubes (b) Dual cells of the polycube [20] 

Fu and Leung [9] combined the methods of polycube-maps [20] with Wang tiles 

[4] and accomplished a seamless texture mapping. The flowchart of their algorithm is 

shown in Figure 2.5. First, the input is a surface model. In the second step, they 

applied the approach of polycube-maps [20] to construct the polycube. because a 

tiling approach is general for any quad-based geometry. In the third step, they 

establish the mapping relation between the polycube and the model. They further 

applied a tiling assignment to map tiles onto the slices of the model. Finally, there are 

sets of tiled textures created for mapping on the model. 
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Figure 2.5 Flowchart of Fu and Leung [9] with a Bunny model 

In this thesis, we propose a novel technique for texture mapping based on the 

Wang tiles and polycube-maps. Unlike polycube-maps [20], we avoid user 

intervention and construct the polycube automatically. 
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Chapter 3  

Polycube with Tiled Texture 

In this chapter, we discuss how to tile a texture onto a polycube seamlessly. We 

first discuss the construction of a polycube. Then we describe the seamless texture 

tiling process. 

3.1 Polycube Construction 

In polycube-maps [20], a user needs to define the shape of a polycube which is 

roughly similar to a 3D model. An example is shown in Figure 3.1. The structure of 

the polycube is usually very simpler so that it can avoid complicated projection. 

However, the user needs to warp the surface of the polycube such that the polycube is 

close to the 3D model before projecting the vertices. 

We use a simple method to construct the polycube automatically. Our system 

establishes a bounding box of the input model at first. A user can adjust a suitable 

parameter to set the size of the unit cube. According to this size, the system uniformly 

subdivides the bounding box into unit cubes. 
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                    (a)                        (b) 

Figure 3.1 (a) 3D Model (b) Polycube of the 3D Model [20] 

3.1.1 Triangle-Cube Intersection Algorithm 

In order to construct a polycube, we need to search the unit cubes which intersect 

the 3D model. We use the triangle-cube intersection algorithm [6] which examines the 

intersection between 3D triangles and axis-aligned cubes to constructs a polycube of 

the 3D model. This algorithm is divided into three steps. The flow chart is shown in 

Figure 3.2. At the first step, there are a trivial-accept and three trivial-reject tests that 

eliminate easy cases. The second step detects triangle edges that penetrate any faces 

of a cube. The third steps examines whether cube corners poke through the interior of 

the triangle. The six tests of the three steps are described as follows: 

1. First steps 

(1) Face-Plane Trivial Accept  

    A unit cube intersects the model if it includes any vertices of the 

model.  



 12

 

Figure 3.2 Flow chart of triangle-cube intersection algorithm [6] 

(2) Face-Plane Trivial Reject  

    A unit cube does not intersect if all vertices are outside the same 

face-plane of the unit cube. If the unit cube does not satisfy the above 

two conditions, we will check it in next step. 
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(3) Edge-Plane Trivial Reject 

    We compare the vertices of the model against the twelve planes 

which touch the twelve edges of the cube. And these planes are at 45 

degrees to their adjacent faces. This enclosed volume is a rhombic 

dodecahedron, as shown in Figure 3.3. If all vertices are outside the 

rhombic dodecahedron, this cube does not intersect the model.  

       

Figure 3.3 (a) Rhombic Dodecahedron (b) The relation between rhombic 
dodecahedron and the unit cube 

(4) Corner-Plane Trivial Reject  

    We compare the vertices of all triangles against the eight planes 

that pass through one of the cube corners. These planes are 

perpendicular to the corresponding diagonal of the cube. This enclosed 

volume is octahedron, as shown in Figure 3.4. This cube does not 

intersect the model if the vertices which belong to the model are 

outside the octahedron 

(a) (b) 
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Figure 3.4 (a) Octahedron (b) The relation between octahedron and the unit cube 

2. Second Phase 

(5) Triangle Edges VS. Cube  

    We check if any triangles of the model penetrate the cube in the 

second phase. We examine the relations between each edge of the 

triangles and six faces of the unit cube. If any edge penetrates it, the 

cube intersects the model. 

3. Third Phase 

(6) Cube Diagonals VS. Triangle  

    We check whether a cube corner pokes through the interior of the 

triangle by examining the relations between four cube diagonals and the 

triangle. We can obtain four intersection points which belong to 

diagonal lines and the plane which includes the triangle. Four corners of 

the cube do not poke through the triangle when the points are not inside 

the cube. However, if anyone is inside, we should further examine 

whether the point is inside the triangle. We use three cross products 

whose vectors belong to the point and the vertices of the triangle to 

(a) (b) 
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check this point, as shown in Figure 3.5. The corner pokes through the 

interior of the triangle if three vectors have the same direction. Then the 

cube intersects the model. 

4. Remaining 

    Finally, there are some remainding cubes which do not belong to any 

cases as mentioned before. These cubes do not intersect the model. 

 

Figure 3.5 Three cross products of the conditional check 

3.1.2 Correction of Polycube Structure 

A polycube of the model has been constructed using the triangle-cube 

intersection algorithm [6]. The model is inside the polycube. However, some textures 

which are tiled on the surfaces of the polycube can not be mapped on the model 

because some unit cells that are converted from unit cubes do not intersect the model. 

The followings describe the three properties of unit cells:  

1. Each cell equals in size to a unit cube.  

：The intersection point 

：Cross product 
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2. Each cell is centered in a corner of the unit cubes.  

3. Each cell intersects the polycube.  

An example is shown in Figures 3.6 and 3.7. There are non-consecutive textures 

on the model by mapping with this polycube. In this section, we will detect 

non-intersectional cells and remove them to modify the structure of the polycube 

before tiling textures. 

At first, we trace each intersectional cube of the polycube, as shown in Figure 

3.6. For each cube, we should examine eight cells converted from the cube if they are 

intersecting the model. This cube is removed from the structure of the polycube if any 

non-mapping cell does not intersect it. Figure 3.8 is corrected structure from Figure 

3.7. 

 

Figure 3.6 2D analogue: relation between polycube and 3D model 

 

Internal Cube 

Intersectional Cube 

3D Model Surface 

Tiled Surface 



 17

As mentioned above, we construct the polycube of the 3D model by using the 

triangle-cube intersection algorithm [6] and correct the structure of the polycube. 

Finally, the model is not inside the polycube. They are intersecting with each other. 

 

Figure 3.7 2D analogue: relation between cells mapping and 3D model 

 

Figure 3.8 2D analogue: correction of the polycube structure 

Cells of Polycube 

Mapping Direction 

Non-Mapping Cell 

Tile Un-Mapping 
On The Surface 
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3.2 Texture Tiling on Polycube 

 When the polycube has been produced, we extend the concept of Wang tiles [4] 

to tile texture on the surfaces of the polycube. Our algorithm consists of two parts. 

One is the edge coloring which arranges each square surface on the polycube 

corresponding to four samples. The other is the tile construction which synthesizes 

four samples to form a tile of each square surface. Finally, we accomplish a seamless 

texture tiling on the surfaces of the polycube. 

3.2.1 Edge Coloring 

This algorithm is based on the approach of Fu and Leung [9]. At first, there are 

four diamond samples randomly selected from the input texture. Then we divide all 

edges of the surfaces on the polycube into three groups, namely, X, Y, and Z, 

according to three axial directions. An example is shown in Figure 3.9. For each 

group, we randomly select two from four samples. Then each edge of the surface 

corresponds to a sample which is randomly selected from its group samples.  

 

Figure 3.9 Edge groups of the unit cube 

 

Unit  
Cube 

X-Axis Edge

Y-Axis Edge

Z-Axis Edge
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In order to tile textures on the 3D polycube seamlessly, we slightly modify the 

concept of Wang tiles [4] by rotating samples. An example is shown in Figure 3.10. A 

sample is divided into upper and lower portions. When it is tiled on the surface of a 

unit cube, the lower half is on the top side of the blue surface and the upper half is on 

the right side of the yellow surface. We should appropriately rotate a sample 90 

degrees counterclockwise for keeping up seamless tiling when tiling on the yellow 

surface. Another example is shown in Figure 3.11. We should rotate a sample 90 

degrees counterclockwise when tiling on the blue surface. 

 

Figure 3.10 A unit cube with a tiled sample 

Unit Cube 

Right Surface 

Top Surface 

Tiled Sample 

Rotated Sample 
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Figure 3.11 Three unit cubes with a tiled sample 

Therefore, we do not rotate samples when synthesizing tiles on the forward, left, 

backward, and right surfaces, as shown in Figure 3.12. When we synthesize tiles on 

the top and bottom surfaces, a sample which corresponds to the edge along X-axis 

may be rotated 180 degrees, as shown in Figure 3.13. And a sample which 

corresponds to the edge along Z-axis may be rotated 90 or 270 degrees 

counterclockwise, as shown in Figures 3.14 and 3.15.  

Therefore, each edge on the surface of the polycube corresponds to a suitable 

sample. This sample may be rotated when tiled on the surface. We can tile textures on 

the surface seamlessly by using this algorithm. 

Right Surface on 
the Unit Cube A 

A 

B 

Top Surface on the 
Unit Cube B 
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Figure 3.12 Expansion of the unit cube from Figure 3.9 

 

Figure 3.13 Four structures that we need to rotate a sample 180 degrees when tiling on 
the top or bottom surfaces. (a), (b), (c), and (d) are the portions of the polycube. 
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To
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Figure 3.14 Four structures that we need to rotate a sample 270 degrees 
counterclockwise when tiling on the top or bottom surfaces 

 

Figure 3.15 Four structures that we need to rotate a sample 90 degrees 
counterclockwise when tiling on the top or bottom surfaces. 

Z-axis Edge 

Right Surface  

Left Surface  

(d) (c) 
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3.2.2 Tile Construction 

In this section, our system will tile textures on each square surface of the 

polycube by using the method based on the approach of Cohen et al. [4]. A user can 

choose image quilting [7] or graph cuts [21] algorithms to synthesize a tile from four 

diamond samples which correspond to the edge of the square surface. 

Finally, we accomplish seamless texture tiling on the surface of the polycube. A 

result is shown in Figures 3.16 and 3.17 

 

Figure 3.16 Laurana model with the polycube 
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Figure 3.17 Laurana model and polycube with tiled textures 
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Chapter 4  

Generation of Texture Mapping 

In this chapter, we discuss how to generate rectangular cells which are 

transformed from the polycube and map textures onto the model. Our concept is based 

on polycube-maps [20]. In Section 4.1, we describe the generation of cells. In Section 

4.2, some cells which intersect the model can not map any textures on the model. We 

construct rectangular cells to solve this problem. Then we accomplish cells mapping 

from the textures on the polycube to the model in section 4.3. 

4.1 Transforming Polycubes to Polycells 

In order to reduce mapping distortion, we apply cells mapping which is based on 

polycube-maps [20]. Our algorithm defines mapping directions according to the 

configuration inside a cell. Therefore, we need to transform the polycube to the 

polycell which consists of unit cells before mapping textures onto the model. We can 

easily construct the polycell by the properties as mentioned in Section 3.1.2. An 

example is shown in Figure 4.1. 
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Figure 4.1 2D analogue: relation between the polycube and the polycell 

We further create the configurations inside external cells which intersect the 

portions of the tiles on the surfaces. We consider the intersection between external 

cells and the tiles on the polycube. Each tile is subdivided into four slices. An 

example is shown in Figure 4.2. There are 63 different configurations of the slices 

inside a cell. If we remove rotational and reflectional similarities, these configurations 

can be further reduced to six basic configurations, as shown in Figure 4.3. 

Finally, we construct the polycell and the configurations inside each cell. There 

are some advantages： 

1. It is easy to determine the vertices of the polycell. 

2. The number of the configurations inside the cells is limited to six because 

the similarities of rotations and reflections are removed. 

3. These basic configurations have different mapping functions. Each function 

Cells of Polycube 

Tiles on the 
Surfaces 

Unit Cubes
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is related to the structure of the tiles on the polycube so that we can reduce 

the distortion when mapping on the model. 

 

Figure 4.2 2D analogue: relation between the polycube and the polycell 

4.2 Rectangular Cells Construction  

From Section 3.1.2, we know that all external cells intersect with the model 

surface. We will process each external cell to map textures on the model. However, 

we detect a few internal cells which intersect the model, but the configurations inside 

these cells are empty. A reason is that the polycube can not approximate the curvature 

of the model surface exactly. An example is shown in Figure 4.4. These internal cells, 

grouped in set Κ, can not map any textures and cause gaps on the model.  

 

Unit Cubes 

Internal Cells 

Configurations of 
Tile Slices inside 
the Cells 

External Cells 
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Figure 4.3 Six basic configurations 

In order to solve this problem, we combine each internal cell of Κ with an 

external cell which is adjacent to it. At first, adjacent external cells for each internal 

cell are numbered and processed from small to large. The purpose of this algorithm 

avoids an internal cell merging none of the external cell.  

Then we examine six surfaces of the internal cell which intersects the model by 

using the triangle-cube intersection algorithm [6]. If only one surface intersects, we 

merge two cells which include this surface together. Figure 4.5 shows the 

modification of Figure 4.4. If more than one surface intersects, we choose an external 

cell whose configuration map is with lower distortion. Type4b has the lowest 

distortion in all configurations. Our priority for selection from high to low is Type 4b, 

Type 4a, Type 3, and Type 5. A resulting example is shown in Figure 4.6 and 4.7. 

Type 6a and Type 6b are impossible adjacent to the internal cell in Κ because all 

Type 3 Type 4a Type 4b 

Type 5 Type 6a Type 6b 
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surfaces of the cells are connected the slices. Therefore, we do not apply these two 

configurations in rectangular cells. 

 

Figure 4.4 2D analogue: an internal cell intersects the model but is empty 

Therefore, we solve the empty problem in the internal cells of Κ by using 

rectangular cells. However, some of rectangular cells may create seams on the model. 

There are two reasons of the problem:  

1. The size of a unit cell is too large. 

2. The curvature of the model is too high. 

Figure 4.8 shows an example of this problem. We can reduce the size of the unit 

cube to decrease the appearance of the seams but can not promise to avoid this 

problem completely. 
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Figure 4.5 2D analogue: combination of internal and external cells  

 

Figure 4.6 2D analogue: two surfaces of the internal cell intersects the model  

Internal Cell 

3D Model Surface

Rectangular Cell 
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Figure 4.7 2D analogue: combination of internal and external cells 

 

Figure 4.8 2D analogue: combination of internal and external cells 

Rectangular Cell 

Mapping Direction 

Portion of Wrong 
Mapping  

Rectangular Cell 
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4.3 Cells Mapping  

In this section, we describe the mapping functions of six configurations and how 

to map the textures onto the model. We process each triangle of the model separately 

and subdivide it into several slices according to the intersectional cells. Each slice is 

included only one cell. Then we apply cells mapping to map the textures onto the slice 

inside the cell. 

 

Figure 4.9 Mapping directions of six basic configurations 

4.3.1 Mapping Function of Cell Configurations 

As mentioned in Section 4.1, we know that all different configurations in the 

polycell could be reduced to six basic cases. In this subsection, we define mapping 

directions of the basic configurations which are based on polycube-maps [20], as 

Type 3 Type 4a Type 4b 

Type 5 Type 6a Type 6b 
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shown in Figure 4.9. In Section 4.2, we increase four rectangular configurations to 

process the internal cells in Κ. Figure 4.10 shows all mapping directions of 

rectangular configurations. Table 4.1 shows the mapping functions of other 

configurations. 

 

Table 4.1 Mapping functions of six configurations 

Configuration Mapping Directive Vector 

Type 3 (r, s, t) 
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Figure 4.10 Rectangular mapping directions of four configurations, (a), (b) and (c) are 
Type 3, (d) and (f) are Type 4a, (e) is Type 4b,and (g) is Type 5 

(a) (b) 

(c) (d) (e) 

(f) 

(g) 
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4.3.2 Texture Mapping on Model 

In this subsection, we process triangles of the model separately to map textures. 

At first, we search the cells which intersect the bounding box of a triangle. Then we 

consider the intersection between these cells and a triangle. If a triangle is inside one 

cell completely, we use the mapping function of the cell to map textures onto it. If not, 

we need to acquire the intersectional points by detecting a triangle with the cells. 

There are two kinds of points between a triangle and a cell described as follows:  

1. Three edges of a triangle and six surfaces of a cell 

2. Twelve edges of a cell and the interior of a triangle 

 

Figure 4.11 A triangle is subdivided into four slices by a cell 

Some intersectional points are increased in the triangle. A triangle is subdivided 

into several slices by cells and each slice is included in a cell. An example is shown in 

Figure 4.11. Then we separately process each slice to map textures onto it according 

to the mapping function of the cell which includes it. 

An interior point of a triangle 
A point in the edge of a triangle 

Four slices of a triangle 

A triangle and four unit cells 
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Finally, we accomplish to map textures of the polycube onto the slices which 

belong to all triangles of the model. And this algorithm is able to reduce distortion. 
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Chapter 5  

Implementation and Results 

In this chapter, we demonstrate our implementation results. The input sources are 

a texture and a 3D model. Our algorithm are implemented in C# language on VC.Net 

with a Pentium4 3.4GHz PC with 2 GB memory.  

              
(a)                                   (b) 

Figure 5.1 (a) example 1: an input texture and (b) a laruana model 

An input example with a 183x100 texture image and a laurana model are shown 

in Figure 5.1. An intermediate result is the polycube of the model with unit cubes, as 

shown in Figure 5.2(a). Figure 5.2(b) shows that the relation between the polycube 

and the model. They are intersecting with each other. Figure 5.2(c) shows the 

polycube with tiled textures and Figure 5.2(d) shows that an image is enlarged from 

Example 1 
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the yellow region in Figure 5.2(c). Each tile is combined by graph cuts algorithm. The 

final result is shown in Figure 5.3. And Figure 5.5 shows another result with different 

texture sample.  

     (a)         (b) 

  (c) 

Figure 5.2 (a) a polycube of the laruana model, (b) relation between the polycube and 
the model, (c) polycube with the tiled textures and (d) an enlarged image 

(d) 
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  (b) 

 

 (c) 

Figure 5.3 (a) Textures map onto the model, (b) and (c) are enlarged images form the 
portions of (a) 

 

(a)
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Figure 5.4 shows a result of Fu and Leung [9]. Table 5.1 shows the comparison 

with our result. 

Table 5.1 Comparison between our result and Fu and Leung [9] 

 Our algorithm Fu and Leung [9] 

Size of a unit cube Small Large 

Number of unit cubes Many Few 

Size of patterns Small Large 

 

(b) 

Figure 5.4 (a) a polycube of the laruana model [20] (b) a result of the laruana model in 
Fu and Leung [9] 

(a) 
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 (b) 

 (c) 

Figure 5.5 A mapping result with the texture example 2, (b) and (c) are enlarged 
images 

Example 2 

(a) 
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Table 5.2 shows the information of Figure 5.3 and 5.5. 

Table 5.2 Information during texture mapping by using different examples  

Model Laruana 

Input texture Example 1 Example 2 

Size of the input texture 183x100 

Size of a tile 32x32 

Number of unit cubes 2555 

Number of surfaces on      
the polycube 

4264 

Number of different tiles 804 800 

Time of constructing the polycube 
with tiles 

5 min. 03 sec. 5 min. 09 sec. 

Time of mapping from the 
polycube to the model 

33 sec. 33 sec. 

 

Figure 5.6 shows a synthesized texture by Wang tiles [4]. Figure 5.7 and 5.8 

show that the results are mapped with the same input texture but different size of the 

unit cubes. Example 3 is our input texture and a 400x400 image. Figure 5.8 has lower 

distortion than Figure 5.7. But the size of  

patterns in Figure 5.8 is smaller. We can  

not avoid some unconnected regions, as  

compared with Figure 5.6 (b).  

      

                                                          

Figure 5.6 (a) an input in Wang tiles (b) A synthesized texture from (a) [4] 

(b) (a) 
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 (b) 

        

 

Figure 5.7 A mapping result with the texture example 3 and (b) and (c) are enlarged 
images 

(c) 

(a) 
( )

Example 3 
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 (b) 

    

 (c) 

Figure 5.8 A mapping result with the texture example 2 and (b) and (c) are enlarged 
images 

Table 5.3 shows the information of Figure 5.7 and 5.8. 

(a) 
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Table 5.3 Information during texture mapping by using dixfferent sizes of unit cubes 

Model Laruana 

Input texture Example 3 

Size of the input texture 400x400 

Size of a tile 64x64 

Size of a unit cube 25:21 

Number of unit cubes 2555 3657 

Number of surfaces on      
the polycube 

4264 6030 

Number of different tiles 766 940 

Time of constructing the polycube 
with tiles 

8 min. 18 sec. 10 min. 40 sec. 

Time of mapping from the 
polycube to the model 

30 sec. 47 sec. 

 

Another input model is a teapot, as shown in Figure 5.9(a), and an input texture 

is example 2. Figure 5.9(b) shows the polycube of the teapot with tiled textures. The 

final result is shown in Figure5.10. 

(b) 

Figure 5.9 (a) A teapot model (b) The polycube of teapot with tiled textures 

(a) 
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   (b) 

(a) 

 (c) 

Figure 5.10 A mapping result with the texture example 2 and (b) and (c) are enlarged 
images 
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Example 4 is a 128x128 image, as shown in Figure 5.11. We apply different sizes 

of a tile. The final result is shown in Figure5.12. And the corresponding information 

about the teapot model is shown in Table 5.4. 

 

Figure 5.11 Example 4: an input texture 

Table 5.4 Information during texture mapping by using different input textures 

Model Teapot 

Input texture Example 2 Example 4 

Size of the input texture 183x100 128x128 

Size of a tile 32x32 64x64 

Number of unit cubes 1425 

Number of surfaces on      
the polycube 

2568 

Number of different tiles 648 679 

Time of constructing the polycube 
with tiles 

3 min. 56 sec. 8 min 35 sec. 

Time of mapping from the 
polycube to the model 

15 sec. 14 sec. 
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  (b) 

                                   (a) 

(c) 

Figure 5.12 A mapping result with the texture example 4 and (b) and (c) are enlarged 
images 
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An input example with a 433x640 texture image and a Daba model are shown in 

Figure 5.13. Figure 5.14 shows the polycube of the model with tiled textures. And 

final result is shown in Figure 5.15. 

 (a)  (b) 

Figure 5.13 (a) a Daba model and (b) example 5: an input texture 

 

Figure 5.14 The polycube of the Daba model with tiled textures 
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 (a) 

            

(b)                                  (c) 

Figure 5.15 A mapping result with the example 5 and (b) and (c) are enlarged images 
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(a) 

 (b)                                   (c) 

Figure 5.16 A mapping result with the example 2 and (b) and (c) are enlarged images 
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Figure 5.16 and 5.17 show the results with texture Example 2 and 6. The 

corresponding information about the Daba model is shown in Table 5.5. 

 (b) 

         

(c)                                  (d) 

Figure 5.17 (a) Example 6: A 200x200 input texture (b) A mapping result with the 
texture example 6 and (c) and (d) are enlarged portions 

(a) 
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Table 5.5 Information during texture mapping by using different input textures 

Model Daba 

Input texture Example 5 Example 2 Example6 

Size of the input texture 433x640 183x100 200x200 

Size of a tile 64x64 48x48 64x64 

Number of unit cubes 1798 

Number of surfaces on      
the polycube 

2730 

Number of different tiles 541 561 566 

Time of constructing the polycube 
with tiles 

6 min. 15 sec. 5 min 55 sec. 6 min. 13 sec.

Time of mapping from the 
polycube to the model 

27 sec. 31 sec. 28 sec. 

 

There are few apparent distortions in our results. These distortions are usually 

formed by the configurations of Type 5, Type 3 and Type 6. If we decrease the size of 

a unit cube, the shape of the polycube is close to the model. Then we reduce the 

distortions on the model. However, the size of patterns is reduced together. We can 

decrease the size of a tile so that the size of patterns is enlarged. However, the size of 

a tile is not too small because a tile should contain the complete structure of a texture. 
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Chapter 6  

Conclusions  

In this thesis, we proposed a method to map texture on 3D models automatically. 

The proposed approach consists of two important processes: polycube construction 

and cells mapping. In the first process, we use the triangle-cube intersection algorithm 

[6] to construct the polycube of a model. Then we tile texture on the polycube 

seamlessly. Second, we process cells of the polycell separately. The textures of the 

cell are mappe d on the model according to its mapping direction. Therefore, users 

may generate texture mapping on the model by using our system easily. Table 6.1 

shows the differences between our system and polycube-maps [20]. 

However, there are still some issues in our system. 

1. Our system is not generic for some models which have a portion with large 

curvature, such as the ear of the bunny model. 

2. In our experiment, we found that some cubes intersect only few regions of 

the model. The textures are compressed seriously when mapping them on 

these regions.  
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Table 6.1 Differences between two methods 

 Our algorithm Polycube-maps 

Polycube construction Automatic 

Warping Polycube No 

User intervention 

Extra time No Yes 

Inverse warping No Yes 

Size of a unit cube Small Big 

Number of unit cubes Many Few 

 

In order to solve these problems, we reduce the size of a unit cube so that the 

shape of the polycube is close to the model. The distortion and the size of patterns on 

the model are reduced simultaneously. There is a trade-off between the distortion and 

the size of patterns on the model.  

In the future, we will use different size of the unit cubes to construct the 

polycube. The shape of the polycube is similar to the model. Not all size of the square 

surfaces on the polycube is reduced. We can reduce the distortion and maintain the 

size of patterns at the same time. Another method of inverse warping can be used to 

reduce the distortion. We estimate the distortion of the cells before mapping on the 

model. The texture is warped in advance. Then we obtain the better results with the 

lower distortion. 
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