
Chapter 5
Real-time Cartoon Face Animation

5.1 Introduction

In a system for real-time generation of talking cartoon faces, four major

functions are necessary. First, it is basic to capture and process image sequences in

real time. Second, the work for recording and playing speeches in real time is

similarly important. Third, the performance of real-time facial feature tracking is

easily affected by the uncontrolled environment. So a friendly interface between the

user and the system for real-time generation of talking cartoon faces must be created.

Finally, a complete integration of cartoon videos and audios is needed.

According to the four functions mentioned above, a system for real-time

generation of talking cartoon faces is proposed in this study and described in this

chapter. The system includes four major parts: an environment regulator, a facial

feature tracker, a sound recorder, and an animation generator. The environment

regulator provides a friendly interface to let a user easily regulate some parameters to

reduce the miss of real-time processes. The main parameters needed to regulate are

the threshold values for segmentation of eye-pair regions and mouth regions and a

division line. The facial feature tracker is used to track image feature points from the

sequential facial images, which are captured from a camera in real time. The sound

recorder is used to record a user’s speeches in real time from a microphone. The

animation generator is used to generate the talking cartoon faces by rendering the

cartoon face images and synchronizing the video and the audio in real time. A

 61

configuration of the system for real-time generation of talking cartoon faces is shown

in Figure 5.1.

The detailed process for the friendly interface about the learning of environments

is described in Section 5.2. A brief real-time process for generation of cartoon faces is

described in Section 5.3. Some processes about the speeches captured from a

microphone are described in Section 5.4. A synchronization of cartoon videos and

speeches is described in Section 5.5.

Speeches Sequential Facial
Images

Neutral Facial
Image Face Model

Microphone Camera

Output

Sound
Recorder

Facial Feature Tracker

Animation Generator

Transformation of Image Feature Points

Rendering of Cartoon Face Frames

Play of Talking Speeches

Synchronization of Image Sequences and Speeches

Environment Regulator

Learning of Eye-pair Region
Threshold Value

Learning of Mouth Region
Threshold Value

Learning of Image Cut Line
Extraction of Image feature

points each Image

Extraction of FAPUs in First
Image

Figure 5.1 A configuration of the system for real-time generation of talking cartoon faces.

 62

5.2 Learning of Environment

Before starting the real-time facial feature tracking from sequential facial images,

some parameters must be confirmed first. In the method for off-line facial feature

tracking, the neutral facial image is the first frame in the image sequence. The FAPUs

extracted from the neutral facial image are used for tracking in the image sequences.

But in the method for real-time facial feature tracking, the neutral facial image of the

image sequence is unknown until tracking is started. Therefore, a learning of the

environment is necessary to obtain information about users in the environment. Then

using the information, the FAPUs can be extracted from the neutral facial image in the

image sequence when starting tracking to reduce the errors.

There are three parameters that must be confirmed before tracking. In Section

5.2.1, a process for learning the threshold value for segmentation of eye-pair regions

is described. In Section 5.2.2, a process for learning a division line for mouth tracking

is described. In Section 5.2.3, a process for learning the threshold value for

segmentation of mouth regions is described.

5.2.1 Learning of Eye-pair Region Threshold Value
An optimal threshold value for segmentation of eye-pair regions is speculated in

this section. The detailed process is described in the following algorithm.

Algorithm 5.1. Learning process of eye-pair region threshold value.

Input: several neutral facial images N1, N2, …, Ns.

Output: a threshold value t1.

Steps:

 63

1. For each neutral facial image Ni, compute the threshold value ei by

Algorithm 3.1, where i = 1, 2, …, s.

2. Choose n threshold values that have good results by visual inspection,

where . sn ≤

3. Get the value t1 by averaging the n threshold values obtained in Step 2.

5.2.2 Learning of Division Line
The division line mentioned here is the line DivNL described in Algorithm 3.2.

This horizontal division line is used to cut a binary facial image. The binary facial

image can be separated into two binary images B1 and B2. The binary image B1 is

obtained by thresholding the pixels of the image above the division line with the

eye-pair region threshold value. The binary image B2 is obtained by thresholding the

pixels of the image under the division line with the mouth region threshold value. An

illustration of B1 and B2 is shown in Figure 5.2.

B1

B2

DivNL

Figure 5.2 An illustration of B1 and B2.

Using the division line can reduce the computation time of image processing and

the errors of segmentation of mouth regions. In this Section, a coefficient value u used

 64

to speculate the division line in image sequences is computed. The detailed process is

described in the following algorithm:

Algorithm 5.2. Learning process of image division line.

Input: several neutral facial images N1, N2, …, Ns.

Output: a coefficient value u.

Steps:

1. For each neutral facial image Ni, perform Steps 2 through 4.

2. Compute the initial division line DivNL in the following way:

yDiv = ymideye + d,

where yDiv is the y position of the division line DivNL, ymideye denotes the

y-position of the middle of eye pairs and d denotes the distance between

the eye pairs.

3. If the position of the initial division line in the neutral image is not good

as judged by visual inspection, regulate the division line for a better

result.

4. Compute a coefficient value ui in the following way:

Div mideye
i

y ' y
u

d
−

= ,

where the yDiv' is the y position of the regulated division line . NLvDi ′

5. Get the final coefficient value u by averaging the values u1, u2, …, us.

5.2.3 Learning of Mouth Region Threshold Value
According to the division line described above, an optimal threshold value for

segmentation of mouth regions is speculated in the following algorithm:

 65

Algorithm 5.3. Learning of mouth region threshold value.

Input: several neutral facial images N1, N2, …, Ns, and a coefficient value u.

Output: a threshold value t2.

Steps:

1. For each neutral facial image Ni, perform Steps 2 and 3.

2. Compute the division line DivNL in the following way:

yDiv = ymideye + u×d,

where yDiv is the y position of DivNL, ymideye denotes the y-position of the

middle of eye pairs, and the d denotes the distance between the eye

pairs.

3. Compute the threshold value mi by Algorithm 3.2, where i = 1, 2, …, s.

4. Choose n threshold values that have good results by visual inspection,

where . sn ≤

5. Get the value t2 by averaging the n threshold values obtained in Step 4.

5.3 Real-time Cartoon Face Generation
Process

When starting to track facial features in real time, the first image captured from a

camera is taken as the neutral facial image. If the FAPUs are extracted from the

neutral facial image correctly, the facial feature tracker keeps capturing the image

sequence from a camera and tracking the image feature points. The detailed process of

extraction of facial features was described before in Chapter 3. Then, the animation

generator transforms the image feature points into the face model control points and

 66

renders the cartoon face images in real time. The detailed process of such a

transformation was described in Chapter 2.

Sometimes an exception happens in the process of real-time facial feature

tracking. Usually the facial feature tracker ignores the exception by using the facial

feature points in the previous frame to recover the facial feature points in the frame

that has an exception. If the exception is very grave, the facial feature tracker will stop

the process and notice users that an exception happened in the process. The entire

process for real-time generation of cartoon faces is described as follows and a

flowchart of the process is shown in Figure 5.3.

Start Tracking

Extraction of FAPUs
in the First Frame

Tracking of facial
feature points

Does a Exception
Happen ?

Does a Exception
Happen ?

No

Happened in
continuous k

frames
StopTransformation of

Image Feature Points

Rendering of Cartoon
Face Image

No Yes

Recover of Wrong
Image Feature Points

Yes

No

Yes

Figure 5.3 A flowchart of the process for real-time generation of cartoon faces.

Algorithm 5.4. Process for real-time generation of cartoon faces.

Input: a sequence of facial images I = {I1, I2, …, In}, and a value k.

 67

Output: a sequence of cartoon images C = {C1, C2, …, Cn}.

Steps:

1. Extract the FAPUs from the first frame of image I1.

2. Stop the process if the extraction of the FAPUs has an error.

3. Track the facial feature points from the image sequence.

4. Stop the process if wrong eye-pair regions or wrong mouth regions are

extracted and the number of times of the wrong extractions is greater

than k.

5. Recover the wrong image feature points by the image feature points in

the previous frame if the number of times of the wrong extraction is

smaller than k.

6. Transform the image feature points into the face model control points.

7. Render the cartoon face images according to the face model control

points.

8. Repeat Steps 3 through 7.

5.4 Speech Recording and Play

In this Section, some processes about processing speeches are described. An

overview of the WAV audio file format is described in Section 5.4.1. Processes about

how to record and play speeches are described in Section 5.4.2.

5.4.1 Overview of WAVE Audio File Format
The WAVE audio file format is developed by Microsoft. It is based on the RIFF

document format and is identified by a file name extension of WAV. Because the

 68

Microsoft Company uses WAVE files in its operating system Windows, the WAVE

files get popular and become the standard PC audio format. And the WAVE files

support many audio compression algorithms.

In this section, an uncompressed PCM wave format is described. The WAVE

PCM file starts with an “RIFF” chunk identified by “WAVE.” And the “fmt” chunk

and the “data” chunk are the subchunks of the “RIFF” chunk. The “fmt” chunk

contains the wave audio format in the file. The “data” chunk contains the

uncompressed raw audio data. An illustration of WAVE PCM files is shown in Figure

5.4.

　 IFF�
Size

　 AVE�

　ata�

Data

Size

Wave Format Chunk

　mt�

Data

Size

Raw Data Chunk

Figure 5.4 An illustration of WAVE PCM files

The WAVE audio format includes six elements: wFormatTag, nChannels,

nSamplesPerSec, nAvgBytesPerSec, nBlockAlign, and wBitsPerSample. The

wFormatTag denotes the waveform-audio format type. The nChannels denotes the

number of channels in the waveform-audio data. The value is 1 for mono and 2 for

stereo. The nSamplesPerSec denotes the sample rate, the number of samples per

second. In WAVE PCM files, the value can be 8.0 kHz, 11.025 kHz, 22.05 kHz, and

 69

44.1 kHz. The nAvgBytesPerSec denotes the required average data-transfer rate. The

nBlockAlign denotes the block alignment, the minimal data size in bytes. The

wBitsPerSample denotes the bits per samples. In WAVE PCM files, this value should

be equal to 8 or 16.

5.4.2 Process of Recording and Play
In order to capture a user’s speeches, a Waveform Audio SDK provided by

Microsoft is used in this study. The speeches are recorded with a simple

waveform-audio format specification: mono, 8.0 kHz, and 8 bits per sample. Although

the quality of digital sounds is not the best, it cannot be discriminated by the human’s

ear.

An audio buffer is used when recording the speeches. If the audio buffer is full

with the speeches captured by a microphone, the output audio device plays the

speeches stored in the buffer immediately and releases the data in the buffer. By

repeating the work for recording and playing the speeches in the audio buffer, a

system for real-time talking speeches can be established.

If a user wants to stop the system for real-time talking speeches, the system will

keep recording speeches until one audio buffer is full, and then the recording is

stopped. And the output audio device will play the speeches in the full audio buffer

and stop. A flowchart of the system for real-time talking speeches is shown in Figure

5.5.

 70

Speeches

Record in a Buffer

Is the Buffer Full?

Play the Speeches with a
Output audio Device

Release the Data in the Buffer

If Receive a Stop
Instruction?

Stop

Yes

No

Yes

No

Figure 5.5 A flowchart of the system for real-time talking speeches.

5.5 Synchronization of Cartoon Videos
and Speeches

In most researches of talking virtual faces, the syllables of speeches are analyzed

for synchronizing moving lips and speeches. However, the methods for analysis of

syllables are different for different languages. The applications for the research of

talking virtual faces are limited by the analysis of syllables in different languages.

In this study, the syllables of speeches captured from a microphone are not

analyzed. The lip movements of talking cartoon faces are synthesized according to the

sequential facial images. It is possible then to generate talking cartoon faces in real

 71

time with any speeches.

On the other hand, automatic synchronization of cartoon videos and speeches is a

difficult problem because no information about speeches can be used. In order to

solve the problem, a friendly interface is proposed to help users to synchronize the

cartoon videos and speeches. The basic idea is to fix the timing of speeches and

regulate the delay of images to synchronize the cartoon videos and speeches. In this

interface, a delay value is used to control the delay of images. The delay value denotes

the delay of frames in the system for real-time generation of talking cartoon faces. A

user can change the delay value to regulate the delay of images to synchronize the

cartoon videos and speeches in real time. The detailed process for synchronization of

videos and speeches is described as follows. And a flowchart of the process is shown

in Figure 5.6.

Algorithm 5.5. Real-time synchronization of videos and speeches.

Input: a delay value d.

Output: a synchronized talking cartoon face.

Steps:

1. Store a set of face model control points in the present frame into a queue

Q.

2. If the size of Q equals d, pop up a set of face model control points from

Q and render the talking cartoon face image according to the face model

control points.

3. Clear the data in Q if d is changed in the process of real time talking

cartoon face generation.

4. Repeat Steps 1 through 3.

 72

If The Size of Q = d

Store a set of face model
control points into Q

Pop a set of face model
control points from Q

Render the talking
cartoon face image

Yes

No

If The value of d is
refreshed

Clear the data in Q

Yes

No

Figure 5.6 A flowchart of the process for synchronization of videos and audios.

5.6 Experimental Results

In this section, some experimental results of real-time cartoon face animation are

shown. Figure 5.7 shows the program interface of real-time talking cartoon face

generation used in this study. The red circle indicates the interface for synchronization

of images and speeches. A process of environment learning is conducted before

starting the real-time facial feature tracking, as shown in Figure 5.8. Then a face

model is chosen as the avatar, as shown in Figure 5.9.

 73

Figure 5.7 The program interface of real-time talking cartoon face generation.

Figure 5.8 The process of learning of environments before starting real-time facial feature tracking.

 74

Figure 5.9 The interface for the process of choosing a face model.

Two resulting talking cartoon faces are shown. An experimental result of

real-time frontal talking cartoon faces is shown in Figure 5.10. An experimental result

of real-time oblique talking cartoon faces is shown in Figure 5.11.

Figure 5.10 An experimental result of real-time frontal talking cartoon faces.

 75

Figure 5.11 An experimental result of real-time oblique talking cartoon faces.

 76

	Real-time Cartoon Face Animation
	Introduction
	Learning of Environment
	Learning of Eye-pair Region Threshold Value
	Learning of Division Line
	Learning of Mouth Region Threshold Value

	Real-time Cartoon Face Generation Process
	Speech Recording and Play
	Overview of WAVE Audio File Format
	Process of Recording and Play

	Synchronization of Cartoon Videos and Speeches
	Experimental Results

